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Commutators and interpolation methods

Maria J. Carro, Joan Cerdd and Javier Soria(?)

1. Introduction

Recently R. Rochberg, G. Weiss, B. Jawerth, N. J. Kalton, M. Cwikel and
M. Milman (cf. [RW], [JRW], [CIM], [CIJMR] and [K]) have obtained interpolation
theorems for commutators of bounded linear operators and certain operators 2, gen-
erally unbounded and nonlinear, associated with an interpolation method for both
the complex and the real case, with interesting applications to classical analysis.

In [RW] Rochberg and Weiss developed the study of these commutators for
spaces obtained by complex interpolation. A similar analysis was carried out for
the real method by Jawerth, Rochberg and Weiss in [JRW], where they noticed
that, although there are strong analogies between the two cases, the details are
very different.

The purpose of this paper is to set up a unified method of both theories. Our
analysis leads to a simple approach to commutator theorems, giving the precise réle
that cancellation plays in the theory.

We set a general frame by considering pairs of interpolation methods with
some nice “compatibility conditions” having in mind the two basic examples of [RW]
and [JRW]:

In the complex case, the pair of interpolation methods is associated to the
functionals 8 and 6j (cf. [S] or [CC]) and the Q-operator is defined by Qa=h/(9),
where h, is “almost optimal” among all f such that f(0)=a.

Similarly, in the real J-method, the corresponding couple of functionals is

/000 u(t)? and /Ooo(logt)u(t) %,

and Qa= [ (logt)ha(t) (dt/t), with [ he(t) (dt/t)=a.

(1) This work has been partially supported by DGICYT, Grant PB94-0879
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Our method can be also applied to obtain a unified approach to the higher
order commutators of [R] and [M]. This will be the subject of the forthcoming
paper [CCS].

The paper is organized as follows. In Section 2 we give a general construction of
interpolation functors, that was first introduced by V. Williams in (W], and present
some interesting examples of functors of this type.

In Section 3 we define the Q-operator for functors constructed as in Section 2,
we give a simple proof of the commutator theorem and characterize the spaces
Dom(£2) and Rang(2). These results answer Questions 1 and 8 in [CJMR].

Section 4 deals with the particular case of the complex method of Calderén,
and Sections 5 and 6 with the J- and K-method, respectively.

Finally, in Section 7 we answer Question 6 in [CJMR] giving a precise descrip-
tion of the twisted direct sums.

For undefined notation and standard definitions we refer to [BL].

Acknowledgment. We would like to express our gratitude to Professor Mario
Milman who introduced us to these topics while visiting our department.

2. The interpolators

The following definition should be compared with the one given in [W).

Definition 2.1. By an interpolator ® over H, we mean a functor Hey=H from
compatible couples A=(Ay, A1) of Banach spaces to normed spaces H(A), with the
property that there exists a bounded linear operator

@5 H(A)— Z(A)= Ao+ Ay

for every couple A, such that
1) To®;=25H(T)
for every linear bounded T: A— B.

We usually set Ae=>0 5(H(A)), with the norm

llalle =inf{||f|| g4y ; ®a(f) =a},

so that Ag—(4), with norm <||® 4)|. If H(A) is complete, Ay is a Banach space.

If there exists a one to one bounded linear operator ¢: A(A)— H(A) such that
(2) D jop=ida(4)
then we have A(A)— Ag, with lalle <lle(a)l ey <ll¢llllalla. Property (1) implies
that A— Ag is an interpolation method such that, for T: A— B,

1Tl 40,5, < NH(D) acay,m(B)-
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Examples

(I) First complex method. This method is associated to the interpolator

@ 4(f) =8o(f) = £(0),
with H(A)=F(A), the Banach space of vector-valued analytic functions on the strip
S considered by Calderén in [C], and H(T)f=T-f.

In this case, || H(T)|| <||T|| 4 5 (the norm as a bounded operator T: A— B), and
|®4]|=1. Moreover we have o: A(A)—H(A), defined by p(a)= e==9°q, which
satisfies (2), with ||p]| < e.

- If we change 8(f) by &f,") (f)=f™(8) with the same spaces H(A)=F(A), we
get the Lions—Schechter method of derivatives (see [S]).

(IT) The J-method. Now we take
H(A) = {u:R* — A(A) measurable; &g ,(J (¢, u(t))) < 0o},

where J(t,a)=max(||a a0 tl|a]| 4, ), if a€ A(A) and

w0, = ([ ter 2)”,

0<f<1, 1<p<oo. With the norm ||uf| g g)=®s,(J (¢, u(t))), it is a Banach space.
For every bounded linear T': A— B we define H(T)u=Tou and then [|H(T)|| <
Tl 4,5 Now for ue H(A),

ax0= [ u)F ez,
and @ ;: H(A)—X(4) is bounded:
Jex@lan < [ Tulao 5+ [ lu@la, §
! dt . [* . dt
< [ s T [ e §

([ (L) ) ([ o )"
" (/100 (it’t@)p %)l/p (/loo {(17195;7 %E)l/pl

< Cllullga)-
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Finally, if we set p: A(A)— H(A),

a, tell,el,

(@)= {

0, otherwise,

then, ® 5(¢(a))=J; a(dt/t)=a. Obviously Ae=Ag ;.

(III) The K-method. Let H(A) be the vector space of all measurable functions
(@0, a1): R*— Ag x Ay such that ag(t)+a;(t) is constant and

(a0, a1l y = (/0‘”(Ilao(t)llo;tllal(t)Hl)p %{)1/”<00,

with 0<f<1 and 1<p<oo. As before H(A) is a Banach space, and if we de-
fine H(T)(ao,a1)=(T°ao,Toa;), we obtain H(T): H(A)—H(B), with ||H(T)| <
IT\ 2 5. Now, if we consider ® 5(ao, a1)=aq(t)+a1(t), we obtain a linear operator
® 4: H(A)—>X(A) satisfying property (1):

(To® 5)(a0, a1) = T(ao(t)) +T(a1(t)) = ®5(Toa0, Toas).

This operator is bounded:

2 dt
12 4(a0, 1)l 54y = llao(t) +a1()|lgay < C /1 (llao)llo+llas(t)ll1) 5
SC’/ (Ilao(t)||o+t||a1(t)ll1)%SC'II(ao,al)IIH(g)-

1

For any acA(A) we define ¢(a)=(ao(t),a1(t)), with ag(t)=X[1,00)(t)a and
a1(t)=X(0,1)(t)a. Then : A(A)—H(A), it is one to one, |l¢(a)llx 1) <Cllallaca
and 5(p(a)=a.

It is easily seen that A=Ay .k, With equality of norms. Interpolation methods
with function parameters (see [G]) are obtained in the same way.

(IV) The minimal method. For a given couple Z and a fixed intermediate
space Z,
A(2)—>Z—X(2),

the corresponding minimal method of Aronszajn—-Gagliardo (see [AG] and [J]) is
associated to the interpolator & ;: H(A)—X(A) defined by

®4({zs}seu) = S(zs),

Seu
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over the Banach space
H(A) =1Y(Z;U(4)) = {2: {zs}scucayizs € Z, Z llzsllz < oo},
s
with :
U(A)={S:Z — A bounded and linear;||S||z, 4 <1}

and

120y = lzsllz.
S
Obviously ® 4(Z) is well defined for all z€ H(A4) and & 5 is bounded:
12221 <> ISlizzlzslls < Cllzl g a)-
s

We consider ¢: A(A)— H(A) such that p(a)={65a}scy, where id: A(A)— A is the
embedding operator. Then

le(@)lma <llidfia,a and @4(p(a))=id(a)=a.

3. The Q-operator

Definition 3.1. Let (®,¥) be a pair of interpolators on the same spaces H(A);
i.e., such that Hy=Hyg=H. We say that (®, ¥) is compatible if
(3) U i(Kerdz)=Im Py,
for every couple A, with equivalent norms, in the sense that there exists a constant
C=C(A)>0 with the following properties:

(3a) If ge H(A) and ®3(g)=0, then ¥ z(g)=®5(f), for some fe€ H(A) such
that || il 4y <Cllgll z4)- B

(3b) If feH(A), then ®;(f)=" 4(g), for some g€ H(A) such that ®z(g)=0
and {{gll g5 <Clfllaa)-

Remark 3.2. Sometimes (3b) is not needed. If instead of condition (3) we
only have ¥ z(Ker ® ;)CIm ® 7, with property (3a), we say that (®,¥) is almost
compatible.

Let C>1 be a fixed constant. We fix an almost optimal election for the inter-
polator ®, which is a mapping

CLEA@*—)}LGEH(A),

such that ® z(h,)=a and ||ha|| 4y <Cllall 4, for every couple A. We can always
assume that hye=Ah,.
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Definition 3.3. Given (®, ¥) a pair of interpolators, we define the Q-operator
QA:(IGA—@%\I’A(ha) EA\II,

with h, as above.
Given any bounded linear T: A— B, we define the commutator

[T,Q]=T-Q;-QpT: Ap — Z(B).

Observe that 27 need not be a linear operator on Ag. With these notations,
for any pair (&, ¥) of interpolators on the same spaces H(A) we have that

[T,9]: As — By,
and it is a bounded operator, since
1T 4alle = T 4(ha)lle =¥ 5 H(T)hallw < CHH(T) | hall sy < C'llalle,

and
I25Talle = ¥ 5(hra)lly < Clihral gay < C'l|Talle < C”|lalle-

Theorem 3.4. (Commutator theorem) If (®,¥) is an almost compatible pair
of interpolators, then [T,)): Ag— Bg, and it is bounded.

Proof. Let a=® 5(ho)€As. Then we get
TQia=TV sh, =V 5H(T)h,, QgTa=Vghr,, and [T,Qa=Vg(H(T)he—h71a),

with @5(H (T)ha_— hre)=Ta—Ta=0. Now, by hypothesis (see Remark 3.2) we get
[T, Q)a=05(h) € Be, with ||kl r(5) <CIlH(T)ha—hrall (5, and hence

T, Qlalle <kl < CUHT) el n(a) +elTalle) < C'llalle. O

Corollary 3.5. Let Q be the Q-operator corresponding to a second almost
optimal election a—h,. We have:

(a) For any (@, %) (on the same spaces H(A)l, Qg—ﬁgi Ag— Ay is bounded.
(b) If (®, %) is almost compatible, then Q5—Qz: Ap— Ag is bounded.

Proof. (a) (24— 4)alle =% (ha—ha) o <Iha—hall s <2Clals.

(b) We have ®(hg —ha)=0, thus (25 -Q4)a=¥(h,—h,)=2(g)EAs, with

1(Rz—Ra)alle <llgllm(a) < Cllka—hallr(a) < C'llalls. O
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Definition 3.6. On the set Dom(2;)={acAs;Qza€ A5}, we define

lallp = llallz +[122 zall¢-

Observe that |laf|p>0 if a#0, and ||Aa||p=|)| el p-
Lemma 3.7. If (®,T) is almost compatible, then for a,bc As,

Qg(d-l—b)—ﬂga—ﬂgbéfi@,
and there is a constant C=Cy such that

924(a+b) - za—-Qzblla < C(llafla+|blle).

Proof. We have Qz(a+b)—Q 30— 1b=C(hgrp—ho—hp), with ®(hgyp—he—
hy)=0. Hence, ¥(hoqp—ho—hs)=0(f)€Asp, and

1Q4(a+b)—Qza—Qzblle <l m(a) < Cllhats—ha—holl g 4)
<C'(Jlalle+liblle). O

Theorem 3.8. (a) If (®,¥) s almost compatible, then Dom(Q 1) is a quasi-
normed linear space and Dom(Q7)=Dom(Qz) (with equivalent quasi-norms), for a
second almost optimal election (in fact Dom(Q5)=® 1(¥ ;' (4s))).

Also, A—Dom(f2z) is an interpolation method (i.e., for any T:A—B,
T:Dom(2 5} —>Dom(Q5) is bounded).

(b) If (®,¥) is compatible, then

Dom(Q4) ={24(f); f € H(A), ¥ 5(f) =0} =2 5(Ker ¥ 5),
with ||z|| p~inf{ || fl| rrzy;2 =2 a(f), ¥ a(f)=0}.
Proof. (a) If a,b€Dom(Q 5), from the lemma we obtain:

la+bllp =lla+blle +[24(a+b)||=
<llalle+Iblle+124(a+b) -2 sa~Qblle +|Qsalle +21b]le
<C(lalle+lblle+llallo+]bllp) < 2C(llallp+I[b]| p)-
To show that Dom(Qz)=%® A(‘I’Xl(z‘—lq))), suppose that a€Dom(§2z); then

there exists h, € H(A) such that ® 5(h,)=a, hallzcay<Cliall 4, and Qza="V 4(h,).
Hence hae\Il/}l(Aq)), and a€®5(¥7' (As)).
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Conversely, if a=® 4(h), ¥ z(h)=® 5(I'), h, k' € H(A), and 2 za=" 4(h,), with
@ 5(ha)=a, | hallm(a)<Cllall z,, then @ z(h,—h)=0 and thus ¥ 5 (h,—h) = z(h") €
As. Hence, Qza="Y 5(h)+®1(h")=0 z1(h')+® 1 (k") € Ag.

Finally, given a bounded linear T: A— B,

ITallp = ||Talls+(25Talle < C(llalle+T, Qalle +IITR4alle) < C'llal p-

(b) Let now B=® z(Ker ¥ 4), with

lzll s =inf{l|fll () ; = =2 a(f), ¥a(f) =0}

For any z€Dom(25) we have, 1=®4(h;)€As, Qz2=" 1(h:)=® 1(h)=7 z(g),
with @ 4(9)=0, ||~llpa) <1 +e)Qazle, lgllma) <Clhllg ). Then ¥z(he—g)=
0, z=® z3(h,—g) and we have z€ B, with

Izl 8 < llhz —9gll ay < Clllzlle +(1+e) 24zl 2)-

Hence, |||z <Cliz|p-

Conversely, if z€B, z=24(f), Ya(f)=0, with ||f||ga)<(1+e)lizlis, then
we get ,10= 1(he)=U (o 1) =@ 4(1), with [hl1s(z) <Cllhz~fla) (observe
that ® 5(h,— f)=0). Hence Q sz€ Ay, and

14zlle < Cllhz - fllaay < C'(lzlle +(1+6) Iz )
<C'(Ifl acay+(1+e)lzlls) <C”lizll 5.
Finally,

lzllp = llzlle +[Q4zlle < C(I fll s +I1Qazlle) < C'llzllz. T

Observe that as a consequence of the theorem, a necessary and sufficient con-
dition for Dom(Qz)=As is that H(A)=¥7'(As)+Ker®s. We can also give a
converse result for (b):

Proposition 3.9. (®,¥) is almost compatible, Dom(Qz)=® ;(Ker ¥ 1) and
Ag— Ay, if and only if (®,V) is compatible.

Proof. 1f Dom(Q5) =0 5(Ker ¥ 1)=& 5(¥ ;" (Aq)), then, for he ¥ ;' (As), there
exists h'€Ker Uz such that h—h'€Ker®;. Thus, ¥;'(As)CKer®z+Ker¥ .
Hence, if a€ A and he H(A), with ¥ z(h)=a, we have that h=h!+h?, & 1(h')=
U ;(h?)=0. Therefore, a="¥ 5(h!)€¥ ;(Ker®z). Conversely, if (®,¥) is com-
patible by Theorem 3.8 we need only show that Ag<—Ag. But if a€As, then
a=® 5(hs)=" 5(9)€ Ay and

l9llzcay < Cllhall gy < C'llalle. O

Another important set related to the Q-operator is the following;:
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Definition 3.10. Rang(Qz)={Q;a;a€As} with
lzllz =inf{{lalls ; Qg0 ==}
In general, Rang(Q) is not a linear space and it depends upon the choice

made to define Q3. It is easy to check that Az€Rang(Qz) if z€Rang(Q 5), with
IAzllz=|A| |lz]| z- We will also consider As+Rang(Qz) with

lzll+ =inf{llalle +||sbllr; z=0a+b, a, b€ As}.
From the definitions it follows that Rang(2;)— Ay and Ag+Rang(Qz)— As+ Ay,
boundedly with constant C. In fact, for z=Q za, with |ja|le <(1+¢€)||z| g we have
Ielhe = (ha)le < Wrallgs) < CU+Nlehn

Theorem 3.11. (a) If (®, V) is almost compatible, then Ay — As+Rang(Qy),
and T: Ag+Rang(Q7) — Bs+Rang(Qp) is bounded, for any bounded linear opera-
torT:A—B.

(b) If (@, V) is compatidle, then Ay=As+Rang( 1), with equivalent “norms”.

Proof. (a) Let us consider 2= 4(f) € Ay, with || fl| g(2)<(1+¢€)||z]|w, and let
a=®;(f)eAs. If b=0Qza="U 4(h,)cRang(Qy3), then z=(z—b)+b=" 1(f —hq)+
Q 10, with @ 5(f—h,)=0, and it follows that

z==4(h)+Qza€ As+Rang(Qz), |hllma) <CNf—hallma)
and
Hzlls < Wl mcay+lielle <CIf—hallgay+llalle
<C'(Ifllacay+llalle) <2C°|| fl g ay-

Hence ||z[|4+ <C||z].

Now let T: A—B. For any z=a+ b€ As+Rang(Qy), with ||alle+ [ 50z <
(1+€)zll+, and ||blls <(1+¢) 125l & we bave |ja]le +|[blle <(1+€)?|ll+. It follows
that

Tz =(Ta+[T,Q)b)+Q5Tb € By +Rang(Q5),

with
ITz]+ < (ITle,e+I[T, Qlle,2)(lalle+l1blls) < (14+6)*(ITle,6+ [T, Alle,2) |2+

Thus |TH++ <[ Tls,2 + [T, lle,2.
(b) In this case we have A — Ay (see Proposition 3.9), and we have seen that

A\I, HAq>+Rang(Q,{) — A@-l-Aq;. O
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4. The Q-operator for the complex method
Let us now consider the pair (6p,8}) of interpolators, with H(A)=F(A) (see
Example I).
Theorem 4.1. The pair (8g,65) is compatible.
Proof. If geF(A) and 6¢(g9)=g(0)=0, then 8)(g9)=g'(8)=/(8), with f(2)=
©'(0)g(2)/p(z), where g is a conformal mapping from the strip S={z;0<Re z<1}

onto the unit disk D={z;|z|<1} such that ¢(#)=0. We have feF(A4), with
|l =cay=1¥"(0)| lgll #(4)- Conversely, let now feF(A). Then

oa)= 208 e £ (hy

with (gllzcay=lfll=(a)/1¥'(0)], bo(9)=3(6)=0, and §5(g)=g'(6)=F(8)=0s(f). O
In this example, for a given almost optimal election
aEA[g] =A59 > hg 6.7:(1‘1),

we have Qza=h/(0), and it follows from Theorem 3.11 that the interpolation
method associated to Rang(Q ) is Schechter’s lower method (see [S]):

A[g] +Rang(Q3) = z‘i% .

In connection with the domain of {2z, we recall that Schechter’s upper method is
defined by

A% =[Ag, A1]% = {z € £(A) ; z8) = [ 6}, for some f € F}
={ze€X(A);z=f(8), for some feF, f'(§)=0}
and we easily get as a consequence of Theorem 3.8 that (cf. [CJMR] and [CCMS])
Dom(Q5) = A%.

5. The Q-operator for the J-method

We assume 0<0<1 and 1<p<o0, and let
H(A)={u:R* — A(A) measurable; &g ,(J (t,u(t))) < oo},
and -~ &
wi)= [ u) T,
0 t
as in Example 11, so that we obtain the J-interpolation method. A second functional
\Ilﬁ is defined on H(A) by

Th(u) = /Ooo(logt)u(t) %
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Theorem 5.1. (®7/,¥’) is a compatible pair of interpolators and

- dt + = J(tav(t))
=la= &R By, [ )
Ay g {a /0 u(t) i R* — A(A) measurable, 9,,,(1 Tog ] <00 ¢,
with
J(t,v(t))

llallw =inf ®¢, (m),

the infimum being taken over all representations a= f0°° v(t) (dt/t).

Proof. The functional ¥ is well defined and bounded from H(A) to Z(A):

! da [ dt
w5l < [ ogellula G+ [ Gogt)ul T
1 * logt dt
< [ gt ue) $+ [ 2Eraeue) §
1 1/p' o0 P 1/p'
r dt logty dt
< CAY et =) =
[([ o 23] ) ot
=Cllull ga)-
To see that ®’ and ¥/ are compatible, first assume that f;° u(t) (dt/t)=0,
(with uc H(A)) and define
o0
F(z) =/ t*u(t) ﬁ,
0 t

on the strip {z€C;—e<Re z<¢e}, with £>0 such that 0<f@—e<f+e<1. It is easily
seen that F(te+ti)€ Agre p, with ||[F(Ee£ti)|lose p <Cllull g 4y, and, since F(0)=
0, we have

*° dt < - - _
FO= [ ogt)ut) § = ¥5w) € Uo-ci Aoserlo =0, = Apo,
0

with 9% ) les <Cllullrca- ]

For the converse inclusion Im &% — @4 (Ker ®%), for a given u€ H(A) we con-
sider v(t)=u(t)—u(et) and we have ve H(A) such that ®%(v)=[;* v(t) (dt/t)=0,
and

w0 = [ ogtu-uen) = [ o) u) T [ (1oe L) u

=/WMQ%=®ﬂw,
0
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with ||o]l ) <Cllullaa)-
For the last part of the theorem, let

e fom [o ([ (s Y )" <o}

and a€ Ay, a= [ (logt) u(t) (dt/t), with

(ﬁ(Lt;@) ?)Ws lallgs +e.

Then a=f; v(t) (dt/t) with v(t)=(log?)u(t), and

ol < B0 Liroen ) < Bop(I6uE)) < s e

To show that B« Ay, for any a€B we have

o0 e o] o0
a=/ o(t) E%:/ v(t) dt+/ | log t|v(t) éz*b-&-c,
0 t Jo 0

1+[logt| ¢ 1+|logt] ¢t
. J(t,0(t)
t,v(t
(] — L
o (Tt < oo+,

and b€ Ags— Ay, with ||b]|e <C||b]le <C(||lal|z+¢)- On the other hand,

c=/ (log t) w(t) ﬁ,

0 t

with w(t)=sgn(logt)v(t)/(1+]|logt}), and Pg (¢, w(t))<||e||z+e. It follows that
c€Ays and ||c||¢<|la||p+¢. Hence ac Ays and |ja|lg <Cllallp. O

Let now Ql{i be the -operator associated to the pair (&7, ¥7), and to a given
almost optimal selection ar>h, for ®’. Again, as an application of Theorem 3.11,
we have

AG,p;J‘*' Rang (in) =Agrs,

and
(4) Dom(Q}) = {a: /000 u(t) % ;/Ooo(logt) u(t) % =0, ue H(A)}

which has the following description (see {CJM] for another proof):
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Theorem 5.2.

Dom(Q}) = {a - /Ooo u(t) ff-:f sue H(A), 8g,p((1+] log ) J (¢, u(t))) < oo}.

Proof. Let £ be the right hand side space, with the natural norm, and choose
a=J;° u(t) (dt/t)€E, with

Dop = ((1+]logt])J (¢, u(t))) < Cllalle.

Then a= [ hq(t) (dt/t), Qfa=[;" (logt)ha(t) (dt/t) and [5°(u(t)—ha(t)) (dt/t)=
0. Thus, from

00 dt ; %0 dt -
b= / (ogt)u(t) 5 € Ags and ha—b= [ (logt)(ha(t)—u(t) % € Ay,
0 0

we obtain
;[ dt
Qia= (logt)ha(t) 7 € Ags,
0

lallp = llalle+125alle < [lull g gy +105a—blle + bl
Lull geay+Cllu—hall g4 +Cllullgeay <Cllalle.

To show that Dom(Q2})—& we will use the following facts:

(i) (Abo,go» Aby,q,) is a partial retract of the couple (I%(277%), (1 (2-"61))
(cf. [Cw] and [CIM]). Recall that A is a partial retract of B, if for every z€X(4)
there exists a pair of bounded linear operators, Fy: A— B and P,: B— A, such that
ProFyz=z and sup, ”Fx”7supz [| Pl <co.

(ii) [IP(2~ "), [P(2~"01))0% =IP((1+]n])2~™?), with §=(1—u)8y+pb; (see refer-
ence [CC2)).

(iii) (Aeo,qo)Ae1,Q1)<Pp,P=AlPa,P’ with ¢ (z)=(1+|logz[)z~* (cf. [G]).

Let now a€Dom(92%), and u€ H(A) such that (by (4))

a= Aw 'u,(t) %, /0°°(10g t)u(t) %E =0, q)o,p(J(t’ ’U(t))) < 00.

Then - it
F@) = [ tut) T € F(Ao-cp, Aoses)
0
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on the strip §—e<Rez<f+¢, F(0)=a and F'(0)=0. Hence
0 €[ Ap-ep Apresl® with Nallz 5 o <IFlr<lullaca)
With the notation of (i), let F: (Ag_c p, Apye,p)— (P(27 09N, (27 n(0+)),
and let P: (IP(2-™(6-9)),1P(2~™(9+2))) - (Ap_ 5, Ap+e p) be a pair of bounded linear
mappings such that PFa=a. Then, by interpolation (we use (ii) and (iii)):

F: [A9~e,pv1‘i0+e,p]56 _)lp((1+|n!)2—n0)’

and
P:1P((1+]n])27™) — Agy -

Hence,

[@llgn.0 = 1PFallgy 5 < ClF el siap-ne) < Cllal 5,

AG+E,p]56’
we have a€ A, p, and there exists v€ H(A) such that
o dt
a= v(t) T and Pg,((1+]logt|)J (¢, v(t))) < co.
0

Thus acf. O

Remark 5.3. From (i)-(iii) we obtain the reiteration property
[Aeo 403 Ael,m]&" = A«pe,qv

with 1/¢=(1-6)/q0+6/q:.

6. The Q-operator for the K-method

Let now

K K ! dat [® dt

K (ag, a1) =ao(t)+a1(t) and \IJA(ao,al)=/ ao(t)T—/ m() &
0 1

be defined over the Banach space H¥ (A) of all pairs of measurable functions

(ag,a1):R* — Agx A;
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such that aq(t)+a;(t) is constant and

ll(a0, a1)l| &r = ®o,p(llao()llo+tllas (t)]l1) < oo,

0<6<1, 1<p<oo, as in Example III, and H%(T)(ao,a1)=(T(ao), T(a1)), for any
bounded linear operator T: A— B. We observe that
+

1 dt o0 dt
/ ao(t) % / a() &
0 ¢} 1 1

<l(] (=) [ ()

<Cll(ao,a1)||x-

1% (a0, a1)|ls <

Theorem 6.1. (K, ¥K) is a compatible pair of interpolators.
Proof. Let ®K (ag,a1)=0=ao(t)+a;(t), with (a0, a1)€ H*¥ (A). Then,

e dt
\Ilfg(a’o’al) =/ a‘O(t) ’t_v
0
and, since Bo,y(J(t, a0(t))) <o, (lao(t)lo-+tla (t)11) =l (a0, az) 1, we have
U (a0,a1) € Appa=Aopx and |95 (a0, 01)ll2 <ll(ao,01)|a-
Let now a€Ap. We have to find (by, b;)€ H(A) such that
K _ K * dt
oz (bo, b1) =bp(t)+b1(£)=0 and L (bo,b1) = bo(t) n =a.
0

This follows from the fundamental lemma of interpolation theory (cf. [BL]):
If we discretize, we have to show that there exists a sequence (b2, b7)€ Agx 4,
such that

o0
5+b7=0 and ) bp=a.

Let a=a§+a¥, with ||afllo+2"]|a?]l1 <(1+€)K(2",a). We have

lim flagllo=0 and lim Jla}[l,=0.
n—--00 n—00

Weite 63 —af a3 ! and b} —af —a?~!. Then 43-+33=0 and
M

K<1’G_Zb?z) =K(1,06N_1+G{M)—>0, as N, M — oo.
N

Hence 3, %=a. O
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7. Twisted direct sums

Let us define, as in [CJMR], the twisted direct sum of Ag, A P, As, the set
of all pairs (a,b)€(Ao+ A1) x(Ag+A;) such that

llall 2, +11Qa—bl| 5, < +o.
We first have the following result.

Proposition 7.1. Let T: As—Bs be a bound(id linear operator. Theﬁ the
operator [T, Q]:flq,—»Ep is bounded if and only if, T: As D As—Bs @ Bs is
bounded, where T'(a,b)=(Ta,Tb).

Proof. Let (a,b)€Ap @ As. Then
IT(a, 5|5, @, Bs = ITall 5, +QTa~Tb 5,
<Clla|l g, +2Ta—TQa| 5, + [ T(2a~b)|| 5,
<C(llall g5 +lIa~bl z,) =Cll(a,))l| 25 @, 4s-

Conversely, let a€ Ag, then
[T, el 5, = 10Ta—Tal| 5, < ||(Ta,TQa)|5, @, Bs _
=|T(a, Q)| 5, @, B: < Cll(a,)| 4, @, 4, =Cllallz,- D

Proposition 7.2. If (®, V) is compatible, then

As P As ={(a,b);a=8(f), b="T(f), € H(A)}.
Q

Proof. Let £ be the right hand side space, with the usual norm, and choose
(a,b)€As P As. Then Qa=V(h,) with &(h,)=a, lhallzay<Cllall 45, b—Sa=
B(g)=(h) with ®(h)=0 and ||hl|z(z<CIlb—Qallz,.-

Therefore, a=®(h,+h), b=b—Qa+Qa=¥(h,+h); that is, (a,b)€€ and

(@, B)lle < llha+Rllgca) < C(llall 4, +110—Qal 4,) = Cll(a, b)]| 4, @, 4o

Let now (a,b)€€ and set a=2(h), b=V(h) and ||h||z4<C|l(a,b)|le. Then
a€As, Qa=V(h,) and Qa—b="(h, ~h), with ®(h,—h)=0. Therefore, Qa—bc Ay

and

(@, )l 45 @, 40 = llall 4, +11Q2a—bll 1, < CIPlla) +l1ha —hll ()
<Clhllga) <Cli(a,b)lle. O
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Remark 7.3. In particular, since the J-method satisfies the hypothesis of Prop-
osition 7.2, we have that if Ag=(Ao, A1)e,p s,

Ag @E(p:{(a,b);a=/owu(t)g;, b=/0°o(logt)u(t)%},

where ¢ ,(J (¢, u(t)))<oo (see Example II). This answers Question 6 in [CJMR].
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