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1. Introduction 

Let  t be a function sending the open unit  disk D into the Riemann  sphere S. 

A point  y on S is in the global cluster set of /, denoted b y  C (f), if and only if there 

exists a sequence of points Zn in D such tha t  lim I z~l = 1  and lim f ( z n ) = y .  Thus, 

for example, if / is continuous on D, and can be extended to be continuous on /),  

then C (/) is the image of the bounding circle and hence a Peano space. 

If  f is continuous, then C (/) is a continuum. Conversely, it is easy to prove 

tha t  any  cont inuum C on the sphere S is the global cluster set for some continuous 

funct ion f. Collingwood ([3], p. 123) and Cartwright  asked whether every  cont inuum 

on S is the global cluster set of a funct ion / meromorphic  on the open disk D. D . B .  

Potyagaflo  [8] and W. Rud in  [10] independent ly  gave as counter-example the cont inuum 

consisting of the union of (a) a spiral, r = O / ( z + O ) ,  z ~ < 0 <  ~ ,  (b) the unit  circum- 

ference, and  (c) an  interval, 1 ~< x ~< 2, y = 0. 

Because this example is no t  locally connected, and  because, if t is continous on 

/), then C (~) is locally connected, one might  conjecture tha t  every locally connected 

cont inuum is the global cluster set for some function / meromorphic  on D. I n  Sec- 

t ion 2, we give a counter-example to this conjecture. The example also answers in 

the negative a question of Gerald MacLane [5]: Is  every Peano space the image of 

the bounding circle of a funct ion / mcromorphic  on D and  continuous on /)? 

(1) This paper is essentially a chapter of the author's dissertation, written under the direction 
of Professor G. S. Young at the University of Michigan. Certain improvements in the proofs and 
the preparation for publication were done under ~SF Grant G-8240. 

4 -  60173047. Acta mathematica 105. Imprim6 le 13 mars 1961 



5 0  P . T .  CHURCH 

In  Section 3 a topological sufficient condition for a continuum to be the global 

cluster set for a function / meromorphic on D is given. This condition is different 

from and simpler than a sufficient condition given by  D. B. Potyagailo [8]. 

Other work relating to the boundary behavior of functions analytic or mero- 

morphic on the open disk and continuous on the closed disk has been done by  Salem 

and Zygmund [11], Piranian, Titus, and Young [7], Schaeffer [12] and Marston Morse [6]. 

Point  cluster sets of meromorphic functions have been studied by  Gross [4]. 

I t  is significant tha t  the results in this paper are proved almost entirely by  topo- 

logical techniques. Throughout the sequel " m a p "  means continuous function, S(x,  e} 

is the open disk about  x of radius e, S is the Riemann sphere, and D is the open 

unit disk. 

2. The Example 

THeOReM 2.1. There exists a Peano space P which is not the global cluster set 

o/ any /unction / meromorphic on the open unit disk. 

COROLT, XRY 2.2. There exists a Peano space P which is no~ the image o/ the 

bounding circle /or any /unction / meromorphic on the open unit disk and continuous 

on the closed unit disk. 

Construction o/ the example. The Peano space P1 is the union of /)  and the fol- 

lowing sets described using polar coordinates: 

(1) the closed disks with centers ( 2 - 2  -n, mz~/2) and radii 2 -n-~, together with 

the line segments 1 ~< r ~< 2, 0 = m z / 2 ,  which join these disks to the unit  disk (n a 

positive integer and m odd); 

(2) the closed disks with centers ( �88  ~m~)  and radii 2 -n-5, together 

with the line segments 1 ~< r ~< 1 § 0 = l m z ,  which join these disks to the unit  disk 

(n a positive integer and m odd); at  the kth stage, the closed disks with centers 

((2 - 2-~) 41- k, m 7~ 2-k) and radii 2 ~ -ek-1, together with the line segments 1 < r ~< 1 § 41- k, 

O = m z 2  -k (n a positive integer and m odd). This completes the definition of P r  

Given any disk D'  =~D of P1, map the plane onto itself Using the natural  simi- 

larity transformation followed by a rigid motion t ha t  maps D onto D', sending the 

vertical line through D onto the ray from D tha t  passes through D'.  Hence, to each 

disk in P1 are added its own "satellites". The resulting set is called P2. 

Now, given any  disk D '  on P2 but  not on P1, add, in the manner above, sat- 

ellites corresponding to those of D in P2; the result is Ps. 

In  general,  given Pn, and any disk D' on P~ but  not on P~-I ,  add satellites 

corresponding to those of D in Pn, and call the result P~+I. 
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Fig. 1. 

Let  P be the closure of U P= (see the figure). From its definition P is clearly 
n = l  

closed, bounded, and arcwise connected. To prove tha t  P is locally connected, it is 

sufficient to show ([15], p. 20) that ,  for every- e > 0, P is ~he union of a finite number  

of connected sets each of diameter less than e. 

DEFINITIONS. Let  / be a map of a topological space A into a topological space 

B. If, whenever U is open in A, / (U)  is open in B, then / is interior. I f  for every 

y in /(A),  /-1 (y) is totally disconnected, then / is right. 
A non-constant meromorphic function is light interior. Conversely, Stoilow ([14], 

p. 121) proved: If  / is a light interior map of a plane region into the sphere S, then 

] =gh, where h is a homeomorphism, and g is meromorphic. 

Proo] o] Theorem 2.1. We will prove the stronger result tha t  there is no light 

interior map  /:D--+S having C (f )= P. The proof will use only the following properties 

(consequences of the Stoilow Theorem) of the maps: 

(1) The set of points at  which / is not one-to-one has no limit point in D. 

(2) For each point q in the range of /, the set /-1 (q) has no limit point in D. 

Suppose there is such a light interior map /. We will show tha t  this assump- 

tion leads to a contradiction. Since the range of / is open, it must  meet S - P .  But,  

since no point of S - P  is in C(/), the range of / includes S - P .  Let  C be the set 

of points in D at  which ] is not one-to-one. Let  B be (S -P) - ] (C) ,  and let E be 
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]-1 (B). Observe that,  in any set at  positive distance from P,  the points of ] (C)are 

isolated. 

Each q in B has only a finite number  of inverse image points (otherwise, from 

property (2), q would be in C (t)). L e t  ql, qs, " " ,  qn be the  points of ]-1 (q), and let 

N be a neighborhood of q in B at  positive distance from P.  Choose mutual ly  dis- 

joint neighborhoods N~ about  qs such tha t  Nsc]  -1 (N) and the restriction of ] to Ns 

is one-to-one (i = 1, 2, . . . ,  n). T h e n  fl~=l ] (Ns)is  open, and its complete inverse image 

consists of n neighborhoods (of ql, qs . . . . .  q~), each  of which is mapped homeomorphi- 

cally onto it. Thus E is a covering space of the  base space B, with projection map 

], and n, l ~ < n <  co, the number  of points in ]- l (q) ,  is independent of the choice of 

q in B ([13], p. 67). 

For every e, 0 <~ < 1, let A~ be the open annular region of points in D at  dis- 

tance less than  e from the boundary of D. Since the largest (open) disk of P,  call 

it D 1, is in C(]), the range of ] must  meet D 1. Therefore, there is an open set U 1 

and an ~1>0 such tha t  U 1 does not  meet  A~, and ](U1) meets both  D 1 and S - P  

(and therefore B). 

There is some r e x 2  -k such tha t  the spike a t  (1, rn~2-k) ,  which has length 41-~, 

with all its at tached disks lies entirely within ] (U1). Let  D~ be the largest (open) 

disk on this spike. Since D 2 = C (]), ] (A~,) meets D2, and there is an open set U s ~ A,, 

and an ~2>0, such tha t  A,,fi Us=O, [(U2)=t(U1), and [ ( U s ) m e e t s  both  D s and 

S -  P (and therefore B). Since U 1 and U s are disjoint, n>~ 2. 

In  general, let open sets Us and an e~> 0 be given such tha t  the Us are mutu- 

ally disjoint, ~(Us)~](Us_l) ( i = 1 ,  2 . . . . .  k), U~=~ Us does not meet  A,k, and f(Uk) 

meets both P and B. There is some disk D~+I of P contained in ](U~). Since 

D~+I = C(]), there is a neighborhood Uk+l c A~ and an e~+l > 0, such tha t  A,k+ 1 O U~+I = 0, 

] (Uk+l )~ ] (Uk) ,  and ](Uk+l) meets both D~+I and B. Since the Ut are pairwise dis- 

joint, and ~(Ui+l)~t (Us) ,  ( i = 1 ,  2 . . . . .  k), we have n>~/~+l .  Thus n is infinite, and 

B ~ C (]), contradicting our assumption. 

Remark. Let  P '  be the Peano space obtained from P by  replacing each closed 

disk by  its bounding circle, together with one of its diameters. The previous proof 

also shows tha t  P' is a counter-example. We mention both of them so as to rule 

out conjectures tha t  might otherwise be made. Observe tha t  S -  P is simply con- 

nected, and tha t  P '  is one-dimensional. 
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Remark. Consider the following theorem of Rudin [9]. Suppose 

(a) E is a closed subset of the boundary of D, E having Lebesgue measure zero; 

(b) r is a continuous function on E; 

(c) T is a two-cell such that  ~ ( E ) c T .  

Then there exists a function / analytic on D and continuous on /)  such that  

(i) / ( z ) = r  for all z in E; 

(ii) / (/)) c T. 

Let  E be a Cantor set (of zero measure) on bdy (D); there is a continuous map 

r of E onto P ([15], p. 35). Let Tn be a sequence of simply Connected regions con- 

taining P such that  Tn+lCTn and N ~ I T ~ = P ,  and let /n be the functions given 

by  the Rudin theorem. Our result implies that,  if the (pointwise) limit function / 

exists, then it is not analytic. On the other hand, P is the intersection Of the Peano 

spaces Tn (e.g., topological disks), each of which is the image of the bounding circle 

under a map / analytic on D and continuous on /). 

3. The Sufficient Condition 

DEFINITION. A non-empty continuum C on the sphere S has Property P if 

there is a sequence (possibly finite) of simply connected regions (Un} (n = 0, 1, 2 . . . .  ) 

such that: 

(1) C is the closure of [3 bdy (Un); 

(2) for every positive integer n, there is an integer m < n such that  bdy (Un) N bdy (Urn) 

contains a point p~ accessible from U~ • U,~; 

(3) if the sequence U~ is infinite, the limit superior of {U~} is contained in C. 

THEOREM 3.1. I/  a continuum C on S has Property P, then C is the global cluster 

set o/ a /unction / meromorphic on D. Moreover, the range o] / is [3 Un. 

Let d (Un) denote the diameter of the largest circular open set in Un. (Intui- 

tively, d(U~) is the width of Un.) If d(U~)--*O, then (3) is satisfied. In particular, 

if the measure of Un converges to zero, then (3) is satisfied. 

Property P is reasonably natural since any continuum C on S can be represented 

as the closure of [3 bdy (Un), where each U~ is a simply connected region. That  is, 

S - C  has a finite, or conntably infinite, number of components, { Vn}, each V~ simply 

connected. The boundary of each V~ is contained in C, and C - C 1  [[3 bdy (Vn)] is 

open in S (C1 [X] denotes the closure of X). If C - C 1  [[3 bdy (Vn) ]~0 ,  then there 
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is a eountably infinity set of open disks, {Dn}, such tha t  each Dn is contained in 

C - C 1  [(J bdy  (V.)], and 

C - C1 [ (J bdy ( V~)] c C1 [ (J bdy  (nn)] c C. 

Condition (2) is necessary to eliminate the Rudin example [10] from our class, and 

(3) to eliminate the author 's  example of Section 2. 

I f  R is any  region, then R is a continuum with Proper ty  P. Any dendrite has 

Property P. I f  C has Property P, and h is a homeomorphism of S onto itself, then 

h (C) has Proper ty  P. 

On the other hand, from the author 's  example of Section 2, not every Peano 

space, boundary curve, or unicoherent continuum possesses Proper ty  P (for definitions, 

see [15]). 

DE]~I~ITION. Two simply connected regions U and V on the sphere S are said 

to meet properly at  p on b d y ( U )  Nbdy(V)  if p is accessible by  an arc in U N V .  

LEMMA 3.2. Let U and V be simply connected regions on the sphere S such that 

bdy (U) and bdy (V) each contain more than one point, 

b d y ( U )  N b d y ( V ) + 0 ,  U A V+O, U~:V,  and V~:U.  

Let p~ (i = 1, 2 . . . . .  n) be any /inite set o/ points (o/ S). Then any component W 

o~ U N V is a simply connected region such that U meets W properly at a point q + p~ 

(i = 1, 2 . . . . .  n), W meets V properly, and bdy (W) contains more than one point. 

Proo/. There exist points r in U N V and s in V -  U, r+p~, s4p~ ( i=  1, 2 . . . . .  n); 

hence, there is an infinite family of arcs in V, disjoint except tha t  each has r and 

s as endpoints. Let  ? be one of these arcs which does not meet any  point p~ 

( i=1 ,  2 . . . . .  n), and let W be the component of U N V which contains r. Then 

has a subarc beginning at  r which lies entirely in W except for its endpoint q on 

bdy (U)N bdy (W). Thus U meets W properly at  q, Similarly, W meets V properly. 

D E F I n I T I O n .  A continuum C on the sphere S has Property P '  if 

(1) it has property P; 

(2) there exists some function ~ mapping the positive integers into the non- 

negative integers so tha t  U~ meets Ur properly at  pn, r  and 

(3) if n~=n', ~ (n) = ~ (n'), and Pn = pn', then Un N Un, = O. 

LEMMA 3.3. I /  a continuum C on S has Property P, then it has Property P'.  

Moreover, i/ the simply connected regions given by Property P are denoted by Un, and 

those o/ Property P '  by V~, then [J U~= U V~. 
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Proo/. Given a sequence of simply connected regions {U~} satisfying P, we will 

construct a sequence of simply connected regions {V j} satisfying P' .  

We may assume tha t  the sequence {U~} has no repetitions. Let  V o be U o. 

Now suppose that  we have defined V0, V 1 . . . . .  Vk to replace U0, U 1 . . . . .  U~-I 

such that  

(1) For each i (i = 0, 1 . . . . .  n - 1) there is an integer ~ (i) (~ (i) = 0, 1 . . . . .  ]c) such 

that  Vq(~)= U~. 

(2) If ?" (1"=0, 1 . . . . .  k) is not in the range of Q, then ?'+1 is, and Vj~Vs+I. 

(3) bdy (V~) ~ C. 

(4) There is a function ~ mapping the integers 1, 2, . . . ,  /c into the integers 

0, 1 . . . . .  I t - 1 ,  so that  ~ ( ] ) < j  and Vj meets Vr properly at a point qj. 

(5) Moreover, if q~ ( ~ ) ~  (h) and qj=qh, then V s (~ Vh=O. 

Let us call conditions ( 1 ) -  (5) Property Pn-i  of V o, V1 . . . . .  Vk. We will find 

at most two additional Vj's so that  the enlarged family has Property P~. 

There is an integer m < n  such that  Un meets U~= Ve(m ) properly at a point Pn, 

by Property P. Let  h (h-~ 0, 1 . . . . .  k) be maximal such that  either Vh and U~ meet 

properly, or they satisfy the hypothesis of Lemma 3.2. If Vh and U~ meet properly 

(at y), let Un be Vk+l, h be r (It+ 1), and y be qk+l. Then the family Vo, V1 . . . . .  Vk+l 

has Property Pn (condition (5) is satisfied because of the maximality of h). 

If Vh and U~ do not meet properly, let the W given by Lemma 3.2 for q=4=q~ 

( i=1 ,  2 . . . . .  /c) be Vk+l, Un be Vk+u, k + l  be r  and h be r  Then the 

set Vo, V1 . . . .  , V~+e has Property P~. 

The sequence { Vj} (finite or infinite as the sequence { U~} is finite or infinite) thus 

constructed satisfies Property P ' .  

LE~MA 3.4. Let U and V be simply connected (proper) subregions o / the  sphere S. 

Let 1~ be a simply connected region bounded by a Jordan curve, bdy (F) containing a 

point p o/ b d y ( U ) N b d y ( V ) ,  F - ( p }  in  U • V. Then there is a ]inite-to-one interior 

map g o/ U onto U U V such that: 

(1) The map g is the identity on U - F .  

(2) (a) I /  bdy (V)={p} and F is any arc ending at p, then there exists e>O and 

an open set 2", F '  c F O {p}, such that g maps F '  homeomorphically onto S (p, s) - F. 

(b) I /  bdy (V) is not a single point, then given any y on bdy V, there exists 

s > 0 and an open set F' ,  _F' c F U (p}, such that g maps F '  homeomorphically 

onto V N S (y, e). 
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(3) I /  {xk~ is a sequence in JF converging to p, and i/ g (xk) converges to y, then y 

is on bdy  (V). 

(4) I /  {y~  is a sequence in V converging to a point y o u  bdy(V) ,  then there is 

a sequence {xk} in E with g (xk)=Yk and x~ converging to p. Moreover, any 

such sequence {xk} in F converges to p. 

Proo/. Suppose tha t  S, viewed as the extended plane, has been assigned polar 

coordinates. There is no loss of generality in assuming tha t  F is the hemisphere 

0 < r <  o% 0 < 0 < g ,  and p is infinity. Let  g' be the finite-to-one interior map of U 

onto S which is the identi ty on U - F  and on F sends (r, 0) into (r, 50). I f  bdy  (V) 

is a single point (i.e., V = S - { c ~ ) ) ,  let g be g'. 

I f  bdy (V)  is not a single point, let A and A'  be the great circle arcs r>~0, 

0 = 0 and 0 =7~, respectively. Let  R, /V, and _R" be the open sectors 0 < 0 <. 2 ~/5 ,  

2 ~ / 5  < 0 < 4 ~/5 ,  and 4 g / 5  < 0 < ~ in F, respectively. The map g' sends R and R'  

homeomorphieally onto S - A ,  and R "  homeomorphically onto F.  We will construct 

an orientation-preserving homeomorphism h of S -  {oo} onto V such tha t  h is the 

identi ty on A - { o o } .  Then g will be g' on U - ( R U R ' )  and hg' on R U R ' .  

Let  a 1 be the arc r = l ,  0~<0<�89 b I the segment 0 = 0 ,  - l ~ < r < l ,  and c 1 the 

are r = 1, -~ r~ ~< 0 ~<g. Let  D x denote the open upper half unit disk, and D~ the lower 

one. There is a homeomorphism r of /)1 onto the closed rectangle bounded by  x = 0 ,  

x = - 1 ,  y = 0 ,  and y = l ,  which maps b 1 onto the x-axis between x = - 1  and x = 0 ,  

and c 1 onto x = - I  between y = l  and y = 0 .  Let  s be the map of this closed rec- 

tangle onto the closed triangle bounded by the x- and y-axes, and by  the line 

x - y +  1 =0 ,  given by s (x, y ) =  (x, y (1 +x)) .  There is a homeomorphism t of this closed 

triangle onto /)1 which maps the x-axis between x = - 1  and x = 0 onto b 1. 

Let  u be the homeomorphism of /)1 onto the quarter sphere r>~0, �89 ~<z, 

given by u (z) = (z - 1 )  (z + l) -1 . Let  S 1 be the open hemisphere r > 0 ,  0 < 0 < ~ ,  and 

let S~ be r >  0, - ~  < 0 < 0. Let  v be the homeomorphism of the quarter sphere onto 

~ql given by  v(r, O)=(r, 2 0 - ~ ) .  Let  w 1 be the composition v u t s r  of these functions 

in order, and let w 2 be the analogous map, defined by  reflection, o f / )2  onto ~q~. The 

map  w~ (i = 1, 2) is a homeomorphism of D~ onto S~, of a~ onto A and of b~ onto A',  

which maps c~ into {r162 

Now, some great circle through the origin and infinity meets bdy (V) in a point 

other than infinity, since bdy (V) contains more than  one point. There is an arc A "  

on the great circle, A "  beginning at  the origin, ending at  a point q~: oo of bdy (V), 

and lying entirely in V except for q. Then A and A"  meet only in the origin, and 
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V - ( A  U A")  has two simply connected components. Let V1 be the component for 

which 0 > 0  and r > 0 ,  and let V2 be the other component. Let  x~ ( i=1 ,  2) be a con- 

formal map  of the open unit disk D onto V~. Let  a~, b~, and c~ be the arcs corre- 

sponding to A -{oo} ,  A " - { q } ,  and bdy (V~) N bdy (V), respectively, under the Cara- 

theodory [1] correspondence of prime ends. There is a homeomorphism y~ of /~  onto 

/ )  mapping a~ onto a~, b~ onto b;, and c~ onto c; so tha t  y, z~ w;  1 (defined on s  {o~}) 

is the identity on A - { ~ }  and maps A ' - { o o }  onto A " - { q }  as a transformation 

of similitude. The homeomorphism h of S - { o o }  onto V is y,x~w[ 1 on ~q~-{or 

(i  = l ,  2). 

The reader may  verify tha t  g is a finite-to-one interior map satisfying (]), (3), 

and (4). For (2), (in the case bdy (F)=~{oo}) suppose first tha t  y is not inf ini ty .  

Choose e > 0 so tha t  A N S (y, e) = 0. Since g = hg '  maps /~ homeomorphically onto 

V - A ,  
F '  = g-1 (S (y, e) N V) N R 

will suffice. Suppose tha t  y is infinity. Then g' maps the open sector R*, ~ / 5  < 0 < 3 7r/5 

in R U R',  homeomorphieally onto S - A ' .  But  h maps S - A '  homeomorphically onto 

V - A " .  Choose e > 0  so tha t  S ( o ~ , e )  N A " = 0 ,  and let 

F ' = g - l [ s ( o o ,  ~) ~ V] N R*. 

PRO]~OSITION 3.5. I /  a continuum C possesses Property P, then there is a light 

interior map / o / D  into the sphere S such that C is the global cluster set C (/). The 

range o/ / is [J U~. 

Proo/. By Lemma 3.3, C thus has Proper ty  P ' .  Let  {Uj}, {pj}, and r be the 

associated open sets, points, and function. For each ?'> 1, pj on bdy (U~)N bdy (Ur 

is accessible by  an arc in Uj N Ur162 let Fj be one such arc. As before, At will denote 

the annular region 1 - e < I z l < 1. 

Let  /0 be a homeomorphism of D onto U 0. I f  the sequence consists of U 0 alone, 

then /0 is /. Otherwise, about  F 1 we can form a simply connected region F1, bdy  (F1) 

a Jordan  curve containing Pl, /~1 - {Pl} in U 0 A U 1. Let  gl be the finite-to-one interior 

map of U 0 onto U0U U 1 given by  Lemma 3.4. Let  /~I (F1)=E 1, and let f l=gl/o.  

In  general, suppose tha t  we have constructed a set of functions )r . . . .  /n-1 

such that:  

(1) Each /j is a finite-to-one interior map of D onto U 0 U U1 U ... U Uj. 

(2) There exist open sets Ej, Ej in A1/j (except for E 0 and El) , such t ha t / j+ l  = / j  

o n  D - E j ;  E o is  D .  
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(3) The closure of E~ in D is contained in E~(~), and f~(j) (and/J-l)  maps E~ homeo- 

morphically onto a simply connected region Fj, bdy (Fj) a Jordan curve con- 

raining pj, _Fj- {pl} in Uj N Ur162 

(4) If for some positive integer h, k = ~h (~), where ~h is the hth iteration of r 

then E~ N D ~ Ek; otherwise, Ej N Ek N D = 0. If r (]) = r (m) = k, then P~ N -~m 

is 0 or {Ps}. 

(5) (a) If bdy(Uj)={pj}  and F is any arc ending at  pj, then there exist e > 0  

and an open set E, E N D ~ E j ,  such that  /j maps E homeomorphically onto 

S (pj, s ) -  F. (b) If bdy (Uj) is not a single point, then, given any point p 

on bdy (Uj), there exists s > 0  and an open set E, E N D ~ E j ,  such that  /j 

maps E homeomorphically onto Uj N S (pj, e). 

(6) The function ]j maps Ej onto U~ so that  if {xk} is a sequence in Ej, I xk ]->1, 

and /j (xk)~+y, then y E bdy (Uj). Conversely, if {Yk} is a sequence in U~ con- 

verging to a point y on bdy (Uj), then there exist x k in Ej such t h a t / j  (xk) = Yk. 

Moreover, for any such xk, I xk]-~.l 

Call properties (1)-(6) Property Qn 1 of /0' /1 . . . . .  I n - 1 .  The function lo possesses 

Q0" We will prove that,  if /0, ]1 . . . .  , ]~-1 satisfy Q~-I, then there exists ]n such that  

/0,/1 . . . . .  /~ satisfy Qn. (The function /1 was constructed separately for purposes of 

clarity, and we will not use the fact tha t /0 , /1  satisfy Q1 in the succeeding argument). 

The set F~ - (p~} is contained in Un n Ur and p~ is on bdy (U~) N bdy (U~<~)). 

There exists (5 > 0 such that  S (Pn, 6) N Ur is disjoint from each -Fro having m < n, 

r 1 6 2  and P,n::t:pn. By Property P ' ,  if re<n, r 1 6 2  and P,n=Pn, then 

Urn N U~ = O. Thus S (p~, 6) N Ur N U~ is disjoint from each _F~ - {p~} having m < n 

and r (m) = r (n). 

If bdy (Ur is a single point {p~}, let F be any arc ending at  p~ such that  

F N F~=0.  There exists s given by  Qr (5 (a)), such that  0 < s  ~<~, and 

S (Pn, ~) -- 17 C/r (E n Alln), 

by Qr (6). The arc Fn has a subare F~ containing p,, F~ in S (Pn, e). Thus, there 

is a simply connected region F~ such that  bdy (Fn) is a Jordan curve containing p~, 

and F~ - {p~} is in [Un N S (pn, e)] - F. 

If bdy (Ur is not a single point, there exist e and E given by Qr (5 (b)), 

such that  0<e~<5 and 

S (p,~, s) N Uc(n)~lr n A1/n), 
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by Qr (6). The are Fn has a subarc F~ in S(pn, ~). Thus, there is a simply con- 

nected region F~ such that  bdy (Fn) is a Jordan curve containing pn, and F n -  (Pn~ 

is in 

U~r NUn N S (p~, e). 

Let gn be the finite-to-one interior map of Ur onto Ur162 Un given by Lemma 

3.4. Let  
Z~ = (1~(1)(F)) N E. 

n--1 
Since En N D c Er - (J (E~ N D), 

] - r  

from the construction of E~ and irom Q~-I (4), we have /n-1=/r on E~ N D. Let  

/n:gn/n-1 o n  En, /n=/n-1 elsewhere. Then /1, ]2 . . . .  , ]n clearly satisfy Qn ((2), (3), 

and (4)) by Q~ 1 and the construction of /~. 

To prove that  /n is a finite-to-one interior map, observe that  In is gn /n-1 on 

E, and is /n 1 on D - E n  (gn is the identity on Ur Since /n-1 and g~ are 

finite-to-one interior, /~ is finite-to-one interior on E, and on D - E ~ .  But E and 

D - E ~  are open sets whose union is D, so /n is finite-to-one interior on D, giving 

Q~ (1). 

Given p on bdy (U~) (or, if bdy (Un)=(p~}, given an arc F ending at p~), let 

F ' c  Fr~ be the set (given by Lemma 3.3) on which g~ is a homeomorphism. The func- 

tion /n-1 maps E~ homeomorphically onto Fn. Since /n is gn/n-1 on  En, let E be 

/ ;1  (F') n En, 
giving Qn (5). 

For (6), suppose that  (xk} is a sequence in E~, with ]xkl-->l, and /,~(xk)-~y. 

Since E~cEr /r has all its limit points on bdy (Ur by Qn-1 (6). But 

/r and -Fn Nbdy (Ur is the point p~. Also /~ 1:/r  on E~. Thus, 

/n-1 (x~)-->pn. Now, applying Lemma 3.4, if g,~ (In 1 (xk))--~y, then y is on bdy (Un). 

Since /n is g~/n 1 on E~, we have the desired result. 

Conversely, suppose that  (Yk} is a sequence in U~ converging to y on bdy (Un). 

From Lemma 3.4, there is a sequence (wk} in Fn such that  g (wk)=Yk and wk-->p,, 

But F~ is contained in Ur and p~ is on bdy (Ur The function /r maps E~ 

homeomorphically onto F~, so there exist xk in En such that  /r By Qr 

(6), since E~cEr Iwkl-~l. But /~-1--/r on E~, and /n=g,~/,~-~ there, so that  

/~ (w~)-~y. 

Thus, there exists a sequence of functions (/~), corresponding with (U n ) su ch  

that,  for each n, /o,/1 . . . .  , /n  satisfy Qn. 



60 P.T. C~URCH 

If (U~} is a finite sequence of m + l  sets, then let /m be /. The map / is light 

interior by Q~ (1), and 

C (])= bdy (Uo) (J bdy (U1) (J -.. U bdy (Urn)= C. 

Thus, we may assume that  the sequence {Un} is infinite. Let  / be lira/n. Given 

any z in D, choose a positive integer N so that  z is in D--~I/N. Since E ~ c  A1/N, 

for all n>~N, by Qn (2), /N=/  on some neighborhood V of z. Since /N is interior 

on V, and since z is arbitrary, / is interior. Let  y be in the range of /, and let 

zE/-1 (y). Choose N and V as before. Since /N is finite-to-one, /-1 (y) N V is finite. 

Since z is arbitrary, /-1 (y) consists of isolated points; thus / is light. 

To prove that  C~ C(/), it  is sufficient to prove that,  given any y in bdy (Un), 

there is a sequence {zk} in D, ]zk ]-->1 such that  /(zk)-->y. 

Let  {U~} denote those Um's such that  r (m)=n ,  and let .F~=/n (E~), as before. 

If S (y, 1/k) is disjoint from all the F,~, let Yk be any point of S (y, I/k) N U,, If 

S(y, i/k) meets some F~, and if p,~4y, then there exists p in S(y, 1/k)-F~, and 

q in S(y, 1/k) N.F~. There is some arc 7 in S(y,  1/k) which joins p and r and is 

disjoint from p~. Thus 7 contains a point, call it Yk, of bdy (F,~,) N U~. If i~= i, then 

_~,~NF~ is 0 or the point p,~, by Qk (4) (k=l,  2 . . . .  ), so tha t  Yk is not in any F,~. 

Lastly, if S (y, 1/k) meets some F~, with p~, = y, then the Jordan curve bdy (F~) meets 

S (y, 1/k) in a point y~ not p,~. Thus, again, Yk is in Un, and not in any F~,. 

Thus, each Yk is in 

/,~ (E,~- 5 E,), 
l f f in+l  

so there exists xk, Ixk[->l, with /,~(xk)=yk, by Qn (6). But  /=/n on 

E n - ~.J E~, 
t ~ n + l  

so y is in C([). Hence, C c C ( / ) .  

Let  y be any point of 

C (/) - n~0 bdy (Un). 

There is a sequence zk in D, ]zk]-->l, such that  /(zk)-->y. Since / agrees with /n on 

En-  6 El 
i = n + l  
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(n=O, 1 . . . .  ), each of these sets contains only a finite number  of the zk. (Otherwise, 

y would be in some bdy (Un), by  Qn (6).) Since (~ E ~ = D  and 
r~=l 

/ ( E n -  5 E~)cUn 
~ n + l  

(n = 0, 1 . . . .  ), y E lim sup Un. By condition (3) of Property P, C (/) c C; hence, C (/) = C. 

L]~MMA 3.6. I /  a continuum C on the sphere S is the global cluster set C (/) o/ 

a light interior map ] o/ D into S, then there is a meromorphic /unction JF on D such 

that C (F) is C. The range o/ F is the range o/ ]. 

Proo/. In  the special eases where C is a single point p or is S, we use F ( z ) ~ p  

or F ( z ) =  e x p / ( z - I ) - 3 / ,  respectively (see [13], p. 25). By  the theorem of Stoilow 

([14], p. 121), / = g h ,  where h is a homeomorphism, and g is meromorphic. The domain 

G of g is simply connected. I f  G is the plane, then either infinity is a removable 

singularity or a pole, and C (/) is a single point; or infinity is an essential singularity, 

and C (]) is S. Since we may  assume tha t  C is neither S nor a single point, there 

is a eonformal map h' of D onto G. The desired map  F is g h'. 

Theorem 3.1 is an immediate consequence of Proposition 3.5 and Lemma 3.6. 

COROLLARr 3.7. I /  a continuum C on ,5 possesses Property P, with no Un con- 

taining in/inity, ther~ C is the global cluster set o/ an analytic map. 

Remarks. A slightly weaker sufficient condition results if (1) and (3) of Proper ty  

P are replaced by: C is the closure of 

[ U b d y  (U~)] U [lim sup (Un)]. 

In  a later paper the author will discuss two natural  questions: 

(1) Is property P a necessary condition? 

(2) Wha t  is a necessary and sufficient condition [2] for a continuum C on S to 

be the image of bdy (D), under a function / meromorphic on D and con- 

tinuous on 2)? 
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