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On the Diophantine equation u*—D¢*=+4 N
By BewneT SToOLT

Part 111

§ 1. Introduction
Consider the Diophantine equation
1) u?—Dv*= 14N,

where D and N are integers and D is not a perfect square. In Part I of this
investigation! it was shown that it is possible to deftermine all the solutions of
(1) by elementary methods?.

Suppose that (1) is solvable, and let » and v be two integers satisfying (1).

Then }(u+vVD) is called a solution of (1). If 1(z+yVD) is a solution of
the Diophantine eguation )

@) o~ Dy*=4,

the number

u+vVT)_w+y Vﬁ=u1+vl Vﬁ
2 2 2

is also a solution of (1). This solution is said to be assoctated with the solu-

tion %(u+vVﬁ) The set of all solutions associated with each other forms a
class of solutions of (1).

A necessary and sufficient condition for the two solutions %(u—i—'vVD) )

4 (w'+v' VD) to belong to the same class is that the number
vu —uv’
2N

be an integer.

1 See [1]. .

* These methods were developed by T. NacerL, who used them for determining all the
solutions of the Diophantine equation

u2—Do2= 1+ N.

Nagell also proposed the notions used in this section. See [2], [3], [4], [5]-
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Let K be a class which consists of the numbers 4 (w; + vV D), t=1, 2, 3, --- .
Then the numbers %(u;_ - VD), i =1,2,8,... form another class, which is
denoted by K. K and K are said to be conjugates of one another. Conjugate
classes are in general distinct but may sometimes coincide; in the latter case
the class is called ambiguous.

Among the solutions of K, a fundamental solution of the class is defined in
the following way. 3}(u*+v"V D) is the fundamental solution of K, if v* is
the smallest non-negative value of v of any solution belonging to the class.
If the class is not ambiguous, »* is also uniquely determined, because

1 (—w*+ 0"V D)

belongs to the conjugate class; if the class is ambiguous, »* is uniquely deter-
mined by supposing #*Z0. «*=0 or v*=0 only occurs when the class is
ambiguous.

If N=1, there is only one class of solutions, and this class is ambiguous.
For the fundamental solution of a class the following theorems were deduced
(D and N are natural numbers, and D is not a perfect square).

Theorem. If }(u+vV D) is the jundamental solution of the class K of the
Diophantine equation

(3) u>~Dv:=4N,

and f }(z,+y,V D) is the fundamental solution of (2), we have the inequalities

<p< Y1 ~
4 0=<vs VZTzVN’
(5) 0<|u|sV(z;,+2)N.

Theorem. If }{u+vVD) is the jundamental solution of the class K of the
Diophantine equation

(6) ut—Do?= —4N,

and if % (x,+y, VD) is the fundamental solution of (2), we have the tnequalities

(7) 0<v= —2L_VN,
z,—2
(8) 0<|uls V@, —-2)N.

Theorem. The Diophantine equations (3) and (6) have a finite number of
classes of solutions. The fundamental solution of all the classes can be found after
a finite number of trials by means of the inequalities in the preceding theorems.
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If 3(u+o, lfl—))_is the fundamental solution of the class K, we obtain all the
solutions %(u-i—vl/D) of K by the formula

u+v@=u1+leﬁ_x+yV5
2 2 2

where 3 (z+yV D) runs through all the solutions of (2), including +1. The Dio-
phantine equations (3) and (6) have no solutions at all when they have no solutions
satisfying tnequalities (4) and (5), or (7) and (8) respectrvely.

In Part TI! it was shown that it is possible to determine the maximum
number of classes corresponding to an arbitrarily given N by elementary methods.
In this paper we shall determine the number of classes by means of the theory
of algebraic numbers and ideals. The exact number of classes corresponding to
square-free- N will be determined. We shall also prove that the number # of
classes corresponding to square-free N is a power of 2, incl. 1. Further, the
number of classes corresponding to N which is the power of just one prime
will be determined.

In order to determine the fundamental solutions we may also use inequalities
derived by means of algebraic number theory. It will be shown that inequalities
derived by elementary methods give better results.

§ 2. Generalities

In this section we define some notions of the theory of algebraic numbers.
For the details of this theory see for example Landau, Zahlentheorie.?
Let D be a rational integer which is square-free. An algebraic integer of

the field K (/D) is denoted by « and its conjugate integer by «’. An ideal of
the field is denoted by one of the letters 4, B, ... and its conjugate ideal by
A’, or B’ ... respectively. An ideal which is generated by « is denoted by («).

Let p be a rational prime. If A=D, when D=1 (mod. 4), and 4=4D in
other cases, the ideal (p) is the product of two conjugate prime ideals, or is
the square of a prime ideal, or is itself a prime ideal, according as Kronecker’s

Y| .
symbol (;) has the value +1, or 0, or —1 respectively. When (p) 13 not a

prime ideal we write (p)=pp’, where p'=p if (—3)=0.

Consider the Diophantine equation
1) u?—~Dv®= +4N,

where D and N are integers and D is square-free. 1f (1) is solvable, every

solution of (1) is an algebraic integer « of the field K ( D). Thus the ideal
(&) is the product of two conjugate principal ideals, (V)= (x)(«’). Then it is

1 See [6].
2 See [7].
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apparent that every one of the ideals («), () corresponds to just one class of
solutions as defined above. If («)=(a’), («) corresponds to an ambiguous class.

Now suppose that D contains quadratic factors. Then D=7%D,, where D,
is square-free. In that case every solution of (1) is an algebraic integer of the

ring R (r Vb_l) Thus we have to consider integers and ideals of this ring.

In the following sections we shall determine the number of classes of the
Diophantine equation

(1) u?*—Dov®= +4N

for certain values of N. In all the cases D and N are rational integers and
D is not a perfect square. The theorems are proved for the case when D is
square-free. I1f D contains quadratic factors, D=7¢*D,, D, square-free, in all

the theorems we have to substitute the field K (V' D) by the ring R(r VD—_I)

§ 3. N is square-free

Theorem 11. Suppose that N ,=p1'p2 ... Dn, where py, Dy, . .., Dn Gre Primes,
pi#pi, and suppose that the Diophantine equation

(10) wW—Dv*=14p,py... Dn

AN .
18 solvable. Further suppose that (2—)) = + 1 holds for m of the primes pi, nZ2m=1,

and that g =0 holds for the remaining primes p;, m=121, n2jzm+1. If
s
(p) =11, (p)="}, as (10) s solvable there exists the equivalence

pl"p2 LR Pm pm+1 PR pnN(l)
Suppose that
P~
holds for k, of the prime ideals, mZzi=1,
e Py~ Pi P

holds for k, pairs of the remaining prime ideals, ky+koZi 2k, +1, ky+2k, =
zizhk+tk+1,

Pt D5 P~ pi by P
holds for ky triples of the remaining prime ideals,
Fi+ 2ky+kyzoz by +2ko+ 1, Byt 2k +2ks2j2hy+ 2kt kst 1,
by +2ky+3ky2kzk,+2k,+2ky,+1, and so on, every p; belonging to just one
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of the equivalences, [%] 2kyz0. If k=2 ks the Diophantine equation has 9k

classes, m=k=1.
If N divides D, (10) has one class.

Proof. Suppose that (10) is solvable. If N divides D, it was shown by
elementary methods that (10) has only one class.

Suppose that (10) is solvable. Further suppose that (g) = +1 holds for m
1

. . A
of the primes p;, m=421, n=m=1, and suppose that (— =0 holds for the
1
remaining primes p;, nZj2m+1. Then (p:)= P, (p)="1i.
As (10) is solvable there exists an equivalence

(11) Pibe.o. PnPmir ... Pa~(1)
which corresponds to a class of solutions of (10). Now suppose that p;~p; hol'ds
for +=1,2,...,k, mZk 20. Changing p; and p; in (11) we get another prin-

cipal ideal which also corresponds to a class of (10). Since there are k, equi-
valences p;~p; it is apparent that the number of classes is a multiple of 2%

Now suppose that p; p;~pi p; holds for k, pairs of the remaining prime ideals,
ki tk,ze2zk+1, kby+2k,z252k +k,+1, every prime ideal belonging to one
pair at most. Then changing p;p; and p; b; in every one of the 2 equivalences
for which (11) holds we get 2" new equivalences for which (11) holds. Since
there are k, equivalent pairs of prime ideals we get 2¥**: classes. ’

If pspspe~pi p; px holds for &, triples of the remaining m— (k,+2%,) prime
ideals, -

Byt 2kt ka2 iz hy+ 2k + 1, ky+ 2kt 2k Z 2k, + 2+ Eg+1,
byt ks + 3y 2k 2 hy+ 2ky+2ks+ 1,

every priine ideal belonging to one triple at most, it is apparent that we get
gFitkatks classes.

Considering the quadruples of prime ideals and so on it is apparent that
every prime ideal p;, m=421, belongs to just one product of prime ideals which
18 equivalent to the product of its conjugate prime ideals. Thus if k=%, +
+ky+ ---+kn the number of classes is 2%. This proves the theorem.

From Theorem 11 we deduce at once

Theorem 12. Suppose that N=1p,p, . .. pn, where py, Dy, . .., P are distinct
primes. If the Diophantine equation

(10) wW—Dv®=t4p py...pn
18 solvable, the number of classes is a power of 2.
We also prove

Theorem 13. Suppose that D, Ds, ..., Pn are distinct premes. Then it s
possible to determine an integer D which 1s mot a perfect square in such way that
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(é) =+1 holds for 1=1,2,...;n. If the number of ideal classes in the field

\Di
K (/D) is <2, the Diophantine equation

(10) ul—Dovi=14p py...Pn
has 2" classes of solutions when solvable.

Proof. Suppose that there is only one class of ideals of the field K (VD).
Then every prime ideal of the field is a principal ideal. If there are two classes
in the field, one of them contains all principal ideals. If 4 is an ideal of the
other class, clearly 4%~(1). Thus A~A’. Hence the theorem is proved.

If D=2 and py=+1 (mod. 8) holds for ¢=1, 2, ..., n the corresponding
equation is always possible. In Part I this case was treated by elementary
methods.

§ 4. N is a prime power
We next prove

Theorem 14. Suppose that N=p?"*', where b is a positive integer and p s
a prime. Further suppose that the Diophantine egquation

(12) u?—Dv?= 149!

s solvable.

I} the greatest power of p which divides D is p** or p*#*!, a>b, $20, (12)
has only one class.

Suppose that the greatest power of p which divides D is p*% bzaz0, and

suppose that D=1p**D, and that A, refers to the field K(VD,). If (%) =0 holds,

(12) has only ome class. If (%)= +1 holds, (p)=pp’. Suppose that P> *' s
the least odd power of p for which

p2b‘+1~(1)
, b—a+b +1 . b—a+bd'+1
holds, b'=20. If [W] denotes the greatest initeger é———————z S (12)
b—a+bd +1
has 2[_217—"1T—] classes.

Proof. Suppose that (12) is solvable. In Part II the case when the greatest
power of p which divides D is p*>* or p*#*!, a>b, 20, was solved by ele-
mentary methods. )

Suppose that the greatest power of p which divides D is p** b2« =0. Then
both sides of (12) are divisible by p** If u=p*v', D=p>*D,, dividing (12)
by p** we get

(13) u;z _Dl ,')2___ j"_41)2(b—a)+1-
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Suppose that A; refers to the field K(Vb—l) It (%) =0 it is apparent that

(12) has only one class.

Suppose that (%) = +1 holds. Then (p)=pp’, where p and b’ are prime

ideals.
Consider

(14) (p)z(b,—_-oc)+l=p2(b*a)+1 plz(b—-a)+1.

It is apparent that the prime ideals of the right-hand side of (14) may be
combined together in the following b —a«+1 different ways in order to form
pairs of conjugate ideals.

pZ(b—qu’ p’Z(b—dH-l,

2(b—- b—
PO p’, pp'Ee-e,

pb—tz+1 p/ b-a pb—ac pl b—oH-l'
Observing that (p)=pp’ these ideals may be written

p2(_b—a)+1’ pl 2(b—a:)+1,

p2(b—a)—-1 (p) pleb-a)—l (p)’
pZ(b—a)—s (p)a, p!Z(b—a)—S (p)z’

............

_ps (p)b—a—l’ pl3 (p)b-'a—l’
p@)"% P (p)°

If p~(1) every one of these ideals is a principal ideal. In that case the
number of classes is 2(b—oa+1).

Suppose that p***' is the least odd power of p for which
P (1)
holds. In that case only the following ideals are principal ideals.

p2b'+l (p)b-a—b', plzb'+1 (p)b—a—b”
p3(2 b'+1) (p)b—a—3b'~1’ p/ 3E2b'+1) (p)b—a—3b'—1

b

b—a-30'-1

) ,

p5(2b’+1) (p)b—a—s b'—Z’ p/ 5(2b°+1) (

p(2 m+1)(2b'+1) (p)b—oc—@ m+1) b’—m’
pr(2m+1) @b'+1) (p)b—a—(2m+1) b'—m’
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b—a+b'+1

S it is apparent

b—a+b +1 .
i LI AL <
If [ o 11 ] denotes the greatest integer =

that (12) has

[b—o:+b'+1]
25 +1

classes. Hence the theorem is proved.
We also prove

Theorem 15. Suppose that N =%, where a s a positive integer and p 15 @
prime. Further suppose that the Diophantine equation

(15) u?—Dovl= +4p*°

s solvable.

If the greatest power of p which divides D ts p** or p*#*', a2a, f20, (15)
has only one class.

Suppose that the greatest power of p which divides D is p**, a>a20. Further

suppose that D=p**D, and that A, refers to the field K(VD,). If (%) #+1
kolds, (15) has only ome class. If (%)= +1 holds, (p)=pp'. Suppose that P

s the least even power of p for which
p*e~(1)

- . a—o .
holds, and suppose that [a_al_a] denotes the greatest tniteger 57. If the Dio-

phantine equation

(16) 2’—D,y*= t4

. a—a . a—o
18 solvable, (16) has 2 [—;7—]'—!- 1 classes. 1If (16) s not solvable, (15) has 2[ pr }
classes.

Proof. Suppose that (15) is solvable. In Part II the case when the greatest
power of p which divides D is p** or p*#*', w=a, =0, was solved by ele-
mentary methods.

Suppose that the greatest power of p which divides D is p*%, a>o20. Then
both sides of (15) are divisible by »** If w=p*w’, D=p**D,, dividing (15)
by p** we get

(17 uw'?—D,v?= +4p2@ @,
Suppose that A, refers to the field K(Vﬁl) If (%) # +1 it is apparent

that (15) has only one ambiguous class the solutions of which correspond to
the solutions of the Diophantine equation

(16) 2*— D, = +4.
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1

Suppose that (—%)= +1 holds. Then (p)=pd’, where p and p’ are prime

ideals.
Consider the product

(18) (’p)z(a-a) — p?(a—g) plz(a_u)'
It is apparent that the prime ideals of the right-hand side of (18) may be

combined in a—a+1 different ways in order to form pairs of conjugate ideals.
Observing p p’=(p) these pairs of conjugate ideals may be written

pz(u—a), p/2(a—a)’

p*@* D (p), p'2@-=D(p),
PHETED ()7, pr2@E=D ()2

The ideals of the last pair coincide. As (p)* * is a principal ideal, it corre-
sponds to the ambiguous class the solutions of which correspond to the solu-
tions of (16). If (16) is not solvable, (15) has no ambiguous class.

Suppose that p** is the least even power of p for which

p*¥~(1)
holds. Then the following pairs of conjugate ideals are principal ideals.

’ pZa' (p)a—a—a' pl2a' (p)a—a—a’
p4a' (p)a—a—Za’ pr4a' (p)a‘a—‘.’.a'

Suppose that [?] denotes the greatest integer Sa—;,g . Then 1t is ap-

parent that (15) has 2 [aa;,a] +1 classes when (16) is solvable and 2 [a;,oc]
classes when (16) is not solvable. This proves the theorem.

It is apparent that these investigations may be extended to an arbitrary N.

§ 5. Inequalities derived from algebraic number theory

Given an algebraic field K of the degree n, and given a ring R of integers.
in it, containing integers of the degree n» and the natural number 1. Then it
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18 well-known that the whole set of integers in R with a given norm N may
be determined by means of the following theorem.l

Theorem. Given a ring of integers R which contains integers of the degree n
and the natural number 1, and let N be the norm of any integer in R. Then
there is in R a finite number of non-associate integers fy, By, . .., Bm with the
norm N, such that all integers in R with the norm N are given by

sﬂl, ‘9/32’ LECREE] 8ﬂm,

where & runs through all units in R having a positive norm. If &, &, ..., & 18
a system of fundamental units mm R, u 1s possible to choose the wntegers B in
such way that they satisfy vnequalities

2
VN

Let wy, w,, ..., w, be a base of R, and let « be an integer of it. Then all
integers

r
<} > |log |&f

k=1

(19)

log (1=7=mn).

A=T; W+ Ty Wyt + Ty 0y
with a given norm C are given by the Diophantine equation
(20) N (3, 0, + Zawy+ -+ + B 05) =C.

Then by the theorem just mentioned it is possible to determine all the integers
a satisfying (20).

The set of all integers with the norm € associated with each other are said
to form a class of solutions of (20). If there are m non-associate integers with
the norm C which satisfy (19), there are m classes of solutions of (20).

In this special case we consider the ring R consisting of all integers (w+vV D)

in the real quadratic field K (/D). D is as above a positive integer which is
not a square. It is not necessarily square-free.

Let «=3%(u+vVD) be an integer of R with norm +N. If ¢ is the funda-
mental unit of R, £¢>1, there exists an integer f§ belonging to the same class

K as « which satisfies (19). If =14 (u* +v*V D), where v* is the smallest non-
negative value of v of any integer belonging to the class, B is called the funda-
mental solution of the class.

Suppose that ﬁ=%(u+vl/ﬁ), B>0. If Nf= + N 18 positive, we get
(21) us VN (1+Ve).
It follows from Theorem 1 that, on the other side, we have

(5) usVNVa, +2.

1 See NacEeLL [8]. NaGELL pronounces this theorem only for the field, but the result may
be extended to an arbitrary ring by a slight alteration of the arguments.
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Suppose that f=1% (w+vV D), f>0. If NB= —N is negative, we get

(22) 2VD=VN(1+Ve).

It follows from Theorem 2 that, on the other side, we have
Z/1V_5 AT

(7 v/Ds A VN.

(7) Vo2

NageLL {2] assumes that inequalities (21) and (22) give a better result than
inequalities (5) and (7) which are obtained by elementary methods. In this
section we shall prove that the contrary is true. In fact, it follows from
Theorern 16 that inequalities obtained by elementary methods give an upper
limit which is lower than that obtained by means of algebraic number theory.

If p=34(u+oVD), >0, by means of (19) it is also possible to obtain a
Jower limit for . If N¥f= + N is positive, we get

1
(23) uéVZV(1+17—;)-
On the other hand, from
(3) u*—Dvt= +4N
we get the trivial result
(24) uz2VN.

Since £>1, clearly (24) is a better result than (23). In a similar way, if
N pB= —N is negative, by (19) we get

(25) vV_DgVN(LFVi_)-
By
(6) w—Dv*= —4N

we get the trivial result

(26) vVDz2VN.

Clearly (26) is a better result than (25).

We now prove

Theorem 16. Part I. Suppose that L (u+vVD) is the fundamental solution
of the class K of the Diophantine equation

3) u?—Dv*= +4N,
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and suppose that £=3% (&, +y,V D) is the fundamental solution of (2). Then
(5) , usVNVz+2

gtves an upper limit for u which is lower than that gwen by

(21) usVN (1+Ve).

For the difference between the upper limits obtained by (21) and (5) we have the
following nequality.

VN (1+Ve) =VNVz, +2>042VN.

Part II. Suppose that 3 (u+vV D) is the fundamental solution of the class K of
the Diophantine equation

(6) ut—Dvi= —4N,

and suppose that =3 (z,+y,V D) is the fundamental solution of (2). Then

VD
(7 wVDsVN -4
Va,—2
gwes an upper limit for v which is lower than that given by
(22) VD<VN (1+ Ve).

For the difference between the upper limits obtained by (22) and (7) we ha’ue the
following inequalety.

VE (1477 rlﬂ%mr

Proof. Let 3 (u+vV D) be the fundamental solution of the class K of the
Diophantine equation

3) u*—Dv®*= +4N,

and let e=3%({z, +y, VD) be the fundamental solution of (2). It is apparent
that (5) gives a lower limit than (21) if we may prove that

(27) (1+Ve) Ve, +2

is positive for every D and N.
Ve and Vz,+2 may be written’

Ve=Viz, - V1+V1—4z2, Vo, + 2=V, -V1+ 227",
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Since x;>2, it follows that

4
e

<1,
Ty

Ty

<1.

Then Ve and Vo, +2 may be developed in binomial series which are absolutely
convergent. Thus we get

1 3
1+Ve=1+2i—32 "~ i@ *+ R,

1 1

-1

_3 5
z

Vxl+2=w?+z;§—%z1 +%x1—§+R,,,
where B, and R, are remainders. Hence
(28) (1+Va) Vo, 79=1- —— +R,.
Vay

To calculate the remainder R. we use the Lagrange form, and since #,>2, it
follows that |R.|<0,0052. It is apparent that (28) is positive for every D and
N. Sinece z,>2, it follows that

(29) VN (1+Ve)—VNVz,+2>042VN.

Hence the first part of the theorem is proved.
We now prove the second part of the theorem.

Let %(u—l—vl/—l—)) be the fundamental solution of the class K of the Dio-
phantine equation

(6) w*—~Dv*= —4N,

and let £, as before, be the fundamental solution of (2). It is apparent that
(7) gives a lower limit than (22) if we may prove that

30 o _yy /D
(30) VN (1+Ve) Vﬁm

is positive for every D and N.
By means of (2) we obtain

=
WD s,
T, —2
Hence (30) may be written
(30) VN [(14Ve) -V, +2l.
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But we have shown in Part I that (1+V;)—Vw_1?§ is always positive. Since
zy>2, 1t follows that

YN {(1+Ve)—VNVa, +2>0.42VN.

This proves the theorem.

§ 6. Numerical examples

Finally we give some examples which illustrate the preceding theorems.

Example 1. u*—15¢*= —476= —4-7-17 (Theorem 11).

As A=4-15=60, we find (%‘) = (147) = +1. Then we get the following prod-

ucts of prime ideals.

(7)=(7, 1+V15) (7, 1 -V15),
a7y=17, 7+V15) (17, 7-V15).

p~p’ holds for every pair of prime ideals, as is apparent from
(7, 1+V15)*=(8+V15), (17, 7+V15)2=(23 - 4V15).

The equation is solvable, and thus it has 4 classes. Calculating the corre-
sponding ideals we get

(7, 1+V15) (17, 7+V15) = (11+4V15).
(7, 1+V15) (17, 7-V15) = (4— 3V15),
(7,1-V15) (17, 7+V15)=(4+ 3V15),
(7,1-V15) (17, 7-V15) = (11 -4 V15).

Example 2. u#2—37v*=231=3-7-11 (Theorem 11, cf. Example 13 in Part I).
- According to Theorem 5 in Part I this equation has the same number of
classes as the Diophantine equation

u® — 148 ¢® =924 = 4.231.

Thus we have to consider the ring R(2V37). In that ring we get the following
products of prime ideals. ‘

(3)=(3, 1+2V37)(3,1-2V37),
(1y=(7, 1+2V37) (7, 1-2V37),
(11)=(11, 4+2V37) (11, 4—2V37).
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p+ P’ holds for every pair of prime ideals, as is apparent from

(3, 1+2V37)2=(9, 2+ 2V37), (7, 1+2V37)2=(49, 28+2V317),
(11, 4 +2V37)2=(121, 40 +2V37).

On the other hand we get
(3,1+2V37) (7, 1+2V37) (11, 4+2V37) = (19+4V37).

Then P, g P~ P12 s holds. As the equation is solvable, it has two classes.
Example 3. w®—37v®= 1924= +4-3-7-11. (Theorem 11.)

As A=37 we find (é) = (—?) = (A) +1. Then we get the following prod-

ucts of prime ideals. (5+ V_)( )
(=37 (=")
an=(=3%) ()

The equation is solvable, and as all the prime ideals are principal ideals, it
has 29=8 classes.

i

(7)

ll

Example 4. u®—1481%=78734=4-3° (Theorem 14, cf. Example 4 in Part II).
In the ring R(2V37) we get

(3)=1(3, 1+2V37)(3, 1—2V3_7).

The last odd power which is a principal ideal is (3, 1+2V37)=(16—2V37).

.. . . +14+1
As the equation is solvable, according to Theorem 14 it has 2i—— =4 classes.

2:-1+1
Calculating the corresponding ideals we get

(3, 1+2V37)°=(11 2001 832V37),
(3, 1+2V37)° (3, 1—-2V/37)° = (432 — 54V/37),
(3, 1+2V37)°(3, 1 -2V37)° = (432 + 54V37),,
(3, 1+2V37)°=(11 200+ 1 832V37).
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Example 5. u®—34¢v®= —100= —4-5% (Theorem 15).
As A=4-34 we find (%‘) = +41. Then we get

(5)=(5, 1+2V34) (5, 1-2V34).

We find (5, 1+2V/34)2=(3-+V34). The Diophantine equation
22—34y°=—4

is not solvable. The given equation is solvable, and thus it has 2 classes.

Example 6. %*—59*=836=4-11-19 (Theorem 16, c¢f. Example 4 in Part T).
For the fundamental solutions in which « is positive, according to inequalities
(5) and (21) we get
=32, u=38.

Example 7. %*—2¢2= —2884= —4-7-103 (Theorem 16).
For the fundamental solutions in which v is positive, according to inequalities
(7) and (22) we get
v=53, v=63.
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