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The propagation of polarization
for systems of transversal type

Nils Dencker

1. Introduction

In this paper we study the propagation and distribution of polarization sets for
solutions to systems having characteristics of transversal involutive self-intersection.
Thus, we assume that the characteristic set is micro-locally a union of two non-
radial hypersurfaces, which have transversal involutive intersection at the double
characteristics. We also assume that the principal symbol vanishes of first order
on the two-dimensional kernel at the intersection. These types of systems we call
systems of transversal type. The propagation of singularities for the corresponding
scalar wave operator was considered in [11].

We shall consider the propagation of H,) polarization sets of the solutions.
This polarization set indicates those components of the distribution, which are not
in H(s). Outside the intersection of the characteristics, the polarizations for solu-
tions propagate along Hamilton orbits, which are unique liftings of the bicharac-
teristics. The limits of polarizations from outside the double characteristic set, are
called real polarizations, the others are called complex polarizations. It follows from
the conditions that there are only two linearly independent real polarizations over
the double characteristic set. The real polarizations are foliated by limits of Hamil-
ton orbits, which we call limit Hamilton orbits. The results on the propagation of
polarization depend on whether the polarization is contained in (limit) Hamilton or-
bits or not. When it is, we can define an invariant, called the trace of the orbits (see
Definition 5.3). If this trace satisfies a second order transport equation along the
bicharacteristics, we obtain propagation of polarization according to Theorem 6.2.
When the polarization is either complex, or real and transversal to limit Hamilton
orbits, we prove propagation of polarization in Theorems 6.3 and 6.4, respectively.

When we have a polarization condition, i.e., one component of the solution is
in Hy,), then the singularities of the solutions must either be contained in limit
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Hamilton orbits with vanishing trace or in other types of orbits, which we call
complex and coherent Hamilton orbits, see Theorems 7.1 and 7.2.

The plan of the paper is as follows. In Section 2, we define the systems of
transversal type and the real and complex polarizations. The systems are reduced
to normal forms in Section 3. We compute the transport equations for the limit
Hamilton orbits in Section 4. Also, some other invariants are computed. In Sec-
tion 5, we show that the real polarizations are foliated by limit Hamilton orbits,
prove the invariance of the trace, and define the complex and coherent Hamilton
orbits. We prove the propagation results in Section 6, and analyze the distribution
of polarization in Section 7. Finally, we prove some technical lemmas in Appen-
dix A. The energy estimates we are going to use are derived in Appendix B, and
we estimate the regularity of an important coupling term in Appendix C.

The systems of transversal type have some similarities with the systems of
conical refraction type and the systems of uniaxial type, which both occur in double
refraction. The corresponding propagation of polarization for these systems was
studied in [3] and [5]. Because of this similarity, we have been able to utilize some
of the results of [3] in the present paper.

The results are only proved for distributions with values in C¥, but since they
are microlocal and invariant under multiplication with elliptic N x N systems of
pseudo-differential operators, they easily carry over to sections of vector bundles.

2. Definitions

Let PeWT;, be an N XN system of classical pseudo-differential operators on a
C* manifold X. Let p=0c(P) be the principal symbol, det p=|p| the determinant
of p and X=(detp)~1(0) the characteristics of P. Let

(2.1) Yo={(z,£)eX:d(detp)=0 at (z,£)},

and ¥;=X\X,. The following definition makes it clear which type of systems we
are going to study.

Definition 2.1. The system P is of transversal type at wo€Xs if

(2.2) Y9 is a non-radial involutive manifold of codimension 2,
2.3 det p=e-q, where e#0 and ¢ is real valued

(2.3) with Hessian having rank 2 and positivity 1,

(2.4) dimKerp=2 on X,

microlocally near wy.
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The definition of transversal type is clearly invariant under symplectic changes
of coordinates and multiplication of P with elliptic systems of pseudo-differential
operators. It is clear that the adjoint P* is of transversal type at wy if P is. Observe
that conditions (2.2) and (2.3) imply that

(2.5) E=5U8,

where S; and S; are C'™ surfaces, which intersect transversally and involutively
at ¥s. Condition (2.4) means that p vanishes of first order on its kernel over ¥,
according to the following lemma.

Lemma 2.2. Assume that p satisfies (2.2) and (2.3), then (2.4) is equivalent
to
VweXy, J9eTy,(T*X) such that nc(0,p)(w)

2.6
(2.6) is a bijection between Ker p(w) and Coker p(w).

Here m¢ is the quotient mapping C™—C™/ Im p(w)=Coker p(w). We also find that
(2.6) holds if and only if 83 det p(w)#0, implying that o€ N,,30=T,, X /T, 32, which
is the normal bundle of 2.

The lemma follows from the proof of [3, Lemma 2.2]. Observe that condi-
tion (2.6) is invariant under multiplication of P by elliptic N x N systems of pseudo-
differential operators and symplectic changes of coordinates. This follows from the
fact that

(2.7) d(apb) = (da)pb+a(dp)b+apdb,

which also gives the invariance of the following definition.

Definition 2.3. We say that o€T,,(T*X), weX,, is non-degenerate with re-
spect to P if condition (2.6) holds. The variable teC*>(T*X) is non-degenerate
with respect to P at weX, if the corresponding Hamilton field H; is.

In the following we shall use the notation
Np=Kero(P)C (T*X\0)xC"V.

Now, if z; L. Imp and 2z, €Np then *z;dpz; is zero on TXs, thus it defines an ele-
ment in N*X,. In fact, because of (2.4), we find that Np and Coker p=Np- are
2 dimensional C* vector bundles over ¥,. By extending z; and 2, to C! sections
over X, we find

0=d(*21pz2) =tz1dpzz on TZs.

We could also obtain this from Proposition 3.1 by using (2.7).
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Definition 2.4. Let P be of transversal type and (w;z)ENp, weX,. Then we
say that (wj;z) is a real polarization for P if

(2.8) medp(w)z € N3 X,

has kernel of dimension 1. If the kernel has dimension 0, then we say that (w; z)
is a complex polarization for P. We denote the real polarizations by Nr and the
complex polarizations by Nc.

It follows from (2.7) that this definition is invariant under multiplication of P
by elliptic N x N systems of pseudo-differential operators and symplectic changes
of coordinates. Observe that it follows from Proposition 3.1 together with (2.7)
that the kernel of mcdp(w)z is contained in the radical of Hessdet p(w), so the
dimension must be <1, which gives NgUNc=Np over X;. Next, we define the
H{,) polarization set, where H(y) is the usual Sobolev space.

Definition 2.5. For ueD'(X,C") we define the polarization sets
(2.9) sol(w) =[|NB S (T*X\0)xC",

where Ng=Kero(B), and the intersection is taken over those 1xN systems
BeW), . such that Bue Hy).

If Pe¥T}, is of transversal type and Pu€ H(s) near w€X, then we find that

WF3{™(u) CNp and also that WF;g'lm‘l(u) is a union of Hamilton orbits in Np

near w. In fact, P is essentially a scalar operator then, so this follows from [7, Sec-
tion 26.1]. The Hamilton orbits are unique line bundles in Mp over bicharacteristics
of ¥ by [2, Definition 4.1].

We shall consider the limits of Mp|x, when we approach ;. Let

(210) N};:NPlsj\Zg, j=1127
which are the kernels over the simple characteristics.
Definition 2.6. For j=1, 2, we define the limit polarizations

(2.11) N} ={(w,z)€22xCN:z=klim zk},

where z; €Ker p(wi) and S;\ Xz dwi—w.

It is clear that AN is conical in ¢ and linear in the fiber. It follows from
Proposition 3.1 and Remark 3.2 that ON}, is a C™ line bundle over X, j=1,2, and
that Np =0N3UONE.
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3. The normal form

We shall now obtain normal forms for systems of pseudo-differential operators
of transversal type. Since the kernel of p has dimension two on ¥;, we shall use the
following base for GL(2, C): let I=Id,,

(3.1) J=<_01 2) K=((1) é) and L=(_01 (1))

Proposition 3.1. Let P E\Illl)hg be an N x N system of transversal type at wo€
Yo, and let te C>®°(T* X)) be homogeneous of order 0 and non-degenerate with respect
to P at wy€Xs. Then by completing t to a symplectic coordinate system (t,xz;T,€)
of T* X and multiplying with elliptic N x N systems of pseudo-differential operators
of order 0, we may assume that wo=(0;(0,0, ... ,1))€T*R",

(32) Yo ={r=£=0},
(3.3) Pw(cg g) mod C,

where E G\Iléhg is an elliptic (N —2) x (N —2) system of pseudo-differential operators
and

(3.4) Q=Dd+a(t,z,D;) Dy, I+Qo(t, z, D),

microlocally near wo€Xy. Here 0<a(t,x,£) is homogeneous of degree 0 in £, and
QoeC*(R, \Ilghg). If a(P) is real valued, then the elliptic systems can be chosen
with real principal symbols.

Proof. Since the result is local and we have invariant conditions, we may as-
sume that X =R". Since t is non-degenerate with respect to P, the Hamilton field
H; is not tangent to Xy. Thus we may complete ¢ to a homogeneous symplectic co-
ordinate system (£, x; 7, ), microlocally near wy€Xs, so that 7=£; =0 on X3, which
gives (3.2).

By choosing suitable homogeneous bases for Ker p and the orthogonal comple-
ment of Imp in CY on £, and extending to bases of CV in a neighborhood, we
obtain P on the form

P, Py ) 1
3.5 i P= es .
(3:5) (P21 Py

Here Py, is an elliptic (N —2) x (N —2) system and the principal symbols of Pi;,
Py5 and Py vanish on X3. By constructing a parametrix for Py; and multiplying
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P from left and right with suitable homogeneous elliptic systems of order 0, we
obtain P on the form (3.3) near wo€X, (see the proof of [3, Proposition 2.5]). If p
is real valued, this can be done using elliptic systems having real principal symbols,
making 0(Q) and o(E) real.

Now consider the 2x2 system Q=P;; and let ¢ be the principal symbol of
Q, then g(wp)=0. Since ¢ is non-degenerate with respect to P, we find that
det 8, q(wp) =082 det q(wp)#0. Thus we can use the matrix version of Malgrange’s
preparation theorem in [6, Theorem 5.3] and homogeneity, to obtain

(3.6) g=e(tI+k(t, z,£)),

where k€ C®(R, S') satisfies k=0 on X, and e is a 2x2 homogeneous system
satisfying |e|#0. If ¢ is real valued, then we can make e and k real valued. We
find that det p=|e|(72+7 Tr k+|k|), thus condition (2.5) implies that Tr k and det k
are real valued. By multiplication with an elliptic system of pseudo-differential
operators of order 0, we obtain that e=I. Since k(t,z,£)=0 when & =0, we may
complete (¢, 7+Trk/2) to a homogeneous, symplectic coordinate system so that
(3.2) is conserved and Tr k=0 which implies det k<0. We also find that

(3.7) k(t,z,&) = A(t, z,£)&
where A€C*°(R, S°) and det A is real valued. Since Tr A=0 we obtain
(38) A=+ K+asL

with a; EC*(R, S?).

Next, we are going to obtain a normal form for A. If B€SL(2, C), then the
conjugation A— B~ !AB preserves the determinant and the trace, thus det A=
—a?—a2+03 is preserved. This gives a Lie group homomorphism SL(2, C)—
SOc(2,1) which is easily seen to be surjective. In fact, it is a double cover of
S0¢(2,1)=80(3,C), which gives a representation of the complex spinor group
Spin(3, C)=SL(2,C). When B€SL(2,R) is real valued, we get the Lie group ho-
momorphism SL(2, R)—SOgr(2, 1) which also is surjective (it gives a representation
of the real spinor group Spin(3,R)). Condition (2.3) implies that det A<0, thus
by conjugating with a homogeneous elliptic system of pseudo-differential operators
of order 0, we obtain that A=aJ, where a(t, z,£)€C®(R, S°) satisfies >0 in a
conical neighborhood of wy€35. When A is real valued, i.e., a; are real valued V j,
this can be done using elliptic systems with real principal symbols.

If go €SP is the term homogeneous of degree 0 in the expansion of Q, then the
matrix version of Malgrange’s division theorem in [6, Theorem 5.9] and homogeneity
give

(3.9) go = B_1q+Qo,
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where Qo(t, z,£)€C®(R,S°) and B_;€S5~!. By multiplying Q with an operator
with symbol I—B_;, we may assume B_;=0. Using this repeatedly, we obtain
(3.4) by induction over lower order terms. [1

The normal form (3.4) immediately gives the following

Remark 3.2. If we consider the 2x2 system P=Q in (3.4), and put S;=
{r=(-1)at;} then

(3.10) ONL =5y x {z-(cos(n5/2),sin(m5/2)) : z € C},

and it is easy to see that INLUONEZ=Nr. We also find that N; }’; extends to a C™
line bundle over S;, j=1,2. We shall later use the fact that, if w€dN; 7, and vEAN f3
at woEX2 and j#k, then (2.7) and (3.4) imply that w*dp(wg)v=0. Observe that
by using for example [11, Proposition 2.1] we may choose homogeneous, symplectic
coordinates such that ={7%2=¢2}, which gives det A=—1in (3.7) and =1 in (3.4).
But then we may have to change the ¢ variable.

4. The transport equations

In this section, we shall compute some higher order invariants of the systems
of transversal type. Let P be a 2x2 system of transversal type near wg €3, on the
form in (3.4). Thus,

(4.1) P=DJI+((t,z, D;)I+po(t,z, D;),

where ((t,z,£)=a(t, z,£)&1, a and poeC*(R, Sghg), and a(t,z,£)>0. Recall that
J, K and L are defined by (3.1), thus det o(P)=72—(2.

Now we shall study how the symbol behaves, when applied on a C* section
of C2 over 3. In order to keep P a system of pseudo-differential operators in the
z variables and o(P) symmetric, we shall conjugate P with systems independent
of 7, with values in SO(2, C). In what follows, we shall suppress the ¢ dependence
and write S™ instead of C*°(R, S™) for example.

Thus, let AG\Ilghg be a 2x2 system with homogeneous principal symbol
(4.2) a=cos(f)I+sin(A)L, 6(t,z,&) € S°.

Then A is elliptic, with microlocal parametrix A~!. We find d(471)=0(*A)=
cos(#)I-—-sin(f)L. We have

(4.3) o(APA™Y) = 7I+cos(20)¢I +sin(20)CK.

Let Rq be the set of symbols r€S%, such that r¢, o€ S5~
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Lemma 4.1. With P and A defined by (4.1)—(4.2), we get the symbol expan-
sion
(4.4)

a_(Pu P2\ ([ p D126 —Dunb f11(0) f12(9))
APA _<P21 P22> (Plz p22>+(D229 —D129)+<f21(9) f22(0)

modulo Ry. Here pjj=0(Pi;), D;x0=0,p;xD:0+0¢,pjxDz,0~(1/i)Hp,, 6 mod Ry,
and {fjx}€S° are C* functions of 9, depending linearly on py.

Proof. We only have to compute the term of order zero in the expansion of
APA-!, which is equal to

(4.5) apoa~'+a(Dia~t +0¢, pDyya™t)  mod Ry,

since AA~!~XI modulo C*. Since d(a~!)=—a"1ddL, we find

(4.6) a8g,pDy,a ' = —adg,pa Dy 0L~ —8, (apa™)D,, 0 L mod Ry,
which proves the lemma. O

Now recall that >=5,U.S53, where we can put

(4.7) Si={r=(-1)a&}.
It is clear from the normal form (4.1) that the fiber of
(4.8) ONE =Np|s\s,

is spanned by *(0,1) when j=1, and *(1,0) when j=2.
Assume now that *(0,1)eKero(APA™!) over Sy, which means that §=kn on
S1, where k€Z, say k=0. Since 6 is independent of 7, we find §=0. If P;; is defined

by (4.4), we find that p;2=0. Then P2€C>®(R, \Ilghg) has principal symbol equal
to

(4.9) o(Pr2) ~ f12(0) = (po)12 mod Ry.

By multiplicating P with the transposed cofactor matrix, we obtain the wave
system

Pyy Py —Pio Py [Pa2, P12] ) (411 412)
410 _tpeop ( ; _ ’
(4.10) @ (P11, P2 P11 Pyy— P51 Pia g1 g2

which has principal symbol o(Q)=(72—¢?)I. 1t is easy to see that ) satisfies the
microlocal Levi condition: oxub(Q)=0 on 5. (Here o5,u(Q) is the subprincipal
symbol of Q.) We are going to compute the coupling term g1o=[Py2, P2]. Since we
are going to compute the symbols modulo Ry >S~!, we shall use the same notation
for the operator as for its principal symbol.
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Proposition 4.2. Let P;; be defined by (4.4). Then we find the commutator

(4.11) [Pi2, P ~BP;;+K modl,

where I is the left module over \Ilghg generated by Py3, Pyy. Here B, K E\Ilghg have
symbols

4.12) B~ Dy+5(6),

(4.13) K ~ D11D220~D12D130+71(0) D5, 0+70(f) mod Ro

where B and vy; are C™ functions of 8, j=0,1, and B(nn/2)=0 for n€Z. When
poE€ERy and 8;(={7,(} vanishes of second order at Xy (i.e., 8;0.€ Ry), we obtain (3
~ and v;E€Ro. When 0 is real valued, we find that i3(8) is real valued.

This result follows immediately from [3, Proposition 3.2] by substituting ¢ for
¢1 and O for (2, then Adp=(0, 0, 8;¢), which implies 3(nr/2)=0 for n€Z.

Next, we shall compute the coupling term [Py2, Peo] when 28/7¢Z, i.e., dpio
and dpys span the (complexified) conormal bundle of ¥,. Thus *(—sin(6), cos(6))
is a complex polarization vector for P i.e., (0,1) is a complex polarization vector
for the conjugated system in (4.4). It is then clear that {p12, P22} =c1p12+copas for
some homogeneous c;.

Proposition 4.3. Let P;; be defined by (4.4), assume wo€Xo and 20(wo)/7¢
Z. Then the commutator

(4.14) [Plz, Pzz] ~ Ko (S \I/ghg mod I,

microlocally near wo, where I is the left \Ilghg module generated by Pya and Pes. We
have

(4.15) o(Ko) ~D?0—a?D2 6~2cot(20)((D:0)* —a?(Dy,0)%)+2 cot(26) D226 f12(6)

modulo Ry and C® functions of 0 which are affine in D8=(D.0, D, 0).

Proof. We are going to use the formula (4.11). First, we note that when 26/7¢
Z, then

(4.16) P11 =Pp2z—2cot(20)p12,
thus we find from (4.4)

(4.17) P11 NP22 +2D129+f11‘—f22-2 COt(20)(P]_2 +D110—f12) mod Ro
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This implies that the symbol of BP;; mod is equal to
(418) 2D220D126 -2 COt(20) (D220+,3(0))(D110 - f12)

modulo Ry and C*® terms which are affine functions of Df. Since 5(6)=0 when
6=nm /2, we find that this is equal to

(4.19) 2D990 D120 —2 cot(26) (D22'9D119 —D229f12)

modulo C® terms which are affine functions of D8. Now 2D30D;26~2D 0 D150+
2 cot(20)a? sin®(260)(D,, 0)* mod Ry, so (4.19) is equal to

(4.20) —2cot(20)((D;8)? — a*(Dy, 0)* — f12D226) +2D,0 D1 26.
It is easy to compute from (4.13) that
(4.21) K ~ D}6—0?D?2 0—2a(sin(20) D110-+cos(20) D126) D, 6

modulo Ry and C™ terms which are affine in Dd. Since sin(26)D;18+cos(20)D126=
sin(28) D.6, we get the result from (4.20) and (4.21). O

Next, we shall consider the case when #=0 but B0 at wo€Xs, where B is
given by (4.12). Let

(4.22) Py=Py+F,

where Fe\Ilghg has principal symbol equal to K/B. By the formula (4.11) we
find that [Pi2, P22]~BP; modI and Ry. We shall now compute the higher order
commutators. Since dp;; and dps2 span the normal bundle of X2, we can write

(4.23) [Pj2, Pl ~E; €¥%, modM, j=1,2,

where M is the left ¥0, = module generated by Py, Pz and Po.

The following result follows from the proof of [3, Proposition 3.4] by substitut-
ing ¢ for ¢; and 0 for (.

Proposition 4.4. Let P;; be given by (4.4), Py by (4.22) and E; by (4.23).
Then we find the symbols

{ Ey ~D11:G+Dy2F+71(6,D,,6,G, F),

4.24
( ) EzND12G+D22F+T2(9,D110, G, F)

modulo Ry. Here G=2D,;8 and r; €Wl is a C= function of §, 6, G and F, an

affine function of Dz, 0 and homogeneous in §, j=1,2.

Now, if =0 and B#0 at wg€ X2, then D2207#0, so 6#£0 near wp. In that case
both Ky and E; are defined, and we shall study the relation between their principal
symbols.
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Proposition 4.5. Assume 0=0 and B#0 at wo€X2, where B is given by
(4.12). Let Ko be defined by (4.14) and E; by (4.23). When 20/n¢Z we find

(4.25) E;~B 'Dj3Ko+CjKo modR,, j=1,2,

for some C;€C™. This implies that E; 0= Ky#0 mod S~! on X,.

Proof. Observe that, (4.14) implies that Ko€M when 28/n¢Z. From (4.11),
(4.14) and (4.22) we find, when 20/7¢Z,
(4.26) [P12, P22] ~ BPO ~ Ko mod I.

If we commute elements in I with P;j, we get elements in M. Thus we find, when

20/m¢Z,
(427) [sz, B]Pg-{-B[sz, Po] ~ [sz, Kg] mod M.

By (4.23), this gives (4.25). Since df#0 we obtain the last statement. [

Later, we shall use the wave operator to estimate the coupling term. For
that purpose we need the following proposition, which follows from the proof of
[3, Proposition 3.5].

Proposition 4.6. Let Py be defined by (4.22), g2 be defined by (4.10) and

R1={A€\Il%,hg:a(A)=0 on X3}. Then we find that the symbol of [goz, Po|, modulo

\I’gth22, R1P0, \I’gthtP(), Rlljjz, S equal to
(428) D11E2—D12E1 +91E1 +92E2 mOdRo,

where E; is given by (4.23). We find g;€S° is a C* function of €, 6 and F, an
affine function of DO and homogeneous in &, j=1,2.

Now we want to change F so that (4.28) is in Ry and the relation (4.11) is
preserved, i.e.,

(429) [P12,P22] =BPy+B1Pis+ByPos+R

holds with R€ Ry (which means that BF=K on ¥;). This is guaranteed by the
following proposition, which follows from the proof of {3, Proposition 3.6]. This also
gives an additional transport equation for E; and E,.
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Proposition 4.7. Let P;; be given by (4.4), Po by (4.22) with Fe ¥, and
R by (4.29). Assume that R€ Ry when t=0, then RE Ry for 0<t<T if and only if

(4.30) Do E1—Di2Es+ fiE1+ foE2=0 on¥y for0<t<T,
modulo S™'. Here E; is given by (4.23) and f;€S8° is a C™ function of &, 0 an

affine function of DO and homogeneous in £, j=1,2.

If we let U=*(G, F, 4, Ey, E»), then by using (4.24), (4.30), the fact that D,f=
G/2, and letting (4.28) be zero on Lo, we get a first order quasilinear system in the
variables (t, 1) on Xj:

(4.31) DU +A(t,z,£",U, Dy, )U+Ag(t, 7,6",U)=0 on Xs.
Here
—alDzl OlzDzl d13 0 0
OézD,;l ale d23 0 0
(4.32) A= 0 0 0 0 0
0 0 d43 (05} Da;1 —agDzl
0 0 d53 —asz1 —OI]DG_-I

with a1 =a cos(26), az=asin(26), and d;3 is a first order differential operator in 1,
J#3, =(z1,2"). This is a system of first order differential operators in z; depend-
ing C*° on t, z1, the function U and the parameters (z”,£”), and Ay is a C®

function of ¢, z, £” and U. Since (4.31) is an equation on Xy, we find that & =0 in
A and AQ.

Proposition 4.8. Let A be given by (4.32) and Ag be a C* function of t, z,
¢’ and U with values in C5. Then the Cauchy problem
DU+ A, z,¢",U, D, YU+ Ap(t, z, ", U)=0,
(4.33) { ¢ (t,z,¢§ DU+ A4o(t,z,£",U)

U(O7 z, §”) = UO(:L‘s €”) € Coov

has a unique C* solution U in a neighborhood Q of (0,z0,£l). The solution U
depends continuously on Uy, A and Ay in the C*™ topology. The neighborhood
only depends on the C*° norms of Uy, A and Aq.

Proof. We find that o(A)(¢;) is symmetrizable by putting 7, =asin(26)¢; and
N2=a cos(20)¢; in the proof of Proposition 3.8 in [3]. As in that proof, we get the
result from the proof of Theorem 5.6 in [10, Chapter 4]. [
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Remark 4.9. We find that the initial values U lt=0=Up are determined uniquely
by the values of D}8|;—o for j<3. This follows from the fact that the mapping

(434) (0’ Dteathoa D?6)|t=0 = (0, G’ Fa EZ)'t=0
is a diffeomorphism when B#0, and E1};—p is determined by (4.24). Since A and

Ag are homogeneous of degree 0 in £”, we may choose ) conical and U homogeneous
in £”, if Uy is homogeneous in £".

5. Invariants of the system

Let Pe ¥}, bean N x N system of transversal type. Then, we find that P is of
real principal type on X1, dim \; };:1, and N; Ijg is foliated by Hamilton orbits, which
are unique line bundles over bicharacteristics of ¥; (see Definitions 3.1 and 4.1
in [2]). We find that the polarization set WF;;’"_I (w) is a union of Hamilton orbits
when Pu€ Hy), according to the proof of Theorem 4.2 in [2]. We shall analyze what
happens when approaching 3. In the following, a C* curve on a C° manifold
M is an injective immersion of a compact interval ICR into M. We say that a
sequence of C™ curves converges to a C'™ curve, if there exist parametrizations
of the curves, on a fixed interval, that converge in C®°. A sequence of Hamilton
orbits converges, if it does as a sequence of curves in 7*X ng_l. Now, 57 and
So are transversal at Xs, so their Hamilton fields are non-parallel on ¥,. Since
¥, is involutive of codimension 2, the Hamilton fields of S; are tangent to £y and
generate the two-dimensional foliation of ¥3. By using Proposition 3.1, we obtain

the following proposition from Remark 3.2.

Proposition 5.1. We find that ON 1’; is foliated by limit Hamilton orbits, which
are limits of Hamilton orbits in N}, and are unigue line bundles over bicharacter-
istics in S; at Xg for j=1,2.

Over X5, the singularities may be carried by limits of Hamilton orbits. We shall
now consider the limit Hamilton orbit case. As before, we assume that P €V
is of transversal type at wo€X2. Let VCANE be a C™ line bundle over a leaf L
of the foliation of 3, it is no restriction to assume that j=1. Since ON. }, is one
dimensional and foliated by limit Hamilton orbits, we find that V is a union of limit
Hamilton orbits. We shall define an invariant of V. Choose VG\IIghg and We\I!llj;gm
so that o(V) span V over L and o(W) span ONZ. over X3. (The adjoint P* is also

of transversal type.) By Remark 3.2 we find that o(W)*dpo(V)=0 on L. Put

(5.1) K=W*PVel¥,,,

and »#=0g,p(K)|r. Clearly, 0(K)=0 and do(K)=0 on L. Thus, the subprincipal
symbol ogyp(K) is well-defined on L.
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Proposition 5.2. Let K be given by (5.1) with the conditions above. Then we
find that 3x~0sun(K)|L, modulo non-vanishing factors, is invariant under conjuga-
tion of P by elliptic, scalar Fourier integral operators, corresponding to homogeneous
canonical transformations on T* X, multiplication of P by elliptic N x N systems of
pseudo-differential operators, and is independent of the choices of V and W.

Proof. Since 5 is the value of a subprincipal symbol for an operator whose prin-
cipal symbol vanishes of second order, it is invariant under elliptic, scalar Fourier in-
tegral operators, corresponding to homogeneous canonical transformations on T*X.
Clearly, V and W are unique, modulo elliptic operators and terms in \I/ghg and \Ilrl)ﬁgm
having principal symbols vanishing on L and X,, respectively. Let

(5.2) Ry ={Ac ¥} :0(A)=do(a)=0wup(4)=0on L},

then terms in Ry do not change the value of ». If Ac \Ilghg has principal symbol
vanishing on X, Be Wy, has principal symbol vanishing on L, and p+v=1, then
the calculus gives AB and BA€ Ry, because ¥, is involutive. Since o(PV)=0on L
and o(W*P)=0 on X, this gives invariance of K modulo Ry when o(V) and o(W)
are fixed on L and ¥, respectively. Now, replacing V by VA, and W by W B where
A and B are elliptic, replaces K by B*K A, which gives a non-vanishing factor in s.
Multiplication of P by elliptic systems only has the effect of changing lower order
terms in V and W, which proves the invariance. 0O

Definition 5.3. We call s~0gey,(K)|r modulo non-vanishing factors, the trace
of the C* line bundle VCAR over L, where L is a leaf of the foliation of X5.

In particular, we find that the condition that the trace vanishes identically on
L is invariant. Next, we shall consider the complex polarization case. Let L be a
leaf of the foliation of ¥ and VCAN¢ a line bundle over L. Choose Ve\Ilghg and
Wi, erq’;;gm so that (V') span V over L and o(W;), o(W3) span Np« over Xs.
Put

—W* 1
(5.3) Pj=W;PVeUl,,

then dp; and dps span N} X, over C by Definition 2.4, since VCN¢ and Ap« L Imp.
Since X5 is involutive and p;=0 on X2, we can find a; and a3 €S so that {p;,p2}—
a1p1—azp2 vanishes of second order on L. Since dp; and dp, are linearly indepen-
dent in N} X, we find that a; and as are uniquely determined on L. Let A; G\Ilghg
have principal symbol a;, j=1,2, and put

(5.4) k~osun([P1, Py - A1 Pi—AxPy)| L,
which is then well-defined.
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Proposition 5.4. We find that k in (5.4), modulo non-vanishing factors, is
invariant under conjugation of P by elliptic, scalar Fourier integral operators, cor-
responding to homogeneous canonical transformations on T* X, multiplication of P
by elliptic N x N systems of pseudo-differential operators, and is independent of the
choices of V, W; and A;, j=1,2.

Proof. Since k is the value of a subprincipal symbol for an operator whose prin-
cipal symbol vanishes of second order, it is invariant under elliptic, scalar Fourier in-
tegral operators, corresponding to homogeneous canonical transformations on T* X.
Clearly, V and W;, W, are unique, modulo elliptic operators and terms in \I!ghg
and \Illljggm having principal symbols vanishing on L and X5, respectively. Let Ry,
be defined by (5.2), then terms in Ry, do not contribute to k. As before, if A€ ¥,
and B €V. have principal symbols vanishing on L and ¥, respectively, u+v=1,
then the calculus gives AB and BA€Ry. Since 6(PV)=0 on L and o(W} P)=0
on X, this gives invariance of k when o(V) and o(W;) are fixed on L and ¥,
respectively. Similarly, different choices of A; also give terms in Ry,.

Now, replacing V' by V A, where AE\Ilghg is elliptic, replaces P; by P;A. Since

(55) [PlA, PzA] = [Pl, A]P2A+A[P1, P2]A+[A, P2]P1A

this gives a non-vanishing factor in k. Replacing W; by WlB}+WzBJ?, replaces P;
by B}*P,+B2*P,. Since

(5.6) [B{*P;, B¥* Py = B{*|P;, B¥*| P, + Bi* B§*|P;, P.]+|Bi*, B¥* P P;

this also gives a non-vanishing factor in k. Multiplication of P by elliptic systems
only has the effect of changing lower order terms in V and Wj, which proves the
invariance. O

Definition 5.5. We call k~o¢(K)|r, modulo non-vanishing factors, the curvature
of the C*° line bundle VCNg over L, where L is a leaf of the foliation of 5.

In particular, the condition that the curvature of the line bundle vanishes iden-
tically on L is invariant. We are going to show later that those line bundles may
carry polarization, thus we make the following definition.

Definition 5.6. Let P be an NxN system of transversal type. A complex
Hamilton orbit is a C° line bundle VCN¢ over a leaf L of the foliation of Xy, for
which the curvature identically vanishes.
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Ezample 5.7. If we consider the system in (4.4), then it follows that (0, 1) spans
a complex Hamilton orbit over a leaf of X, if and only if 26/7¢Z and o(Kp)|s,=0
in (4.15).

Polarization may also be carried by line bundles, which are real at a point
wp €Y7, but not tangent to any limit Hamilton orbit. This implies that d6+#0, thus
the polarization is complex at points arbitrarily close to wg. At these points, the
curvature k is well-defined, according to Definition 5.5.

Definition 5.8. Let P be of transversal type at wo€Xs. A coherent Hamilton
orbit through wy is a C* line bundle VCNp over a leaf of the foliation L of X,
such that V|, CNR but V is not tangent to any limit Hamilton orbit at wp, and
the curvature of V vanishes identically in the open set where VCNG.

Ezample 5.9. We find that (0, 1) spans a coherent Hamilton orbit through wq €
Y5 over a leaf of X5 for the system in (4.4), if and only if 20(wo)/n€Z, Hp,,0(wo)=
iB(wp)#0 in (4.12), and 0(Ko)|s,=0 in (4.15) when 20/w¢Z. This implies that
o(E;)=0 on X3 by Proposition 4.5, where F; is defined by (4.23).

6. The propagation of polarization

We shall now prove the results on the propagation of polarization. First we
consider the case when there is no polarization condition. We say that u€H(,
at weT*R™\0, i.e., w¢gWF(,)(u), if u=u;+us where u1€H(,) and w¢WF (us).
Let

(6.1) sy(w)=sup{s€eR:u€ H at w}, weT*X\0,
(8

be the regularity function.

Since X, is involutive, it has a natural foliation given by the Hamilton fields of
the normal vectors. The Hessian of ¢ in (2.3) gives an invariant Lorentz structure
on the leaves of this foliation, by the natural identification of the tangent space of
the leaves with the normal bundle via the symplectic form (see [9, Lemma 2.5]).
Since the Hessian is hyperbolic of rank 2, we get four different wave cones in the
tangent space of the leaves. Let U be a conical neighborhood of wy€X;. We define
a local propagation cone C,J;,OCU , 0<4<3, so that C’Zm is the closure of the set of
w€X, lying in the same leaf as wg, such that there is a C* curve in U joining wp
and w, having tangent which is everywhere in the interior of one of the wave cones.
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Theorem 6.1. Let PEYT, (X) be an NXN system of transversal type at
woEXy, and assume that ue D' (X, CN) satisfies sp,>s—m+1 at wp. If s5>s in

one of the propagation cones Cﬂ,o \wo microlocally near wo, then sk>s at wp.

Proof. By multiplication and conjugation with elliptic, scalar pseudo-differ-
ential operators, we may assume that m=1. By Proposition 3.1 we may assume
that the coordinates (¢, x) are chosen so that ¥o={7=¢; =0}, P is on the form (3.3),
and £=0 at wy. Also we may assume that s}, >s in U, and s},>s in the propagation
cone 2=(C%, \wo)NU contained in £<0, for some conical neighborhood U of wp.
Clearly, we may assume that N=2 and P=Q is on the form (3.4). In fact, since
Ee€V},, in (3.3) is elliptic, we obtain u; € H(,4) when j>2.

By conjugating with a scalar pseudo-differential operator, it is clear that it
suffices to prove that u€Ho) at wp if Pu€H(. in U and u€H() in (, for some
€>0 which is fixed in what follows. By Proposition A.1, we may assume that for
any N and 6>0 we have

(6.2) |@(r, )l < Con{(7,€)) ™" when |7] 2 c5((€)°+(&1))-

which implies that £#0 in WF(u). We are going to use the Sobolev spaces H; ;)
and H, ., with norms defined by (A.1) and (A.6). Let Q="P*°P, then Que H,
in U. Since we may assume 6<1, Lemma A.3 implies that Pu and Qu satisfy (6.2).
If we choose §<e in (6.2), we find QueH, ;) in mo(UNX,) by (A.11), where
mo(t, 2;7,€)=(t,x,£). Similarly, since u and Pu€H(,) in €, we obtain that ue
Hfo)=Hfo,o) and DtuEHéo,_l) in mp$2. Then

(6.3) (u, Dt“)lt:r € H(O,O) X H(O,—l) at 7:-,- (Qﬁ{t = 7'})

for almost all r<0, close to 0, where i,(r,z;0,£)=(z,£). Proposition B.1 in Ap-
pendix B with Q=P°P gives uEH('O) at mowo, and Lemma A.3 gives u€H
at wy. O

Over X=X\, the polarization set WF,(«) is a union of Hamilton orbits
when Pu€H(;_m41), since P is of real principal type there (see Definitions 3.1
and 4.1 in [2]). Over X, the singularities may be carried by limits of Hamilton
orbits. We are going to consider the limit Hamilton orbit case. As before, we
assume that Pe\Ilg}lg is of transversal type at wg€Xsy. Let VCNp be a C*® line
bundle over S, for example j=1 (see Remark 3.2). Since S; is a union of (limits
of) bicharacteristics, V is a union of (limits of) Hamilton orbits over S, and we
have IN}=V)|s,. Let » be the trace of V over %, as defined by Definition 5.3, and

let 71 be the projection T*R™ x CN —T*R™ given by 7, (w, 2) =w.
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Theorem 6.2. Let PE\Ilg;lg be an N x N system of transversal type at we €29,
and let Ae\Ilghg be a 1x N system such that the dimension of the fiber of NaNNp
is equal to 1 at wo, and Ma=m (NaNNp\0) is a hypersurface near wo. Let 3 be

the trace of NoNNp over X5 and 0£D the Hamilton field of Ms. Assume that
(6.4) D?x+c1Dxc+cox =0

near wo, for some ¢; EC™(Xy). IfueD'(X,CN) satisfies min(sh,+m—1,s5+1)>
s at wo and s%,>s in one of the propagation cones C’{;,o\wo microlocally near wo,
then we find s%,>s at wp.

In this case M 4=.5S; for some j, the dimension of N4NNp is equal to one on S;,
NaNNp|s,=0N%, and NaNNp is a union of (limit) Hamilton orbits. Observe that
the trace is defined up to a non-vanishing factor, thus (6.4) is well-defined. The
conclusion implies that WF},,(u) SN ANNp at wo.

Proof. As in the proof of Theorem 6.1, we may assume that m=1, N=2 and
P=Q is on the form in Proposition 3.1. It suffices to prove that Auc H(g) at wo,
if PueH(), u€H(_1) in U and Au€H in Q=(C}, \we)NU for some conical
neighborhood U of wy€Xy and some £>0, which is fixed in what follows. Clearly,
we may assume the coordinates chosen so that t=0 at wp and ¢<0 in Q.

By using the matrix version of the Malgrange preparation theorem in [6, The-
orem 5.9] as in the proof of Proposition 3.1, we may assume that AcC>(R, \Pghg)
is independent of 7. Clearly, it is no restriction to assume

MA=Sl ={T=—a§1}.

Since NaNNp=Np over S1\X2, we find 0(A4)=*(e,0) on Sy, 0#e€SP. Since o(A)
is independent of 7 and u€ H._;), we obtain that u; € H). We can assume that
u satisfies (6.2) with 0<§<1, which by Lemma A.3 also holds for Pu, Au and Qu,
where Q=*P°°P. By choosing §<¢ in (6.2) we obtain QUGHfo,_l) and PuGH{O)
(which implies DtPUEHEo,_n) in mo(UNXsy). Also, we find u; EHZO)’ Du, ero,—n
in mo$? and ueH{,l), Dtuer—l,—l) in mo(UNX3) by Lemma A.3.

By Proposition 3.1, we find Pj2 and Py €C*(R, \I/ghg) and by the invariance
given by Proposition 5.2 we find that o(P2)|x, is proportional to the trace s of
NANNp over Ty. Now (4.10) gives

(65) qi11uy ~ —Po’U,2 mod HéO,—l) in Wo(UﬂEg).

Here Py=[Pag, P13]€C*(R, \Ilghg) has principal symbol equal to D(cx) on X,

where ¢#0 and D=—iH,,, is proportional to the Hamilton field of S;. Propo-
sition C.1 implies that Poup€H(p 1) in 2 for any g<e, which implies D;Pyuz€
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H,_2) in ). By taking 6<%s in (6.2) we obtain PouZ;EHfO,_l) and D, Pyus €
Hfo _z in 7of2. In order to get an equation for Pyuy, we use the fact that gop~
Py Py, mod C*(R, \Ilghg) to get

(6.6) [922, Po] ~ P11[Pa2, Po]+[Pr1, Po]P32  m0d C®(R,Op U7 ).

By equation (6.4) we find [P, Po]~—CiPy—CoPiz modulo C™(R, ¥yh') with
C;eC>*(R, \Ilghg), since the principal symbols are equal on {£;=0}. Here, the
symbol classes \Ilpml;: are defined in Appendix B. Thus, if a€S° is homogeneous and

vanishes at {£;=0} then ac \I’;hlél. We obtain
(6.7) (922, Po} ~ [P11, Po] Pao — P11C1 Po— P11 Co Prs

modulo C%(R, ¥7.%) and O (R, ¥;;:1)D;. Since ueH{_y), DeueH{_, _,, Qu

and DtPUGH('OY_l) in wo(UNXy), this gives

(6.8) (ga2+P11C1)Pous ~ (Po[Pa1, Pi1]—[P11, Po)Pa1+P11CoPy1)u;  mod Hi s
in mp(UNZXyz). As in the proof of Theorem 6.1 we find that

(6.9) (w1, Dyuy, Poug, Dy Pous) € Higy x Hig _yyx Hig _1y X H{g _5

in mp€2. This gives by Fubini’s theorem

(6.10) (u1, Dyuy, Poug, Dy Poug)|i=r € H(oy X H(o,—1y X H(g,_1) X H(o,_2)

at i.(QN{t=r}), for almost all r<O0.

By using equation (6.5) to eliminate the term CoD?u; in equation (6.8), we
find that (6.5), (6.8) and (6.10) form a Cauchy problem for (u;, Pyus), with a
2x2 system @ on the form (B.6)—(B.8). Then Proposition B.2 with r=5=0 gives
(ul,Pouz)EH(’O) XH(O,_I) at mowy, proving the result by Lemma A.3. O

Next, we shall consider the complex polarization case. Then we need no trans-
port equation like (6.4), but the conclusion is weaker than in the limit Hamilton
orbit case.

Theorem 6.3. Let PeVr, be an Nx N system of transversal type at wo€Xs,

and let AE\Ilghg be a 1X N system, such that the dimension of the fiber of NoNNp

is equal to 1 over wy. Assume that NoNNpCNg at wo. Let ueD'(X,CN) satisfy
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min(sh, +m—1,s%+1)>s at wo. If s%, >s in one of the propagation cones CJ, \wo
microlocally near wo, then WF,,(u) CNANNp at wo.

Proof. As in the proof of Theorem 6.1, we may assume that m=1, s=0, N=2,
and P=Q is on the form in Proposition 3.1. Also, we may assume that Pu€ H(.) and
u€ H(._1) in a conical neighborhood U of wg€%,, Au€ H(,) in the propagation cone
Q=(C4,, \wo)NU for some €>0, and we shall prove that WFgol(u) CNANNp at wy.
As before, we may assume that the coordinates are chosen so that t<0 in {2 and
t=0 at wp, and AcC™(R, \Ilghg) is independent of 7. We have o(A)=(a1,a2)#
0, since NaNNp is one-dimensional over wp. In order to avoid that a?+a2=0
at wp, we may conjugate P by a constant diagonal matrix with different, non-
vanishing diagonal elements, which preserves the normal form (3.4). Thus we may
assume o(A)=e-*(cos(#),sin(d)), 0£e€ S, where 20(w)/n¢Z in U after shrinking
the neighborhood, since NaNNpCNg over wg.

Now we shall use the base change (4.2), which transforms o(4) into (e, 0),
0#ecS®. Since u€H(_y) in U, we find that w;€H) in Q. Let Q=tP*°P be
the 2x2 system defined by (4.10), then QueH _y) in U. As in the proof of
Theorem 6.1, we may assume that u, Pu and Qu satisfies condition (6.2). By
choosing §<e in (6.2) we obtain u eHéo)’ Dy EHZO’_l) in w2, and PuEH{O),
ueH(’_l) and QuGH('O’_I) in mp(UNX3). Now, by Proposition 4.3 we can find
A;eC*(R, \Ilghg), so that
(612) [P12, sz] —A1P12 —-A2P22 =Kp€ COO(R, \thg)
since 20/m¢Z in U. We find that
(6.13) qr1u1+A1 Piiui +AsPojuy ~ Kgug  mod H{O,—l)

in mp(UNZy2).

We shall first consider the case when KoeC™(R, \II;hlg’l) in U, i.e., (4.15) is

identically zero on XoNU. Since uEH(_l) in mp(UNX;), we then obtain Kous€
H EO’_I) there. Thus we obtain

(6.14) quui+ArPnur+A2Pnun ~0 mod Hg 3y on mp(UNEe)
with initial data
(6.15) (u1, Dyur)|e=r € Hioy X Hio,—1)

at i-(QN{t=r}) for almost all r<0 close to 0. Then Proposition B.1 with N=1
gives u; €H éo) at mowp, proving the result in this case by Lemma A.3.
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Next, we consider the case when Ko¢C(R, \Il;hlél) in U, ie., (4.15) is not
identically zero on X3NU. Then, we shall make the base change (4.2) for a different
# making (4.15) equal to zero on L. Let r<0 and 8, be a solution of 6(Kp)=0 on

35 for t>7, such that

6,.=46,

(6.16) { Do.=Dg ™ {t=r}nQ.

By (4.15), the equation o(K()=0 on X is a homogeneous semilinear strictly hy-
perbolic equation in the variables (t,z;) when 20/7¢Z. It follows that there exists
a homogeneous C* solution 6, in a fixed conical neighborhood of t=r in Q for r
close to 0, since the Cauchy data and the coefficients are uniformly bounded in C'*°.
For r<0 close enough to 0, this implies that 0, is defined at wp, and by continuity
20,/n¢Z in QN{r<t<0}. It is clear that the initial data (u;, D;u;) only depend
on the values of § and D0 at {t=r}. Thus condition (6.15) is preserved, and we
also have (6.14). This gives u]=cos(d,)ui +sin(f, )us EH(’O) at mowg, thus u] € Hg)
at wo as before. Since 6, (wo)—8(wo) when r—0 and WF},(u) is closed, we obtain
the result. O

Finally, we consider the case when NANNpCANR at wy€X,, but it is not
tangent to the limit Hamilton orbit through MsNANp.

Theorem 6.4. Let Pe \Ilgflg be an N x N system of transversal type at wo€Xs,
and let A€UD, . be a 1x N system, such that the dimension of the fiber of NaNNp
is equal to 1 at wo. Assume that NaNNpCNR at wo, and assume that NaNNp|x,
is not tangent to the limit Hamilton orbit through NaNNp at wy. Let ueD'(X,CN)
satisfy min(sp,+m—1,s;+1)>s at wo. If s%,,>s in one of the propagation cones
C3,, \wo microlocally near wo, then WF3 ) (u) CNANNp at wo.

Proof. As in the proof of Theorem 6.3, we may assume that m=1, s=0, N=2,
and P=Q) is on the form in Proposition 3.1. Also, we may assume that Pu€ H . and
u€ H(._;) in a conical neighborhood U of wo €2, and Au€ H(,) in the propagation
cone Q=(CJ, \wo)NU for some >0, and we shall prove that WFp(u) CVaNNp
at wg. As before, it is no restriction to assume that =0 at wg and ¢<0 in 2, and we
may assume that A€C*(R, ¥9,,.) is independent of 7. Since NaNNp CNR at wo,
we may (after shrinking the neighborhood) assume that o(A)=e-*(cos(8), sin(d)) in
U, where 0#£e€S° and 20/m€Z at wo.

Again, we shall use the base change (4.2), which changes o(A) into (e, 0), e#0.
Since u€ H._1y in U, we find that u; € H(.) in 2. Let Q be the 2x 2 system defined
by (4.10), then QueH, (e,—1) in U. Since NaNNp is not tangent to a limit Hamilton
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orbit, we can find 4;€C(R, ¥), ) so that

(617) [P12, P22] — APy~ APy =BPF, € c* (R, \Il%)hg)

by Proposition 4.2. Here the principal symbol of BeC*(R, \Ilghg) is non-zero, Py=

Py +F, with FEC>(R, \Ilghg). By Proposition C.1 and the ellipticity of B, we find
Poua € Hy, 1) for g<e in Q, which implies D; Pyuz € H, _2) there. As in the proof
of Theorem 6.3, we may assume that u, Pu, Pyus and Qu satisfies condition (6.2).
By choosing < j¢ in (6.2), we find weH{_,), PueHy,, QueH, ) and D;Que
H{o,—z) in m(UNY,), and uleH(O), Dtulero,—l)’ PgUzEH(O,_l) and D,Pyusc
H{o,—z) in o). We find that

(6.18) guiur+ A Phyui + A Pyjuy ~ BPyuy  mod H(O,—l)

in O(U 022)
Next, we need an equation for Pyus. We have by Proposition 4.6 that

(6.19) lg22, Po] — Aogee — BoPo— B1 Pia— B3Py ~0 inU

modulo C(R, ¥ ") if (4.28) is equal to zero on £2NU. Here By=CoD;+Cy, Ao,

Co€C™(R, ¥%,.) and C, By, ByeC®(R, o).
First, we assume that (4.28) is equal to zero on ZoNU. Then, since ue H (=1

we obtain by (6.19)

(6.20) (Q22—B())P0’U.2 ~ ((P0+A0)[P21, Pn]—Blpu—B2P21)’ul mod HEO,—2)
on mpfl. By the Fubini theorem we get

(6.21) (ul, Dtul, P()'UQ, DtP0u2)|t=r € H(O) X H(O,—l) X H(O,—l) X H(O,—2)

in ir(QN{t=r}), for almost all 7. Then Proposition B.2 gives u1€H{, at mowo,
which proves the result by Lemma A.3 in this case.

When (4.28) is not equal to zero on £, we make the base change (4.2) with
0, solving the system (4.31) with initial data

(6.22) Di0.=D6 at {t=r}nQ for j<3.

This does not change the initial data (6.21) by Proposition 4.2 and Remark 4.9.
Proposition 4.8 implies that (4.31) has a homogeneous C* solution in a fixed conical
neighborhood of the initial surface {t=r}NQ for —c<r<0. Thus 6, is defined
at wp, and by continuity we have B#0 in {r<t<0}N{2, for r close enough to
zero. The result above implies that u]=cos(f,)u;+sin(f,)us€Hgy at wo. Since
6 (wo) —0(wo) as 7—0 and WF;(u) is closed, we obtain the result. O
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7. The distribution of polarization

Next, we are going to consider the distribution of polarization sets over X,
when we have a polarization condition on the solution. First we consider the limit
Hamilton orbit case. As before, we let s be the trace of the limit Hamilton orbits
over Xy as defined by Definition 5.3, and let m; be the projection T*R"xCN —
T*R™.

Theorem 7.1. Let PG\II;,’Lg be an N x N system of transversal type at wo€X,,

and let AE\Ilghg be a 1x N system such that the dimension of the fiber of NaNNp

is equal to 1 at wy, and Ma=m(NaNNp\0) is a hypersurface near wy. Assume
that u€D'(X,CN) such that Pu€H(s_my1y and Au€H(s) at wo. Then WF(u)

is a union of (limit) Hamilton orbits in NaoNNp, and WF;;I1 (u)|z, is a union of

limit Hamilton orbits in NoNNp on which the trace sz of NaNNp over Xo vanishes
identically.

Proof. As in the proof of Theorem 6.3 earlier, we may assume that m=1, s=0,

N=2, P= ( gi g;: ) is on the form in Proposition 3.1, Pu and Au€ H(g) in a conical

neighborhood U of wy€X;. Also, we may assume that
Ms=8={r=-at}

and A€C®(R, ¥, ) is independent of 7. Then it follows that o(A)=%(e,0), 0#

ec€ 89, but since we do not assume that ue H, (1), lower order terms in A cannot

be ignored. By conjugating P with BEC*(R, \Ilghg) having o(B)=1I and suitable

lower order terms, we may assume Au=Fu, in U, ¢(E)=e. Then, it is clear that

T (WE 2,1 (1)\0)=WF (,)(uz) near wp for ¢<0.

We find from (3.4) that P» €C*(R, ¥, ), which implies that Pyyus€H g).
Thus, WF(,)(uz) is a union of bicharacteristics of S; for p<0. By the invariance
given by Proposition 5.2 we find that o(Pi2)eC*(R, \Ilghg) is proportional to the
trace of NaNNp over X,. Since Piauz€ H(_;) in U we get the result, because the
(limit) Hamilton orbits in M4NNp are the unique liftings of the bicharacteristics

of S1=M,. O

Finally, we shall consider the case when polarization is not tangent to a limit
Hamilton orbit. Then the polarization is contained in complex and coherent Hamil-
ton orbits according to the following theorem.

Theorem 7.2. Let P E\Ilgflg be an N x N system of transversal type at wg €,

and let AE\IIghg be a 1x N system such that the dimension of the fiber of NoNNp is
equal to 1 at wyg. Assume that NaNNp is not tangent to any limit Hamilton orbit
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over wo, and that u€D'(X,CN) satisfies min(sh,+m—1,5%,)>s at wo. Then
WEF3, (u) is a union of complex and coherent Hamilton orbits in NaNNp.

This condition means that either NaNNp|y, CNc or NasNNp is transversal
to the limit Hamilton orbit through AN4NANp over wg. The complex and coherent
Hamilton orbits were defined in Definitions 5.6 and 5.8.

Proof. As in the proof of Theorems 6.3 and 7.1, we may assume that m=1,
s=0, N=2, P is on the form in Lemma 4.1, Pu and Au~wu; € H(.) in a conical neigh-
borhood U of wo€X; for some £>0. Then we find that m; (WFp,(u))=WF ) (uz)
in U. By cutting off where |7|<C|¢| we may assume P€¥l, .

Now we have Pjuz€H(, _;) for j=1,2, and Proposition C.1 gives Fouz=
[P12,P22]U2€H(Q,_1), Vo<e, in U. If 26n¢Z at wg, then dp;2 and dpsy span
N Zo. If 20/n€Z at wo, then by assumption we have Dgpf=B#0, which by
Proposition 4.2 implies that dpzs and dpy span N 2. In any case, there ex-
ists P; E\Il%,hg such that o(P;)=p;=0 on Zy, Pjups€H, 1) for p<e, j=1,2, and
I +p2* +12c(|7? +1&1 %), e>0.

It follows that Yuz € Hg) in U, if $ €53, has support where |7|+[&1|>C{r, £)°
for C large enough and §>0. In fact, then we have Py P+ Py P,=M €O0p S(m2, gs)
with principal symbol |p;|?+|p2|2>cm?2 in a g5 neighborhood of supp . Here ms
and gs are defined by (A.4) and (A.5), so that S(1, g5) CSg’O. Thus, we can construct
E€Op S(m;?,gs) with support where |7|+|&;|>C{r,£)°, such that EM~1 in U
modulo S~°°. Since (T, fl)zo(E)GSf{o and Muz€Hg,—3) in U, we find Yus € Hg)
there.

Let ¢(t) €C° satisfy ¢(t)=1 when |t| <1, and x(7, &)=¢((|7|+|€1])/C(T, €)%) €
5(1, gs) for 6>0. Then uz~xuz=v modulo Hg for C large enough, by the argu-
ment above. Thus we only have to consider v in what follows. We have

(7.1) Pjv=[Pj,x|uza+xPjus € Hgy inU

when 6<e and C is large enough, since Pjug€H(, 1), for all ¢<¢, and [Pj,x]e
Op S(1, gs) is supported modulo S~ where |7|+ (¢ |2C (T, £)%. Thus, we find that
WPEF () (v) is a union of leaves of the foliation of .

By Definition 5.8, it remains to prove that ve H(g) when NyNNpCNc and
the curvature k of N4NNp over 5 is non-zero. By Proposition 5.4, the curvature
is proportional to o(Ky)|s,, where

(7.2) Ko= [P12,P22]—-A1P12—A2P22 ES?’O

for suitable A;€¥), . Since Koug € Hyg, 1), we find as in (7.1) that Kov€ H o) when
6<e. When o(Kp)#0 we obtain v€ H(g). This completes the proof. [
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Appendix A. Some technical lemmas

We also need some technical preparation. The following is more or less an
adaptation of some propositions in [3] but we repeat the proofs here, since they are
short. Let H(,s) be the space of u€S’ satisfying

(A1)l = o [ 3R () (&) drd <oo,

where (0)=(1+|0|?)"/2. We say that uc H,5) at weT*R"\0, i.e., wg WF, (w), if
u=wu; +uz where u) € H(r,5) and wg WF(uz). The following result is a modification
of [3, Proposition 2.15].

Proposition A.1. Assume that P is a 2x2 system of pseudo-differential op-
erators of order 1 on R™, on the form (3.4) near wo€X,. Let ueS'(R™, C?) and
assume Pu€H(. ;) at wo. Then for every 6>0 we can write u=us+vs, where
vs€ H(y o41) at wo, and

(A.2) s (7, €)| < Csn{(,€))™N VN,

when |7|>cs((€)5+(£&1)) for some cs and Cs n>0.

Proof. Clearly, it is no restriction to assume that §<1 is fixed. Let xeC§°(R)
satisfy x(r)=1 when |r|<1. Then for £>0 we have

(A.3) $e,s(7,6) = x(elT|/((6)° +(€1))) € S,

since d¢. s is supported where |7|~(£)0+(£1). Put vs=(1—¢¢5)(D)u, then obvi-
ously us=¢, s(D)u satisfies (A.2).
In the support of 1—¢. s we find |det p|>cm? for small enough €, where

(A.4) ms = ((1,))° +((r, &))

is a weight for the metric
(A.5) 96 = |dt] +]d]? +(|dr|*+|dé?) /{(r, €))%

Since §<1, we find P€Op S(ms, gs) when |[7|<C|¢|. For small enough £>0, we may
construct E€O0p S(m; !, gs)C \Ilé_’g with support where |7|>C((£)°+(¢;)), such that
EP~(1—¢¢,5(D))I modC*, microlocally near wo. Since E preserves wave front
sets, and ((7,£1))0(E)€ 52, we find vs~EPu€H(;,s1) modC™® at wo. O
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Let H (’T’s) be the Banach space of u€&’, satisfying

(A-6) (lullfr,s)? = (2m) " / [@(r, €)I*(€)*" (61)** dr d€ < oo.

Clearly, ue H, r5) implies ul;=o€ H(r5) for almost all g, by Fubini’s theorem. If
u€S’ satisfies (A.2), then

(A7) ”u“,(r—és_,s) < C"‘,S(”u"(r,s) +1) < C'll",s(“u“,(r+<$s+,s) +1) vVrseR,

where sy =max(+s,0). Thus we lose only O(§) derivatives when taking restriction
of such u€ H, ) to {t=p}, for almost all p. We shall next define wave front sets
corresponding to the spaces H, ('T, 8

Definition A.2. Let ueS’'(R"), and assume that £#0 in WF(u). We say
that uGH’T’S) at (to, To, &), i-e., (tg,xo,fo)géWF'(r’s)(u), if there exists ¢(t,z,£)€
C*(R, S} ) such that ¢(t,, Dz)u€H(, ,, and lim, ,  [¢(to, Zo, Ao)|70-

This definition gives
(A.8) (to, To,€0) ¢ WF(, oy (1) == (z0,&0) & WF(r,5) (o),

for almost all g close to tg, where up=ult=,. If £#0 in WF(u), then it follows from
[1, Lemma 2.3] that

(A9) mo(WF (r,0)(u)) = WF{,.0) (u),

where mo(t,z;7,8)=(t,,£). For the more general wave front sets, we have the
following result.

Lemma A.3. Assume that ueS’(R™) satisfies (A.2). Then Au satisfies (A.2),
if AeC*(R,¥§,), Vv and V6>0. We also obtain

(A]'O) WF,(T—&s_ ,8) (’LL) Cmo (WF(T,S) (U)) < WF’(T+6S+ ,8) (u)’

where sy =max(+s,0) and mo(t, T;7,€)=(t,x,£). Since uceC>® in w5 (T2)\Z2 by
(A.2), we find

(A.11) Lo(WF(y_5s_,0) () S WF 1,5 () CLo(WF (14 56,,6) (1) 0n T,

where to(t, @, €)=(t,3;0,€).

Proof. By the proof of [3, Lemma 2.18], we find that the composition of
operators in \112,0 having symbols supported where |7|<C|£|, and operators in
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C=(R,¥j,), is well-defined and given by the formal asymptotic expansion when
6>0. Let ¢=¢cs€S], be defined by (A.3), with & small enough to make ¢=1
where (A.2) does not hold, thus (1~¢)u€C>. Then, if A€C®(R,¥},), we find
(1-¢)AueC®. In fact, the symbol of the commutator (@, A] is supported, modulo
S, where (A.2) holds. This proves that Au satisfies (A.2).

Now, if (to,Zo,0)¢mo(WF () (u)) then we find ¢yueH( ), for any pe
C*(R, S°) supported in a sufficiently small conical neighborhood of (to, o, o).
By (A.7) we find ¢ueH, 5, ., implying (to, 0, &0) EWF(,_s,_ s)(u) since
(1—¢)ypueC™. Finally, if (to,xo,fo)géWFzr,s)(u), then we find z,buEH{r,s) for
some YeC>®(R,S°) satisfying (o, Zo, 0€0)#0 when ¢>1. Thus, we obtain
WUEH(r—53+,s)a which implies (tO, Zo, £O)¢WO(WF(T—6S+,S) (u)) The last statement
follows directly from (A.10). O

Appendix B. The energy estimates

We are going to prove propagation of H Er, s) regularity for the wave systems we
are going to use, where H Zr,s) is defined in Appendix A. In what follows, we shall
consider pseudo-differential operators in z=(z;,z"”), depending C*° on t. As in Sec-
tion 4, we shall suppress the ¢ dependence, and write \Ilghg instead of C*°(R, \Ilghg)
for example. We shall use the symbol classes S*=S({¢)"h~%, g), where h~2=14¢£]
and (£) are weights for the metric g defined by

(B.1) 9s.¢(dz, d€) = |dz|*+|dE|*R.

It is easy to see that g is o temperate, g/g°=h2<1, and that S°CS(1,g). Let
¥™*=0p S™° be the corresponding pseudo-differential operators, which map H z rs)
into L2. We shall mainly use the polyhomogeneous symbol classes S;’}fg and the
corresponding operators W73 .

First we are going to consider the following N x N system:

(B.2) Q=qldn +Q1+Qo.

Here q is a scalar operator with symbol

B3 alt,7i7,6) =723, )€},

where 0<a(t,z,£)€S° is homogeneous. We shall also assume QQG\I’g’}?g and

(B.4) Q1=A0D;+ Ay,
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with A; e\Ilg’}{g. This means that @ satisfies the microlocal Levi condition os,,(Q)=
0 on X5. We shall study the following Cauchy problem:

(B.5) {Qu: 5

(u, Dyu)|e=0 = (uo, u1)-

Since we are going to assume that £#£0 in WF(u), the restrictions are well defined.
Now X5 is involutive, thus it has a natural foliation given by the Hamilton fields of
the normal vectors. On the leaves of this foliation, the Hessian of ¢ gives an invariant
Lorentz structure by the natural identification of the tangent space of the leaves
with the normal bundle via the symplectic form (see [9, Lemma 2.5]). Let C3,
wo €Xg, be the closure of the set of weX, such that w lies in the same leaf of 39 as
wp, and is in the backward (with respect to ) propagation cone emanating from wp.
Now, we assume that ¢>0 at wp. Let ig: 77 oR"3(0,;0,£)— (z,&)€eT*R™1, and
let mo(t, z; 7, &)= (¢, 2, ).

Proposition B.1. Assume that ueD'(R™, CV) satisfies (B.5), we€Xsy, and
§#0 in WF(u). If ug€Hyr,s), w1 €Hr s 1) in io(C3N{t=0}), and fEH|, ) in
no(C2N{t>0}), then u€H(, , at mw.

Proof. This result follows by modifying the proof of Proposition 5.1 in [3],
replacing z'=(z1,72) with z; and changing the spaces H(,,) and the operators

¥4, accordingly. O
We shall also consider the following 2x 2 system
®9 o= (o m)
where
(B.7) gj; =q+b;Di+cj, j=1,2,
q is given by (B.3), b;eC*(R, \Ilghg) and ¢;€C*(R, \Ilg’hlg). We also assume

(B.5) {Q12=a—1Dt+ao,

g =a1D¢+ay,
where a;eC°(R, \Ilg’}fg). We shall study the following Cauchy problem
Qu=f,
(B.9) ul¢=0 = uo,
Dyult=o =u1.

As before, we let C2, , De the closure of the backward wave cone emanating from wo €
¥2. By modifying the proof of Proposition 5.6 in [3] in the same way as in the proof
of Proposition B.1, we obtain the following result.
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Proposition B.2. Assume that ueD’'(R", C?) satisfies (B.9), £#0 in WF(u),
and weXy. If ug€H(r o) X Hir s—1), W1 € H(y,s_1) X H(r,s_32) in io(C2N{t=0}), and
fEHET,s_l) XH, o in mo(CZN{t>0}), then ueHér,s) xH(’T,s_l) at mow.

Appendix C. Regularity of the coupling term

We shall now estimate the regularity of the term [Pi3, Pys]us, which is impor-
tant when we decouple the system @ given by (4.10). We change notation, and put
zo=t, z"=(x2, ... ,Z4,), which gives z=(zg,71,z”")ERXRXxR""2. We are going
to use the spaces H(,,,) defined by (A.1) with 7 replaced with &, and also the usual
Sobolev spaces H(,)=H( ). We shall use the symbol classes ¥"°=0p 5™ defined
in Appendix B, where S™*=S({¢)"h~%,g), but now with h™2=1+£2+£7. Assume
that

P, P12> 0.1
C1 P= e
€1 <P21 Py

has principal symbol p satisfying det p=¢3 — 2, where B(x, £1,¢")=a(z, &, £")¢; is
independent of £ and homogeneous of degree 1 in £.

Proposition C.1. Assume that u€D’'(R™, C?), with the property that Pu and
uy€H(, 5y at wo€X2. Then we find [Pya, PooJua € Hir_5,-1y at wo, ¥6>0.

Proof. Let §>0 be fixed in what follows, clearly it is no restriction to assume
that 6§<1. As in [5, Proposition 6.1], we shall modify the proof of [3, Propo-
sition 4.1}, replacing the weight (¢') with h=!. By conjugating with an elliptic
operator in ¥™~%%, we may assume that r=46 and s=0. Let

(C.2) Q= ( i ‘m) =tPPPe¥°?,

q21 Q22

then o(g;;)=¢2—p? is real, and g12=[Pa, P12]€¥%!. Let Ae¥%~! have symbol
equal to h, put g=Xg2€¥®' and m=MXg,€¥*°. Since QueH;s_1), uy€H s
and g2, €¥%!, we find qu;+muy and quo€H(s) at wy. Choose cut-off functions
®, ¢€S§”0 such that ¢=1 in a conical neighborhood of wgp, ¥»=1 on supp ¢, and
u1, Pu€ Hsy on supp . Then qus€ H(s) and pqu; +yymuz=f € H(s), which gives
muz € H(s _1). The result follows if we prove that pmus € Hyq).

Next, we localize in A='=c(¢)?. Let ¢(s)eC$°(R) such that ¢(s)=1 when
|s| <1, then

(C.3) x(€) =R /(£)°) € 5(1,9)N S50,
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since dy is supported where h~1~(£)%. Clearly, xpmu,€H (0) since pmuz € H(s 1),
thus it remains to consider (1—x)pmus.

Now, we may normalize so that |¢|<h~' and |g|{<h™', where |g|? is the jth
seminorm of ¢ in S(h~1,g). We introduce the Beals—Fefferman type of metric
G=Hg/h defined by

(C.4) H™' = max(h™, g, (91)*h),

which implies h"5<H~-'<h™). Then G is ¢ temperate, and G/G° <H?2. Also, we
have S(1,9)CS(1,G), and geS(H™!,G). (See the proof of [3, Proposition 4.1].)
Choose {¢r}, {¢x} and {®x}€S(1, G) (with values in ) such that supp @5 CUs, =
{w;Go (w—wg)<e?}, ®r=1 on supp¥x, and ¢r=1 on suppyi. Also, we may
assume that h~hi=h(wi) in supp @k, Y, |vx|>=1 on supp(l—x)y, and {®,} are
supported where =1 and h~1>¢(£)°. Since {px} is elliptic on supp(1—x)¢ and
H<hS, we find

(C.5) (1 —x)emuz|* < C (Z llmkU2II2+llwmule?o,_l))
k

where mg =k (1-x)pm.

Now we can use Lemma 4.2 in [3], which only uses the general properties of
the Beals—Fefferman metric G. By substituting ®,u=v in this Lemma, we obtain
for small enough >0

(C.6) Imuuzll < Cn (A lbkua |+ lox f |+ llbkquzll + | Ry sull) VN, k.

Here f=tqui+ymus€Hs), hg=h(wk), and {Rn}x€S(HYN,G) (with values in
12) is bounded by any power of the G° distance to supp{®;}. Since h~1/(¢)% is a
weight for g, we obtain that A~1<p(¢)% implies that the g distance to supp{®x} is
bounded from below by a positive constant, for small enough p. Since G >h~1~%g
and h=1>¢(¢)® in supp{®s}, we find {Rn &}k €S((€)~™*,G) V Ny when h=1 < (€)%,
for small enough g. When h=1>p(£)®, we find H<h®<c,(£)~%" making {Rnx}r€

6}‘?;” there. Since {¢r} is supported where =1, we may replace 9 by ¥yt
in (C.6). By summing up, we obtain the result. O
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