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1. I n t r o d u c t i o n  

This paper is concerned with the spectral theory of orthogonal polynomials on the unit 

circle (OPUC) [16], [17], [15], [23], [7], [8] in the case of particularly regular measures. 

Throughout,  we will consider probability measures on 0 D = { z  Iz l=l}  of the form 

dO (1.1) d# = w(O) ~ +d#s,  

where w obeys the Szeg5 condition, that  is, 

fo 2~ dO (1.2) log(w(0)) ~ > - ~ .  

In that  case, the Szeg5 function is defined by 

/" f2" ei~ dO) (1.3) D(z) = e x p / t  ~ log(w(0)) U~ 
\ J 0  e --z 

Not only does w determine D, but  D determines w, since limr,1 D(rei~ i~ exists 

for a.e. 0 and 

~(o)  = ID(e {~ I ~. (1.4) 

Indeed, D is the unique function analytic on D = { z l l z  I <1} with D ( 0 ) > 0  and D non- 

vanishing on D so that  (1.4) holds. 

Given d#, we let ~n be the monic orthogonal polynomial and {,~:~n/llOnllL2(du). 
The ~n'S obey the Szeg6 recursion 

r (Z) ~- Z(Y~n(Z ) --(~n(~* (Z), (1.5) 
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where, for P,~ a polynomial of degree n, 

P~(z) = z~P~(l /2) .  (1.6) 

The c~n are called Verblunsky coefficients. They lie in D, and #~-~{a,~}~= o is a 

bijection of nontrivial measures on 0D and D ~.  Our goal here is to focus on the map 

and its inverse. Here is the background on our first main result: 

(A) Nevai and Totik [12] proved that lira s u p ~ _ ~  ]a,~l 1/'~ ~<R-I<  1 if and only if 

(a) d# obeys the Szeg6 condition and dp~=0; 

(b) D(z) -1 is analytic in {z I lzl<R}. 

(B) Barrios, Ldpez and Saff [1] proved that for R >  1, 

o~. = cR-'~ +O( ( (1-c)R-1)  '~) (1.7) 

if and only if D(z) -1 is meromorphic in a circle of radius R ( I + ~ )  with a single, simple 

pole at z=R. 
(C) Simon [16] considered the functions 

oc 

S(z) = - E 6~J-lZJ (1.8) 
j=0 

(with a _ l = - l )  and 
r(z) = D(1/2)D(z) -1, (1.9) 

and proved that if l imsupn_~  ] ~ I 1 / ~ R  -1 <1, then for some 5>0,  r ( z ) -S ( z )  is ana- 

lytic in {z] l -5<lz l<R2} ,  so that S(z) and r(z), which will have singularities on Izl=R 
if lira s u p ~ o ~  I(~nll/~=R -1, must have the same singularities in {z I R<lzl <R2}.  In [16], 

instead of S(z) as defined by (1.8), one has S(z) defined by Sbook(Z)=~j~= o OLjZ j, and the 

theorem is stated as analyticity of z -  1 r (z) + Shook (z), equivalent to analyticity of r--  S. 

But, as we will explain in w (1.8) is the more natural object. Rather than 1 - 5 <  Izl < R  2, 

[16] has R - l <  Izl < R  2, but that is wrong since 19(1/2) can have poles at the Nevai-Totik 

zeros. 

(D) Using Riemann-Hilbert  methods, Deift and Ostensson [4] have extended the 

result on analyticity of r ( z ) -S ( z )  to {z I 1 - 5 <  Jz I <R3}.  

(E) Barrios, Ldpez and Saff [2] have proven that if 

c~ = cR-n+O(  ( (l +e)R) . . . .  m~), (1.10) 

then D(z) -1 is meromorphic in {zl lz  I </~2rn-1 §  with poles precisely at zk=R 2k-1, 
k = l ,  2, ..., m. In particular, if (1.10) holds for all n, then 19(z) -1 is entire meromorphic 

except for poles at R 2k-1, k = l ,  2, .... 
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Our main goal in this paper is to give a complete analysis of what can be said about 

a,~ if O(z) -1 is meromorphic in some disk and, contrariwise, about D(z) -1 if an has an 

asymptotic expansion as a sum of exponentials. We describe our precise results in w 

Along the way, we found a direct, simple proof of the Deift-Ostensson result that  

is also simpler than the argument Simon used for his weaker result in [16]. So we will 

give this proof next, then analyze two simple examples, and return in w to a general 

overview and sketch of the rest of the paper. 

Of course, included among the entire meromorphic functions are the rational func- 

tions, and there is prior literature on this case. Szabados [20] considered the case 

D(z ) - l= l /q ( z )  for a polynomial q, and Ismail and Ruedemann [10] and Pakula [14] 

discussed D(z) -1 =p(z)/q(z) for polynomials p and q. They have some results on asymp- 
O~ ec toties of as, but no discussion of links to the { n}n=l" As I was completing this 

manuscript, I received the latest draft of a paper of Martfnez-Finkelshtein, MeLaughlin 

and Saff [11] that  has some overlap with this paper. After refereeing, I received a 

preprint of Golinskii and Zlatog [9] with an explicit formula for the Taylor coefficients of 

D(z)-I/D(O) -1 in terms of the a 's  that  may provide another proof of our results. 

Acknowledgment. I would like to thank P. Deift and J. Ostensson for illuminating 

discussions. This research was completed during my stay as a Lady Davis Visiting Pro- 

fessor at Hebrew University, Jerusalem. I would like to thank H. Farkas and Y. Last for 

the hospitality of the Mathematics Institute at Hebrew University. 

2 . T h e  R 3 - r e s u l t  

Our goal in this section is to prove the following result: 

THEOREM 2.1. Let 

lim sup lan) 1/n = R -1 < 1 (2.1) 
n - - +  c ~  

so that D(z) -1 and S(z) are analytic in { z l l z l<R }. Then for some 5>0, r ( z ) -S ( z )  is 

analytic in {z t l - 5 < l z l < R 3 } .  

Remarks. (1) Here D is given by (1.3), S(z) by (1.8), and r(z) by (1.9). 

(2) The proof will make repeated use of Szeg5 recursion (1.5). 

We introduce the symbol 6 by f = ( ) ( g )  if and only if for all c, Ifl/Igll-e-*O. 

LEMMA 2.2. Let (2.1) hold. Then 

(a) for all e>0,  

sup I~ ; ( z ) l<~c ;  (2.2) 
n ,  Iz[<R-e 
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(b) for lzl~l, 

(c) for ]zl~l, 

I~(z) l  = O(max(R -1, IzlF); 

I ~ ( ~ ) - D ( O ) D ( z )  -1 ] = O( R - ~  max( R - l ,  IZl)n)" 

(2.3) 

(2.4) 

Remarks. (1) There is an implicit uniformity in z in the ()-statements (2.3) and (2.4). 

(2) Part  (a) is due to Nevai and Totik; (b) appears in Simon [18], [19]. 

Proof. (a) From (1.5) and ]~5,~(ei~176 we see that  

n- -1  

sup I ~ ( z ) l  ~ 1-I ( l+ l~ j l ) ,  
Fz]=l j=0 

(2.5) 

so, by I-[~-o ( l+ l~ j l )  < ~ and the maximum principle, 

sup f<~(~)l < ~c, (2.6) 
n,  Izl~<l 

from which we get, by (1.6), that  

c 1 ~  sup I z E - ~ l ~ ( z ) l < ~  (2.7) 

The * of (1.5) is 

so that  

Thus, by (2.7), 

�9 ;+~ (z) - ~ ;  (z) - - - ~  zVn (z) 

n - - 1  

r = 1 -  E a j z~ j ( z ) .  
j = 0  

n - 1  

r~;(z)l < 1 + C 1 E  I~jl Izl j+l,  
j = 0  

Given (2.1), we see that  (2.2) holds. 
(b) Fornmlae (2.2) and (1.6) imply that  for Izl>/~-z+e, 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

This plus the maximum principle implies (2.3). 
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(e) It is a theorem of Szeg5 [21J, [22} (see Theorem 2.4,1 of [16)) that in Izl <1, 

limo ~ ; ( z  ) = D(O)D(z) -1 =_ d(z) -1. (2.12) 

Thus, summing (2.8) to infinity, 

03 
[d(z)-Z-  (I);(z)l ~< E [c~Jl [zl [4PJ(Z)[" (2.13) 

j= n  

Since c~j=O(R -j)  and (2.3) holds, we obtain (2.4). [] 

Proof of Theorem 2.1. We use the function d(z) of (2.12). Since o2~(z)-+d(z) -1 for 

[zl<l and (2.2) holds, the Vitali theorem implies that d(z) -1 is analytic in {zlIz l<R } 
and rP~(z)-+d(z) -1 in that region. By summing (2.8) to infinity, for Izl<R, 

o4? 
d(z)-1 = 1 - E ctj_l z4)j -1 (z), (2.14) 

j= l  

which we write 

d(z)- l=d(1/2)  1 S ( z ) + [ 1 - d ( 1 / 2 ) 1 ] - E c t J _ l Z [ ~ j _ l ( Z ) - d ( 1 / 2  ) lzj-1], (2.15) 
j = l  

where this formula is valid in {z I R -1 < [z I <R}. 

Apply * to (2.4) and see that in Izl>~l, 

I ( I ) n ( z ) - - d ~ - l z n  I ~ Iz]~5(n- '~rnax(R -1, IZl--1)n). (2.16) 

So the summand in (2.15) is bounded in {z I Iz] ~> 1} by Iz] '~+1 ~)(R -2n max(R -1, [z[ -1)n). 

In l<~lz]<~R , this is bounded by ()(RR-2~),  and in R<~lz j by O()z[n+lR-an). Thus, 

the sum in (2.15), which is a sum of functions each analytic in {zl Izl>/~-l}, converges 

uniformly in {z 11~< Izl <R3}. Multiplying by d(1/2), which is analytic in {z I Iz[ > 1-(~}, 

implies the result. [] 

Remark. D -1 cannot have a zero on 0D, since if it did, D(e i~ would not be in 
L 2 (0D, dO/27r). 
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3. Two examples  

We want to analyze two examples from [16] from the point of view of singularities of 

D(z) -1 and asymptotics of (~.  The first is already mentioned in this context in [2]. 

Example 3.1. (Rogers Szeg6 polynomials; Example 1.6.5 of [16].) Here 0 < q < l ,  

(~n = ( -1)~q (~+1>/2 (3.1) 

and 

Let R=q -1/2. Then 

OG 

D(z) = H (1 -qj)l/2(l+qj+U2z). (3.2) 
j=0 

(3,O 

S(z) = - E ( -1)J - lq i /2zJ  = (1 + z R - a ) - '  
j=0 

(3.3) 

has a single pole at 

Z 1 ~ - - } : { .  

On the other hand, by (3.2)1 D(z) has a zero, and so D(z) -1 a pole, at 

(3.4) 

t~ 2l-1 I 1.2. (3.5) 
Z l ~ -  - -  ~ ~ . . . .  

let 

Let 

Example 3.2. (Single nontrivial moment; Example 1.6.4 of [16].) Fix 0 < a < l  and 

dO (3.6) dua(O) = ( 1 - a  cos 0) 2~ 

= 1 •  ( / -~ ' J2 -1 .  (3.7) 
#• a V \ a /  

so that #_ #+ = 1 and #_ < 1. Then 

D(z) = d 7  ( l - , _ z )  (3.8) 

so D(z) -1 has a single pole at 

(3.9) 

zl = #+. (3.10) 
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On the other hand, 

-(~+-~-) -(2n+4))-~ an : (,,~+2_ ~+2) : - - ( ~ + - - ~ - ) ~ 2 ~ - 2 (  1 -  

oo 

=_(,+_, 
j = l  

and so S(z) has poles at 
. 2j--1 

gj=#+ , j=l,2,.... 

(3.11) 

(3.12) 

In these examples, the sets of singularities of S and of D(z) -1 are distinct, and 

one or the other might be larger. If {zj}~= I are the singularities, then r 2z-1}~ ~zj j,l=l are 

identical for S and D -1, which motivates the G-construction of the next section. In 

addition, these examples show that  the R 3 in Theorem 2.1 is optimal. 

4. O v e r v i e w  a n d  d i scuss ion  o f  f u r t h e r  r e su l t s  

A Definition. A sequence { ,~}n=-i of complex numbers is said to have an asymptotic 

series with error R -n  for some R >  1 if and only if there exists a finite number of points 
> a { j} j=l  in {w I I < l w l < R }  and polynomials {P/}J-1 so that  

J 1/n 

lim sup A n - ~ - ~ P j ( n ) # ~  (€ ~< /~--1. (4.1) 
n--+ <xa 

Equivalently, 

= 

j = l  

We say that  An has a complete asymptotic series if it has an asymptotic series with error 

R -n for all R >  1. 

In many ways, our main result in this paper is the following: 

THEOREM 4.1. Let dp be a nontrivial probability measure on OD with Verblunsky 

coefficients, an. Then an has a complete asymptotic series if and only if 

(1) dps=0 and dp obeys the Szeg6 condition; 

(2) D(z) -1 is an entire meromorphic function. 

Of course, 

E 7% --n z #j = 1 - z  (4.2) 
n=0 \ #J / 
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and so, taking derivatives, for l = l ,  2 .... 

oc l--1 

E (n+l ) (n+l -1 ) . . .  n +  1)z~#~ -~= l' (1 - z ~ -  
~=0 \ #J / " 

So (4.1) is equivalent to a sum of explicit pole terms: 

PROPOSITION 4.2. 

(4.3) 

A { ~}~=-x has an asymptotic series with error R -n if and only if 

F(z)  = E A'~-lZ'~ (4.4) 
r e = 0  

is meromorphie in {z I Izl<R} with a finite number of poles, all in { z l l < l z l < R } .  In 

A particular, { n}n=-I  has a complete asymptotic series if and only if F(z)  is an entire 

meromorphic function. 

Thus, Theorem 4.1 is equivalent to the following: 

THEOREM 4.3. (1) and (2) of Theorem 4.1 are equivalent to the function S of (1.8) 

being an entire meromorphic function. 

Note that the #j ' s  and Pj 's  are determined uniquely by the A~'s. 

Both to prove the results and for its intrinsic interest, we are interested in the relation 

between the poles of S(z) and of D(z) -1 and in results in fixed circles. By a discrete 

exterior set, we mean a subset, T, of {w ]l<lwl<~c} so that ~[{w 11<IwI<R}AT  ] is 

finite for each R > I .  Given a discrete exterior set T, define for k = l ,  2, ..., 

G(2k-1)(T) = { - ~ i 1  . .  ~ik ~is "'" ~i2k-1 I ~J E T},  ( 4 . 5 )  

o~ 
G~k_I(T) = [.J G(2J-t)(T),  (4.6) 

j=k  

G(T)  = G1 (T). (4.7) 

G(T)  will be called the generated set. Note that 

G(G(T) )  = G(T).  (4.8) 

We will prove the following result: 

THEOREM 4.4. Let a,~ be a set of Verblunsky coe]~ficients with complete asymptotic 

series, and let T be the set of #j's that enter in the series. Let P be a set of poles of 

D(z) -1. Then 

T C  G ( P )  and P c G ( T ) .  (4.9) 

This implies the following refined form of Theorem 4.1: 
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THEOREM 4.5. Let Q be an exterior discrete set with G ( Q ) = Q .  Then an is a set 

of Verblunsky coefficients with pj's in Q if and only if condition (1) of Theorem 4.1 holds 

and the poles of D(z ) - I  lie in Q. 

Theorems 4.1, 4.4 and 4.5 are equivalence results, and thus have both a direct (going 

from c~ to D) and inverse (going from D to c~) aspect. Generally, direct arguments are 

simpler than inverse. We will actually deduce everything from direct arguments and a 

bootstrap. An inverse argument is only used to start the analysis, and that was already 

done by Nevai and Totik. Here is the master stepping stone we will need. Throughout,  

we suppose that  there is R >  1 so that  

THEOREM 4.6. 

l imsup la~l 1/n = R - '  
n - - ~  OO 

Fix l=1,  2, .... Suppose that S(z) is meromorphic in 

(4.10) 

(4.11) 

Then D(z) -1 is meromorphie there, and the poles of D(z) -1 there lie in G(TI), where Tt 

is the set of poles of S(z) in g l .  Moreover, r ( z ) - S ( z )  has a meromorphic continuation 

to T~Z+lN{Z [ [ z l > l - 5 } ,  and the poles of this difference lie in Ga(Tz). 

We are heading towards a proof that  Theorem 4.6 implies the earlier Theorems 4.1, 

4.4 and 4.5. We need a preliminary notion and fact: 

Definition. Let Q be an exterior discrete set with G ( Q ) = Q .  We say that  W c Q  is 

a set of minimal generators if and only if G ( W ) = Q  and G a ( W ) A W = O .  

PROPOSITION 4.7. Any exterior discrete set Q with G ( Q ) = Q  has a minimal set of 

generators. 

Proof. Order the points in Q, w~, w2, ..., so that Iw~ 14 Iw,~+l I. Define W inductively 

by putting wn in W if and only if wn~Ga({wz,  ..., wn-1}). It is easy to see that  W is a 

set of minimal generators. [] 

Proof that Theorem 4.6 implies Theorems 4.4, 4.5 and 4.1. It suffices to prove that  

D -1 is entire meromorphic if and only if S is, and to prove Theorem 4.4, since it in turn 

implies Theorem 4.5, which implies Theorem 4.1. If S(z) is entire meromorphic, it is 

meromorphic in each 7~i, so D(z) -1 is meromorphic in each ~ t  and, clearly, P c G ( T ) .  

Conversely, if D(z) -1 is entire meromorphic, we prove that  S(z) is entire meromor- 

phic by proving inductively that  it is meromorphic in each ~t .  The function S(z) is 

meromorphic in ~1 by the Nevai-Totik theorem. If we know that  S(z) is meromorphic 
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in gz, then by Theorem 4.6, r(z)-S(z)  is meromorphic in gt+l\7~z, so, since r(z) is 

meromorphic in 7~z+1, we conclude that S(z) is meromorphic there also. 

Finally, to identify the points of T, as lying in G ( P )  with P the poles of D(z) -1, 

suppose that  W is a set of minimal generators of T. If wjCW, then wj~Ga(T), so S - r  

is regular at wj by Theorem 4.6. Since wj is a singularity of S, it must be a singularity 

of r, that  is, wjCP. Thus, T = G ( W ) c G ( P ) .  [] 

Our proof of Theorem 4.6 will also show the following: 

THEOREM 4.8. Suppose that z0EGa(T)  has a unique expression as Zo=P21fi2 with 
#I,#2ET. Suppose also that zo~TUGh(T). Then r(z)-S(z)  has a singularity at zo. 

Remarks. (1) For example, if S(z) has a single pole, z0, with Izo[ =R, then either S 

or D -1 or both have a pole at zoR 2. 
(2) Our proof shows more. If the poles of {#j }F=I of S(z) are such that  {log t if}j=1 

are independent over the rationals, then D -~ has a pole at every point in G(T) .  

(3) Our proof also allows the precise calculation of the singularity in S - r  at any 

point in G(T) .  There can be cancellations if z0 can be written as a product  in G(T)  in 

more than one way. So one cannot guarantee a singularity of r(z)-S(z)  at every point 

of Ga(T),  but that  will happen in some generic sense. 

Note that  our results generalize those of Barrios, Ldpez and Saff [2] in three ways: 

(a) They only have results on the the direct problem, that  is, going from a to D -1, 

while we have results in both directions. 

(b) They allow only a single term in the a-asymptotics.  

(c) Their error assumptions in the case of disks are much stronger (R -nm2 vs. 

R -n(2"~+1)) than ours. 

This concludes the description of our main resul ts - -and reduces everything to prov- 

ing Theorems 4.6 and 4.8. We will do this for 2 1 - 1 = 3  in w and general 21-1 in w 

One could analyze other situations such as where S(z) has a branch cut associated 

with specific asymptotics for an such as W~R -~ with ~3 nonintegral. 

We close this section, which is the continuation of the introduction, with two re- 

marks. First, there is a scattering-theoretic interpretation of S and r. Since we have 
oc 2 ~n=O lan[ <0% one can define wave operators (see Geronimo and Case [6] and w 

of [17I) 

~• L2 (0D, 2~- ) >L2(OD, IDI2~) 
which obey 

(Q+f)(O)=D(eiO)-lf(o) and (Q-f)(O)=D(ei~ (4.12) 
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Thus, the reflection coefficient is given by 

((D-)-lf~+f)(O) =D(ei~176 (4.13) 

so r(z) is the analytic continuation of the reflection coefficient. The function S(z) is 

the leading Born approximation to r (see Newton [13] and Chadan and Sabatier [3] for 

background on scattering theory). While we will not study it from this point of view, it 

is presumably true that  the arguments in the next two sections can be interpreted as use 

of some kind of Born series. 

The second issue concerns a comparison between the basic formula used by Nevai 

and Totik [12] to do the inverse problem and a different, but similar-looking, formula 

used in our discussion, namely (2.14). The formula they use, where they quote Freud 15], 

is also in Geronimus [8]: 

an = - x o ~  '~+l(ei~176 dp(O), (4.14) 

where x ~ = l i m ~ o ~  ~:~ with ~,~=]]qbn[[-1 , so that  >r and 

>:~ =D(0)  -~. (4.15) 

Formula (4.14) only holds if dpsi~g=0. 

Since ~ = x ~ ,  (4.14) can be rewritten as 

Since 

O~n-=-xOCXnl(~gn+l,D-1). (4.16) 

f0 ~" = D(0) 
dO (1, D -1 } = D(e ie) ~ : z ~  1. 

Formula (4.16) also holds if we interpret a - 1 = - 1  and 9~_1=1. Thus, with a _ 1 = - 1 ,  

(4.16) is equivalent to 

d(z) -1 - D(O)D(z) -1 = - x ~  2 ~ .z.,~o~,~n(Z). (4.17) 
I"z~--1 

On the other hand, (2.14) says that  

(d(z) -1 -1 )Z  -1 ~--~ -- ~ OLn.J, fnl~gn(Z),  (4.18) 
re=0 

or equivalently, 

O~n ~- - x ~ l  x2n f2rcff2n(e i~ [D(ei0) -1 - D(O)- l ]e-ie d#(O). (4.19) 

These formulae are distinct, and it is striking that  both are true and their proofs (see 

(2.4.35) of [16]) are so different. Where Nevai and Totik [t2] use (4.14), one could just 

as well use (4.19). 
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5. T h e  R S - r e s u l t  

In this section, as a warm-up and also as the start of induction for the general case, 

we consider the case 2 l - 1 = 3 ,  that  is, l=2,  where we deal with induced singularities in 

{z ]R3<<.Izl<R5}. Thus, we should suppose that 

K 

: _  + 5 ( n  (5.1) 
k = l  

with R<~ ]#k]<R 3. Here, Pk(n) are polynomials. We will instead suppose that  

K 
~--'~C - n - l +  

= 2_.  �9 
(5.2) 

The consideration of general Pk's rather than constants presents no difficulties other than 

notational ones, so we spare the reader. Our goal is to prove the following: 

THEOREM 5.1. If (5.2) holds, then D(z) -1 is meromorphic in {zllzl<R 3} with 

poles precisely at K {#k}k=l" In addition, S (z ) - r ( z )  is meromorphic in {z 11-5< Izl < R  5} 

with poles contained in G (3) K 2 - ({#k}k=l) '  Moreover, if zo =#il #i~ in precisely one way and 

Izol<<.R ~, then S(z ) - r ( z )  has a pole at zo. 

We note that  the first statement is immediate from Theorem 2.1, so we will focus 

on R3~< [z I < R  5. We will follow the same three-step strategy as we used in w 

(i) Estimate ~5~ in {z I Iz[<R-3(1+5)}. 
(ii) Estimate ~ - d ( z )  -1 in {z I IzI<R 3( l+5)}  using (2.8) and step (i). 

(iii) Estimate S(z ) - r ( z )  in Izl>R3/(l+O) using (2.8), the formula ~5~(z)z - n =  

q)~,(1/2) and the estimate in step (ii). 

What  will be different from w is that  we will find the leading asymptotics of ~ 

rather than just use that  I ~ ( z ) l  ~<()(R -~) in IzI<R. In essence, this leading asymptotics 

was discussed in [19], and we will use the techniques from there, although in a slightly 

more general context. 

THEOREM 5.2. Suppose that (5.2) holds. Choose 5 so that for all k, I#kl<R3/(1+5). 

Define E~(z) in {z I Izl<n-3(1+5)} by 

K 

�9 ~(z) = -d(z) -1 Z Ckft[n(1--Zfik)-l+En(Z)" (5.3) 
k = l  

Then, for Izl<R-3(l+6),  

iEn(z) I = ()(max(R -3, Izl)n). (5.4) 
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Remark. Since IpkI<R3(l+6)  -1 and Izl<R-3(l+6), ] lzI#kl<l .  

Proof, Iterating (1.5) from j=n-1 down to j=O yields 

r = ~ " - Z  ~--J zJ-' %-J(~) 
j = l  

Write (5.2) as 

(5.5) 

K 

~ = ~ ck~F -1 + (~)~, (5.6) 
k : l  

(~)~ = 5(R-a~). (5.7) 

In (5.5), do the following: 

Eo(~):z< (5.s) 

E}n) : - E ~n--jzj--l[(X)n-- j ( z ) - - d ( z ) - l ] ,  (5.9) 
j = ]  

F~ '~) : - ~ (~)n_jzh- ld(z) - t  (5.10) 
j : l  

K c~ 

E~): E ck E ;~;(n+1-j)zj-ld(z)-1. (5.11) 
k : l  j : n + l  

S ince  Ejc~__ 1 ~k(n+l-j)zJ-l=fitkn(1--Zpk)-l~ (5.3) holds with 

~ (~):  E~ ~) +EI(~) +E~ (~)+ E~ '~) . 

We need to show that for 3=0, 1, 2, 3, 

This is trivial for j = 0 .  
Izl < R  -1 then 

IE~n)l <~ ~ IzlJ-lO(R -(n-j)) O(R 2(n-j)) = nh(ma~x(izl, R-s )n )  _- (~(max(izl ' n -3 )n ) .  
j = l  

By (5.7), d(z) -1 is bounded in {z I lzl<R -1} and 

n()(max([z[, R-3)  n) : ()(max(Iz[, R-3)n),  

so we have that (5.12) holds for j = 2 .  For j = 3 ,  we note that the sum of the geometric 

series is z~(1-#kz)  -1, so in ]zl<R-3(l+6), we get a Izl~-bound. This proves (5.12). [] 

lz]~)(~)l: 6(max(R -3, Izi)~). (5.12) 

For j = l ,  we use (2.4) and IO~n_jl=O(R-(n-J)) to see that if 



280 B. SIMON 

THEOREM 5.3. Let (5.2) hold and let 5 be as in Theorem 5.2. Define En for 

Izl<R-a(l+~) by 

-z 1 --1 -~ - -n q z ; ( z ) - d ( z ) - l = -  d(z)-I E CkC/#/l(1--zPk) ( --#k #l )(#k#l) +F,n(z). 
k,l=l 

Then for Iz[<R-3(l+5),  

En(z) = O(R -~ max(lzl, R-3)~). 

(5.13) 

(5.14) 

Proof. We iterate (2.8) to get 

24;  

�9 ; ( z ) - d ( z )  1 = (5.15) 
j=n 

In (5.15), first replace c~y by (5.6) and then, in the main term, replace (I)j by (5.3). Noting 
N--,oc = - j .  - j - -1  that z-,j=~ ~k ~l =pl l (1 - - f t k l p l l ) - - l ( f t k p l )  -n, we see that (5.13) holds, where 

c2<D 

j=n 
oc K 

E s  (ECk[A;J-1)ZEj(Z).  
j=n Xk=l 

OG 

IE}n) l ~ c E (~( /~-3n)  5 ( / ~ - n )  = 5 ( / ~ - 4 n ) .  

j=n 

with 

By (5.7) and (2.3), 

(5 .18)  

(5.17) 

(5.18) 

(5.19) 
o o  

IE~n) l~ e E / l~ - j -1  (~(max(R-3 iz I)j) : (~(R-,~ max(izl, R-3)n), 
j=n 

By (5.4), 

proving (5.14). [] 
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THEOREM 5.4. Suppose that (5.2) holds and 5 is chosen as in Theorem 5.2. 

in {z IR3(1+5)  -1 <[z l<RS},  we have that r ( z ) -S(z ) -q3(z )  is analytic, where 

q3(z)=-  
K 

E ekCICrZ(Z--~k)--l(1--~tkl]2l-1)--l]Ak(1--Z[~kl~zl~trl)--l" 
k,l,r=l 

Proof. By (2,15), 

r ( z ) -S (z )  = [ d (1 /2 ) - l ] -d (1 /2 )  Z ctj_lZ[ff2j_l(Z)-d(1/z,)-lzJ-1]. 
j = l  

Because qa(z) is obtained by summing 

we see that 

where 

E (a j -~-Say- l )  [r (Z)-d( l l2)z  j-1 - zJ-l Ej - l  (1/2) ], 
j = l  

r ( z ) -S ( z ) -q3 ( z  ) -  [ d(1/2)-l]  = -d(1/2) Z [Fl'J(Z)+F2'J(Z)]' 
j = l  

FI,j (z) = 6aj_lZ[~j-1 (z) -d(112 ) z j -  1], 
F2,j (z) = [aj-1-6aj-1] zJ-l ~Tj-1 ( l /z) .  

281 

Then 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

IF~,j (z)l = b (R-3JR - j  Izl j m~x(R -~, Iz//),  

so if R31(1+5) < Izl < R  5 then 

O<3 

Z IFl,j(z)l <" E R-SJIzV < ~c. 
j=l j=l 

By (5.14), if Iz[>R3/(l+5) then 

En(1/2) = ( ) (R-~  max(lz[ -z, R-3)~) ,  (5.2s) 

(5.27) 

(5.26) 

Some care is needed to confirm that both sides of (5.23) make sense in a common 

domain of meromorphicity. By Theorem 2.1, the left-hand side of (5.23) is analytic in 

{z I l-~<lzl<R3}. The individual terms on the right are analytic in {z I l -5<Lz l}  and, 

by (2.16), converge in {z 11-5<lzl<R 5} and agree with the left on {z 1 1 - 6 <  Izl <R3}.  

By (2.16) and (5.7), 

(5.24) 

(5.25) 
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and thus 

IY~,j(z)l ~< ( ) (R-2J  max(l ,  I~lR-a) j) (5.29) 

{ 5(IzlJR-sJ), if I=t/> R a, 
5(/~--2J), if 1 <~ IZt ~< R a, (5.30) 

so that ~j~--1 ]F2,j (z)]< oc uniformly on compact subsets of {z I R3/( 1 +6) <<. Izl<R 5 }. 

This implies that r ( z ) - S ( z ) - q 3 ( z )  is analytic there. [] 

Proof of Theorem 5.1. As already noted above, Theorem 2.1 proves the results in 

{z I l < l z l < R 3 } .  In {z IR3 / ( l+6)<lz l<R5} ,  Theorem 5.4 shows that r - S  is meromor- 

phic with poles contained in G(a)({pk}K=~). The explicit formula shows that there is a 

pole if there is a single summand contributing to the potential pole. [] 

6. T h e  R 2 z - t - r e s u l t  

In this section, we will prove the following theorem (again, for simplicity of exposition, 

we replace general Pj (n) by constants), which clearly implies Theorems 4.6 and 4.8: 

THEOamX 6.1. Let k 1</~2t-1 {#k}k:l obey R<~lfk with mink l#kl=R. Suppose that 

K 

o~n = E ckP; '~-' + ()(R-(2'-'))" (6.1) 
k : l  

Then D(z) -1 is meromorphie in {zl Izl<R 2z-'} with poles contained in G({u,JZ_,) .  
In addition, S ( z ) - r ( z )  is meromorphic in {=II-60<M<R2~+I}, and the only poles in 

K 2 - { z I R  2z-a ~<lzl<R 21+1 } lie in Ga({#~}k=l)- If zo obeys zo : # i ,  #i2 with [zol<R 2t+~, and 

zo cannot be written as any other G(bk}~_~)-produet, then s ( z ) - r ( z )  has a pole at zo. 

The strategy is the same as in the last section. Pick 6>0  so that [#kl <R2t-1/ ( l+ 6) 

for all k. We will prove the following estimate on the O's and q)*'s inductively: 

THEOREM 6.2. Under the hypothesis of Theorem 6.1, in 

Q ~ { z  I lzl ~< R-(2~-~)(l+a)},  

we have 

�9 .(z) = E 
p .1  

where the sum is over all points w in 

2z-3 1 R 2l-1 

(6.2) 
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each f(z) is analytic in Q, and on Q, P,/ 

IE, ,z(z)l = -<2z-a), IzlF). (6.3) 

In addition, in Q, 

gv,t(z)yvl + ~.l(z), (6.4) 
P 

where the sum is over all products p=#~l.. .#imf~,~+l.. .~i~ with i l , . . . , i 2m~{1 , . . . ,K}  

and with the product lying in { z l 2R <~ lzl <R2//(1+6)},  and on Q, each gp,t is analytic 

and 
I./~,~,t (z)l : ( ) (R-~(max(R -(23-1), z))~). (6.5) 

Proof. 
Suppose that  we have the result for l - 1  with 1)3  and that  (6.1) holds. 

in (5.6), where n o w '  

The proof is by induction in I. Theorems 5.2 and 5.3 establish the case l=2. 

Write an as 

In (5.5), do the following: 

Then 

E (~) O,l = Zn~ 

Z y- (n- j )  < ) p. -i 1 , 1  - -  , 

3:1 p 

2,1 -- . " 

j= l  p 

~n--  E E (n) ~kfit~(n--J) -1 d(z)  - l ~ - Z g p , l _ l ( z ) y  - (n- j )1  k,l : - -  p,l-1 ~" 
k:O j=l \ k= l  p J 

(6.6) 

(6.7) 

(6 .8 )  

(6.9) 

(6.10) 

since by induction En,l_l----~)(max(l{ -2l, [z]) n) and the other terms are bounded by 

()(max(R -I, lzl)n). This proves (6.3) for I. 

E~.~ ) -}-]E~,~)I-} - IE~,~)I-} - }E~)  I --~ 5 ( I n a x (  IZI, /:~- (21--1)n)) 

Define E (n) to be the summand on the right-hand side of (6.10) with the outer sum from 3,1 
n + l  to cx~. 

The infinite sum yields geometric series which precisely have the form ~ p  gp,t(z)y~,~, 

and as in the proof of Theorem 5.1, 
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To bound (P; ( z ) -d ( z )  -1, we use (5.15), replace ~j (z )  by (6.2), an by ((~a)n plus 

the asymptotic exponentials, and obtain (6.4) and (6.5) for 1 by the same estimate as in 

Theorem 5.3. [] 

Basically, using ~ to order R -2(I-1)'~ in the expansion of q~n gets us q~n to order 

R -(21-1)n, and then plugging that  into the expansion of ~5~ gets us ~5~ to order R -2In. 

Each full iteration improves by R - 2 L  

Proof of Theorem 6.1. By induction, S - r  is meromorphic in { z [1 -5<lz [<R2Z-1} ,  

so knowing that  S is meromorphic implies meromorphicity of r and so D -1 there, and 

the poles of both S - r  and S lie in G({/~k}K=I). 

Using (6.4) in Iz] <R- (2 t -1 ) / (1+5)  yields an expansion of ~Sn(Z) in Izl >R2~-1/(1+5).  

Plug this into (5.21) and use (5.6). Since (5.21) holds for 1 - (~<[z [<R 3, we need only 

show that  the right-hand side has a meromorphic continuation to the fifll annulus. The 

individual terms in the sum are analytic in { z [ [ z [ > l - 5 } .  We write them using (6.4) 

as a sum of two infinite sums: the geometric sum and the error. The purely geometric 

terms sum to poles in {z [ R21-1 < [z I < R 21+1}. The bounds on the errors as in the proof 

of Theorem 5.4 converge to an analytic function in the annulus. The poles are clearly in 

G 

Tracking the contribution of a single #~/22 show's that  it yields a nonvanishing pole 

which, by the unique product hypothesis, cannot be cancelled. [] 
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