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Commutators and interpolation methods 

Marfa J. Carro, Joan Cerd~ and Javier Soria(1) 

1. In troduc t io n  

Recently R. Rochberg, G. Weiss, B. Jawerth, N. J. Kalton, M. Cwikel and 
M. Milman (eft [RW], [JRW], [CJM], [CJMR] and [K]) have obtained interpolation 
theorems for commutators of bounded linear operators and certain operators ft, gen- 
erally unbounded and nonlinear, associated with an interpolation method for both 
the complex and the real case, with interesting applications to classical analysis. 

In [RW] Rochberg and Weiss developed the study of these commutators for 
spaces obtained by complex interpolation. A similar analysis was carried out for 
the real method by Jawerth, Rochberg and Weiss in [JRW], where they noticed 
that, although there are strong analogies between the two cases, the details are 
very different. 

The purpose of this paper is to set up a unified method of both theories. Our 
analysis leads to a simple approach to commutator theorems, giving the precise r61e 
that cancellation plays in the theory. 

We set a general frame by considering pairs of interpolation methods with 
some nice "compatibility conditions" having in mind the two basic examples of [RW] 
and [JRW]: 

In the complex case, the pair of interpolation methods is associated to the 
functionals 50 and 5~ (cf. [S] or [CC]) and the O-operator is defined by fta=h~a(0), 
where ha is "almost optimal" among all f such that f(O)=a. 

Similarly, in the real J-method, the corresponding couple of functionals is 

/o /o u(t) and (log t)u(t) dt u 

and f~a= f0 ~176 (log t)ha (t) (dt/t), with f o  ha (t) (dt/t) = a. 

(1) This work has been partially supported by DGICYT, Grant PB94-0879 
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Our method can be also applied to obtain a unified approach to the higher 
order commutators of [R] and [M]. This will be the subject of the forthcoming 
paper [CCS]. 

The paper is organized as follows. In Section 2 we give a general construction of 
interpolation functors, that  was first introduced by V. Williams in [W], and present 
some interesting examples of functors of this type. 

In Section 3 we define the f~-operator for functors constructed as in Section 2, 
we give a simple proof of the commutator theorem and characterize the spaces 
Dom(f~) and Rang(Q). These results answer Questions 1 and 8 in [CJMR]. 

Section 4 deals with the particular case of the complex method of Calder6n, 
and Sections 5 and 6 with the J- and K-method, respectively. 

Finally, in Section 7 we answer Question 6 in [CJMR] giving a precise descrip- 
tion of the twisted direct sums. 

For undefined notation and standard definitions we refer to [BL]. 

Acknowledgment. We would like to express our gratitude to Professor Mario 
Milman who introduced us to these topics while visiting our department. 

2. T h e  i n t e r p o l a t o r s  

The following definition should be compared with the one given in [W]. 

Definition 2.1. By an interpolator ~ over H,  we mean a functor Hr from 
compatible couples A=(Ao, A1) of Banach spaces to normed spaces H(A), with the 
property that  there exists a bounded linear operator 

~A: H(A) --* E(A) = Ao+A1 
for every couple .4, such that  

(1) ToCbA=~goH(T ) 
for every linear bounded T: A--~B. 

We usually set fi.v=~A(H(A)), with the norm 

Ilall,~ -- inf{llfllm+~) ; <I'a ( f )  -- a}, 
so that  f i~-*E(/~),  with norm < l l ~ l l .  If H(A) is complete, fi,~ is a Banach space. 

If there exists a one to one bounded linear operator qo: A(A)--+H(A) such that  

(2) ~X %0 = ida(A), 

then we have A(.4)~-,Ar with Ilall~-< II~(a)IIH(a)-< II~ll Ilall~. P rope r ty  (1) implies 
that  A--+.4r is an interpolation method such that,  for T: A-+B, 

IITIla+,~,~ _< IIH(T)IIH(A),H(B). 
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Examples 

(I) First complex method. This method is associated to the interpolator 

r = 5o(f) = f(O), 

with H(A)=9~(-4), the Banach space of vector-valued analytic functions on the strip 
S considered by Calder6n in [C], and H(T)f=Tof. 

In this case, IIH(T)II < IITII~,B (the norm as a bounded operator T: A-*B), and 

IlO~ll =1. Moreover we have p: A(.4)--.H(A), defined by p (a )=  e(Z-~ which 
satisfies (2), with IIPII-< e. 

�9 If we change So(f) by 5~n)(f)=f('O(8) with the same spaces H(A)=gV(A), we 
get the Lions-Schechter method of derivatives (see [S]). 

(II) The J-method. Now we take 

H(.,4) = {u: R + ~ A(.,4) measurable ;OO,p(J(t, u(t))) < co}, 

where J(t, a)=max(llallAo, tllallA~), if a eA( . i )  and 

�9 ( / f ( t -~  t ) ' 

0<0<1 ,  l_<p<oo. With the norm IlullHca)=%,p(J(t, ~(t))), it is a Banach space. 
For every bounded linear T: A-~B we define H(T)u=Tou and then IIH(T)II <_ 

IITIla,~- Now for ueH(fii), 

d t  - 

(I'a(u) = fo u(t)TeE(A), 

and ~a: H(A)-~Z(A) is 

II~.~(u) ll~.(a) < 

< 

g 

_< 

bounded: 

o dt foo dt 
II~(t)llAo T + ] I  Ilu(t)llA~ T 

1 d t  f~t_lJ(t,u(t))dt t o J(t,u(t)) y+Jl 

(/oi ( J(t~(t)) ~ d-~)l/P (/oltep' d~f ) 1/p' 

(r 
CllullmA). 
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Finally, if we set ~: A(A)--+H(A), 

a, t~[1,e] ,  
~o(a)(t)= O, otherwise, 

then, @A@(a))=f~ a (dt/t)=a. Obviously ft~=-Ao,p;j. 

(III) The K-method. Let H(A) be the vector space of all measurable functions 
(ao, a l ) :  R+--~A0 xA1 such that ao(t)+al(t) is constant and 

r < II(~o,~*)IIHCA) = \]o \ to ) t ]  

with 0 < 0 < 1  and l<pSoo .  As before H(A) is a Banach space, and if we de- 
fine H(T)(ao,al)=(Toao,Toal), we obtain H(T):H(A)-*H(B) ,  with IIH(T)II< 
IIT]IA,~. Now, if we consider ~a(ao,al)=ao(t)+al(t),  we obtain a linear operator 
~A: H(A)-+E(.4) satisfying property (1): 

( To~ ~) (ao, al ) = T(ao( t ) ) + T(al ( t ) ) = ~ (Toao ,  Toal ). 

This operator is bounded: 

~ 2 dt 
II~a(ao, al)ll~.(a) = Ilao(t)+al(t)ll~(x) <_c (llao(t)llo+llal(t)ll~) Y 

< C'/~(llao(t)llo+tllal(t)ll~) ~ < C'll(ao,al)llH(~). 

For any aeA(.4) we define ~(a)=(ao(t)ial(t)), with ao(t)=XLl,~)(t)a and 
al(t)=X(o,1)(t)a. Then ~: A(A)--+H(_A), it is one to one, II~(a)llH(~)--<Cllall~(a) 
and @~@(a))=a. 

It is easily seen that Ar = fiO,v;K, with equality of norms. Interpolation methods 
with function parameters (see [G]) are obtained in the same way. 

(IV) The minimal method. For a given couple ,~ and a fixed intermediate 
space Z, 

~ ( 2 )  ~ z ~ ~ (2 ) ,  

the corresponding minimal method of Aronszajn-Gagliardo (see [AG] and [J]) is 
associated to the interpolator ~r H(/])--*E(A) defined by 

�9 ~ ( { z ~ } ~ )  = ~ S(z~), 
SEb/ 
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over the Banach space 

H(.A) =/ l (z ;~( .z i ) )= (~'={ZS}sEN(~);z S E Z, ~ [[ZS[IZ < 0~), 
S 

with 

and 

/4(A) = {S: ~z ~ .~ bounded and linear ; IISilg, a < 1} 

II~IIH<~) = ~ IlzslIz. 
S 

Obviously ~a(~,) is well defined for all ~,EH(A) and ~a  is bounded: 

II~a(e)ll~ _< ~ IlSllz,~ Ilzsll~. _< CIl~ll~ca)- 
S 

We co~ider ~: A ( ~ ) ~ n ( a )  such that ~ (~)={6~)s~u ,  where id: A ( ~ ) ~ A  is the 
embedding operator. Then 

II~(a)lima) -< II id ]lzx,a and ~ ( ~ ( a ) )  =id(a) =a .  

3. The f~-operator 

Definition 3.1. Let (~, ff~) be a pair of interpolators on the same spaces H(A); 
i.e., such that He =Hr We say that (if), ~) is compatible if 

(3) ffiA (Ker ~A) = Im ~A, 

for every couple fi~, with equivalent norms, in the sense that there exists a constant 
C=C(_4)>0 with the following properties: 

(3a) If gEH(fii) and O~i(g)=0, then ~ i ( g ) = O ~ ( f ) ,  for some fEH(.4) such 

that IifiiH(~i)<_CiiglIH(.~). 
(3b) If fEH(fiz), then OJ](f)=~2(g),  for some gEH(-A) such that O/i(g)=0 

and I[gl[H(2,) <-CllfllH(a). 

Remark 3.2. Sometimes (3b) is not needed. If instead of condition (3) we 
only have ~ a ( K e r ~ a ) C I m r  with property (3a), we say that (~ ,~)  is almost 
compatible. 

Let C>  1 be a fixed constant. We fix an almost optimal election for the inter- 
polator �9 , which is a mapping 

a E fi~r ~ ha E H(A),  

such that r  and [IhaliH(A)<Clia]l~., for every couple .4. We can always 
assume that hA,~=Aha. 
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Definition 3.3. 

with ha as above. 
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Given (~, k~) a pair of interpolators, we define the f~-operator 

~ :  a e i ~  ~ ~ ( h ~ )  e A., 

Given any bounded linear T: A ~ B ,  we define the commuta tor  

[T, f~] = Tof~ A -  f ~ o T :  .4r ~ ~(B) .  

Observe that  f~i need not  be a linear operator on .4r With  these notations, 
for any pair (~, g2) of interpolators on the same spaces H(.4) we have tha t  

IT, f~]: 1r --* B,I,, 

and it is a bounded operator,  since 

[[Tf~Aa[[~, = [[T~l(ha)[[v = [[ql~H(T)ha[[r < C[[H(T)[[ [[ha[[H(A ) <_ Ct[[aHv, 

and 
[[f~Ta[[v = [[ff~ ~(hTa)[[@ < C[[hTa]]H(I) <-- C'][Ta[[r <_ C"[]a[[r 

T h e o r e m  3.4. (Commutator  theorem) / f  (r q2) is an almost compatible pair 
of interpolators, then [T, f~]: ir162 and it is bounded. 

Proof. Let a=~l (ha)6Ar  Then we get 

T~Aa = Tql lh~ = V~H(T)ha,  ~ T a  = VghT~, and [T, f~]a---- ~ ( H ( T ) h a - h T ~ ) ,  

with r  Now, by hypothesis (see Remark 3.2) we get 
[T, f l ] a = ~ ( h ) e B v ,  with ][h[[H(~)<_C][H(T)ha-hTa[[H(~), and hence 

][[T, f~]a[[v _< [[h[[g(~) ~ C([]H(T)[[ []ha[[g(i)+c[[Tal[r <_ C'[]a[[r [] 

C o r o l l a r y  3.5. Let ~ be the fl-operator corresponding to a second almost 
optimal election a~-*ha. We have: 

(a) For any (O, g2) (on the same spaces g ( i ) ) ,  f l l - 5 ~ :  l~--,l~ is bounded. 
(b) / f  (r  g2) is almost compatible, then f~ l - -~ l :  lr l ~  is bounded. 

Proof. (a)[[(f l l -hA)a[[~=[[~(ha-ha)[[~<_[[ha-ha[[H(i)<_2CIla[[r  
(b) We have ~ ( h a - h ~ ) = 0 ,  thus ( f l l - 5 ~ ) a = V ( h a - A a ) = O ( g ) e i r  with 

11(f l~-5~)a l lr  <__ IlgllH(~)<-CIIha-hollHr ---C'll~ll~- [] 
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Definition 3.6. On the set Dom(12~)={aE.4r162 we define 

liallo = Hall~ +l i~Aai l~ .  

Observe that [iaI[D>0 if a~0,  and ]])~a[[D----]A[ [[aI[D. 

L e m m a  3.7. If  ((I), k9) is almost compatible, then for a, bETty, 

12~(a+b)-f~a-f~Ab E A~, 

and there is a constant C=CA such that 

Proof. We have ~(a+b)- f t~a- f~Ab=~(h~+b-ha-hb) ,  with ~(ha+b-ha-  
hb)=O. Hence, ~(h~+b-ha-hb)=~(f )EAv,  and 

[il2A(a+b)-ft~a-~bl[r <- [[f][H(J) <-- C][h~+b--h~--hbIIH(~) 

< C'(il~ii~+ilbil~).  [] 

T h e o r e m  3.8. (a) If ((I), ~/) is almost compatible, then Dom(f~)  is a quasi- 
normed linear space and Dom(f2A)=Dom(~j) (with equivalent quasi-norms), for a 
second almost optimal election (in fact Dom(f~_)-~(I)~(~AI(A~)) ). 

Also, A--~Dom(ft~) is an interpolation method (i.e., for any T:.4---*B, 
T: Dom(f~A)--*Dom(12~) is bounded). 

(b) ff ((I), k9) /s compatible, then 

Dom(g~A) = {Ca(f) ; f  G H(.4), k9~] (f) __- 0} = (I)~ (Ker q~), 

with []x]KD~inf {HfHH(j) ;x=(I)j (f), q~i(f)=0}. 

Proof. (a) If a, b~Dom(12A), from the lemma we obtain: 

< C(llall~+llbll,+llalID+llblID) < 2C'(llalID+llblID). 

To show that Dom(~)=~(~AX(f i . r  suppose that a~Dom(~A); then 
there exists haEH(fi) such that r IIhalIH(~)<CIlall~ and ~a=~(ho).  
Hence h~e~At(Ar and a e ~ ( ~ A ~ ( A r  
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Conversely, if a=ffA(h), ~a(h)=O~(h ' ) ,  h, h 'EH(A),  and f~aa=~a(ha), with 
~ (ha)=a, I[ha IIH(~)-<Cllall~, then C a ( h a - h ) = 0  and thus ~ ( h a - h ) = ~ ( h " )  E 
.4r Hence, fl~a=~a(h)+O~(h")=O~(h')+~(h")Eflr 

Finally, given a bounded linear T: A-*B, 

IlTallD = IITalI~+ IlftBTal]e~ < C(llall~+ll [T, f~]all,~ + l[Tf~Aallr ) <_ C'liallD. 

(b) Let now B=r  ~a),  with 

IIxlIB = i n f { l l f l l H ( a )  ;x---- ca(Y), ~Va(f) ---- 0}. 

For any xeDom(gta) we have, z=r  gtax=~a(hx)='~,(h)=~Va(g), 
with ~a(a)=0,  IlhllH(a)_<(l+~)llf~azllr IlgllH(a)<_CIIhllH(a). Then C a ( h ~ - g ) =  
0, x=r and we have xEB, with 

Ilxlls -IIh~-gllH(a) <-C(llxll,~+(l+~)ll~axllr 

Hence, Ilxlls <_CIIxlID. 
Conversely, if xEB, x=(I)a(/) , ~ , ( f ) = 0 ,  with_ Ilflln(]o<(l+e)llxll~, then 

we get f~ax=~Va(h~)=~Va(h~-f)=,~a(h), with IlhllH(a)<CIIh~--fllH(:~) (observe 
that ( I)a(h~-f)=0) .  Hence f taxEfi~ , and 

IIf~axllr ___ CIIh~- fllH(a) <_ C' (IIxlIr +(I +e) IIxlIB ) 
<-- C' (llfllH(a) + ( l +~) llxlls ) < C"llxlls. 

Finally, 

IIzlID = Ilxllr  _ C(llfllm.~)+ll~Axll,~) ~ C'llxllB. [] 

Observe that as a consequence of the theorem, a necessary and sufficient con- 
dition for Dom(f~)= .4 r  is that  H(A)=~AI(Ar  We can also give a 
converse result for (b): 

P r o p o s i t i o n  3.9. (O, ~) is almost compatible, Dom(f~A)----OA(Ker~A) and 
Aoc--*Av, if and only if (~, k~) is compatible. 

Proof. If Dom(f~A)--o~(ger ~A) =r  1(Ar then, for hE ~A 1 (fi~r there 
exists htEKer~A such that h-h~EKer~A.  Thus, ~AI (A~)cKer~A+Ker~A.  
Hence, if aE_4v and hEH(.4), with kV~(h)=a, we have that  h=hl+h 2, ~ ( h l ) =  
�9 ~(h2)=0. Therefore, a = ~ ( h l ) E ~ i ( g e r O ~ ) .  Conversely, if ( ~ , ~ ) i s  com- 
patible by Theorem 3.8 we need only show that .4r But if aE-~v, then 
a=~(ha)=ff~ ~(g)EA~ and 

]]giiH(~) ~--CHhaIIH(A)<_C']]ai]r [] 

Another important set related to the fl-operator is the following: 
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Definition 3.10. Rang(~'t~,)={a),a;aefi, o} with 

I[x[[R = inf{lla{[r ; ~ a  = x}. 

In general, Rang(flA) is not a linear space and it depends upon the choice 
made to define gt~. It is easy to check that AxeRang(~A) if xeRang(fl~i), with 
IIAxlIR----IAI IlxllR. We will also consider -4~ +Rang(fl~i) with 

Jlxl]+ =inf{]lajJr +]l~2~bll~ ; x = a + b  , a, be Ar 

From the definitions it follows that Rang(fiX) "--*.4~ and _A~ +Rang(miX) ~-*.4~ +A~, 
boundedly with constant C. In fact, for x=fl~a, with HaHr we have 

IIxllv = IIg!(ha)ll~ <_ IIh~IIH(X) <_ C(l+e)llxll~. 

T h e o r e m  3.11. (a) If(O, k~) is almost compatible, then A~c--~.4r 
and T: .~r + R a n g ( ~ )  is bounded, for any bounded linear opera- 
tor T: A ~ B .  

(b) / ] (O,  9)  is compatible, then .dv=-do+Rang(~x) ,  with equivalent "norms". 

Proof. (a) Let us consider x=~(f)e~i~, with Hfl]g(~)<(l+e)HxH~, and let 
a = ~ x ( f ) e . 4 r  If b=~txa=q2X(ha)eRang(~tX), then x = ( x - b ) + b = ~ ( f - h a ) +  
l'txa, with OA(f-h~)=O, and it follows that 

x = ( ~ ( h ) + ~ a  e .4~ + R a n g ( ~ ) ,  Ilhlln(~) < CIIf-h~ll~(~), 

and 

Ilxll+ <_ IlhlIH(A) + Itall,~ <_ Cilf  -h~  lIH(A) + Itail,~ 

<_ C' (llflIH( ) + llall ) < 2C'llfll ( ). 
Hence [Ixll+ <Clixll . 

Now let T: A--~B. For any x=a+Ftfibefi~+Rang(~)7,), with Ilali~+ll~bllR< 
(l+e)HxH+ , and libll~)_<(l+e)liFt~bllR we have Hallr It follows 
that 

Tx = (Ta+ IT, gt]b)+12~Tb e By + Rang(~) ,  

with 

IITxH+ <_ (IITII~,~ + II[T, ~]ll~,v)(llallr162 (l+e)2(llTIl~,v+ll[T, ~]ll~,r 

Thus lITIl+,+ <llTIl~,~,+ll[T, fl]ll~,r 
(b) In this case we have Aoc--~A~ (see Proposition 3.9), and we have seen that 
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4. The $~-operator for the complex method 

Let us now consider the pair (6o, 6~) of interpolators, with H(A)=~-(A) (see 
Example I). 

Theorem 4.1. The pair (5o, 6~) is compatible. 

Proof. If gEgV(A) and 6o(g)=g(O)=O, then 5~(g)=g'(O)=f(O), with f (z)= 
~'(O)g(z)Ao(z), where ~o is a conformal mapping from the strip S = { z ; 0 < R e  z < l }  
onto the unit disk D = { z ; I z l < l  } such that  ~o(0)=0. We have fEg~(A), with 
IlfllJ:(A)=kd(0)l Ilglb:(A)- Conversely, let now feOV(A). Then 

g(z) - V(z)f(z) E J:(fi) 
r 

with [[gi[:r(.A)=iifil.r(A)/i~o'(O)i, 6o(g)=g(O)=O, and 6~o(g)=g'(O)=f(O)=6o(f). [] 
In this example, for a given almost optimal election 

a E -4[o] = -4~0 ~ ha E ~'(/]), 

we have ~Aa=h~a(O), and it follows from Theorem 3.11 that  the interpolation 
method associated to Rang(~A) is Schechter's lower method (see [S]): 

A[01 +Rang(f~A) = A6~. 

In connection with the domain of QA, we recall that  Sehechter's upper method is 
defined by 

~e~ = [A0, Ax] 6g = {x 6 E(A) ; xg o = fgo, for some f C 9 r} 

= {x C E(A) ;x = f(O), for some f e.U, f'(O) = 0} 

and we easily get as a consequence of Theorem 3.8 that  (eft [CJMR] and [CCMS]) 

Dom(f~A) = A6~. 

and 

5. T h e  ~ - o p e r a t o r  for t h e  J - m e t h o d  

We assume 0 < 0 < 1  and l < p < c ~ ,  and let 

H(.4) = {u: R + ~ A(_A) measurable; &o,p(J(t, u(t))) < c~}, 

f0 ~ t '  
as in Example II, so that  we obtain the J-interpolation method. A second functional 
�9 ~- is defined on H(A) by 

~J (u)= fo~(logt)u(t) d-~. 
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T h e o r e m  5.1. (~J, ~J) is a compatible pair of interpolators and 

~t.,j={a:fo~176 d-~;v:R+--+A(A) measurable, ~o,IJ(t 'v(tO)<o0} 
, \ l + l l o g t l  

with 
Ilallr = inf ~o,p ( J(t' v(t) ) 

the infimum being taken over all representations a= fo  v(t) (dr~t). 
Proof. The functional ~J is well defined and bounded from H(.4) to E(A): 

fo dt f~  dt II~-(u)ll~._< I logtl Ilull0 T + J l  (logt)llulll T 

<Jo f l  II~ f~176 dtT 

< [(fol(llogtlto),' ~ )  1/'' /" f~  f l~  ~ )  11" 
- +t J, 
=CIlullH(a). 

To see that ~J  and ~J  are compatible, first assume that f~  u(t)(dt/t)=O, 
(with uEH(A)) and define 

s F(z) = tZu(t) dt 
t '  

on the strip {zEC;-e<Rez<e}, with e>O such that O<O-e<O+e<l .  It is easily 
seen that F(+e+ti)E.4o+~,p, with IlF(+e+ti)lloi~,p<_ClLULIH(a), and, since F(O)= 
0, we have 

F t (0)= f0~176 (log t)u(t) ~ = k~ J (u)E [Ao-e,p, Ao+e,p]O = fitO,p = fixoa, 

with II~-(u)ll~J <_CllullH(~)- 
For the converse inclusion ImOJc--,kVJ(Ker ~- ) ,  for a given uEH(fi,) we con- 

sider v(t)=u(t)-u(et) and we have vEH(fl) such that O J ( v ) = f o  v(t)(dt/t)=O, 
and 

fo ~ dt =o}(u), = u(t) T 
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with ll~ll~(.~) <Cll~lln(.~. 
For the last part of the theorem, let 

B =  a = f o  v(t) T ;  ~,t0(l+ilogtl  ) <(x~ , 

and ae_~vJ, a = f o ( l o g  t) u(t) (dt/t), with 

Then a=]o  v(t) (dt/t) with v(t)= (log t) u(t), and 

IlallB < ~0,p \ l+ l  g tl ] < oo,p( J(t, u(t) ) ) <_ Ilall~,' +e. 

To show that B~-*A~J, for any aEB we have 

with 

a= v(t) y = l+[--~-ogtl t + -l~ll--~gti - =b+c, 

(J( t ,v( t ) ) )  
~O,p l+ l log t l  ] _< IlaIIB+e, 

and bEfiicJ,--~A~J, with HbHv<_CIIbHr On the other hand, 

/5 c =  (log t) ~,(t) dt 
7'  

with w(t)=s~(logt)v(t)/(l+llogtl), and ~o,p(t,w(t))<_llallB+e. It follows tha t  
ce.4r and Ilcll~_<llallB+e. Hence ae-A~J and Ilall~<CllallB. [] 

Let now f~J be the ft-operator associated to the pair ((I)J, II/J), and to a given 
almost optimal selection a~-*ha for ~g. Again, as an application of Theorem 3.11, 
we have 

Ao,p;J + Rang (~t J) =-- fi.,~s, 

and 

(4) Dom(~t~-)= a =  u(t) --(; (logt)u(t) -~ =0,  u e g ( A )  

which has the following description (see [CJM] for another proof): 
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T h e o r e m  5.2. 

{/o } Dom(fl~)= a =  u(t) y ;ueH(Ti),r . 

Proof. Let E be the right hand side space, with the natural norm, and choose 
a = f o  u(t) (dt / t ) �9  with 

r = ((1+1 log tl)J(t, u(t))) < Cllalle. 

Then a= fo ha(t) (dt/t), J oo ft~a=fo (logt)h~(t) (dt/t) and f~~ (dr~t)= 
0. Thus, from 

b= (logt)u(t) �9162 and a J a - b =  (logt)(h~(t)-u(t))--~ �9162 

we obtain 

and 

foo ~176 dt ~tJ a= (logt)h~(t) --( e A~:, 

_< IlullH(a) +Cllu- ho IIH(a) +CllulIH(a) < Cllalle. 

To show that Dom(~tJ)~-*$ we will use the following facts: 
(i) (Aeo,qo,Ael,q,) is a partial retract of the couple (lqo(2-'~eo),lql(2-'~~ 

(cf. [Cw] and [CJM]). Recall that .4 is a partial retract of B, if for every xEE(A) 
there exists a pair of bounded linear operators, F,:  A--~B and P~: B--.fil, such that 
P~oFxx=x and sups ]]Fxl[,sup~ HPx[[ <c~. 

(ii) [/P(2-"~ lP(2-"el)]a'~ =lP((l+lnl)2-'~e), with 0=(1-#)0o+#01 (see refer- 
ence [CC2]). 

(iii) (Aeo,ao, Ael,q, )~,,p =A~0,p, with ~ (x) = (1 +l log xl)x -~ (cf. [G]). 
Let now aeDom(flJ), and ueH(.4) such that (by (4)) 

?oo .d t  ~oo ~176 dt a=Jo u(t) T, ( logt)u(t)T=O, OO,p(J(t,u(t)))<oo. 

Then 
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on the strip 9 - e < R e z < O + e ,  F ( 0 ) = a  and F ' (0 )=0 .  Hence 

- -  _ ( ~ !  

aE [Ae-~,p,Ae+~,p] o with Ilall[Ae_~,p,Ae+~,plS,o <_ IIFII~ <_ IlUllg(~). 

With the notation of (i), let F: (Jie_~,p,Tio+e,p)---~(lP(2-'~(e-E)),lP(2-n(e+6)), 
and let P:  (l p (2-n(e-~)), l p (2-n(~ (-40- e,p, A0+~,p) be a pair of bounded linear 
mappings such that PFa=a. Then, by interpolation (we use (ii) and (iii)): 

and 

Hence, 

F: [Ae-e,p, Ao+~,p] ~ ~ / P ( ( I +  1~l)2-'~e), 

P: IP( (l + Jn[) 2-he) --* A~o,p. 

Ilall~,p = JlPFaJJ~,p < CJlFalJ,~((l+l,,I)2-,~) ~ Cllall[~_~,~,~+~,~l~5, 

we have aEJi~e,v, and there exists vEH(fil) such that  

/o a= v(t) and ~o,p((l+Jlogtl)J(t ,v(t)))<~. 

Thus aEg. [] 

Remark 5.3. From (i)-(iii) we obtain the reiteration property 

with 1/q= (1 -0 ) /qo  +O/ql. 

6. T h e  ~ - o p e r a t o r  for  t h e  K - m e t h o d  

Let now 

f l dt foo dt 
�9 K(ao,al)=ao(t)+al(t) and ~I~(ao,al)=]o ao(t) T - ] l  al(t)--( 

be defined over the Banach space H K (4) of all pairs of measurable functions 

(a0, hi): R § --* A0 • AI 



C o m m u t a t o r s  a n d  i n t e r p o l a t i o n  m e t h o d s  2 1 3  

such that ao(t)+al(t) is constant and 

II (ao, al)llH = vo,p(llao(t)Iio +tll~l (t)II1) < o~, 

0<tg<l ,  l_<p<cr as in Example III, and Hg(T)(ao,al)=(T(ao),T(al)), for any 
bounded linear operator T: A---~B. We observe that 

II~K(ao, al) l l~< ao(t) t o T 

ly 
___ vii (ao, al)ll H. 

T h e o r e m  6.1. ( O K, q2 K) is a compatible pair of interpolators. 

Proof. Let (I)~(ao, al)=O=ao(t)+al(t), with (ao, al)~HK(.4). Then, 

fo ~ dt ,r~-(ao, al)  = ~o(t) y ,  

and, since OO,p(J(t, ao(t))) < Oo,v(llao(t)]1o +tllal (t)II1)= II (ao, al)IIH, we have 

~I'~-(ao, al) �9 fi, O,p;J = Ao,v;K and II~AK-(ao, al)ilv < II(ao, al)iiH. 

Let now aE.4r We have to find (bo, bl)qH(-4) such that 

fo ~ dt r and ~(bo,  bl)= b 0 ( t ) - - = a .  
t 

This follows from the fundamental lemma of interpolation theory (el. [BL]): 
If we discretiT.e, we have to show that there exists a sequence (b~, b~)EA0 x A1 

such that 
c o  

b~+b?=0 and E b ~ = a  
71,~--  OO 

Let a=a~+a~, with Ila~Jlo+2nHa~JJl<_(l+c)g(2n,a). We have 

lira Ila~llo=0 and lim ]]a~l]l=0. 
n - ->  ~ OO ~r/,--# ~O 

Write ~o_.,~ .n-1 and h l - ~ n  ~,~-1 Then 0 1_  t , n - - t ~  0 - - t~  0 ~ n - - t $ 1  - - i t  1 . b n  q - b n - - O  and 

/ 

K(1, a - E b ~  ) = K(1, ao N-I+aM)---+O, a s  N, M ---* cr 
\ 

Hence ~ n  b~ [] 
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7. T w i s t e d  d i r e c t  s u m s  

Let us define, as in [CJMR], the twisted direct sum of Ar Ar ~ n  A*, the set 
of all pairs (a, b) e(Ao+A1) x (Ao+A1) such that 

Ilall.~. + l laa-bl l .~o  < + ~ .  

We first have the following result. 

Propos i t ion  7.1. Let T:-4r be a bounded linear operator. Then the 
operator [T,~]:fi~v--~Br is bounded if and only if, T : A ~ a A r 1 6 2  is 
bounded, where T(a, b) = (Ta, Tb). 

Proof. Let (a, b)eAr ~a  1]*. Then 

HT(a' b) iiB* ~a  B| = [ITal[s* +llf~Ta-TbHB| 

<_ CllallA. + [[~Ta- T~a[l~. + HT(~2a-b)[[~, 

_< c( l la l l~ .  + l l n a - b l l ~ . )  = VII(a, b) ll~. a ~  ~*" 

Conversely, let aEA_~, then 

II [T, alall~. --I laTa-Taall~o < II(Ta, Taa) ll, o a a  B- 

=l l f (a ,  fta)llN, anN~ < Cl[(a, aa)llA, an  A. = CliailA.. [] 

Proposi t ion  7.2. If  (~, ~9) is compatible, then 

fi~r ~ - 4 .  = {(a, b) ;a = r  b = ql(f), f E H(.4)}. 
fl 

Proof. Let g be the right hand side space, with the usual norm, and choose 
(a,b)EAr ~ a  Av. Then ~a=ql(ha) with r [[hallH(2)<--V]laH~., b-~2a= 
�9 (g)=9(h) with V(h)=0 and Ilhl[g(~)<Cllb-flallA,. 

Therefore, a=~(h~+h), b=b-~a+~a=qz(h~+h); that is, (a, b)Eg and 

I[ (a, b)lle _< Ilha +hHH(A) <_ C(llal[A. + Hb-Qall~.) = CH(a, b)llA . an  A| 

Let now (a,b)zE and set a--O(h),  b=~(h) and IlhllH(~)<_CIl(a,b)lle. Then 
hEAr, fta=~(h~) and ~a-b=qz(h~-h) ,  with r  Therefore, f~a-bEfi~r 
and 

II(a, b)II~., a n  A. = Ilall~. + I laa-bllxr _< C(IIhlIH(X)+ Ilha-hllH(~)) 
<CIIhllH(~) <Cil(a,b)lie. [] 
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Remark 7.3. In particular, since the J -method  satisfies the hypothesis of Prop- 

osition 7.2, we have that  if A~ = (Ao ,  A1)0,p;g, 

' t '  ' 

where r u ( t ) ) )<c~  (see Example II). This answers Question 6 in [CJMR]. 
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