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1. Introduction. 

The Problem of constructing a function of a real variable which is inde- 

finitely differentiable and has all its derivatives assigned at one or more points 

has been studied by BOR~L and B~RNSTEIN. ~ In the complex plane we may no 

longer require the function to be differentiable in a deleted neighborhood of 

the point at which the derivatives are assigned which completely surround it, 

unless these derivatives are subject to the restrictions as to size which hold for 

the derivatives of an analytic function. We may, however, require it to be 

analytic in a sector having the given point as its vertex. The construction of 

the function in this case was discussed by RITT. ~ Later BESIKOWITSCH, ~ appa- 

rently ignorant of the work of Rift, solved the problem by a slightly different 

method, and also obtained some approximation theorems, proving and generalizing 

a theorem stated by BIJtKHOFF 5 in another connection. In the present paper 

1 Presented to the  American Mathematical  Society, May 2, 1925. 
E. BOREL, Sur quelques points de la th4orie des fonctions, Ann. de l 'Ec. Norm., 1895, 

p. 38, or Fonctions de variables rdelles (1905), p. 70. The problem here s tated is not  directly 
ment ioned by B~)rel, bu t  i ts  solution is implici t ly contained in his discussion of a related question. 
S. BERNSTEI~, Appendix to R. D'Adh~mar, Principes de l 'Analyse, vol. II ,  p. 272 (1913). 

8 j .  F .  RITT, On the Derivatives of a Funct ion at  a Point,  Annals  of Mathematics,  2nd 
series, vol. 18 (1916), p. 18. 

4 A. BESIKOWITSC•, Uber analytische Funkt ionen  mi t  vorgeschriebenen Werten ihrer  Ab- 
leitungen. Mathematlsche Zeitschrift,  vol.  21 (1924), p. 111. 

5 G. D. BIRKHOFF, The Generalized Riemann Problem, Proceedings of the  American Aca- 
demy of Arts and Sciences, vol. 49, (1913), p. 522. 
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we shall consider functions which are analytic in the entire complex plane, with 

the exception of certain branch cuts, and are infinitely differentiable at the 

branch points in the single cut sheet considered. At these branch points, the 

derivatives may be arbitrarily assigned, and we show the existence of the 

function, first when there is a single branch point, and later when they are 

infinite in number. Our ch ie f  theorem is: Given an isolated infinite point set S, 

w i t h  derived set S'; a suitable set of  branch cut~', one through each point of  S 

(joining this to infinity or to somepoint of S'); and an enumerable infinity of num- 

bers for each point; then there exists a function which is analytic in the cut plane, 

and at each of the points S has as the value of the function and its derivatives the 

numbers given at that point. 

I t  will be noticed that this theorem is somewhat analogous to that given 

by MITTAG-LEF~'LE]Z 1 for functions with assigned principM parts, the difference 

being that here we assign the derivatives, and in consequence must give up the 

requirement of analyticity in the entire plane, and insert the branch cuts. Our 

methods of proof are suggested by the proof of the earlier theorem. 

By examining the magnitude of the absolute value of the function we 

construct in any given finite region, we obtain generalizations of the approxima- 

tion theorems of Birkhoff and Besikowitsch. 

2. The ease of  a s ingle  point.  

We shall begin with the case in which the function and its derivatives are 

prescribed at only one point, and the region of analyticity of the function is 

the plane severed by a single branch cut, which we take as a straight line joining 

the given point with infinity. Our method is similar to that used by RITT ~, 

but we shall give the discussion in full, as we need a somewhat more general 

result than he obtains. Our object is the proof of: 

Theorem I. I f  in the complex plane a straight line be drawn from a given 

point out to i~n i t y ,  there exists a function which is analytic at all points of  the 

plane so cut except the given point, and at this point possesses derivatives of all 

1 G. M I T T A G - L E F F L E R ,  Stir la  r ep r6sen ta t ion  a n a l y t i q u e  des  fonc t ions  m o n o g e n e s  unifor-  

mes ,  A c t s  Ma thema t i ea ,  vol. 4, (1884), p. 32. 

J,  F. RITT, ]. C., cf. t h e  r e m a r k  on p. 21. 
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orders, whose values, as well as that of the function at this point, may be arbi- 

trarily assigned. 

There is no loss of generality in taking the given point as the origin, 

and the branch cut as the negative real axis, since a transformation of the form 

z = Z d ~  (which merely changes the derivatives of the function by constant 

factors) reduces the general case to this one. Let, then, ao, as, a ~ . . .  be the 

required values of the function and its derivatives at the origin. Select a set 

of real numbers bo, bl, b~, . . .  satisfying the conditions: 

k 
0 < bn'< I and bn < ] I' 

where k is a positive real number to be specified more precisely later. If  1/z 
1 

means that branch of f i  which is real for points on the positive real axis, and 

thence defined by continuity in the cut plane, the required function is: 

Z n  

/)'(~) = Z an~j. I - - e  ~z] .  
? ~ 0  

To prove this we use ~the inequalities 

I ~--e~I = I C+ CY2! + . . . l < l e l  ( e -  ~) < 2 l c l  if I C 1 < 1 ,  
and 

I I - e~ ' l  < 2 < 21 e l  

if the real part of C is negative, and I C I > I. 
8 

As the real part of b J V z z  is positive in the entire cut plane, we have: 

I - - e  K~ ~ 2 

I n  

which shows that the nth term of the series for F(z) is dominated by 

[ 
n!lV l 

Thus, inside a circle of radius R2 and outside one of radius R~, with the 

origin as center, the series is dominated by 
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2 k R'~ ~ 2 k 
- -  , e R~ . 

Hence, by the Weierstrass test 1, it represents a function which is analytic 

inside this ring, or, since Rt and R~ are arbitrary, at all points of the severed 

plane except the origin. 

Furthermore, if we omit the first term of the series, the remainder, inside 

the unit circle, is dominated by 

2 k ( e l Z ] _  i)  2 
< 4klzl < 4k, 8 

using the inequality given above. This shows that, in the cut plane, the series 

is uniformly convergent inside the unit circle. In  particular, we note that  the 

function F(z) is continuous ut the origin, and F ( o ) = a  0. 

The series obtained from F(z) by termwise differentiation is: 

I ) !  

sbn t ao bn 

I - - e  V-z]  ~ _ ~ a n b ~ Z ' i e  3 

,=03 n! f i  

The first of these series may be shown to be uniformly convergen t by the 

methods used for the series F(z), while the second, after the first term, is 

dominated by an exponential series. Hence this is also uniformly convergent 

in any circle of fixed radius with center at the origin. Hence, at any point o f  

the severed plane distinct from the origin, .Fl(z ) represents F'(z), by a well 

known theorem on termwise differentiation of a series of analytic functions. At 

the origin we may write: 

X 

f  1(4 = - -  F (o) ,  

o 

from the uniform convergence of the series for l'~(z), where for definiteness the 

integral is taken along the straight line joining z with the origin. Hence, from 

the continuity of F 1 (z), we have: 

1 See the note at  the end of the paper, p. 385. 
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(2") d2" 

FI(o ) = l i m  ~ --  lim F ( z ) - - F ( o )  
z ~ O  2' z---*0 2' 

F '  (o). 

This shows that, in the severed plane, F'  (2") exists at the origin, and equals 

Fl(o),  or al. 

Since later differentiations Will merely give additional terms of essentially 

the same type as those appearing in .Fx(2"), we may prove similarly that  F,,(z), 

the series obtained by differentiating termwise n times represents P*(z) at all 

points of the severed plane distinct from t he  origin, and at the origin F'~(o) 

exists and equals a,,. Thus Theorem I is proved. 

We have obtained above an upper bound for the function constructed 

holding in a ring with inner radius / t  x and outer radius Re: 

2k  
IF(2")I < 8 e',,  (Rx I < 

By using our fundamental inequality, we also see that: 

2 k eR ~ k ,  
IFI(Z) I <  R? ~ + 3 R~/~ eR~' (R, < l z l  < Re). 

In fact, each o f  the functions l'~(z) is dominated, inside the ring in question, 

by an expression containing k as a factor. The remaining factor depend on 

/~x and _R~ and, for fixed values of these, increases with n. If, however, we 

confine our attention to the first m derivatives, and fix R1 and Re, the values 

of the factors of k will be finite in number and hence bounded. Hence by 

choosing k, which was at our disposal, sufficiently small, we may make F(z) 

and its first m derivatives arbitrarily small inside the ring in question. Since, 

moreover, any finite region having the origin as an exterior point may be in- 

cluded in a ring of this type, we have: 

T h e o r e m  II. The function of theorem I may be so chosen that, inside any 

finite region (not necessarily simply eonnected) having the origin as an exterior 

point, it, together with its first m derivatives, is in absolute value less than a pre- 
assigned quantity ~. 
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In the above argument, we took the branch cut as a straight line. As the 
1 

sole use of the brunch cut was to restrict us to a branch of z ~ with positive 

real part, we might have taken any brunch cut remaining entirely inside a sec- 
1 1 

for of angle z. By using z 2~+2 instead of ,-fi, which would make no essential 

change in our argument, we could construct our function in the plane cut by 

any branch cut, such that  no arc of the cut made more than m turns about the 

origin. This establishes the 

Corollary. The funetio~ of theorem L or I1, may be coJ~structed whe~ the 

branch cut, i~stead of bei,~g a sb'aight line, is any curve joini,J~g the origin to iJ~- 

finity a~d such that the angle 0, deflated along it continuously, ~:~ bo~lnded it~ abso- 

lute value. 

3 Point sets without finite l imit  point. 

In treating the case where the derivatives are assigned at an infinite num- 

ber of points, we shall first confine our attention to point sets without a finite 

limit point. In consequence of this restriction, the points of our set may be 

enumerated according to their distance from the origin which we assume is not 

a point of the set. We number them P1, P 2 , . . .  in such a way that:  

Through each of these points we draw a straight line to infinity, so selecting 

these halflines that  they do not intersect. We might, for example, draw them 

all parallel in some direction not coinciding with one of the enumeruble num- 

ber of directions obtained by joining the given points in pairs. Or, we might 

select some point not on any of the joins of the points in pairs, and use the 

directions given by joining this point with the given point. In this case, if the 

point be chosen as the origin, the cut plane, in which our function is analytic, 

would be a Mittag-Leffler star. Denote the amplitude of the half-line through 

P,~ by 0,~, and consider the function 

3 . . . . .  

A n ( z )  ~ ~ ei en �9 

~ Z  - -  Zn 
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We take such a determination of the root that  A,~(z) is real on the prolongation 

of the branch cut through P~. This insures that  the real part of An(z )be  
positive in the entire cut plane. 

As A,~(z) is analytic for [z [ < [z~[, we may write: 

A ~ ( z ) = g / ~  . . . .  Z ainzi' ( ]z l  < ~n < [z,~,[). 

i=O 

Furthermore, the series converges uniformly for these  values of z. 

if s~ is suitably chosen, and 

we have: 

i=0 

Accordingly, 

The ~n are arbitrary, and we select them so that  they form the terms of a 

converging series with sum 7. The R~ are subject to the single condition that  

they be less than the [z~ [. As these last become infinite with n, we may, and 

shall, select the R,~ so that  they too become infinite with n. Now put: 

o~ 

= y ,  

n ~ l  

The function C(z) is analytic at all points of the cut plane. For, on 

fixing a point Z, we will have [ Z[ < R,~ for some n, say n=m.  The function 

C(z) accordingly, in the neighborhood of Z, is the sum of a finite number of 

analytic functions and a uniformly convergent series of such functions, and 

hence is analytic. The argument still holds for a point on one bank of a 

branch cut, not a point P~. At the branch points P,~, C(z) is the sum of a 

convergent series, and a term which becomes infinite. Furthermore, from its 

construction, the real par~ of C(z) becomes infinite negatively at the points P,.  

I t  follows from this that  

D(z) = e c(~l 

is analytic at all points of the severed plane except P~, and at these points it 

vanishes, and possesses derivatives of all orders, which likewise vanish. 
48--25280.  Acta mathematiea. 47. Imprim6 le 2 mars  1926. 
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all its derivatives 

be finite. 
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Next, form the function C,(z), similar to C(Zl but with the terms corre- 

sponding to P,, omitted. That  is: 

c . ( z )  = c ( z )  - B,,(z). 

We also form Dn(z), similar to D(z): 

Dn (z) = eC'.(~). 

Let  the value of the funct ion we are building up, O(z), and its derivatives, at 

the point P~ be denoted by: 

bo,,, bl.,  b2 n, �9 �9 �9 

From these, we compute the value of the function ~(z)/D,~(z)and its derivatives: 

( ~ 0 n ,  ( ~ l n ,  C 2 n ,  �9 . �9 

we have multiplied in, I /D.~(z)is  analytic at  the point P,,, 

are finite, and Leibnitz 's theorem shows tha t  all the tin will 

We  now build up a funct ion E,~(z) which is analytic in the plane except 

for the cut th rough P,~, and has the numbers ei,~ as the values of it  and its 

derivatives at  _P~, which we may do by Theorem I. We  shall also Use Theo- 

rem I I  to keep the funct ion and its first n derivatives bounded in the region 

outside a circle of radius ~,,, and inside one of radius 2 I zn l,  ~,* < I z - z , ~  I < 2 I zn I. 
To select the bounds, we note that,  as IDn(z) l is continuous in the region or 

regions bounded by the two circles just  mentioned and the branch cuts which 

fall therein, and on the boundary as well if we regard the two banks of the 

b r a n c h  cuts as separate, it  has an upper bound there, say G ~ We bring it 

about tha t  

This insures tha t  in the region in question, in the cut plane, 

1 .E, I < 

All the derivatives of Dn(z) are likewise continuous in the region jus t  used, and 

accordingly are bounded there. Let  G~ be an upper bound for the i th  deriva- 

tive. I f  G is an upper bound for G, ~ G ,~ , . . .  G~, and we arrange tha t  in the 

r ing in question, 
~n <--Iz--z,~l <-- 2 Iznl ,  
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E,~(z), as well as the absolute values of its first n derivatives, will be less than: 

2~,G' 

it will follow that  D,~(z)E~,(z) and its first n derivatives will be in absolute value 

less than en, from Leibnitz's theorem. The ~,~ are here, as before, the terms 

of a convergent series with sum ~. 

Now consider the function 

1/~(z) D,~(z) E,~(z). 

At all points in the cut plane except the points P~ it is analytic. At all the 

points /)t except the point P~ it is zero, and all its derivatives exist and are 

zero. The differen~iability of the product follows from that  of the factors, and 

the zero values, entering from 

at all points except P~. At 

will be b0~, bl~ . . . .  from the 

inacy can occur, since D~(z) 
I z--zn[> ~,, and inside the 

of its first n derivatives, will 

Finally we put 

D,~(z) are never Cancelled out as .E~(z) is analytic 

/)~, the values of the function and its derivatives 

way in which E.,~(z) was computed. No indeterm- 

is analytic at P~. Finally, outside the circle 

circle I z l < l z n l ,  the absolute value of F~(z) and 

be less than ~. 

= 

At any point distinct from the points P~ this represents an analytic function. 

For, if Z be such a point, we may select an m such that I Z l < l z ~ l - ~  if 

n > m. Inside the circle about the origin with radius I zm I--~m the terms of 
ao 

the series for q)(z) after the ruth are dominated by the convergent series ~ e,~, 

and accordingly represent an analytic function. In particular, the sum after m 

terms is analytic at Z. But the preceding terms, finite in number, are each 

analytic at Z, which proves our contention as to the analyticity of O(z) at Z. 

At a point Pn, the function @(z) is continuous, and assumes the value b0~. 

For, on taking an m such that  [ z ~ [ < [ z p [ - - ~ p  if p > m  we see that  the 

series after the ruth term is dominated by a convergent series, and accordingly 

is uniformly convergent and represents a continuous function. Its value is 

obtained by noting that  all the terms are zero except F~(zn) which equals b0~. 
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We may prove the derived series uniformly convergent at P~ in a similar 

manner, and by the argument used in the proof of Theorem I, tha~ termwise 

differentiation of the series is permissable at P~. The only non-vanishing term 

is F'~(z~), and we have O'(z) exists and equals b~. 

The argument is capable of extension to any derivative. For the ]cth 

derivative, we must not only choose m so that z~ < I z p l - - ~ p  if p > m but also 

so that m > k, since our bounds on the s derivative only hold for terms 

after  the kth. 

At the beginning of our discussion we assumed that  the origin was not a 

point Pi. This case is easily handled by considering, instead of q)(z), the func- 

tion W(z)~ O(z- -z ) ,  where z is any point which is not in the set Pi, as our 

discussion enables us to construct a W(z) giving rise to the required q)(z). Thus 

we have proved: 

Theorem III. Given an infinite set of points, without finite limit points, and 

a straoht line joining each of these points to infinity, these straight lines having 

no common points, and an enumerable infinity of numbers for each point; then there 

exists a function which is analytic in the cut plane, and at each of the given points 

has as the value of the function and its derivatives, the numbers given for that point. 

We may include a condition of boundedness on the function and its deri- 

vatives, as was done in Theorem II. For, consider the region interior to a 

circle  of radius R~ about the origin, and exterior to a set of circles with cen- 

ters at the points Pt interior to this circle, and radii ~ respectively. We take 

~ above as those here given. Also, at each stage, instead of using the region 

w e  u s e  

Further,  instead of applying our bounds to the first n derivatives at each stage, 

we apply them to the first n, if n > m, and to the first m otherwise. I f  we 

do this ,  we shall find that  the function (P(z) finally arrived at has, in addition 

to its other properties, that  of having its absolute value, and that  o f  its first m 

derivatives, less than 7. But this last was at our disposal. Finally, as any 

finite region having all the points Pi as exterior points may be included in a 

region bounded by circles of the kind just described, we obtain: 
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Theorem IV. The function of Theorem I I I  may be so chosen that, in~ide 

any finite region (not necessarily simply connected) having the given points as exte- 

rior points, it, together with its first m derivates is in absolute value less than a 

pre-assigned quantity.  

The extension of our branch cuts from straight lines to those winding 

around the origin only a finite number of times given in the Corollary to theo- 

rems I and I I  applies here as well. I f  we used the  same exponent in all the 

terms An(z), it would be necessary for the number of windings to be bounded 

for the branch cuts considered as a set, As, however, this exponent may be 

different for the different terms without changing the reasoning, we need merely 

require the branch cuts to be such that  each only winds around the origin a 

finite number of times. The requirement that  the branch cuts do not intersect, 

while necessary if we wish to keep our region simply connected, may be given 

up if we admit a function which is merely analytic in several regions. These 

remarks lead to the 

Corollary. The fitnetion of theorem I I I  or I V  may be constructed when the 

branch cuts, instead of being non-intersecting straight lines, are any curves joining 

the points to infinity in such a way that for  any one such curve, the angle defined 

along it  continuously, is bounded in absolute value. I f  the curves intersect, instead 

of arriving at a single analytic function, we may arrive at several, one jbr each 

region in which the cuts divide the plane, which collectively have the property of 

the single function previously obtained. 

4. General Isolated Point sets. 

We next treat the problem we have just solved, where the given points 

may have finite limit points. We assume that  the points are isolated, that  is, 

that  no one is itself a limit point. This restriction is obviously necessary. We 

also exclude the point infinity from the set, as no function exists which has all 

its derivatives and itself finite at infinity, unless the derivatives are all zero, and 

we are not concerned with such degenerate cases. Since the point set is isolated, 

it is necessarily enumerable. For, we may surround each point with a circle 

containing no other point. When we project on the sphere, the number of 

these circles of any one size is finite and accordingly we may enumerate the 

points according to the size of the projected circles. Let the enumerated point 
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set be /'1, P ~ , . . .  as before. The limit points of the collection, P '  are of 

course not necessarily enumerable. We shall, however, associate one of the 

points P '  with each of the points P,~ as follows. Consider the distance from 

P,, to each of the points of P', and the number I/]Z, I which we regard as 

measuring the ~)distance>) to / ,  the point at infinity. Select h,~ the minimum 

value of this distance, and one of the points for which it is reached (as it is, 

since the set P', being a derived set, is closed). We call this point P',. These 

points are of course not necessarily distinct, and the point at infinity, / ,  may 

occur as one of the P'~ even if it is not a limit point of the set P. As branch 

cuts we take lines joining P,, and P'~,. These might be  taken as straight, in 

general necessitating intersections, or they m i g h t  be taken curved lines satis- 

fying the condition of the corollary. In the latter case, we may arrange that  

t he  plane, when cut, is no further subdivided than it was already by the set P'. 

Curved branch cuts will necessitate some shght changes in what follows a s  

explained in connection with the corrolaries, since for simplicity we confine our 

discussion to the straight line case. 

We are now ready to repeat the process of paragraph 3 for the case at 

hand. We define 0n as the amplitude of the branch cut through P~, and then 

obtain An(z) as before. Instead of using a series in z to approximate to it, we 

use a series in I / (Z -  z'~) where z'~ is the number with image P',, if P ' .  # I. 

When P'~ is I ,  the point at infinity, we use the previous series. We write then: 

An(z )  = nOn + al t + a 2 , ~  z - z ' .  ( z  - z ' . )  + " "  

The series may be obtained by putting An(z)= A,~(Z), where Z--= I/(Z _z,n),  

and finding the power series in Z. This shows that  the series for A~(z) con- 

verges when ]z -- z',, ] > ] z,~ -- z'n I, that  is, outside a circle with cer/ter P'~ and 

radius h,~. When 

radius I/hn. 
We define 

so choosing sn that  

P'n = I, our previous series converged inside a circle of 

~n 
ain 

- -  y ,  ( .  _ j . ) ,  

IB . (z ) l  < if H .  > h,,. 
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The numbers  h,~ approach zero as n becomes infinite. To see this, we observe 

tha t  the number  of points for  which h, is grea ter  than  any finite number  h is 

f inite.  For, these points lie inside a circle of radius I/h about  the origin, and 

outside circles of radius h about  the points P'~. I f  they were infinite in num- 

ber, they would have a l imit point  in this region, and accordingly for  some of 

them h~ would be less than  h. Since the H~ may be any numbers  grea ter  t han  

the h,, we may, and shall choose them so tha t  they too approach zero as n 

becomes infinite. I f  P'n ~ I, H ,  ~ I/R,~. 

We may now define C(z) in terms of B~(z) as before. I t  will have all the  

propert ies  of the previous C(z). For, as H,~ is approaching zero, if we select 

any fixed point  z, not  a P~ or a P ' ,  we may find an m such tha t  when n > m., 

Hn is less than  I/I Zl, and the minimum distance f rom z to P ' .  Accordingly 

we may break up the series into two parts,  and prove the analyt ici ty  as before. 

D(z) is defined in terms of C(z) as before, and retains its properties.  

C~(z), D~(z )and  E~(z) are formed as before. In  construct ing /~,~(z), we 

here ar range so tha t  the bounds apply outside a circle of radius ~ < /L~, and 

inside one of radius R,~ > I/H,.  This insures tha t  the region of boundedness 

will eventually embrace any point  not  a Pn or a P ' ,  as n becomes infinite. 

l~(z) and q)(z) may be formed as before, and we obtain:  

Theorem V. Given an infinite set of points, n# one being a limit point of  

the set, and a suitable set of  branch cutsl one through each point of the set, and 

joining it with the point at infinity (assumed not to be in the original set) or the 

nearest point of the derived set; and an enumerable infinity of numbers for each 

point; then there exists a junction which is analytic in the cut plane, and at each 

of  the given points has as the value of the function and its derivatives the numbers 

given at that point. 

The reasoning which lead to theorem IV gives: 

Theorem VI. The function of theorem V may be so chosen that, inside any 

finite region (not necessarily simply connected) hawing the given points and those of 

the derived set as exterior points, it, together with its first m derivatives is in 

absolute value less than a pre-assigned quantity. 
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5. The Generality of Our Function. 

Theorem I, I I I  and V above assert the existence of a function analytic in 

a certain region, and having assigned derivatives at one or more points. I t  is 

natural to inquire the relation of these functions to the most general function 

satisfying the given requirements. Owing to the character of the region of 

analyticity of our function, this question has no simple definitive answer. We 

may, however, state a partial answer to the question as follows. 

If  q)(z) is the function we have constructed, and W(z) is any other func- 

tion satisfying our requirements, we may write 

- + x (z) .  

The function X(z) will be analytic in the cut plane, and have all its derivatives 

existing, and equal to zero, at the points of the given set. We may go one 

step further, and put: 

X (z) = D(z). X (z). 

X(z) may now be any function which is analytic in the cut plane, and at the 

points of the given set has difference quotients which do not become infinite 

more rapidly than e z'. In particular, X(z) may be any integral function, or a 

meromorphic function with all its poles at the given points. Our conditions on 

X(z) make it fairly clear that  the class of admissable functions is not any 

simple class. 

6. Approximation Theorems. 

Theorems II, IV and VI readily lead to approximation theorems of the 

Besikowitsch type. For, they establish the existence of functions with assigned 

derivatives, bounded in certain regions. By applying them to the difference 

between a function to be obtained, and a given function, making the necessary 

subtractions on the derivatives, we may construct functions approximating a 

given function in a region. As theorem V[ includes I f  and IV, we merely 

state the approximation theorem obtained from ib. I t  is: 

Theorem VII. Given a function analytic in a certain region, the function of 

theorem V may be formed so that, inside this' region and exterior to a set of circles 
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arbitrarily small drawn about such of the given points as f a l l  in the region, it and 

its first m derivatives approximate the given analytic function. 

To bring out  the force of this theorem, we shall state separately one 

interes t ing special case, namely tha t  in which no points are inside of the region, 

but  some are on the boundary.  They must  then  be finite in number,  in order  

to be isolated. The theorem is: 

Theorem VIII.  Given a function analytic in a region, and a finite number 

of points on its boundary, a function can be fouled which is analytic inside the 

region, continuous and infinitely differentiable on the boundary, takes, with all its 

derivatives, assigned values at the given points, and in any region enth~ely inside 

the given one, approximates the given function. 

Note to p. 374, l ine 2. 

The test here referred to consists in the application of the following two theorems: 
Theorem A. (Weierstrass M-test for uniform convergence) 
The infinite series 

ul (z) + u~ (z) + . . - ,  

whose terms in the region R are functions of z, converges uniformly in this region, in case there 
exists a convergent series of positive terms, independent of z, 

M I +  s + . - .  

such that, for each value of z in the region R, and for some value _u independent of z, the 
inequality 

remains true if 

n ~ N .  

Theorem B. (Weierstrass theorem on series) 
Let 

f Cz) = ul (z) + u~ (zl +. . .  

be an infinite series of functions, alI of which are analytic in a region R. If the series converges 
uniformly in the region R, then it represents an analytic function in ~ .  

For proofs of these theorems see, for example, Osgood, Funktionentheorie, vol. 1, Leipzig~ 
1912, p. 96 (for theorem A) and p. 303 (for theorem B). cf. also Weierstrass, Werke, vol. 1, p. 67 
and vol. 2, p. 205. 

49--25280. Ar,~a mathematica. 47. Imprim6 le 4 mars 1926. 


