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Sums and product s  o f  c o m m u t i n g  spectral  o p e r a t o r s  1 

By S. R. FOGUEL 

1. Introduction 

Given two spectral operators T x and T~, on a complex Banach space 3~, it  
is interesting to know if T I +  T 2 and T 1 T  2 are spectral operators too. This 
problem is t reated in [3] and [4]. I t  is proved there tha t  if the space 3~ is 
weakly complete, and the operators T 1 and T 2 commute and the Boolean al- 
gebra of projections generated by the resolutions of the ident i ty of T 1 and T 2 
is bounded, then both T 1 + T~ and T 1 T 2 are spectral operators. Moreover, if 
T1 = ~1 ~- N1, T2 = ~2 ~- Y2, where ~1 and  ~2 are scalar operators and N1, N 2 are 
generalized nilpotents and Sj, N1, $2, N 2 commute, then S 1 + S~ and S1S  2 are 
scalar operators and N 1 -~ Y2, ~IN~ + S 2 N 1 + N 1N~ are generalized nilpotents. 
The main problem in this paper will be to determine the resolutions of the 
identi ty of T 1 + Tz and T 1 T 2. By  the above remark it  is enough to consider 
the case where T 1 and T~ are scalar operators. A second problem treated here 
is to find the poles of the resolvents of T 1 + T2 and T 1 T 2. In  this par t  we do 
not  assume tha t  T 1 and T~ are spectral operators. 

2. Notation 

We use here the notat ion and definitions of [3]. Let  3~ be a complex Banach 
space. A spectral measure is a set function E ( .  ) defined on Betel sets in the 
complex plane whose values are projections on 3~ which satisfy: 

1. For  any two Borel sets a and (~, E ( o ) E ( 6 ) = E ( o  A ~). 
2. Le t  ¢ be the void set and P the complex plane, then 

E ( ¢ ) = 0  and E ( P ) = I .  

3. There exists a constant M such tha t  ] E ( o ) ] < M ,  for every Borel set o. 
4. The vector valued set function E ( .  )x is countably additive for each 

x e ~ .  

T is a spectral operator whose resolution of the identi ty is the spectral meas- 
ure E ( . )  if 

1 T h i s  p a p e r  is a p a r t  of a d i s s e r t a t i on  p r e s e n t e d  for t he  degree  of Doc to r  of 3Philosophy 
in  Yale  U n i v e r s i t y .  T h e  a u t h o r  wishes  to  exp res s  his  t h a n k s  to  Professor  N. D u n f o r d  for 
his  g u i d a n c e  a n d  k i n d  e n c o u r a g e m e n t .  
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(a) For  any Borel set a, T E ( a ) = E ( a ) T .  
(b) If  T I E  (~)~ is the restriction of T to the subspace E (~)~, then 

where a(A)  denotes the spectrum of A. 

If  T is a spectral operator the operator S =  f ]t E(d]t) is its scalar part  and 
N = T - S  its radical. The operator N is a generalized nilpotent (see [3], p. 333). 
The operators T, S, N, E (~) commute (a a Borel set). The operator T is called 
a scalar operator if T = S. 

3. Sums and products o f  projections 

In this section we shall find the resolutions of the identi ty of the sum 
and product of two scalar operators when one of them has a finite spectrum. 

Lemma 1. I /  S is a scalar operator whose resolution o/ the identity is E ( .  ), 
and F a projection commuting with S, then S A-ttF is a scalar operator whose 
resolution o/ the identity is given by the projection valued set /unction G (. ) 

G (~) = E (~ - tt) F + E (~) F', 

where F' is the complement o/ F, namely I -  F, and c¢ is a Borel set. 

Proof. Let  ~ and fl be Borel sets. 

G (~) G (fl) = (E (~ - ~) F + ~ (~) F ' )  (2 (fl - ~) F + E (fl) F ' )  

=E(~ n ~ - ~ ) F +  E(~ n ~)F' 

= a ( ~ n ~ )  

because E and F commute. (See [3], p. 329.) 

G(~)=O and G ( P ) = I . F + I F ' = I .  

IG(~)l =IE(~-~)F + E(~)F'I 

-< IE(~ -~ ) I  [ F I + I E ( ~ ) I F ' I  

_< Sup ( IE( : ) I  [ :  a Borel set} ( I F I ÷  I F 'I) .  

I t  is clear tha t  G (~)x is countably additive. Now 

= f ~ [ E ( d ~ - ~ ) F + E ( d ~ ) F ' ]  

= f 2 G ( d 2 ) .  
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Theorem 1. Let T = S  ÷ ~ #~Fi, where S is a scalar operator .whose resolution 

o/ the identity is E (. ) and 

F~S=SF~, ~ F~=I, F~Fj=O i - j ,  F~=F~, 
iffil 

then T is a scalar operator whose resolution o/ the identity G is given by 

G(~)= ~ E(~-~)F~ 
iffil 

/or any Borel set c¢. 

Proo/. B y  L e m m a  1 the theorem holds for m = 1. Le t  us assumo its va l id i ty  
n--1  

for r e = n - 1 .  On the  space Y =  ~ F ~  by  assumpt ion  
iffil 

n l f S+ ~#iF~= ]tGl(d2), 
iffil 

n - 1  

iffil 

Thus for  every  x 6 

n - 1  

= ( S ÷  
n - 1  ) n - 1  

~l #i Fl ~. F~ x + S F .  x 
i i = l  

= f 2 G~ (d 2) x, 

where O2(~)x= (~-#~)F~ ~ F~x+E(o:)F,~x 
\ i = I  i = l  

n - I  

= ~ E(:~-/a~)F~x+E(~)F,~x. 
i = l  

I t  is easy to verify tha t  G 2 is a spectral  measure.  Using L e m m a  1 again 
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where G (cz) = G 2 (~ -/~n) Fn -t- O 3 (~)/~n r 

n--1 
=E(~c-I~)F~ + ~ E(~c-I~)F~ 

~ 1  

= ~ E ( ~ -  i~) F~. 

By a similar proof one can derive the following theorem. 

Theorem 2. Let T~- S .  /~F~ , where S and F~ satis/y the conditions o/ 

Theorem 1 and /~ :v 0, then T is a scalar operator whose resolution o/the identity 
G is given by 

G ( ( ~ ) =  iffil ~" E ( ~ i )  F i .  

The restriction /~i=~0 is not  essential and is introduced here to simplify 
notation.  

Corollary I .  Le t  S~ and S 2 be two commuting scalar operators given b y  

t=l  i= l  iffil t~l  

then the  spectrum of S I + S 2 is contained in the set {~ + #j] 1 <_ i _< n, 1 _< ~ <_ m} 
and the value of the resolution of the ident i ty of S 1 + S, a t  the point ~ is 
equal to ~+~s~E,  Fj. Also, the spectrum of S1S~ is contained in the set 

{~*/~J I 1 _< i _< n, 1 _< j_< m} and the value of the resolution of the ident i ty  of 
S1S 2 at  the point  ~ is equal to ~,t,t_~E~Fj. 

By Lemma 1 if E 1 and E 2 arc two commuting projections then 

' E E '  E I + E 2 = 2 E I E ~ + ( E I E 2 +  2 1). 

This can be generalized as follows. 

Corollary 2. Le t  E~ 1 _< i _< n be n commuting projections then ~ E~ is a scalar 
i=1 

operator  whose spectrum is contained in the set (0, 1, 2 . . . . .  n} and a t  the point 
i 1 ~< i ~< n the value of the spectral  measure is 

G , =  1-I E;, ... E;n_ , 
l<:j~<ia<. •. <.in_t<n l<K<n 

K ~ I  v 

and G O = Gi. 
i= l  
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Proo/. Let  us prove by  induction. For  m = 2  the equation holds. Assume 
tha t  the theorem is true for m = n. 

n + l  

~: Et = 0 "  G 0 + iGi+En+l+O'E'~+l. 
/ ff i l  ~ffil 

n + l  

By Theorem 1, the value of the resolution of the identi ty of ~. Ej a t  the point  i, 
1=1 

l _ < i _ < n +  1, is 

Fi = Ot-1E~+I + O~ E'~+I 

= Z 1-[ EKE~+IE~I ... E'j~_~+I+ 
l<_]~<.. .<]n_~+l<n l < : K < n  

K:~Iv 

-4- • l-I EKE;, ... E 'tn _ , E" + ~ 
1<]~< . . . < ] n _ ~ < n  I < K < n  

: 2 YI E=E;. E' " "" I n + l - t *  
l < _ i ~ i 2 < . . . < i n + l _ i < _ n + l  l < K _ < n + l  

K ~ I  v 

n + l  

Now Fo + Z F, = I ,  
iffil 

hence 
n + l  

F0 = 1-I F' .  
i ~ l  

4. Poles  o f  the  resolvents  o f  the  s u m  and product o f  t w o  c o m m u t i n g  operators 

The operators discussed in this section are not assumed to be spectral. We 
shall say t ha t  2 is a pole of an operator T if 2 is a pole of the resolvent of T. 
The following theorem will be used. 

Theorem A. I~ ,~ is an isolated point o[ the spectrum o/ an operator T, then 
there exists a projection E and a generalized nilpotent N such that 

E T = T E ,  N T = T N ,  N E = E N = N  

T = ( , ~ I + N ) E + K  with K = E ' K = K E '  and 2( fa (K) .  

The number 2 is a pole o/ order n if and only i/ N n= O, N n-1 ~=0. I n  addition, 
i/ an operator A commutes with T then A commutes with E, N, K. 

See [4] Theorem VII.3.18. E is given by  

E= f R(#; T)d , 
c 

where c is a circle around 2 which does not  contain any other point of the  
spectrum of T. 
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If  T = Z T E,, where E,E¢= 0 i * ~, E~ = E, and T E, = Et T, then 
i=1 

and if ~t ~ a (T), 

a ( T ) =  6 ~(TIE,3~), 

( A I - T )  -1=  ~ R,(I)E, ,  
~=1 

where Ri(2) is the inverse of ( 2 I - T ) E i  on the space E,3~. 
Let  T 1 and T~ be two commuting operators. There exists an algebra a of 

operators, containing T 1 and T 2 such tha t  a is a commutative algebra and if 
U E a  and U -1 exists then U - l E a .  By  the Gelfand theory [5] if aa (U)denotes  
the spectrum of U as an element of a then aa(T 1-~ Ts) ~ aa(T1) + ca(T2), but  
for each UEa,  aa(U)=c(U),  hence a ( T l + T 2 ) c a ( T x ) + a ( T 2 ) .  If  c3 is an 
isolated point of a (T 1) + a (T s) then 

with ~ +/x~ = c3 l<_i<_n 

but  (~ (~ (0" 1 "~" 0" ( T 2 ) )  U (0"2 3F O" (T1)). 

Theorem 3. I /  T~ and T~. are two commuting operators, and ~ is an isolated 
point o] a(T1)+a(Ts)  , and 2t is a pole o/ T 1 o/ order n~, tz~ is a pole o/ T s o/ 
order m,, where {~}, {/&}, a~, a s are defined above, then ~ is a Tole o/ order not 
greater than max [ (mi+n~-  1) l <_i<_n]. 

Proo/. By repea~d  application of Theorem A we have 

with 

TI= ~. ( ~ I + N i ) E i + K 1  
l = l  

K 1 ~. E,= ~ E~KI=O , 
I=I tffil 

E~=E,,  E, Es=O i ' i ,  

N?~ = 0 a (K1) = a l ,  

with 

T s = ~ (#~I + M~) F~ + K s 
i=1  

K 2 ~ F~= ~. F~K2=O, 
i = l  i = l  

2 F~=F~, F~F~ = 0 i ~: ~', 

M~'~ = 0,  a (K~)  = a2. 
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The operators  E~, Ft, Ms, N~, K1, K 2 commute.  Now 

B y  Corollary 1 of Theorem 1 

i = 1  i = 1  t = 1  i = 1  t =1 

where 

and E .  is I -  ~ E~, F .  is I -  ~F~ .  
i = l  i = l  

Thus  (1) takes  the  form 

n n 

The opera tor  M is a n i lpotent  operator  on the space 

Le t  
~=1 t = 1  

E 0 + G 1 = F o + G s = I, No G1 = Fo (72 = 0, 

K1Eo = K1, Ks Fo = K 2. 

Le t  T = T 1 + Ts, 

T =  T G 1 G  s + T E o G  , + T F o G I  + T E o F  o, 

(21 - T ) - I  = ((21 - T) I GI (72 ~) -1 G1 G~ + ((21 - T)  I Eo G2 ~) -1Eo  (7 s + 

+ ((21 - T) IFoGI~) - IFoG1  + ( ( 2 1 -  T)  IEoFo~, ) - IEoFo.  

On the space EoF.~ ,  , T has the  form 

(K1 + Ks) E0 Fo, 

~ ~1 + ~2, b u t  a (K 1 + Ks) c a(K1) + a (K2) = a 1 + a s. 

Thus  on EoFo~.,  ( 2 I - T )  -1 is regular a t  the point  ~. 

(2) 
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On the space E o G2~ , T has the form 

n 

Hence a ( T I E 0 a ~ ) =  6 a ( K l  + #,I]EoF,~)= 6 a(Kl + lZ,I) 
i=1 t = l  

= a l +  {~ ... ~.}. 

Thus ~ ~ a (T I E0 G ~ ) .  

B y  the same argument  8 ~ a (T I F0 GI ~). The number  ~ is a regular point of 

T restricted to G 1 G~ ~ if and only if ~ E, Ft = 0, in this ease 5 is a regular point 
t= l  

of T. The nilpotent operator associated with the point (~ is i~(N,  +M~)EtF~ 

by  (1) and (2). Le t  k= max [(m, + n , -  l) l<_i<_n] 

(~i=l (~vi + Mr)E,F,) k= ~-1 ( N, + M,) k E, 2', = 0. 

Hence ~ is a pole of T [ G 1 G ~  of order at  most  k, but  by  the preceding 
discussion ~ is a pole of T of the same order. 

Using Theorem 2 and a similar proof we arrive a t  the following theorem. 

Theorem 4. I~ TI and T 2 are two commuting operators and 

O" (T1)  = {21 . . . . .  An} U o'1, o" (T2)  = {/.L 1 . . . . .  ]-£n} U o" 2, 

O:v/t = 2t/~i, l<i<_n, (~(~(al.a(T~))U(a~.a(T1)) 

(these conditions are equivalent to: 0~:(~ is an isolated point of a (T1). o'(T2)), and 
i/  2t is a pole o/ order nt o/ T1, ]as is a pole o/ order mi o/ T~, then ~ is a pole 
o/ T 1T~ o/ order at most 

max  [(m,÷n~-- 1), 1 <_i~n] .  

5. Application 

Let  C be a linear operator  in the space ~. Define the operators T 1 and T 2 
on  the space B(~)  of bounded linear operators in :~ by  

T I ( A ) = C A ,  Tz (A )=AC,  A eB(~).  

I n  this section we s tudy the relations between the poles of C and those of 
T = T 1 - T  2. (This problem was raised by  Professor E. Hille.) I t  is easy to see 
from the proof of Theorem 1 in [5] tha t  a (C)= a (T1)= a (T~). By Theorem A 
~t is a pole of C if and only if i t  is a pole of T 1 and T 2 of the same order. 
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Theorem 5. Let ~ (C) be decomposed 

( c )  = {~1 . . . . .  ~.} u ~ ,  

( c )  = {~1 . . . . .  ~.} u ~ ,  

with ~ - ]~ = ~ 1 <_ i <_ n, and (~ ~ ((~1 - a (C)) U (a (C) - a2), and ]~, ]u~, are poles of 
order n~, ms respectively of C, then ~ is a pole o] the operator T on the space 
B(~)  defined by 

T ( A ) = C A - A C ,  A EB(~)  

of order max [(m~ ÷ n~ - 1), 1 _< i _< n]. 

Proof. In  order to use Theorem 3 we note 

1. T 1 T 2 ( A ) = T 2 T I ( A  ) = C A C ,  A e B ( ~ ) .  

2. I f  E and F are projections on ~, then the operators J~, E ( A ) =  E A ,  and 
F,  F ( A ) = A F ,  A EB(~) ,  are two commuting projections. 

3. I f  N is a ni lpotent  operator  on ~ of order n then N, 1~ (A) = N A ,  A E B (~), 
is a nilpotent operator  on B (~) of order n. 

To show tha t  ¢$ is a singular point of T we prove the following lemma. 

Lemma 2. Let V~ and V 2 be two non.zero operators on ~, then the operator V 
on B (~) defined by 

V ( A ) = V ,  A V  2, A e B ( ~ )  

is different from zero. 

Proof. Let  us choose x E ~ y E ~  such tha t  V2x*O, V l y * O  and x*E~*such  
t ha t  x* (V~ x) * 0. Define A by  z E ~, A z = x* (z). y. Then 

(V 1 A V2) (x) = x* ( V2 x) .  V 1 y ~ O. 

Now to conclude the proof of Theorem 5 let E~, 2V~ be the projections and 
nilpotents respectively corresponding to ~i, and E~, M~ the ones associated 
with /~t- By theorem 3 the projection associated with ~ with respect to T is (7 

G ( A ) = ~ E ~ A F ~  A E B(~). 

The corresponding ni lpotent  is given by 

M (A) = ~ (N~(E~AF~)- (E, AF~) M,) 
i=l 

E~G(A)F~=E~AF~*O by Lemma 2, thus G * 0  and (3 is a singular point of T. 
I f  l = max [(m~ + n~ - 2), 1 _< i _< n] = ms. + n~. - 2, then 
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l 
V E Z--l) Es.MZ(A)Fj,= ~ =~Nj. j. AFj.  Mj. , 

v=O 

where ~v are non zero numbers, hence 

Ej. M ~ (A) Fj. = =.j._~ 

if A is properly chosen. 

NnJ. -1AMmj, -1 * 0 
h h 

6. Sum and product of two commuting scalar operators 

Throughout  this section we assume that  the space ~ is weakly complete. 

Theorem 6. Let {Sn} be a sequence of commuting scalar operators which con- 
verge uni/ormly to the operator S. I /  the Boolean algebra o/ pro]ections, generated 
by the resolutions o/ the identity o/ the operators Sn, is bounded, then S is a scalar 
operator, and i/ E . ,  E, are the spectral measures o/ S .  and S respectively, then 
/or each Borel set 

(1) I f  /or some xE~., E(boundarycc)x=O, then E(cc )x=l imE~(~)x .  

(2) I /  /or some x E~ and x*E~*, x*E (boundary~)x=O, then x * E ( ~ ) x  = 
lira x* E .  (a) x. 

Proo]. By [4], Theorems XVII.2.5 and XVII.2.1, there exists a set function 
F ( . )  defined on a compact set A such that  for each Borel set ~ in A, F ( ~ ) i s  
a projection satisfying conditions 1, 2, 3, 4 of the Introduction (where the com- 
plex plane should be replaced by A), and for every T in the uniformly closed 
algebra generated by  the resolutions of the identi ty of Sn, there exists a con- 
tinuous function / defined on A such that  

A 

and this correspondence is an isomorphic homeomorphism if the norm of / is 
taken to be 

Ill = m a x  I1(~)1. 

Let /~ and f correspond to Sn and S. By assumption S~--->S, hence /~ tends 
to / uniformly. 

S~= f l.(7)F(dT), S=  f / (7)  F(dT), 
A A 

hence E.  (~) = F (7][. (7) E ~}, E (~) = F (711 (7) E ~} 

for every Borel set a in the complex plane. Le t  An= {7 l[~(7)E ~} and A = 
{7If (7) e ~}, then 

E. (=) x = f zA~ (7) F(dT) x, 
A 

E (=) x = f gA (7) F (dT) x, 
A 
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where Z~ denotes the characteristic function of B. In  order to prove (1) it is 
enough to show that  gas (7) converges almost everywhere, with respect to the 
measure F ( . ) x ,  to ZA(?). (See [4], Theorem IV.10.10.) If / ( ? ) E ~  ° then for 
n > n o /n (7) E ~o. If / (7) E ( A -  ~)o then for n > n I /n (7) E (A - ~)o. By ~0 we mean 
the interior of ¢~. Let  F {?]/(7)  E boundary ~ ) x = O ,  then because of the multi- 
plicity property of F 

sup{  ,~le, F(B~)x], B, A B , = ~  i=~j, 

B, = {?[/(7)  E boundary a}, e~ complex number with [e~ [ ~< 1} = 0. 

Thus En (~) x - + E  (~) x whenever 

F {Tit (7) e boundary ~} x = 0, 

but  F {?1 [ (7) e boundary ~} = E {boundary ~} 

and so (1) is proved. (2) is proved in the same way. 

Remark. This is a perturbation theorem similar to Rellich Theorem [6] and to 
Theorem 2.6 of [2], p. 402. By [1], p. 351, for each x E ~ there exists a func- 
tional x* with the properties 

1. x*E(~)x_>0 for any Borel set a. 
2. If x * E ( ~ ) x = 0 ,  then E ( ~ ) x = 0 .  

Thus E (~ )x=  0 if and only if x*E (o¢)x = O. Now for any collection of Borel 
sets {a,} with at, A ~,, = ¢ whenever t l - t , ,  only a countable number of terms in 
the set {x*E(~t)x} are different from zero, because of countable additivity. 
This shows that  there are enough Borel sets ~ with E (boundary ~¢)x=0 to 
compute the value of the Riemann Integral f g (2)E (d2)x for every continuous 
function g. 

Theorem 7. Let S 1 and S 2 be two commuting scalar operators with resolutions 
o/ the identity E ( .  ) and F ( .  ) respectively. I l the Boolean algebra o/ projections 
generated by E (~), F (fl) is bounded then T 1 = S~ + S 2 and T~ = S 1S~ are scalar 
operators whose resolutions of the identity G 1 ( . )  and G~(. ) respectively, are 

G 1 (~) x = f E (~ - #) F (d#) x i I G 1 (boundary ~) x 0, 

where the integrals exist in the sense of Riemann, provided that in the sums 

~1E F (Ai) x approximating G~ (o:) x we take ~ * O. The integrals are evaluated 

over any rectangle containing a ($2). 
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Proof. Let  K be a rectangle containing a ($2) and let {~r,} be a sequence of 
partitions of K. 

6 A~ = K, max [diam A" ( t), l_<i_<n]--->O. 
t = l  

Let  /x~ E A~, #~ * O. 

S ~ + S z =  hm ( S ' +  ,-1~ F(A~)#~)  = lim R~. 

By  Theorem 1, Rn is a scalar operator whose resolution of the ident i ty  G~, is 

" E  a~(~)= ~ (~-~DP(AD. 

By Theorem 6, Gr (¢¢) x->G 1 (~) x if 

G 1 (boundary :¢) x = 0. 

Similarly SI~.~ 2 = lim U~, and the resolution of the identi ty of Un, G~ is by  
Theorem 2 

o~' (~) = ~ E ~' (A D. 

Thus if G2(boundary~)x=O then G2(a)x= f E(~)F(d#)x .  

Remark. Let  S be a scalar operator with resolution of the identi ty E ( - ) ,  
and let the set function E (-)  be chosen in such a way tha t  for every point 
20, E((20) ) =0.  Le t  S I = I + S  and S ~ = I - S  then SI+S~=2I the spectral meas- 
ure of the operator 2 1 is concentrated at  the point 2. The resolution of the 
identi ty of S 1 is given by 

EI(a)=E(a-1  ) for any Borel set ~. 

The resolution of the identi ty of S~. is 

E~.(~.)=E(1-~) for any Borel set ~. 

The Boolean algebra of projections generated by  E 1, E~ is bounded, but  E 1 ((20)) = 0 
for every point 20, hence 

f E 1 ((2 - ~ ) )  E 2 (d~u) = 0 * I .  

Yale University. 
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