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On the Diophantine equation u~-Dv~=±4 N 

By BENGT STOLT 

Part  I I I  

§ 1. Introduction 

Consider the Diophantine equation 

(1) u2-Dv  2= _+4N, 

where D and N are integers and D is not a perfect square. In Part I of this 
investigation 1 it was shown that  it is possible to determine all the solutions of 
(1) by elementary methods ~. 

Suppose that  (1) is solvable, and let u and v be two integers satisfying (1). 
Then ½(u+vVD)  is called a solution of (1). If ½(x+yYD)  is a solution of 
the  Diophantine equation 

(2) x 2 - D y  2= 4, 

the  number 

U + V  V D  x + y  ~-D _ U l + V  1 ~/-D 

2 2 2 

is also a solution of (1). This solution is said to be associated with the solu- 
t ion ½ (u+v g-D). The set of all solutions associated with each other forms a 
class el solutions of (1). 

A necessary and sufficient condition for the two solutions ½ (u+v~D), 
½ (u '+  v' l/D) to belong to the same class is that  the number 

be an integer. 

VU ~ - - U V  ~ 

2 N  

1 See [1]. 
z These methods were developed by T. NAO~LL, who used them for determining all the 

solutions of the Diophantine equation 

u ~ - D r  ~ =  +_N.  

:Nagell also proposed the  notions used in this section. See [2], [3], [4], [5]. 
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Let K be a class which consists of the numbers ½ (u~ + vi VD), i = 1, 2, 3 , . . -  . 
Then the numbers ½ (ui-v~ VD), i= 1, 2, 3 . . . .  form another class, which is 
denoted by //:. K and K are said to be conjugates of one another. Conjugate 
classes are in general distinct but may sometimes coincide; in the latter case 
the class is called ambiguous. 

Among the solutions of K, a ]undamental solution o/ the class is defined in 
the following way. ½ (u*+ v* ]/D) is the fundamental solution of K, if v* is 
the smallest non-negative value of v of any solution belonging to the class. 
If the class is not ambiguous, u* is also uniquely determined, because 

belongs to the conjugate class; if the class is ambiguous, u* is uniquely deter- 
mined by supposing u*>0.  u * = 0  or v*=O only occurs when the class is 
ambiguous. 

If N = 1, there is only one class of solutions, a n d  this class is ambiguous. 
For the fundamental solution of a class the following theorems were deduced 

(D and N are natural numbers, and D is not a perfect square). 

T h e o r e m .  I] ½(u+vVD) is the /undamental solution o/ the class K o/ the 
Diophantine equation 

(3) u ~ - D v 2 = 4 N ,  

and i] ½ ( x i + y j D )  is the /undamental solution o] (2), we have the inequalities 

(4) O_-<v_-< Y~ ~/N, 
Vxl + 2 

(5) o<lul_-<Y +2)N. 

T h e o r e m .  I1 ½ (u+ v VD) is the /undamental solution o~ the class K o] the 
Diophantine equation 

(6) u 2 - D v  ~= - 4 N ,  

and i/ ½ (xl + Yl VD) is the /undamental solution o/ (2), we have the inequalities 

(7) 0 < v  < Y.J: -- ~/N, 
Vx~- 2 

(s) o<= I 1<= 

Theo rem.  The Diophantine equations (3) and (6) have a finite number o/ 
classes o/ solutions. The /undamental solution o/ all the classes can be/ound after 
a finite number o/ trials by means o/ the inequalities in the preceding theorems. 
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I /  ½ (ul + vl VD) is the /undamental solution of the class K, we obtain all the 
solutions ½ (u + v VD) o] K by the /ormula 

u + v V D  = Ul + vl V D . x  + y V D  
2 2 2 

where ½ (x + y VD) runs through all the solutions o/ (2), including +_1. The Dio- 
phantine equations (3) and (6) have no solutions at all when they have no solutions 
satis/ying inequalities (4) and (5), or (7) and (8) respectively. 

In Part II  1 it was shown that it is possible to determine the maximum 
number of classes corresponding to an arbitrarily given N by elementary methods. 
In this paper we shall determine the number of classes by means of the theory 
of algebraic numbers and ideals. The exact number of classes corresponding to 
square-free N will be determined. We shall also prove that the number n of 
classes corresponding to square-free N is a power of 2, incl. 1. Ft~rther, the 
number of classes corresponding to N which is the power of just one prime 
will be determined. 

In order to determine the fundamental solutions we may also use inequalities 
derived by means of algebraic number theory. It  will be shown that inequalities 
derived by elementary methods give better results. 

§ 2. Generalit ies  

In this section we define some notions of the theory of algebraic numbers. 
For the details of this theory see for example Landau, Zah]entheorie. ~ 

Let D be a rational integer which is square-free. An algebraic integer of 
the field K (VD) is denoted by ~ and its conjugate integer by ~'. An ideal of 
the field is denoted by one of the letters A, B . . . .  and its conjugate ideal by 
A', or B ' . . .  respectively. An ideal which is generated by ~ is denoted by (~). 

Let p be a rational prime. If A = D ,  when D-z l  (mod. 4), and A = 4 D  in 
other cases, the ideal (p) is the product of two conjugate prime ideals, or is 
the square of a prime ideal, or is itself a prime ideal, according as Kronecker's 

symbol ( ~ ) h a s  the value +1, or 0, o r - 1  respectively. When (p) is n o t  a 

prime ideal we write (p)=pp', where p ' = p  if (A)  ~ OQ 

Consider the Diophantine equation 

(1) u ~ - D v  2= _+4N, 

where D and N are integers and D is square-flee. If (1) is solvable, every 
solution of (1) is an algebraic integer ~ of the field K(I/D). Thus the ideal 
(N) is the product of two conjugate principal ideals, (N)= (~)(~'). Then it is 

1 See [6]. 
See [7]. 
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apparent that  every one of the ideals (~), (£) corresponds to just one class of 
solutions as defined above. If (a)= (~'), (~) corresponds to an ambiguous class. 

Now suppose that  D contains quadratic factors. Then D=rZD~, where D 1 
is square-free. In tha t  case every solution of (1) is an algebraic integer of the 
ring R (r 1 /~) .  Thus we have to consider integers and ideals of this ring. 

In the following sections we shall determine the number of classes of the 
Diophantine equation 

(1) u ~ - D v  ~= +_4N 

for certain values of N. In all the cases D and N are rational integers and 
D is not a perfect square. The theorems are proved for the case when D is 
square-free. If D contains quadratic factors, D = r  ~ D~, D~ square-free, in all 
the theorems we have to substitute the field K(I /D)  by the ring R (r ~/~). 

§ 3. N is square-free 

Theorem "1.t.. Suppose that N = pa p2 . . .  p,, where Pl, P~, . . . ,  P, are primes, 
p~ ¢ pj, and suppose that the Diophantine equation 

(10) 

is solvable. 

and that ( ~ t = 0  holds /or the remaining primes pj, m>=i>=l, n>~>=m+l.  
\l~'J l 

(p~)=Pt P~, (p~)= p~, as (10) is solvable there exists the equivalence 

0 1 ' 0 3 . - - P ~ P ~ + l . . .  p~~(l).  

Suppose that  
~,~~ 

u Z - D v  ~= +-4p lpZ . . .  p,  

11 

holds/or kl o[ the prime ideals, m >=i > 1, 

o, o, ~ ~; o; 

holds /or k s pairs o/ the remaining prime ideals, kl + k2 > i >->_ kl + 1, k 1 q- 2 k2 >= 
->j > k l + k 2 +  1, 

holds /or ks triples o/ the remaining prime ideals, 

k l+2k2+ka>i>=k l+2k2+l ,  k l + 2 k ~ + 2 k 3 > j > k l + 2 k ~ + k a + l ,  

kl + 2 k,, + 3 ks > k > kl + 2 k~ + 2 ka + 1, and so on, every Pt bdonging to just one 
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F ~ I  
o] the equivalences, ] h'] >= kh >= O. I /  k = ~ kh the Diophantine equation h a s 2  ~: 

L - - J  

classes, m >= k >= 1. 
I] N divides D, (10) has one class. 

Proof.  Suppose that  (10) is solvable. If N divides D, it was shown by 
elementary methods that  (10) has only one class. 

Suppose tha t  ( 10 ) i s  solvable. Further suppose that  ( ~ ) = + 1  holds for m 

> ' > 1 ,  n > > = 0  holds for the of the primes p~, r e=z=  = m =  1, and suppose that  A 

remaining primes pj, n > i > m + 1. Then (p~) = p, p~, (pj) = PT- 
As (10) is solvable there exists an equivalence 

(11) P,P~ . . .  PmPm+, . . .  pn~(1) 

which corresponds to a class of solutions of (10). Now suppose that  p~~p[ holds 
for i=  1, 2 . . . .  , k 1, m > } l ~ 0 .  Changing p~ and p~ in (11) we get another prin- 
cipal ideal which also corresponds to a class of (10). Since there are /q equi- 
valences p~~p'~ it is apparent that  the number of classes is a multiple of 2 k'. 

Now suppose that  Pt Pj~p~ p~ holds for ks pairs of the remaining prime ideals, 
]Cl "~- ]~2 ~ i -~ ]¢1 + 1, k 1 -~- 2 ks > j > kl + ks + 1, every prime ideal belonging to one 
pair at most. Then changing p~ pj and p~ p;- in every one of the 2 k' equivalences 
for which (11) holds we get 2 k' new equivalences for which (11) holds. Since 
there are k2 equivalent pairs of prime ideals we get 2 k'+k' classes. 

If P~PjPk~P~p~P~ holds for k3 triples of the remaining m - ( k l + 2 k ~  ) prime 
ideals, 

k l + 2 k 2 + k a > = i > k l + 2 k 2 + l ,  k1+ 2 k2+ 2 ka_>- j_-> ]Q+ 2 k2+ ka+ 1, 

kl + 2k~ + 3 ka>=k >=kl + 2k~ + 2ka + l,  

every prime ideal belonging to one triple at most, it is apparent that  we get 
2 k'+k'+k' classes. 

Considering the quadruples of prime ideals and so on it is apparent that  
every prime ideal ~0~, m > i _-> 1, belongs to just one product of prime ideals which 
is equivalent to the product of its conjugate prime ideals. Thus if k = k l +  
+ k ~ + - . - +  kh the number of classes is 2 k. This proves the theorem. 

From Theorem 11 we deduce at once 

T h e o r e m  i2.  Suppose that N= p ~  P2 . . .  P~, where p~, p~, . . . ,  p~ are distinct 
primes. I] the Diophantine equation 

(10) u ~ -  Dv  2= + 4 pl p2 . .  • pn 

is solvable, the number o/ classes is a power o] 2. 

We also p r o v e  

T h e o r e m  ~13. Suppose that Pl, P ~ , . . . ,  Pn are distinct primes. Then it is 
possible to determine an integer D which is not a per]ect square in such way that 
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( A )  = + : h o l d s / o r  i =  1, 2, . . ., n. the number o/ ideal classes i ,  the /ield 

K(VD) is < 2, the Diophantine equation 

(10) u 2 - D v  ~= q-4plp2 • • • pn 

has 2 ~ classes o] solutions when solvable. 

Proof.  Suppose that  there is only one class of ideals of the field K (l/D). 
Then every prime ideal of the field is a principal ideal. If there are two classes 
in the field, one of them contains all principal ideals. If A is an ideal of the 
other class, clearly A2-(1). Thus A - A ' .  Hence the theorem is proved. 

If D = 2  and p ~ - + 1  (mod. 8) holds for i = 1 ,  2 , . . . ,  n the corresponding 
equation is always possible. In Part I this case was treated by elementary 
methods. 

§ 4. N is a prime power 

We next prove 

T h e o r e m  t4 .  Suppose that N = p  ~b+l, where b is a-positive integer and p is 
a prime. Further suppose that the Diophantine equation 

(12) u ~ - D v  ~= _+4p 2b+I 

is solvable. 
II the greatest power of p which divides D is p2~ or p2~+1, ~ > b ,  f l>0 ,  (12) 

has only one class. 
Suppose that the greatest power o/ p which divides D is p2~,, b >~ > 0, and 

suppose that D = p ~ D l  and that Al re]ers to the ]ield K ( ~ ) .  I] ( ~ ) = O  holds, 

has only one class. I[ ( ~ ) =  +1  holds, (p )=pp ' .  Suppose that p2b,+l is (12) 
\ , / ~  / 

the least odd power o/ p /or which 

~f~'+:~(1) 

denotes the greatest integer < holds, b'>O. If  [b-:c+b'+l]2b,+l b-a+b'+12b,+l ' (12) 

has 2 [ ~ ~-+ i classes. 

Proof.  Suppose that  (12) is solvable. In Parb II  the case when the greatest 
power of p which divides D is p2~ or p2~+l, ~>b ,  f l>0 ,  was solved by ele- 
mentary methods. 

Suppose that  the greatest power of p which divides D is p~ ,  b >= ~ > 0. Then 
both sides of (12) are divisible by p~ .  If u = p ~ u  ', D=p~D1 ,  dividing (12) 
by p ~  we get 

(13) u '~ - D 1 v 2 = -t-4 p2(b-~)+l. 
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If ( ~ ) = 0 i t  is apparent that 

( ~ ) = + 1  holds. Then (p)=pp' ,  where p and p' are prime 

It  is apparent that the prime ideals of the right-hand side of (14)may be 
combined together in the following b - ~ +  1 different ways in order to form 
pairs of conjugate ideals. 

~2(b-~)+l  ~t g(b-zt)+l 

~(b-~ p,, ~p,~b ~,~, 

pb -c(+1 p, b -ct pb -ix ptb -~+1. 

Observing that (p)= p p' these ideals may be written 

~32(b-ct)+ 1, ~312(b-ct)+l 

#(b-~,-1 (V), p,2,b-.)-I (V), 

#(b-~-~ (V)*, p,~(b-~,-~ (V)*, 
• . . . . . . . . .  . . 

p~ (v)~-~-L ~,~ (v)~-~-L 
(v)~-~, ~' (v) ~-~. 

If p~(1) every one of these ideals is a principal ideal. In that case the 
number of classes is 2 ( b - ~ + l ) .  

Suppose that p2v+~ is the least odd power of p for which 

p~'+'~(1) 

holds. In that case only the following ideals are principal ideals. 

p3(2b'+l) (v )b -~-3b ' - l ,  p t3 (2b '+ l ) (v )b -~-3b ' - l ,  

p~(~'+,~ (v)~-~-~b.-~, p,5~,+~(v)~-~-3~,-1, 
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If L[b-2b'+l -~ + b' + !] denotes the greatest integer 

that (12) has 
[b-~+b'+l] 

2L 2 b ' + l  J 

b - ~ + b '  + l 
< it is apparent 
= 2 b ' + l  ' 

classes. Hence the theorem is proved. 
We also prove 

Theorem i5. Suppose that N = p  ~ ,  where a is a positive integer and p is a 
prime. Further suppose that the Diophantine equation 

(15) u ~ - D v  2= _+dp 2~ 

is solvable. 
I] the greatest power o/ p which divi~s D is p ~  or p~.p+l, ~>a, fl>O, (15) 

has only one class. 
Suppose that the greatest power o] p which divides D is p2~, a > cz > O. Further 

that D=p2~ D, and that A1 re[ers to the field K(V-~I). I[ ( ~ ) - ~  +1  suppose 

holds, (15)has only one class. I[ ( ~ ) =  +1 holds, (p)=pp ' .  Suppose that 

is the least even power o/ p /or which 

.p~a'~(1) 

holds, and suppose that T denotes the greatest integer < a-o~ = a' I] the Dio- 

phantine equation 

(16) x2 _ D1 y2 = _ 4 

is solvable, (15) has 2 ~ + i  classes. I[ (16)is not solvable, (15)has 2 a - e  

ClaSSes. 

Proof. Suppose that (15) is solvable. In Part II the ease when the greatest 
power of p which divides D is p2~ or p~÷l, ~_>-a, fl>0, was solved by ele- 
mentary methods. 

Suppose that the greatest power of p which divides D is p2~, a> ~ > 0. Then 
both sides of (15) are divisible by pe~. If U=p~u ', D=p2~DI, dividing (15) 
by p2~, we get 

(17) u ' 2 - D 1  v~= _ d p  2(a-~'). 

that Z~ 1 refers to the field K(V~I). If ( - ~ ) # + 1  it is apparent Suppose 

that (15) has only one ambiguous class the solutions of which correspond to 
the solutions of the Diophantine equation 

(16) x ~ - D  1 y~ = _+4. 
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Suppose that ( - ~ ) =  

ideals. 
Consider the product 

(is) 

+ 1 holds. Then (to)= p pl, where p and p' are prime 

(~)2~-~ p ~ - ~  p,~¢~-~ 

It  is apparent that the prime ideals of the right-hand side of (18)may be 
combined in a - ~  + 1 different ways in order to form pairs of conjugate ideals. 
Observing p p '=  (~9) these pairs of conjugate ideals may be written 

v2ca-~-, (~), ~,2( . . . .  1) (V), 

~ - ~ - ~  (~)~, p,2~a-~-2~ (~)~, 

. . . . . . . . . . .  o 

(v) ~-~, (~)~-~. 

The ideals of the last pair coincide. As (~o) "-~ is a principal ideal, it corre- 
sponds to the ambiguous class the solutions of which correspond to the solu- 
tions of (16). If (16) is not solvable, (15) has no ambiguous class. 

Suppose that p2~. is the least even power of p for which 

~2o'~(1) 

holds. Then the following pairs of conjugate ideals are principal ideals. 

~j2a" (~o)a-ot-a', ~t2a" ( ~ 9 ) a - 0 t - a ' ,  

~ o, (~)~-~-~ % v,~m o" (~)o-~-m o', 

. . . . . . . . . . . . .  . o 

Suppose that - - ~  denotes the greatest integer < a - _ ~  = a' Then it is ap- 

[a-q parent that (15) has 2 ~ 5 -  + 1 classes when (16) is solvable and 2 - ~  

classes when (16) is not solvable. This proves the theorem. 

It  is apparent that these investigations may be extended to an arbitrary N. 

§ 5. Inequalities derived from algebraic number theory 

Given an algebraic field K of the degree n, and given a ring R of integers. 
in it, containing integers of the degree n and the natural number 1. Then it~ 
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is well-known tha t  the whole set of integers in R with a given norm N may 
be determined by  means of the following theorem. 1 

T h e o r e m .  Given a ring o/ integers R which contains integers of the degree n 
and the natural number 1, and let N be the norm o] any integer in R.  Then 
there is in R a finite number of non-associate integers ill, f12,. . . ,  tim with the 
~orm N, such that all integers in R with the norm N are given by 

. . . .  , 

where ~ runs through all units in R having a positive norm. I f  el, e2 . . . . .  er is 
a system of fundamental units in R,  it is possible to choose the integers fl in 
such way that they satisfy inequalities 

fl(,) _-< r II°g[s~ ) < i < n ) .  t19) log ~]/~ ½~__, [I (1 

Let  (91, (92 . . . .  , (9. be a base of R, and let ~ be an integer of it. Then all 
integers 

~ = X l  ( 9 1 ~  X2 (9~ ÷ "'" -~ Xn (gn 

with a given norm C are given by the Diophantine equation 

(20) N (xl (91 + x~ (9, + . . .  + x ,  (gn) = C. 

Then by  the theorem just mentioned it  is possible to determine all the integers 
satisfying (20). 
The set of all integers with the norm C associated with each other are said 

to  form a class o I solutions of (20). If there are m non-associate integers with 
the norm C which satisfy (19), there are m classes of solutions of (20). 

In this special case we consider the ring R consisting of all integers ½ (u + v ~/D) 
in the real quadratic field K (VD). D is as above a positive integer which is 
not a square. I t  is not necessarily square-free. 

Let  ~¢=½(u+vVD) be an integer of R with norm ± N .  If  s is the funda- 
mental  unit of R, e > 1, there exists an integer fl belonging to the same class 
K as ~ which satisfies (19). If fl=½(u*+v*~/-D), where v* is the smallest non- 
negative value of v of any integer belonging to the class, fl is called the funda- 
mental solution of the class. 

Suppose that  fl = ½ (u + v VD), fl > 0. If N fl = + N is positive, we get 

(21) u_- < VN(1 + U~e). 

I t  follows from Theorem 1 that ,  on the other side, we have 

(5) u_-<V Vxl+2. 

1 See I~AGELL [8]. I~AGELL p r o n o u n c e s  t h i s  t h e o r e m  on ly  for t h e  field, b u t  t h e  r e su l t  m a y  
b e  e x t e n d e d  to a n  a r b i t r a r y  r ing  b y  a s l igh t  a l t e r a t i o n  of t h e  a r g u m e n t s .  
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Suppose tha t  fl = ½ (u + v~fD), fl > 0. If N fi = -  N is negative, we get 

(22) v VD < VN(1 + Vse). 

I t  follows from Theorem 2 that, on the other side, we have 

<7) yIV-D 
Uzl-2 

NAGELL [2]  a s s u m e s  that  inequalities (21) and (22) give a better result than  
inequalities (5) and (7) which are obtained by elementary methods. In this 
section we shall prove that  the contrary is true. In fact, it follows from 
Theorem 16 that  inequalities obtained by elementary methods give an upper 
limit which is lower than that  obtained by means of algebraic number theory. 

If fl=½(u+vVD), f l>0 ,  by means of (19) it is also possible to obtain a 
lower limit for ft. I f  N/3 = + N is positive, we get 

(23) 

On the other hand, from 

(3) u2-Dv  ~= + 4 N  

we get the trivial result 

(24) u > 2 VN. 

Since s >  1, clearly (24) is a better result than (23). 
N i l = - N  is negative, by 09) we get 

(25) 

By 

(6) u2-  Dv ~= - 4  N 

In a similar way, if 

we get the trivial result 

(26) vV >=2v . 

Clearly (26) is a better result than (25). 

We now prove 

T h e o r e m  t6.  Part I. Suppose that ½(u+vU-D) is the ]undamental solution 
o~ the class K o~ the Diophantine equation 

(3) u~- Dv ~= + 4 N ,  
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and suppose that ~ = ½ (xl+ Y l ~ )  is the [undamental solution of (2). Then 

(5) u_-<VTUXl+2 

gives an upper limit ]or u which is lower than that given by 

(21) u =< VN (1 + ~ ) .  

For the di//erence between the upper limits obtained by (21) and (5) we have the 
/ollowing inequality. 

VT(1 + V~)- v~ Vxl + 2 > oA2 vT. 

Part II .  Suppose that ½ (u + v~f-D) is the /undamental solution o] the c~ss K of 
the Diophantine equation 

(6) u 2 - D v  2 = - 4 ] V ,  

and suppose that e= ½ (x, + Yl V-D) is the ]undamental solution o] (2). Then 

(7) vV~=<v~ ylVD 
~ , - 2  

gives an upper limit /or v which is lower than that given by 

(22) ~_-<~(I + ~). 

For the di]]erence between the upper limits obtained by (22) and (7) we have the 
]ollowing inequality. 

Yl V-D V~(1 + ~ ) - v ~  _ _ > 0 . 4 2  v~. 
Vxl - 2 

Proof .  Let ½ (u + v l/D) be the fundamental solution of the class K of the 
Diophantine equation 

(3) u ~ - D v  2= + 4 N ,  

and let t =  ½ (x~ +YI ~fD) be the fundamental solution of (2). I t  is apparen~ 
that  (5) gives ~ lower limit than (21) if we may prove that  

(27) (1 +]fe) - ]/xx, + 2 

is positive for every D and N. 
V~ and Vxx 1 + 2 may be wr i t t en  

~=  ~V~.Vl +Vl-4x; ~, ~ = v ~ . V l  + 2~;'. 
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Since x~ > 2, it  follows tha t  

Then I/~ and Vx~ + 2 may be developed in binomial series which are absolutely 
convergent. Thus we get 

1 3 7 

1 + ~ =  1 + ~ -  ½ Xl 2-~x~ ~+R,~, 
1 1 3 5 

-~ -~+  -~-t- Vxl + 2 = xl + xl - ½ xl ½ xl R , ,  

where Rm and R.  are remainders. Hence 

1 
(28) (1+ ~ e ) - V x x + 2 =  1 -  -~x~ + Rn. 

To calculate the remainder R .  we use the Lagrange form, and since xl > 2, it 
follows that  ] R .  [ < 0,0052. I t  is apparent that  (28) is positive for every D and 
N.  Since xl > 2, it  follows that  

(29) V~ (1 + G) - V N ~ I +  2 > 0.42 V~.  

Hence the first part of the theorem is proved. 
We now prove the second part of the theorem. 
Let  ½ ( u + v V D )  be the fundamental solution of 

phantine equation 
the class K of the Dio- 

(6) u 2 - D v ~ = - 4 N, 

and let e, as before, be the fundamental solution of (2). I t  is apparent that  
(7) gives a lower limit than (22) if we may prove t h a t  

y, V~ 
(30) ]/N (1 + V~e) - ]/N Vx~ - 2 

is positive for every D and N. 
By means of (2) we obtain 

Vz,+ 2. 
V x ,  - 2 

Hence (30) may be written 

(303 V~ [(1 + ~ )  - V~-~-~]. 
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But we have shown in Part I that  (1 + l ~ ) -  1/xl + 2 is always positive. 
11> 2, i t  follows that  

1/-N (1 + V~e) - I/-N ~/11 + 2 > 0.42 ~-N. 

This proves the theorem. 

Since 

§ 6. Numerical examples 

Finally we give some examples which illustrate the preceding theorems. 

E x a m p l e  t .  u 2 -  15v 2 = -- 476 = - 4- 7- 17 (Theorem 11). 

As A = 4 . 1 5 = 6 0 ,  wef ind ( 7 ) = ( ~ - - ~ ) = + 1 .  Then we get the following prod- 
\ - - ]  \ ~  " 1  

uets of prime ideals. 

(7) = (7, 1 + 1/~) (7, 1 - P;1-5), 

(17) = (17, 7 + 1/~) (17, 7 - 1 /~) .  

p~p '  holds for every pair of prime ideals, as is apparent from 

(7, 1 + 1 / ~ ) 2 = ( 8 + 1 / ~ ) ,  (17, 7+  11/~)2=(23-4 1 ~ ) .  

The equation is solvable, and thus it has 4 classes. Calculating the corre- 
sponding ideals we get 

(7, 1+} /~) (17 ,  7 + V ~ ) = ( 1 1 + 4 1 / ~ ) .  

(7, 1+1/~) (17 ,  7 - 1 / ~ ) =  ( 4 - 3 1 / ~ ) ,  

(7, 1 - I  1/-~)(17, 7 + V ~ ) =  (4+ 31/~) ,  

(7, 1 - 1/~) (17, 7 - 1/~) = (11 " 4  V ~ ) .  

E x a m p l e  2. u z -  37v z= 231 = 3- 7- 11 (Theorem 11, cf. Example 13 in Part  11). 
• According to Theorem 5 in Part I this equation has the same number of 

classes as the Diophantine equation 

u 2 - 148 v z = 924 = 4.231. 

Thus we have to consider the ring R (2 V~).  In that  ring we get the following 
products of prime ideals. 

(3)=(3, 1 ÷ 2 ~ / ~ ) ( 3 ,  1 - 2 1 / ~ ) ,  

(7)=(7, 1 ÷ 21 /~) (7 ,  1 - 2  1 /~) ,  

(11) = (11, 4 +  2 1 /~)  (11, 4 - 2 I / ~ ) .  
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p * p' holds for every pair of prime ideals, as is apparent from 

(3, 1 + 2 ] / ~ ) 2 = ( 9 ,  2 + 2 V ~ ) ,  (7, 1 + 2 V ~ ) 2 = ( 4 9 ,  2 8 + 2 V ~ ) ,  

(11, 4 +  2 ]/~)~ = (121, 40+ 2 ]/3-7). 

On the other hand we get 

(3, 1 + 2 ~ ) ( 7 ,  1+2 V~)(11, 4+2 V ~ ) =  (19+ 4V~).  

Then Pl P3 Pa~P~ P~ )P~ holds. As the equation is solvable, it has two classes. 

Exa~aplo 3. u s -  37v 2= --+924-- -+4.3.7.11. (Theorem 11.) 

,io  wo   o,oHowio  
\ - - /  

ucts of prime ideals. 

The equation is solvable, and as all the prime ideals are principal ideals, it 
has 23= 8 classes. 

E x a m p l e  4. u ~ -  148v2= 78 734= 4-39 (Theorem 14, el. Example 4 in Par t  II). 
In the ring R (2 ] /~ )  we get 

(3)=(3, 1+2~1(3, 1-21/~/. 

The last odd power which is a principal ideal is (3, 1 + 2 V ~ ) ~ = ( 1 6 - 2 1 / 3 - 7 ) .  

As the equation is solvable, according to Theorem 14 it has 2 4 + 1 + 1  4: classes. 
2 . 1 + 1  

Calculating the corresponding ideals we get 

(3, 1 + 2 V ~ )  9 = (11 200 - 1 832 V ~ ) ,  

(3, 1 +  2 g ~ )  0 (3, 1 - 2 Y ~ )  ~ = (432 - 5~ V ~ ) ,  

(3, 1 + 21/~)3 (3, 1 - 2 V-37) 8 = (432 + 541/~) ,  

(3, 1 + 2 V ~ )  9= (11 200+ 1 832 V ~ ) .  
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E x a m p l e  5. u S -  34 v 2 = -- 100 = -- 4 .53 (Theorem 15). 

get  

(5 )= (5 ,  1 + 2 ~ - 4 ) ( 5 ,  1 - 2 ~ / ~ ) .  

W e  find (5, 1 + 2 V-~) ~ = (3 + V~34). The Diophant ine  equat ion 

x 2 - 34  y~ = - 4 

is no t  solvable. The given equat ion is solvable, and thus  it has 2 classes. 

Exan- ip le  6. u S -  5 v * = 836 = 4- 11" 19 (Theorem 16, cf. Example  4 in P a r t  I ) .  
Fo r  the  fundamenta l  solutions in which u is positive, according to inequali t ies 

(5) and (21) we ge t  

u-<_32, u_-<38. 

E x a u a p l e  7. u S - -  2 v ~ = -- 2 884 = -- 4 . 7 .  103 (Theorem 16). 
For  the  fundamenta l  solutions in which v is positive, according to  inequali t ies 

(7) and (22) we get  

v < 5 3 ,  v < 6 3 .  
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