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Sums and products of commuting spectral operators!

By S. R. FocuEL

1. Introduction

Given two spectral operators 7', and 7,, on a complex Banach space X, it
is interesting to kmow if T, +T, and T,7T, are spectral operators too. This
problem is treated in [3] and [4]. It is proved there that if the space X is
weakly complete, and the operators 7; and 7', commute and the Boolean al-
gebra of projections generated by the resolutions of the identity of 7, and T,
is bounded, then both 7,47, and T,7', are spectral operators. Moreover, if
T,=8,+N,, T,=8,+N,, where 8, and 8, are scalar operators and N,, N, are
generalized nilpotents and §;, N,, S, N, commute, then S, + S, and 8,8, are
scalar operators and N,+ N, 8, N,+8,N,+N,N, are generalized nilpotents.
The main problem in this paper will be to determine the resolutions of the
identity of T,+ 7, and 7,7, By the above remark it is enough to consider
the case where T, and T, are scalar operators. A second problem treated here
is to find the poles of the resolvents of 7+ T, and 7, 7,. In this part we do
not assume that T, and T, are spectral operators.

2. Notation

We use here the notation and definitions of [3]. Let X be a complex Banach
space. A spectral measure is a set function B (-) defined on Borel sets in the
complex plane whose values are projections on X which satisfy:

1. For any two Borel sets ¢ and ¢, E (o) E(5)=E (o n ).
2. Let ¢ be the void set and P the complex plane, then
E@$)=0 and E(P)=I.

3. There exists a constant M such that |E(o)|<M, for every Borel set o.
4. The vector valued set function E(-)z is countably additive for each
z€X.

T is a spectral operator whose resolution of the identity is the spectral meas-
ure K (-) if

1 This paper is a part of a dissertation presented for the degree of Doctor of Philosophy
in Yale University. The author wishes to express his thanks to Professor N. Dunford for
his guidance and kind encouragement.
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S. R. FOGUEL, Sums and products of commuting spectral operators

(a) For any Borel set o, TE(0c)=E(0)T.
(b) If T|E(a)X is the restriction of 7' to the subspace E(x)¥, then

o(T|E(@)X)<a&,
where ¢(4) denotes the spectrum of A.

If T is a spectral operator the operator §= f AE(d2) is its scalar part and

N=T-S8 its radical. The operator N is a generalized nilpotent (see [3], p. 333).
The operators T, S, N, E(x) commute (x a Borel set). The operator T is called
a scalar operator if 7'=8.

3. Sums and products of projections

In this section we shall find the resolutions of the identity of the sum
and product of two scalar operators when one of them has a finite spectrum.

Lemma 1. If 8 is a scalar operator whose resolution of the identity is E(-),
and F a projection commuting with S, then S+ ulF is a scalar operator whose
resolution of the identity is given by the projection valued set funclion G(-)

G)=E(x—p)F+E () F,
where F' is the complement of F, namely I—F, and o is a Borel set.

Proof. Let o and § be Borel sets.
GG (B) = (EBla—m) F+E@F)(EB-p)F+EEF)
=~EBnf—u)F+E(@np)F
=G(xnp)
because £ and F' commute. (See [3], p- 329.)
Gp)=0 and GP)=I-F+IF =1I.

|G @) |=|B(@—u) F+E @) F|
S|E@-w| | F|+|E@)]|F]
<Sup {|E(«)||x a Borel set} (| F|+|F]).

It is clear that G'(«)z is countably additive. Now
JAE@N+pF=[A+W)E@NF+ [AE@N)F
= [A[B@A—p) F+E(d}) F']
= [1G6(d4).
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n
Theorem 1. Let T=8+ > wF, where S is a scalar operator whose resolution
i=1

of the identity is E(-) and

F,8=8F, SF=I, F,F,=0 i+j, F:=F,

i=1

then T is a scalar operator whose resolution of the identity G is given by

¢ (@)= 3 Ba—p)F,

for any Borel set a.

Proof. By Lemma 1 the theorem holds for m=1. Let us assume its validity
n—-1

for m=n—1. On the space Y= > F;¥ by assumption
i-1

n-1

S+ zMiFi= f ZGl(dﬂ.),
i=1

n-1
Gl ()= igl E(“—ﬂi) F,.

Thus for every z€ X

n—1
(S+ > Hin)x
i-1
n-1 n-1
=(,5'+ > ﬂiFi) S Fix+8Fyx
i=1 i1
JAG dl)(z Fx) fﬂE dA) F
=flG’2(dl)x,
n-1 n-1
where Gg(m)x=(zE(oc——[u,-)Fi) > Fz+ E(@)Fox
i=1 i=1

n-1
=3 E(—m) Fiz+E(0) Foz

i=1

It is easy to verify that @, is a spectral measure. Using Lemma 1 again

n-1
(s+ > ‘uiF,-)+M,,Fn=flG(d}t),
i=1
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where G (o) = Gy (o — pn) Fn + Gy () F,

n-1

=E(a—pn) Frnt+ 2 E(a—m)F,

n
= le E (o — ) Fy.
By a similar proof one can derive the following theorem.

Theorem 2. Let T= (S- > p,F,), where S and F; satisfy the conditions of
i=1

Theorem 1 and u;=+0, then T is a scalar operator whose resolution of the identity
G is given by

G (@)= él E (/%) F.

1

The restriction u;+=0 is not essential and is introduced here to simplify
notation.

Corollary 1. Let 8, and 8, be two commuting scalar operators given by

1

Sl: Z AL E;, ‘S’z=.§1 ;u'iFi’ £ Ei=I=iZI Fy,

then the spectrum of 8+, is contained in the set {4+ u;|1<i<n, 1<j<m}
and the value of the resolution of the identity of S;+ 8, at the point ¢ is
equal to 3y ,u-s B F;. Also, the spectrum of §,8, is contained in the set
{Ap;| 1<i<m, 1<j<m} and the value of the resolution of the identity of
8,8, at the point § is equal to ;-5 E F;. ,

By Lemma 1 if E, and E, are two commuting projections then

E,+E,=2E,E,+(E,E;+ E, Ey).

This can be generalized as follows.
n

Corollary 2. Let E, 1<i<n be n commuting projections then > E; is a scalar

i=1
operator whose spectrum is contained in the set {0, 1, 2, ..., n} and at the point
¢t 1<¢<n the value of the spectral measure is

’ ’
G, = 2 Il ExE;..E;,_,

1<ii<fa< v o <iy_j<n 1<K<n

K7y
n

’

and G, =11 Gi.
i=1
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Proof. Let us prove by induction. For m=2 the equation holds. Assume
that the theorem is true for m=mn.

n+1 n
z Ej =O' GO + z iGi+En+1+0'E:L+1.
=1 i1
n+1
By Theorem 1, the value of the resolution of the identity of > E; at the point 4,
i=1

1<i<n+1, is

Fi=Gi 1Ep1+GEnyy
- S I1 BxB.nnE, .. B,  +

1<fi<-- r<ip_j31350 1<K<2
K+jy

’ [ [
+ > Il ExE; .. E;  En:
1<hi< e <ip g<n 1<ELn
K7y

’ ’
= Z H EKEjI“'Ein+1—i'
1<H<Fp< o <ip gy S+l 1SE<n+1
*iy

n+l

Now Fy+ > Fi=1I,
i-1

n+1
hence F,= T[] Fi.
i=1
4. Poles of the resolvents of the sum and product of two commuting operators
The operators discussed in this section are not assumed to be spectral. We

shall say that A is a pole of an operator 7 if A is a pole of the resolvent of 7.
The following theorem will be used.

Theorem A. If A is an isolaied point of the spectrum of an operator T, then
there exists a projection E and a generalized nilpotent N such that

ET=TE, NT=TN, NE=EN=N
T=@AI+N)E+K with K=E'K=KE and Ai¢o(K)

The number 1 is a pole of order n if and only if N* =0, N*'=+0. In addition,
if an operator A commutes with T then A commutes with E, N, K.

See [4] Theorem VII.3.18. E is given by

E=[R(u; T)dp,

where ¢ is a circle around A which does not contain any other point of the
spectrum of 7'
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It T= Z TE, where E,E;=0 i+j, E¢=E; and TE,=E,T, then

i=1

o(T)= U o(T|E%),

and if 1¢0(T),
(AI-T)*= Z R,(A) E,,

where R;(A) is the inverse of (AI—T)E; on the space E,X.

Let T, and T, be two commuting operators. There exists an algebra a of
operators, containing T, and T, such that a is a commutative algebra and if
U€ca and U™! exists then U™ €a. By the Gelfand theory [5] if o,(U) denotes
the spectrum of U as an element of a then oo (T, + Ty) < 6a(T) + 0¢(T), butb
for each U€a, 6,(U)=06(U), hence o (T +T)<o(T)+o(T,). If § is an
isolated point of ¢ (7)) + o(T,) then

a(T)={As ..., An} U oy, 0 (To)={ptys - tin} U 0,
but 0¢ (or+0(T)) U (g, +0a(Ty)).
Theorem 3. If T, and T, are two commuting operators, and & is an isolated
point of o(T))+o(T,), and A, is a pole of T, of order n;, y; is a pole of T, of
order my;, where {4}, {u;}, 0, 0, are defined above, then & ts a pole of order not

greater than max [(m;+n,—1) 1<i<n)].

Proof. By repeated application of Theorem A we have

Z LI+N)E+K,

Wlth Kl z Ei= z EiK1=0, E?:Ei, E,-Ej=0 7:*7‘,
i=1 i=1
Nii=0 o(K;)=0y,
n
Ty= > (ul + M) F,+ K,
i=1
with

K,> F,= > F,K,=0, F:=F, FF,=0 1+7,
-1 -1

MPi=0, o (K,) =0,
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The operators E,, F,, M, N; K,, K, commute. Now

n n
T1+T2=K1+K2+< SAI+N)E+ 3 (IuiI—I-Mi)F,)‘
1 i=1

i=

By Coroliary 1 of Theorem 1

zliEi—*- z y¢F5=5ZE,F5+Z(3¢Ag+ z Z«gEiFo’{" E‘U'gF;‘Eo,
i=1 i=1 i=1 i=1 i=1
where
614:6, Ag(zEij)=O, A?=Aj, Aj(ZEi)(ze)=A§)
j=1 i=1 i=1

and E‘) is IT— z Ei’ FO is I— zFi'
i=1 i=1

Thus (1) takes the form

T,+Ty=4¢ ZEiFi+26£Ai+(K1+ ZﬂiF§E0)+(K2+ ZZiEiF0)+M.
i-1 -1 i=1

The operator M is a nilpotent operator on the space

n n
Let Gl = z E,-, G2= Z Fb
=1

E,+ G =F,+G,=1, E,G,=F,@,=0,
K,E,=K,, K,F,=K,.
Let T=7,+1T,,
T=TG6G,G,+TE,G,+TF,G,+TE,F,,
AI-T)'=(AI-T)| G160, %) G, G+ (AT - T)| B, G, X) " B, Gy +
(AL -T)|F, G X)  Fo Gy + (A~ T)| E,Fo X)" B, F,.
On the space E,Fy X, T has the form
(K, +K,)E,F,,
0¢0,+0, but o(K, +K,)<o(K,)+o(K,)=0,+0,

Thus on B F,%X, (AI—T)" is regular at the point 6.

(h

2)
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On the space E,G,¥, T has the form

T|E0G2x=K1G2+ glﬂiFiEoz iZI(K1+M£I) FiEO'

Hence o (T|E,G,X)= }._Jla (K, + pud | B FiX) < il—JlG(Kl + ul)
— 0y (o i}
Thus 8¢o(T|E, Q%)

By the same argument 6 ¢ o (T'|F,G,X). The number é is a regular point of
T restricted to G,G,X if and only if > B, F,=0, in this case ¢ is a regular point
=1

n

of T. The nilpotent operator associated with the point § is _Ei(N,-—I—Mi) E, F,
by (1) and (2). Let k=max [(m;+n,—1) 1<¢<n]

(i (Ni+Mi)EiF1)k= > (Ni+ M) E F;=0.

i=1 i=1

Hence 6 is a pole of T'|G,G,X of order at most k, but by the preceding
discussion J is a pole of T of the same order.
Using Theorem 2 and a similar proof we arrive at the following theorem.

Theorem 4. If T, and T, are two commuling operators and

0(T1)={3~1’ ceey }-n} Uoy, o(T,)= {,up cees ,un} U 0y,
0=d0=Au;, 1Zi<nm, 0¢ (o, 0(Ty)) Ul(oy-0o(Ty))

(these conditions are equivalent to: 0+¢ is an isolated point of o (T,)- 6 (1)), and
if A 18 a pole of order n, of Ty, y; is a pole of order m; of T,, then & is a pole
of T\ T, of order at most

max [(m;+n;,— 1), 1 <i<nl.

5. Application

Let C be a linear operator in the space X. Define the operators 7, and T,
on the space B(X) of bounded linear operators in X by

T, (4)=C4, T,A)=AC, A€BX).

In this section we study the relations between the poles of C and those of
T=7T,~T, (This problem was raised by Professor E. Hille.} It is easy to see
from the proof of Theorem 1 in [5] that ¢(C)=a(T))=0(T,). By Theorem A
A is a pole of (' if and only if it is a pole of 7', and T, of the same order.
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Theorem 5. Let o (C) be decomposed
c{(Cy={2y, ..., A} U0y,
0 (C)={pts> - ttn} U 03,
with h— =0 1<i<n, and 8¢ (6, —c(C)) U (c(C)—0,), and A, u;, are poles of
order n;, m; respectively of O, then & 1is a pole of the operator T on the space

B(X) defined by
T(4d)y=CA—AC, A€B(X)

of order max[(m;,+n—1), 1<i¢<n].
Proof. In order to use Theorem 3 we note
1. T,T,(4)=T,T,(A)=CAC, A€B(X).

2. If E and F are projections on X, then the operators E, E(4)=EA, and
F,F(A)=AF, A€ B(X), are two commuting projections.

3. If N is a nilpotent operator on X of order n then N, N(4)=NA4, A€ B(X),
is a nilpotent operator on B(X) of order n.

To show that & is a singular point of 7' we prove the following lemma.

Lemma 2. Let V, and V, be two non-zero operators on X, then the operator V
on B(X) defined by

V{d)y=V,4V,, A€B(X)
is different from zero.

Proof. Let us choose z€X y€X such that V,z+0, V,y=0 and z* € X* such
that z* (V,x)+0. Define A by z€¥, Az=2"(z)-y. Then

(VL AV,) (z) =" (Vy2)- V,y=+0.
Now to conclude the proof of Theorem 5 let E;, N; be the projections and

nilpotents respectively corresponding to A,, and F;, M, the ones associated
with u,. By theorem 3 the projection associated with § with respect to T’ is G

G(A)=> E,AF, AE€B(X).
=1
The corresponding nilpotent is given by

M(A)= (Ni(EiAFi)“(EtAFi) M)

v

i

E;G(AyF;=E;AF,;+=0 by Lemma 2, thus G+0 and 0 is a singular point of 7.
If l=max [(m;+n;,—2), 1<¢<n]=m;+n;—2, then
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!
E M (A)Fy= 2 ay N}, B, AF, M,
=0

where o, are non zero numbers, hence
1 ns: _ ms _
E, M (A)F,.=oc,‘j._1Nj.h IAMj'h 10

if 4 is properly chosen.

6. Sum and product of two commuting scalar operators
Throughout this section we assume that the space X is weakly complete.

Theorem 6. Let {S,} be a sequence of commuting scalar operators which con-
verge uniformly to the operator S. If the Boolean algebra of projections, generated
by the resolutions of the identity of the operators S,, ts bounded, then S is a scalar
operator, and if E,, B, are the speciral measures of S, and S respectively, then
for each Borel set o

(1) If for some z€ X, E (boundary a)x=0, then E(x)z=1lim B, («) x.
(2) If for some z€X and z*€X*, z*E (boundaryo)x=0, then z*E(a)z =

lim z* B, (a) x.

Proof. By [4], Theorems XVII.2.5 and XVIIL.2.1, there exists a set function
F(-) defined on a compact set A such that for each Borel set o in A, F (a) is
a projection satisfying conditions 1, 2, 3, 4 of the Introduction (where the com-
plex plane should be replaced by A), and for every T in the uniformly closed
algebra generated by the resolutions of the identity of S,, there exists a con-
tinuous function f defined on A such that

T=[f(2)F@a),
A

and this correspondence is an isomorphic homeomorphism if the norm of f is
taken to be
|#] = max £ ()]

€A

Let f, and f correspond to S, and §. By assumption §,—S, hence f, tends
to f uniformly.

Su= [l Fdy), 8=[f{) Fdy),
A A

hence E. ()=F{ylf.») €}, E@=F{y|f(y)€o}

for every Borel set a in the complex plane. Let A,={y|f,(y)€a} and A=
{r|f(y)€a}, then

By = [ga, ) Fdy)z, E@z=[ya(y)F@y)a,
A A
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where yp denotes the characteristic function of B. In order to prove (1) it is
enough to show that y, (y) converges almost everywhere, with respect to the
measure F(-)z, to ya(y). (See [4], Theorem IV.10.10.) If f(y)€o«® then for
n>nq fo(y) €al. I f(y) € (A~a)® then for n>n, f,(y) € (A—«)’. By o° we mean

the interior of «. Let F {y|f(y) € boundary o} =0, then because of the multi-
plicity property of F

Z & F(B)x
i=1

Sup: ) BiﬂBj=¢: i*j,

B;< {y|f(y) € boundary «}, &; complex number with |&|< l} =0.

Thus E,(«)z—E («x) x whenever

F{y|f(y) € boundary a} =0,
but F {y|f(y) € boundary «} = E {boundary o}
and so (1) is proved. (2) is proved in the same way.

Remark. This is a perturbation theorem similar to Rellich Theorem [6] and to
Theorem 2.6 of [2], p. 402. By [1], p. 351, for each x €X there exists a func-
tional z* with the properties

1. 2" E(x)x=0 for any Borel set o.
2. If 2* E(x)x=0, then E({a)z=0.

Thus E(x)x=0 if and only if z* E(«) z=0. Now for any collection of Borel
sets {a:} with oy, N o, =¢ whenever ¢ =+1t,, only a countable number of terms in
the set {x*E(«:)x} are different from zero, because of countable additivity.
This shows that there are enough Borel sets « with E (boundary a)2z=0 to
compute the value of the Riemann Integral fg(}.) E (dA) z for every continuous
function g¢.

Theorem 7. Let S, and S, be two commuting scalar operators with resolutions
of the identity E(-) and F(-) respectively. If the Boolean algebra of projections
generated by E(x), F(B) is bounded then T,=8,+ S, and T,=8,8, are scalar
operators whose resolutions of the identity G,(-) and G,(-) respectively, are

Gl(oc)x=fE(oc—,u)F(d,u)x if @, (boundary a)x=0,

Gy () x= f E (%) Fu)z if G,(boundary o)z=0,

where the integrals exist in the sense of Riemann, provided that in the sums
> E (%) F(A)z approximating G, (x) x we take p,=+0. The integrals are evaluated
i=1 4

over any rectangle containing o (S,).
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Proof. Let K be a rectangle containing ¢ (S,) and let {m,} be a sequence of
partitions of K.

m,={AL, ..., A%}, ATNA=¢ i=j,
L’:I A=K, max [diam (Af), 1 <:<a]->0.
i=1

Let ui €AY, uit =0.
S; +8,=lim (S1 + {iF(A?)H?) =lim R,.
By Theorem 1, R, is a scalar operator whose resolution of the identity G7, is
6 (@)= 3 B(a—ul) F(AD).

By Theorem 6, Gf (o) x—>G, (a) ¢ if
@, (boundary «) z=0.

Similarly 8,8,=1imU,, and the resolution of the identity of U,, Gi is by
Theorem 2

6t @~ > B () Fan.
i=1 Qi
Thus if G, (boundary «)z=0 then G, (ax)z= f E(i—)F(d‘u) z.

Remark. Let S be a scalar operator with resolution of the identity X (-),
and let the set function E(-) be chosen in such a way that for every point
Ao E((A5))=0. Let 8;=I+8 and 8,=1I—8 then 8, +8,=21I the spectral meas-
ure of the operator 271 is concentrated at the point 2. The resolution of the
identity of 8, is given by

E,(a}=E («—1) for any Borel set o.
The resolution of the identity of 8§, is
E,(0)=E(1—a) for any Borel set «.

The Boolean algebra of projections generated by E,, B, is bounded, but £, ((4,)) =0
for every point 4, hence

J B (2— ) Ey(dp)=0=+1.

Yale University.
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