SPECIAL SOLUTIONS OF CERTAIN DIFFERENCE EQUATIONS.
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Let f (x) be a solution of the difference equation

(1) Sl + 1) —flz) =g(2)

for x>o0. f(z) may be uniquely determined by prescribing its values arbitrarily
for o<x=1. For certain functions g(x) however the solution f may also be
characterized by simple properties, instead of prescribed values in an interval.
A solution may e.g. be uniquely determined by its asymptotic behaviour for
large x; this leads to the »Hauptlosung» of the difference equation, as defined by
N. E. Norlund in his » Vorlesungen iiber Differenzenrechnung». In special instances
solutions have also been characterized by local properties. Thus it has been proved
by H. Bohr, that for g(x) = log x, all strongly convex solutions of (1) are of the
form f(x)= const. + log I'(x).* Here a function is called »strongly convex», if

(2) flz+ (1 —y)=1fl@x) + (1 —Wfly) for o=i=r1,
whereas »convexity»> alone only implies, that

f(x + y) =Sz +fly) .

2 T 2

An analogous result has been derived recently by A. E. Mayer:®* The only con-
vex solution of the functional equation 1/f(x + 1) =2 f(x) is given by
,r(3)
f(gc):—]—/j F(x_{__).

2

' Ct e.g. E. Artin: Einfiilhrung in die Theorie der Gammafunktion, or Courant: Differential
and Integral Calculus, vol. II p. 325.

? Convexity 4 boundedness in some finite interval is equivalent to strong convexity, Cf.
Hardy, Littlewood, Polya: Inequalities, p. 9I.

® Konvexe Losung der Funktionalgleichung 1/f(x + I) = zf(x), Acta mathematica 70, p. 59.
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In the present paper we shall give some theorems concerning monotone or
convex solutions of (1) for certain general classes of functions g{z). As special
cases we shall obtain the theorem of Bohr, and also a somewhat weaker form of
the theorem of A. E. Mayer, with »convex» replaced by »strongly convex».
Also an analogous theorem for more general difference equations will be derived.
Under suitable restrictions for g(x) the special solutions obtained here, can be
proved to be identical with the >Hauptlosungen» mentioned above.

Theorem A. Let g(x) be defined for z > 0, and let
g. L b glx)=o0!
Then every two monotone non-decreasing solutions of (1) differ at most by a
constant.

Proof: Let f(x)=¢(x) and f(x) = y(x) be two monotone non-decreasing
solutions of (1) for x > 0. Then

p(x)=g @)= y(z)

is a function of period 1 and is uniformly bounded, as the monotone functions
@ (x) and Y (x) are certainly bounded for 1 =z = 2. Let

M=1ub p

m=g.lb. px).
Let p(x) not be a constant. Then M >m. Let & be a number with o < & <
<M m

S There is an x, > o such that g(x,) =& As @(x) is non-decreasing

e=glw) =g, + 1) — @x) = @ (b) — @ (a)
for all @« and b with
(3) - To=as=b=uz+ 1.
Hence, as ¥ is non-decreasing
ezy)— ) +pO)—p@)=pd) —pla)
for all a, b satisfying (3). Thus in particular for b=z, + 1
ez play + 1) — pla) = plw) — pla)

for all a in %y = a = %, + 1, and consequently

' g.1 b. denotes the greatest lower bound, 1. u. b. the least upper bound.
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ez lub (plr) —pla)=p) —m.
Similarly for a =z,
&= p(b) — p(x)
for all b in x, = b=z, + 1, and therefore
ezl ub (pb)—p)=M—px,).
Adding we obtain the contradiction
26 =M —m,

which proves the theorem.
Theorem A does not assert the existence of a monotone solution. This is
guaranteed under more restrictive conditions by
Theorem A”: If g(x) is non-increasing and lim g(x) =0, all non-decreasing
&L= L
solutions of (1) are given by

oo

(4) f@)=0C—gx)+ > (9 — g+ p),

w=1

@

where C is a constant; (in case ), g(u) converges, f(x) may simply be written

n=1

in the form C'— > g(xz+ y))

@=0

Proof: According to theorem A, it only remains to be shown, that the
f(x) given by (4) represents a non-decreasing solution of (1). Now the infinite
series in (4) converges; for if 0 < x =, where » is an integer, the expression

N

Do) —glz+ull= g —gh+ p)=
=Zn]g(u)~éyN+u )= D gl

is bounded uniformly in N. Moreover it is obvious, that f(x) is non-decreasing

and that it is a solution of (1).
23—38932. Acta mathematica. 71. Imprimé le 4 juillet 1939,
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x+§
Example: Let g(x) = log Then, according to theorem A’
I 3 I I
x+5 o !L+5 x—%—‘u—i-g
—0—1 + 31 —1
Sw)=C—log — El_Og m R —
@™ / ‘LL+’
= C + log z 11 2_ztw
I I
x+5M=1 \ﬂc+u+— :
. m(1+%)]/1+:—m T+
o+ e x+ = usll 1+~
1+ u
I
1
® I+ -—
’ 2u
Let C'=C + log [[ -~ 7%= Then

(s) fla)=C +log =%
It is evident from theorem A’, that even every solution of

x +

N [

(6) Sl + 1) — fla) = log

)
x

that is non-decreasing for sufficiently large xz, will have to be of the form (z).
Let now F(z) be a strongly convex solution of the functional equation
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A N
treated by A. E. Mayer. Then F(x) is either monotone non-decreasing or mono-
tone non-increasing for sufficiently large x. Besides F'(x) is of constant sign,
as F(x) is continuous and according to (7) F(z)# o. F(x) satisfies the simpler
functional equation

(7) Iz + 2)= F().

x+ 1

Therefore, if F'(x) > o, then F'(z) is non-increasing for sufficiently large x, and
if F(x) <o, F(x) is non-decreasing for sufficiently large x. Hence f(z)=
= —log | F(2x)] is a non-decreasing solution of (6) for sufficiently large .

r(3)
Thus F(z) is of the form C'-m——z .
(x + 1)
r
2
the functional equation (7), it follows that C = ]71;
2

Theorem B. Let g(x) be defined for x> 0 and let

As F(x) is convex, C > o, and using

lim inf _g_(_?f) =0
x

L= OO
Then every two strongly convex solutions of (1) differ at most by a constant.

Proof: If f(x) is a strongly convex solution of (1), we derive from (2),
replacing 4 by 1 — 2

St =N +iy) = (1= f@) + 1f(y);
adding this inequality to (2) it follows that

Sz + 01—y +f((1 =Nz + iy =flz) + /)

for o=A=1. Let a and h be arbitrary positive numbers, then for A= ﬁT&’

h . . .
1—A= pany Al Ak + a + h the last inequality yields

fle+h+a)—fle+a)=flx+ h)—flz).
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Hence the function u(x)=f(x + h) — f() is monotone non-decreasing for every
positive h. Besides

o=ulx+1)—ulx)=gx+ h)—g(x).
We have
g.Lb. (9g(x+ h)—glx)=o.

For, otherwise there would exist a positive & such that
glx+h) —glx)>e
for all x > 0 and hence for positive integers =
gnh)>(n—1)e + g(h);

by assumption there are arbitrarily large x,, such that

let nh < xy<(n + 1)h; then,

e _glwd o gl = gl _n—1_ g
2 h Zo (n+ 1)h Z, e, mA1 T,

1%

whereas the expression on the right is certainly > 2—8— for sufficiently large ;.

h
According to theorem A u(x)= f(x + k) —f(x) is then uniquely determined
up to an additive constant = C,. Hence for two convex solutions ¢ (z) and

Y (@) of (1)

is a function of period 1, for which
ple+h)—p@)=C
is independent of x. Let again

M=1lwub pl), m=g Lb px

and o< e < » in case p(x) is not a constant. Let 3 = a,> 2 be such,

that p(r,) =M —e¢& and let a; be such that p(x)<m + ¢ and z, <z, = 4.
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Then for h ==z, — x40 < h = 2) and any x> o0
ple+h)—pa)=p)—p)=C=m—M+ze
Put x =x,—h (>0). Then
m—M+z2ezplxy) —plag—h=(M—¢e)—M=—e¢,
as M =1 u. b. p(x). Consequently

C3e= M —m,
which leads to a contradiction. Thus p{x) is constant and theorem B proved.

Theorem B’: Let ¢(x) have a continuous derivative for x >0. Let ¢’ (z)

be monotone non-increasing and lim ¢’ (z) = 0. Then all strongly. convex solu-

QL=—e

tions of (1) are of the form

®

(8) flay=C—yx—gla)— D (gle + u) — g(u) —zg ()

w=1

where C = f(1) and

Ny
u=1

y = lim (Z g'(u)—g(n))-
Proof: According to theorem B we only have to show, that the f(z) given
by (8) is a convex solution of (1). In order to prove the convergence of the

infinite series, it is sufficient to note, that it obviously converges for x =0 and

that the series Y [¢"(x + u) - ¢ (1)}, obtained by formal differentiation, converges
pu=1

absolutly and hence uniformly for uniformly bounded x (owing to the same ar-

gument as used in the proof of theorem A’). Moreover

fe+1)—flx)=—y—gle+ 1)+ gl

— Qe tu+)—gle+u)—g W)

— 4 gl)—lim [m bt — ﬁg'm)]:g(x),

fn—s 0 u—t.
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as v
z4+1

limjglz +n+1)—gn)]=lm | ¢'(n + y)dy=0;

Ne——s O Y O

besides

The convex character of f(x) is obvious.

Note: The assumption of strong convexity of f(x) cannot be weakened to
convexity alone. There are under the same assumptions for g(x) as in theorem
B’ always many other »convex» solutions, at least on the basis of Zermelo's
axiom. For with g(x) also g(z) — 1 satisfies the assumptions. Thus the equation
F(x+ 1)— F(x)=g(x) — 1 has a strongly convex solution F(x). Let now ¢(z)
be a discontinuous solution of the functional equation ¢{x + y)= ¢ (z) + ¢(y),
which may be chosen in such a way, that ¢(1)=1.' ¢(x) is convex and
ple+1)=¢(x) + 1. Then fl(xr)=F(x)+ ¢(x) is a discontinuous convex solu-
tion of our equation (I).

Example: For g(x) =log x the assumptions of theorem B’ are satisfied. All
strongly convex solutions of (1) will then be given by

f(x)zf(l)—yx-—i [log(l + %)——%] —lovgm

n=1

n
where y = lim (Z :7 — log n) is Euler's constant. Hence
Ne—s

pu=1

Sl@)=f(1) + log I'(x)

and we regain the theorem of H. Bohr.

It seems possible to extend the preceding theorems in various ways to
equations of more general type than equation (1). An extension to difference
equations shall be given here. '

! Such solutions are constructed by Hamel: Mathematische Annalen 60, p. 459—462.
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Theorem C. Given the difference equation
(9) anf(@+n) +afl@+n—1)+ -+ anflx) = g(z)

with constant real coefficients a; for a function f(x) defined for x > 0. Let all
roots of the characteristic equation

(10) : Flo)=aye" + a, 0" '+ -+ an=0

be simple and of absolute value 1 (real or imaginary).
If o== + 1 is a root of (10), and if lim g(x) = o, then the difference of any

L O

two monotone non-decreasing solutions of (9) is a constant.

If o=+ 1 is not a root of (10) and if lim q—(x@

JI——

=0, then there exists at

most one monotone non-decreasing solution of (9g).

Proof: Let f(z)=¢(x) and f(x)= y(x) be two monotone non-decreasing
solutions of (9). Then ¢ (z)—y¥(x)= P(x) is a solution of the corresponding
homogeneous equation. Hence P(x) is of the form

(r1) Pl)= 2 pu(@)el,

where the p.{x) are functions of period 1, determined by the system of linear
equations

Plx + h)= Z’p ¢ttt (h=o0,...,n—1);

IL“—

the determinant of these equations is (g, ... gn)"H (o,— o) # 0. As difference

>k
of two monotone functions P(x) is bounded in every. positive finite interval;
hence all p;(x) are bounded everywhere.

We cannot assert, that P(x) is uniformly almost periodic in the ordinary
sense, at it is not necessarily continuous. In spite of that the existence of a
relatively dense set of translation numbers of P(x) for every & > o is easily
established. Let ¢, =¢'* and let B= M’fmx (1 +]|4)). According to Kronecker's

! Cf.e. g. P. M. Batchelder: An introduction to linear difference equations, Chapt. I, § 4,
(the proofs given there have to be modified slightly for the case of non-analytic solumons) or Nor-
lund 1. c. p. 295—6.
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theorem' there is for given d > o0 a number [ such that every interval of length
{ contains a solution x of the » + 1 inequalities

|2nm|§%7 |M~x|§% (mod 27) (k=1,...,n);

if ¥ is the integral number nearest to =,

6(1 + |/'L,v¢|)

<
|2yl = =

=9 (k=1,..., n).

Thus every interval of length L =1+ 4 contains an integral number y, for
which all |Axy| < 6 (mod 27). Then

| Pz +y)— Zp¢x+y oftY — (%) ¢))

sz of (o — I)l

n
= lp@)}-le'—1]=e

for sufficiently small 0 = d (¢).
Let P(x) not be a constant. Then there are two values x, and x,, such that

| P () — Pla,)| =32 >o.
Hence, if y is a translation number pertaining to e,
[ Play+9)— Pl + o)l = e

Thus the total variation of P(x) is = ¢ in every interval of sufficient length.

Let N be such, that the total variation of P(x)=¢ (@) —y(x) is = ¢ in
every interval of length N. As the total variation of P(z) is at most equal to
the sum of the total variations of ¢(z) and ¥(x) and as those functions are
monotone, we have

ple+ N)—@)+y+N)—yp) =e;

hence for every positive integer m

! Cf.e. g. J. Favard: Lecons sur les fonctions presquepériodiques, p. 18—2I.



Special Solutions of Certain Difference Equations. 185
ple+mN)+yY@+mN)=me + @p(x) + yx)
and eonsequently

(12) lim 1nf¢( z) + ¢ (@)

r—® x

IlV

e>0

b

unless P(x) is a constant.
The solutions of (9) may be found by the method of variations of con-

stants.! f(x) is of the form
x) = 3, ¢ al)
=1

where ¢;(x) is a solution of the equation

ale + 1) —alx) o (0
This implies
k—1
(13) al+ k) =a@) + == Zg(x+”).

+1
o

o F'le) &,

If lim g(x) = 0, we have

155 (e + 1 o
tim 3 L S tim S 1ot +
u=0 l u=0
and hence .
. Cy (.Q’J + k) .
;}I_I.nm c+ k0
. Sl + k)
l}inm ct+k
If f(x) is monotone, this implies
i
r—ax X
In particular
lim 2% — i 2@
P— 0 X ot 0O x

! Cf. Batchelder loc. cit. p. 13.

24—3932. Acta mathematica. 71. Imprimé le 4 juillet 1939.
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This constitutes a contradiction to (12) and consequently P(x) is a constant.
Thus the first part of theorem C is proved.

If only lim 9%30) =0, it follows from (13), that at least
T— ®
. alr+k
Lh_I.I; @+ap ©°

Hence for a solution f(z) of (9)

. fle+ k)
i R O
and if f is also monotone
(14) il_r.rij%f) =0.

The function A(x)= ¢ (z) -+ ¥ (x) is a monotone non-decreasing solution of the
difference equation

S aile+ @ =290

u=0

according to (12) and (14)
(15) éex<l(z)<x2

for sufficiently large .
Let now ¢== + 1 not be a root of (10}. Then

u=0
Let 3 la=4. 1t
u=0
(16) AMa + n) —Alx) < lﬂ|/'L(9c)|
2 A !
then also
l(x+z)—l(x)<m|l(x)l (t=o0 n)
2A ) ) b

and
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n

2", auhlx + u) — 2 au 2 (x)

u=0 u=0

n

S, e + w) — 1(a)

w=0

= 3 laul(blo + @) — 2ol = 1L

Consequently

But for sufficiently large x

Thus |A(z)| <§-e-x, and we are led to a contradiction with (15), unless P(x)

is a constant or (16) does not hold.
Therefore, if P(x) is not a constant, we have for all sufficiently large =

Lo+ — 10z P,

z(x+n)g(1+%)z(x)

as i(z) > o for large « according to (i5). But then A(x) would increase ex-
ponentially with x, which also contradicts (15). Hence P(x)= const. = C. As
C would have to be a solution of the homogeneous equation belonging to (9),
C-d=o0 and hence U =o0. This completes the proof of theorem C.

Example: The previously considered equation

fle + 1) + fla)=log x

can have at most one monotone non-decreasing solution. That solution is
1
Var (”“ZL )

given by

S (o) = log
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Theorem D. Let g(x) be defined and continuously differentiable for x> o,
and let all roots of equation (10) be simple and of absolute value 1.

L= O

If lim ¢’ (x) =o0, every two strongly convex solutions of (9) differ at most

by a constant.

If + 1 is not a root of equation (10) and if lim gx(x) = 0, equation (9) has

Lm—r 0

at most one strongly convex solution.

Proof: If f(x) is a convex solution of (9), then for h >0 u(x)=f{x + h)—
— f(x) is a monotone non-decreasing solution of the difference equation

aguu(x +n) + au{ec +n— 1)+ -+ apulr)=gx + h)——g(x).
As gz + h)—gx)=nh-g¢ (§) we have

lim [g(z + ) — g @) =o or lim g("‘“’;—-"(x):o

2> 0 Lmmr

respectively. Hence, according to theorem C, f(x + k) — f(z) is uniquely deter-
mined except for an additive constant. Let f(x) = ¢ (x) and f(x) =y (z) be two
convex solutions of (9). Then P(x)=¢(x)— ¢(x) is a solution of the homo-
geneous equation. Besides for A > o0

(17) P(x + h) — P(x) = const. = C}.

As difference of two convex functions P(x) is continuous. Thus P (x) is
representable in the form (11) with continuous functions p,(x). The p.(x) being
continuous and of period 1 are uniformly bounded. Therefore P(x) is bounded.
But from (17) P(x + kh)= P(x)+ & C), for integers k. The boundedness of P(z)
implies, that ()= o for every h >o0. Thus P(x) is a constant.

Similar uniqueness theorems may be exspected for equations of the form

1

18) ff(x+y)K(y)dy=g(x),

G
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under suitable conditions for K and g.! Of particular interest in this connec-
tion seems to be the case, in which all roots of the equation
1
f@”K(y)dy=o,

]

which corresponds to the characteristic equation (10), are simple and of ab-

solute value 1.

! For equations of type (18) see F. Jobhn: Bestimmung einer Funktion aus ihren Integralen
fiber gewisse Mannigfaltigkeiten, Mathematische Annalen 109, p. 488——520, and J. Delsarte: Les fone-
tions »moyenve-périodiques», Journal de Mathématiques pures et appliquées, vol. 100, p. 403—453.



