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Extremal rational elliptic surfaces
in characteristic p. II: Surfaces
with three or fewer singular fibres

William E. Lang

Introduction

In this paper, we complete the classification of extremal rational elliptic surfaces
in characteristic p, begun in [3].

In [4], Miranda and Persson classified all rational elliptic surfaces over the
complex numbers such that the Mordell-Weil group of the generic fibre is finite.
They called these surfaces extremal rational elliptic surfaces. They found 16 families
of such surfaces. All but one of these families have only one member, and the
exceptional family depends on one parameter.

In our first paper on extremal rational elliptic surfaces in characteristic p, we
classified those where the singular fibres are semi-stable. These are the character-
istic p analogues of the surfaces studied by Beauville in [1], and we called them
Beauville surfaces.

In this paper, we classify all other extremal rational elliptic surfaces. The clas-
sification is identical to the classification in characteristic zero in all characteristics
except two and three. (There is one exceptional case in characteristic five.) The
classification in characteristics two and three looks quite different. This is due to
the presence of a wild ramification term in the formula of Neron—-Ogg-Shararevich,
which appears only in these characteristics.

Here is a plan of the paper. In Section 1, we give the preliminary results
on extremal rational elliptic surfaces that we need. (Almost all of these results
appeared in [3].) In Section 2A, we classify all possible singular fibres on rational
elliptic surfaces with section in characteristic two, taking into account the extra
term in the Neron—Ogg—Shararevich formula. It is hoped that this list may be
useful for other purposes. In Section 2B, we use the results of Section 2A (together
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with the material of Section 1) to classify extremal rational elliptic surfaces in
characteristic two. Sections 3A and 3B carry out the same program in characteristic
three. Section 4 carries out the classification in all characteristics not equal to two
or three.

I would like to repeat my thanks to those mentioned in Part I: R. Miranda,
T. Ekedahl, D. Laksov, R. Speiser, B. Harbourne, K. Ribet, and J. Roberts. I would
also like to thank Brigham Young University for additional financial support.

1. Preliminaries

Most of this section is repeated from [3].

Definition. (Miranda—Persson) Let f: X —C be an elliptic surface with a sec-
tion over C. We will say that X is an extremal elliptic surface if the rank o(X)
of the Neron—Severi group is equal to h'1(X) and if the rank of the Mordell-Weil
group of the generic fibre (we will denote this group by MW (X)) is zero.

If f: X—C is an elliptic surface with a section over an algebraically closed
field of characteristic p, the definition of extremal remains the same except that we
replace the condition o=h%! by the condition g=B,.

We will assume that all elliptic surfaces are relatively minimal and have a
section.

Definition. A Beauville surface is an extremal rational elliptic surface such that
all singular fibres are semi-stable.

Let f: X —C be an elliptic surface over an algebraically closed field k. Follow-
ing [4], we assign three numerical invariants to each singular fibre F' of X. The first
is 8, the order of vanishing of the discriminant A of the Weierstrass equation for
the point of the base under F. The second is rg, which is the number of components
of F which do not meet the zero section. Finally, we consider the lattice in N S(X)
of rank rp spanned by the components of fibres not meeting the zero section, and
we let dp be the discriminant of this lattice. (If rp=0, we adopt the convention
that d F— ].)

Lemma 1.1. If X is an extremal rational elliptic surface, then [[dr is a
perfect square, and the order of the Mordell-Weil group of the generic fibre is the
square root of [[dp.

Proof. See [4], Corollary 2.6.
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Lemma 1.2. Let F be a singular fibre on an extremal rational elliptic surface.
Then ép—rr=1 if F is a fibre of multiplicative type, and ép—rp=2+ fr, where
fr>0if F is a fibre of additive type. Moreover, fr=0 unless the characteristic is
two or three.

Proof. This is a consequence of the formula of Neron—Ogg—Shararevich. See [5]
or [6, p. 361].

Now suppose f: X — P! is an extremal rational elliptic surface. Since X is
rational, > ép=12, and since X is extremal, > rp=8. Therefore ) (6p—rr)=4.
Using Lemma 1.2, we obtain

Lemma 1.3. Any extremal rational elliptic surface has 4 or fewer singular
fibres. The surface has 4 singular fibres if and only if it is o Beauwille surface.

We classified Beauville surfaces in [3]. Therefore we need only deal with surfaces
with three or fewer singular fibres in this paper.

2. Characteristic two

2A. Classification of singular fibres of additive type on rational elliptic
surfaces in characteristic two

Throughout this section, we will assume f: X — P! is a rational elliptic surface
with section over an algebraically closed field of characteristic two.

We begin by listing the possible types of singular fibres of additive type that can
appear on a rational elliptic surface in characteristic two. We put the Weierstrass
equation for each type into a normal form, and compute A,dp, and the Kodaira
type of each fibre. The Kodaira type determines rg.

The proof is a straightforward exercise in applying Tate’s algorithm for deter-
mining the type of a singular fibre in an elliptic pencil [7]. We start by writing the
Weierstrass equation for our surface

y2+a1my+a3y = w3+a2m2+a4m+a6,

where the a; are polynomials in ¢ of degree <i. We locate our singular fibre of
additive type at t=0. We may change coordinates so that t|ag, a4, and ag. We may
now write the equation in the form

y2+a1xy+tczy = x3+a2m2+at03w+t05.

Then since our fibre is of additive type, t|a;. We have two possibilities:
(1) a1#0, in which case we may scale and assume a; =t;
(2) a1=0. If a;=0, the j-invariant of the surface is identically zero.
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We will handle these possibilities separately. Also, by making a substitution y=y+
kz, we may assume t|ag also. Now we simply work through the algorithm. The
calculations are straightforward, and will not be given in detail. Notations such as
ay, i, d;, etc. represent polynomials in ¢ of degree <1.

Y2 +txy+tepy=x3+tcyx? +tegwt+tes, thes, tea,
Case 1A A=t*(t3cs+t3cocs+t3erch+t2c3) +tics+5¢3,
6=4, r=0 Typell
Y2 +toy+tidiy=2® +teyx? +esx+tes, tes, ties,
A=t*(Bcs+t*dics +tPcrd? +12c3) +13di+12d3,
6=6, r=0 Type IL

Case 1B

v +tey+tidiy=x3+teyx® + 2oz +tes, tes,
A=t (t3cs+t3dyco+10crd? +t4c3) +18di+t2d3,
6=T7, r=0 Typell

Case 1C

Y2 Htey+tegy=a3+te x? +tesz+t3ey, ties, thes,
A=t*(tres+t3cacs+t3eici+t2c3) +ticd+15¢3,
6=4, r=1 TypellL

Case 2A

Case 2B A=ttty +ttdicz+t0erd? +12c3) +18dE+19d3,

6=6, r=1 Type IIL
2 +tryttepy=2a3+teyp? +13daz+1t2cy, e,
A=t*(ttcy+ttcada +t3cr 3 +14d3) + 11 el +16¢c3,
6=4, r=2 TypeIV.

Case 3

2 +toy+ticiy=2+tdie? + 2 dox+t2ey.

By substituting y=y+kt, t=x+1t, this becomes
Case 4A 2 +toy+ticiy=23+tdix? +t3e x+t3cs, t{es, ther,
A=t*(tPcs+t%cre; +t0dyci+1%e3) +t8ct+1%c3,

6=8, r=4 Typel}.
y2+tmy+t300y=x3+td1:c2+t36133+t303, tfc;;,
A:t4(t503+t760€1+t7d160+t6€%)+t12 +t1260,
6=9, r=4 Typel;.

Case 4B

{ 2 +try+t2diy=23+tcix? +tezx+t3cy, tes,



Case 5A

Case 5B

Case 5C

Case 5D

Case 6

Case 7

Case 8
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y2+txy+t201y:x3+td1x2+t3elm+t402, t’fdl, tJ(cl,

A=t*(tScy+1tbcier +t3d 2 +18e?) +t8ct +1%c3,
6=8, r=5 Typelj.

Y2ty +t3coy=x3 +tdx? +t3e1z+tics.
Replace y by y+kt2. For suitable k, we have

Y2 +toy+ticoy=ad +tdix? +t3e1x+t0¢y, tdy, ther.

A=t4(tTc+17coer +17cBdy +8e?) +12c +112c3,
6=10, r=6 Type I3.

y? +tzy+t3coy=x>+tdx? +ttegz+toe;.
Replace = by z+kt2. For suitable k, we have

Y2 +try+t3coy=a3 +tdi 2% +ttegx+18dy, tidy, tico.

A=t4(t8dy+t3coeq+17drc +18ed) +t12cd+112c3,
6=11, r=7 TypeI}.

Y +tey=a3+tdi 22 +ttegr+teq.

Replace y by y+kt3. For suitable k, we have
Y +try=23+tdi 2% +tleox, tidy, teg.
A=t123,

60=12, r=8 Typel}j.

y2+tzy+ticyy=23 +t2dgx® +t3e 1z +tico, tey,
A=t (t5co+18cre1 +10doc +5e2) + 8¢t +t%¢3,
6=8, r=6 Type IV*,

Y2 +tzy+t3coy=x3+t2doz?® +t3e17+t1co.
Replace y by y-+kt?. For suitable k, we have

v +try+tcoy=23+t2dox? +t3e1x+10 f1, thes.
A=t4{t7 fi+t7coer +t8cido+1%ed) +12ch+112c3,
6=10, r=7 Type IIT*.

Y +try+t3coy=13 +12dox® +ttez +tPey, tley,
A=t4(t"ey +18coeg+18ctdy +t8ed) +12ch+-t12c3,
6=11, r=8 Type II*.

427
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Cases 1-8 exhaust all possibilities with a1 #0. In cases 9-16, we will have a; =0,
which forces j=0.
Y2 +tepy=2%+te1x? +tezz+tes, tes,tiea,
Case 9A A=tic,
6=4, r=0 Type IL

Y2 +t2diy=23+tcix® +tegz+tes, thes,thdy,
Case 9B A=t8d3,

6=8, r=0 TypeIL

v +ticoy=23+teix? +teax+tcs, thes, the,
Case 9C A=t'2c},

6=12, r=0 Type IL

Y2 +tegy=a>+te1x? +caz+t2cy, tes,ties,
Case 10A A=tich,

6=4, r=1 Type IIL

y2+t2d1y:z3+tclx2+t03x+t204, t)(63,t1'd1,
Case 10B A=t¥d},

6=8, r=1 Type IIL

Y2 +t3doy=23+tc1x? +tcsz+t2cy, thes, ttdp,
Case 10C A=t124d5,

6=12, r=1 Type IIl.

Y2 +teoy=28 +tcix® +t2dax+t2cy, teo,
Case 11 A=ttc},

6=4, r=2 TypelV.

Y2+ t2d y=23+te x? +2dox +12cy.

We may change coordinates so this becomes
Case 12A v +t2cry=z3+tdiz? +t3cix+t3cs, tes, then,

| A=t
6=8, r=4 Typel;.
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Y2 +t3coy=ad +tdix® +t3crz+t3cs, tfes, theo,
Case 12B A=t12c},
6=12, r=4 Type I}.

v+t y=r3+tdix? +tPe1x+t4dy, tdy, te,
Case 13A A=t
6=8, r=5 TypeIj.

~

Y2 +teoy=z3+tdiz? +t3e1x+t4ds, tidy, theo.
Replace y by y+kt2. For suitable k, we obtain
Case 13B v +t3coy=a3+tdix? +t3e1x+t5 f1, ther, teo,
A=t12c}.

\ 6=12, r=6 Type L;.

(2 +t3coy=a3+tdix? +t4dox+tPe;.

Replace z by z+kt2. For suitable &k, we obtain
Case 13C v +t3coy=a3+td iz +t*dox+tSep, t{dy,tco.
A=t12c},

( 6=12, r=7 Typel;.

v 4+t2eiy=x3+t2doz? +t3e1z+t4dy, te,
Case 14 A=t8ct,
§=8, r=6 Type IV*.

2 +t3coy=a3+t2dox? +t3e x4+ 14ds.

Replace y by y+kt%. For suitable k, we obtain
Case 15 v +t3coy=23 +t3dpa?® +t3e1x+15dy, tey, tco,

A=t'2c3,

6=12, r=7 Type III*.

2 +t3coy=a3 +t2dpa? +tteor+1t3dy, t4dy,tco,

Case 16 A=t12c},
6=12, r=8 Type II*.
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We now make a table of the possibilities obtained.

6 r b—r
Case 1A 4 0 4
Case 1B 6 0 6
Case 1C 7 0 7
Case 2A 4 1 3
Case 2B 6 1 5
Case 3 4 2 2
Case 4A 8 4 4
Case 4B 9 4 5
Case 5A 8 5 3
Case 5B 10 6 4
Case 5C 11 7 4
Case 5D 12 8 4
Case 6 8 6 2
Case 7 10 7 3
Case 8 11 8 3

In cases 9-16, the j-invariant is identically zero

Case 9A 4 0 4
Case 9B 8 0 8
Case 9C 12 0 12
Case 10A 4 1 3
Case 10B 8 1 7
Case 10C 12 1 11
Case 11 4 2 2
Case 12A 8 4 4
Case 12B 12 4 8
Case 13A 8 5 3
Case 13B 12 6 6
Case 13C 12 7 5
Case 14 8 6 2
Case 15 12 7 5
Case 16 12 8 4

We now list the possibilities for extremal rational elliptic surfaces permitted
by the table. Recall from Section 1 that Y ép=12, > rp=8, > (6p —rr)=4. Also,
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since cases 9-16 have j identically zero, we cannot have fibres from cases 9-16
appearing with either a fibre of multiplicative type or with a fibre from cases 1-8.
Possibilities with one singular fibre

| Case 5D,

11 Case 16.
Possibilities with two singular fibres

I11 Case 2A, Ig,

v Case bA, 14,

\'% Case 7, I,

VI Case 8, 11,

VII Case 17, Case 14.
Possibilities with three singular fibres

VIII Case 3, 12, 16,

IX Case 6, Il, I3.

The possibility of Case 3 and Case 6 appearing together is excluded, since both
of these require a; #0 and that a; have a zero below the fibre in question. Since a
has degree <1, it has at most one zero.

2B. Existence and uniqueness of surfaces with prescribed fibre types

In this section we will show that surfaces with fibres of each type listed at the
end of Section 2A exist. We will examine the uniqueness of each type.

Before beginning our case-by-case analysis, we remark that in the cases where j
is not identically zero, the Weierstrass equation may be written in the form

y2+a1xy+a3y=x3+a2w2+a4x+a6.
By appropriate changes of variable, this can be put into the following form.
v try+hy = 22 +agx? 4 pr+as,

where A and p are constants. We refer to this as the Ap-form of the Weierstrass
equation. For the Ap-form,

A=t Pag+tAu+22az+p2) F A3,

Case I. This surface has one singular fibre, which we locate at the origin. Putting
the equation into Ap-form, we must have A=p=0, ag=Fkt®, k a constant. Our
equation becomes

Y +tay = 3 +agx? +ktd.



432 William E. Lang

By making a substitution of the form y=y+ (at+b)z, we may assume ax=dt, d a
constant. We now have
Y2 +tay =3+ dtz? + ktS.

We cannot have d=0, since if d=0, the Weierstrass equation would not be minimal.
We may scale z,y, and ¢ so that d=1. The equation is now

VP oy = a1+ ki,

Then A=kt'?, so we cannot have k=0. Computing, we find j=1/k, so different
choices of & lead to non-isomorphic surfaces. Thus, the surfaces in Case I form a
1-parameter family.

Case II.  Our equation is
v +t3coy = 23 +2dor® +ttegz+t3d; .

Scaling, we may assume co=1. A substitution of the form y=y-+ktx allows us to
assume do=0. We now have

v+ t3y =22 +ttegr+t3d;.

We can force eg=0 by a substitution of the form x=x+kt?, y=y+It, ?=k. This
gives
v +t3y =23 4+45d;.

Finally, by making a substitution y=y+kt3, we may assume d;=d, a constant.
Clearly d#0, and we can scale so that d=1. The final equation is

Y2ty =28 +15,
and this surface is unique.

Case III. In this case, we locate the fibre of type 2A at t=0 and the fibre of type
I3 at t=oc0. This forces A=ct?, ¢ a constant. Writing the Weierstrass equation in
Ap-form, we see A=ag=0. The equation becomes

y2+ta:y = ac3+a2x2+uw.

By replacing y by y+ax+btx, we may assume as=dt, d a constant. Now we run
through Tate’s algorithm to determine if we have a fibre of the desired type. For
this, make a substitution z=xz+c, c?=p. Our equation becomes

Y2 +tzy+cty = 23+ (c+dt)x? + dic?.
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Note that if ¢=0, A=0. So ¢#0. To have a fibre of the desired type at the origin,
we must have d=0. Our equation becomes

Y 4trytety=ax3+cax?, c#£0.
Scaling x,y, and ¢, we may force c=1. The equation becomes
y2+ta:y+ty =z3+2?,

and our surface is unique.

Case IV. We locate the fibre of type 5A at t=0 and the fibre of type I4 at t=00.
We must have A=kt®, k a constant. Writing the Weierstrass equation in Au-form,
we see A=u=0, ag=ct?, c a non-zero constant. As in the preceding case, we may
assume az=dt. The equation becomes

Y +toy =3+ dtr? +ct?.
Substitute y=y+et, e2=c. We get
i +tey =23 +dta® +et?x, e#0.

In order to have a fibre of type 5A at t=0, Tate’s algorithm tells us the cubic
polynomial z3+dz2+ez must have a double root. This forces d=0. By scaling, we
may assume e=1. This gives the equation

y2 +try = 3 +tix.
This surface is unique.

Case V. We locate the fibre of type 7 at t=0 and the fibre of type Iy at t=o00.
This gives A=kt19, k a constant. Using the A\u-form, this leads to the equation

Y2 +tzy =23 +dtz® +ctt.

Tate’s algorithm tells us that d=0. Scaling, we may assume c=1. Qur equation
becomes
y2 +tzy = 23+,

This surface is unique.

Case VI. This is similar to the preceding case. The equation works out to be

y2+txy =23 +¢5.
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This surface is unique.

Case VII. We locate the fibre of type 14 at 0, and the fibre of type 11 at co. Our
equation has the form

V+t2ey =2 +2dpr? +t3e s +t1dy, tfes.
Since the singular fibres are at 0 and co, ¢; must be a non-zero constant, and by
scaling, we may assume c¢;=1. By suitable changes of coordinates, we may reduce

this to
VP +t2y =23 +t3ex+15d;.

Let u=1/t. Then at oo, our equation becomes
v +uy = 2® +uex+ud.
To have a fibre of type 11, Tate’s algorithm tells us d=e=0. Our final equation is
y2 -l-tzy =23,

This surface is unique.

Case VIII. We locate the fibre of type 3 at t=0, the fibre of type Iy at =1, and
the fibre of type Ig at t=cc. This means that A=ct*+ct®, ¢ a non-zero constant.
Writing the Weierstrass equation in Ap-form gives us A=0, u?=c, ag=c. As before,
we may assume ags=df. Our equation becomes
Y’ +try =2 +dtz® +pz+e.

Make a substitution z=z+e, e2=p. We get

Y2 +try+ety =3+ (e+dt) 2 + pr+c+dte.
Now substitute y=y+f, f2=c. Get

Y +trytety =23+ (e+dt)a® + ftz+(ef +ed)t.

In order to have a fibre as in Case 3, we must have ef+ed=0, which forces f=d,
since e£0. Our equation now becomes

Y2 +try ety =23+ (e+ ft)a? + ftx.
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Continuing with Tate’s algorithm, we find that e3>+ f2=0. But e?=p, u’=c, f?>=c.
This forces f=pu, e2=f, so e3+e*=0. Since e#0, e=f=1. Our equation is now
Y2 +try+ty =23+ (1+t)z2 +ta.
Substituting y=y+z, we get
y2 +izy+ty= 3.
This surface is unique.

Case IX. We locate the fibre of type 6 at 0, the fibre of type I; at 1, and the
fibre of type I3 at co. This gives A=ct®+ct?, ¢ a non-zero constant. Writing the
Weierstrass equation in Au-form we get,

Y2 toy = a® +dta? (2 +-%).
Make a substitution of the form y=y+et, e2=c to get

P +toy =23+ dtx +et?z et

In order to have a fibre of the desired type at the origin, the polynomial z3+dz2+
ez+c must have a triple root. This forces e=d?, c=d®. Since e?=c, we find d*=d>.
Since ¢#0, we see d#0, so d=c=e=1. The equation is now

Y2 +toy =2+t 2+t
Substituting z=x-+t gives
y2 +twy+t2y =13
This surface is unique.

To summarize, we have found nine types of extremal rational elliptic surfaces
with three or fewer singular fibres. There is a unique surface of each type except
for Type I, where there is a 1-parameter family of surfaces.

We list the Weierstrass equations and Kodaira fibre types in each case, for the
convenience of the reader.

I Y2 +try=x3+tx? +ktb, kA0 17,

I y2+t3y=x3+1° 1T+,

1 Yty +ty=23+22 111, I,
v 2 +txy=x3+t3x I}, Ly,

\Y Y2 +tzy=x3+14 III*, I,
VI Y2 +tzy=x3+1° II*, 1y,
VII Y2 +t2y=23 IV, IV*,
VIII % +tzy+ty=23 IV, Iy, Ig,

IX Y 4toy+t2y=23 v+ 1, Is.



436 William E. Lang

3. Characteristic three

3A. Classification of singular fibres of additive type on rational elliptic
surfaces in characteristic three

Throughout this section, we assume f: X — P! is a rational elliptic surface with
section over an algebraically closed field of characteristic three.

We repeat the program of the previous section. We start by listing the possible
types of singular fibres of additive type that can appear on a rational elliptic surface
in characteristic three.

We begin by writing the Weierstrass equation

y2 = x3+a2x2+a4x+a6,

where the a; are polynomials in ¢ of degree <i. We locate our singular fibre of
additive type at t=0. We may change coordinates so that t|as,as and ag. The
equation now becomes

y2 = x3+tc1x2+tC3x+tC5,

We find it more convenient to work with —A instead of A in characteristic three.
=3 +tciz® +tezz+tes, tes, tes,
Case 1A —A=t2c2(t2cic5—t2c3) +t3c3,
6=3, r=0 Type Il
y2:$3+t61.’172+t202$+t05, t'fC5,t)(01,
—A=1t2c2(t?crc5—t*c3) +15¢3,

6=4, r=0 Type Il

Case 1B

Y2 =x3+t2coz® +ticaz+tes, tes, e,
—A=t*cZ(t3coes —t4c3) +15¢3,

6=6, r=0 Type Il

Case 1C

Case 1D —A=tc3(t3coes —t8c?) +19¢3,

6=T, r=0 Typell
v =z +t3ciz+tes, tes, tter,
—A=t%3,

6=9, r=0 Typell

Case 1E

{ =3 +t2coz? +t3c1x+-tcs, tHes, e,



Case 1F

Case 2

Case 3A

Case 3B

Case 3C

Case 3D

Case 3E

Case 4A

Case 4B
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|
|
|
|
|
|
|

y?=x3+ticox+tes, tes, teo,
—A=t'%c3,

6=12, r=0 Typell

y?=x3+tcix? +tcaz+t3cy, tes,
—A=t3c3(t3cicq—12c3) +13c3,

6=3, r=1 Type IIL

2=z +tei2? +t2cor+t2ey, thes, they,
—A=t?cE(t3crcq—t4c3) +15¢3,

6=5, r=2 TypeIV.

yr=2®+12cox® +t2coz+t2cy, they, then
—~A=t*c(ttcoes—11c3) +15¢3,

6=6, r=2 TypelV.

2= +t2cox® +t3c1m+t3cy, they, teo,
—A=t*cE(thcoca—15c3) +19¢3,

6=8, r=2 TypelV.

Y=z +t3ciz+t3cq, they, ther,
—A:tgci .

6=9, r=2 Type IV.
y2:$3+t400$+t204, tJ[C4,t'fC(),
—A=t1%c3,

6=12, r=2 TypelIV.

y=x3+teix? +t2cox+t3cs.

Assume tfc;. Then we can make a substitution

z=x+kt+1t? and put the equation into the form

2 =xd+teix® +ticgr+t3es, ther, tes.
—A=t2E(thcic3 —18¢2) +112%c],

6=6, r=4 Typelj.

2 =ad+tcox® +t2cpz+-t3cs, tles,
~A=t*c3(t5cocz —t4c3) +15¢3,
6=6, r=4 Typel;.

437
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Case 5A

Case 5B

Case 5C

Case 5D

Case 6A

Case 6B

Case 6C

Case 7

Case 8A

William E. Lang

y2=I3+t01{L‘2+t4CO$+t4CQ, tTCl, tJfCQ,
—A=t2c2(tcrea—t8cE) +t12c3,

6="7, r=5 Typelj.

—A=t2c2(t%c1dy —t8c3) +t1%c,

6=8, r=6 TypeI;.

yi=x3+teix? +tieox+t8dy, tey, tido,
—A=t2c2(t"crdo—t8cE) +112c3,

6=9, r=7 Type ;.

yr=x+teix? +ticox, ther, theo,
—A=—110c2c2 +-#12¢3,

6=10, r=8 TypeI}.

{ y2:.’173+t61$2 +t460$+t5d1, t’(cl, t'fdl,

=3 +2cox? +13crz+13cs.

Make a substitution of the form z=xz+kt
and put the equation into the form
yi=23+t2cor? +t3ciz+ttey, thes, ther.
—A=tycE(t8coca—t8c?) +1%¢3,

| 0=9, r=6 Type IV*.

y2:$3+t200l‘2+t4d01‘+t462, tTCQ,tJfCO.
—A=t4c3(t5cpcy —t3d3)+112d3,

6=10, r=6 Type IV*.

y =z +tidgz+ticy, the, tdy.
_A=t23,

6=12, r=6 Type IV*.

yi=a2+t2coa +ticiz+13dy, thes.
—A=t*cE(t"cod; —t8c2) +10c3,

6=9, r=7 Type III*.

i =a3+ticox? +trdox+t3dy, tidy,tfco.
—A=t*cE(t7cod; —t3d2) +112d3,

6=11, r=8 Type II*.

—— —— —— —
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y2=$3+t4d0$+t5d1, t’fdl,t'fdo.
Case 8B —A=t1243,
6=12, r=8 Type II*.

We list the possibilities obtained in a table.

) r 6—r
Case 1A 3 0 3
Case 1B 4 0 4
Case 1C 6 0 6
Case 1D 7 0 7
Case 1E 9 0 9
Case 1F 12 0 12
Case 2 3 1 2
Case 3A 5 2 3
Case 3B 6 2 4
Case 3C 8 2 6
Case 3D 9 2 7
Case 3E 12 2 10
Case 4A 6 4 2
Case 4B 6 4 2
Case 5A 7 5 2
Case 5B 8 6 2
Case 5C 9 7 2
Case 5D 10 8 2
Case 6A 9 6 3
Case 6B 10 6 4
Case 6C 12 6 6
Case 7 9 7 2
Case 8A 11 8 3
Case 8B 12 8 4

We now list the possibilities for extremal rational elliptic surfaces permitted by
this table and the results of Section 1.
Possibilities with one singular fibre

I Case 8B.
Possibilities with two singular fibres

11 Case 1A, Ig,

111 Case 6A, I3,

v Case 8A, I3,
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A% Case 2, Case 7,
VI Case 4A, Case 4A,
VII Case 4A, Case 4B,
VI Case 4B, Case 4B.
Possibilities with three singular fibres

IX Case 2, Il) Ig,

X Case 2, I3, Ig,

XI Case 4A, 13, I3,
XII Case 4B, I3, I3,
XIII Case 5A, Iy, 1,
X1v Case 5B, IQ, Ig,
XV Case 5D, Iy, Iy,
XVI Case 7, I3, I».

3B. Existence and uniqueness of surfaces with prescribed fibre types

We now examine each of the above possibilities separately to determine whether
a surface of the given type exists. In each case where it does exist (except for
Case VI), we will show that it is unique.

Case I. We want the fibre at t=0 to be as in Case 8B. This gives us a Weierstrass
equation
y? =23 +ttdox+t5dy, do #0.

By scaling, we may assume dy=1. Making a substitution of the form z=x+kt?, we
may reduce the equation to

y? =2 +tir+tde,
where e is a non-zero constant. Finally, by scaling z,y, and ¢, we may force e=1.
Thus, the surface exists and is unique. The Weierstrass equation is

y2 =3 4tip4ed.
Case II. We assume the fibre of type 1A is at 0, and that the fibre of type Ig is
at co. The Weierstrass equation has the form
v =2’ +tex’ +tesx+tes, tles, thes.

We know —A=t%c}(t?cie5—12c2)+t3c3, and we want —A=ct?, ¢ a constant. Now
if ¢;=0, then —A=t3c3, so we must have c3=d, d a non-zero constant, and we may
assume d=1. The equation now becomes

y2 = x3+tm+t05.
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Making a substitution of the type z=x+kt?, we may assume degcs<4. But then
we find that the fibre at oo is of additive type, which is not what we want. So we
cannot have ¢; =0. We now break the proof into subcases.

Subcase A. t|c;. We now have

y? =22 +t2cox?® +teax+tes, co#0, thes, tfcs.

We may assume cp=1. Making a substitution of the form z=z+kt+It?, we may
assume c3=a+bt. Computing, we find

—A =t"c5—1%(a®+-2abt+-b%t%) +a3t3 +b%¢°.

Scaling, we may assume a=1. Then our requirement that —A=ct3 forces b=1 and
—A=t3—2t"—t8+t7¢cs. This forces cs=t+2. Thus, in this subcase, we have the
unique possibility

y? =23+ 222 +i(t+ 1)z +2(t42).

Subcase B. t{c;. We may locate the zero of ¢; at t=—1, and then scale so that
we have
y? =23 +t(t+1)2° +tezz+tes.

By substituting z=2-+kt+It?, we may assume cz=a+bt3. Computing, we find
—A=tT+tres + 340312 —t* (a® + 207t +a*t* +-2abt?
+abt* 4-2abt® + 5212 42627 +-b%t%).

This forces cs=a%+2a*t+a?t?+ct> +dt* +et® with

c=2a%+2ab,
d=a’*+ab,
e=2a?+2ab.

Setting the ', ¢! and ¢'2 terms to 0, we get

242 +2ab =0,
a’+ab=0,
2a2+2ab+b> =0.

This forces a=b=0. Since t{cz, this is impossible. Hence no surface exists under
this subcase. Hence the surface in Case II exists and is unique, with Weierstrass
equation

y? =22 Lt (t+ D+t (E+2).
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Case III.  'We assume the fibre of type 6A is at 0, and the fibre of type I3 is at co.
The Weierstrass equation is

v =342’ + iz ttiey, tleo, tfer.

As in the previous case, cg#£0, so we may assume cop=1. By making a substitution
of the form z=x+kt?, we may assume c; =e, a non-zero constant. Our equation is
now

y2 =g° -I-t2:c2+t3ex-|-t402.

Computing, we find —A=t'%¢, —t1%2+t%e3. Since we want —A=ct?, we must have
co=€?. By scaling, we may assume e=1. Therefore the surface

2 = 23 1202 34 tt
is the unique surface in Case III.

Case IV. We locate the fibre of type 8A at 0, the fibre of type I; at co. Our
equation becomes

y? =23 +t%cor® +t*doz+t3d1, tidi, tfco.

By scaling, we may assume co=1. Substituting z=z-+kt? allows us to assume
do=0. Then —A=t11d;. We must have d;=e, e a non-zero constant. Scaling, we
may assume e=1. So the unique surface in this case is

y? =2 11222 415

Case V. We locate the Case 7 fibre at 0 and the Case 2 fibre at oo. In order to
have this configuration, we must have a;=0. Our equation is

v =) +Pcz+tdy, tfer.

In order to have a Case 2 fibre at oo, we must have ¢; =€, a non-zero constant. We
may assume e=1. We may make a substitution of the form x=x+kt? to get d;=f,
a constant. Let u=¢t~1. Then at oo, our equation becomes

y? =3 +uz+ fu.

In order to have a Case 2 fibre at 0o, we must have f=0. Thus, the surface exists
and is unique. The Weierstrass equation is

y? =z +t37.
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Case VI. We want fibres of type 4A at both 0 and cc. Our equation is
y2 = :c3+tcla:2+t4cox+t303.

In order to have additive reduction at both 0 and oo, we must have ¢; = constant.
Since we want fibres of type 4A, we must have ¢;#0, so we may assume c;=1.
Calculating, we find

—A =t (t"cs—18c2) +1'2c3.

Since we want —A=Fkt5, k a non-zero constant, this forces cy=0, c3 a non-zero
constant. We get a 1-parameter family of surfaces in this case. The equation is

y?> =23 +tx? 4 kt®, k a non-zero constant.

Case VII. This case does not exist, since we see by examining the forms of the
equations that we cannot have fibres of types 4A and 4B together.

Case VIII. We want fibres of type 4B at both 0 and oo. This forces the equation
into the form
v =+t +t3cs, tico.

We have —A=t%¢3, so we must have co=e, a non-zero constant. We may assume
2 ’
e=1. Looking at oo, we find c3=f, a constant. The equation is now

v =3 +tix+ 3.

By making a substitution of the form x=x+kt, we may force f=0. This surface
exists and is unique. It has equation

y? =3 +t%z.

Case IX. We claim that this surface does not exist. For if it did, the Mordell-Weil
group of the generic fibre would have order 4. It cannot be Z/2xZ/2, for if it were,
all the roots of the cubic on the right-hand side of the Weierstrass equation would
be in k[t], and therefore A would be a square in k[t], contradicting the requirement
that A have a simple zero. So the Mordell-Weil group must be Z/4. So the j-
map for our surface must factor through the j-map X;(4)— P*, where X;(4) is the
modular curve. But looking at oo, we see the j-map for our surface has degree 9,
while the j-map for X;(4) has degree 6. So this surface does not exist, as claimed.

Case X. We locate the fibre as in Case 2 at t=0. The Weierstrass equation is of
the form
v =3+t a® +tesx+ticy, thcs.



444 William E. Lang

Subcase A. t|c;. In this subcase, we may assume our equation is of the form
y2 = x3+t2w2+t03x+t2C4.

Since the Mordell-Weil group is of order 6, we have a 2-torsion point. This means
the cubic in z on the right-hand side of the Weierstrass equation has a root in k[t].
It is easy to see that this root has degree <2 in ¢ and no constant term. Hence we
may make a substitution z=x+kt+It? and put the equation in the form

y2 =23 +t%2? +tcax.

Now —A=t%ci+t3c3. If we locate the I fibre at oo, then —A must have the
form —A=t3(A+Bt)3. Write c3=a+bt+ct?+dt3, a#0, and compute. We find
b=c=d=0, and we can scale so that a=1. Thus, we have a unique surface in this
subcase, with equation

2_ 3,422

y =z +tr +tw.

Subcase B. ttc;. We locate the Ig fibre at co, and the zero of ¢; at t=—1.
Scaling, we may assume the Weierstrass equation has the form

v’ =3+ t(t+1)z? +tesz+t2eq, thes.
Making a substitution z=x+kt+1t2, we may assume cz=a+bt3. Then
—A=15(t+1)3cy—t* (t+1)*(a+-bt3) 2 +13(a+bt3)3.

We want this to be of the form —A=A#3+Bt%. Considering the t* term, this forces
a=0, which is impossible. So there is no surface in this subcase.
Hence the unique surface in Case X has the equation

y2 =3 +t22% +ia.

Case XI. In this case, we want a fibre of type 4A at 0, a fibre of type I3 at oo, and
one other singular fibre of type I3. We write the Weierstrass equation in the form

v =23 tter x4 t2epn+t3es, the.

Since the Mordell-Weil group is of order 6, we can eliminate c3 as in the preceding
case to get
y2 =z3 +tc z? +t202x.
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Locate the zero of ¢; at t=—1 and scale to get
Y =23+t (t+ 1)z + 2o

Then —A=t%(c3 — (t+1)%c%). We want the term in parentheses to be a perfect cube,
which forces co=d(t+1)%. Then —A=(d3—d?)t%(t+1)%, which is inconsistent with
having a I3 fibre at co. Hence, this surface does not exist.

Case XII. We want a fibre of type 4B at 0, a fibre of type I3 at co, and one other
singular fibre of type I3. The equation has the form

y? =23 +t2cpx? +t2cax+ties,  ties.

Since we want fibres of multiplicative type, we cannot have cg=0, so we may assume
co=1. Since we have a 2-torsion point, we may put the equation in the form

y2 = x3+t2x2+t202w.

Then —A=—t8cZ+t%c3. Since tfca, we get a non-zero t® term. Since —A must be
a perfect cube, we see this surface does not exist.

Case XIII. We have a fibre of type 5A at =0, and fibres of types I; and 1. The
order of the Mordell-Weil group is 4. Since A has a simple zero, it cannot be a
square, and hence the 2-torsion points cannot all be rational over k(¢). Hence the
Mordell-Weil group is Z/4. Since the degree of the j-map is 6 for both our surface
and the elliptic modular surface E;(4), this surface must be E;(4) and so is unique.
One computes easily that the Weierstrass equation is

y? =2 +t(t+ 1)z’ + 2z

Case XIV. We want a fibre of type 5B at t=0, a fibre of type I, at oo, and another
singular fibre of type Io. We may assume our equation is

y? =23 +t(t+ 1) x? +ticor+t3dy,  trdy.

Write dy =A+Bt, and compute —A. We find B=c—c3, A=2c, and —A=2c¢t% x
(24 (co+2)t+1). We want (£2+(co+2)t+1) to be a perfect square, which forces
co=0 or cp=—1. If ¢p=0, then A=0, so ¢co=—1. This surface is unique, with
equation

y? =2 +t(t+1)z? -t 5 (2 42).
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Case XV. We want a fibre of type 5D at 0, a fibre of type I3 at co, and another
fibre of type I;. The equation is

=3 +tex? +ttegx, tfel, tico.
As before, we may assume c; =t+1. Computing, we find —A=¢19(¢t+1)2c2—t12c3.
We want the ¢'2 term to be zero, which forces c2—c§=0, coy=1. Hence we have the
unique surface
Y2 =23 +t(t+1)2* +t'a.
Case XVI. This time, we have a fibre as in Case 7 at t=0, a fibre of type L at
t=o00, and a fibre of type I;. The equation is

Y =234 t2co® +t3cix+t0dy, tfer.

Since we have fibres of multiplicative type, ¢o#0, and we may assume co=1. Make
a substitution of the form x=x+kt? to get c; =e, a non-zero constant. Scaling, we
may assume e=1. Then —A=t*(t"d; —5)+¢°, so in order to have a fibre of type L,
at oo, we must have d; =0. Hence this surface is unique, with equation

y2 =3 +t2 2%+

To summarize, we list the extremal rational elliptic surfaces found, together
with the Weierstrass equations, and the types of singular fibres. The numbering
does not correspond to the numbering above.

I Y=zttt +t° IT*,

I V=2 +222 +t(t+ 1)z +(t+2) 11, Ty,

111 =23 +22 3414 Iv*, I,
v y2—z3+t2m2+t5 IT*, Iy,

A% =3 +t3x IIT*, 111,
VI y2=z3+tz?+kt3, k#£0 I3, I,

VI bis y?=a3+t%x I, I,
vl =23 +122% +tx 111, I3, T,
VI y2=ad+t(t+1)2% +12z I7, I, 1y,
IX Y= +t(t+1)2? -tz +e5(2t+2) I3, Ly, Lo,
X Y= +t(t+1)2% +tiz L, L, L,
XI Y= +222 + 3z III*, Iy, Io.

4. All characteristics #2,3

Theorem 4.1. The classification of extremal rational elliptic surfaces with
three or fewer singular fibres over an algebraically closed field of characteristic p>5
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is identical to the classification of such surfaces in characteristic zero. The classi-
fication of such surfaces in characteristic five is identical to the above except that
there exists a unique surface with three singular fibres of type 11, 15, Is.

Proof. We merely sketch the proof of this theorem, which is essentially a
straightforward application of the techniques of Miranda—Persson. First, we note
that Table 1.1 of [4] is valid in characteristic p, p#2,3. Next, we consider all the
types of surfaces permitted by the results of Section 1. For each type, we work out
the degree of the j-map and the ramification over 0 and co. Then we apply the Hur-
witz genus formula, and find that the possibilities excluded in [4] are also excluded
in our case. The reader will check that in each case, no problems are caused by wild
ramification or inseparability of the j-map except in one case in characteristic 5.

This exceptional case is the one where we have singular fibres of type I1, I5, I5.
In this case, the j-map has degree 10, and using the Hurwitz formula, we see that
this can only exist in characteristic five, with the j-map inseparable.

Let us assume that we have such a surface with the fibre of type II at t=0. The
Weierstrass equation has the form y?=234a4x+ag, with the a; polynomials in ¢ of
degree <1. Since the j-map is inseparable, all multiplicities of zeroes of j must be
divisible by 5. Hence by Table 1.1 of [4], we see that t*|a4, and we may scale so that
ag=t*. Also, from the same table, t|ag. Computing, we see —A/16=4t'%2127a2.
We want A to have a zero of order 5 at oo and one zero of order 5 at finite distance,
and we want the j-map to be inseparable. This forces ag=at+bt®. Plugging this
into A, and setting the t'2 term to 0, we get b=+/3. Making j inseparable forces
a=2+/3. So our surface is unique, with equation

2 =23 +t4z+2v/3t+/315.

To eliminate the square roots, make a substitution z=+/3z, y=3%/4y. Our equation
becomes

y? =23+ 2 44t 4245,

The existence and uniqueness of the remaining cases can be deduced exactly
as in [4], and the Weierstrass equations are the same as those listed there. This
completes our sketch of the proof of Theorem 4.1.
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