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1. Introduction 

O u r  o b j e c t  is t o  a u g m e n t  t h e  a l r e a d y  r i c h  l i t e r a t u r e  o n  t h e  e n u m e r a t i o n  of t r e e s  b y  t h e  

a d d i t i o n  of s e v e r a l  p r e v i o u s l y  u n c o u n t e d  species .  I n t e r e s t  is  m o r e o v e r  d e r i v e d  f r o m  t h e  

f a c t  t h a t  we u se  v a r i a t i o n s  of o n e  g e n e r a l  m e t h o d  i n  e a c h  of t h e s e  cases ;  a m e t h o d  w h i c h  

is a l so  a p p l i c a b l e  t o  n u m e r o u s  c o u n t i n g  p r o b l e m s  n o t  t r e a t e d  i n  t h i s  p a p e r  (e.g., see  R i o r d a n  

Q) The work of the first author  was supported by  grants from the  National  Science Foundat ion  
to the  Ins t i tu te  for Advanced Study and  from the  Office of Naval  Research to Pr inceton University,  
while on leave from the  Univers i ty  of Michigan; the  work of the  second author  was done a t  the  
Universi ty of Michigan and  in Amsterdam. 
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[14]). The art  of enumerating trees appears to have originated with Cayley [1], who obtained 

formulas for labeled trees, rooted trees, and also (unrooted) trees. A significant contribution 

was made by P61ya [13J, who with the help of a powerful general enumerating procedure, 

solved a host of counting problems for trees of considerable interest in organic chemistry. 

A theorem of Otter [12] on the dissimilarity characteristic for trees enabled him to formulate 

an elegant equation giving the number of trees in terms of the known number of rooted 

trees. The dissimilarity characteristic was generalized to Husimi graphs and to arbitrary 

graphs by Harary and Norman [7, 8]. These results led to the enumeration of rooted Husimi 

graphs by Harary  and Uhlenbeck [9] and unrooted Husimi graphs by Norman [11], whose 

method also extended to the counting of graphs with any given collection of blocks; cf. 

Ford, Norman and Uhlenbeck [2, paper II]. Among generalizations of trees, enumerating 

formulas were obtained for labeled Husimi graphs in Ford and Uhlenbeck [2, paper I] 

(who extended Otter's asymptotic results in [2, papers I I I  and IV]), for forests in t Iarary  

[5], and for labeled colored and chromatic trees and oriented trees in a recent paper of 

Riordan [14]. In addition enumerations of graphs and directed graphs appear in Harary 

[5], and of labeled graphs and labeled directed graphs in Gilbert [3], 

The general plan for enumerating each tree species has three parts. First, a functional 

equation is obtained for the generating function for trees rooted at  an endpoint. Then 

rooted trees are expressed in terms of these using P61ya's Theorem. Finally the generating 

function for unrooted trees is given in terms of the function for rooted trees by an ap- 

propriate combination of the theorems of Otter and P61ya. For the sake of completeness 

these theorems are reviewed briefly in the succeeding two sections. Each of the remaining 

seven sections serves to enumerate either a new species of trees, or ordinary trees in terms 

of a new parameter. We include three appendices which present what is to our knowledge 

the most exhaustive collection of tree diagrams available. They have served as a valuable 

collection of data for the testing of conjectures. The diagrams have been thoroughly 

checked and are believed to be error free. 

2. P61ya's Theorem 

'We shall state PSlya's Theorem (the Hauptsatz of [13]) in the form which uses 

two variables. In  deriving the counting series for the various kinds of trees, sometimes 

the one variable form is used, and at  one point the theorem is used for an infinite number 

of variables. 

Let / igure  be an undefined term. To each figure there is assigned an ordered pair  of 

non-negative integers called i ts content. Let ~mn denote the number of different figures of 
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content (m, n). Then the figure counting series ~ (x, y) is defined by 

( x , y ) =  ~ ~m~X ~y~ 

Let  G be a permutation group of degree s and order h. A con/iguration of length s is 

a sequence of s figures. The content of a configuration is the vector sum of the contents of 

its figures. Two configurations are G-equivalent if there is a permutation of G sending one 

into the other. Let  F~n denote the number of F-inequivalent configurations of content 

(m, n). The configuration counting series F(x, y) is defined by 

F(x,y)= ~. F, nnx'~y" 
m~ ~l--0 

We shall call G the configuration group henceforth. 

The object of Pdlya's Theorem is to express F(x,  y) in terms of ~(x, y) and G. This 

is accomplished using the cycle index of G, defined as follows. Let  h(j) denote the number 

of elements of G of type (j) = (71, 72 . . . . .  }s), i.e., having ?k cycles of length k for k = 1, 2 . . . .  ,8. 

Thus 

l j l  +2j2 § " '"  +s is  = s  (1) 

]~et /1, /2 . . . . .  [s be s indeterminates. Then Z(G), the cycle index of G, is defined, as in 

PSlya [13, p. 157], by: 

1 
h( , /1/~ ... Is, (2) Z ( G ) = :  ~ _  J' J. J, 

(1) 

where the sum is taken over all partitions (j) of s satisfying (1). For any power series /(x, y), 

let Z (G, /(x, y)) denote the function obtained from Z (G) by replacing each indeterminate 

/k b y / ( x  ~, yk). Using these definitions, we are able to give a concise statement of: 

P61ya's Theorem. The configuration counting series is obtained by substituting the 

figure counting series into the cycle index of the configuration group. Symbolically, 

F(x, y) = Z(G, q~(x, y)). 

This theorem reduces the problem of finding the configuration counting series to the 

determination of the figure counting series and the cycle index of the configuration group. 

We frequently require the configuration group S,, the symmetric group of degree n. 

I t  is well known that  Z (S,) may be obtained from (2) by setting s = n, h = n !, and 

n! 
h(j> = lj ' j~ ! 2;' j~ ! ... n j" j .  ! 
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We illustrate P61ya's Theorem while reviewing the enumeration of rooted trees. See 

KSnig [10] as a general reference on graph theory. A tree is a connected graph with no 

eyeIes. A rooted tree is a tree with one distinguished point, called the root. Following the 

terminology of Riordan [14], a planted tree is a rooted tree in which the root is an endpoint, 

tha t  is, a point incident to only one line. Two trees are isomorphic if there is one-to-one 

correspondence between their point  sets which preserves adjacency, and two rooted 

trees are isomorphic if there is a tree isomorphism between them which maps one root 

onto the other root. 

A path joining points a 1 and an in a tree is a collection of lines of the form ataa, a~aa, 

. . . .  a~_~an where the points al, a S . . . . .  an are distinct. In  any  tree there is a unique pa th  

between each pair of points. The length of a pa th  is the number  of lines in it. The distance 

between two points is the length of the pa th  joining them. The diameter of a tree is the 

greatest distance between any two points. The root-diameter of a rooted tree is the greatest 

distance between the root and all other points. The branch <a, b> of a tree determined by  

a point a and a line ab is tha t  subtree containing a and all the points reachable by  paths 

from a whose first line is ab. A main branch of a rooted tree is a branch a t  the root. Define 

z (&r l (x)) = ~. z (s~, l (x)), 
n=O 

where we take Z (S o, [ (x)) = 1. I t  is implicitly shown in [13] tha t  

z (s~, 1 (~)) = exp ~ 11 (z,). 
r = l  r 

This equation can also be verified by  comparison of corresponding coefficients of x, as in 

Norman [11]. 

Let  T~ be the number of rooted trees with i points and 

T (x) = ~ T, x' 
~;=1 

be the generating function for rooted trees. Let  t (x) and T (x) be the corresponding generat- 

ing functions for trees and planted trees respectively. The following proof of the Cayley-  

P61ya formula for T(x) is different from previous proofs in the literature, and is based on 

the root-diameter of a rooted tree. 

THEOREM 1. (P61ya [13], p. 197) 

(x) = x T (x) (3 a) 
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(x) - x~Z (s~, ~ (x)/x) (3 b) 

T(x) = xZ(S~ ,  T(x)) (3 c) 

Proo]. Consider a planted tree T with root point p. Let q be the point adjacent to p. Con- 

sider the tree T obtained from T by deleting p, and rooting the resulting tree at q. Consider 

further the set ~q of the main branches of T, and the set S of rooted trees obtained from 

the planted trees of S in the same way as we obtained T from T. See, for example, Figure 1. 

Clearly any one of T, T, S, S, determines the others uniquely. If  T has m points, then T 

has m - 1 points. This proves equation (3 a). 

T: 

F i g u r e  1. 

If T has root-diameter n, then T has root-diameter n - 1, and the maximum root- 

diameter among the trees of ~q and S are n - 1 and n - 2 respectively. Also T has one more 

point than S, and if Lq has k planted trees, then Lq has k - 2 more points than T. 

Now let T(n)(x) and T (n~ (x) be the counting series for planted trees and rooted trees 

with root-diameter ~< n. The counting series for all sets (configurations) of planted trees 

with root-diameter ~< n is then Z(S~r T(n)(x)), and that  for sets of rooted trees is Z(S:r 

T (n} (x)). From the considerations of the last paragraph, we then find: 

~(n§ (x)=x2 Z (z~, T(n)x(X) ) 

T (n+l) (x)  : x Z  (S~, T (n) (x)) 

As the counting series for planted trees with root-diameter ~< 1 is x 2 and the counting series 

9 t  - 593801. Acta mathematlca. 101. I m p r i m 6  le 8 avr i l  1959. 
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for rooted trees with root-diameter  0 is x, we obtain the functional equations (3 b) and 

(3 c). We note t ha t  equat ion (3 c) can also be obtained by  substi tut ing (3 a) into (3 b). 

When  further  on we shall consider other species of rooted trees, we shall find tha t  

whenever we are not  able to obtain a functional equat ion for these rooted trees directly 

by  methods analogous to the above, we shall obtain one by finding equations analogous 

to  (3 a) and (3 b). 

Explici t ly,  

T(x) = x  § x 2 + 2x ~ + 4x 4 § 9x  5 + 20x 6 § 48x: + l15x  s + . .  �9 

3. Otter's Theorem 

I n  this section we review Otter 's  results [12] on the number  of trees. I t  will be seen 

tha t  his approach is convenient  in deriving a functional equat ion for counting a species 

of trees in terms of the counting series for the same species of rooted trees. 

An automorphism of a tree is an isomorphism of a tree with itself. Two points a and b 

of a tree are similar if there is an automorphism sending a onto b. Similarity of two lines 

of a tree is defined analogously. Since the set of all automorphisms of a tree is a permuta t ion  

group, similarity is an equivalence relation. The number  of dissimilar points or lines of 

a tree is the number  of similarity classes of points or lines. A symmetry line of a tree is 

one whose two points are similar. A symmetric tree is one which contains a symmet ry  line. 

Obviously any  tree has either 0 or 1 symmet ry  line. We are now able to state Otter 's  dis. 

similarity characteristic for trees. 

Otter's Theorem [12]. I n  any  tree, the number  of dissimilar points minus the number  of 

dissimilar lines plus the number  of s y m m e t r y  lines equals 1. 

Wi th  the help of this refinement of Euler 's  characteristic,  it is possible to derive an 

elegant functional equat ion for t(x) in terms of T(x).  A line-rooted tree is one in which 

there is a distinguished line. Using the following two lemmas, we have a proof of Theorem 2 

different from tha t  of Otter. 

LEMMA 1. The counting series /or line-rooted trees is Z(S~, T(x)).  

Proof. There is a one-to-one correspondence between line-rooted trees and unordered 

pairs of rooted trees, rooted at  the points on the distinguished line. 

L EMMA 2. The counting series /or symmetric trees is T(x2). 

Proof. There is a one-to-one correspondence between symmetr ic  trees and pairs of 

isomorphic rooted trees, rooted at  the points on the symmet ry  line. 
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T H E O R E M  2. (Otter [12]) 

t(x) = T (x) - �89 [T 2 (x) - T (xU)]. (4) 

Proo/. First we sum the dissimilarity characteristic equation for trees over all trees 

with n points. This becomes: the number  of trees with n points is equal to the number  of 

rooted trees minus the number  of line-rooted trees plus the number  of symmetric trees with 

n points. Hence by  Lemmas 1 and 2, 

t (x)  = T ( x )  - Z(S~ ,  T(x)) + T(x~), (5) 

which gives equation (4). 

Otter 's  formula (4) for the number of trees has subsequently been reproved twice 

without making use of his dissimilarity characteristic by  Hara ry  [6] and Riordan [14] by  

building up from PSlya's results [13] on the number  of centered and bieentered trees. 

Let  An be the alternating group of degree n. I t  was shown in [7] and [9], using a 

theorem of PSlya [13] on configurations with no repeated figures, tha t  

t (x)  = T (x) - [Z (As ,  T ( x ) )  - Z (S~, T ( x ) ] .  

This last equation (identical in content with (5)) is often written, by an abuse of notation, 

in the form 
t (x) = T (x) - Z (A2 - S~, T ( x ) ) .  (5') 

We shall have occasion to use the form of equation (5') in enumerating other species of 

trees. 

Explicitly, we find 

t(x) = x + x 2 + x a + 2z a + 3x 5 + 6x ~ + l l x  7 + 23x s + 47x 9 + 106x 1~ + 2 3 5 X  1 1 / -  551W 12 -[- " �9 �9 

Diagrams of all trees with ~< 10 points are given in Appendix I.  

For later reference we state the above-mentioned theorem of P61ya completely. 

THEOREM 3. (P61ya [13], p. 161). The counting series /or all Sn-inequivalent con- 

figurations o/ /igures whose counting series is /(x),  where each /igure appears at most 

once in any con/iguration is 

Z ( A n  - S n , / ( x ) ) .  

COROLLARY. The corresponding counting series for all configurations regardless of 

length is 

z ( A ~  - S ~ ,  / (x)) = ~ Z ( A n -  Sn, / (x)) .  
~Z~0 

I0- -  593801. Acta mathematica. 101. Irnprim~ Ie 8 avril 1959. 
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4. Trees with a given partition 

The degree of a point  of a tree is the number  of lines incident to  it. The partition of 

a tree is the sequence of non-negat ive integers (al, az, a 3 . . . .  ) where am is the number  of 

points of degree m. Let  

s  =0 

where ffj~,t2 . . .  is the number  of planted trees with im points  of degree m and a tota l  of 2" 

points. Let  P (x, t 1, t 2 . . . .  ) and 79 (x, t 1, t~ . . . .  ) be the corresponding counting series for rooted 

trees and trees respectively. 

THEOREM 4. The counting series /or planted trees, rooted trees, and trees with a 
given partition are given by: 

i ( x ,  t,, t 2, . ) =  ~ X2tltm+l Z(Sm, 1 ) "" ~ =o ~ i (x, t 1, t 2 . . . .  ) (6 a) 

t l ,  t~ . . . .  ) =  ~ xtmZ(Sm, 1 i f ( x ,  t l ,  t2, )) (6b)  P(x, 
m =0 X t I "'" 

1 
p (X, tl, t~ . . . .  ) = P (x, t 1, t~ . . . .  ) - x 2 t-~ Z (A s - $2, i (x, t 1, t 2 . . . .  )) (6 e) 

Proo/o/(6a). Let  T be a planted tree with root  p and let q be the point  adjacent  to p. 

By  a q-branch we mean a branch of the form (q, r )  for some r. Consider the sets of all q- 

branches not  containing p. This set of branches determines T,  and any  set of planted 

trees each of root  diameter  ~< n - 1 uniquely determines a planted tree of root  diameter  

~< n in this way.  

Now let ~q be a set of m planted trees each with root  diameter  ~< n. Then the planted 

tree T determined by  S as in Figure 1 includes two points  not  in S, corresponding r p 

and q, one of degree 1 and the other  of degree m + 1. On the other  hand,  the root  points  

of the planted trees of ~q, which have degree 1, are no t  included in this planted tree. Hence 

if we let i (~) (x, t I, tz . . . .  ) be the counting series for planted trees with root  diameter  ~< n 

and  given parti t ion, we find 

p{1)  (X, t l ,  t 2 . . . .  ) = X2t 2 

a n d  ff(n+')(x, tl, t2 .... )= ~ X2tltm+lZ(Srn, l i(n)(x, tl, t~ .... )) 
m =o x t 1 

from which (6a) follows. 
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Figure 2. 

< P ' q > :  

and 

proving (6 b). 

Proo/o/(6 b). The same set S of m planted trees also determines a rooted tree T as in 

Figure 1 by identifying the roots of the planted trees in ~, whose root diameter is ~< n. 

Its root has degree m and the m root points of ~ do not appear. Hence 

p(1 )  (x,  t l ,  t 2 . . . .  ) = x t  1 

P('+l)(x, tl, t2 . . . .  )= ~ xtmZ (Sm, 1-~-_P(n)(x, tl, t2 . . . .  )) 
m=0 xt  I ' 

Proo/of (6 e). A tree T rooted at  a line pq is uniquely determined by the two planted 

trees formed by the branches <p, q> and <q, p> of T as illustrated in Figure 2. 

Conversely any two planted trees uniquely determine a line-rooted tree�9 The two 

planted trees together have two points more than T, each extra point having degree 1. 

Hence the counting series for line-rooted trees with given partition is 

1 
g(S2, .P(x, t .  t~ . . . .  )). 

~ t l  ~ 

Similarly the counting series for symmetric trees with given partition is 

which is, of course, equal to 

x ~t~ (x ~,tl ,t~ . . . .  ), 

1 
x~t- ~ z (A~, P (x, tl, t~ . . . .  )) .  

Applying Otter's Theorem, equation (6 c) results. 

Explicitly we obtain 

p ( x ,  tl, t2, . .)  = x t  1 + x2t~ + x3t~t~ + x~t~ta 4 2 �9 + x ti t2 + xSt~t4 + xStat~t3 + xs t  2,'~x ~2 

+ z't~t 5 + z6tlt~t, + x't~t~ + 2x6tSxt~t3 + z't~tl + zTt~t. + x't~t2t5 + xTt~t3t, 

~7 ~2 ~5 
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5. Homeomorphically irreducible trees 

A homeomorphically irreducible tree is one with no points of degree 2. Let  h (x), H (x), 

and H (x) be the counting series for homeomorphically irreducible trees, rooted trees, and 

planted trees respectively. Let  ~q be a set of planted trees of root diameter ~< n determining 

a planted tree T of root diameter ~< n + 1 as in Figure 1. Then T is homeomorphically irre- 

ducible if and only if ~q contains at least two trees and all the trees of ~q are homeomor- 

phieal!y irreducible. The counting series for planted homeomorphically irreducible trees 

with root diameter ~< 1 is x 2. Hence H (x) is determined by the functional equation 

(7 a) 

There is a one-to-one correspondence between the set of all rooted trees T and all 

planted trees T, defined by deleting the root point of T and rooting the point of the resulting 

tree T adjacent in T to the root of T (as in Figure 1). If T is homeomorphically irreducible, 

then so is T unless the root of T is an endpoint. However, not all homeomorphically irre- 

ducible planted trees are formed in this way. For if T has exactly two main branches, 

each homeomorphically irreducible, then T is homeomorphically irreducible even though 

T is not. We therefore obtain 

H (x) = x [(H (x) - B (x)) + Z (S~, H (x))], 

and hence H (x) = x + 1 ~ (x) - 1 Z (S~, H (x)). (7 b) 
X X 

Applying Otter's Theorem to homeomorphically irreducible trees, we find: 

h (x) = H  (x) _ 1  Z (As - $2, H (x)). 
X- 

(7 c) 

The proof of equation (7c) follows the method of proof of equation (6 c). 

TH~OI~M 5. The counting series /or H(x), H(x), and h(x) are given by equations 

(7a), (7b) and (7e). 

Explicitly, 

h ( x )  = x + x 2 + x I + x ~ + 2 x  ~ + 2 x  7 + 4 x  s + 5 x  9 + 1 0 x  1~ + 14x 11 + 26x 1~ + �9 �9 - .  

Diagrams of all homeomorphieally irreducible trees with ~< 12 points appear in Appen- 

dix II.  
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6. Trees  wi th  a g iven  d i a m e t e r  

W e  have  a l r eady  seen in the  proof  of Theorem 1 t h a t  t he  count ing series for roo ted  

t rees  wi th  roo t -d i ame te r  n is T (~) (x) - T ( ~ - l ) ( x ) ,  where T c~ (x) is def ined recurs ive ly  b y  

T (~ (x) = x and  T (n) (x) = xZ  (S:r T (~-1) (x)). 

The associated number of a po in t  p of a t ree  is the  grea tes t  d is tance  be tween  p and  

al l  o ther  points .  Thus  the  roo t -d i ame te r  of a roo ted  t ree  is the  associa ted  number  of the  

root  and  the  d i ame te r  of a t ree  is the  m a x i m u m  among  all  the  associa ted  numbers  of the  

points .  The  m i n i m u m  associa ted  number  is  t he  radius of a tree.  The  center of a t ree  is t he  

set of all  po in ts  of m i n i m u m  associa ted  number .  I t  is well  known (see K6nig  [10]) t h a t  a n y  

t ree  has  e i ther  one or two centra l  po in ts  and  if the re  are  two,  t h e y  are  ad jacen t .  A t ree  is 

centered or bicentered according to  whether  i t  has  one or two centra l  points .  Count ing series 

for centered and  b icentered  trees were ob ta ined  in R i o r d a n  [14]. Other  expressions for 

these  arise in connect ion  wi th  trees wi th  a given d iameter .  F o r  t rees  wi th  odd  d i ame te r  

are  b icentered ,  while t rees  wi th  even d i ame te r  are  centered.  Le t  dm (x) be the  count ing 

series for t rees  wi th  d iamete r  m. 

Consider a b icen te rcd  t ree  wi th  odd d i ame te r  2n  + 1 and  bicenters  p, q. This  t ree  is 

un ique ly  de t e rmined  b y  the  branches  (p ,  q> and  (q, p).  I f  we omi t  the  endpoin t s  of these  

branches  (and roo t  t hem a t  the  po in ts  a d j a c e n t  to  these endpoints) ,  we m a y  consider  t h e m  

as roo ted  trees of roo t -d i ame te r  n. Conversely,  a n y  two roo ted  t rees  of roo t -d i ame te r  n 

un ique ly  de te rmine  a t ree  of d i ame te r  2 n + 1. Hence  

/ dl (x) : Z ($2, T (~ (x)) 

~ d2~+1 (x) : Z  ($2, T (n) (x) - T (n-l) (x)), n ~  1. 
(s~) 

On the  o ther  hand,  a centered t ree  wi th  d i ame te r  2n  and  center  p is de t e rmined  b y  the  

set  of i t s  p-branches .  I f  we aga in  delete  t he  endpoin t s  of these  branches ,  we f ind we have  

a set  of roo ted  trees,  a t  leas t  two of which have  roo t  d i ame te r  n - 1, and  the  res t  root-  

d iamete r  ~< n - 2. Therefore,  

d o (x) = T (~ (x) 

d2(x)=x ~ Z(Sm, T(~ 

d2n(x)=x[Z(S:c ,T(~-2) (x) )][~eZ(S ,~ ,T(~- l ) (x ) -T(n-2) (x) )] ,n>l  

(8,) 
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Expl ic i t ly  we obtain: 

d o (x) = x 

d l  ( x )  = x ~ 

d2(x ) = 

da(x ) = 

4 ( x )  = 

d 5 (x) = 

d s ( x )  = 

d 7 ( x  ) = 

d8 ( x )  
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x 3 § x 4 +  x 5 +  x 6 +  xV§ xS+  x g + . . .  

x 4 §  x 5 § 2 4 7  2 x 7 §  3 x S +  3 x 9 + . . .  

x 5 + 2 x  e §  5 x  ~ §  8x s §  9 + . . .  

x e +  2 x 7 +  7 x S + 1 4 x g + . . .  

xV+ 3xS + 11x9 + . . .  

x s §  3 x 9 §  

x g + . . .  

t (x)  = x + x 2 + x 3 + 2 x  4 + 3 x  ~ + 6x e + l l x  7 § 23x s + 47x 9 § �9 �9 �9 

7. Weighted trees 

A weighted tree is a t ree to each of whose points  is assigned a posit ive integer  called 

its weight. The weight of a tree is the  sum of the  weights of its points.  Le t  

W (x, y) = W~ j x ~ y~, 
t.1=1 

be the  counting series for rooted  weighted trees where W~j is the  n u m b e r  of rooted  trees 

wi th  i points  and  weight  ], and  let w (x, y) be the series for weighted trees. B y  the  usual  

methods  we obta in  the  functional  equat ion  

W (x, y) = x ~ yt Z (S~, W (x, y)). (9 a) 
i l l  

B y  Ot te r ' s  Theorem,  w (x, y) is then  given by  

w(x ,  y) = W ( x ,  y) - Z ( A 2  - $2, W ( x ,  y)). (9 b) 

F r o m  equations (9 a) and  (9 b) we obta in  

w(x ,  y) = x y  + x y  2 § x2y 2 + x y  3 + x2y a 

+ x a y  3 + x y  a + 2x2y  4 + 2xay  4 + 2x4y  4 

+ x y  ~ + 2x2y  5 + 4x3y  5 + 4x4y  5 + 3xSy  5 

+ x y  6 + 3x2y  6 + 6xay  6 + 10x4y e + 9xSy  ~ 

+ 6x6y  e + x y  7 + 3x~y 7 + 9xay 7 + 17x4y 7 

+ 2 4 x 5 y  v + 2 0 x e y  7 + l l x T y  v + . - . .  
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8. Directed trees and signed trees 

An oriented tree is a tree to each of whose lines pq is assigned exactly one of two direc- 

tions, ~q or p-q. Such a line is called a directed line. A directed tree is a tree in which each 

line is assigned either one direction or both directions. A signed tree [4] is one in which 

each line is assigned a plus or minus sign. Let r (x), d (x) and s (x) be the counting series 

for oriented, directed and signed trees respectively with the usual notation for rooted and 

planted trees. Then R (x) is determined by the functional equation 

For each set of planted oriented trees of root diameter ~< n determines two planted oriented 

trees of root diameter ~< n + 1, one for each direction which may be assigned to the addi- 

tional line. Clearly, 

R(x) 2x (x). (10b) 

To obtain r (x) we again apply Otter's Theorem. Every two non-isomorphic rooted oriented 

trees determine two line-rooted oriented trees, one for each direction. But two isomorphic 

rooted oriented trees determine only one line-rooted oriented tree. Hence the counting 

series for line-rooted oriented trees is 

2 Z ( A ~ -  S~, R(x) )  + R ( x  ~) = R~(x). 

Since a directed line cannot be a symmetry line, this gives 

r (x) = R (x) - R ~ (x), (10 c) 

which is found in Riordan [14, equation (42)]. 

Explicitly, we find 

r(x) = x  + x  ~ § 3x 3 § 8x 4 § 27x 5 § 91x e + . . .  

The counting series for planted and rooted signed trees are the same as for oriented 

trees. But in this case not only do two nonisomorphic rooted signed trees determine 

two line-rooted signed trees, but two isomorphic rooted signed trees also determine two 

line-rooted signed trees. Hence the counting series for line-rooted signed trees is 

2g(S~, R(x)). 
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On the  o ther  hand,  the  two l ine-rooted  t rees  de t e rmined  b y  two isomorphic  roo ted  signed 

t rees  a re  symmet r i c .  Hence  the  count ing series for symmet r i c  s igned t rees  is 2 R (x 2) and  

s(x) = R(x) - 2Z($2, R(x)) + 2 R ( x  2) or  

s(x) = R(x) - R2(x) § R(x  2) (11) 

Exp l i c i t l y ,  s (x) = x + 2 x 2 + 3 x 3 + 10 x 4 + 27 x 5 + 98 x 6 + "  �9 ". 

On compar ing  equat ions  (10 c) and  (11) we see t h a t  the  n u m b e r  of o r ien ted  t rees  of 

n po in ts  equals  the  number  of s igned t rees  of n po in ts  when n is odd,  b u t  is less t h a n  t h a t  

n u m b e r  when n is even. This  m a y  be verif ied in the  corresponding expl ic i t  series. 

S imi lar  a rgumen t s  show t h a t  

Exp l i c i t ly ,  

D(x) 3x  (x), (12b)  

d (x) = D (x) - 1 [3 D 2 (x) - D (x2)]. (12 c) 

d(x) = x  + 2 x  2 + 6x a + 2 5 x  4 + l 1 4 x  5 + "  " .  

9. Trees  o f  given strength 

F o r  cer ta in  appl ica t ions ,  including psychologica l  and  electrical ,  i t  has  p roved  useful  

to  define s t ruc tures  t h a t  al low more  t h a n  one line be tween  two points .  A t ree  has  strength s 

if a t  leas t  one pa i r  of po in ts  is jo ined  b y  s lines, b u t  no two po in t s  are  jo ined  b y  more  t h a n  

s lines. Graphs  of s t r eng th  s are  coun ted  in [5]. 

I t  is convenien t  to  consider  t rees  of s t r eng th  ~< s r a the r  t h a n  t rees  of s t reng th  s. Le t  

A(~) (x, y) = Z A~) x ~ yJ, 
~,j--1 

where ~..~) is the  n u m b e r  of p l a n t e d  t rees  of s t r eng th  ~< s wi th  i po in t s  and  j lines. 

T H]~ ORE M 6. Trees o/given strength are enumerated by the three equations: 

j i (S)(x,  y ) = x  ~ y l Z  S~,  - , (13a)  
~=1 X 

A (s) (x, y ) = x Z ( S ~ ,  _~(~)(_X,x Y)), (13b)  

a (~) (x, y) = A  (~) (x, y) - ~ y~Z ( A 2 - S  ~, A (s) (x, y)). (13 c) 
iffil 
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The proof is analogous to preceding ones and is omitted. The counting series for trees of 

strength s is then 
a(S)(x, y) - a (s-l)) (x, y). 

Explicitly, the counting series for trees of strength 2 is 

x2 y ~ + xa y a + xa y ~ + 3 x4 y a § 3 x4 y 5 § 2 x4 y ~ + 6 xS y ~ + 9 xS y e + 6 x~ y ~ + 3 xS y 8 4 .  �9 . .  

A tree of type 2 is one in which there are two different kinds of lines, defined in [5]; 

trees of type t are defined similarly. The same methods used in this paper also serve 

enumerate trees of type t, but we omit the details here. In his enumeration of trees with 

colored lines, Riordan [14] contains this result. 

10. Trees whose automorl~hism group is the identity 

For any tree T, let l" (T) be the automorphism group of T. Let En be the identity 

group of degree n. Then F (T) = En if and only if T has n points, no two of which are similar. 

We wish to enumerate all trees whose group is E (the identity group of unspecified degree). 

The absolute I T ] of a rooted or line-rooted tree is the unrooted tree with the same points 

and adjacencies as T. I t  is clear that  if F ( I T I )  = E, then F(T) = E, but not conversely. 

THEOREM 7. Let u(x)  and U(x)  be the counting series /or trees and rooted trees 

whose automorphism group is the identity. Then 

V(x)  = x Z ( A ~  - S~ ,  U(x)) (14 a) 

u(x)  = U (x) - Z(S2, U (x)). (14 b) 

Proo] o /equat ion  {14a). Any set of nonisomorphic rooted trees of root-diameter ~< n 

whose group is E determines a rooted tree of root-diameter ~< n § 1 whose group is E. 

By the corollary to Theorem 3, this equation follows at once. 

Proo/ o/ equation (14 b). Let {T'} and {T"} be the sets of all rooted and line-rooted trees 

with group E. By definition the counting series for {T ' }  is U(x), and it follows that  the 

counting series for {T"} is Z (A2 - $2, U (x)). Let U 1 (x) and U s (x) be the respective counting 

series for all rooted and line-rooted trees the group of whose absolute is E. Since any tree 

with group E is not symmetric, it follows from Otter's Theorem that  u (x) = U1 (x) - U~ (x). 

We find it convenient to define 

V(x) = [ u ( x ) -  ul(x)] - [ Z ( A 2 -  $2, V ( x ) )  - U2(x)]. 

If we can find the series V(x) ,  then we can solve for u(x): 

u(x)  = U(x)  - Z ( A ~ -  S~, U(x)) - V(x) .  



156 F .  H A R A R Y  A N D  G.  P R I N S  

Clearly U (x) - U 1 (x) and Z ( A  2 - $9, U (x)) - Us (x  ) enumerate respectively all rooted trees 

and line-rooted trees T such tha t  F (T) = E and F ([ T] ) :V E. 

Consider a non-symmetric t r e e  T whose group is not E. We investigate how many  

rooted trees T '  and line-rooted trees T "  with group E have T as absolute. I f  there exist 

any  such trees T '  or T "  a t  all, then F (T) has exactly one element besides the identity, 

and this element must  permute two branches at  some point p of T. Each of the two similar 

branches at  p, considered as rooted trees, has group E. I f  each of these branches has n + 1 

points, then there exist exactly n rooted trees T '  such tha t  [ T '[  = T. Moreover, the line- 

rooted trees T "  obtained by  rooting the n lines of each of these two branches also have 

[ T"]  = T .  We conclude tha t  for all non-symmetric trees T whose group is not E, the 

number  of rooted trees with group E and absolute T equals the number of line-rooted trees 

with group E and absolute T. 

Now take a symmetric tree T. The order of F (T) is at  least 2. I f  there exist rooted trees 

T '  or line-rooted trees T "  with group E and absolute T, then F (T) has order 2 and the non- 

identity element permutes the central points of T. The branches (p,  q) and (q, p~ of T 

at  the central points p and q, considered as rooted trees, have group E. We may  regard 

the rooted trees obtained from these branches by deleting their root points as the sub- 

graphs of T obtained on deleting the line joining the two central points. I f  these branches 

have n points each, then there are n rooted trees T '  such tha t  [ T'[  = T and n - 1 line- 

rooted trees T "  such tha t  ] T"[  = T. Hence for each symmetric tree whose group has order 

2, the number of rooted trees with absolute T is one greater than  the number  of line-rooted 

trees with absolute T. 

The counting series for symmetric trees whose group has order 2 is clearly U (x~). 

Therefore, summing over all symmetric and non-symmetric absolutes T of rooted trees 

T '  and line-rooted trees T "  with group E, the group of whose absolute is not E, we have: 

V (x) = U(x~). 

Hence 

Explicitly, 

u ( x )  = U ( x ) - Z ( A  2 - S ~ ,  U ( x ) ) -  U ( x  ~) 

= U(x) -Z(S~, U(x)) 

= U(x) -~ [U~(x )  + U(x~)]. 

u ( x )  = x § x 7 + x s + 3 x  ~ + 6x TM + 15x 11 + 29x TM + "" ". 

Diagrams of all trees with ~< 12 points whose automorphism group is the identi ty are 

presented in Appendix I I I .  
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n : ]  �9 

Appendix I 

Diagrams of all Trees with n ~< 10 Points 

n ~ 2  
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n = 7  : = : : z. , .- . . . .  - / "  - - - / . . . .  % " " - " N ,  

1 "  

> 5  
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n = l O  
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Appendix H 

Diagrams of all Homeomorphically Irreducible Trees with n ~ 12 Points 

D o n e  

n = l  

n=2 

n=3 

n=4 

n=5 + 

~ = ~ ~ ~  

~ = ~  | y~ ~ y~  >~ 



162 F. HARARY AND G. PRINS 

Appendix HI 

Diagrams of all Trees with n ~< 12 Points whose Automorphism Group is the Identity 

W e  see f rom A p p e n d i x  I t h a t  t he r e  are  no  t rees  w i th  2 ~< n ~< 6 po in t s  whose  a u t o m o r p h i s m  g roup  
is t h e  iden t i ty .  The  t ree  w i t h  1 po in t  obv ious ly  h a s  t h e  i d e n t i t y  g roup .  
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n = 1 2  ........ / 
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. . . . . . .  . %  . . . . . .  . %  . . . . . .  
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