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1. Introduction

Exponential mixing is an important statistical property in dynamics. It is often difficult
to prove this non-linear property for a non-uniformly hyperbolic system. See Benedicks—
Young [4], [5] and the references therein for the case of real Hénon maps. Here we will
study a large class of polynomial automorphisms in C*. We note that exponential decay
of correlations has been proved for polynomial-like maps and meromorphic maps in the
case of large topological degree, which is the opposite of the invertible case (see [14], [8]
and [9]).

Given a polynomial automorphism f of C*, we will extend it to a birational map
of P*. We say that f is a reqular automorphism in the sense of Sibony if the indeterminacy
sets I+ of f¥! (i.e. the sets of points at infinity where the birational maps f*! are not
defined) satisfy I, NI_=@. We recall here some properties of regular automorphisms
(see [2], [1] and [13] for dimension 2 and [20] for k>2). Note that when k=2, the regular
automorphisms are finite compositions of generalized Hénon maps (see Friedland and
Milnor [15]). As was shown in [15], these are the dynamically interesting polynomial
automorphisms of C2.

The indeterminacy sets I, are contained in the hyperplane at infinity L. When
f is regular, there exists an integer s such that dimI.=k—1-s and dimJ_=s—1. We
have f(Loo\I;)=1_and f~}(Ls\I_)=I,. Moreover, I_ is attractive for f, and I, is
attractive for f~1. Let K, (resp. K_) denote the filled Julia set of f (resp. of f71), i.e.
the set of points € CF such that the orbit (f*(2))nen (resp. (f7™(2))nen) is bounded
in C¥. Then K are closed in C* and satisfy £+ N L. =J+. The open set P*\K, (resp.
PH\K_) is the immediate basin of I_ for f (resp. I. for f~*). If d. and d_ are the
algebraic degrees of f and f~!, respectively, then d$=d* *>1. In particular, we have
d,=d_ when k=2s.

By Ty, we denote the Green currents of bidegree (1,1) associated to fE! (see
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also §2). These are currents with total mass 1 which have continuous local potentials
in P¥\I.. They satisfy the transformation formulas f*(T.)=d.T, and f.(T.)=d_T-.
In C* we have Ty =dd°G* with G*(z2):=lim,_, dz"max{log| f*(2),0}. Recall that
d®:=(i/2m)(0—9) and dd°=(i/n)dd. The Green functions G* are continuous plurisub-
harmonic and they give the rate of escape to infinity.

Sibony constructed an invariant probability measure as the exterior product of pos-
itive closed (1, 1)-currents:

p=TSAT*=2,

The current T¢ (resp. TF7%) is supported in the boundary of K, (resp. K_); it is the
Green current of bidegree (s,s) (resp. (k—s,k—s)) associated to f (resp. to f~1). The
measure u is supported in the boundary of the compact set K:=K, . NK_.

It was recently proved in [11] and [18] that u is mixing. This generalizes results
of Bedford—Smillie [2] and Sibony {20]. The proofs follow the same approach and use
the property that 7' and T*~% are extremal currents. In this paper, we use another
method to show that u is mixing and that the speed of mixing is exponential when
k=2s. Our strategy is to consider some natural regular automorphisms in C%* or C** in
order to reduce the problem to a linear one. We will obtain the desired estimates using
the solution of the d9-equation given by a kernel due to Bost, Gillet and Soulé [16], [6].

Let ¢ and v be real-valued continuous functions on CF. Define the correlation of
order n between ¢ and v by

In(so,w):=/(<p°f")¢'d;a—(/wdu)</¢du)-

Recall that p is mizing if I,(¢, ) tends to 0 as n tends to infinity for all ¢ and .

MAIN THEOREM. Let f and p be as above. Assume that k=2s. Then, u is expo-
nentially mizing. More precisely, for all o and 3, 0<a, <2, there exists a constant
¢>0 depending on f, a and 8 such that

La (. 0)] < edZ ™% | gllca 1@ llcn

for all n>0 and all real-valued functions ¢ of class C* and ¥ of class C? in CF,

Of course, this result holds for polynomial automorphisms of positive entropy in C?,
in particular, for Hénon maps. We can apply it for real Hénon maps of degree d which
admit an invariant probability measure of entropy logd, in which case that measure
coincides with u (see [3]).

In [1], Bedford, Lyubich and Smillie proved for complex Hénon maps that the equi-

librium measure is Bernoulli. This is the strongest mixing in the sense of measures.
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However, it does not imply the decay of correlations in our sense. Observe also that
we cannot have |I,(¢, V)| S(14+€) " ||@pllce |||l since, when ¢ is not constant p-almost
everywhere, @of™ does not converge in L' (i) to [¢dp. This last fact is a consequence
of the fact that the u-measure of the sets {z:pof™(2)<c} and {z:¢of™(2)>c'} are in-
dependent of n, because p is invariant.

The precise outline of the paper is as follows. In §§2 and 3, we give some proper-
ties of the Green currents and the equilibrium measure. The method of dd®-resolution
developed in [8], [9], [10] and [11] will be applied to establish the necessary estimates
(Propositions 2.1 and 3.1). We then deduce in §4 the mixing and the speed of mixing.
We first consider the case where a=03=2, and then we obtain the general case using the
theory of interpolation between the Banach spaces C° and C2.

2. Convergence toward the Green current

Let us recall some properties of currents on P* that will be used later on. A current of
bidegree (p, q) is a differential (p, q)-form but the coefficients are distributions. A smooth
form @ of bidegree (q, q) is weakly positive if its restriction to every projective subspace
of dimension q is a positive volume form. A current S of bidegree (p,p) is positive if
(S, ®) >0 for every weakly positive test (k—p, k—p)-form ®. In particular, it is of order
z€ero.

Let w denote the Fubini-Study form on P¥, normalized so that fw*=1. The mass of
a positive closed (p, p)-current S is given by [|S]|= [ SAwF~?. Since P* is homogeneous,
every positive closed current S on P* can be regularized on every neighbourhood U of
supp(S). This allows us to construct smooth positive closed currents supported in U and
strictly positive, i.e. 2ew?, on supp(S). If T is a positive closed (1, 1)-current with local
continuous potentials in a neighbourhood of U, then the positive closed current T™AS
is well defined and depends continuously on S, see, e.g., [7] and [20]. More precisely,
because of the cohomology of P¥, if ||T||=c, we can write T=cw+dd‘u, where u is a
function continuous on U, and we have TAS:=cwA S+dd°(uS).

Now, consider a regular automorphism f on C* as in §1. We do not assume for the
moment that k=2s. Fix neighbourhoods U; of K. and V; of K_ such that f=1(U;)€U;,
Uiels, f(Vi)eV;, Vi€V, and Up;NVoeCF. This is possible since I_ has as basin of
attraction P¥\ K., and similarly for f~* and I,. Observe that X, NK_CU;NV1.

Let  be a real (k—s+1, k—s-+1)-current with support in V;. Assume that there ex-
ists a positive closed (k—s+1, k—s-+1)-current Q' supported in V; such that —Q’' <Q<Q'.
Define the norm ||?|]. of 2 as

192/ ;= min{||€Y'|| : ' as above},
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where || ||:=(, w*™1) is the mass of ',

Keeping the above notation, the main result of this section is the following proposi-
tion:

PROPOSITION 2.1. Let R be a positive closed (s,s)-current of mass 1 supported
in Uy and smooth on C*. Let ® be a real-valued (k—s,k—s)-form of class C? with
compact support in ViNCF. Assume that dd°®>0 in U,. Then, there exist constants
c¢>0 independent of R and ®, and cgr>0 independent of ® such that

(dZ () () =17, @) < cd ™| dd°2

and
(7 (f")"(R)~T:2. )| < crd(™[|dd"®].

for every n20. In particular, d7°"(f™)*(R)—~T? as n—o0.

The current {f™)*(R) is well defined since f~™ is holomorphic in U;. We have,
because of the functional equation satisfied by T,

(@ (f)(R) -T2, @) =d ™ {(f") (R-T7), @) =d°(R=T7,(f*).®). (1)

Since the currents R and T have the same mass 1, they are cohomologous. On P*, R—T¢
is dd®-exact. Hence, the last term in (1) does not change if we subtract a dd®-closed form
from (f™).®. We will apply the following lemma to dd*(f™).®.

LEMMA 2.2. Let § be a real-valued continuous form of bidegree (k—s+1,k—s+1)
supported in V1 such that Q>0 on U, and ||Q]].<1. Assume that Q is dd®-ezact. Then
there exist ¢>0 independent of Q and a real-valued continuous (k—s,k—s)-form ¥ such
that dd°¥=Q, ||¥||<c, ¥<O0 on Uy and Y= —cw ™% on PR\V;,.

Proof. By Hodge theory [17], we have

H*"PExPr C)~ Y HPP(PF C)@ HPP(PX,C).
p+p'=k
Hence, if A is the diagonal of P¥ x P¥, there exists a smooth real-valued (k, k)-form a(z, y)
on P*xP* cohomologous to [A], with d,a=d,a=0. Since P¥xP* is homogeneous,
following [6, Proposition 6.2.3] (see also [16], [10] and [11]), one can construct a negative
(k—1,k—1)-form K(z,y) on P*xP* smooth outside A, such that dd°K=[{A]—a and
|K(z,y)|<—log |z—y||z—vy|?>~%F near A. Here |r—y| denotes the distance between z
and y.
Define

V' (x) ::/K(x,y)/\ﬂ(y).
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From the bound of the singularities of K, one can easily check that ¥’ is continuous and
19| <!, ¥'<e'wk=* on Uy, ¥'>—c'wb=* on P¥\V,, where ¢/>0 is independent of 2.
Define ¥:=W'—c/w*~%. We obtain ||¥]|<2¢/, ¥<0 on U; and ¥ —2¢/w*™% on PF\V3.
We only have to verify that dd°¥’'=0.

Since {2 is dd®-exact and d;a=d,a=0, we have

4V (2)i= [ (04K (@5)700) = [ K (z,0)A00)
Yy Yy

- / ([A]- a)AQ(y) = a) - / aAQ(y) =z).

y
Hence, dd*¥=dd°¥’'=Q. O

Proof of Proposition 2.1. We can assume that ||dd°®{|.=1. The constants c and ¢;
below are independent of ® and R. Define Q:=dd°®. Then there exists a positive closed
current €' of mass 1 supported in V; such that —Q'<Q<Q'. Define Q,,:=dd(f"), o=
(f"). and Q) :=(f").Q’. These currents have supports in V) since f™(V1)€Vy. We
also have —Q) <Q,<Q, and Q2,20 on Us since f~"(Uz)EU,. A simple calculation on
cohomology gives ||, ||=d\" V™| ||=d* V™. Lemma 2.2 implies the existence of ¥,
cohomologous to (f™),® such that ¥, <0 on Uy, ¥,>—cd® Y wk=s on PF\V; and
9.1 Scdﬁs_l)". In particular, ¥,, <0 on supp(R). Therefore, we deduce from (1) that

(d ()R =T3, @) =d M (R—=T2, ¥,,) < =d (T2, ¥p). (2)

We have to bound —(T%,¥,,). Since T, has local continuous potentials in P¥\1,,
we can write T, =w+dd®u with ©<0 and u continuous on P*\I,. One has

(T2, )] = [ATS ™ +dd (T2, W)
SUTT™H WA+ [(uT7 dd*Ey)| 3)
< I<T-i_l= W/\\IlnH” (qu_l, Q;)
Since 2, has support in V; where v is bounded, the second term on the last line of (3) is
dominated by ¢, (T ", ). The integral (TS7', Q) is computed replacing each element
by the associated cohomology class; it is equal to ||©2/,||. Hence, —(uT$ ™%, 0} <c aleom,
For the first term on the last line of (3), we write T3 =wATS 2 +dde(uTs ™).
Using expansions as in (3) and an induction argument, we get, |(T5 7, w/\\Iln>|<02dff_1)".

At the last step of the induction, we use the inequality || ,]| gcdﬁs'l)". Hence, the first
part of Proposition 2.1 follows.
For the second part, it is sufficient to prove that [(R, ¥,,)| écﬁgdis_l)n with ¢p inde-

pendent of ®. This follows directly from the smoothness of R on C* and the properties
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that || ¥,,||<cd" ™" and —cd®"Y"w* <, <0 on the neighbourhood U;\Vz of the sin-
gularities of R.
Now, we show that d7*"(f")*(R)—T¢ on C*. Consider a real-valued smooth test

(k—35,k—s)-form ® with compact support in C*¥. We want to prove that
(" (f" ) (R)-T2. ) — 0.

In order to apply the second part of the proposition, we show that it is possible to suppose
that dd°®>0 in Us.

Observe that P*\ I, is a union of compact algebraic sets of dimension s since dim I, =
k—1—s. Hence, we can construct a positive closed (k—s,k—s)-form © with compact
support in P*\ I, which is strictly positive on supp(®). Since (f™)*(T?)=d{™T? and

(dZ (f)(R)~ T2, @) = (d 0™ (f27) (R) =T, d 277 (f7) @),

replacing ® and © by d;°”*(f™).® and (f™).0, m large enough, one can assume that
supp(©)cV;.

Consider a smooth function x with compact support in C* which is strictly plurisub-
harmonic on a neighbourhood of U;NVy. Write ®=(®+Ax0)—AxO with A>0 large
enough, so that dd°(®+ Ax©) and dd°(AxO) are positive on Uz. Hence, it is sufficient
to consider the case where dd°®>0 on U,. The second part of the proposition implies
that (d=*"(f™)*(R)-T%, ®)—0. a

3. Convergence toward the Green measure
In this section, we consider the “diagonal” mapping F(z,w):=(f(z), f~*(w)). The main
result here is Proposition 3.1, which will be obtained by applying Proposition 2.1 to F.

PROPOSITION 3.1. Let f be as above with k=2s. Let ¢ be a C?-function on Pk
which is plurisubharmonic on UyNV,. Let R (resp. S) be a positive closed (s, s)-current
of mass 1 with support in Uy (resp. in V1) and smooth on C*. Then, there exist constants
¢>0 independent of v, R and S, and cgr.g>0 independent of ¢, such that

A7) (RIN)(S) — ) ScdT™ [[@lle
and
dZ2 (RN (S) — 1 0l S crsdi " 9 le2
for every n>0. In particular, d-27(f*)*(R)A(F™)(S)—=p as n—o0c.

We will use 2z, w and (z,w) for the canonical coordinates of complex spaces C* and
CFx C*. Consider also the canonical inclusions of C* and C*x CF in P* and P?. We
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write [z:t], [w:t] or [z:w:¢] for the homogeneous coordinates of projective spaces. The
hyperplanes at infinity are defined by t=0. If g: C*— C¥ is a polynomial automorphism,
we write gp, (resp. g ') for the homogeneous part of maximal degree of g (resp. of g™1).

They are self-maps of C*, not invertible in general. In the sequel, we always assume that
k=2s.

LEMMA 3.2. Let F be the automorphism of CFxCF defined by
F(z,w):= (f(2), fH(w)).
Then F is regular. The indeterminacy sets 1L of F* are defined by
I = {[z:w:0]: f;7*(2) =0, f7* (w) =0}.
Let A:={(z,w):2=w} be the diagonal in C¥x C*. Then the sets IL do not intersect A,
and F(A)N{t=0}cIF.
Proof. Since k=23, we have d,=d_ and Ffl(z,'w):(ffl(z),f}fl(w)). It follows
that
If ={{z:w:0]: FF'(z,w) =0} = {[2:w:0] : ff(z) = f;F ' (w) =0}.
We also have
Lo i={[:0]: /£ (2) =0)
and, since f is regular,
{2€CF: fu(2) = £ ' (2) =0} = {0}.
This implies that I f NI¥=@. Hence, F is regular. We also have
IENA={[z:2:0): fulz) = i }(z) =0} = 2. O
LEMMA 3.3. With the notation of Lemma 3.2, the Green current of bidegree (2s,2s)
of F is equal to T;QT?.

Proof. Let R and S be as in Proposition 3.1. Replacing R and S by d°f*(R) and
d7%f(S), we get supp(R)N{t=0}C I, and supp(S)N{t=0}C1_.

Consider the current R®S in C*x C* and in P?*. Lemma 3.2 implies that

supp(R®S)N{t=0} c If.
Since dim I f =25—1, the trivial extension of R®S to P?* (which we also denote by
R®S) is a positive closed current [19], [21]. One can check that the mass of R®S is
equal to 1. Proposition 2.1 applied to F implies that d7*"(F")*(R®S) converge to the
Green current of bidegree (2s,2s) of F. On the other hand, we have
47 (F™) (ROS) = d7 " (f) (R)B(f").(S) - TIeT®

in C¥x C*. Hence, T*®T* is the Green current of bidegree (2s,2s) of F. O
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Proof of Proposition 3.1. We can assume that ¢ has compact support in C* and
that ||¢[lc2=1. As in Lemma 3.3, we can assume that the current R®S in P2* satisfies
supp(R®S)N{t=0}cIF.

Define (2, w):=p(z). Since Ty are invariant and have continuous potentials away
from I, we can write

<d:2sn(fn)*(R)/\(fn)*(S)_,U: §0> = <d:25n(fn)*(R)®(f")*(S’)_Ti@Tf’ (E[AD

Using a regularization of [A], one may find a smooth current © of mass 1 supported in
a small neighbourhood W of A, with WNIF'=2 (see Lemma 3.2), such that

(T2 (f) (R)®(F™)(S) ~TI® T2, P[A])
—(dZM (M) (R)2(f).(S)-TieT2, §O)| <d ™

The current © depends on n.
We have to estimate

(@72 (M) (R)@(fM)«(S) - TieT?, §0).
Fix an integer m>0 large enough. Write

(2 (R)B(fM)a(8) - TR T2 $O)
= (d72(FT) (R S) —d T (E7) (TR T2), §O)
= (d; 20T (EN) (R9S) - TS TS, 47 (F ). (29)
= (d, 0T (Pt (T - TR, B),

where T:=d %™ (F™)*(R®S) and ®:=d; > (F™).($©).

Hence, T has support in a small neighbourhood U of the filled Julia set KX'=K, x K _
of F, and @ is a smooth form with support in a small neighbourhood V of KF=K_xK,.
Moreover, since m is large and ¢ is plurisubharmonic on U;NV,, we have dd°®>0 in
a neighbourhood U'sU of KF. Putting &(z, w):=w(z), we have —w<dd*P<H since
llelicz=1. Tt follows that

—d7E™(F™), (GA0) <Ad°® < dT*™(F™) . (WAB).

The positive closed current d; 2™ (F™),(WA©) has mass 1 since © is cohomologous
to [A]. The choice of W, U, V, U’ and m does not depend on ¢ and n. Lemma 3.3 and
Proposition 2.1 applied to F', T and ® imply that

<d;2s(n—2m)(pn—2m)*(T) —Tf@Tf: ) < C,d:n
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and
(dZ 22 (Fr2my(T) T3 T?, @) < cpdi™.

The desired inequalities of the proposition follow. Since every smooth test function
on P* can be written as a difference of smooth functions plurisubharmonic on UsNVa,
these inequalities imply that d7 %™ (f*)*(R)A(f™).(S)— 1. O

COROLLARY 3.4. The Green measure of F is equal to u®u.
Proof. Let R and S be as in Proposition 3.1 and such that supp(R®S)N{t=0}cIF

and supp(S®R)N{t=0}CI¥. Proposition 3.1 applied to F implies that the Green mea-
sure of F is equal to

lim d74(F™)*(ROS)A(F™).(SQR)
= lim d7 () (R)@ (M) (S) A (S)@ (™) (R)]

= lim [d7*"(f") (R)A™) (NS> () (R)AF™)«(S)]
=R uU. O

4. Speed of mixing

In this section, we give the proof of the main theorem. We first consider the case of
smooth observables. Assume that a=8=2 and that ¢ and ¢ are C?-observables. Fix
a bounded domain D in C* containing K:=K,NK_. Observe that ¢ and % can be
written as differences of smooth functions strictly plurisubharmonic on a neighbourhood
of D. Hence, we can assume that dd°¢>w and dd“y¥>w on D, and that ||¢|jc2 <M and
|¥]lc2 <M for some fixed constant M >0. The constants ¢, A and ¢’ below do not depend
on ¢ and ¥.

It is sufficient to prove the theorem for n even. Since

(s (9o f ™ )10) = (s, (o f ") (o f ™)

we have to prove that

[, (0o f M) (o f 7)) = (1, ) (p, ) S ed (4)

Observe, since p is invariant, that the left-hand side of (4) does not change if we add a
constant to ¢ and/or 1. Consequently, it suffices to show that there is a constant A4 such
that

(1, (o ™+ A) (W of T+ A) ~ (i, ot A) (. A) < edT™ (5)
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and
(1, (o f " = A)(~vo f T+ A)) = (p, o — A)(p, —p+ A) <cd™. (6)

We choose A>0 large enough so that ¢(z,w):=(p(2)+A)(¥{w)+A) and ¢'(z,w):=
(p(z)—A) (= (w)+ A) are plurisubharmonic on D x D. This allows us to apply Propo-
sition 3.1 to the automorphism F and to the test functions ¢ and ¢’. We will check (5).
The estimate (6) can be proved in the same way.

Fix a sufficiently large integer m. Define T1:=T?Q®T* and To:=d} Zsm(pm), [A].
Since F*(T1)=d?*T}, and T have continuous potentials in CF, we get the identities

(1 (o f "+ A) Yo f T+ A)) = (TIATZ (pof "+ A) (o f 7"+ A))
=(T1A[A], 0FT)
= (7R (RN (T AL, ¢ FT)
= (d] A2 (FRT N T A(FT)[A], ¢)
—. <d:4sn—+—4sm(Fn—m)*(T1)/\(Fvl—m)*T2’ ¢>.

By Lemma 3.2, T has support in a small neighbouhood V of K.
Using a regularization of currents, we may find smooth currents T7 and T} of mass 1
with support in small neighbourhoods U of K and V of KF, respectively, so that

<d:4$n+4sm(Fwn—m)*(Tl)/\(Fn~m),kT27 O>
—(dy B (FR Y (T A(E™ )T, 6) <7

The currents T} and T4 depend on n. The choice of m, U and V depends only on D
and f with UNVEDxD.

Since (u, p+A)(p, v+A)={u®u, ), we only have to check that
<d;4sn+4sm(Fn_m>*(T1/)/\(Fn_m)*TQI'—u@u, ¢> < C/d:n.

This inequality follows directly from Corollary 3.4 and Proposition 3.1 applied to F
and ¢. This concludes the proof of the theorem in the case of C?-observables.

We complete the proof of the main theorem by passing to test functions of Hélder
class. For this we use a special case of an argument obtained in collaboration with Nessim
Sibony, see also Dolgopyat {12, p. 358]. Fix a test function 9 of class C2. Observe that
the correlations I,(-,%) define continuous linear forms on the space C° of continuous
functions and that we have

(0, 9)] <ellellalollcs for i continuous,



DECAY OF CORRELATIONS FOR HENON MAPS 263

where ¢>0 is a constant independent of n.
On the other hand, we have proved that

(o, ¥)| < cdT™?[lglica9lles for @ of class C2.

The theory of interpolation between the Banach spaces CY and C? [22, p. 201] implies
that

L (s, )| < d7 ™ * | pllcallplle>  for o of class €2,

with ¢’ >0 independent of n.

Now fix a function ¢ of class C®. Applying the same argument to I,,(¢, - ), we have
(0, 9)] < "d7 "8 gllca | llcs for o of class CP.

This completes the proof. a

Remark 4.1. In order to have |I, (i, v)| <d~"/2, it suffices that ¢ and ¢’ are plurisub-
harmonic on D x D. This holds in particular for ¢=—log(—') and y=—log(—%') with
¢’ and ¢ strictly negative and strictly plurisubharmonic on a neighbourhood of D. In-
deed, one checks easily that i0pAJp<idde and i6YAJY<idIy, and one can bound
DpNOY by i8pABp+iByADY using the Cauchy-Schwarz inequality. Such functions ¢
and 1 can be nowhere continuous.
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