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O. I n t r o d u c t i o n  

The objective of this paper  is to prove a theorem that  roughly says that  if K is 
a compact linearly convex support  for an analytic functional # in C n, such that  K 
is not too thin in a certain sense, and such that  through each point pEOK there is at 

most one tangential complex hyperplane, then K is unique, i.e. # admits  no other 
linearly convex support .  This theorem is analogous to a theorem of Kiselman and 
Martineau, [6] and [10], for convex supports and restricted to one complex variable, 
it reduces to a theorem of Kiselman [6] about  polynomially convex supports.  

We let Ot(C n) denote the space of analytic functionals in C ~. A compact set 
K is a carrier for p c O t ( C  n) if for any open neighborhood w of K there is a constant 

C~ such that  

I/z.fl _< C~(Ifl~) ,  f �9 O(C~).  

If K is a polynomially convex carrier, then # has a continuous extension to an 
element #g in O'(K), where O'(K) is the dual of O(K) and O(K) is the inductive 
limit of the spaces O(w) for open woK. 

A polynomially convex carrier K for # is called a polynomially convex support  
for # if no polynomially convex compact proper subset H of K carries #. Since any 
# �9 O ~(C n) has some polynomially convex carrier, it follows by Zorn's lemma that  # 
has at least one polynomially convex support.  However, in general it is not unique 
as is shown by the following simple example: 

Example 1. Let 

#.f-- f(t) dt, f �9 

Then any simple curve from 0 to 1 is a polynomially convex support  for #. 
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However, Kiselman proved in [6]: 

T h e o r e m  0.1. Let K be a polynomiaUy convex support for #cO~(C1).  Sup- 
pose that for any open set w intersecting OK, the interior of the union of K and 
an arbitrary component of w \ K  intersects OK. Then # has unique polynomially 
convex support K. 

The requirement of K is a thickness assumption and for instance, it is fulfilled 
if for each pEOK there are arbitrary small neighborhoods V such that V \ K  is 
connected. However, the set ]y] < IxI < 1 is thin at the origin but yet it satisfies the 
assumption in the theorem. 

Remark. In [8] is also proved that  the condition on K is necessary; i.e. if 
any #C O~(C 1) having K as polynomially convex support has unique polynomially 
convex support, then K satisfies the condition in Theorem 0.1. 

For n >  1 Kiselman proved in [6]: 

T h e o r e m  0.2. If K is a polynomially convex support for #cO~(C n) and OK 
is C 2, then # has unique polynomially convex support K. 

He also has analogous results for O(f~)-convex supports in a domain of holo- 
morphy ft in C n. 

We also refer to [7] where uniqueness of support for # with respect to a given 
class of compacts is proved to be equivalent to convexity of the indicator of a 
corresponding generalized Fourier-Laplace transform of #. 

A compact set K in C n is linearly convex if C n \ K  is a union of complex 
hyperplanes. We shall work with the somewhat more restricted class LCC defined 
as follows: A compact set K C C n is LCC if, through each point pE C ~ \ K ,  there is a 
complex hyperplane which can be continuously moved to the hyperplane at infinity 
without intersecting K.  By the Oka-Stoltzenberg theorem, see [11], it follows that  
any LCC set is polynomially convex. It is also clear that  the class LCC is closed 
under intersections. 

For motivation of this definition, note that a compact set K is convex if and 
only if through each point in its complement there is a real hyperplane that  can be 
moved continuously to the hyperplane at infinity without intersecting K. Similarly, 
K is polynomially convex if and only if the same holds with hyperplane replaced 
by algebraic hypersurface, see [11]. 

A linearly convex compact set K is LCC if the set K* of nonintersecting com- 
plex hyperplanes is connected, but the converse is not true, see Example 3 below. 
When n =  1, LCC means precisely polynomial convexity. 

We say that a LCC (or convex) compact carrier for # c O ' ( C  ~) is a LCC (or 
convex) support for it if no LCC (or convex) compact proper subset H of K carries #. 
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It is not hard to see that  any convex support is unique if n =  1. However, this 
is not true for n > l :  

Example 2. Let # c O t ( C  2) be defined by 

= i t ( e  = c o s  

For each t>0 ,  

2 ~iZ1 I IX21 ~ tlZl ]-~ IZ2 I/ t  = sup Re(~l zl + @z2), 
Kt 

where Kt = (](1 ]< t, ](21< 1/t} so it follows from the P61ya-Martineau theorem, see 
e.g. [5], that  p is carried by each Kt, and hence each Kt contains a LCC (or convex or 
polynomially convex) support for it. However, if K C K t  carries p, then (t, 1 / t )EK 
so if HCKt  and H'CKt,  are supports and t~t ' ,  then H ~ H ' .  Also note that there 
are several tangential hyperplanes through the point (t, 1/t) cH.  

T h e o r e m  0.3. I l K  is a convex support for p E O ' ( C  ~) such that, through each 
extreme point pEOK, there is at most one tangential hyperplane, then # has unique 
convex support K. 

This theorem is due to Martineau [10]. It occurred first in [6] but with the 
somewhat stronger assumption that OK be C 1. This suggests that even in the 
polynomially convex case, cf. Theorem 0.2, it would be possible to weaken the 
assumption on OK. Theorem 0.4 below may be viewed as an at tempt  in that  direc- 
tion. In order to give the exact formulation we have to introduce some additional 
notation. We denote the elements in P ~ = p n ( c )  by [z]=[(zo,...,z~)]. Consider 
C~ ~_~pn by z'--~ [(1, z')] and let (P~)* be the dual of p n  with respect to the pairing 
[z], [w]--~ [(z, w}] = [Eo  zjwj]. There is a one-to-one correspondence between points 
[a] E (P~)* and hyperplanes in P~, 

[a] ~-, {[z] EP'~; (a,z I --0}. 

Let 

K* -- {[a]E (P'~)*; a does not intersect K}.  

Here and in the sequel we identify [a] E (P~)* with the corresponding hyperplane in 
P~. Also if [a]--[(1, a')], we identify it with a 'E(C~)  *. In most situations we may 
assume that OCKcCn'--*P n and then K*C(Cn)*c--~(Pn) *. 

Note that E c P  n is linearly convex if and only if E**--E,  and that  E* is open 
(compact) if E is compact (open). For a thorough discussion of these concepts we 
refer to [4]. 



4 Mats Andersson 

T h e o r e m  0.4. Let K be a LCC support for # E O ' ( C n ) .  Suppose that 
(a) through any point pEOK there is at most one tangential complex hyperplane, 

(b) for any open set V intersecting OK* in (Cn) * the interior of the union of 
( C n ) * \ K  * and an arbitrary component of V N K * intersects OK*. 

Then # has unique LCC support K .  

The requirement (b) is fulfilled if 
(b') for each plane ~ tangential to K,  there are arbi trary small neighborhoods 

V ~  in (Cn) * such that  VNK*  is connected. 

For instance, (b') is fulfilled if 0 K  has some regularity. 

The condition (b) can be described as follows. If ~t is a curve in K* from the 
hyperplane at infinity ~ ,  ending up at a hyperplane ~1 C (OK*, and V is a connected 
neighborhood of ~1 then there is another ~PEOK*MV having the property in (b t) 
such that  the curve ~t can be modified in VMK* to end up in ~' instead of ~1. 

It  is clear that  Theorem 0.4 reduces to Theorem 0.1 when n--1. However, 
the proof (see the final remark in Section 4) also contains Theorem 0.1 in the 
following sense. Let K C C  1 be a support  of # c O ' ( C  1) and such that  K satisfies 
the hypothesis of Theorem 0.1. Consider # as an element/5 in O ' ( C  '~) in the obvious 
way. Then KCCI~--~C n is a LCC support  for/5 in C n and the proof of Theorem 

0.4 applies to K and/5. 
In this context it is natural  to state the following result of Martineau [9]: 

T h e o r e m  0.5. Suppose K is a polynomiaUy convex set in C ~. Then there is 
a # E O ' ( C  n) having K as unique polynomially convex support. 

In particular we have: 

C o r o l l a r y .  I f  K c C  n is LCC (or convex) then there is a # E O ' ( C  n) having 
K as a LCC (or convex) support. 

Example 3. In [2] is an open connected set D c C  2 constructed such that  
D - D * * C D  . . . .  - 0 § where D o is the component of D** containing D. Now if K = D * ,  
then K is linearly convex and K * = D * *  is disconnected. We claim that  K is LCC 
with respect to a hyperplane at infinity ~ c D .  

Namely, if p E K  c, then p belongs to a hyperplane ~CK*=D** ,  i.e. p is a hy- 

perplane that  intersects D**. However, it must then also intersect D=D~* in some 
point, say ~'. This means that  ~' is a hyperplane through the point p that  belongs 
to the ~ - c o m p o n e n t  of K*. Thus K is LCC. 

The paper  is organized as follows. In Section 1 we briefly discuss the notion 
of C-convexity and relates it to the class LCC. In Section 2 we sketch a proof of 
Theorem 1 (essentially the same as in [8]), based on Cauchy's formula in C l, in 
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order to make the proof of Theorem 0.4 more comprehensive. In Section 3 we 
discuss a type of Cauchy-Fantappie-Leray  formulas from [3] which are appropriate  
for linearly convex or LCC compacts K .  Finally in Section 4 we conclude the proof 
of Theorem 0.4. 

1. C-convexity and strongly linear convexity 

A non-empty (compact or open) proper subset of p1 is said to be C-convex if it 
is connected and its complement also is connected. A non-empty (compact or open) 
subset of p n  is called C-convex if all its non-empty intersections with (projective) 
lines are C-convex. For instance, if K is convex in some affinization of pn, then K 
is C-convex. 

If K is C-convex, then it is linearly convex and K* is also C-convex, see [4], 
in particular K* is non-empty and connected, so if K is a compact C-convex set in 
P'~ it follows that  K is LCC in some affinization C ~ = P n \ ~ o ~  of pn .  The following 
characterization of C-convexity is given by Zelinskij, [12]: 

T h e o r e m  1.1. A linearly convex compact set K c P  n is C-convex if and only 
if ~AOK is connected for each tangential hyperplane ~. 

Suppose 0 c K c C n = P ~ \ ~ ,  K is linearly convex. Then the Fantappie trans- 
form f :  O'(K)--*O(K*) is defined by 

~'p(z) = .  

The following theorem connects the notion of C-convexity to Mart ineau's  notion of 
strongly linear convexity: 

T h e o r e m  1.2. A linearly convex set K c P  n is C-convex if and only if  the 
Fantappie transform is an isomorphism. 

A proof of the if-part and an outline of a proof of the only if-part is given in 
[13] and [14]. A complete proof occurred in [3]. 

Note that  for the C-convex case, Theorem 0.5 immediately follows from Theo- 
rem 1.2, since there is some holomorphic function in K* that  cannot be continued 
anywhere over OK*. 

2. I d e a  o f  t h e  proof  and the one-variable case 

In this section we sketch the proof of Theorem 0.4 in the case n = l ,  which is 
precisely Theorem 0.1 of Kiselman. 
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Let K be a polynomially convex compact set in C, i.e. C \ K  is open and 
connected. Note that  if pEOn(C) is carried by K and ~t g denotes its extension to 
O(K),  then 

(1) 
1 ( ~ _ . ]  

= 

is holomorphic in C \ K .  Conversely, any ~eO(C\K) (or ~EO(Q),  ~tDK) defines 
an element p c O t ( C )  by the formula 

(2) #.f= fo f(~)~(~)d~, f c O ( C )  

if wDK,  and # is carried by K. By Cauchy's formula, 

so (2) defines the inverse of (1) and we have an isomorphism O'(K)~O(C\K). 
In order to prove Theorem 0.1 we must show that if K and H are polynomially 

convex carriers for #EOt(C) ,  K having the additional property of Theorem 1, and 
K\H is non-empty, then there is a compact polynomially convex proper s u b s e t / (  
of K that  also carries #. 

To this end we consider the function 

Since K\H~O and C \ H  is connected, there is a curve "y from c~ to a boundary 
point aEOK\H, such that  ~/c(C\H)M(C\K). Namely, if ~ is any curve in C \  
H from c~ to a point in K\H, we can take a as the first point in K that 
meets, and let ~ be the part  of ") from c~ to a. Let w denote the component of 
(C\K)N(C\H) that contains % By assumption, there is a point pEOKMOw and 
a neighborhood V of p such that VCwUK and wUV is connected. By uniqueness, 
pH(1/(~--.))=#K(1/(~--.)) for ~Ew, s o  pH(1/(~--.)) provides a continuation of 
p(~) to ( C \ K ) U V .  By the discussion above, this means that # is carried by the 
polynomially convex compact set ~[=K\V which is a proper subset of K since 
pcK\~[. Hence Theorem 1 is proved. 

This proof is based on Cauchy's formula and in order to generalize the argument 
to n >  1, we first discuss in Section 3 an appropriate analogue of Cauchy's formula 
for a linearly convex set in C n. 
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3. Cauchy-Fantappi~-Leray f o rmu la s  for  l i n ea r l y  c o n v e x  se t s  

Let K be a polynomially convex compact subset of C n. If a is a closed (n, n -  1)- 
form in C n \ K ,  then a defines an element # c O ' ( C  n) by 

# . f = f  fa, f e o ( c n ) ,  
d a  r 

where w is any smooth set containing K,  and it follows that  K carries #. Con- 
versely, suppose K is a carrier for p E O'(C n) and let PK denote the extension of # to 
O(K). If P(r z) is a reproducing kernel for O(K), such that  r162 z) is a closed 
( n , n - 1 ) - f o r m  in c n \ g  and z--*P(4, z) is in o(g),  and f(z)=fo P(4, z)f(r 
Kcw, then a ( ~ )= / zK 'P (4 , ' )  is a closed ( n , n - 1 ) - f o r m  in Cn\K that  defines #. 
More invariantly, and analogously to the one-variable case discussed in Section 2, 
one can consider (n, n -1 ) - fo rms  in p n \  K instead of C n \ g ,  and then one actually 
has an isomorphism H . . . .  l ( pn  \K) ~-o'(g) (where H n,n-1 denotes the Dolbeault 
cohomology group of bidegree (n, n - 1 ) ) ,  but for our purposes it is enough to con- 
sider forms in C n \ K ,  though the forms that will be constructed below actually are 
forms in pn\K.  

Definition. A smooth mapping s(4):w---~(Pn) *, wcC n (or p n )  is called a 
CL-section (Cauchy-Leray) if for each 4, 4 belongs to the hyperplane s(~), i.e. 

In the sequel we think of s(4) as a mapping w--+C n so that  s(~) corresponds to 
the hyperplane {z; (s(4), 4 -z>  =0} through 4. We also identify s with the (1, 0)-form 

n ~-,1 sjd4j" Now suppose K is linearly convex and that  we have a CL-section s(4) 
defined in C n \ K  such that the planes s(4) avoid K.  Then the Cauchy-Fantappi~- 
Leray kernel 

( 1 )  "~ sA(0s) n - I  
H(s)(4,  z) ---- ~ (s (4) ,4-z> ~ 

is a reproducing kernel of the kind above. However if such a global CL-section 
s(~) exists for K,  then it follows, see e.g. [3], that the Fantappi~ transform is an 
isomorphism and this in turn implies that  K is C-convex. Though, as far as K is 
linearly convex, we can find such a CL-section at least locally in C ~ \ K ,  and we will 
recall from [3] how such local choices of sections can be used to construct a global 
kernel. 

For CL-sections s j, let 

(ly 
Hk(sl'""Sk)= ~ i  slA...Ask 

(C~Sl)~* A... A (Osk) ~ 
}2 z-5 o 

Ic~l=n--k 
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Then H k is an (n,n-k)-form in ~, alternating in sj, vanishing if k>n, closed if 
k = l ,  and 

k 

(1) dg k (sl, ..., sk) = E(-1)J+IH k-1 (sl,..., ~j,..., sk). 
j = l  

If {w~} is a locally finite open covering of C a \ K ,  s~ CL-sections in w~ avoiding K,  
and {p~} a partition of unity subordinated {w~}, then 

k = l  h E N  ~ 

is a reproducing kernel of the kind discussed above. Thus if f E O ( ~ ) ,  wDK, then 

(2) f(z) ---- fo~ p ( ( '  z)f(() 

for z in some neighborhood of K.  
Note that  if 0 E K  one can choose s(~) so that ( s ( ( ) ,~} - - -1  and hence 

-<s(r C-z> =1+ <s(r z>. 
Thus it follows from (2) that if K is linearly convex, any fEO(K) can be 

written as a superposition of functions of the form 

1 
z--, I I  

j = l  I-~-Sj'Z 

whereas in the C-convex case one can use the simpler functions 

1 
Z ----+ - -  

l+s.z" 

Also, cf. [1] V, w 
This formalism will be used in Section 4 in the proof of Theorem 0.4. 

4. P r o o f  o f  T h e o r e m  0.4 

Suppose H and K are LCC carriers for #EO'(C~), K \ H  is non-empty and K 
satisfies the requirements (a) and (b) of Theorem 0.4. Let ~1 be a plane (complex 
hyperplane) through pEK\H that does not intersect H. Then there is a continuous 
curve ~t in H* that  joins ~1 to the plane at infinity ~ .  Note that  ~tEK* for large 
t since ~ E K * .  Let to be the least index such that ~tEI(* for each t>to. Then 
~t0 EOK* and, by assumption (b), the curve ~t can be changed in H*MK* so that 
it ends up at a point ~oEOK*MH* with the property (b'), and so we have proved: 
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C l a im  I. There is a ~oCOK*MH* having a connected neighborhood VCH* 
such that VMK* is connected and such that ~o can be joined to ~oo by a curve in 
K*MH*. 

Clearly the plane ~0 is tangential to K,  and we also have: 

C l a im  II .  There is a neighborhood ~ of K M~o such that for any plane ~, ~ E V 
if ~ intersects ~ but not K. 

Proof. Let {wj} be a basis of neighborhoods of KM~0 and suppose that  for 
each j ,  there is a plane ~ j~V that  intersects wj but not K.  By compactness, 
some subsequence converges to a plane ~t~V and thus ~ r  However, ~ must be 
tangential to K and intersect KM~0 and this contradicts assumption (a) about K.  
Thus some wj must have the proposed property. 

We define a CL-section s(~) by letting s(~)--~0 for ~EKM~0 and then extend 
it in any smooth way to a neighborhood w of KM~0. We also assume that  w is 
contained in ~ of Claim II and that  s(~) takes values in our fixed neighborhood V 
of ~0. 

We now take a connected neighborhood V of ~0 in V such that  KM~Cw if 
C V. We define K as K minus the planes in V. 

C l a im  I I I .  K is a compact LCC proper subset of K. 

Proof. It is proper since Or It is compact since K = ( K * U V ) *  
and K*UV is open. Finally it is LCC since i f p E C n \ K ,  say pEK\~[ ,  then pE~ for 
some ~ e V  and ~ can be joined to ~ in K*UV. 

We now let Wo=w\K. Then we have a CL-section s0(r in w0, taking values 
in our neighborhood Y of~0. Also note that  ( C ~ \ K ) C  w 0 U (Cn \K )  so we can find 
a locally finite open cover {w~} of C ~ \ K  and CL-sections s~ in w~, such that  if 
a r  then w~cC'~ \K  and s~ takes values in K*. 

We may now assume that  0 E K.  

C l a im  IV.  Let ~t g and ttH be the extensions of # to O(K) and O(H) respec- 
tively. If ajEVMK*, j = l , . . . , n ,  then 

~ H ( 1  ~ 1 n l§ 1 

Proof. By Claim I, all aj belong to the ~o~-component A of K*MH*. Hence 

(b l , . . . ,bn)_ . , ,H( i  I 1 
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and 

(bl,...,bn)---~ # g ( I I  1 

are both holomorphic in the connected set A x ... x A c ( (P ~)* )  ~, and coincide near 
(~o~, ..., ~o~). Hence they are equal at the point (a~, ..., a n ) c A  x ... x A .  

We can now define (n,n-k)-forms, cf. Section 3, 

(1) 

on ~ w ~ j  by letting # = # K  if all a j r  and ~t=pH if a j = 0  for some j .  Note that  
the dependence in z of Hk(s~, ..., s~k)is of the form H l ( l + s ~ j  .z) -1. 

Let { ~ }  be a partition of unity, subordinated {w~} and put 

(2) 9 -  Z A'"A Aak(s~ 
k = l  a E N  k 

C l a i m  V. The form 3 is closed in C~\ K and represents the functional p. 

Our last claim implies that # is carried by the LCC set -~ and hence Theo- 

rem 0.4 is proved. 

Proof of Claim V. It is clear tha t /3  is a smooth ( n , n - 1 ) - f o r m  in C ~ \ K .  The 
crucial point now is Claim II that  ensures that  all s ~  E V if some a i - 0 .  Combined 
with Claim IV this implies that Gk=#.H k is well defined in the sense that 

k 

d G k ( s a l , . . . , s a k )  = E ( - 1 ) J + l G k - l ( s a l , . . . , ~ a ~ , . . . , s a k )  
j = l  

since this holds for H k, cf. (1) in Section 3. 

Note that  

E q%k Adcpak_l A. . .A  d~al AG k-1 (sal,..., g~s,..., sak) 
acN k 

vanishes if l_<j < k and equals 

E dqo~k_lA...Ad~lAGk-l(s~l,.'.,s~k 1) 
o~cNk-1 
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if j = k .  We also note tha t  in the definition (2) of/3 we may let k run from - c o  to 
oo, if we interprete G k as zero for k > n  and k<0 .  With  this convention (3) holds 
for all k and we get 

~ = ~  ~ d~o~A...AOo, Ad~(so,,...,so~) 
k aEN k 

k-' ,A Ad .,AdGk(s.,, ,8o ) 
k aEN k 

k c~EN ~ 

,)=o. 
k aEN k-1 

Thus/3  is closed, and to see that  it represents # we can choose some large ball B 
containing K U H  and e.g. assume s=s~=-~ / [ r  2 in a neighborhood of OB. Hence 

by the usual Cauchy Fantappi~ Leray formula, f ( z ) = f o  B H l ( s ) f  for z E B ,  so that  

if w D K,  since/3 is closed. 

Final remark. An inspection of the proof reveals that  the assumptions (a) and 
(b) of Theorem 0.4 can be replaced by 

(ab0: For an arbi t rary component V of VMK*,  where V is any open set 
intersecting OK*, there is a point ~0 E OK* having a neighborhood W C V U (pn  \ K* ), 

such that  ~0MK has a neighborhood a; in which there are CL-sections s(~) locally, 
taking values in W. 

In particular this is fulfilled for a polynomially convex set KcCIr  n satis- 
fying the condition in Theorem 0.1. 
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