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0. I n t r o d u c t i o n  

In [7] Richardson derived a mathematical model for describing Hele-Shaw flows 
with a free boundary produced by the injection of fluid into a narrow channel. 
This model can be represented in the following form (see also [3]): Given fo(z), 
f0(0)=0,  analytic and univalent in a neighbourhood of Izl_<l, find f(z,t), ana- 
lytic and univalent as a function of z in a neighbourhood of Izl_<l, continuously 
differentiable with respect to t in a right-sided neighbourhood of t=0 ,  satisfying 

(1) Re(1-~t(z , t ) -~z(Z, t ) )=l  for N - - 1 ;  

(2) f(z,O) = fo(z) for Izl _< 1; 

(3) f(O,t) =0 .  

With the results of Vinogrado~Kufarev  [9] one gets the existence and unique- 
ness of solutions which depend analytically on z and t under the additional assump- 
tion fz (0, t)>0. But the proofs in [9] are fairly complicated. 

For this reason Gustafsson gave in [3] a more elementary proof of existence and 
uniqueness of solutions of (1)-(3) in the case that  fo(z) is a polynomial or a rational 
function. In both cases the solution is of the same sort with regard to z as the initial 
value fo(z). The restriction to rational initial values seems to be indispensable for 
the used reduction of (1) to a finite system of ordinary differential equations in t. 

The goal of the present paper is to give a simplified proof for a generalized 
Hele-Shaw problem containing as a special case the above formulated problem (1)- 
(3). This proof is based on the application of the non-linear abstract Cauchy-  
Kovalevsky theorem which was proved by Nishida in [5]. Moreover, this theorem 
gives uniqueness for solutions depending continuously differentiably on t. 
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T h e o r e m  1 ([5]). Let us consider the abstract Cauchy-Kovalevsky problem 

dw w), w(O) = 0 (4) =g(t, 

satisfying the following conditions in a scale of Banach spaces { B~, II'll~}o<~_<l (A 
family of continuously embedded Banach spaces {B~, H'l[s}0<~_<l is called a Ba- 
nach space scale if for all 0 < s ~ < s < 1 the norm of the canonical embedding operator 
IlI~--*s ' II ~- 1.) ( C, K, R and T are certain positive constants independent of s', s, t ) : 

(i) the right-hand side s w) is a continuous, in t, mapping of 

(5) [O,T]•  ) intoB~, f o r a l l O < s ' < s < l ;  

(ii) the continuous function s O) satisfies 

(6) Ilk(t, 0)lls <_ K / ( 1 - s )  for all 0 < s < 1; 

(iii) for all 0 < s ' < s < l ,  t �9  and Wl,W2 belonging to {Hwlls<R} we have 

(7) 

Under these assumptions there exists one and only one solution 

W �9 c l ( [ 0 ,  a 0 ( 1 - s ) ) ,  Bs)o<s<l, Ilw(t)lls < R, 

where ao is a suitable positive constant. 

This theorem represents an essential tool for solving non-linear time-dependent 
mixed problems for harmonic or holomorphic functions in the mathematical litera- 
ture ([1, 2, 4, 6]). Our problem (1)-(3) is of such a type. We shall show that  after 
the reduction of the generalized Hele-Shaw problem to an equivalent problem for 
w=(Of/Oz)  -1, which fulfills all the conditions (5)-(7) in suitable scales of Banach 
spaces, the abstract theorem is applicable and yields immediately the main result 

of [9] as a special case. 
The result of Gustafsson [3] can be interpreted as a regularity result concerning 

the corresponding structures of the initial value and the solution. A result of the 
same type is derived at the end of this paper for (Of/Oz) -~ or (Ofo/Oz) -1 belonging 
to special classes of entire functions. 
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1. Heur i s t i c  c o n s i d e r a t i o n s  and  t h e  der iva t ion  o f  a s c a l e - t y p e  p r o b l e m  

Let us start with a generalization of (1) to 

(8) Re(h(lt) ~t (z ' Of t)~z (Z,t) ) =g(z,~,t) 

for all ]zI----1 and t>0,  where 
(i) the real-valued function g=g(z,2, t) is continuous on {Izl=l} x [0, T] and 

possesses a holomorphic extension from IzI--1 into a circular ring 

(9) Kb={1/b<lz]<b}, b > l ,  for all t E [0, T]; 

(ii) the function h=h(z, t) is continuous in tE [0, T] and for each such t analytic 
in a neighbourhood of 

(10) IzI_<l, h(0, t ) = 0 ,  hz(O,t)~O for all t E [0, T] 

and 
h(z,t)7~O for a l l (z , t )  E{0<iz i<_ l}x[0 ,  T ]. 

Setting h(z, t)=z and g(z, 2, t)--1 in (8) we have the condition (1). The con- 
dition (8) is equivalent to 

Of (z,t)(~z)-l(z,t)) Of(z, 

From the assumptions (3), (9), (10) and the univalence of f(z, t) in a neighbourhood 
of {Izl_<l} for all t~[0, T] we get the holomorphy of 

Of (z, t) ( ~ Yl(z, t)/h(z, t) 
ot \ Oz ] 

in {]z]<l}. Using (8) and the fact that  every holomorphic function in {]zl<l  } 
with prescribed real part on {]z]=l} is uniquely determined by the value for the 
imaginary part in z--0 we are able to formulate the additional condition 

Im( h(lt) O~f~ ~, v~ 0 -1 (11) 

The application of the Schwarz formula leads to 

(12) Of Of 1 /z  Of -2g(L), ~,t) p+z dg O-[(z't)-h(z't)-~z (Z't)2-~i __1=1 Og Q-z 0 

for Izl < 1. For our further investigations we need the space 7-/(Gr)MC(Gr), that  is 
the space of all complex-valued functions defined and continuous in G~ and holomor- 
phic in Gr={iz  I <r}.  In the same manner we introduce the spaces 7-I(Gr)NC~(G~), 
7-/(G~)MCI(G~) and 7-/(G~)nCI,~(G~). 
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L e m m a  1. Let us suppose that f(z,  t) �9  ao),7-l(Cl)ACZ(Gz)) is for each 
t � 9  [0, ao) a univalent function in Iz[_< 1 and in Gz x (0, ao) a solution of the problem 
(8), (11), (2) and (3), and equivalently, of the problem (12), (2) and (3). Then 
v(z, t)=(Of /Oz) -1 �9 ao), 7-I(G1)NC(G1)) is a solution of 

(13) Ov Ov 0 
Ot hTt(V)Oz+V-~z(hTt(v))=O for (z , t)eal  • ao), 

(14) v(z,O) =v0(z)  = (Ofo/Oz) -1 for z �9 G1, 

where v(z, t ) r  
Here Tt(v) denotes the non-linear operator 

s 1 ]v(P)]2g(P, O, t) (15) r (v) := al 

m 

Conversely, let us suppose that v(z,t)eCl([O, al),Tl(G1)nC(Gz)) is a solu- 
tion of (13) and (14) with v(z,t)r in Glx[0 ,  ao). Then f(z,t)=fo(dP)/(v(p,t)) 
belonging to Cl ([O, ao ), ~-~( G1)NCl  ( a l  ) ) represents a locally univalent solution of 
(12), (2), and (3) and, equivalently, of (8), (11), (2) and (3) in GlX [0, a0). 

Proof. Let f = f ( z ,  t) as a univalent solution of (12), (2) and (3) satisfy the con- 
ditions of this lemma. Then v=(Of/Oz) -1 belongs to Cl([O, ao),7-l(G1)NC(G1)). 
Differentiating (12) with respect to z, one obtains with v=  (Of/Oz) -~ 

O(1/v) hTt(v) O(~zV ) 10(hTt (v) )=O ' 
Ot v 

and hence, 

Ov hTt(V)~zz+VO (hTt(v))=O with v(z,O)=(Ofo/OZ)_l. 
Ot 

Conversely, if veCl( [0 ,  ao), 7-/(G1)NC(Gz)) solves (13) and (14) with v(z, t)r 
in G1 x [0, a0), then 1/v belongs to Cl([O, ao),Tt(G1)nC(G1)) and f belongs to 
CI([0, ao), 7-I(G1)NCI(Gt)), where Ozf(Z, t ) r  Hence, f is locally univalent. The 
definition of f implies f(0, t )=0  for tE [0, a0). Furthermore, 

fo z dp fo z Ofo f(z,  0) -- v(p, 0) - ~ d p = f o ( z ) - f o ( O ) = f o ( z ) .  

Thus the conditions (2) and (3) are fulfilled. 
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If v solves (13), then the same reasoning as above gives 

Of -i 

For tC (0, a0) the term in the brackets is holomorphic in G1, hence, 

Of ( ( O f )  -1) 
Of h _~z Tt = k ( t ) , 
ot 

a constant depending on t. Inserting z=0,  this shows that  k(t)--0, hence (12) is 
satisfied. 

Finally from the holomorphy of ( l /h)(Of/Ot)(Of/Oz) -1 we obtain (8) and (11). 

Remark 1. An analogous statement is valid for f C C 1 ([0, a0), 7-/(G1) M C 1 '~ (G1)) 
and vECI([0, a0), 7-I(G1)MC~(G1)) instead of fECI([0 ,  a0), ~-~(G1)NCI(G1)) and 
v E C~([0, a0), ~t(G~)NC(G1)). 

The lemma of equivalence just proved makes it possible to restrict ourselves 
to the problem (13) and (14). This is a scale-type problem. Thus it remains to 
show how we can interpret the problem (13) and (14) as a special case of (4) (see 
Section 3). 

There is a gap between Richardson's mathematical model and Lemma 1. In 
Lemma 1 we obtain in the converse direction merely the local univalence of f (z ,  t). 
But the following statement holds: 

Suppose, that 
(i) the initial value fo(z) from (2) is an analytic and univalent function in 

G r , r > l ;  
(ii) the family {ft (z)} of analytic functions belongs to C([0, T], ?-l(Gr,) M C(G~,)), 

r l~r .  
Then there exists a positive constant To(r') such that  ft(z) is univalent in Gr, for 
all tE[O, To(r')). 

Using this statement the conditions 
(i) univalence of the analytic function fo(z) in G~; 
(ii) vECl([0, a0), 7-/(G~,)MC(G~,)) with v(z, t ) r  

imply the univalence of f (z ,  t) for small t in a neighbourhood of {Izl < 1}. 
In Chapter 3 we shall prove the existence of such functions v=v(z ,  t) as solu- 

tions of a modified problem to (13) and (14). 

2. A b o u t  t h e  a c t i o n  o f  an o p e r a t o r  Tt r e p r e s e n t i n g  
a c o n t i n u a t i o n  o f  Tt in s o m e  B a n a c h  spaces  

Let v be in C([0, T], H(Gr)MC(Gr)) with r > l .  Then Tt(v) belongs to 7-/(G1) 
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for each t6  [0, T]. But moreover Tt(v) possesseS an analytic continuation in a larger 
domain depending on G~ and Kb from (9). 

L e m m a  2. For an arbitrary vC~(Gr)QC(Gr) the image Tt(v) of the non- 
linear operator Tt applied to v can be analytically continued into Gro with 
r0--min(b, r).  

Proof. From (15) we get 

T (v) = G1 

-1/o 
27ri G1 

Iv(Q)I:g(Q ' dQQ 
v(Q)v(1/0)g(Q, 1/Q,t) Q+z dQ 

Q--z Q 
for all z E G1. 

The assumption vC~(Gr)MC(Gr) and (9) guarantee that the kernel of the integral 
is holomorphic in the set {1/ro<iQi<ro}\{z} for all te[0,  T] and z6G1. Conse- 
quently, 

Tt(v) = ~ 1 / o c a  v(Q)v(1/~)g(Q, 1/Q,t) Q-zQ+Z dpQ 

for all z6G1 and l < a < r 0 .  Obviously, the right-hand-side can be defined for all 
z 6 Ga, and Tt (v) possesses an analytic continuation 

1 /o v(Q)v(1/~) g(Q, l/Q, t) Q+z dQ (16) Tt(v)= ~ ca Q-z Q 

belonging to ?-t(Ga). Since Gro=Ul<a<to Ga the operator Tt maps ~ ( G r )  into 

~(Gro) .  For all z6G1 we conclude Tt(v)(z)=Tt(v)(z). Hence Tt(v) represents an 
analytic continuation of Tt(v) for v67-l(Cr)MC(Gr) into Cr o. 

There arises the question whether it is possible to estimate the action of Tt 
as a mapping of a Banach space B into itself. In the next lemma we shall give a 
positive answer for the c a s e  B=7~(Gp)NC(Gp), l < p < r 0 .  

L e m m a  3. (a) For every function v from 7-l(Gp)MC(Gp) the following esti- 
mate connecting the norms Iivllp=SUPap Iv] and ]]Tt(v)iip=supa p ]Tt(v)] holds: 

I[T (v)ll  C(p,g)llvll p, 

where the constant C is independent of vCT-l(Gp)•C(Gp) and tE[0, T]. Moreover, 
we obtain for all vl, v2 e B with Iivl ilp, ][v2iip < R the Lipschitz condition 

]ITt(Vl ) -  ~(v2 )lip ~ 2C(p, B)RIIvl - v2iip. 
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(b) The family of operators {Tt(v)}tc[O,T] depends continuously on tC[0, T]. 
This means 

lim []Ttl (v)-Tt2 (v)[[p = 0 for all v �9 7-~(Gp)NC(Gp). 
tl---+t2 

Proof. (a) Let us remember that  

1 ~o v(o)v(1/O)g(Q, 1/Q,t) O+z do 

Using the holomorphy of v(o)v(1/~)g(o, 1/6, t)(o+z)/o in { l / p <  IQI <P}, we obtain 
for all z E OGp,, p~--+p, and t E [0, T] 

1 fo v(O)v(1/O)g(o, 1/o,t) Oo__~ z do 
= G l j ,  o 

+ 2-~il f ouo(z) v(o)v(1/O)g(o, 1/o,t)~_ dO0 ' 

where Lta(z) is a sufficiently small neighbourhood of z contained in G v. From 
Cauchy's integral formula and a simple estimation it follows that  

~2~ 1 �9 . d~o Tt(v)(z>]<_ 1 ] 0  V(pC~)v(pe'~)g ,l~[pe ~,pe-i~, t) ei~/P+ ze,~/p_~:_~ 

1/z,t) l 

< IIvll 2 sup g(z, 1/z,t) (2~ Izl+l/p'~ 
- (z,t)e{1/p<~ <pI• [zl--1/P] 

for all z E OGp,. But the continuity of v in Gp guarantees that  the last inequality 
remains valid for all z E OGp. Hence, by the maximum principle 

IIT,(v)ll~ = sup IT,(v)(z)l < C(p, g)llvll~ 
zCGp 

with 

C(p,g)= sup Ig(z, 1/z,t)l(2+P2+l~ 
(z,t)C{1/p<lzl<p} • ] p=~='~ l ] " 

By (9) and l < p < r 0  < b the constant C(p, g) is finite. The same reasoning leads to 
the Lipschitz condition. 
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(b) As in the proof of (a) one deduces 

/ p 2 + l ~  
IITtl(v)(z)--Tt2(v)(z)llp<~_ ~2~-p- -~  1 ) sup Ig(z,1/z, tl)--g(z, 1/z,t2)] <__~ 

zC{1/P<lzl<V} 

for ]tl--t2] sufficiently small and all l < p <  r0, taking into consideration the uniform 
continuity of g in {1/p< ]z] _<p} • [0, T]. 

Remark 2. It is possible to prove a corresponding inequality between []V]]p,~ and 
]lTt(v)]]p,~,O<a<l, where I]V[[p,~ denotes the HTlder-norm of vETI(Gp)AC~(Gp). 
The proof of ]lTt(v)[]p,~ <_C(p, a, g)[]vl]2,~ is omitted. 

For proving a regularity result for (Of/Oz) -1 in the sense of the results in [3] 
the next lemma represents an essential tool. For the formulation of this lemma we 
choose the following family {Er}r>0 of Banach spaces of entire functions: 

{Ej~>0  = {v �9 n ( C ) :  sup [v(z)e-~lzl I = IIvll~ < ~}~>0" 
z T C  

Now we are choosing g = l  in (16). 

L e m m a  4. The operator 

fo O+ z dp 1 v(o)v(1/~) p - z  p ~(v)(z)  = ~ i  Go 

z�9 a > l  arbitrary, maps E~ into itself, where I]T(v)]]~<~ exp(5r/2)]M] ~. 
Moreover, we obtain for all Vl, v2 �9 E~ with ][Vl ]]~, []v2 [1~ <R the Lipschitz con- 

dition [IT,(vl) - T t  (v2)lit <- ~ Re5~/2 IIvl -v2 I1~. 

Proof. Supposing v �9 E~ the above-defined function T(v)(z) makes sense for all 
zCC. This follows from the fact that v(~)v(1/~)(p+z) is holomorphic in C\{0}.  
Hence T(v) is an entire function. 

Now let us fix z 0 � 9  with [z0[>2. Then as in the proof of Lamina 3(a) we 
arrive at 

1 fro v ( o ) v ( 1 / O ) ~  dO+2V(Zo)V(1/2o) ~(v)(z0) = ~ G~/~ Q 

for an arbitrary b>[z0[, and 

1 ~o v(p)v(1/~e_~/]~]e~(1/]~]_lzor ) p+zo dp T(v)(zo)exp(-r]zo]) = ~ a~/b p-zo p 

+ 2v(zo)~-~lzol~(1/~o) 
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But this leads immediately to 

I ( ) ( ~  I 5 m a x  Iv(z)l max lv (z ) e - ' l ~ l l e - ' (b - I~~  'Cv"z~176 < ~ Izl=~/b Izl=~ 

+2 max Iv(z)l Mzo)le -'lz~ 
1~1=1/2 

< ~ max Iv(z)l Ilvll,. lzl=l/2 

if one takes into account that 

Izol+l/b Izol+�89 
Izol-1/~ -< Izol-~ ___s for Izol__2, b>O 

and e~(b-lz~ for Iz0l~b. 
From the definition of I[vl[~ we obtain 

max Iv(z)l__ Ilvll~e ~/2 and max Mz)l <_ Ilvlbe ~r. 
Izl=l/2 Izl=2 

Thus it is possible to draw the following two conclusions: 

1 l e t / 2  ~1 2 IT(v)(zo)e-rl~~ v ~ f o r e a c h z o e C w i t h l z o [ > 2 ,  

and 

109 

I~(v)(zo)e-.,zo, L < maxl@v)(z)e-2~ e2r < 11 .s~ /2  ., 2 
- - I z l = 2  . . . . .  "3-~ ~ v, 

for each zoeC with Iz0l<2. 
But these conclusions yield liT(v)II~ < ~ e5r/2 II vii 2. 
The same reasoning gives the Lipschitz condition. 

In this section we introduced the operator Tt(v) and studied some of its prop- 
erties as for example the relation between Tt and Tt. The results obtained are useful 
in examining the problem 

The restriction of a solution veCl([0,  ao),7-l(G~)NC(Gr)) of this problem to 
(z, t)eG1 • [0, Co) represents a solution veCl([0,  a0), T/(G1)f~C(G1)) of (13) and 
(14). 
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3. T h e  p r o b l e m  (17) a n d  (14) as a spec ia l  case  o f  (4) 

To apply Theorem 1 to the problem (17) and (14), we only have to show that  
the conditions (5)-(7) are fulfilled. The assumptions concerning fo and h guarantee 
the existence of constants 1 <r2 < b and R > 0  such that  

R ~  ]v0(z)l = [(cOfo/Oz)-l[ in Gr2, 

and hEC([O,T],?i(Gr2)nC(Gr~)). For a fixed 1<rlKr2 let us choose the Banach 
space scale 

sup I.I}oQ<l. 
Grl+S(rm-rl) 

Following Lemma 1 (v(z, t ) # 0 )  it is necessary to choose the sphere 

{w �9 Bs: I1 11  < R}. 

Introducing w(z , t )=v(z , t ) -vo(z) ,  this implies a homogeneous initial condi- 
tion. Thus the problem (17) and (14) can be transformed to 

(18) Owe9~ s ( ~--l ( ~ f ~--f - ~ c9 = = -,W+VO,Oz,hTt,w+vo,j+hTt,w+voJoz,W+Vo, 

(19) w ( z , 0 ) = 0 .  

L e m m a  5. The operator s satisfies in the above-introduced Banach space 
scale {Bs, [['[Is}0<s_<l the conditions (5)-(7) of Theorem 1. 

Proof. Every space Bs forms a Banach algebra. Consequently, from Lem- 
ma 3(a), voeB1 and heC([O,T],B~) we conclude that  h:Ft(W+Vo)eB~ for all 0< 
s < l  and all wEBs. Using the result of Tutschke [8] that  O/Oz is a bounded opera- 
tor as the mapping of B~ into B'  s with ][O/Ozlls__. s, <_ ((r2-r l ) (S-S ' ) )  -1 one obtains 
s for every (t,w)6[O,T]x{w6B~:[[w[[~<R}. From Lemma 3(b) it fol- 
lows that  for a given wEBs the term Tt(w+vo) depends continuously on t. But 
this leads to limtl-~t2 [[s w ) - s  w)[[s, =0  for all tl ,  t2 E [0, T] and all w6B~. 
This proves (5). 

Let us further consider the difference 

o 0 
s wl)-Co(t ,  w2) = - ( w l - w 2 )  (h~(wl+Vo))-(w2+vo)-~z (h(Tt(wl+vo) 

_~t(w2..~Vo)))~_h(~t(Wl..~Vo)_~t(w 2 0 +v0)) (wl +v0) 
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Using 

O ( w l - w 2 )  <__ 2C(p,g)(R+llvolll)llwl-w211p 
p 

for all Wl,W2ET-t(Gp)NC(Gp) with IlWlllp, Ilw2llp<R and all te[0,  T] the following 
estimates are valid in {Bs, I1' L}0<8<1: 

IIT~(wl+v0)L ]lz;0(t, wl)-s w2)l[~, _< IlWl-W211~ Ilhlh ( ~ )  

Ilhlll llw2 + volls ii~t (wl + vo ) _ ~t(w2 + vo ) ]l~ 
(s-s')(r2-r~) 

+llhl[lllTe(Wl+Vo)-T~(w2+vo)L Ilw~+v0L (s-~')(r~-~l) 
IlWl-W21J~ 

+ Ilhl] 1 I[Tt (w2 +vo)I[~ (r2 - r l ) ( s -  s') 

(s - s ' ) (r2-r l )Llhl lI (R+ IlVolll )26C(r2, r~, g) 
with 

r ~ + l  
C(r2, r~, 9) = sup Ig(z, 1/z,t)] (2 +r--~_ l ) . 

(z,t)E{1/r2<l~l<r2 } x [O,T] 

So, also (7) is proved. 
Finally, in the same manner it can be verified that  

with a certain constant K independent of s and t. Hence also (6) is true, which 
completes the proof of this lemma. 

Now the application of Theorem 1 to the problem (18) and (19) yields one and 
only one solution 

w e C 1 ([0, ao(1 - s ) ) ,  ~(G~+~(~2_~)) eC(G~+~(~2_~)))o<8<l 

with suPo~,+~(.2_.~ ) Iw(z, t)l <R for all t e  [0, a0(1-s) ) .  
But then v(z, t)=w(z, t)+vo(z) represents a solution 

"0 �9 C 1 ([0, do(1 - s ) ) ,  7-t(a~, +~(~_~,)) A c(O~+~(~,_~,)))0<~<l 

of the problem (17) and (14) with supa~l+.(~2_~)Iv(z, t)] >0 for all t � 9  [0, d o ( i - s ) ) .  

The coincidence of the operators Tt and Tt for all v �9 guarantees 
that the restriction of v(z,t) to CI([0, ao),7-t(G~)NC(G~,)) is a solution of (13) 
and (14) with supa.,  Iv(z,t)[>O for all t �9  ao). From this result together with 
Lemma 1, the end of Chapter 1 and the equivalence of (12) with (8) and (11) we 
get the following theorem concerning problem (8), (2) and (3). 
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Theorem 2. Suppose that 
(i) the real-valued function g--g(z,~,t) is continuous in {Izl--1}• T] and 

possesses a holomorphic extension into a circular ring Kb={1/b<lzl<b} for all 
te[O,T]; 

(ii) the function h=h(z,t)  belongs to the space C([O,T],?-I(Gr2)NC(Gr2)), 
l<r2<b, Gr2={Izl<r2}, where h(0, t)=0, h~(O,t)~O and h(z,t)~O for all (z , t )e  
{0 < Izl < 1} x [0, T]; 

(iii) the function fo(z), f0(0)--0, is holomorphic and univalent in Gr2. 
Then for every l <rl <r2 there exist a positive constant ao(rl) and a uniquely 

determined function f = f ( z, t ), holomorphic and univalent in G~I , belonging to 
C 1 ([0, ao(rl)), 7-/(Grl ) n C  1 (erz))  and satisfying the conditions 

R e ( h ( ~ , t ) ~ , l  Of ( z , t )~z (Z , t ) )=g(z ,2 ,  t ) for all (z,t) E{Iz l=l}x(O,  ao(rl)); 

( 1 0 f ( z , t ) ~ z ( Z , t ) ) ( O , t ) _ _ O  for tE(O,  ao(rl)); Im h(z, t--) Ot 

f (z ,O)=fo(z)  for zCd~l;  

f(0, t ) = 0  for te[O, ao(rl)). 

As a conclusion from Theorem 2 we immediately get a statement concerning 
the classical Hale-Shaw problem in the plane (h(z, t)=z, g(z, 2, t ) z l ) .  

Corol lary 1. Under the assumption that the function fo(z), f0(0)=0, is holo- 
morphic and univalent in G~2, for every l < r l < r 2  there exist a positive constant 
ao(rl) and one and only one holomorphic and univalent in Grl function 
f - - f  (z, t)eC1 ([0, ao(rl)), 7-/(Grl )NCI(Grl )) satisfying 

R e ( l ~ t ( z , t ) ~ z ( Z , t ) ) = l  for (z,t) e ( l z  I~-l}• 

t )~z ( z , t ) }  = 0  for te(O, ao(r~)); 

f (z ,O)=fo(z)  for z e G ~ ;  

f ( 0 , t ) = 0  for tE[O, ao(rl)). 

Remark 3. In connection with the moment problem for holomorphic functions 
Gustafson [3] studied the conditions 

t. Of rz, t cosn~----(zn+bn)/2 
R e \ z  Ot" )-~z ~ ) = s inn~_(zn_Zn) / (2 i  ) on [zJ=l 
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instead of (1). 
These  condit ions are special cases of (8), (9) and (10). The  condit ions (8)-(10)  

represent  the  most  general  conditions for a successful appl icat ion of the  non-l inear  
abs t rac t  Cauchy -Kova l evsky  T h e o r e m  due to Nishida [5]. 

Remark 4. Compar ing  (11) (h(z, t ) - - z )  wi th  Gus tafsson ' s  condit ion fz(0,  t) > 0, 
it is easy to see t ha t  this a s sumpt ion  leads to (11). Hence the solutions of Theo-  

rem 2 for the  classical Hele-Shaw prob lem coincide wi th  the  solutions cons t ruc ted  
by Gus tafsson  in [3]. On the other  hand,  since h(z,t)~hz(O,t)z as z -*0 ,  (11) is 

equivalent to the representa t ion  fz(0,  t )=exp( i c~)exp(g ( t ) )  if we addi t ional ly  sup- 
pose tha t  hz(0, t) is real-valued (c~ is a real constant ,  g=g(t) a real-valued cont inuous 
function).  Thus,  (11) really generalizes the  condi t ion fz(O, t ) > 0 .  

Remark 5. From Theo rem 1 appl ied to p rob lem (18) and (19) one obta ins  

the es t imate  s u p ~ l  I(Of(z, t)/Oz)-11< II (Ofo/c3z) -1 lit2 +R, where f= f(z, t) is the 

solution f rom T h e o r e m  2 and  R fulfills II(Ofo/Oz)-lllr2 >R for all zCGr2.  
Taking account  of Remarks  1 and 2 and  the  result  of [8] tha t  the  ope ra to r  

O/Oz is bounded  as a mapp ing  of 7-I(Gp)NC~(Gp) into 7-I(Gp,)NC~(Gp,); (p'<p, 
0 < c ~ < l  and  IlO/OZllp_~ p, <C/(p-p')), we are able to prove a result  cor responding 
to T h e o r e m  2 based on the  scale of Banach  spaces 

{S~, I1" I1.}o<~_1 -- { ~  (C,., +~(,.~_,.~)) nC '~ (Grl nt_8(I..2_r1)), I1" I1~,'~ }" 

For in general  a smaller  interval tE [0, b0) an uppe r  bound  for the Hhlder -norm 
of (Of(z, t)/Oz) -1 in G~I can be ob ta ined  by ]1 (Ofo/Oz(z))-i I1~,~ +R with the  same 
R as in the  case of the  supremum-norms .  

4. A b o u t  t h e  c o i n c i d e n c e  o f  t h e  s t r u c t u r e s  
o f  (Ofo/OZ) -1 a n d  ( O f ( z ,  t)/cgz) -1 

Gustafsson  proved in [3] tha t ,  if the  initial value fo(z) is a univalent  po lynomia l  
or a univalent  ra t ional  funct ion in a ne ighbourhood  of Izl < 1, then  the solut ion of 
(1)-(3)  is as a funct ion of z of the same s t ruc tu re  as fo(z), which means  a univalent  
po lynomia l  or a univalent  ra t ional  function. In  the  polynomia l  case this coincidence 
of the s t ruc tures  can be expressed by the aid of the  derivatives in the  following form: 

I f  Ofo/Oz is a po lynomia l  which has no zeros in a ne ighbourhood  of Izl < 1 
then  also Of(z, t)/Oz is a po lynomia l  which has no zeros in a neighbour-  
hood  of ]z I < 1 for t f rom a sui table r ight-s ided ne ighbourhood  of t = 0. 

Such a formulat ion cannot  be  deduced for the  ra t ional  case f rom the results  
of [3]. 
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Using (Ofo/OZ) -1 and (Of(z, t)/Oz) -1 the last statement concerning the deriva- 

tives Ofo/OZ and Of(z, t)/Oz gets a new formulation. 

If (Ofo/OZ)-l= 1/P(z) ,  where P(z) is a polynomial without zeros in a 
neighbourhood of [z[ <_ 1, then (Of(z, t)/Oz) -1 = 1/Q(z, t), where Q(z, t) 
is a polynomial in z without zeros in a neighbourhood of [z[ _< 1 for every 
t from a right-sided neighbourhood of t = 0. 

In the following we are interested in the proof of a result of the same type. For 
this purpose, let us choose with arbitrary 0 < Sl < s2 the Banach space scale of entire 
functions 

where the spaces Er  were introduced in Section 2. 

T h e o r e m  3. In addition to the assumptions of Corollary 1 suppose that 
(Ofo/Oz) -1 is an entire function belonging to E~ 1 . Then it is known that be- 
sides the statement of Corollary 1, there holds (Of(z, t)/Oz) -1 ECI([0, do(S2)), Bs2) 
with s2> sl and a certain positive constant do(S2). In particular this means that 
(Of(z, t)/Oz) -1 is an entire function for all t e  [0, do(S2)). 

(In [0, do(r1, s2)), do(r1, s2)=min(ao(s2), do(r1)), both  properties of f ( z ,  t) are 
fulfilled.) 

Proof. It remains to prove the statement for (Of(z , t ) /Oz)  -1, which follows 
from the application of Theorem 1 to the problem (18) and (19), equivalently, (17) 

and (14) with the scale {Bs, [[. [[s}0<:s_<l. 
Prom Lemma 4 the continuity of Tt(v) as a mapping of B~ into itself is clear. 

Hence we only have to study the behaviour of the differential operator O/Oz and 
the multiplication operator z. in the scale {Bs, I1" L}0<~_<l. 

For the first let v be a function from Er. Applying Cauchy's integral formula 
in a small neighbourhood Ua(zo) of a fixed point z0 we obtain 

Ov rzo 1 .~2~ v(o)e-~lOle~(iol-lzol) 
= - -  d~ ~ ( z 0 ) e -  2~" - v  0 - z o  

with 0= z0 + a exp(i~). Using I I 0l-[zo I I -<[o- zo [ this relation leads to 

~ (z0)e-~l*ol < Ilvll~e~ 

With a = l / r  we have [lOv/Ozllr<_erlfvll~. Hence O/Oz is a bounded operator from 
E~, respectively, from B~ into itself. In the second place let v be a function from 
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/{Jr. Then it cannot be expected, that  zv belongs to/{Jr. For example, let us choose 
v=exp(2z) EE2. Then 

supIze 2ze-21z][ _> sup [xexp(2x)exp( -2x)[ - -oo  
z E C  x c R +  

as x tends to infinity. But if we consider z as a mapping of Er into Er, with r t>r,  
then 

, 1 

[Izvlb = z~cSUp [zve-~'~z~ ] < z~cSup rw-~Jzl ] supz~c Izfe-(~ -~)Izl _< IIvfl~ e ( r ' -  r------)" 

Hence the multiplication operator z. is a bounded operator in the scale {Bs, I1 IJs} 
with [[zvl[s, _< [[vlls/(e(s2 -81)(8-8t ) ) .  

As in Lemma 5 one proves that  the oprator s from (18) satisfies the conditions 
(5)-(7) from Theorem 1. The application of this Theorem to (18) and (19) with 
the scale {Bs, II" L}0<~_<l yields the statement for (Of(z, t)/Oz) -1. This completes 
the proof. 

Remark 6. Using the scale {Bs, I1 Ilj0<~<l one can also get the univalence of 
f ( z , t )  from that of fo(z). Let us suppose ](Ofo/Oz)-l]>_R>O in Gr2 and fix the 
sphere Ilv-(Ofo/OZ) -1 ]l~ <Rexp ( - r2s2 )  around (Ofo/Oz) -1. Then the application 
of Theorem 1 to the problem (18) and (19) leads to 

I[v(z, t) - (Ofo(z)/Oz) -1 ]Is = I[ (Of(z, t)/Oz) -1 - (Ofo(z)/Oz) -1 I[~ < Re-r2s2" 

But this means that  

max I(Of(z, t)/Oz) - 1 -  (Ofo(z)/Oz) -1 le -(sl+(s2-s~)(1-s)lzb) < Re -~2~2, 
Gr 2 

and 
m_ax ](Of(z, t)/Oz) -1 - (Ofo(z)/Oz)-l l  < R. 
Gr 2 

Hence Of(z , t ) /Ozr  for all z E G ~  and all suitable te[0, ao(8:)). Then an 
upper bound for ll(OY(z, t)/Oz) -111~ is II(Ofo(zD/Oz) -111~x + R e - r ' = .  

But we point out that  the restriction to the above-introduced sphere around 
(Ofo/Oz) -1 can reduce the interval of existence of the solution with regard to t from 
Corollary 1. 

Note. The authors thank the referee for the information about a new reference 
which gives more of the history and the physical background for equations (1) 
till (3) and which also contains an up-to-date bibliography for it: S. D. Howison: 
Complex variable methods in Hele-Shaw moving boundary problems, preprint 1991 
(Mathematical Institute, Oxford OX1 3LB, United Kingdom). 



116 Michael Reissig and Lothar v. Wolfersdorf: 
A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane 

R e f e r e n c e s  

1. ATHANASSOULIS, g .  A. and MAKRAKIS, g .  N., A function-theoretic approach to a 
two-dimensional transient wave-body interaction problem, WMAG Techni- 
cal Report 3-89, National Technical University of Athens, 106.82 Athens 42, 
Greece. 

2. DUCHON, J. and ROBERT, R., Estimation d'op@rateurs int@graux du type de Cauchy 
dans les ~chelles d 'Ovsjannikov et application, Ann. Inst. Fourier (Grenoble) 
36 (1986), 83-95. 

3. GUSTAFSSON, B., On a differential equation arising in a Hele-Shaw ftow moving bound- 
ary problem, Ark. Mat. 22 (1984), 251-268. 

4. KANO, T. and NISHIDA, T., A mathematical  justification for Korteweg-de Vries equa- 
tion and Boussinesq equation of water surface waves, Osaka J. Math. 23 
(1986), 389-413. 

5. NISttIDA, T., A note on a theorem of Nirenberg, J. Diff. Geom. 12 (1977), 629-633. 
6. OVSJANNIKOV, L. V., The Cauchy problem in a Banach space scale of analytic func- 

tions, continuum mechanics and related problems of analysis, in Conference 
23-29.9.1971 in Tbilisi (Georgia), vol. 11, pp. 219-229, 1974. (Russian) 

7. RICHARDSON, S., Hele-Shaw flows with a free boundary produced by the injection of 
fluid into a narrow channel, J. Fluid Mech. 56 (1972), 609-618. 

8. TUTSCHKE, W.,  Solution of Initial Value Problems in Classes of Generalized Analytic 
Functions, Teubner, Leipzig, and Springer-Verlag, Berlin Heidelberg, 1989. 

9. VINOGRADOV, Yu. P. and KUFAREV, P. P., About a filtration problem, Prikl. Mat. 
Mekh. 12 (1948), 181-198. (Russian) 

Received June 4, 1991 Michael Reissig 
Department of Mathematics 
Bergakademie Freiberg 
Bernhard-von-Cotta-Str.  2 
0-9200 Freiberg 
Germany 

Lothar v. Wolfersdorf 
Department of Mathematics 
Bergakademie Freiberg 
Bernhard-von-Cott  a-Str. 2 
0-9200 Freiberg 
Germany 


