ON WARING'S PROBLEM FOR CUBES.

By

H. DAVENPORT
of MANCHESTER.

Introduction.

The object of this paper is to give a proof of the following

Theorem. Almost all positive integers are representable as the sum of four
positive integral cubes. "More precisely, if E(N) denotes the number of positive in-
tegers less than N thal are not so representable, then

1

E(N)= O(N*ﬁ%”)

as N— o, for any ¢ > 0.

It was proved by Hardy and Littlewood' that almost all positive integers
are representable as the sum of five positive integral cubes. The new weapon
which is necessary in order to improve on this is provided by Lemma 1 below.

It is not true that almost all positive integers are sums of three positive
integral cubes. This can be seen in two different ways. Firstly, since any cube
is congruent to o, 1, or — 1 (mod 9), the sum of three cubes cannot be con-
gruent to 4 or 5§ (mod 9). Secondly, the number of integral solutions of

2+ 9+ A <N,
T= Yy=z>0,

is easily found to be asymptotically

o))

! Partitio Numerorum VI, Math. Zeitschrift, 23 (1925), 1—37.
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as N— . Hence not more than 0-134 ... N positive integers less than N are

representable as the sum of three positive integral cubes.
Lemma 1. ZThe number of solutions of

(1) By tad=al+ Y+ 2

e integers xy, ¥y,, 21, X3, Yo, 2o subject to

4 , "
(2) P§x17x2§2P7 P5§?/1,Zl,?/2,2'2§21)‘5
18, .
8 O(P5 )as P — o, for any ¢ > o.
E+¢3
Progf:*  The number of solutions with x; = x, is O (P” ), since the number

13

of choices for xz, y,, z, is O(P‘g), and the equation m = y; + 2 has only O (m?)
solutions for given m.
Hence we counsider only solutions with x, > z,. Writing x,=x, x,=x +{,

(1) becomes
(3) 3t + 3822+ B+ oy + A=yl + 2.
Since the left-hand side is greater than 3 P?¢ and the right-hand side is at most

12
16 P%, we have

(4) , 0<t<6P,

For any ¢ satisfying (4), denote by #(f, m) the number of representations of
an integer m by the left-hand side of (3), subject to (2) (where x, =z, ; = x + ).
Denote by r(m) the number of representations of m by the right-hand side of
(3), subject to (2). The number of solutions of (3) is

2 rm)r(t, m = {Z ot (m)}% {Z 2, m)}%.
The first factor on the right is

o({PEPE* ) = o(pr+9.

! Expositions of the general method (of which the proof of this Lemma is a particular case)
will appear in the Proc. Royal Sec., and in Acta Arithmetica.
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Also

ZZ?ztm M,

t m
where M is the number of solutions of
(5) 3tad + 3%+l =3ta + 3882, + ¥l + 2

in all the variables, subject to (2) and (4).
The number of solutions of (5) with z; = z, is

O(P%+1+%+e) — 0(Ps+9).

As for the solutions with x; &= x,, given y,, 21, ¥s, 2, with ¥ + 25 — 4} — 2} & o,
the equation (5) determines ¢ and x, — x, with only O(P*) possibilities, as factors
of this number. These then determine x, and «, uniquely. Hence the number

()(P%+ ) .

M:O(P%“),

of solutions of (5) with z, = x, is
Hence

and so the number of solutions of (1) subject to (2) is

0 (.P}g “) +0 (PHS(P};H)%)

O(PF-FZS)

which proves the Lemma.

Notation.

Let ¢ be a fixed small positive number. We shall use ¢ to denote an arbi-
trarily small .positive number, not the same throughout. The constants implied
by the symbol O depend only on ¢ and ¢. ¢, ... denote positive absolute con-
stants. ¢(r, &), ¢;(h) denote numbers which depend only on the variables
specified.

We use the abbreviations

ela) = e, e (b)=¢ (3) :



126 H. Davenport.

For any large positive real number P we define

T(e)= Z e{ax?®),

P=z=x=2P

Vie)= T*(a) Ti(a) = Do (n)e(na),

so that ¢ (n) denotes the number of representations of » as
w® + 2% + gyt + P
where
, 4 1
P=2w, x=2P, Pr=y z=2P5
Throughout the paper, ¢ and « denote positive integers satisfying a = ¢,
(a, ) = 1. We define

Ig= > Ia e,

(P%)s =n= (2 P%)B
a
T*(a, a, q):q_lsa,qI(a»_ é))

Tf(a’ a, Q):th Sa,(]Il ((Z— g)v

V* (a’ a7 Q) = (T* (a? a) Q) T;k (a7 a’ Q))g’

A, q)=q* 2 (8a,q)* €4 (— ma),

)

S(n)= X An, q),

g=1

@(R, ﬂ):ZA(n) Q)'

g=1

The functions V(e) and V*(e, a, q) (for fixed a, ¢) are periodic in o with
period I.
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Inequality for 7* (e, a, q).
"Lemma 2. |Sq,] < clq%.

Progf. Landau, Satz 315."

Lemma 3. If |B| = -, then

N o=

1(8) = O (min (P, P~*[8[Y)),
1,(8) = O (min (P5, P~F|g).

Proof. The inequality I(8) == O(P) is trivial. Also, if |@] = -, we have

N[

elBn)=0(8]"
for any »,, n,. Hence, by Abel’s Lemma,

19=" 2 »n¥e(gn)

3p<n=(app

= 0(P7*87).

Lemma 4. If a:f‘q- + 8, where | 8| <=, then

N

T*(a, a, ¢) = 0 (g~ ¥ min (P, P 8]),

Tt (@, a,9)= 0 (g~ ¥ min (P%, P“%Iﬂl‘l))-

Proof. Lemmas 2, 3.

Approximation to 7 ().
Lemma 5. If n -+ 0 is any integer, then
d 2te
Sa,n,q= D eqlaz® + nz) =0 (q3 (n, q)).
a==1 i

Proof. Lemma 2 of Davenport-Heilbronn, Proc. London Math. Soc., (2), 43
(1937), 73—104.

! References to Landau are to Vorlesungen iiber Zahlentheorie, (Leipzig 1927), volume 1.
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Lemma 6. Suppose that
| Hz1, ¢s B, §=0(g H>),

and let n == 0 be any integer. Then

H
fe(ﬁxs——%) dex = — zﬂq@.n(e(ﬂﬂg—%g) — 1) + O(gn?H™).
0

Proof.  After integration by parts [ times, the integral becomes

o) =) - > (i) o= ]

h=1

+ (27;1@%) fH e(_"q’“") D (e(ga®) da,

where D" denotes the h-th differential coefficient, and [f(»)|H = f(H)— f(o). It

is easgily verified that

Die@a®) = 2 olr ) a*e(ga’).

Yhsrsh

L1
Foro=x =< H, 3h§r§h, we have

(3r B = (q—r H—riet+d) HSr—h)
= () (q—h (q H—1+J)h—r H—ha)

= O(g~* H~"9),
Hence, for o= < H, '

D*(e(8x%) = O(c, (h) g H?).
Using this in the above expression, the error term becomes
= g \1 q\!
0 Z(m) e, (h) g H—15 + (ITI) e () -t H9 1),
h=1 '

Choose I to be the least integer for which 1 — 16 =< —d. Then this error

term is
O (gn=2 H9).
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Lemma 7'. If ¢ = :—Z‘ + 8, where ¢ < P and |8| < g P29, then

T(e)=1T%(e, a, q) + 0((_1?2‘ +E).

Proof. We have

h=1 P—h <gP——)£
a7 e
By Poisson’s summation formula,
2 P—h 2P—h
q » q
e(B(mq + h)® -:fe(ﬁ(xq + W de + fe(ﬂ(xq + h) — nx)dx
Pt om 22 P e P—h
1 7 T e
2p © 2 p
=q_1fe(ﬂx3)dx +qt 2> eq(nh)fe(ﬂm‘"’—%) dz,
n=—-—o
r n+0 p

P—h 2P—h
or —

where X denotes that any term with m = is counted with a

factor é There are at most two values of & for which such terms exist, so the

presence of the dash only introduces an error O(1) in 7'(a).

Since

5
0

v Eegn = e@n + 0l + 0l Eg)
=n—§e(ﬁn)+ O(P~%) + 0(P2|8])

—ndg (Bn) + O(P)

forn=y=n+1, PP=n<(2P)?® we have

! An alternative method of proof is given in Landau, Satz 329 to Satz 337. The less pre-
cise result obtainable by a single partial summation wounld in fact also suffice, but then the proof
of Lemma 11 would be much more complicated.

17—3932. Acta mathematica. 71. Imprimé le 8 mai 1939.
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2p (2.

fe(ﬁw"’)dx=£ f@F%e(ﬂy)d?/

r : 31)-1 .

=TI1(@)+ 0(1).
Hence
2P
T() T*(aaq—f—() +Z q Sa,n,qf (ﬂx __n__x)dx
n=—o q
n+0 P
= T*{a, a,q)+ O(1)+ =,
it P 2P
The conditions of Lemma 6 are satisfied for f and f , hence
0 0
y—_ S —1 ( 3__2%1) ( s nP
b s ;mfz So,nqlelB(2P) . B P — .
ne0
0( Z | Sa,n, gl g P—(r)
b0
=— 3 +3,
271
say.

By Lemma g,

3= (P—JZ @ i (n, q))

n=1

0 (P~‘f @ N i (md)—2)

dlg m=1
O(q;'f‘?f)
Also
E‘e( (2 P)? Zn 1Sun g€ (— 2nP)
n|>¢?
—e(B PP 2 7wt So, n, q €q(— nP)
|n]>q?

q2
+0(Zn—1|sa,n,q|)

n=1
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) q @ . _
— B P D) 3 2 g th=20),
h=1 n=¢q?+1 " q
0 2 v (h — P
—e(ﬂP*")Zeq(ahd) Z 7: n < )27
h=1 n=q%+1
q2
+0 (Z ngt " (n, q))
n=1

=ol#**),

where ||z|| denotes the minimum of |z — x| for all integral ». This proves

Lemma 7.
Lemma 8. If « zg + B3, where q = PO g 18l = ¢ Pv%(HJ), then
T, (e) = T3 (e, a, q) + Olg? 7).
Lemma 9. If q < P9, and |B| =< q P>, then
| T(e) = 0(g~ % min (P, P2| g|7).
Proof. By Lemmas 7, 4,

T(@)= 0 ") + 0(¢} min (P, P~2|87).
Also
q1+e < P, q1+s < P_”ﬂl_l-
Lemma 10. If g = P>"" and |8] < ¢= P~ 3% then

7,() = 0(g~ % min (P5, P3| 8]71)).

The Farey Dissection.

We divide the interval o = o < 1 into “Farey arcs’, that is, into intervals

surrounding each rational point g with ¢ = P>*?. The Farey arc surrounding;—l
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atay to & ta where ! and “2 are the Farey fractions of order
q+q; q+aq q1 Q2

extends from

P?*9 next less than and next greater than L(]i. These Farey arcs cover precisely

the interval o0 = ¢ = 1, when we consider the arc surrounding% to have period 1,
and so to project into the left-hand side of the interval. The points of the

Farey are surrounding g have the form
[44

a=-+8,

p B

— 31 g-—l 1)—2—6‘ = /77 = 32 q—l P—g—d"

A

1 I
where -2-§~9,§1, 2~§«92 I.

If 9= P%(I_J), we call the arc a major arc', and denote it by M, ,. If

40
Pt o q = P, we call the arc a minor are, and denote it by me, The
aggregate of the major arcs is denoted by 9, and that of the minor ares by m.

The Major Ares.
Lemma 11. Zf| Vie)— V¥, a g da=0(P** 1),
N
Progf. The conditions of Lemmas 4, 7, 9 are satisfied on M, ,, since
P9 pi—s , hence
©) T(e)— T*(e, a, 00 = 0 (g8 ¥,
(7) T(a), T* (e, a, ) = 0 (g~ ¥ min (P, P~2| g1).

The conditions of Lemmas 4, 8, 10 are satisfied on MM, 4, since g1 P20 <

gt P 5@+d) , hence

o:m.
~

3

8) Ty (@) — It @ g) = 08 *
0lg?

.)QD-‘

)

! This violates the usual convention connecting the upper bound for the denominators of the
major arcs with the order of the Farey dissection. It corresponds, however, to the fundamentally
different ways in which the ares are treated.

(9) T,(a), Tt (a, a, q9) =
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By (6), (7), (8), (9),

Tri— 1T = (g8 g b min (P, P gl g8 P

8
5

+q3‘+5 _%Piq 5 min (P2, ’_‘|ﬁ|_2)
Hence

fl Via)— V¥(a a, g) [ da
Py o

. 16
= O(Q_é+2£P5fmm (P2, P82 dg

0

+ q’§+2‘P?j min (P, P—sﬂ—4)dﬂ)

= 0([%*.“1)5 + q_§+28P5).
Hence

13 9
ZflV( — V¥(a, a, g |2da—~0(1)5 > q-q_5+25)
9JrzS)Jl

whence the result.

Weyl’s Inequality.
Lemma 12. Zeq (ax®) =0 (m8 q° (m% + mq_% + mi q}*)).
Proof. Landau, Satz 267, with k=3 (K= 4).

Lemma 13. If P/ < g < P**9, and [B| = ¢~ P29, then

T(a)=0(Pi*9).
Proof. Let

Sw= D\ efaa?).

1
lsx=m3

By Lemma 12, if m = (2 P)®,

Su=0(Pege (Pl + Pt + Plgd))
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—o(p(pt + Pi+19))

— O(P%+%d‘+4£)'
By partial summation, if P, = [(2 P)}] and P, = — [— P?¥|,
P
T(“) = Z (Sp — Sn—1)e ({3 n)
n=2P,
Pl
= D Sule(Bn) —e(Bn + 1)) — Sp~1e(8(Py—1)) + Sp,e(8 Py)
n=2P,

— 0[P pog) 4 1)
— O(P%+}J+4E)
since PP|g|<q 1P ¥ < 1.

4
5

Lemma 14. If P4 "< g < PP and |8 < g P 3% then

Ty() = 0 (psli+ ),

Minor Ares.

1
Lemma 15. [| V(a)lgda:0(P4+15+Sd)‘

m *
m

Proof. (1) Consider arcs mq , for which
P% (l—lf) < q é .PI_J.
The conditions of Lemma ¢ are satisfied, hence
_1
7() = 0{¢~ ¥ min (2, P~2|8]7).
The conditions of Lemma 14 are satisfied, since ¢! P29 < g1 P_%(Hd‘), hence

T, (@)= 0 (P +9).

Thus, for the values of ¢ under consideration,
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@

f|V(a)|2da:O(qﬂgP4(g+J)fmin (P4, P—Sﬂ“4)dﬁ)

Mg o 0

— O(Q—§P%+4J+l)

and the total contribution of the arcs corresponding to these ¢'s is

0( Z Zq-—-% 3+%+4d\)

g=pl—0 a
— 0(P3+{:§+w+§)
( P o‘)
—olp'"u"),
(2) Consider now values of ¢ satisfying P9 < ¢ =< P?*/. On such ares,
T(@=o(rt+),

by Lemma 13. Hence the contribution of these arcs is
1
o(p2<f?+")f|f(a) Tf(a)ma).
0

The integral is precisely equal to the number of solutions of (1), subject to (2).

13
Hence by Lemma 1, it is O(P5 +E), and the above contribution is

3 13
0(P§+2J+;+s)

Completion‘ of the Analytical Argument.

Let R = [P%t (I_J)], so that the major arcs are those for which ¢ < E. 1In
what follows, 4, @ (and similarly 4,, @, and 4,, ,) denote positive integers
satisfying Q=< R, 4 = @, (4, Q) =1.
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2 8
V¥{a, 4, Q) =0 (P4 “"), where, if « 7s on a major

arc My, q, the term Q=¢q, A=a is to be omitted from the sum.
Progf. By Lemma 4, and the periodicity of V*(a, 4, @)}, we have, for any

o A, Q,
Vi (e, A, Q) = O(Q—%P—4 “_%"_21)%)'

Hence the integral of the Lemma is

oyl
Q 4

555 Rl

Q 4; Q@ A
Q, A3+Qq, 4y

_ézl

A1|

—2 —2
o del,

where the first integral is over (o, 1) excluding M4, ¢, and the second is over

(0, 1) excluding My, ¢, and My, q,.
The first sum is

0( 1 s [ aan
Q A .
1g-1p—2—0

2

lQ

|

0 ( ? Q Q"g Qs s (2+J))

——+6+3J+-—(1—d‘))

= O\P
_ 0( 3+~+3J)'
For the second sum, we observe that, for any «, either
oAl A 4, Al A2|'
e~ 20 @ Qs

We can suppose without loss of generality that the former holds. Since « is

not on My, ¢,, we have

4,
o — 22

@

l > Q—l P9,
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Hence
—2

—2
a—%g“ da=0 (P2 @
2

-2l

and the sum is

+4+2J 1(3)
0 §§2%<A G4, 0]
Qr, A1#£Qy, As

where {4, @, — A; @,> denotes the absolutely least residue of A4, @, — 4, @,
(mod @, Q,). Given @, @,, =, the relation {4, Q, — A4, @) = n determines 4,,
A, uniquely. Hence the above expression is

R T T

Q n=1

114
7+4+2d+—~(1——(r)+——(1 d)
ol )

=0 (P‘_ %)

1
1.y
Lemma 17. fl V(a)—zz V¥ (a, A, Q)lzéld:O(P4+10+s )
0 Q@ 4

Progf. If « is on a major arc Mg, 4,

IV(a)——ZZ V*(a, A, Q)lglV( @) — V¥*(q, a,__|+|22 V¥(a, A, Ql

QR 4

and if ¢ is on a minor are
— 227"
Q 4

where the dash has the same meaning as in the enunciation of Lemma 16.

D=7 @] +]| 2D 7@ 4, @),
Q 4

Hence the result follows from Lemmas 11, 15, 16

1
4+ﬁ+so)

Lemma 18. Z (o) — ) S (R, n)*=0 (P

. n

where, for 3 P> < n < 15 P®, W (n) satisfies

3

¢y P < (n) < ¢ PH-

18—3932. Acia mathematica. 71. Tmprimé le 8 mai 1939,
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Progof. Let
I _2
Y(n) = 381 2, (g ngn30,) 3,

N, N2, Ny, Ny

where n,, n,, ny, n, are summed over all representations of » as n; + n, + 1y + n,
subject to '
4
PP =y, n, = (2 P, (P5> g, ny = (ZP )

By the definition of I, [, .
e (o) zoor{le- 4

Hence

n

ZZ (@, 4, Q) = Zip n)S (R, n)e(n ).
Q 4

and

Thus
Vi) — > R Ve, 4, Q= dle(n) — @ (n)S(R, n)e(na)
Q@ 4 n

This shows that the first assertion of Lemma 18 is a consequence of Lemma 17.

As regards the magnitude of ¥ (n), it is obvious that if 3 P® < »n < 15 P?,
ng and n, can be chosen arbitrarily, and that the number of representations of
n—mny—mny as ny -+ n, lies between ¢, (n — ny — n,) and ¢;(n — 1y — u,), that is,
between ¢ P? and ¢, P°. Hence ‘

v > & e[ e pi) (o pd) |7 ()

> ¢y Pg ,
and similarly,
Wwn) < ¢, Ph.

The Singular Series.

Lemma 19. For all n, q, |A(n, q)] < csq” *.
Proof. By Lemma 2,

1

|A(n, Nl < 4_42(014%)4<08q_§~

a
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Lemma 20. If (¢, ¢)) =1, then A(n, q,q5)= A n, q,) A (n, q,).

Proof. Landau, Satz 282.

The following notation corresponds to that of Landau, pp. 280—302, in the
case k=3, s = 4.

For any prime p and any positive integer [, let N(p’, #) denote the number
of solutions of

2+ x4+ a2+ xi=n (mod pY), 0 = x; < P,

in which not all of the x’s are divisible by p.
For any prime p let y=1 if p>3 and y=2 if p=3. Let P,=p".

Lemma 21. Let 30+ ¢ be the exact power to which p divides n, where
o=c=xz2. Let

l,=max (30 +0+ 1, 30+ 7).

Then
‘ A, p)=o0 if 1>1,,
and
® o—1
2p ()= D A{n, p")=P* N(P,, 0) X\p~"
=0 v=0

_ 7
+_29 QPO_SN(PO, F"),
where, if ¢ = 0, the sum over v is to be read as zero.
Progf. This is the case k=3, s =4 of Landau’s Satz 293.
Corollary. If pt 6mn then A(n, p*)=o0 for v > 1.

Lemma 22. If p # 3 then N(P,, ») >0 for all n.
Proof. By Landau, Satz 300 and Satz 301 (with s = 4), it suffices to prove
that

4Zfi:~:v(3,p — 1)+ 1.
If p=2,
Py—1 22 —1 -
yo B —0=" (3 )=3
It p >3,
Py—1
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Lemma 23. If p=3 (so that Py=9) then N (P, u) >0 for all n.
Proof. 12 + 8% + 0% + 0® = 0 (mod 9},
m-13 + (4 —m)-0®*=m (mod 9), for 1 = m = 4,
m-8 + (4 —m)-0°*= —m (mod g), for 1 = m = 4.
Lemma 24. For any prime p and any n,
ap(n) Z p~°.
Proof. (1) Suppose p*4n, so that o =0. By Lemmas 21, 22, 23,
2p(n) = P* N (Py, )
= P;®
= p b,
(2) Suppose p*|n, so that ¢ = 1. By Lemmas 21, 22, 23,
1p(n) = P73 N (P,, o)
=

=ps.

Lemma 25. For any prime p,

refs

[A(n, p)l <eop™* of phn,
| A(n, p)l < eop™ of pln.

Progf. Landau, Siitze 317, 318.

Lemma 26. For any prime p,

—3 ..
I%Z)(”)_ I|< Cop 2 of p*n,
xp () > 1 — ey~ if pln.

Proof. Landau, Sitze 320, 322.

Lemma 27. The series
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s absolutely convergent, and
S () > ¢y, (log log ).

Progf. By the first half of Lemma 26, the product

H 2p (n)

is absolutely convergent; hence ZA(n, g) is absolutely convergent, and & (n) =

g==1
Hx,,(n). By Lemmas 24, 26,
P

"

e (L) (1)

pP=2¢4 > 2619 > 2010
pin

T H (1 —eop™)

P>20C
pln

> oy [ (1 — 7

pln

> ¢;; (log log n) ¢,
Lemma 28. For n=1,

Z A (72, Q) =0 (77-‘ ‘1) ne). .

e

Proof. Any positive integer ¢ is expressible as ¢; ¢, g3, where
(1) ¢, is quadratfrei, and (g, 6) =1,

(2) g, is composed of prime powers with exponents = 2, and (¢;, 6) =1,
(3) g5 is of the form 2*3*,

@) (¢, @)= @2, 1) = (@, 1) = 1.
By Lemma 21, if plq, (so that p > 3),

A, p)=o0 if I>l,=max(3e+0+ 1, 30+ 1)
=3¢+0+ 1.
Hence, if p' is one of the prime powers composing ¢;, and 4 (n, p') = o, we have

Il=3¢+0+1,
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whence p'~!|n, whence (since [= 2), p'|»n®. Hence, if 4 (n, q,) == 0, we must
have g,|n®.
By Lemma 19,

By Lemma 25,

(n, 1) < ([[%p ﬂ([[pa 0l (n, 0¥).

pla plas
p,n
Hence
24 dg=0( X @ 2", )¢ g,
qzn 91> Q25 Qs
T Q2 3=
o | N2
_ 1 _1
= «"2915(”®Q2%j
G, 92, Q3
@z | ?
Now
@ =d1=0(m),
az|m? G| n?

1 1\—1 —1
Satsl— )T =357 = o,
gs

1 pR 4,
DT g = DA D rd)TE
N din r=1
=0(2)
d|n
= 0 (nf)

Hence the result.

Lemma 29. S @SR ) - ) Sm) = 0(PY.

3P8=n=15P8

Progf. By Lemma 18, y(n) = O(P%) By Lemma 28,
S(n) — &(R, n) = D\ A(n, q)

¢>R

—o(r i p)

Hence the result.
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Proof of the Theorem.

If E(N) denotes the number of positive integers not exceeding N that are not
representable as the sum of four positive integral cubes, we have to prove that

Em=oly s

as N— o, for any 6, > o.

1
Choose & = é d,, and choose P == (é N)3 . Then
3PP< N<2N<15P%
'By Lemmas 18, 29,

1
4+ﬁ+3d‘).

| et - w S~ olp

Il\ M

N<

For any » in this range which is not representable as the sum of four positive
integral cubes we have ¢(n) =0, whence, by Lemmas 18, 27,

(e(n) — (%) & (1) > (o, PP ey, (log log 15 PY)—)’

> psc,
Thus we have

1 6
BN~ Em=olptureiiv)

_ 0(P3-%+3d\+s)
-0 (N1~?716 +d“)

for N> N,= N,(d,). Hence, if 27! < »JJVV,

0

1—2 +d,
E(g)~E(;\L): 0((2{1) ” ) for o=r =,

- o N N 1~.l+d‘l
o) o35

=0

Choose 7, so that 27 < N® < 27+!. The condition 27+ < N is satisfied for
¢
N> N,= N,(d,). Hence, for N> N,,

1

E(N)= O(N _%”‘).

- ee—-———



