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The propagation of polarization 
for systems of transversal type 

Nils Dencker 

1. I n t r o d u c t i o n  

In this paper we study the propagation and distribution of polarization sets for 
solutions to systems having characteristics of transversal involutive self-intersection. 
Thus, we assume that  the characteristic set is micro-locally a union of two non- 
radial hypersurfaces, which have transversal involutive intersection at the double 
characteristics. We also assume that  the principal symbol vanishes of first order 
on the two-dimensional kernel at the intersection. These types of systems we call 
systems of transversal type. The propagation of singularities for the corresponding 
scalar wave operator was considered in [11]. 

We shall consider the propagation of H(8) polarization sets of the solutions. 
This polarization set indicates those components of the distribution, which are not 
in H(s). Outside the intersection of the characteristics, the polarizations for solu- 
tions propagate along Hamilton orbits, which are unique liftings of the bicharac- 
teristics. The limits of polarizations from outside the double characteristic set, are 
called real polarizations, the others are called complex polarizations. It follows from 
the conditions that  there are only two linearly independent real polarizations over 
the double characteristic set. The real polarizations are foliated by limits of Hamil- 
ton orbits, which we call limit Hamilton orbits. The results on the propagation of 
polarization depend on whether the polarization is contained in (limit) Hamilton or- 
bits or not. When it is, we can define an invariant, called the trace of the orbits (see 
Definition 5.3). If this trace satisfies a second order transport  equation along the 
bicharacteristics, we obtain propagation of polarization according to Theorem 6.2. 
When the polarization is either complex, or real and transversal to limit Hamilton 
orbits, we prove propagation of polarization in Theorems 6.3 and 6.4, respectively. 

When we have a polarization condition, i.e., one component of the solution is 
in H(s), then the singularities of the solutions must either be contained in limit 
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Hamilton orbits with vanishing trace or in other types of orbits, which we call 
complex and coherent Hamilton orbits, see Theorems 7.1 and 7.2. 

The plan of the paper is as follows. In Section 2, we define the systems of 
transversal type and the real and complex polarizations. The systems are reduced 
to normal forms in Section 3. We compute the transport equations for the limit 
Hamilton orbits in Section 4. Also, some other invariants are computed. In Sec- 
tion 5, we show that the real polarizations are fohated by limit Hamilton orbits, 
prove the invariance of the trace, and define the complex and coherent Hamilton 
orbits. We prove the propagation results in Section 6, and analyze the distribution 
of polarization in Section 7. Finally, we prove some technical lemmas in Appen- 
dix A. The energy estimates we are going to use are derived in Appendix B, and 
we estimate the regularity of an important coupling term in Appendix C. 

The systems of transversal type have some similarities with the systems of 
conical refraction type and the systems of uniaxial type, which both occur in double 
refraction. The corresponding propagation of polarization for these systems was 
studied in [3] and [5]. Because of this similarity, we have been able to utilize some 
of the results of [3] in the present paper. 

The results are only proved for distributions with values in C N, but since they 
are microlocal and invariant under multiplication with elliptic N x N systems of 
pseudo-differential operators, they easily carry over to sections of vector bundles. 

2. D e f i n i t i o n s  

~ n  Let P E ~I/phg be an N • N system of classical pseudo-differential operators on a 
C ~162 manifold X. Let p=a(P) be the principal symbol, detp=lp [ the determinant 
of p and E=(detp) -1 (0) the characteristics of P. Let 

(2.1) ~']2 = {(x, ~) E Z:  d(det p) = 0 at (x, ~)}, 

and Z I = E \ ~ 2 .  The following definition makes it clear which type of systems we 
are going to study. 

Definition 2.1. The system P is of transversal type at w0EE2 if 

(2.2) 

(2.3) 

(2.4) 

~2 is a non-radial involutive manifold of codimension 2, 

detp=e.q, where e ~ 0  and q is real valued 
with Hessian having rank 2 and positivity 1, 

d i m K e r p = 2  on E2, 

microlocally near wo. 
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The definition of transversal type is clearly invariant under symplectic changes 
of coordinates and multiplication of P with elliptic systems of pseudo-differential 
operators. It is clear that the adjoint P* is of transversal type at w0 if P is. Observe 
that conditions (2.2) and (2.3) imply that 

(2.5) r,=s us2, 

where $1 and $2 are C ~ surfaces, which intersect transversally and involutively 
at E2. Condition (2.4) means that p vanishes of first order on its kernel over E2 
according to the following lemma. 

L e m m a  2.2. Assume that p satisfies (2.2) and (2.3), then (2.4) is equivalent 
to 

V w e E2, 3 Q E Tw (T 'X )  such that Iro (Oep)(w) 
(2.6) 

is a bijection between Kerp(w) and Cokerp(w). 

Here 7re is the quotient mapping C'~--*C'V Imp(w)=Cokerp(w). We also find that 
(2.6) holds if and only if 02 det p(w) ~t O, implying that Q E Nw E2 = T~ X /T~  E2, which 
is the normal bundle of E2. 

The lemma follows from the proof of [3, Lemma 2.2]. Observe that condi- 
tion (2.6) is invariant under multiplication of P by elliptic N • N systems of pseudo- 
differential operators and symplectic changes of coordinates. This follows from the 
fact that 

(2.7) d( apb ) = ( da )pb + a( dp ) b + ap db, 

which also gives the invariance of the following definition. 

Definition 2.3. We say that ~ET~(T*X), wEE2, is non-degenerate with re- 
spect to P if condition (2.6) holds. The variable tEC~176 is non-degenerate 
with respect to P at w E E2 if the corresponding Hamilton field Ht is. 

In the following we shall use the notation 

Alp = Ker a(P) C_ (T*X\O) x C  N. 

Now, if Zl_l_Imp and Z2E.]~fp then tZldpZ2 is zero on T~2, thus it defines an ele- 
ment in N'E2. In fact, because of (2.4), we find that .]~fp and Cokerp=Afp. are 
2 dimensional C ~ vector bundles over E2. By extending zl and z2 to C 1 sections 
over E2, we find 

O=d(tZlPZ2) =tZldpZ2 on TE2. 

We could also obtain this from Proposition 3.1 by using (2.7). 
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Definition 2.4. Let P be of transversal type and (w; z)EAfp, wEE2. Then we 
say that (w; z) is a real polarization for P if 

(2.8) ~rcdp(w)z �9 N ' E 2  

has kernel of dimension 1. If the kernel has dimension 0, then we say that (w; z) 
is a complex polarization for P. We denote the real polarizations by AfR and the 
complex polarizations by Arc. 

It follows from (2.7) that this definition is invariant under multiplication of P 
by elliptic N x N systems of pseudo-differential operators and symplectic changes 
of coordinates. Observe that it follows from Proposition 3.1 together with (2.7) 
that the kernel of ~rcdp(w)z is contained in the radical of Hessdetp(w), so the 
dimension must be <1, which gives AfRuJY'c=Afp over E2. Next, we define the 
H(s) polarization set, where H(8) is the usual Sobolev space. 

Definition 2.5. For uED'(X, C N) we define the polarization sets 

(2.9) WFpol(U ) = (']AZ B c_ (T*X\O) • C N, 

where Afs=Kera(B), and the intersection is taken over those I •  systems 
BEO2~ such that BuEH(8). 

If PC~phg is of transversal type and PuEH(8) near wEE1, then we find that 
s + m  ~r i2s+m--1  [. WFpo 1 (U)CJ~fp and also that , , ,  pol ~u) is a union of Hamilton orbits in .]~fp 

near w. In fact, P is essentially a scalar operator then, so this follows from [7, Sec- 
tion 26.1]. The Hamilton orbits are unique line bundles in ffp over bicharacteristics 
of E1 by [2, Definition 4.1]. 

We shall consider the limits of A/'p]~, when we approach E2. Let 

(2.10) Afro =AfP[sj\~2, j = 1, 2, 

which are the kernels over the simple characteristics. 

Definition 2.6. For j = l ,  2, we define the limit polarizations 

(2.11) 0Af~ = {(w, z ) � 9  E2 x C N : z =  limooz k }, 

where Zk �9 and Sj \E2 ~wk--*w. 

It is clear that 0Af~ is conical in ~ and linear in the fiber. It follows from 
Proposition 3.1 and Remark 3.2 that 0Af~ is a C ~ line bundle over E2, j = l ,  2, and 
that AfR = 0jY'~ U 0J~p. 
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3. T h e  n o r m a l  fo rm 

We shall now obtain normal forms for systems of pseudo-differential operators 
of tran.~versal type. Since the kernel of p has dimension two on E2, we shall use the 
following base for GL(2, C): let I=Id2, 

1 
(3.1) J = ( o  1 01) , K = ( ~  0 )  and L = ( O 1  10). 

P r o p o s i t i o n  3.1. Let PExX/lphg be an N • N system of transversal type at WoE 
E2, and let tEC~176 be homogeneous of order 0 and non-degenerate with respect 
to P at woEE2. Then by completing t to a symplectic coordinate system (t,X; T,~) 
of T *X  and multiplying with elliptic N x N systems of pseudo-differential operators 
of order O, we may assume that w0=(0; (0, 0, ... , 1))ET*R ~, 

(3.2) E2 = {T = ~1 = 0}, 

( 0  Q 0 )  m o d C ~ ,  (3.3) P ~ E 

where EEkg~hg is an elliptic ( N - 2 )  • (N-2 )  system of pseudo-differential operators 
and 

(3.4) Q = DtI+c~(t, x, D~)D~J+Qo(t ,  x, D~), 

microlocaUy near w0EE2. Here 0<a( t ,x ,~)  is homogeneous of degree 0 in ~, and 
Q0 ECO~(R, 0 g2phg ). /f  a(P) is real valued, then the elliptic systems can be chosen 
with real principal symbols. 

Proof. Since the result is local and we have invariant conditions, we may as- 
sume that X = R  ~. Since t is non-degenerate with respect to P, the Hamilton field 
Ht is not tangent to E2. Thus we may complete t to a homogeneous symplectic co- 
ordinate system ( t, x; T, ~), microlocally near w0 E E2, so that ~-=~1 = 0 on E2, which 
gives (3.2). 

By choosing suitable homogeneous bases for Kerp and the orthogonal comple- 
ment of Imp in C g on E2, and extending to bases of C N in a neighborhood, we 
obtain P on the form 

(3.5) [P11 P12) $1. 
P = \ P 2 1  P22 E 

Here P22 is an elliptic ( N - 2 ) x  (N-2 )  system and the principal symbols of Pll ,  
P12 and P21 vanish on E2. By constructing a parametrix for P22 and multiplying 
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P from left and right with suitable homogeneous elliptic systems of order 0, we 
obtain P on the form (3.3) near w0E~2 (see the proof of [3, Proposition 2.5]). If p 
is real valued, this can be done using elliptic systems having real principal symbols, 
making a(Q) and a(E) real. 

Now consider the 2 x 2 system Q=Pll and let q be the principal symbol of 
Q, then q(wo)=O. Since t is non-degenerate with respect to P, we find that 
detO~q(wo)=O 2 det q(wo)~O. Thus we can use the matrix version of Malgrange's 
preparation theorem in [6, Theorem 5.3] and homogeneity, to obtain 

(3.6) q = e(TI+k(t, x, ~)), 

where kEC~176 1) satisfies k=O on Z2, and e is a 2x2  homogeneous system 
satisfying le[~0. If q is real valued, then we can make e and k real valued. We 
find that de tp=  [el (T 2 +~- Tr k+  Ik[), thus condition (2.5) implies that Tr k and det k 
are real valued. By multiplication with an elliptic system of pseudo-differential 
operators of order 0, we obtain that e=I .  Since k(t,x,~)=-O when ~1=0, we may 
complete (t, T+Trk/2) to a homogeneous, symplectic coordinate system so that 
(3.2) is conserved and Trk--0 which implies det k<0. We also find that 

(3.7) k(t, x, ~) = A(t, x, ~)~1 

where AEC~176 S ~ and det A is real valued. Since TrA-=0 we obtain 

(3.8) A =-- ~ l J + a 2 K + a 3 L  

with ~j EC~176 S~ 
Next, we are going to obtain a normal form for A. If BESL(2, C), then the 

conjugation A~--~B-1AB preserves the determinant and the trace, thus d e t A =  
2 2 2 -a l -c~2+c~ 3 is preserved. This gives a Lie group homomorphism SL(2, C)-~ 

SOc(2,  1) which is easily seen to be surjective. In fact, it is a double cover of 
SOc(2,  1)~-SO(3, C), which gives a representation of the complex spinor group 
Spin(3, C)~SL(2,  C). When BESL(2, R) is real valued, we get the Lie group ho- 
momorphism SL(2, R)-*SOR(2,  1) which also is surjective (it gives a representation 
of the real spinor group Spin(3, R)). Condition (2.3) implies that de tA<0,  thus 
by conjugating with a homogeneous elliptic system of pseudo-differential operators 
of order 0, we obtain that A=(~J, where c~(t,x,~)EC~176 S ~ satisfies ~ > 0  in a 
conical neighborhood of w0E~2. When A is real valued, i.e., c~j are real valued V j ,  
this can be done using elliptic systems with real principal symbols. 

If q0 ES ~ is the term homogeneous of degree 0 in the expansion of Q, then the 
matrix version of Malgrange's division theorem in [6, Theorem 5.9] and homogeneity 
give 

(3.9) qo = B-lq+Qo, 
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where Qo(t,x,~)ECoo(R, S ~ and B_IES -1. By multiplying Q with an-operator 
with symbol I -B_1 ,  we may assume B _ I - 0 .  Using this repeatedly, we obtain 
(3.4) by induction over lower order terms. [] 

The normal form (3.4) immediately gives the following 

Remark 3.2. If we consider the 2• system P=Q in (3.4), and put Sj= 
{T=(-1)Jc~l} then 

(3.10) 0Af~ = E2 • {z.t(cos(lrj/2), sin(rj/2)) :z E C}, 

and it is easy to see that OAf~UOJ~p=AfR. We also find that A/'~ extends to a C ~ 
line bundle over Sj, j=l ,  2. We shall later use the fact that, if wEOAf]~, and vEOAf~ 
at w0eE2 and j~=k, then (2.7) and (3.4) imply that w*dp(wo)v-O. Observe that 
by using for example [11, Proposition 2.1] we may choose homogeneous, symplectic 
coordinates such that E={T2------~2}, which gives det A----1 in (3.7) and a - 1  in (3.4). 
But then we may have to change the t variable. 

4. T he  transport  equat ions  

In this section, we shall compute some higher order invariants of the systems 
of transversal type. Let P be a 2 • 2 system of transversal type near Wo E ~2, on the 
form in (3.4). Thus, 

(4.1) P--- D~I+r x, D=)J+po(t, x, Dx), 

where ~(t, x, ~)--~(t, x, ~)~1, ~ and P0 ECoo (R, S0hg), and c~(t, x, ~) >0. Recall that 
J, K and L are defined by (3.1), thus det a(P)--T2--r 2. 

Now we shall study how the symbol behaves, when applied on a C ~ section 
of C 2 over ~.2- In order to keep P a system of pseudo-differential operators in the 
x variables and a(P) symmetric, we shall conjugate P with systems independent 
of T, with values in SO(2, C). In what follows, we shall suppress the t dependence 
and write S "~ instead of Coo(R, S m) for example. 

Thus, let AE~0hg be a 2• 2 system with homogeneous principal symbol 

(4.2) a = cos(0)I+sin(0)L, 0(t, x, ~) E S ~ 

Then A is elliptic, with microlocal parametrix A -1. We find a(A-1)=a(tA)= 
cos(0)I-sin(0)L. We have 

(4.3) a (APA- 1) = ~-I + cos (20) ~J + sin (20) CK. 

Let Ro be the set of symbols rES ~ such that ri~l=oES -1. 
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L e m m a  4.1. With P and A defined by (4.1)-(4.2), we get the symbol expan- 
sion 
(4.4) 

Pl l  P12 if Pll  P12 , ['D120 
APA-l = \ p21 P22 ) ~ \p12 p22 ) _t_ ~ D220 _D120 ) + { fn  (O)f21(O) f22(o)f12(O) ~; 

modulo Ro. Here p~j=a(P~j), DjkO=O~pjkDt~+O~lpjkD~lO~(1/i)HpjkO modRo, 
and {fjk }ES ~ are C ~ functions of ~, depending linearly on Po. 

Proof. We only have to compute the term of order zero in the expansion of 
APA -1, which is equal to 

(4.5) apoa-l +a(Dta-l +O~ipD~la -1) modRo, 

since AA-I,~I modulo C ~ Since d(a-1)=-a-ldOL, we find 

(4.6) aO~pD~:la-l=-aO~ipa-lDx~OL,,~-O~(apa-1)D~OL mod R0, 

which proves the lemma. [] 

Now recall that E=S1US~, where we can put 

(4.7) Sj -~ {T ---- (--X)Jo~l}. 

It is clear from the normal form (4.1) that the fiber of 

(4.8) O.M~p = .MP [ S ~ \ ~2 

is spanned by t(0, 1) when j = l ,  and t(1,0) when j = 2 .  
Assume now that t(0, 1)EKera(APA -1) over $1, which means that 0_=kr on 

$1, where kEZ, say k=0. Since ~ is independent of T, we find 8=0. If Pij is defined 
by (4.4), we find that p12=0. Then P12EC~(R,  0 kOphg ) has principal symbol equal 
to 

(4.9) o'(P12),',.,f12(O)--~(Po)12 mod Ro. 

By multiplicating P with the transposed cofactor matrix, we obtain the wave 
system 

(4.10) Q=tPC~ P22Pll-P12P21 [P22, P12] ) = ( q n  q12) 
[Pll, P21] P11P22-P21P12 \q21 q22 ' 

which has principal symbol a(Q)=(T2-~2)I. It is easy to see that Q satisfies the 
microlocal Levi condition: a~ub(Q)=0 on E2. (Here asub(Q) is the subprincipal 
symbol of Q.) We are going to compute the coupling term q12 = [P22, P12]. Since we 
are going to compute the symbols modulo R0 D S-1, we shall use the same notation 
for the operator as for its principal symbol. 
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P r o p o s i t i o n  4.2. Let Pij be defined by (4.4). Then we find the commutator 

(4.11) [P12,P22]~BPlt+K modI ,  

where I is the left module over ~~ generated by P12, P22. Here B, g e ~ ~  have 
symbols 

(4.12) 
(4.13) 

B ~ D228+~(O), 

K N D11D220-D12D120+Vl(O)D~:~O+Vo(O) modR0 

where t3 and Vj are C ~ functions of 8, j=O, 1, and ~(nlr/2)=O for nEZ. When 
poERo and Ot~={7-,~} vanishes of second order at ~2 (i.e., OtaeRo), we obtain 1~ 
and ~/jERo. When 8 is real valued, we find that il~(O) is real valued. 

This result follows immediately from [3, Proposition 3.2] by substituting ~ for 
r and 0 for r then Adp--(O,O,O,~), which implies ~(n~r/2)=O for nEZ. 

Next, we shall compute the coupling term [P12, P22] when 28/Tr~Z, i.e., dp12 
and dp22 span the (complexified) conormal bundle of ~2. Thus t (_  sin(P), cos(P)) 
is a complex polarization vector for P i.e., *(0, 1) is a complex polarization vector 
for the conjugated system in (4.4). It is then clear that {p12,P22}=clP12+c2P22 for 
some homogeneous cj. 

P r o p o s i t i o n  4.3. Let Pij be defined by (4.4), a s s u m e  w0�9 2 and 2O(wo)/lr~ 
Z. Then the commutator 

0 (4.14) [P12, P22] ~ Ko �9 k~phg modI ,  

microlocally near wo, where I is the left k~phg~ module generated by P12 and P22. We 
have 

(4.15) a(Ko) ~ D20-  a2D~l 0 -  2 cot (20)((DtO) 2 - a 2 (D,I 0) 2) +2 cot(20)D220f12 (0) 

modulo Ro and C ~ functions of 0 which are affine in DO=(DtO, D~O). 

Proof. We axe going to use the formula (4.11). First, we note that when 2 0 / ~  
Z, then 

(4.16) pll=P22-2cot(20)p12, 

thus we find from (4.4) 

(4.17) P11,,~P22§ mod Ro. 
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This implies that the symbol of BPn mod I is equal to 

(4.18) 2D22~D128-2 cot(28)(D228+/3(8))(DnS-f12) 

modulo R0 and C ~ terms which are affine functions of D~. Since/3(8)---0 when 
8=n~r/2, we find that this is equal to 

(4.19) 2D228D128 - 2 cot(28) (D228Dl18 - D228f12) 

modulo C ~ terms which are affine hmctions of DS. Now 2D228D128,,~2DtSD128+ 
2 cot(2~?)a ~ sin2(28)(Dx,8) 2 mod R0, so (4.19) is equal to 

(4.20) -2cot(28)((Dt8)2-a2(Dx,8)2-f120228)+2DtSD128. 

It is easy to compute from (4.13) that 

(4.21) g N D2tS-a202 8-2a(sin(28)DuS+cos(28)D128)D~18 

modulo Ro and C ~ terms which are affine in DO. Since sin(28)DnS+cos(28)D128= 
sin(28)DtS, we get the result from (4.20) and (4.21). [] 

Next, we shall consider the case when 8=0 but B ~ 0  at w0EE2, where B is 
given by (4.12). Let 

(4.22) P0 = P n  +F,  

o where FE~phg has principal symbol equal to K/B.  By the formula (4.11) we 
find that [P12,P22]~BPo m o d I  and Ro. We shall now compute the higher order 
commutators. Since dp11 and dp22 span the normal bundle of E2, we can write 

(4.23) [Pj2, P0] Ej 0 ,-~ E~phg modM, j = l , 2 ,  

where M is the left II/phg0 module generated by P0, P12 and P22. 
The following result follows from the proof of [3, Proposition 3.4] by substitut- 

ing r for r and 0 for ~2. 

P ropos i t i on  4.4. Let P~j be given by (4.4), Po by (4.22) and Ej by (4.23). 
Then we find the symbols 

E1 ~ DnG+ D12F +r1(8, Dx~8, G, F), 
(4.24) / E2 "~ D12G + D22 F + r2( 8, D,  IS, G, F) 

0 is a C ~176 function of ~, 8, G and F, an modulo Ro. Here G=2Dt8 and rjE~ph ~ 
affine function of D~ 8 and homogeneous in ~, j=  1, 2. 

Now, if 8=0 and B ~ 0  at w0EE2, then D228~0, so 8~0 near Wo. In that case 
both Ko and Ej  are defined, and we shall study the relation between their principal 
symbols. 
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Proposition 4.5. Assume 0=0 and Br at w0E~2, where B is given by 
(4.12). Let Ko be defined by (4.14) and Ej by (4.23). When 20/~itZ we find 

(4.25) Ej,,~B-1Dj2Ko+CjKo modRo, j = 1 , 2 ,  

for some CjEC ~176 This implies that Ej~O==* Ko~O modS -1 on E2. 

Proof. Observe that, (4.14) implies that KoEM when 20/~r~Z. From (4.11), 
(4.14) and (4.22) we find, when 20 / f eZ ,  

(4.26) [P12, P22] N BPo ~ Ko mod I. 

If we commute elements in I with Pj2 we get elements in M. Thus we find, when 
20/ r 

(4.27) [52, B]Po+B[Pj2, Po] ~ [52, Ko] modM. 

By (4.23), this gives (4.25). Since d0~0 we obtain the last statement. [7 

Later, we shall use the wave operator to estimate the coupling term. For 
that purpose we need the following proposition, which follows from the proof of 
[3, Proposition 3.5]. 

P ropos i t ion  4.6. Let Po be defined by (4.22), q22 be defined by (4.10) and 
Rl={Ae~lphg:a(A)=O on E2}. Then we find that the symbol of [q22, P0], modulo 
k~~ R1Po, ~~ R1Pj2, is equal to 

(4.28) DllE2-D12El+g1El+g2E2 modR0, 

where Ej is given by (4.23). We find gjES ~ is a C ~ function of ~, 0 and F, an 
affine function of DO and homogeneous in ~, j =  l, 2. 

Now we want to change F so that (4.28) is in Ro and the relation (4.11) is 
preserved, i.e., 

(4.29) [P12, P22] = BPo+B1P12+B2P22 +R 

holds with RERo (which means that B F = K  on E2). This is guaranteed by the 
following proposition, which follows from the proof of [3, Proposition 3.6]. This also 
gives an additional transport equation for E1 and E2. 
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P r o p o s i t i o n  4.7. Let Pij be given by (4.4), Po by (4.22) with FE~~  and 
R by (4.29). Assume that RERo when t=O, then RERo for 0 < t < T  if and only if 

(4.30) D22E1-D12E2+flE1+f2E2=O onE2 forO<t<T,  

modulo S -1. Here Ej is given by (4.23) and f jES~ is a C ~176 function of ~, O, an 
affine function of DO and homogeneous in ~, j= l ,  2. 

If we let U=t(G, F, O, El, E2), then by using (4.24), (4.30), the fact that  DtO= 
G/2, and letting (4.28) be zero on E2, we get a first order quasilinear system in the 
variables (t, xl)  on E2: 

(4.31) DtU+A(t,x,~I' ,U,D~)U+Ao(t,x,~",U)=O on E2. 

Here 

(4.32) A = ( -~1D~1 oL2Dxl d13 0 0 ) 
o~2Dxl a lD~l  d23 0 0 

0 0 0 0 
0 d43 al Dx 1 -o~2Dxl 
0 d53 -o~2Dxl -oqDxl 

with a l  = a  cos(28), a 2 = a  sin(20), and dj3 is a first order differential operator in xl ,  
j 53, x= (xl, xn). This is a system of first order differential operators in xl depend- 
ing C ~ on t, Xl, the function U and the parameters (x",~"),  and A0 is a C ~176 
function of t, x, ~" and U. Since (4.31) is an equation on E2, we find that ~1 = 0  in 
A and A0. 

P r o p o s i t i o n  4.8. Let A be given by (4.32) and Ao be a C ~176 function of t, x, 
~" and U with values in C 5. Then the Cauchy problem 

(4.33) 
{ DtU+A(t,x,~ '1, U, Dx,)U+Ao(t,x,~", U) =0, 

U(O,x,C) =Uo(x,C) ~C% 

has a unique Coo solution U in a neighborhood ~ of (0, x0, ~1). The solution U 
depends continuously on Uo, A and Ao in the Coo topology. The neighborhood 
only depends on the Coo norms of Uo, A and Ao. 

Proof. We find that a(A)(~l) is symmetrizable by putting ~l=c~sin(20)~l and 
72 = a  cos(20)~l in the proof of Proposition 3.8 in [3]. As in that  proof, we get the 
result from the proof of Theorem 5.6 in [10, Chapter 4]. [] 
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Remark 4.9. We find that  the initial values UIt=o=Uo are determined uniquely 
by the values of DtJSlt=o for j_<3. This follows from the fact that  the mapping 

(4.34) (8, DtS, D28, D30) I~=0 ~-+ (8, G, F, E~)tt=o 

is a diffeomorphism when B # 0 ,  and E1 I*=o is determined by (4.24). Since A and 
A0 are homogeneous of degree 0 in {", we may choose f~ conical and U homogeneous 
in ~", if Uo is homogeneous in ~". 

5. Invariants of  the sys tem 

Let  PE~pr~g be an N x N  system of transversal type. Then, we find that  P is of 

real principal type on El,  d imAf~=l ,  and Af~ is foliated by Hamilton orbits, which 
are unique line bundles over bicharacteristics of E1 (see Definitions 3.1 and 4.1 

s + r a - - 1  ~ in [2]). We find that  the polarization set WFpo I (u) is a union of Hamilton orbits 
when PuE H(,), according to the proof of Theorem 4.2 in [2]. We shall analyze what 
happens when approaching E2. In the following, a C ~ curve on a C ~ manifold 
M is an injective immersion of a compact interval I c R  into M. We say that  a 
sequence of Coo curves converges to a Coo curve, if there exist parametrizations 
of the curves, on a fixed interval, that converge in Coo. A sequence of Hamilton 
orbits converges, if it does as a sequence of curves in T*X  x pN-1.  Now, $1 and 
$2 are transversal at E2, so their Hamilton fields are non-parallel on E2. Since 
E2 is invohitive of codimension 2, the Hamilton fields of Sj are tangent to E2 and 
generate the two-dimensional foliation of E2. By using Proposition 3.1, we obtain 
the following proposition from Remark 3.2. 

Proposi t ion 5.1. We find that OAfJp is foliated by limit Hamilton orbits, which 
are limits of Hamilton orbits in Jr'JR, and are unique line bundles over bicharacter- 
istics in Sj at P,2 for j---l, 2. 

Over P~2, the singularities may be carried by limits of Hamilton orbits. We shall 
m now consider the limit Hamilton orbit case. As before, we assume that  PE~phg 

is of transversal type at woEP,2. Let IZC0.A/'~, be a Coo line bundle over a leaf L 
of the foliation of E2, it is no restriction to assume that  j - -1.  Since 0A/'~ is one 
dimensional and foliated by limit Hamilton orbits, we find that  Y is a union of limit 
Hamilton orbits. We shall define an invariant of 1}. Choose V E ~I/0hg and WE~X/phgl-rn 

so that  a(V) span V over L and a(W) span 0J~p. over P'2. (The adjoint P* is also 
of transversal type.) By Remark 3.2 we find that  a(W)*dpa(V)-O on L. Put  

(5.1) K -- W * P V  e ~ h g ,  

and X=asub(K)IL. Clearly, a ( K ) = 0  and da(K)--O on L. Thus, the subprincipal 
symbol asub(K) is well-defined on L. 
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Propos i t ion  5.2. Let K be given by (5.1) with the conditions above. Then we 
find that x~asub ( K)IL, modulo non-vanishing factors, is invariant under conjuga- 
tion of P by elliptic, scalar Fourier integral operators, corresponding to homogeneous 
canonical transformations on T ' X ,  multiplication of P by elliptic N x N systems of 
pseudo-differential operators, and is independent of the choices of V and W. 

Proof. Since x is the value of a subprincipal symbol for an operator whose prin- 
cipal symbol vanishes of second order, it is invariant under elliptic, scalar Fourier in- 
tegral operators, corresponding to homogeneous canonical transformations on T*X. 
Clearly, V and W are unique, modulo elliptic operators and terms in ~Ohg and lI/phgl-m 
having principal symbols vanishing on L and E2, respectively. Let 

(5.2) RL = {A �9 ~ h g :  a(A) = da(a) = a,ub(A) = 0 on L}, 

then terms in RL do not change the value of x. If A �9 ~/phglt has principal symbol 
vanishing on E2, BEq2phg has principal symbol vanishing on L, and # + v = l ,  then 
the calculus gives AB and BAERL because E2 is involutive. Since a(PV)=O on L 
and a(W*P)=0 on E2, this gives invariance of K modulo RL when a(V) and a(W) 
are fixed on L and E2 respectively. Now, replacing V by VA, and W by W B  where 
A and B are elliptic, replaces K by B*KA, which gives a non-vanishing factor in x. 
Multiplication of P by elliptic systems only has the effect of changing lower order 
terms in V and W, which proves the invariance. [] 

Definition 5.3. We call ~,,~Crsub(K)l L modulo non-vanishing factors, the trace 
of the C ~ line bundle ~CAfR over L, where L is a leaf of the foliation of E2. 

In particular, we find that the condition that the trace vanishes identically on 
L is invariant. Next, we shall consider the complex polarization case. Let L be a 
leaf of the foliation of E2 and ~CAfe a line bundle over L. Choose V�9176 and 

W1, W, rq21--m SO that a(Y) span Y over L and a(W1), a(W2) span Alp* over E2. 2 ~ phg 

Put 

(5.3) Pj = W~ PV �9 q21hg, 

then dpl and dp2 span N~E2 over C by Definition 2.4, since )2CAre and ]q'p. _1_ Imp. 
Since E2 is involutive and p j=0  on E2, we can find al and a2ES ~ so that {Pl,P2}- 
alpl-a2P2 vanishes of second order on L. Since dpl and dp2 are linearly indepen- 
dent in N~E2, we find that al and a2 are uniquely determined on L. Let Aj E~~ 
have principal symbol aj, j----l, 2, and put 

(5.4) k ~ asub ([P1, P2] -ALP1 -A2P2)IL, 

which is then well-defined. 
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Propos i t ion  5.4. We find that k in (5.4), modulo non-vanishing factors, is 
invariant under conjugation of P by elliptic, scalar Fourier integral operators, cor- 
responding to homogeneous canonical transformations on T ' X ,  multiplication of P 
by elliptic N • N systems of pseudo-differential operators, and is independent of the 
choices of V, Wj and A t, j = 1, 2. 

Proof. Since k is the value of a subprincipal symbol for an operator whose prin- 
cipal symbol vanishes of second order, it is invariant under elliptic, scalar Fourier in- 
tegral operators, corresponding to homogeneous canonical transformations on T*X. 
Clearly, V and W1, W2 axe unique, modulo elliptic operators and terms in iI/phg0 

and II/phgl-m having principal symbols vanishing on L and E2, respectively. Let RL 
be defined by (5.2), then terms in RL do not contribute to k. As before, if AE~p~hg 
and BE~phg have principal symbols vanishing on L and E2 respectively, # + v = l ,  
then the calculus gives AB and BAERL. Since a(PV)=O on L and a(W]P)=O 
on E2, this gives invariance of k when a(V) and a(Wj) are fixed on L and E2 
respectively. Similarly, different choices of A t also give terms in RL. 

0 is elliptic, replaces Pj by PjA. Since Now, replacing V by VA, where AE~I/phg 

[P1A, P2A] = [P1, A]P2 A + A[P~ , P2]A + [A, P2]PI A 

this gives a non-vanishing factor in k. Replacing Wj by 1 2 WI B~ + W2B~ , replaces Pj 
by B~ +B~2*P2. Since 

[B 1 Pj,B2 Pk]=B1 [Pj,B2 ]Pk+BI B2 [Pj,Pk]+[B 1 ,B  2 Pk]Pj (5 .6 )  5 ,  ~ ,  5 ,  k,  5 ,  k,  5 ,  k,  

this also gives a non-vanishing factor in k. Multiplication of P by elliptic systems 
only has the effect of changing lower order terms in V and Wj, which proves the 
invariance. [] 

Definition 5.5. We call k,,~a(K)[L modulo non-vanishing factors, the curvature 
of the C ~ line bundle ~CAfo over L, where L is a leaf of the foliation of E2. 

In particular, the condition that the curvature of the line bundle vanishes iden- 
tically on L is invariant. We are going to show later that those line bundles may 
carry polarization, thus we make the following definition. 

Definition 5.6. Let P be an N x N  system of transversal type. A complex 
Hamilton orbit is a C ~ line bundle VCAfo over a leaf L of the foliation of E2, for 
which the curvature identically vanishes. 
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Example 5.7. If we consider the system in (4.4), then it follows that  t(0, 1) spans 
a complex Hamilton orbit over a leaf of ~-]2, if and only if 2 0 / r ~ Z  and a(Ko)ln2 -0 
in (4.15). 

Polarization may also be carried by line bundles, which are real at a point 
w0E~2, but not tangent to any limit Hamilton orbit. This implies that  dO,O, thus 
the polarization is complex at points arbitrarily close to wo. At these points, the 
curvature k is well-defined, according to Definition 5.5. 

Definition 5.8. Let P be of transversal type at w0EE2. A coherent Hamilton 
orbit through w0 is a C ~ line bundle 1;cAlF over a leaf of the foliation L of ~2, 
such that  1;[~o cAfR but l; is not tangent to any limit Hamilton orbit at w0, and 
the curvature of 1; vanishes identically in the open set where 1;cAre. 

Example 5.9. We find that  t(0, 1) spans a coherent Hamilton orbit through woe 
)]'2 over a leaf of )-]2 for the system in (4.4), if and only if 20(wo)/zcEZ, Hp2~O(Wo)-- 
iB(wo)r in (4.12), and cr(K0)[~.2-=0 in (4.15) when 20/Tr~Z. This implies that  
a(Ej)-O on ~2 by Proposition 4.5, where Ej  is defined by (4.23). 

6. The propagation of  polarization 

We shall now prove the results on the propagation of polarization. First we 
consider the case when there is no polarization condition. We say that  uEH(s) 
at  wET*Ftn\O, i.e., w~WF(s)(u), if u=ul-bu2 where ulEH(~) and wCWF(u2). 
Let 

(6.1) s*(w)=sup{sER:uEH(8) at w), wET*X\O, 

be the regularity function. 

Since E2 is involutive, it has a natural foliation given by the Hamilton fields of 
the normal vectors. The Hessian of q in (2.3) gives an invariant Lorentz structure 
on the leaves of this foliation, by the natural identification of the tangent space of 
the leaves with the normal bundle via the symplectic form (see [9, Lemma 2.5]). 
Since the Hessian is hyperbolic of rank 2, we get four different wave cones in the 
tangent space of the leaves. Let U be a conical neighborhood of w0E~2. We define 
a local propagation cone CJoCU , 0<j_<3, so that  C~o is the closure of the set of 
wEE2 lying in the same leaf as w0, such that  there is a C 1 curve in U joining w0 
and w, having tangent which is everywhere in the interior of one of the wave cones. 
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T h e o r e m  6.1. Let PEgY~g(X) be an N x N  system of transversal type at 
w0EE2, and assume that uEI)'(X,C N) satisfies S*pu>s-m§ at Wo. If s~>s in 
one of the propagation cones CJwo \ wo microlocaUy near wo, then s*> s at Wo. 

Proof. By multiplication and conjugation with elliptic, scalar pseudo-differ- 
ential operators, we may assume that  m=l. By Proposition 3.1 we may assume 
that  the coordinates (t, x) are chosen so that  E2=(T=~I ----0}, P is on the form (3.3), 
and t=O at w0. Also we may assume that  S*p,>S in U, and s*>s in the propagation 
cone f~=(C~o \wo)QU contained in t<0,  for some conical neighborhood U of w0. 
Clearly, we may assume that  N=2 and P=Q is on the form (3.4). In fact, since 
EEgllphg in (3.3) is elliptic, we obtain ujEH(s+l) when j > 2 .  

By conjugating with a scalar pseudo-differential operator, it is clear that  it 
suffices to prove that  ueH(o) at Wo if PueH(~) in U and uEH(~) in f~, for some 
~>0 which is fixed in what follows. By Proposition A.1, we may assume that  for 
any N and 5>0 we have 

(6.2) <- 0 )  - N  when I'l > 

which implies that  ~ 0  in WF(u).  We are going to use the Sobolev spaces H(r,8) 
and H~r,s ) with norms defined by (A.1) and (A.6). Let Q=tpcop, then QuEH(~,_I) 
in U. Since we may assume 5<1, Lemma A.3 implies that  Pu and Qu satisfy (6.2). 
If we choose 5<e  in (6.2), we find QuEH~o,_I) in ~r0(Un~2) by (A.11), where 
Zro(t,x;~',~)=(t,x,~). Similarly, since u and PuEH(~) in f~, we obtain that  uE 
H~o)--H~0,0 ) and DtuEH~o,_l) in 7ro~. Then 

(6.3) (u, Dtu)lt=r e H(0,o) x H(0,-1) at ir ( f~n{t  = r})  

for almost all r<0 ,  close to 0, where ir(r,x;O,~)=(x,~). Proposition B.1 in Ap- 
pendix B with Q=tpcop gives uEH~o ) at ~r0w0, and Lemma A.3 gives uEH(o) 
at Wo. [] 

Over ~ 1 = ~ \ ~ 2 ,  the polarization set WFpol(U ) is a union of Hamilton orbits 
when PuEH(s-m+I), since P is of real principal type there (see Definitions 3.1 
and 4.1 in [2]). Over E2, the singularities may be carried by limits of Hamilton 
orbits. We are going to consider the limit Hamilton orbit case. As before, we 
assume that  PE~p~g is of transversal type at w0E~2. Let VC__.~fp be a C ~ line 
bundle over Sj, for example j = l  (see Remark 3.2). Since $1 is a union of (limits 
of) bicharacteristics, V is a union of (limits of) Hamilton orbits over $1, and we 
have OAf~=V[~ 2. Let x be the trace of V over E2 as defined by Definition 5.3, and 
let lrl be the projection T*lCt n x cN---+T*Ft n given by rl(W, z)=w. 
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T h e o r e m  6.2. Let P E ~ pmhg be an N x N system of transversal type at wo E Z2, 
and let AEk~~ be a I x N  system such that the dimension of the fiber of AfAMAfp 
is equal to 1 at wo, and MA=~rl(AfAMAfp\O) is a hypersurface near wo. Let ;4 be 
the trace of AfAM.hfp over Z2 and 07tD the Hamilton field of MA. Assume that 

(6.4) D2x +cl D x  +cox--  0 

near wo, for some ej 6C~176 If uEIY(X,  C N) satisfies min(s~ ,~+m-  1, s~ +1) > 
s at Wo and S*A~>S in one of the propagation cones C~o\WO microlocaUy near wo, 
then we find s*A~ > s at Wo. 

In this case MA--S  i for some j ,  the dimension of AfAMAfp is equal to one on Sj, 
A/[AMAfp[m 2 =ON/,,  and AfA MAfp is a union of (limit) Hamilton orbits. Observe that  
the trace is defined up to a non-vanishing factor, thus (6.4) is well-defined. The 
conclusion implies that  WFpol(u)C_AfAMAf P at w0. 

Proof. As in the proof of Theorem 6.1, we may assume that  m- - l ,  N--2 and 
P = Q  is on the form in Proposition 3.1. It suffices to prove that  AuEH(o) at wo, 
if PuEH(~), uEH(~_I) in U and Au6H(~) in f~=(C~o\Wo)MU for some conical 
neighborhood U of w0E~u and some e>0,  which is fixed in what follows. Clearly, 
we may assume the coordinates chosen so that  t - 0  at w0 and t < 0  in ~. 

By using the matrix version of the Malgrange preparation theorem in [6, The- 
orem 5.9] as in the proof of Proposition 3.1, we may assume that  AEC~176 0 
is independent of T. Clearly, it is no restriction to assume 

MA = S1 = {T = --O~l}. 

Since J~fANJ~fp=J~fp over  $1\E2, we find a(A)=t(e, 0) o n  $ 1 , 0 r  0. Since a(A) 
is independent of T and uEH(~_I), we obtain that  ulEH(e). We can assume that  
u satisfies (6.2) with 0<5<1 ,  which by Lemma A.3 also holds for Pu, Au and Qu, 
where Q=,pr By choosing 5<e  in (6.2) we obtain QuEH~o,_I) and PueH~o ) 
(which implies DePuEH~o,_l) ) in r0(UME2). Also, we find u 16H~0), DtUl 6H~0,_l) 
in ~r0fl and ueH~_D, ntuEH~_l,_l  ) in ~r0(UM~2) by Lemma A.3. 

By Proposition 3.1, we find P12 and P21EC~(R,  o kOphg ) and by the invariance 
given by Proposition 5.2 we find that  a(P12)l~2 is proportional to the trace x of 
J~fANJ~fp over  E2- Now (4.10) gives 

(6.5) qllul ~ - P o u 2  modH~0,_ D in ~0(UM~2). 

Here Po=[P22,P12]eC~ o k~phg ) has principal symbol equal to D(c~) on E2, 
where c~0  and D=-iHp22 is proportional to the Hamilton field of $1. Propo- 
sition C.1 implies tha t  Pou2EH(e,_ D in ~ for any #<E, which implies DtPou2E 
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H(~,_2) in f~. By taking 5<�89 in (6.2) we obtain Pou2eH~o,_ D and DtPou2e 
H~o,_2) in ~ro~. In order to get an equation for Pou2, we use the fact that  q22 T M  

PllP22 modCoo(R, g2~ to get 

(6.6) [q22,Po]~Pll[P22, Po]+[Pll,Po]P22 mod C~176 Op ~plg). 

--1,1 By equation (6.4) we find [P22,Po]~-C1Po-CoP12 modulo  Coo(R,~phg ) with 
CjECOO(R, gY~ since the principal symbols are equal on {{1=0}. Here, the 

symbol classes ~llm'k are  defined in Appendix B. Thus, if aES ~ is homogeneous and =phg 
vanishes at {{1=0} then aEg/p~g 1. We obtain 

(6.7) [q22, Po] "~ [Pl l ,  Po]P22-P11(~1Po-P11CoP12 

modulo C~176 ~phl~ 2) and Coo(R, kOphlgl)D t. Since uEH~_I) , DtuEH~ 1 , Qu (-- ,--1) 
and DtPuEH~o,_I) in 7r0(UM22), this gives 

(6.8) (q22-{-PllC1)Pou 2 ~ (Po[P21, P l l ] - [ P l l  , Po]P21--~-PllCoPll)Ul modH~o,_u) 

in ~r0(UM~2). As in the proof of Theorem 6.1 we find that  

(6.9) (ul, Dt ul, Pou2, D, Pou2) E H~o) • H~o,_ 1) • H~o,_ 1) • H~o,_ 2) 

in zr0~. This gives by Fubmi's theorem 

(6.1o) (Ul, DtUl, Pou2, DtPou2)]t=~ E H(o) • H(o,-1) • H(o,-1) • H(o,-2) 

at ir(~M{t--r}), for almost all r<0.  
By using equation (6.5) to eliminate the term CoD2ul in equation (6.8), we 

find that  (6.5), (6.8) and (6.10) form a Cauchy problem for (ul,Pou2), with a 
2 x 2 system Q on the form (B.6)-(B.8). Then Proposition B.2 with r=s=O gives 
(Ul,Pou2)eH~o) XH~o,_l) at row0, proving the result by Lemma A.3. [] 

Next, we shall consider the complex polarization case. Then we need no trans- 
port equation like (6.4), but the conclusion is weaker than in the limit Hamilton 
orbit case. 

T h e o r e m  6.3. Let P E gJ~hg be an N x N system of transversal type at Wo E•2, 
and let AE~~ be a 1 •  system, such that the dimension of the fiber Of fl, fANJ\fp 
is equal to 1 over Wo. Assume that A/'AMA/'pCAf o at wo. Let uE:D'(X, C N) satisfy 
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m i n ( s ~  + m -  1, s* + 1) > s at wo. If S*A~ > S in one of the propagation cones C~o \ wo 
microlocally near wo, then WFpol(U)CAfAMflfp at Wo. 

Proof. As in the proof of Theorem 6.1, we may assume that  r e = l ,  s=0 ,  N = 2 ,  
and P=Q is on the form in Proposition 3.1. Also, we may assume that  PuEH(~) and 
u E H(e_l) in a conical neighborhood U of w0 E E2, Au E H(e) in the propagation cone 

= (C~o \Wo)MU for some ~ > 0, and we shall prove that  WF~ N.Afp at Wo. 
As before, we may assume tha t  the coordinates are chosen so that  t < 0  in ~t and 
t = 0  at Wo, and AeC~(R, ~~ ) is independent of ~. We have a(A)=(al, a2)r  
0, since .AfAN.Af P is one-dimensional over w0. In order to avoid that  a2+a2=O 
at wo, we may conjugate P by a constant diagonal matrix with different, non- 
vanishing diagonal elements, which preserves the normal form (3.4). Thus we may 
assume a(A)=--e.t(cos(O), sin(0)), O~eeS ~ where 20(w)/Tr~Z in U after shrinking 
the neighborhood, since J~fANJ~fp C.N'O over wo. 

Now we shall use the base change (4.2), which transforms a(A) into t(e, 0), 
O~eCS ~ Since uEH(~_I) in U, we find that  UlEH(~) in ~. Let Q=tpcop be 
the 2•  system defined by (4.10), then QuEH(e,_I) in U. As in the proof of 
Theorem 6.1, we may assume tha t  u, P u  and Qu satisfies condition (6.2). By 
choosing 5_<e in (6.2) we obtain UlEH~o), DtuiEH~o,_l) in ~roft, and PuEH~o), 
ucH~_I) and QuEH(o,_ D in ro(UME2). Now, by Proposition 4.3 we can find 

Aj EC~ ~0phg), so that  

(6.12) [P12, P22]-A1Px2-A2P22 = K 0  E C ~ ( R ,  o Vphg) 

since 2 0 / r ~ Z  in U. We find that  

(6.13) q11ul~-AiPllUlA-A2P21Ul ,,~Kou2 modH~o,_l) 

in ~ro(UME2). 
We shall first consider the case when KoEC~176 q2p~g 1) in U, i.e., (4.15) is 

identically zero on E2MU. Since uEH~_I) in ro(UME2), we then obtain Kou2E 
H~o,_ D there. Thus we obtain 

(6.14) qllul+A1Pllul+A2P21ul ~0  modH~o,_l) on 7ro(UNE2) 

with initial data  

(6.15) (ul, Dtul)It=r E H(o) • H(o,-1) 

at ir(~M{t=-r}) for almost all r < 0  close to 0. Then Proposition B.1 with N = I  
gives Ul EH~o ) at 7roWo, proving the result in this case by Lemma A.3. 
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Next, we consider the case when K0~Coo(R,~p~g 1) in U, i.e., (4.15) is not 
identically zero on ~2MU. Then, we shall make the base change (4.2) for a different 
0 making (4.15) equal to zero on Z2. Let r < 0  and 0~ be a solution of a(Ko)=O on 
~2 for t>_r, such that  

{ 0~ = 0 ,  
(6.16) D,Or = DtO on {t : r}Mf~. 

By (4.15), the equation a(Ko)=O on ~2 is a homogeneous semilinear strictly hy- 
perbolic equation in the variables (t, Xl) when 2 0 / r ~ Z .  It follows that  there exists 
a homogeneous C ~ solution 0r in a fixed conical neighborhood of t : r  in ~ for r 
close to 0, since the Cauchy data and the coefficients are uniformly bounded in C ~176 
For r < 0  close enough to 0, this implies that  0r is defined at  w0, and by continuity 
20r/~r~Z in ~M{r<t_<0}. It is clear that  the initial data  (ul,DtUl) only depend 
on the values of 0 and DtO at {t=r}.  Thus condition (6.15) is preserved, and we 
also have (6.14). This gives u~=cos(Or)Ul+sin(Or)u2EH~o ) at zr0wo, thus u~eH(o) 
at w0 as before. Since O,(wo)--+O(wo) when r--*0 and WFpol(U ) is closed, we obtain 
the result. [] 

Finally, we consider the case when J~AnJ~p CJ~ R at W0EY],2, but it is not 
tangent to the limit Hamilton orbit through .l~fANJ~f P, 

T h e o r e m  6.4. Let P E gJ~g be an N • N system of transversal type at Wo E ~2, 
and let AE~~ be a 1 • N system, such that the dimension of the fiber of AfAMAfp 
is equal to 1 at wo. Assume that AfA MAfp CAf~t at wo, and assume that AfA M.hfp [~.2 
is not tangent to the limit Hamilton orbit through Af A NAf p at wo . Let u E ~)~ ( X,  C N) 
satisfy min( s*p~ + m -  1, s* + 1) > s at Wo. If  S *A~ > s in one of the propagation cones 
CJwo \ Wo microloeally near wo , then WFpol ( U ) C_Af A MAf p at Wo . 

Proof. As in the proof of Theorem 6.3, we may assume that  m-- l ,  s=O, N=2,  
and P- -Q is on the form in Proposition 3.1. Also, we may assume that  PuEH(~) and 
u E H(~_ 1) in a conical neighborhood U of w0 E ~2, and Au E H(~) in the propagation 

cone f~:(CJwo\Wo)MU for some ~>0, and we shall prove that WF~ 
at w0. As before, it is no restriction to assume that  t=O at w0 and t < 0  in ~, and we 
may assume that  AECOO(R, g2~ is independent of T. Since AfANAfpCAfR at w0, 
we may (after shrinking the neighborhood) assume that  a(A)--e.t(cos(O), sin(0)) in 
U, where O~eES ~ and 20/~rEZ at w0. 

Again, we shall use the base change (4.2), which changes a(A) into t(e, 0), er  
Since uEH(e-1) in U, we find that  ulEH(~) in f~. Let Q be the 2x2  system defined 
by (4.10), then QuEH(~,-1) in U. Since J~fANJkfp is not tangent to a limit Hamilton 
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orbit, we can find AjECOO(R, 0 kl2phg ) SO that 

(6.17) [P12, P22]-AIP12-A2P22 =BPo E Coo(R, 1 ~phg) 

by Proposition 4.2. Here the principal symbol of B E C ~ (R, ff~/phg)0 is non-zero, P0 = 
Pll +F ,  with FECOO(R, ~0phg ). By Proposition C.1 and the ellipticity of B, we find 
Pou2EH(o,_l) for 0<c in ~, which implies DtPou2EH(o,_2) there. As in the proof 
of Theorem 6.3, we may assume that u, Pu, Pou2 and Qu satisfies condition (6.2). 
By choosing 6<�89 in (6.2), we find uEH(_I) , PuEH~o), QuEH~o,_I) and DtQuc 
H~o,_2) in ro(Un~2), and ulEH~0), DtulEH~o,_l) , Pou2eH~o,_l) and DtPou2E 
H(0,_2) in r0~2. We find that 

(6.18) qllu1+A1Pllul+A2P21ul~BPou2 rood H~o,_l ) 

in 7r0(gMz2). 
Next, we need an equation for Pou2. We have by Proposition 4.6 that 

(6.19) [q22,Po]-A0q22-BoP0-B1P12-B2P22 NO in U 

--1,1 modulo Coo(R, ~phg ) if (4.28) is equal to zero on Z2MU. Here Bo=CoDt+C1, Ao, 
CoECoo(R, ~~ ) and C1, Sl,  B2ECOO(R, ~O~g). 

First, we assume that (4.28) is equal to zero on Z~MU. Then, since ueH~_~), 
we obtain by (6.19) 

(6.20) (q22-Bo)Pou2 ~ ((Po+Ao)[P21,Pll]-B1Pll-B2P21)ul modHi0,_2) 

on r0~. By the Fubini theorem we get 

(6.21) (ul, Dtul, Pou2, DtPou2)It=~ �9 H(0) x H(0,_l) • H(0,_l) • H(0,_2) 

in ir(f~M{t=r}), for almost all r. Then Proposition B.2 gives UlEH~o ) at ~r0w0, 
which proves the result by Lemma A.3 in this case. 

When (4.28) is not equal to zero on ~2, we make the base change (4.2) with 
0~ solving the system (4.31) with initial data 

(6.22) D~O~=D~O at{t=r}M~ for j < 3 .  

This does not change the initial data (6.21) by Proposition 4.2 and Remark 4.9. 
Proposition 4.8 implies that (4.31) has a homogeneous C ~ solution in a fixed conical 
neighborhood of the initial surface { t : r }M~ for - c < r < 0 .  Thus 0~ is defined 
at Wo, and by continuity we have B ~ 0  in {r~t_<0}Mf~, for r close enough to 
zero. The result above implies that u~=cos(Or)ul+sin(O~)u2eH(o) at w0. Since 

8 O~(wo)--~O(wo) as r-~O and WFpol(U ) is closed, we obtain the result. [] 
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7. T he  d is tr ibut ion  of  polarizat ion 

Next, we are going to consider the distribution of polarization sets over ~2, 
when we have a polarization condition on the solution. First we consider the limit 
Hamilton orbit case. As before, we let x be the trace of the limit Hamilton orbits 
over ~2 as defined by Definition 5.3, and let 7rl be the projection T*l:tnxcg----~ 
T 'R% 

Theorem 7.1. Let P E IIlp~g be an N • N system of transversal type at Wo E ~2, 
and let o AE~phg be a 1 • N system such that the dimension of the fiber of Af A MAfp 
is equal to 1 at Wo, and MA=lrl(AfAMflfp\o) is a hypersurface near wo. Assume 
that uET)'(X, C N) such that PuEH(s-m+I) and AuEH(s) at wo. Then WFpol(U ) 
is a union of (limit) Hamilton orbits in JkfAMAfp, and s-1 WF,o, is a union of 
limit Hamilton orbits in AfAMAfp on which the trace x of AfAM.hfp over ~2 vanishes 
identically. 

Proof. Asin the proof of Theorem 6.3 earlier, we may assume that re=l ,  s=0, 

( ;~ P12 ~ is on the form in Proposition 3.1, Pu and AuEH(o ) in a conical N = 2 ,  P =  ~ P22 } 
neighborhood U of w0 E ~2. Also, we may assume that 

MA = $1 = {T = --a~1} 

and AEC~176 ~~ ) is independent of r. Then it follows that a(A)--~(e, 0), 0#  
eES ~ but since we do not assume that uEH(-1), lower order terms in A cannot 
be ignored. By conjugating P with BEC~176 o ~phg) having a ( B ) = I  and suitable 
lower order terms, we may assume A u - E u l  in U, a(E)=e.  Then, it is clear that 

) near w0 for Q_<0. 
We find from (3.4) that P21EC~176 0 ~I/phg), which implies that P 2 2 u 2 E H ( o  ) . 

Thus, WF(e)(u2) is a union of bicharacteristics of $1 for Q<0. By the invariance 
given by Proposition 5.2 we find that a(P12)EC~176 o ~phg) is proportional to the 
trace of .]~fANJ~p over  E2- Since P12u2EH(_ D in U we get the result, because the 
(limit) Hamilton orbits in AfA N.Afp are the unique liftings of the bicharacteristics 
of S I = M A .  [] 

Finally, we shall consider the case when polarization is not tangent to a limit 
Hamilton orbit. Then the polarization is contained in complex and coherent Hamil- 
ton orbits according to the following theorem. 

Theorem 7.2. Let P E k~hg be an N x N system o/transversal type at WO E )-]~2, 
o be a 1 • N system such that the dimension of the fiber ofAfA MAfp is and let AE~dphg 

equal to 1 at wo. Assume that JY'AMflfp is not tangent to any limit Hamilton orbit 
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over wo, and that uEI) '(X,C N) satisfies min(s*p,+m--l,S*A~)>s at wo. Then 
WFpoi(U ) is a union of complex and coherent Hamilton orbits in AfA~Afp. 

This condition means that either AfAMAfpI~ o CAfo or AfAMAfp is transversal 
to the limit Hamilton orbit through AfA NJ~fp over Wo. The complex and coherent 
Hamilton orbits were defined in Definitions 5.6 and 5.8. 

Proof. As in the proof of Theorems 6.3 and 7.1, we may assume that re=l, 
s=O, N=2, P is on the form in Lemma 4.1, Pu and Au~ul  EH(~) in a conical neigh- 
borhood U of woES2 for some e>0. Then we find that 7rl(WF~ 
in U. By cutting off where IT I <CI~ I we may assume PEkO~ 

Now we have Pj2u2EH(e,_ D for j = l , 2 ,  and Proposition C.1 gives Pou2= 
[P12,P22]u2EH(Q,-1), VQ<r in U. If 20r~tZ at wo, then dp12 and dp22 span 
N*oE2. If 20/~rEZ at wo, then by assumption we have D228=B~tO, which by 
Proposition 4.2 implies that dp22 and dpo span N~oE2. In any case, there ex- 
ists 1 PjE~phg such that a(Pj)=pj-~O on E2, Pju2EH(e,_I) for Q<r j = l , 2 ,  and 
Ipll2 +lp21U + l >e(ITI2 +l~ll2), c>0. 

It follows that r E H(o) in U, if r E S~ has support where I T[+I~i ]> C(T, ~) ~ 
for C large enough and 5>0. In fact, then we have P~P1 +P~P2 = M E O p  S(m 2, g~) 
with principal symbol Ipli2+ip212>crn 2 in a g~ neighborhood of suppr Here m~ 
and g6 are defined by (A.4) and (A.5), so that S(1,g6) CS~ . Thus, we can construct 
EEOpS(m[2,g~) with support where [TI+I~II>C(T,~) ~, such that E M ~ r  in U 
modulo S -~ Since (T,~l)2a(E)E,_q~,o and Mu2EH(o,_2) in U, we find r 
there. 

Let r EC~ satisfy r  1 when Itl < 1, and X(T, ~)=r I + [~ I)/C(T, ~}~) E 
S(1, g~) for 5>0. Then u2~xu2=v modulo H(o) for C large enough, by the argu- 
ment above. Thus we only have to consider v in what follows. We have 

(7.1) Pjv= [Pj,x]u2+xPju2 EH(0) in U 

when 5<c and C is large enough, since Pju2EH(~,-1), for all Q<~, and [Pj,x]E 
Op S(1, gh) is supported modulo S -~ where I T]-t- I~I].~C(T, ~)~. Thus, we find that 
WF(0) (v) is a union of leaves of the foliation of E2. 

By Definition 5.8, it remains to prove that vEH(0) when AfAAAfpCAfc and 
the curvature k of J~fANJ~fp over  ~]2 is non-zero. By Proposition 5.4, the curvature 
is proportional to a(Ko)1~.2, where 

(7.2) Ko = [P12, P22]-ALP12 - A2P22 E S O 1,0 

o Since we find in (7.1) that KovEH(o ) when for suitable Aj EkOphg. gou2EH(e,_l) , as 
5<e. When a(Ko)~O we obtain vEH(o). This completes the proof. [] 
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Appendix  A. Some technical  l emmas 

We also need some technical preparation. The following is more or less an 
adaptation of some propositions in [3] but we repeat the proofs here, since they are 
short. Let H(r,s) be the space of uES  ~ satisfying 

(A.1) 
? 

2 / I~(~, 5) 1 ~((~, 5))~((~, ~1)) 2s dr d~ < oo, Ilull(~,,) = ( 2 = ) - "  
J 

where (Q)=(I+IQI2) 1/2. We say that uEH(,,s ) at w E T * R ~ \ 0 ,  i.e., wCWF(r,~)(u), if 
U=Ul+U2 where u~ eH(~,s) and w~WF(u2) .  The following result is a modification 
of [3, Proposition 2.15]. 

P r o p o s i t i o n  A.1 .  Assume that P is a 2 x 2 system of pseudo-differential op- 
erators of order 1 on R n, on the-form (3.4) near woEE2. Let uES ' (R '~ ,C  2) and 
assume PuEH(r,s) at wo. Then for every 6>0  we can write u=u~ +v~, where 
v~EH(r,~+l) at Wo, and 

(A.2) I~*(~,r <C~,N((T,~)) -N  VN,  

when I~1>c~((~)~+(~1)) for some c~ and C~,N >O. 

Proof. Clearly, it is no restriction to assume that 6<1 is fixed. Let xEC~~ 
satisfy x ( r ) = l  when Irl_<l. Then for ~>0 we have 

(A.3) r ~) = x(~l~l / ( (~)  ~ + (~1))) �9 S~ 

since dee,8 is supported where I~1~(~)~+<~). Put  vh=(1-r then obvi- 
ously u6=r satisfies (A.2). 

In the support of 1-r  we find [detpl>cm ~ for small enough E, where 

(A.4) 

is a weight for the metric 

(A.5) g8 = ldtl 2 + Idol ~ + (Idol ~ + Id412)/((~, ,')) ~ .  

Since 6<1,  we find PEOpS(m~,g~)  when ITI_<CI[]. For small enough r  we may 
construct E E O p  S ( m [  1, g~) C k~ -~ with support where I T] > C(([)  e + ([1)), such that 

- -  6 , 0  

EP~(1 - r  mod C ~ ,  microlocally near w0. Since E preserves wave front 
sets, and ((T,[I))a(E)ESO, o, we find v~EPuEH(r , s+l )  m o d C  ~~ at w0. [] 



274 Nils Dencker  

Let H~r,8 ) be the Banach space of uES ~, satisfying 

(A.6) (llull{r,s)) 2 = (2~) -= f [~(r, ~)[2 (~)2r (~l)2S dr d~ < co .  

Clearly, uEH~r,s ) implies uIt=~EH(~,s ) for almost all Q, by Yhbini's theorem. If 
uES '  satisfies (A.2), then 

(A.7) II~ll}~_~_,~)<_c~,~(llull(r,~)+l)<c'8(llull}~+6~+,~)+l) v ~,seR, 

where s+ = m a x ( I s ,  0). Thus we lose only O(~) derivatives when taking restriction 
of such uEH(r,8) to {t=Q}, for almost all Q. We shall next define wave front sets 
corresponding to the spaces H~,8 ). 

Definition A.2. Let uES'(Rn),  and assume that  { r  in WF(u). We say 
that uEH~,,) at (to,xo,~o), i.e., (to, Xo,{o)~WF{~,s)(u), if there exists r  
C ~176 (R, SO, o) such that  r x, D~)uEH~,~) and lim~__+o o Ir Xo, A~0)I~0. 

This definition gives 

(A.8) (to,Xo,~o)~WF~,~)(u) ==> (xo,~o)r 

for almost all Q close to to, where uo=ult= ~. If ~r  in WF(u), then it follows from 
[1, Lemma 2.3] that 

(A.9) r0 (WF(~,0)(u)) = WF~,0 ) (u), 

where rO(t,X;T,~)=(t,X,~). For the more general wave front sets, we have the 
following result. 

Lem_,na A.3. Assume that uES' (I:U ~) satisfies (A.2). Then Au satisfies (A.2), 
if AEC~(R,~2~,o), Vv and Vh>0. We also obtain 

(A.10) WF~,._~_,~) (u) C_ ~'o (WF(,-,~)(u)) C_ WF~,.+~+,~)(u), 

~here s•177 0) and -o(t, x; ~-, ~)=(t, ~, ~). Since u e C  ~ in ~-o1(~2)\~ by 
(A.2), we find 

(h . l l )  to(WF}r_~s_,~)(u)) CWF(r,~)(u) C to(WF},.+~s+,8)(u)) on ~2, 

where Lo (t, x, ~) = (t, x; 0, ~). 

Proof. By the proof of [3, Lemma 2.18], we find that  the composition of 
operators in ~~ having symbols supported where ITI<C]~I, and operators in 
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Coo(R, ~,0) ,  is well-defined and given by the formal asymptotic expansion when 
6>0. Let r162176 be defined by (A.3), with r small enough to make r  
where (A.2) does not hold, thus (1-r  Then, if AEC~(R, gYP, o), we find 
(1-r In fact, the symbol of the commutator [r A] is supported, modulo 
S-oo, where (A.2) holds. This proves that Au satisfies (A.2). 

Now, if (to,xo,~o)~rco(WF(~,~)(u)) then we find r162 for any CE 
Coo(R, S ~ supported in a sufficiently small conical neighborhood of (t0,xo,~o). 
By (A.7) we find r162 , implying (to,xo,~o)r since 
(1-r162 Finally, if (to, xo,~o)r then we find CuEH~,~) for 

some CeCOO(R,S ~ satisfying r Q~o)#0 when Q>>I. Thus, we obtain 
r162 which implies (to, xo, ~o)r The last statement 
follows directly from (A.10). [] 

A p p e n d i x  B. The  ene rgy  es t imates  

We are going to prove propagation of H~r,s ) regularity for the wave systems we 
are going to use, where H~,8 ) is defined in Appendix A. In what follows, we shall 
consider pseudo-differential operators in x =  (xl, x"), depending Coo on t. As in Sec- 
tion 4, we shall suppress the t dependence, and write k0ph s ~  instead of C~176 ~~ ) 
for example. We shall use the symbol classes g), where 
and (~) are weights for the metric g defined by 

(B.1) g=,ddx, = Idxl2 + ]d~]2h 2. 

It is easy to see that g is a temperate, g/g~=h2<_l, and that S~ Let 
~r,8 =Op S r'8 be the corresponding pseudo-differential operators, which map H~r,~ ) 

into L 2. We shall mainly use the polyhomogeneous symbol classes Spl,Sg and the 
corresponding operators IIIphg. 

First we are going to consider the following N x N system: 

(B.2) Q = qIdN +QI+Qo. 

Here q is a scalar operator with symbol 

(B.3) q(t, x; T, ~) = T 2 --a2 (t, X, ~)~, 

~0,0 where 0<a( t ,  x, ~)ES ~ is homogeneous. We shall also assume {4o E ph~ and 

(B.4) Q1 = AoDt +A1, 
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�9 o , j  with Aj ElX/phg. This  m e a n s  that Q satisfies the microlocal Levi condition arsub(Q)= 
0 on E2. We shall study the following Canchy problem: 

O n = f ,  
(B.5) (u, Dtu)It=o = (no, ul). 

Since we axe going to assume that ( r  in WF(u), the restrictions are well defined. 
Now ~'~'2 is involutive, thus it has a natural foliation given by the Hamilton fields of 
the normal vectors. On the leaves of this foliation, the Hessian of q gives an invariant 
Lorentz structure by the natural identification of the tangent space of the leaves 
with the normal bundle via the symplectic form (see [9, Lemma 2.5]). Let C2o, 
w0 EE2, be the closure of the set of wEE2 such that w lies in the same leaf of E2 as 
w0, and is in the backward (with respect to t) propagation cone emanating from wo. 
Now, we assume that t>0  at w0. Let io:T~_oR'~(O,x;O,~)H(x,~)ET*R n- l ,  and 
let 1to(t, x; T, ( )=( t ,  X, ~). 

P r o p o s i t i o n  B.1. Assume that ueT)'(R", C N) satisfies (B.5), wEE2, and 
~r  in WF(u). If  uoeH(r,8), uleH(r,8_l) in io(C2N{t=O}), and feH~,8_l )  in 
Ir0(C2M{t_>0}), then ueH~,,~) at row. 

Proof�9 This result follows by modifying the proof of Proposition 5.1 in [3], 
replacing x '=(xl ,x2)  with xl and changing the spaces H(~,~) and the operators 

r~8 ~phg accordingly. [] 

We shall also consider the following 2 x 2 system 

Q =  (q l l  q12~ 
\ q21 q22 / ' 

(B.6) 

where 

(8.7) qjj =q+bjDt+cj ,  j = l , 2 ,  

q is given by (B.3), bjEC~ o ~ o,1 ~I/phg ) and cjEC (R, lI/phg ). We also assume 

q~2 = a-  l Dt + ao, 
(B�9 

q21 = alDt+a2, 

�9 o o  0 , j  where a~ EC (R, ~phg)" We shall study the following Canchy problem 

Q u = f ,  

(B.9) uit=o = no, 

Dtult=o =Ul. 

As before, we let 620 be the closure of the backward wave cone emanating from w0 E 
E2. By modifying the proof of Proposition 5.6 in [3] in the same way as in the proof 
of Proposition B.1, we obtain the following result. 
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Proposition B.2. Assume that uET)'(R n, C 2) satisfies (B.9), ~r in WF(u), 
and we~2. ffu0eH(~,,)xH(~,,_,), UleH(~,~_l)xH(,,,_2) in io(C~n{t=O}), and 
feH~r,8_l) xH~,8_2) in r0(C2M{t>0}), then uEH~r,s ) xH~r,s_l) at row. 

Appendix C. Regularity of the coupling term 

We shall now estimate the regularity of the term [P12, P22]u2, which is impor- 
tant when we decouple the system Q given by (4.10). We change notation, and put 
X 0 = t ,  X '! = (X2 , ... , Xdo), which gives x=  (xo, xz, x") ER x R x R n-2. We are going 
to use the spaces H(~,s) defined by (A.1) with T replaced with ~o, and also the usual 
Sobolev spaces H(~)=H(~,o). We shall use the symbol classes g2~,s=Op S ~,8 defined 
in Appendix B, where S~'s=S((~}~h-8,g), but now with h - 2 = l + ~ + ~  2. Assume 
that 

( P l l  P l 2 ~ E k  00'1 
(C.1) P= \P21 P22 J 

has principal symbol p satisfying det p--~o 2 _f~2, where f~(x, ~1, ~")=c~(x, ~1, ~")~1 is 
independent of ~0 and homogeneous of degree 1 in ~. 

Proposition C.1. Assume that uE:Dt(R n, C2), with the property that Pu and 
ulEH(~,,) at woEE2. Then we find [P12,P22]u2EH(~_~,s_1 ) at wo, V~>0. 

Proof. Let ~i>0 be fixed in what follows, clearly it is no restriction to assume 
that 6<1. As in [5, Proposition 6.1], we shall modify the proof of [3, Propo- 
sition 4.1], replacing the weight (~r) with h -1. By conjugating with an elliptic 
operator in k~ ~-~,s, we may assume that r=5  and s=O. Let 

(C.2) Q= ( qllq21 q22q12) =tPc~ E g20'2' 

then a(qjj)--~2-~ 2 is real, and q12=[P22,P12]EgY ~ Let AE~ ~ have symbol 
equal to h, put q----/~q22Ek O0'1 and m=)~q12Egl ~176 Since QuEH(~,_I), ulEH(~) 
and qmEg2 ~ we find qulq-mu2 and qu2EH(~) at Wo. Choose cut-off functions 
~, CES~ such that ~=1 in a conical neighborhood of Wo, r  on supp~, and 
ul, PuEH(~) on suppr Then Cqu2EH(~) and Cqul+r EH(~), which gives 
Cmu2 E H(5,_I). The result follows if we prove that ~mu2 E H(o). 

Next, we localize in h- l~c(~)  8. Let r  such that r  when 
]s]<l, then 

(C.3) X(~) = r ~) �9 S(1, g)nS~,0, 
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since dx is supported where h-1 ~ <~> 5. Clearly, x~mu2 ~ H(o) since ~pmu2 ~ H(~,_ 1), 
thus it remains to consider (1-x)~mu2. 

Now, we may normalize so that Iql<h -1 and Iql~<h -1, where Iql~ is the j th  
seminorm of q in S(h-~,g). We introduce the Beals-Fefferman type of metric 
G=Hg/h defined by 

(c.4) H-~ -- max( h-~, Iqh (Iqhg)2h), 

which implies h-~<H-l<h -1. Then G is a temperate, and G/G"<H 2. Also, we 
have S(1,g)C_S(1, G), and qES(H-1,G). (See the proof of [3, Proposition 4.1].) 
Choose {~k}, (r and (~k}ES(1, G) (with values in l 2) such that supp ~k CUwk = 
{w;Gwk(W--Wk)<e2}, e~k=l on suppCk, and Ck=l on supp~k. Also, we may 
assume that h,-~hk=h(w~) in supp ~k, ~-~k I~~162 on supp(1-X)~O, and (~k} are 
supported where r  1 and h -1_>c<~> ~. Since {~k} is elliptic on supp(1-X)~ and 
H <_h ~, we find 

(c.5) 

where mk= ~k (1-- X)~om. 
Now we can use Lemma 4.2 in [3], which only uses the general properties of 

the Beals-Fefferman metric G. By substituting &ku=v in this Lemma, we obtain 
for small enough c > 0 

(c.6) Ilmku211 <_CN(hJIlCku ll+ll kfll+llCkqu211+llRN,kull) V N, k. 

Here f=~bqul+~bmu2eH(~), hk=h(wk), and {RN,k}kES(H N, G) (with values in 
/2) is bounded by any power of the G ~ distance to supp{~k}. Since h-1/(~> ~ is a 
weight for g, we obtain that h-l<Q<~> 5 implies that the g distance to supp{~k} is 
bounded from below by a positive constant, for small enough p. Since G" >h-l-~g 
and h -1 >c<~> ~ in supp{r we find {RN,~}~ ES(<~)-N*, G) V N1 when h -1 < Q<~)~, 
for small enough Q. When h-l>Q(~) 6, we find H<h'5<%<~) -~2 making {Rlv,k}kE 
S -62N there. Since {r is supported where r  we may replace Ck by r162 52,0 
in (C.6). By summing up, we obtain the result. [] 
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