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1. Introduction

Our object is to augment the already rich literature on the enumeration of trees by the
addition of several previously uncounted species. Interest is moreover derived from the
fact that we use variations of one general method in each of these cases; a method which

is also applicable to numerous counting problems not treated in this paper (e.g., see Riordan

(1) The work of the first author was supported by grants from the National Science Foundation
to the Institute for Advanced Study and from the Office of Naval Research to Princeton University,
while on leave from the University of Michigan; the work of the second author was done at the
University of Michigan and in Amsterdam.
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[14]). The art of enumerating trees appears to have originated with Cayley [1], who obtained
formulas for labeled trees, rooted trees, and also (unrooted) trees. A significant contribution
was made by Pélya [13], who with the help of a powerful general enumerating procedure,
solved a host of counting problems for trees of considerable interest in organic chemistry.
A theorem of Otter [12] on the dissimilarity characteristic for trees enabled him to formulate
an elegant equation giving the number of trees in terms of the known number of rooted
trees. The dissimilarity characteristic was generalized to Husimi graphs and to arbitrary
graphs by Harary and Norman [7, 8]. These results led to the enumeration of rooted Husimi
graphs by Harary and Uhlenbeck [9] and unrooted Husimi graphs by Norman [11], whose
method also extended to the counting of graphs with any given collection of blocks; cf.
Ford, Norman and Uhlenbeck [2, paper II]. Among generalizations of trees, enumerating
formulas were obtained for labeled Husimi graphs in Ford and Uhlenbeck [2, paper I]
(who extended Otter’s asymptotic results in [2, papers III and IV]), for forests in Harary
[6], and for labeled colored and chromatic trees and oriented trees in a recent paper of
Riordan [14]. In addition enumerations of graphs and directed graphs appear in Harary
[5], and of labeled graphs and labeled directed graphs in Gilbert [3].

The general plan for enumerating each tree species has three parts. First, a functional
equation is obtained for the generating function for trees rooted at an endpoint. Then
rooted trees are expressed in terms of these using Pélya’s Theorem. Finally the generating
function for unrooted trees is given in terms of the function for rooted trees by an ap-
propriate combination of the theorems of Otter and Pélya. For the sake of completeness
these theorems are reviewed briefly in the succeeding two sections. Each of the remaining
seven sections serves to enumerate either a new species of trees, or ordinary trees in terms
of a new parameter. We include three appendices which present what is to our knowledge
the most exhaustive collection of tree diagrams available. They have served as a valuable
collection of data for the testing of conjectures. The diagrams have been thoroughly

checked and are believed to be error free.

2. Pélya’s Theorem

We shall state Polya’s Theorem (the Hauptsatz of [13]) in the form which uses
two variables. In deriving the counting series for the various kinds of trees, sometimes
the one variable form is used, and at one point the theorem is used for an infinite number
of variables.

Let figure be an undefined term. To each figure there is assigned an ordered pair of

non-negative integers called its content. Let @, denote the number of different figures of
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content (m, n). Then the figure counting series ¢ (z, y) is defined by

m [

g Y= 2 emz"y

Let G be a permutation group of degree s and order k. A configuration of length s is
a sequence of s figures. The content of a configuration is the vector sum of the contents of
its figures. Two configurations are G-equivalent if there is a permutation of @ sending one
into the other. Let F,, denote the number of F-inequivalent configurations of content
(m, n). The configuration counting series F (2, y) is defined by

F(z, y) = g_Oan " y"
We shall call G the configuration group henceforth.

The object of Polya’s Theorem is to express F(z, y) in terms of ¢ (z, y) and G. This
is accomplished using the cycle index of &, defined as follows. Let &, denote the number
of elements of G of type (j) = (j1, §a ..., 4:), i€, having j; cycles of length kfork = 1,2, ..., s.
Thus

1j, +2j,+ o +sj,=s @)

let f,, f5 ..., f, be sindeterminates. Then Z (@), the cycle index of G, is defined, as in
Pélya {13, p. 157], by:
, 1 - .
Z (@)= 2k fif5 ... [, (2)
)
where the sum is taken over all partitions (j) of s satisfying (1). For any power series f (z, ),
let Z(G, f(x, y)) denote the function obtained from Z(@) by replacing each indeterminate
fi by f(z*, y*). Using these definitions, we are able to give a concise statement of:
Pélya’s Theorem. The configuration counting series is obtained by substituting the

figure counting series into the cycle index of the configuration group. Symbolically,
F(z,y) =Z(G, p(x, y)).

This theorem reduces the problem of finding the configuration counting series to the
determination of the figure counting series and the cycle index of the configuration group.

We frequently require the configuration group 8,, the symmetric group of degree n.
It is well known that Z(S,) may be obtained from (2) by setting s ==, » = n!, and

n!
24,1275, ... nig,!

h(i) =
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We illustrate Pélya’s Theorem while reviewing the enumeration of rooted trees. See
Konig [10] as a general reference on graph theory. A tree is a conunected graph with no
cycles. A rooted free is a tree with one distinguished point, called the roof. Following the
terminology of Riordan [14], a planted tree is a rooted tree in which the root is an endpoint,
that is, a point incident to only one line. Two trees are isomorphic if there is one-to-one
correspondence between their point sets which preserves adjacency, and two rooted
trees are isomorphic if there is a tree isomorphism between them which maps one root
onto the other root.

A path joining points a, and a, in a tree is a collection of lines of the form a,a,, a,a,,
«ves @y_1a, Where the points a,, a,, ..., @, are distinct. In any tree there is a unique path
between each pair of points. The length of a path is the number of lines in it. The distance
between two points is the length of the path joining them. The diameter of a tree is the
greatest distance between any two points. The root-diameter of a rooted tree is the greatest
distance between the root and all other points. The branch <{a, b> of a tree determined by
a point @ and a line ab is that subtree containing a and all the points reachable by paths
from a whose first line is ab. A main branch of a rooted tree is a branch at the root. Define

oo

Z (8w, [ (@)= 2. Z(8n, [ (%)),

n=90

where we take Z (8, f(x)) = 1. It is implicitly shown in [13] that
<0 1 .
Z (8., f (%)) = exp 21 r f ().

This equation can also be verified by comparison of corresponding coefficients of x, as in
Norman [11]. '
Let T'; be the number of rooted trees with ¢ points and

T (z)= .Z Ta

i

be the generating function for rooted trees. Let ¢ (x) and 7T (x) be the corresponding generat-
ing functions for trees and planted trees respectively. The following proof of the Cayley—
Pélya formula for 7'(z) is different from previous proofs in the literature, and is based on

the root-diameter of a rooted tree.

TeeorEM 1. (Pélya [13], p. 197)

T(x)=2T(x) (3a)
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T (x) = 22Z (S, T (x)/2) (3b)
T (@) = 2% (S, T () (3¢c)

Proof. Consider a planted tree T' with root point p. Let g be the point adjacent to p. Con-
sider the tree 7' obtained from 7' by deleting p, and rooting the resulting tree at g. Consider
further the set § of the main branches of T, and the set § of rooted trees obtained from
the planted trees of S in the same way as we obtained 7 from 7. See, for example, Figure 1.
Clearly any one of 7, T, 8, 8, determines the others uniquely. If T has m points, then 7'

has m — 1 points. This proves equation (3 a).

0l

VAY

If T has root-diameter n, then T has root-diameter » — 1, and the maximum root-

Figure 1.

diameter among the trees of S and S are n — 1 and n — 2 respectively. Also 7' has one more
point than 8, and if S has k planted trees, then S has & — 2 more points than 7.

Now let T (x) and T (z) be the counting series for planted trees and rooted trees
with root-diameter < n. The counting series for all sets (configurations) of planted trees
with root-diameter <= is then Z(S., T (x)), and that for sets of rooted trees is Z (S,

T™ (x)). From the considerations of the last paragraph, we then find:

T ()= a2 Z (Soo, 7Py (x))

T (@) = 22 (Seo, T™ (2))

As the counting series for planted trees with root-diameter < 1 is 2 and the counting series
91 — 593801. Acta mathematica. 101. Imprimé le 8 avril 1959.
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for rooted trees with root-diameter 0 is z, we obtain the functional equations (3 b) and
(3 ¢). We note that equation (3 ¢) can also be obtained by substituting (3 a) into (3 b).
When further on we shall consider other species of rooted trees, we shall find that
whenever we are not able to obtain a functional equation for these rooted trees directly
by methods analogous to the above, we shall obtain one by finding equations analogous
to (3a) and (3 b).
Explicitly,

T(x) = + a2 + 228 + 4ot + 925 + 2028 + 4827 + 11528 + - - -

3. Otter’s Theorem

In this section we review Otter’s results [12] on the number of trees. It will be seen
that his approach is convenient in deriving a functional equation for counting a species
of trees in terms of the counting series for the same species of rooted trees.

An automorphism of a tree is an isomorphism of a tree with itself. Two points a and b
of a tree are similar if there is an automorphism sending @ onto b. Similarity of two lines
of a tree is defined analogously. Since the set of all automorphisms of a tree is a permutation
group, similarity is an equivalence relation. The number of dissimilar points or lines of
a tree is the number of similarity classes of points or lines. A symmetry line of a tree is
one whose two points are similar. A symmetric tree is one which contains a symmetry line.
Obviously any tree has either 0 or 1 symmetry line. We are now able to state Otter’s dis-
sitmilarity characteristic for trees.

Otter’s Theorem [12]. In any tree, the number of dissimilar points minus the number of
dissimilar lines plus the number of symmetry lines equals 1.

With the help of this refinement of Euler’s characteristic, it is possible to derive an
elegant functional equation for #(x) in terms of 7T'(x). A line-rooted tree is one in which
there is a distinguished line. Using the following two lemmas, we have a proof of Theorem 2
different from that of Otter. '

Lemma 1. The counting series for line-rooted trees is Z(S,, T (x)).

Proof. There is a one-to-one correspondence between line-rooted trees and unordered
pairs of rooted trees, rooted at the points on the distinguished line.

Lemma 2. The counting series for symmetric trees is T ().

Proof. There is a one-to-one correspondence between symmetric trees and pairs of

isomorphic rooted trees, rooted at the points on the symmetry line.
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TrEOREM 2. (Otter [12])
t(a) = T (&) —3[T*(2) — T (2?)]. (4)

Proof. First we sum the dissimilarity characteristic equation for trees over all trees
with % points. This becomes: the number of trees with » points is equal to the number of
rooted trees minus the number of line-rooted trees plus the number of symmetric trees with

n points. Hence by Lemmas 1 and 2,
t(x) =T (x) —~ Z (S, T (x)) + T (x?), (5)

which gives equation (4).

Otter’s formula (4) for the number of trees has subsequently been reproved twice
without making use of his dissimilarity characteristic by Harary [6] and Riordan [14] by
building up from Pdlya’s results [13] on the number of centered and bicentered trees.

Let 4, be the alternating group of degree n. It was shown in [7] and [9], using a
theorem of Pélya [13] on configurations with no repeated figures, that

t(x) = T (x) — [Z(4,, T (x)) — Z(8,, T(2)].

This last equation (identical in econtent with (5)) is often written, by an abuse of notation,

in the form
t(x) =T(x) —Z(4y = 8,, T'(x)). (5%

We shall have oceasion to use the form of equation (5') in enumerating other species of
trees.

Explicitly, we find
t@) =z +a? ta®+ 22 + 325 +6af + 1127 + 2328 + 472 + 106210 + 235211 + 5561 212 + - - -
Diagrams of all trees with < 10 points are given in Appendix 1.

For later reference we state the above-mentioned theorem of Pélya completely.

TeEOREM 3. (Pdlya [13], p. 161). The counting series for all S,-inequivalent con-
figurations of figures whose counting series is f(x), where each figure appears at most
once in any configuration s

Z(4, — 8, [(x)).

CoroLLARY. The corresponding counting series for all configurations regardless of
length is
Z(Aoo _Soo’ f(x))= EOZ (An_Sm f(x))'

10 - 593801. Acta mathematica. 101. Imprimé le 8 avril 1959,
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4. Trees with a given partition

The degree of a point of a tree is the number of lines incident to it. The partition of

a tree is the sequence of non-negative integers (a,, a,, @3, ...) where a,, is the number of
points of degree m. Let

—_— *® — :

P, t, by, ...)= > Py, atth..

Godpdg e =0

where P, ... is the number of planted trees with 7, points of degree m and a total of §
points. Let P(x, ,, t,, ...) and p(z, ¢, £,, ...) be the corresponding counting series for rooted

trees and trees respectively.

TEEOREM 4. The counting series for planted trees, rooted trees, and trees with a

given partition are given by:

F(x, tl’ t2, aen z x t tm+1Z( xif—)(x, tl’ tz, ...)) (6 a:)
m=0
Pz, t, ty, ...)= > xth(S,,,, »LP(x, £y, to )) (6 b)
m=0 xtl
plx, by, by, . )=P(x, b, by, ...)— 2t2Z(A —8,, P, t 1 bas -l)) (6 ¢c)

Proof of (6a). Let T be a planted tree with root p and let g be the point adjacent to p.
By a g-branch we mean a branch of the form {g, > for some r. Consider the sets of all ¢-
branches not containing p. This set of branches determines 7', and any set of planted
trees each of root diameter <z — 1 uniquely determines a planted tree of root diameter
‘< n in this way.

Now let S be a set of m planted trees each with root diameter <n. Then the planted
tree T determined by S as in Figure 1 includes two points not in S, corresponding to p
and g, one of degree 1 and the other of degree m + 1. On the other hand, the root points
of the planted trees of S, which have degree 1, are not included in this planted tree. Hence
if we let P™ (z, b1, Ly, ...) be the counting series for planted trees with root diameter <=
and given partition, we find

PO (x, by, t,,...) =2

— o 1 —
and PO (g 8y, )= 3 2%, t,,,+1Z(S,,,, —tP"” (x, by, &y, ))
m=0 x

1

from which (6a) follows.
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TZ:>?—~§::;£E <@®=\§r/ .- \i>;/

Figure 2.

Proof of (6b). The same set S of m planted trees also determines a rooted tree T as in
Figure 1 by identifying the roots of the planted trees in §, whose root diameter is < n.
Its root has degree m and the m root points of § do not appear. Hence

PO(z, b, ¢, ...) =t

-]

and PO (x, b, by, )= D xtn Z (S,,,, ~1—1—5‘"’ (2, t;, b, )) ,
m=0 xtl

proving (6 b).

Proof of (6¢). A tree T rooted at a line pg is uniquely determined by the two plantg;d
trees formed by the branches <{p, ¢> and (g, p)> of T as illustrated in Figure 2.

Conversely any two planted trees uniquely determine a line-rooted tree. The two

planted trees together have two points more than 7T, each extra point having degree 1.

Hence the counting series for line-rooted trees with given partition is

1

28 Z(Sy, P (2, t, ty, ...)).

Similarly the counting series for symmetric trees with given partition is

1 —
;?;%P(xz, t?, t‘é, ),
which is, of course, equal to
1
22 2

Z(A2’ P(x7 tl; t2: --'))'

Applying Otter’s Theorem, equation (6 ¢) results.
Explicitly we obtain

P&, by by, ...) =ty + 228 + 2358, + 2t ity + LB + 2Vt + P BHt, + B
+ a8t + 2Pyt + 2185 + 2288 858, + P55 + 278t + 27 Bty 8 + 2T B8,
+ 227 15ty + 227 16,85 + BTG 83ty + 2B + - -
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5. Homeomorphically irreducible trees

A homeomorphically irreducible tree is one with no points of degree 2. Let 2 (x), H (),
and H (x) be the counting series for homeomorphically irreducible trees, rooted trees, and
planted trees respectively. Let S be a set of planted trees of root diameter < »n determining
a planted tree T of root diameter < + 1 as in Figure 1. Then 7' is homeomorphically irre-
ducible if and only if § contains at least two trees and all the trees of S are homeomor-
phically irreducible. The counting series for planted homeomorphically irreducible trees

with root diameter < 1 is #2. Hence H () is determined by the functional equation

H(z)=2 (1+ S z(s,,, Hf”))) (7 a)

n=2

There is a one-to-one correspondence between the set of all rooted trees 7' and all
planted trees 7', defined by deleting the root point of 7' and rooting the point of the resulting
tree T adjacent in T to the root of 7' (as in Figure 1). If T is homeomorphically irreducible,
then so is 7' unless the root of 7' is an endpoint. However, not all homeomorphically irre-
ducible planted trees are formed in this way. For if 7' has exactly two main branches,
each homeomorphically irreducible, then 7' is homeomorphically irreducible even though

T is not. We therefore obtain
H () = 2[(H (x) — H (x)) + Z(S,, H (2))],

z+1
x

and hence H (x) H (z) —}6 Z (S, H (z)). (7 b)

Applying Otter’s Theorem to homeomorphically irreducible trees, we find:
1 .
h(a) = H (2)— 3 7 (= 8y, H (@)). (7¢)

The proof of equation (7¢) follows the method of proof of equation (6 c).

TaEOREM 5. The counting series for H(x), H(x), and h(z) are given by equations
(7a), (7b) and (7c).
Explicitly,

h(z) =2+ 2%+ 2 + 25 +22% + 227 +42® + 52° + 102" + 142" + 26212 4 - -,

Diagrams of all homeomorphically irreducible trees with < 12 points appear in Appen-
dix IL.
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6. Trees with a given diameter

We have already seen in the proof of Theorem 1 that the counting series for rooted
trees with root-diameter »n is 7™ (x) — T P (x), where 7™ (x) is defined recursively by
7O z) =2z and T™ (x) = 2Z (S, T" ().

The associated number of a point p of a tree is the greatest distance between p and
all other points. Thus the root-diameter of a rooted tree is the associated number of the
root and the diameter of a tree is the maximum among all the associated numbers of the
points. The minimum associated number is the radius of a tree. The cenier of a tree is the
set of all points of minimum associated number. It is well known (see Konig [10]) that any
tree has either one or two central points and if there are two, they are adjacent. A tree is
centered or bicentered according to whether it has one or two central points. Counting series
for centered and bicentered trees were obtained in Riordan [14]. Other expressions for
these arise in connection with trees with a given diameter. For trees with odd diameter
are bicentered, while trees with even diameter are centered. Let d,(x) be the counting
series for trees with diameter m.

Consider a bicentered tree with odd diameter 2% + 1 and bicenters p, q. This tree is
uniquely determined by the branches {p, ¢> and {q, p>. If we omit the endpoints of these
branches (and root them at the points adjacent to these endpoints), we may consider them
as rooted trees of root-diameter n. Conversely, any two rooted trees of root-diameter »

uniquely defermine a tree of diameter 22 + 1. Henee

(4 (@) =Z (S, T (x)) )
Udansa @) =Z (S, T (2) = T (@), n>1. '
On the other hand, a centered tree with diameter 2 and center p is determined by the
set of its p-branches. If we again delete the endpeints of these branches, we find we have
a set of rooted trees, at least two of which have root diameter » — 1, and the rest root-

diameter < n — 2. Therefore,

dy(x) =T (x)
dy(z)=2 Zzzz (S, T (2)) e (8y)

dan (@) =2 [Z (S, T2 (2))] [ Z (8, TV (x)—T""? (x))] ,n>1

2



152 F. HARARY AND G. PRINS

Explicitly we obtain:

dy(@) =2

di{x)= 2t .

dy(z) = P2+ 2+ P+ St T B 2
dy(x) = 2+ P +22%+ 207+ 328+ 3204+
d,(x) = 2+ 228+ 527+ 828+ 142° +---
dg(z) = 24 227+ T2+ 142+
dy{x) = 2+ 328 +112°+---
d,(x) = 2+ 32+
dg(z) a4

tx) = +a2 +2® + 22" +32° +62° + 112" +232° +472° +---

7. Weighted trees
A weighted tree is a tree to each of whose points is assigned a positive integer called
its weight. The weight of a tree is the sum of the weights of its points. Let

Wiz, y)= W, ! ?/j’

1

T8

i,

be the counting series for rooted weighted trees where W,; is the number of rooted trees
with ¢ points and weight j, and let w(x, y) be the series for weighted trees. By the usual

methods we obtain the functional equation

o0

Wiz, y) =22 4 Z(8a: W(x, y)). (9a)

By Otter’s Theorem, w(z, y) is then given by
w(z,y) =W, y) —Z(4; — S, Wz, y)). (9b)
From equations (9a) and (9 b) we obtain
w(x, y) =zy +xy® + 22y +xy® +a?yP

+ a2 + 2yt + 2229 + 22°% % + 220yt

+ 2y’ + 22%y° + 42%y® + datyP + 3250

+ 29® + 3224 + 62%y° + 102*y® + 92°y°

+62%y% + xy” + 322y’ + 923y + 172y’

+242%y" +202%y" +11a7y" +---.
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8. Directed trees and signed trees

An oriented tree is a tree to each of whose lines pq is assigned exactly one of two direc-
tions, pg or pq. Such a line is called a directed line. A directed tree is a tree in which each
line is assigned either one direction or both directions. A signed iree [4] is one in which
each line is assigned a plus or minus sign. Let r(x), d(x) and s(z) be the counting series
for oriented, directed and signed trees respectively with the usual notation for rooted and

planted trees. Then R () is determined by the functional equation
R(x)=2w2Z(Sw, 1%) (10 a)

For each set of planted oriented trees of root diameter < n determines two planted oriented
trees of root diameter <= + 1, one for each direction which may be assigned to the addi-

tional line. Clearly,

R(x)=§1;f{(z). (10 b)

To obtain r(x) we again apply Otter’s Theorem. Every two non-isomorphic rooted oriented
trees determine fwo line-rooted oriented trees, one for each direction. But two isomorphic
rooted oriented trees determine only one line-rooted oriented tree. Hence the counting

series for line-rooted oriented trees is
2Z (4, — 8,, R(x)) + R(2?) = R2(x).
Since 5 directed line cannot be a symmetry line, this gives
r(x) = R(x) — R*(x), (10¢)

which is found in Riordan [14, equation {42)].
Explicitly, we find

r(z) = + 2%+ 32® + 82" +272° +-912% + - - -

The counting series for planted and rooted signed trees are the same as for oriented
trees. But in this case not only do two nonisomorphic rooted signed trees determine
two line-rooted signed trees, but two isomorphic rooted signed trees also determine two

line-rooted signed trees. Hence the counting series for line-rooted signed trees is

27(8,, B(x)).
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On the other hand, the two line-rooted trees determined by two isomorphic rooted signed
trees are symmetric. Hence the counting series for symmetric signed trees is 2 R (2?) and
s{x) = R(x) — 2Z(S,, R(x)) + 2R(a?) or

s(x) = R(x) — R*(x) + R(a?) (11)
Explicitly, s(x) =% + 222 + 32® + 102* + 272% + 9828 + - - -,

On comparing equations (10 ¢) and (11) we see that the number of oriented trees of
7 points equals the number of signed trees of n points when # is odd, but is less than that
number when 7 is even. This may be verified in the corresponding explicit series.

Similar arguments show that

D(x)=3x2Z(Sw, Bf”)), (12 a)
1 -
D(w)=5_ D), (12b)
d (z) =D (x) =13 D* (z) — D (x%)]. (12 ¢)
Explicitly, dx)=x+22%+62% + 252 + 114a° + . - -,

9. Trees of given strength

For certain applications, including psychological and electrical, it has proved useful
to define structures that allow more than one line between two points. A tree has strength s
if at least one pair of points is joined by s lines, but no two points are joined by more than
s lines. Graphs of strength s are counted in [5].

It is convenient to consider trees of strength <s rather than trees of strength s. Let

M8

A® (2, y) =

i,7=1

T i
Aij) P :l/j,

-,
l

where A is the number of planted trees of strength <s with 4 points and j lines.

TureoREM 6. Trees of given strength are enumerated by the three equations:

A =22 34 (8., T2 Y), (132)
8)
A9 (a, y)=xZ(Sw, ‘ii(f—y)) (13 b)

a® (z, y) = A9 (z, y) — 3 y' Z (4, — 8y, 4° (x, ). (13 ¢)
i=1
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The proof is analogous to preceding ones and is omitted. The counting series for trees of
strength s is then

a® (x,y) — a(s-l)) (z, ).
Explicitly, the counting series for trees of strength 2 is
22y + 2% + 28yt + B2ty 4 3aty® + 220y + 62°9° +925° + 625y + 32ty 4 .

A tree of type 2 is one in which there are two different kinds of lines, defined in [5];
trees of type t are defined similarly. The same methods used in this paper also serve
enumerate trees of type £, but we omit the details here. In his enumeration of trees with

colored lines, Riordan [14] contains this result.

10. Trees whose automorphism group is the identity

For any tree T, let I'(7') be the automorphism group of 7T'. Let E, be the identity
group of degree n. Then I'(T') = E, if and only if T has » points, no two of which are similar.
We wish to enumerate all trees whose group is E (the identity group of unspecified degree).
The absolute | T| of a rooted or line-rooted tree is the unrooted tree with the same points
and adjacencies as 7. It is clear that if I'(|7'|) = E, then I'(T) = E, but not conversely.

THEOREM 7. Let u(x) and U(x) be the counting series for trees and rooted trees

whose automorphism group is the identity. Then
U (@) =22 (Ao ~ Sun» U () (142)
u(@) =U(x) —Z(8,, U (z)). (14 b)

Proof of equation (I14a). Any set of nonisomorphic rooted trees of root-diameter < n
whose group is E determines a rooted tree of root-diameter <n + 1 whose group is &.
By the corollary to Theorem 3, this equation follows at once.

Proof of equation (14b). Let {1"} and {T"'} be the sets of all rooted and line-rooted trees
with group E. By definition the counting series for {7"} is U (z), and it follows that the
counting series for {7} is Z(4, — S, U (%)). Let U, (z) and U,(z) be the respective counting
series for all rooted and line-rooted trees the group of whose absolute is E. Since any tree
with group E is not symmetric, it follows from Otter’s Theorem that u (z) = U, (x) — U, ().

We find it convenient to define
V(z) =[U(@) — Uy(2)] = [Z(4y — 8o, U(w)) — Uy (=)].
If we can find the series V (z), then we can solve for u(x):

u(@)=U(x) —Z(4,—8,, U(x)) — V(x).
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Clearly U(x) — U,(x) and Z (4, — 85, U(z)) — U,(x) enumerate respectively all rooted trees
and line-rooted trees T such that I'(7) = E and I'(| T|) + E.

Consider a non-symmetric.tree 7' whose group is not E. We investigate how many
rooted trees 7" and line-rooted trees 7'’ with group E have T as absolute. If there exist
any such trees 7" or 7" at all, then I'(T") has exactly one element besides the identity,
and this element must permute two branches at some point p of 7'. Each of the two similar
branches at p, considered as rooted trees, has group E. If each of these branches has n + 1
points, then there exist exactly n rooted trees 7’ such that | 7’| = 7. Moreover, the line-
rooted trees T’ obtained by rooting the n lines of each of these two branches also have
| 7| =T. We conclude that for all non-symmetric trees 7' whose group is not E, the
number of rooted trees with group E and absolute 7' equals the number of line-rooted trees
with group £ and absolute 7.

Now take a symmetric tree 7'. The order of I' (T') is at least 2. If there exist rooted trees
T’ or line-rooted trees 7’ with group ¥ and absolute 7', then I' (T') has order 2 and the non-
identity element permutes the central points of 7'. The branches (p, ¢> and (g, p> of T
at the central points p and ¢, considered as rooted trees, have group E. We may regard
the rooted trees obtained from these branches by deleting their root points as the sub-
graphs of T obtained on deleting the line joining the two central points. If these branches
have 7 points each, then there are n rooted trees 7" such that |7’'| =7 and # — 1 line-
rooted trees T such that | T"'| = T'. Hence for each symmetric tree whose group has order
2, the number of rooted trees with absolute 7 is one greater than the number of line-rooted
trees with absolute 7',

The counting series for symmetric trees whose group has order 2 is clearly U (22).
Therefore, summing over all symmetric and non-symmetric absolutes 7' of rooted trees

T’ and line-rooted trees 7" with group E, the group of whose absolute is not &, we have:
V(z) = U (x?).

Hence u(x)=U(@)—Z(Ay,— 83 Ulx)) — U(x?)
=U(@) —Z(8,, U(x))
=U(x) —§[U%(z) + U (?)]-

Explieitly, wiz)=x+a +2°+32° + 62 + 152" + 2052 + - - -,

Diagrams of all trees with < 12 points whose automorphism group is the identity are

presented in Appendix IIIL.
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Appendix 1
Diagrams of all Trees with n <10 Points
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Appendix I |
Diagrams of all Homeomorphically Irreducible Trees with n <12 Points
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Appendix III
Diagrams of all Trees with n <12 Points whose Automorphism Group is the Identity

We see from Appendix I that there are no trees with 2 <n <6 points whose automorphism group
is the identity. The tree with 1 point obviously has the identity group.

S



