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§ 1. Introduction 

In this paper we shall study the reality of the eigenvalues in some integral 
equations of the Fredholm type 

1 

q9 (x) = ~ f g (x, y) qo (y) dy. 
0 

The kernel K (x, y) is assumed to be 0 above a certain curve in the square 
x 

0 < _< 1 where it is defined. Below the curve we suppose that  K ( x , y ) =  
Y 

= P (x)Q (y). Let the curve have the equation y = / (x )  and make the following 
assumptions: 

(~) /(x) is non-decreasing, 

(fl) lira [ ( x - t ) >  x except possibly for x =  0 and x = 1, 
t=+O 

(:~) P(x)Q,(x) is integrable in 0_<z_<l. 

We shall study two types of kernels: 

Kernel A: The curve does not pass through (0, 0) nor through (1, 1) (fig. 1). 
Kernel B: The curve goes through (0,0) or (1, 1) or both points (fig. 2). 

In [1] I have obtained explicit expressions for the corresponding denominators 
of Fredholm. In  equation A they are polynomials in 2 of degree depending only 
on the curve y =  ] (x). I shall give an account of the formulas in question. 

Let ]2 (x) mean ] (1 (x)), generally /n (x) the nth  iterated function. We also 
introduce the in an appropriate way defined inverse ]-1 (x) which we give the value 

X 
0 for 0-< x-< ](0). In the integral equation A, restricted to the square 0 _  _< ~, 

Y 
the denominator of Fredholm becomes: 

D (~, 4) = 1 - 2 F 1 (~) + 2 ~ F2 (~) . . . .  + ( -: 2) n Fn (~), (1) 
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, y  y 

f 

X X 
Fig. 1. :Fig. 2. 

where n is determined by the inequality 

1"-~(o) <~_</~(o). 

The coefficients F 1 (0~), F 2 ( ~ ) ,  . . .  are obtained from: 

a 

--~1 (~')= f P(Y) Q(y)dy; 
o 
cz 

F2 (~)= f Fl (/-~ (y))P(y)Q(y)dy; 
o 

a 

F, (~)= fF,_l (I-:(y))P(y)Q(y)dy; 
0 

(2) 

The denominator of Fredholm in the equation 

0 _< x_< 1 is an integral function 
Y 

D(~)=I+ ~ (-;,)" F, (~), 
r = l  

with coefficients determined by (2). 

B regarding the square 

(3) 

~y 

g 
Fig. 3. 

E L X  
Fig. 4. 
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We shall show that  the eigenvalues of A and B are real, if P (x) Q (x) _> 0 
(almost everywhere). For  this purpose we shall examine the succession of kernels 

x 
which we get with a fixed curve y=] (x )  and a variable square 0 <  _<¢¢, 

Y 
0 < a_< 1 (fig. 3). When a < / (0) the kernel is P (x) Q (y) in the whole square. 
I t  has a single eigenvalue which is real. For increasing :¢ the number of eigen- 
values is increasing. 

§ 2. Proof of the reality of the eigenvalues of equation A when 
P (x)  Q (x)  >_ 0. 

In  order to obtain a relation between denominators of Fredholm correspond- 
ing to different squares we note that  (2) gives: 

a 

F~ (~) = F,  (~) + 5 F,_~ (1 -~ (y)) P (y) Q (y) d y. 

Introduce this into (1): 
a 

D (~, 2) = D (fl, 2) - 2 ~ D (t -a (y), 2) P (y) Q (y) dy. (4) 

In  the following we shall generally denote by 2~ a), ,~2~("), ..., 2~ ">, ... the eigen- 

values corresponding to the square O_<X_< e arranged so that  their moduli form 
y 

a non-decreasing sequence. We first suppose that  P (x)Q (x)> o. 

Theorem I .  When P (x)Q (x)> 0, the eigenvalues o] A are real, ~ositive and 
simple. Further, i] ]-1 (:¢) < fl < ~, we have 

0 < 21 a) < 21 ~) < " ° (° ) -  ~ ~(~) < 2 ("7 < 2 5  ) " ' "  ~ A n - t  ~ , ' ~ n - 1  (5) 

We have assumed that  p - l ( 0 ) <  ~_<]~(0). Note that  2~ ) is missing if 
]-:(e)<_fl<_]~-l(O). (5) indicates tha t  every eigenvalue is decreasing for in- 
creasing ~. If we let ~ decreasing tend to [~-1 (0), 2(#) tends to + ¢~. Hence 
theorem 1 involves tha t  the new eigenvalues, gradually appearing as ~ in- 
creases, are entering from + ~ .  The theorem is proved by induction. 

. 

In  this 
value is 

Theorem 1 is valid when 0 < ~ <_ / (0). 

case K (x, y ) = P  (x)Q (y) in the whole square and the single eigen- 

1 

• 5 P(y)  Q(y )dy  
0 

Since P (x) Q (x) > 0 2~ ") is positive and decreasing for increasing :¢, which proves 
theorem 1. 
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I t  remains to show tha t  if theorem 1 is valid when ~- '  c¢ < [ (0), it  is valid when 
<[~ (0), too. We illustrate the method by first proving: 

2. Theorem 1 is valid when / (0) < ~ < ]2 (0). 

We trea t  the case3 fl_< / (0) and fl > / (0) separately. 

2 a. l-~(~)_<fl_<t(0). 

To the square 0 < x <  fl belongs a single eigenvalue 4~ p). We shall prove t h a t  
y 

0 < 4(1 ") < 4(1 ~) < 4~ ") by  examining the sign of D (~, 4), when 4 = 0, 4 = 4(1 ~) and  
4 =  + co. Pu t t ing  4(~ p) for 4 into (4) we get:  

a 

D (~, 47 )) = -4(~)f D (1-' (y), 47 )) P (y) Q (y) dy. (6) 
P 

When fl<_yNo: we have ]-l (fl) <_ ]-l (y) <_ ]-l (a) < fl. B y  1 the zero ~([-1(~)) of 
D (/-1 (y), 4) is >_ 4(1 ~). Since D (e, 0) > 0 it follows tha t  D (]- '  (y), 4(~ z)) is >_ 0 
in the r ight  member  of (6). To show tha t  this expression cannot  be zero iden- 
tically we note tha t  there exist3 an interval f l < y < f l + A f l ,  where [ - ' ( y ) i s  
< fl on account of the conditions (e) and (fl) on / (y). In  this interval 1 involves t h a t  
D (/-1 (y), 2(1~)) > 0. By  P (x) Q (x) > 0 we conclude from (6) t ha t  D (:¢, A~ ~)) < 0. 

Thus 
D(~,  0 ) > 0 ,  

D (e, 4(1 ¢)) < 0, 

D ( . ,  + c¢) >0 .  

We see t ha t  the zeros of D (~, 4) are real, positive and simple and 

2 b. 1(0)</~<~.  

By 2 a both  D (:¢, 4) and D (fl, 4) have two positive, simple zeros. We have  
to prove tha t  

0 < 41 ") < 41 ~) < 4~ a) < 4~ z). (7) 

Pu t  4 =  4~, ~), v =  1, 2, into (4): 

a 

D (~, 47 )) = - 47 ) f D ( / - '  (y), 4~ ~,) P (y) Q (y) d y. 
p 

Since when fl _< y_< ¢¢ we have 

(8) 
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2 a shows tha t  the single z e r o  ~(1Y-I(y)) of D(]-l(y), 2) satisfies 

Hence 

~ )  < ai~-~ (~, < ~a). 

D (l -~ (y), ~(~a') > 0 and D ( t  -1  (y), X~') < 0. 

From this and from P (x)Q (x)> 0 we infer by (8) 

D (~, 2~ ~) < 0, D (~, 2~ ~) > 0. 

Since D (~, 0)>  0 this proves (7). 

3. Assuming that theorem 1 is valid when 0<~¢<]=-~(0), it is valid also when 
t~-1 (o) < ~ < 1~ (o). 

3 a. i -1 (a) < ~ < in-1 (0). 

By the assumption D (fi, ~) has n -  1 positive, simple zeros X(~, ~ 2~1 
We have to prove that  the n zeros of D (~, A) are positive and simple satis- 
fying (5), where 2c~ ~ is missing. 

As in 2 we use (4) to determine the sign of D (~, ~>) where v = 1, 2, ..., n - 1. 
The result is once more formula (8). 

When ~ < y < ~ we have further 

1 ~-~ (o) < 1-1 (p) _< t-1 (u) -_< 1 -~ (~) _< ~_< 1 =-~ (o). 

D (/-1 (y), 2) has n - 2  or n - ]  zeros, which by the assumption are located 
according to 

0<~¢~)<~¢f-l(y)) <...<~t@ <~t(r-lcy))<~(/~) <~¢f-l(y)) 
1 - - / ~ 1  n - 2 - -  n - 2  , ~ n - l - - I ~ r t - 1  • (9) 

is 
The signs of equality are applicable to the case ]-~ (y)=fl  only. Since 2(~> 
situated between the (v -1 )s t  and vth zeros of D (f-1 (y), X), we infer tha t  

( -- 1)~ -1D (]-1 (y), ~t(f)) > 0. (10) 

On account of the conditions (~) and (fl) on /(x) there exists an interval 
fl<_y<_fl+Afl where f - l (y )<f l .  For y in that  interval the sign of equality 
cannot appear in (9) and (10). Since P (x)Q (x)>0 we infer by (8) 

( - 1) ~ D (~, 2~ )) > 0, v = l ,  2, ..., n - 1 .  

As D (~, 0) > 0 this proves (5). 

3 b .  ]~-1 (0) < ~ <  ~. 

In consequence of 3 a D(:¢, 2) and D(fl, 2) both have n positive, simpl~ 
zeros. I t  is required to prove the inequality (5). We again use (8) for examin- 
ing the sign of D (c¢, 2(f~), v = l, 2, ..., n. 
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For y in the interval fi_< y_< a we get 

t a-2 (0) < / -1  (~) _<~ 1-1 (y) __~ 1-1 (g) __~ 1~-1 (0) < ft. 

The n - 1  zeros of D (/-1 (y), 2) satisfy by 3 a 

0 < 21 ~) < 2 7  -1 (')) < . . . .  ~.,~_~'(I-~ (,)) < 2(~). 

We infer that  ( -1) ' -1D(/- l (y) ,2~))>O in the whole interval fl<_y<o:. By 
(8) we find ( - 1 ) ' D ( ~ ,  2~))>0 for all v, which proves (5). 

The proof of theorem 1 is now completed. Our next object will be to relax 
the restriction P (x) Q (x) > 0. 

T h e o r e m  2. When P (x) Q (x) >_ 0 the eigenvalues o] A are real, positive. 

Define [P (x) Q (x)]~ as P (x) Q (x) if P (x) Q (x) >_ e, as e if P (x) Q (x) < e. (e > 0). 
To /(x) and [P (x)Q (x)], there corresponds an integral equation of type A, 

for which theorem 1 is applicable. I ts  denominator of Fredho]m D (e, g, 2) is: 

with 

D(e ,~ ,2)=l -2F1(~ , :O+2~F~(s ,c¢)  . . . .  + ( -2 )~  F~ (e, ~), (11) 

a 
~1 (e, ~) = f [P (y) Q (y)]~ d y ; 

0 
a 

~'~2 . . . . .  (e, o~) = of a ~'11 (e, ]-1 (i)) [p  (y) Q (y)]~ dy; 

F,  (e, ~) = of F,-1 (s, ]- (y)) [P (y) Q (y)]~ dy; 

(12) 

For every fixed y the integrands of (12) are positive functions of e, non- 
increasing for decreasing e, converging to the integrands of (2) when e tends 
to 0. Hence, when E tends to 0, every F,(e ,  a.) converges to F~(~) and we 
infer tha t  the polynomial D (~, ~, 2) converges to D (~, 2). The zeros of D (~, 2) 
are the limits of the zeros of D (e, ~, 2) when e tends to 0. As limits of real, 
positive numbers they are real, positive. 

T h e o r e m  3. When P (x)Q (x)>_ 0 the eigenvalues o / A  are non-increasing /or 
increasing o~. 

Take out an arbitrary eigenvalue 2~ ~) of the integral equation. I t  is the limit 
when e tends to 0 of an eigenvalue 27 ) (~) of the integral equation used in the 
proof of theorem 2. By theorem 1 2(, a) (e) is a decreasing function of ~. Hence 
2¢: ) = lim 2¢, ") (e) is non-increasing. 

e~0 
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X 
Theorem 4~. Let the "existence-square" o] the kernel o] A be ~ < < 1. 

Y 
P (x)Q (x)>_ o its eigenvalues are non-increz~sing/or decreasing o~. 

I /  

By the change of variables 2 = l - y ,  ~ = l - x  the integral equation A is 
transformed into another of the same type with the same eigenvalues. The 

x 
square :¢ < <: 1 is transformed into the square 0_< ~ 1 -  ~. Thus theorem 4 

Y 
is an immediate consequence of theorem 3. 

To conclude this study of equation A we shall show that  the assumption 
P (x)Q (x)_> 0 is essential in order that  the eigenvalues shall be real. We shall 
give a simple example of an equation of the type A where P (x)Q (x) changes 
its sign and the eigenvalues are complex. 

Define the kernel in 0_< x_< 1 by ] (x) = x + ] and Q (x) = 1. The correspond- 
y 

ing denominator of Fredholm is by (1) and (2): 

1 1 x--]  

D (~)= 1 - ~  f P ( y ) d y + 2  2 f P (x )dx  f P(y)dy .  
0 .~ 0 

Choose P ( x ) > 0  in the intervals 0 < x < ½  and ~_<x_<l, and P ( x ) < 0  in the 
1 

interval ½ < x < ~ ,  so that  f P ( y ) d y = O .  We get: D(~)=I+~2C with C > 0 ,  
0 

hence the eigenvalues are non-real. 

§ 3. Proof of the reality of the eigenvalues of  equation B. 

When the curve goes through one or both of the points (0, 0) and (1, 1), 

the denominator of Fredholm of the kernel defined in 0 < x <  1 is a n  integral 
y 

function. We shall examine the reality of its zeros when P (x)Q (x)_> 0. 

Restricting the "existence-square" of the kernel of B to e < x_< 1 - e, ½ > e > 0, 
Y 

we get an equation of the type A (fig. 4, p. 80). We shall show that  the denominator 
of Fredholm D (s, 2) of the new equation converges to D ()t)when s tends to 0. 
Since by theorem 2 the zeros of D (e, 2) are real, positive, we infer that  the 
eigenvalues of B are likewise real, positive. 

Let  [P (x) Q (x)]~ denote P (x) Q (x) in the interval e < x < 1 - e and 0 in the 
intervals 0_<x<e and 1 - e < x _ < l .  D(e, 2) is simply obtained by putting 
[P (x)Q (x)]~ for P (x)Q(x) into (2) and (3). We get formulas of the form (11) 
and (12) where D (e, 2 )=D(e ,  1 - e ,  ~t) and with n determined by 

/ . - 1  (~) < 1 - e_< 1" (~), n = n ( ~ ) .  
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Because the integrands of (12) are positive functions of e, non-decreasing for 
decreasing e, and converging to the integrands of (2), every coefficient F,  (e, 1) 
converges non-decreasing to F ,  (1) when e decreases to 0. 

When 121< R the moduli of the terms of the series D (e, 2) and D (2) are 
smaller than the corresponding terms of the convergent series 

F,(1) I~'= D (-R).  
v=O 

Since every term of D (e, 2) converges to a term in D (2), we conclude that  
the convergence of D (~, 2) to D (2) is uniform in every circle ]21< R. 

T h e o r e m  5.  The eigenvalues o] B are real, positive i] P (x) Q (x) >_ o. 

Since D (e, 2) tends to D (2) uniformly in every circle 12 [<R we can apply 
a theorem of Hurwi~z [2]. By it the zeros of D (2) are exactly the ]imits of 
the zeros of D (e, 2) when e tends to 0. As limits of real, positive numbers 
the eigenvalues of B are real, positive and theorem 5 is proved. 

Denote the zeros of D(t ,  2) by 2 1 ( e ) ,  2 2 ( e ) ,  . . . ,  2 n ( e ) ( e )  and the zeros of 
D (2) by 21, 22, ... arranged so tha t  their moduli form a non-decreasing sequence. 
We have lim 2, (e)= 2, for all v. Combining theorems 3 and 4 we infer tha t  

e--0  

every 2, (,) is non-increasing for decreasing e. 

T h e o r e m  6. 

1 

PuUing f P (y) Q (y) d y = M we have 
0 

From (11) we get: 

n(e) l 1 - *  

2 , (0  =FI (~ ,  1)= f P(y)Q(y)dy .  
I,=1 e 

Hence we can to every ~ > 0 find a number eo (~)> 0 such tha~ 

n (%) ] 

M - ~ <  ~ - - < M .  
,=1 2, ( t o ) -  

1 
- -  is non-decreasing for decreasing e. Hence: 
& (0 

n(~o) 1 n~o) l 
M - ~ <  ~, ~ - < M .  

,-1 2, (Co) -< ,=1 2 , -  

oo 

Because y is arbitrary, we get ~ 1 = M  
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T h e o r e m  7.. D (2) is o/ genus O: D (2) = ~ 1 - ~ • 

Put 2-~) = 0 if ~ > n (e). The convergence of the infinite product I I  1 - 2 

1 ~ 1 
is uniform in ,~ since ~ - ~  is non-decreasing for decreasing s a n d ~  1 ~ = M. Hence 

D(2)=l imD(s ,  2 ) = l i m I I  1 -  2 = l - I l im  1 -  2 1 2 

Example. [['he function 

D ( 2 ) = l + ~ 1 ( - 2 ) V ( l + ~ )  . . . .  (1+-1+1~ ": ( l + l + a  a ~] +a~:iI-~) ' 

0 < a < l ,  is of genus 0 and has its zeros real, positive. The fact is that it is the 
denominator of Fredholm of the integral equation of type B defined by 

/ (x)=x ", 0 < a < l ,  P ( x ) Q ( x ) = l .  
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