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w I. Introduction. The object of this note is to introduce new variational 

methods, which belong to the order of ideas of MINKOWSKI'S theorem on the 

existence of a flat support for a convex figure. We here apply these methods 

to the inhomogeneous form of the >>simplest problem~ of the Calculus of Varia- 

tions, and we establish, by means of them, a necessary condition, of a very 

general form, for an attained minimum. In the proof, an important part is also 

played by theorems of measurability which belong to the theory of Analytic and 

Projective Sets. 

Our necessary condition generalizes at the same time the necessary condition 

of WmERSTRASS, the equations to an extremal of EULER and Du Bols REY~OND, 

and the equation ~(x, y ) ~  o to certain limiting solutions of CARATHEODORY. 

Our methods enable us to dispense with many classical restrictions on the 

integrand f ( x ,  y, y'). The important restrictions of TONELLi on the existence 

and order of magnitude of the partial derivative.fv are replaced by weaker restric- 

tions on the behaviour of the corresponding partial finite-difference ratio. Apart 

from these weakened restrictions which concern only the dependence of f on the 

variable y, our integrand may be any function measurable (B). 

We use integration consistently in the general DENJOY sense. This corresponds 

to an enlargement of the class of admissible curves. We consider also a still 

further enlargement obtained by admitting what we term generalized curves. 
In  variational problems such as we treat here, in which no restriction is 

imposed on the order of magnitude of fv, ~hese enlargements of the class of 

admissible curves do not necessarily lead to corresponding generalizations of the 

classical problems. I t  is easily seen, however, that our methods apply also - -  and 

are indeed slightly simplified ~ when classical restrictions are imposed on the 
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admissible curves, in particular when integration is understood in the LEBESG~E 

sense instead of in the general Denjoy sense. 

Finally, although throughout the present note we limit ourselves to the 

simplest problem of the Calculus of Variations, it may be observed that our 

methpds do not demand such a limitation and that further applications, par- 

ticularly to problems with subsidiary relations and to isoperimetrie problems, 

are possible. 

w 2. Admissible Curves. We begin with some elementary remarks�9 The 

simplest problem of the Calculus of Variations consists in determining the mini- 

mum of an integral 
Xl 

f f(x, y(x), y'(x))dx 
2~ 0 

for a given f(x, y, y') and fixed ends y(xo)-~ Yo, y(xl)= Yl when y(x) belongs to 

a certain class of )) admissible curves~) which must be explicitely defined, and 

which certainly includes all the functions y(x) with continuous derivatives of all 

orders which fulfil the boundary conditions y(xo)= Yo, y(xl)--~ Yr 
The classical theory of the Calculus of Variations was concerned with the 

case in which the admissible curves consisted of these analytic curves only. 

Modern researches have shown that in order to treat the classical problem satis- 

factorily it is convenient to enlarge the class of admissible curves. This is 

because the variational methods so far known depend on the existence of a 

~>minimizing~) curve in the class of admissible curves, i. e. a function y(x) for which 

the minimum is attained. To ensure, as f a r  as possible, that  such a minimizing 

curve should exist, the class of admissible curves has, since the days of Weier- 

strass, been enlarged, successively, by the inclusion of functions y(x) with bounded, 

piecewise continuous, derivative y'(x) (CARA~rr~ODORr [2]) by the inclusion of 

absolutely continuous functions y(x) for which y'(x) then denotes the derivative 

almost everywhere (ToNELLI [I3]), by the inclusion of certain non-rectifiable curves 

(M~GER [IO, i I]), and by the inclusion of >)generalized curves>) (below w167 8- - I  I). 

Auother interesting extension, due to ]~Ic SHA~E [8], Consists in the inclusion of 

certain admissible curves of a corresponding parametric problem. 

Apart from their bearing on the classical form of the problem, these ex- 

tensions have an interest of their own owing to the fact that  modern Analysis 

is now Chiefly concerned with the more general processes of integration. In the 
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investigations of the fol lowing w we shall l imit ourselves t o  two extensive 

classes of admissible curves, the )) ordinary ~) and the  )) generalized ~) curves as we 

te rm them, and we shall in terpre t  in tegra t ion  in the general  Denjoy sense. W e  

do not  concern ourselves with the corresponding results for  the more restr ict ive 

classes of admissible curves. I t  has already been remarked (8 I) tha t  such results 

may be derived by applying our  methods  in an appropria te ly  specialized form. 

Actually the relations between the problems which arise from the various in- 
terpretations of the class of admissible curves (and which have been studied by 
LAVRENTIEFF [6] and TONELLI [I5] ) are still rather obscure. It  is easy to construct 
examples in which the minimum of our integral has different values for certain 
of these classes. This state of affairs is of frequent occurrence in problems with 
subsidiary relations [cf. (a) below], and the fact that it occurs also in the simplest 
problem in ordinary form [cf. (b) below] may perhaps be accounted for by the 
similarity of these .two types of problems. 

(a) Let (A) denote the class of pairs of real functions y(x),  z ( x ) w i t h  continuous 
derivatives y'(x),  z ' (x)  such that [z'(x)] ~ :  I + [y'(x)] ~ and (1~) the corresponding class 
of y(x),  z(x) with bounded, piecewise continuous y'(x),  z '(x) fulfilling the same rela- 
tion. The minimum of the length 

f { I  - ~ - [ y f ( x ) ]  O + [ZP(~:)J2}I/2~X 

�9 T 0 

of the curves of (A) such that  Y(Xo) , z ( :co)~  o, o and y(xl)  , z ( x l ) =  I, o, is clearly 
+ ~ ,  since no curve of (A) can have these ends. The corresponding minimum in 

(B) is evidently ~ - .  (x 1 --x0). 
By s l igh t  modification of the subsidiary relation z '~ ~ ~ + y"~, we can arrange 

to have a finite, but extremely large, minimum length for the class (A), and a mini- 
mum length no$ exceeding 2. ( x l -  x0) for the class (B). 

(b) Let now D,  be the domain of the (x, y)-plane for which 

o ~ x ~ ~ and o ~-- y log log (ee/x) ~-- I ~- 1 V-:~C ; 
and let 

f ( x ,  y, y') = x~[log (ee/x)] y' exp {-- y/[x log (ee/x)]l 

for all y' and all (x, y) in D , ,  except when x--~ o, in which case we have also 
y = o  if (x,y) lies in D , ,  and we choose at this point ] ( x , y , y ' ) ~ - ~ o  for all y'. 
Here e is the natural logarithmic base and l is a number exceeding z but otherwise 
arbitrary. By choosing l large enough, the partial derivatives of f up to any assigned 
order can be made continuous in D, .  

This being so, we denote by (A,)  the class of functions y ( x ) w i t h  bounded 
derivative y'(x), such that the point (.% y(x)) lies in D,  for each x of the interval 
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O --~ X ~ I, and  t h a t  y(o) ---~ o, y(1) = i  ; we denote  by  (B,)  the  co r respond ing  class 

of abso lu te ly  cont inuous  y(x). By the  change of var iab le  z = y  log log(ee/x) ,  we 

eas i ly  see t h a t  the  m i n i m u m  of the  in teg ra l  

1 

f f(.% ,,,(.), v'(x)),r 
0 

has  the  vahle  e -~ for the  class (B , )  and  a va lue  not  exceeding  e -(t--l) for the  

class (A.). 

[In fact ,  when we change  our var iable ,  the  problem becomes 

1 

f x I e z' (z) d x 

0 

= Min. subjecl to z(o) = Zo, z ( i )  -~- i ,  

where  the r e l e v a n t  value  of z 0 is o for the  case of the  class (A,) and  i for t ha t  

of the  class (B,), and  the  admiss ib le  curves  m a y  be t aken  to consis t  of all  the  

abso lu te ly  con t inuous  z(x)  defined for o --< x --< i which have the  ass igned end-values  

and fulfil the  inequa l i t i es  o --< z(x) ~ i + l V x .  The m i n i m u m  e - ( z o + t - a )  is a t t a ined  

for the  curve z(x) ~ (i  - -  zo)x + z o -  l x  log x. In  fact ,  w i t hou t  appeal  to genera l  

theory ,  if we wr i t e  

we see t ha t  

.%.l eZ' ~ _ __  

g - -  .q(:,, z) 1 + (z + z l o g  x - i ) / ( i  - x ) ,  

d 

d x  
{(I - -  x )x ' e  -.q} + x~e - g "  {e z'+g - -  i - -  (z' + g)}, 

and  the resu l t  follows, in view of the  i nequa l i t y  e ~ -  i - -  a > o which holds  for 

all  real  a ~ o.] 

3. C l a s s i c a l  F o r m  o f  the Condition (W.  E.). L e t  us  s u p p o s e  fo r  t h e  

m o m e n t  t h a t  f ( x ,  y, y') h a s  c o n t i n u o u s  p a r t i a l  d e r i v a t i v e s  u p  to  t h o s e  of  t h e  

s e c o n d  o rde r ,  a n d  t h a t  y(x),  de f ined  f o r  x o ~ x < x l ,  is  r e s t r i c t e d  to  h a v e  a 

c o n t i n u o u s  dei~ivative y ' ( x )  a n d  to  a s s u m e  t h e  va lue s  y ( X o ) =  Yo a n d  y ( x l ) =  y~ 

a t  t h e  ends .  

T h e  c l a s s i ca l  t h e o r e m s  of  E u l e r  a n d  W e i e r s t r a s s  a s s e r t  t h a t  i f  y ( x ) i s  a 

m i n i m i z i n g  cu rve  f o r  t h e  i n t e g r a l  of  f ,  we m u s t  have ,  f o r  a l l  x, f i r s t ly  

x 

(3. i) fy,(x, y(x), y'(x))= c + f f,,(t, v(t), v'(t)dt, 
i t ]  

g~o 
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where c is a constant ,  and secondly 

(3.2) f (x ,  v(x), + - f ( x ,  v(x), - y(x), >- o, 

whatever  be the real  n u m b e r  ~. Hence ,  subs t i tu t ing  f rom the first relat ion,  we 

conclude t ha t  there exists a cons tan t  c such that ,  for  every x of Ix 0, xl] and 

for  all ~, 

1/ (3-3) f (x ,  y(x), y'(x) + ~) - - f ( x ,  y(x), y'(x))-- ~. c + tilt ,  y(t), y'(t)dt >- o. 

Xo 

The mos t  e lementa ry  proper t ies  of a der ivat ive  show, conversely,  t h a t  this  condi- 

t ion, if  i t  holds for  all ~, implies bo th  the preceding  ones. W e  call i t  the condi- 

tion (W. E.) in classical form. The s tudy of its extensions is the  ma in  object  

of the  fol lowing w167 

The int imate connection of this condition with the theorem of MINKOWSKI on 

the existence of a flat support is at once clear when we consider the case in which 

f(x,  y, y ' ) ~  F(y') is independent of both x and y. If  we limit ourselves to a 
minimizing curve of the special form y(x)-~ ax + b, y'(x)--~ a, where a and b are 

constants, and if we suppose, for simplicity, that  x o ~ o, Xl ~ i, the necessary condi- 
tion (W. E.) in order that  

1 1 1 

(3.4) F(a)(= f F(a)dx) <-- f F(a + v'(x))dx whe, ever f v'(x)dx=o, 
0 0 0 

becomes: there exists a constant c such that  

(3.5) ~(a + ~) ~ F(a) + c~ for all ~. 

The classical theory of the Calculus of Variations thus shows that  (3.4) implies 

(3.5) when F(~) has a continuous second derivative. Evidently ( 3 . 5 ) a l w a y s  im- 
plies (3.4). 

The equivalence of (3.4) and (3.5) is known as Minkowski's theorem. This 
theorem, which remains valid when we remove the restrictions of existence and 
continuity of a second derivative, is one of the most powerful tools of modern ana- 

lysis (cf., for instance, HARDY, LITTLEWOOD and POLYA [5] P. 94, Th. I I2, and, in 
abstract  form, BANACH [I] p. 27, Th. I). 

Actually, our whole study of the condition (W. E.) of the Calculus of Variations 

may be regarded as the study of the variational generalizations of Minkowski's 
theorem. I t  would clearly be absurd to re-introduce into these generalizations the 
classical restrictions of differentiability, etc. of the integrand f(x,  y, y'). In the 
sequel, we therefore dispense with these classical restrictions. 

3 0 - - 3 7 5 3 4 .  Aeta mathematica. 69. I m p r i m 6  lo 4 m a r s  1938. 
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w 4. P rob l ems  I n d e p e n d e n t  o f  the  V a r i a b l e  y. W e  shall  suppose in this  w 

tha t  f ( x ,  y, y') has  the  special  fo rm 99 (x, y'). This  special case will serve as a 

basis for  our  la ter  results.  

In the classical Calculus of Variations, a still more special case occurs in the 
trivial lemma, often termed >>the fundamental  lemma>> of the Calculus of Variations, 

which is of use in establishing the Du Bets Reymond condition (3. i). This trivial 

lemma asserts that,  if, for a given function f(x) ,  we have 

7C 1 ~ 

f yZ (x) f (x) d x : o whenever f y' (x) d x -~-- o , 

"Co Xo 

then there exists a constant c such that f (x)  ~ c for almost all x. Clearly this lemma 
is a consequence of the condition (W. E.) for the cases f ( x ,  y, y ' ) -~ -y ' f ( x )and  
f ( x ,  y, y ' ) ~ -  y' f(x).  The place of this lemma is here taken by the more general 
result that  the condition (W. E.) is valid as it stands, when f ( x ,  y, y') has the form 
qD (x, U'). 

This result will follow from the main theorem of this w It  evidently includes 
Minkowski's theorem (vide the remarks of w 3). I t ' s  usefulness lies in the fact that  
it enables us to derive a conclusion which is, in appearance, stronger than the hypo- 

theses. If  in (3.3) we choose for ~ any integrable function ~7'(x) and denote by ~2(x) 
the integral of the latter from x o to x, we obtain from (3.3), by integration, the 
inequality 

Xl ~;l 

f r +  '(xlldx >- f + 
~o ~o 

and this inequality now applies to comparisom curves of a much more general kind 

than were originally admitted,  since they need not pass through the end Yl at  x ~ x  1. 

I t  is convenient  to s ta te  the ma in  resu l t  of  this  w in the  fol lowing form:  

(4. I) Theorem.  Let  O(x, ~) be a function measurable (B) which is defined 

for all real ~ and for  all x of  a set E throughout which �9 (x, o) --< o, and suppose 

that the subsets of  E in which q)(x, I) and q ) ( x , -  I) are finite below respectivelY, 

are of  positive measure. Suppose farther that to each real number c there exists a 

subset of  E of  positive measure at every point x of  which we hat'e q) (x, ~) + c ~ > o 

for  some ~ depending on x. 

Then there exist a bounded measurable fitnction ~o (x) a~d co,slants c o and 70, 

such that both the subsets of  E 
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E l = E [ t o ( x ) > o ]  and E ~ = E [ t 0 ( x ) < o ]  
93 93 

have ~ositive measure, a~d so that, i~~ E 1 + E.,, we have 

�9 (x, + CoCo(*) > n .  

W e  shall see, when we deduce Theorem (4.4), below, as an immediate  

corollary, t ha t  this s ta tement  differs only in minor  details f rom the assert ion of 

the necessity of the condit ion (W. E.) for  problems independent  of y. 

I t  may  be remarked fu r the r  tha t  Theorem (4. I )gene ra l i ze s  Minkowski 's  

theorem: to obtain the latter,  simply choose q) (x, ~) to be of the form F(a ) - - I / (a  + C), 

independent  of x. 

P r o o f  o f  T h e o r e m  (4. I). We denote  by 0 '  the set of the values of c 

for  each of which there  exists a bounded no~,-negative measm'able funct ion to(X) 

and a positive ra t ional  number  7 such tha t  

(4.2) �9 (x, t0(x)) + e to(X) > z 

for  all x of a subset of /~ of positive measure. W e  denote by 0 "  the set of 

the values of c for  each of which there  exists a bounded non-positive measurable 

funct ion  C0(x) and a positive ra t ional  number  7 with the same property.  I t  is 

clearly sufficient to prove t ha t  O' and 0 "  corktain a common value Co. 

Now we see at  once tha t  the sets 0 '  and 0 "  are open. In  fact,  if  c belongs 

to the set 0', for  instance, t hen  so does the  interval  (c - -  h, c + h) provided t h a t  

o < h < 7/K, where 7 is the rat ional  number,  and K the upper  bound of the 

funct ion  to(x), associated with the par t icu lar  value of e. Moreover,  for  sufficiently 

large ~o, the sets O' and 0 "  include respectively the values e=-~o  and c = - - n o ;  

we have, in fact, for  large no, q)(x, I) + n o > I and (l)(x, - -  I) + n o > I in subsets 

of E of positive measure, so that  we can choose t 0 ( x ) =  i when c= -n o ,  and 

Co(X) - -  - -  I when e =- - -  no. 

The sets O' and 0"  are thus non-empty open sets. To prove tha t  the i r  

common par t  is non-empty,  it is sufficient to show tha t  their sum is a continmt~. 

Let  therefore  c be any real number.  We have to show tha t  there  exist  a 

bounded measurable funct ion Co(X) of constan~ sign and a positive ra t ional  

number  7, such t ha t  the inequal i ty  (4. 2) is valid for  all x of a subset of E of  

positive measure. Keeping c fixed, let E~, K be the subset of E at  each point  x 

of which there  exists a value of C such tha t  

(4.3) I l<-g a, d o(x,C)+cC>-7>o,  
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the numbers  7 and K being rational. The sets E~,a-, as project ions of plane 

Borel  sets, are measurable (cf., below, lemma (5. I) or, for  instance, SAlts [I2], 

Chap. II ,  w 5) and their  sum for all rational 7 and K has positive measure by 

hypothesis.  Hence,  one at least of the sets Ey, K has positive measure. I t  clearly 

contains a subset  of positive measure at every point  x of which there exists a 

value ~ of constant  sign for  which the inequalities (4. 3) are satisfied. In  this 

last subset  we can, finally, by lemma (5.2) below, locate another  subset  of positive 

measure in which there is a measurable funct ion ~ ~ to(x) of constant  sign for  

which the inequalities (4. 3) are satisfied. This shows tha t  any real number  c 

belongs to the set 0 '  + 0 "  and so completes the proof  (subject to the measur- 

ability considerations of lemmas (5. I) and (5.2) of w 5). 

As an immediate corollary, we establish, for problems independent  of y, the 

condition (W. E.) in the fol lowing form: 

(4. 4) Theorem. Let  9~ (x, ~) be any finite function of  the variables x, ~, and 

y' (x) a .finite function of  x (not necessarily integrable in any sense), both measurable 

(B), such that qD (x, y'(x)) is integrable (Denjoy) and that the inequality 

2C 1 gC l 

f y'(x) + >_ f (x, 
Xo Xo 

holds 1 when.ever V'(x) is a bounded function measurable (B) such that 

931 

f v'(x) dx = o. 
a.o 

Then there exists a constant c such that, for  almost every x of  (xo, xl), the inequality 

(4. 5) ~ (x, y'(~)  + C) - ~ (~, y'(x)) - c C -> o 

holds for  all ~. In  particular, we therefore have 2 

X 1 2C 1 93 

Xo 

for  all Denjoy integrable V'(x). 

To obtain this theorem, it is sufficient to apply Theorem (4. I) to the function 

q)(x, r ~- ~(x,  y'(x)) - -  q~(x, y'(x) + ~) - -  which is measurable (B) by lemma (5.3) 

i We suppose this only when the left-hand side exists. 
~- Asserting at the same time the existence of the left-hand side. 
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below - -  on the assumption that there is no cons~an~ e for which (4. 5) holds 

for all ~ at almost every x, an assumption which has to be shown to be untenable. 

Clearly, the function Co(X) whose existence is established in Theorem (4. 1) may 

be supposed (by replacing it by o in part of E1 or E~ if necessary) to fulfil the 

condition 
Xl 

f ~o(~) d x  = o. 

~0 

Therefore, choosing ~'(x)=-~o(X), we obtain 

Xl 
/ $  

y ' ( x )  + < < o 
. 2  . /  

and this contradicts our hypotheses. 

w 5. Lemmas Concerning Measurability. We now come to the measurability 

considerations needed in w 4. We denote by [E]x the projection of any set E, 

in the plane or in space, on to the x-axis. We denote further by ]E]  the 

Lebesgue measure of any linear set E. 

(5. I} Lemma. Let E be a plane Borel set. Then [E]~ is measurable and E 

contains a closed set H such that I [ E ] ~ -  [H]~ l< ~. 

This is proved almost explicitely in Lvsi~ [7, P. x Sz]. The set E is, in 

fact, the projection on a plane, of a so-called >>elementary set>> E* in three 

dimensions, and E* contains a closed set H* such that I [E*]~-  [H*]~I< e. 

(5.2) Lemma. I f  E is a plane Borel set and [[E]~[ > o, then E contains 

the graph of a measurable function f (x)  defined on a subset of  [E], of positive 

m easure. 

We may Suppose E closed, by lemma (5. I), and bounded. The function 

f (x)  defined as the least value of y such that (x, y) < E for fixed x, is then 

lower semieontinuous and so measurable. 

(5.3) Lemma. Let q~ (x, 6) and f(x) be measurable (B). Then so is the function 

qp (x, f (x )  + ~). 

This is obvious if r and f are continuous, and by passage to the limit wRh 

f it remains true if ~ is continuous and f measurable (B). Finally, keeping f 

fixed and passing to the limit with ~, we have the desired result. 
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w 6. Lemmas Concerning Denjoy Integration.  We State here, for convenience, 

the few, not quite trivial, relevant results concerning Denjoy integrals in the 

general sense. They are among the most immediate consequences of the de- 

finitions. 

(6. I) Lemma. Let f(x) be Denjoy integrable in (Xo, x~). Then its indefinite 
integral is a continuous function F(x) such that, given any non-empty perfect set P, 
there exists a non-empty portion of ~P (common part of 1 ) with an open interval) on 
which f(x) is absolutely (Lebesgue) integrable and for whose complementary intervals 

(a,,, bn) the series ~, ] / " ( b . ) -  F(an)] converges. 

The property expressed by the above lemma, may be regarded as a definition 

of what we mean by an indefinite integral in the Denjoy sense. 

(6.2) Lemma. A function f(x)  which is Denjoy integrable in (Xo, xx), is 
abnost everywhere in (Xo, Xl) the approximate derivative of its indefinite integral F(x). 

We give the proof of this well-known result as it is short. Suppose, if 

possible, that  a set E of positive measure consists of points at which there is no 

approximate derivative. Then ~7 contains a non-empty perfect subset P, every 

non-empty portion of which has positive measure. In P we locate a portion 

to which the conclusion of lemma (6. x) applies. The function g(x )=f (x )  in 

and constant with the value {F(b,) -- F(a~)}/(bn-- a,) in each complementary 

interval (a~, b~) of ~ ,  is then absolutely integrable and therefore almost every- 

where in ~ the derivative of its integral G. At ahuost any point of density 

of ~ ,  f is thus the approximate derivative of F, since in ~ we have f - - g  a n d  

also F - ~  G. This is a contradiction and the lemma is proved. 

(6. 3) Lemma. I f  f(x) is Denjoy integrable in (a, b) and 9(x) bounded and 
measurable, and i f  F(x) and @(x) are their indefinite integrals, then the integral 

b 

olxl 
f~ 

exists a,nd its value is 
b 

O(b) - F(a) - I F ( x )  dx.  
.tJ 
a 

This can be proved by the same method, and is indeed only a special case 

of general theorems on integration by parts. For other proofs and for the deeper 

properties of Denjoy integrals, cf for instance SAKS [I2] Chap. VIII.  
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w 7. T h e  Condition (W. E.) on an Ordinary Curve. We shall now extend 

the condition (W. E.) to problems no longer restricted to be independent of y. 

We denote by f ( x ,  y, y') a real function, measurable (B) and everywhere finite, 

of three variables. We write 

(7. ~) ~ g ~ f  = ~ f ( x ,  Y, Y ' )= {f(x,  Y + h, Y') - - f ( * ,  '~, y')}/h 

when h is any real number ~ o, and r when h = o. This ratio r165 

which vanishes identically in the case of a problem independent of y, will be 

restricted by conditions enabling us to generalize the results of w 4. 

We shall suppose the problem to be such that the ratio ~ [ h f  remains 

bounded when x, y, y', h ravage in bounded sets. This is always assumed in the 

investigations of Tonelli and classical writers, a 

We denote by (x0, Yo) and (x~, y~) two fixed finite points of the plane such 

We call ordi~ary admissible cm've, a pair of functions y(x), y'(x) that Xo < x~. 

such that 

(7.2) 

and for which the in te~al  

a3 a' t 

v(*/=vo w-fv't,/a  
Xl 

(7.3) I f ( x  , y(x), y'(x)) dx 
f .  

. ]  

S o  

exists (finite or infinite), each of these integrals being understood in the general 

Denjoy sense. 

For brevity we write f(t) for f(t, y(t), y'(t)) and also ~ , ,  f(t) for OY/h f(t, y(t), y'(t)), 

etc. We say, further, that a curve y(x), y'(x) fulfils the condition (D) if the function 

g l ix) f(x, v(x), v'(x)) 
is Denjoy integrable whenever V(x) has bounded derivates. We shall confine 

ourselves to the study of >)minimizing~) curves which fulfil the condition (D). 

This restriction is also assumed, actually in a much more stringent form, in the 

investigations of TONELLI [I4] and Me SHANE [9]. 

(7.4) Theorem. Let y(x), y'(x) be an ordi,,a,'y admissible curve which fulfils 

the condition (D) and for which (7.3) assumes a finite minimum; a,~d let {hn} be a 

sequence of numbers tendi~,g to zero which contains an infirmity of terms of both signs. 

Then there exists a constant c, finite or iEfinite, such that, for almost event x, we have 

1 Here, an even weaker (fractional Lipschitz) condition would suffice. 
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93 

{/(x, u(x), y'(~) + ~) - / ( ~ ,  u(~), u'(x))}/~ >- e + li~ninff~h.f(t)dt 
'q~O 

whenever ~ > o, and 
93 

I f (x ,  y(x), y'(x) + ~) - -  f (x ,  y(x), y'(x))}/~ <- e + lim2up f ~t~./(t) dt 

~'o 

whenever ~ < o. 

In the ease of an infinite constant c, these inequalities are interpreted to mean 

that, for almost every x, 

93 

li%sup f ~t~.f(t) tit= + ~ , f  ~ = - ~; and 
930 

l i m i n f  f ~ . f ( t ) d t =  --  ~ ,  i /  e =  + ~. 
930 

P r o o f .  We may suppose tha t  nei ther  of the extreme limits as n - - ~  of 

the expression 
X 

f ~ h  n f ( t )  d t 
22 0 

is infinite for  almost all x, since there is then nothing to prove. We may suppose 

fur ther  t ha t  y'(x) is everywhere finite and measurable (B). The functions 

and 

(Pn (x, ~) = --  { f (x ,  y(x), y'(x) + ~) -- f (x)  --  ~ . /r f(t) dt} 

930 

�9 (x, ~) = lim inf  q),~ (x, ~) 
n 

are then  also measurable (B), and moreover qI(x, 1) and O(x, --  I) are finite below 

in sets of positive measure. I f  the assertion of our theorem is false, the funct ion 

O(x, ~) therefore fulfils the conditions of Theorem (4. x); we shall show tha t  this 

leads to a contradiction. 

By Theorem (4. I), there exist constants e o and 7o > o, and a bounded measur- 

able funct ion to(x), such tha t  bo th  the subsets of (Xo, xl) 

E1 ---- E [t0(x) > o] and E~ ---= E [t0(x) < o] 
X 93 
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have positive measure and that  in E~ + E~ we have 

(x, ~0(~)) + co ~o(x) > ~o. 

By replacing ~0(x) by o at certain points, if necessary, we may suppose that E ,  

and E~ are perfect sets of positive measure on which each of the functions 

~o(.), i&( . ) ,  y' (x), / ( . ) ,  f(x, .v(x), ~,'(~) + ~o(*)) 

is bounded and continuous, while on each of the sets E,  and E~ each, of the func- 

tions of x 
P I 
] ~ h n f ( t  )dt and l i m 2 u  p ] c~hn f(t)dt lira inf 

o ]  

~'0 a'O 

is either an infinite constant or else a boumded and continuous function. Further, 

except in the ~)trivial,) case in which, on the whole of E~, 

l imin f  [ ~ h n  f( t)  d t --  + 
n a 

the function 
~'0 

Ut-lim nef   .fIt)dt} 
92 o :r o 

is finite on E x and tends to zero as n-> ~ .  Hence, replacing E ,  by a perfect 

subset of positive measure if necessary, we may (in view of Egoroff's theorem) 

suppose that  the sequence {an(x)} converges uniformly to zero in E t. Denoting 

by K o the upper bound of ~o(X), we have in El,  

q)n (x, ~o(X)) --  �9 (x, ~o(x)) >-- Ko an(x), 

and it foUows that, for all n exceeding a certain constant %, 

I 
On(X, to(X))+ Co ~o(X)> ~ n .  

Similarly this extends to the ~)trivial~ ease and to the set E~. Finally, by con- 

tinuity, we can determine ~o > o so that  i f  x and ~ are any two points of E 1 + E~ 

such that [x --  ~[ < ~o and i f  n is any integer exceeding n o, then 

31--37534. Acta mathematica. 69. Imprim6 ]e 4 mars 1938. 
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This being so, let ~ and ~2 denote, respectively, a point of density of ] ~  

~nd one of E~, and suppose for simplicity that  ~ < ~,. (The proof proceeds 

similarly if ~1 > ~,~.) We denote by {h',} the subsequence of {hn} which consists 

of the positive terms not exceeding the numbers K'  o . ( ~ -  ~1) and K '  o . ( ~ l -  xo) 

where K' o is the upper bound of 1/~o(X ) in E 1 + E,.  For each n we can now 

determine in (Xo, x~) two intervals /,~ and J . ,  necessarily non-overlapping, which 

have the points ~j and ~.,, respectively, as their right-hand endpoints, such that  

We now define 

f ~o(X) dx  = -- f ~o(X.)d~ = h',,. 
l '~t. ]':l "In" F_, 

v',,(,,:) = ~o(X) .'he,, x < (-~:~ Z, + :E..J,,). 

:-: o otherwise; 

9 

J, ~,,(.~) = ,,~,,(t) d t  = - -  , 7 , ~ ( ) d t .  

We write for brevity ~(x), ~'(x) instead of Vl(x), ~'~(x). Evidently the function 

O,(x) which may be written Min 0](x), h ' , ) i s  monotone increasing in I , ,  monotone 

decreasing in J~ and constant in each of the three remaining parts of (x 0, x~). 

We shall now show that for suf.ficie~tly large 1~ the h~tegral 

T I  j. ~ ,  = f ( x ,  :~(x) + ~,(x), :/(~) + ~'~(~/)d~ 

exists" aml has a valise .'hieh is smaller thau that of  

1 

J = ~ f ( x ,  y(x) ,  : , / ( x ) / d x .  
! 

.1" o 

This will evidently contradict our hypotheses, since y(x) + Vn(x), !f(x) + V',(x) is 

an admissible curve; and our theorem will then be established. 

For brevity, we write f~(xl, ~ h f , , ( x l  in place of 

f ( x ,  ?#(x), y'(x) + ~]'n(x)), r f(x,  if(x), y'(x) 4- V',,(x)). 

Denoting by c,, any constant, we have then 
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a: !  

3,,,- g = t IA(x) - . t ' ( * ) -  
2" 0 

c,, &(x) + ,~,,(x) ~ ,~ .~  f,,(x)} d.,  

each of the terms under the integral sign, except perhaps the last, being inte- 

grnble f o r  trivial reasons. Now, by integration by parts [lemma (6.3)], we have 

f~ J " l l  " 1 (:*) r .f~(x)dx-- -- ~ ,,(x ,j,,(,) .t,(t)dt dx, 
a'o a 'o ;go 

and here the inner integrand on the right-hand side reduces to 

except when t < (E,~ + E.,J,,) in which ease both are bounded, since y'(t) and 

' t .q,,() are then bounded. Thus 

�9 ro  . r  o a '  o 

~9r ,tt + o (a '~ )}  dx. 

Now if x < (El I ,  + E,  J,,), we can determine g in this set so that I z -- ~ [ < 0 (h',) 
and I that 

~ f ~.Wgwnf(t)dt-- f c.,Dlh'nf(t)dt+ f c.wg,~(,)f(t)dt+ f o~l~(of(t) 
xo xo zo  I n �9 ,,zo, x)  dn �9 (xo, x) 

dt. 

The last two integrals are o(I) as n ~ ,  by continuity of the Denjoy integral 

of the function r which is independent of n. Hence, choosing 

Cn : = C O q -  

a, o 

we "6brain 

/( I' & - g = f,, (*) - J(*)  - , A ( , ) .  

2" 0 

and by (7.5), for all large n, 

~t 

j" ~[,,,,, f(t) d t, 

+ 
2" o 

f(t) dt + o(1)})dx 

2 R e m e m b e r i n g  t h a t  ~ f / h . f  = o f o r  h = o,  b y  d e f i n i t i o n .  
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E , I  n + E+.J u 

This completes the proof. 

d x < o .  

w 8. Generalized curves.  By a generalized admissible curve, we shall mean 

two finite functions measurable  (B), y(x), ,  y'(x, a),, the lat ter  defined for o --< a --< I 

as weU as for x o --< x--< xt,  such tha t  

x 1 x t  1 

y(x),=yo+ f f f 
X o 0 .~, 0 

and for which the integral  

(8.2) 
x t  1 

f ,.Ix o1., 
X o 0 

exists, each o f  these integrals being interpreted as a repeated integral  in the 

general Denjoy sense. 

For  a given funct ion f (x ,  y, y') and fixed end points (Xo, Y0), (xt, Yl), the 

problem of the minimum of (8.2) in the class of pairs of functions y(x),, y'(x, a), 
subject to (8. i) will be called the generalized minimum problem. I t  is closely 

connected with  the ordinary minimum problem for the simple integral  (7.3) 

subject to (7.2). 

I t  is possible to show, by quite elementary methods, that  when the functions 
concerne4 are sufficiently smooth, the double integral (8.2) for a pair of functions 
y(x)., y'(x, a). subject to (8. x) can always be approximated, as closely as we please, 
by a simple integral of the type (7.3) corresponding to a pair of functions y(x), 
y'(x) subject to (7.2). When this is the case, the value of the minimum is clearly 
the same for the generalized problem as for the ordinary problem. 

To obtain such an approximation, we divide the range of x into parts Ai 
(i ~--- I, 2 . . . .  , N), and, in each of these, we divide the range of a into parts Bi.k 
(k~- i, 2, . . . ,  Ni). Further, we divide Ai into parts Ai.k such that the length of 
Ai,~ is the area in (x, a) of [At X Bi, k], and we choose for y'(x), when x ~ A i ,  k, the 
constant value 

Ai Bt, 
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and define y(x) = Yo + f y ' ( t ) d t .  If the subdivision is suitably chosen in correspond- 

ence with a positive number  e, arbitrari ly small, we shall have, when the functions 
concerned are sufficiently smooth, 

l y(x) - -  y(x), ] < ~ for all x, y(Xo) -~- Y(Xo) , --~ Yo, y(xl) = Y ( X l ) *  = Yl, 
and 

X t 1 a" t 

Xo 0 Xo 

<- ~IA, ,~ [" [MA,,kf(x, y(x), y '(x))-  MAi, Bi. k f(x ,  y(x)., y'(x, a),)l  
i , k  

where MAf(x) denotes the mean value of a function f(x)  over a set A, and where 
MA, B f ( x ,  a) denotes that  of a function f ( x ,  a) over the plane set [A )4 B] of values 
of (~, ~). 

If  the functions are substantially constant in the divisions chosen, the two 
mean values occuring in each term of the sum on the right-hand side of our last 
inequality will differ by as little as we please, and the sum itself will be arbitrari ly 
small. 

The  impor tance  of our  genera l iza t ion  of the  problem, first g iven in a sl ightly 

different  fo rm in the  pape r  [I6], lies in the  fac t  t h a t  a minimum which is not 

attained iu the ordinary problem may be, and fi'equently is, attained in the gene- 

ralized problem. 

This  is so, for  instance,  in the  simple example,  due to CARATHEODORY [3], 

( i  + y~ ) ( i  + y,2) . Xo----yo----y~ : o ,  x~ = ~. f(x, v, v ' ) :  {2(~ + v'~)}'/~ - ~' 

In this example, w e  have f ~  2, with equality only if y~---o and y'= ! i. 
Clearly, for an ordinary curve y(x), y'(x) subject to (7.3), the conditions y ( x ) =  o, 
y'(x)---- +__ x at almost all points x, are not compatible; but they become compatible 
as soon as we replace the former by [y(x)~ < e where e > o. In fact, denoting by 

n any positive even integer exceeding i/e, we need only choose for our curve, the 
zig-zag defined in each of the n intervals ( k - -  i ) / n < x < - - k / n  (]c----I, 2 , . . . , n )  by 

y'Ix)=(- y(x)= f  'Itl t 
0 
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I t  follows that  for the ordinary problem the minimum is unattained and has the 
value ~-. The minimum for the generalized problem clearly has the same value, 

but this value is at tained when we choose, for all x, 

y(x).  = o, uP(x, a). = - -  i (a < l/e), /j'(x, c() - -  i (of ~ 11f2). 

w  
brevi ty ,  we write 

1 

f(x),-- j'f(x, 
0 

The Condition (W.E.), and Classical Non-regular Problems. For 

1 

0 

I n  the  nex t  w167 

to general ized curves the resul ts  so fa r  establ ished for  ordinary  curves. 

, . ) . ) d . ,  

1 

~'(x),  = / y ' ( x ,  a) ,da ,  etc. 

o 

we shall  es tabl ish the necessi ty of a condi t ion which extends  

I n  its 

We 

simplest  form, the  condit ion may be wr i t ten  
.r 

.r 9 

and is a direct  extension of the condit ion (W. E.) in classical fo rm (w 3). 

shall  call it the condition ( W.  E.) , .  

I t  is convenient to express this condition in geometrical language. We require 
a few prel iminary definitions. 

A function F(~) will be termed convex at ~o, if we have 

- -  ~ < F(ffo ) --< aF(~l) q- bF(~,) whenever a >-- o, b > o, a q- b = t, a~l -+. b~e = ~o, 

provided only that  ~1 and ~ belong to the interval of definition of ~(~). [Geo- 
metrically, this implies that  at ~o the graph of F(~) does not lie vertically above 
a n y  chord joining two points of the graph. Convexity at ~o, thus defined, is not a 
purely >>local>> property, since it depends on the values of F(~) in the whole in- 

terval of definition. I t  must  not, therefore, be confused with '~local convexity>) such 
as occurs when, for instance, F(ff) has a positive second differential coefficient z~"(~) 

in t he  neighbourhood of a point ~o.] We shall understan d convexity at Go to imply 
that  F(~) is never - - ~ ,  except in the ease in which ~o is an endpoint of the in- 
terval of definition of F(~); this is implied in the definition when a suitable con- 
vention is made regarding indeterminate forms o r  oo. With these conventions, 

Minkowski's theorem (w 3) asserts that  a function F(~)-defined for all ~ is convex at 
~o i f  and only ~if there exists a linear function L(~) such that 
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(9.  i )  L ( ; )  (-- F(~)  f o r  all  ~, H,d )'J(?bo) = .~(~o). 

We say tha t  the funct ion F(~) has a t  ~o the fiat support L(~), if L ( ~ ) i s  a 
l inear funct ion of ~ which fulfils the condit ions (9. z). Minkowski ' s  theorem asser ts  
t ha t  a fiat support  exists at  -~o if and only if F(~) is convex at  ~o. The  condit ion 
(W. E.) in its classical form requires tha t  the funct ion 

F(~)-~ f (x ,  y(x), y'(x) + r) 

shall  have a t  ~ o the flat support  

. L(~) =,/'(:~) ~ { c " 1 + " + ff,.(t)dt  
9" 0 

This  condit ion can, therefore,  only be fulfilled when F(~) is a convex funct ion of 
a t  ( ~  o. I t  is the condition (W.E.),  which provides the generalization applicable to the 
~tOn-CO~ZVeX case. 

We call generalized fiat ~pport of F(~) at  -~o, a l inear funct ion L(~) such t ha t  

L(~) ~ F(() for all ~, 

and tha t  L ( ( , ) = - F ( , ~ , )  for certain values ~, =: ( , ( a )  with the average 

1 

0 

As is easily seen, in order  t ha t  a l inear  funct ion L(~) which nowhere  exceeds 

F(~) be a general ized flat suppor t  of F(~) at  ~o, it is necessary and  sufficient tha t  
there exist  two values ~1 and ~2 such tha t  

'~, <-- ~o -~ ~.~ and L(~,) == F(~l) , i (~ , )  -~ F(~,). 

The condit ion is clearly necessary;  and, when  it  is fulfilled, we can choose for ~,(a) 
a s tepfunct ion  which assumes  a t  mos t  the two values ~1 and ~ and which has the 

average  ~o. The case ~1 ~ ~:.,--= ~o is tha t  of a flat suppor t  in the ord inary  sense. 

Y Y 

j l ,  y - - z . ( ~ )  
I I I 

generalized .fiat support at ~. ordinary fiat supporl at ~. 
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shall have 

z,(~) = ](x), + C {  ~ 

as a generalized fiat .~pl~ort at ~ = o. 

L. C. Young. 

With these conventions, we see that the condition (W. E.), requires that the function 

F(C) = f ( ~ ,  yCx)., ~'(~). + C) 
93 

930 

I t  is clear geometrically that the condition (W.E.),, as distinct from the 

condition (W. E.), can only arise in the case of a function f ( x ,  y, y') which is 

n o t  convex in y', i.e. in the case of a variational problem which is not ,>regulars>. 
In  order to illustrate the meaning of the condition from the classical point of 

view, let us now consider a case in which f ( x ,  y, y') is differentiable as often as 

required but  not convex in y'. We shall suppose, with C. CARAT~EODORY I3, 4], 

that  there exist functions p(x, y, o) and ~o(x, y, I), differentiable as often as ne- 

cessary, such that p(x, y, o) < p(x, y, I) in the region under consideration and that, 

as function of y', f is convex at every point y' outside the interval p(x, y, o)<-- 
<--y' <p(x ,  y, 1) and not convex at any point y' inside. I f  y' lies in this in- 

terval, it is easily seen that the function 

F(~) : f (x ,  y, y' + ~) 

has for ~ : o exactly one generalized flat support, namely 

~(~, ~,i) + (# + ~)Q(~, y) 

where P(x, y )+ y'Q(x, y) is the linear interpolation of jr, as function of y', 

between y' : p ( x ,  y, o) and y ' -~p(x ,  y, I), and may therefore 1 be written 

f ( x ,  y, p) + (y' -- p)fp(x, y, p) 

where p may be either p(x, y, o) or p(x, y, I). Hence, for each of these two 

values of p, a simple calculation shows that we have identically in x, y 

(9.2) P y -  Q93 = f , J - p O , ~ -  Q93. 

This being so, let y(x),, y'(x, a), be a generalized curve along which f fu l f i l s  the 

condition (W. E.), for almost all x, and let x be almost any point for which 

y'(x, a), does not reduce for almost all a to ~'(x),. Then clearly, in view of the 

condition (W. E.),, 
p(x, ~(x)., o) - 9'(x). -< p(x, y(x)., i), 

1 I t  is t angen t  to f a t  t he  two  ex t r eme  values  of y'. 
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so that  the only values that  can be assumed by y'(x, a) in positive measure of 

a, are p(x, y(x),, o) and p(x, y(x)., I). For this x and for y =-y(x),, we therefore 

have, by (9.2), neglecting a possible set of measure zero in a, 

P , -  Qx =f,j(x, gx), ,  y'(x, ~),) - Q ~ -  y'(x, a), Q:,. 

Moreover, by definition 

Q(x, gx).,)=f,+,(x, y ( x ) , , / ( x ,  a),) 

independently of a. When we integrate both these relations with respect to a, 

the former gives, for almost any x, 

_t d 
P,~ - Q,, - - ~ , ( x ) , -  Q ~ - -  : , /(x),  Q:, = f ,~(~),  - ~ Q(x, g x ) , ) ,  

and hence, substituting for Q, 

(9.3) Py -- Q~ --fy(x) ,  - dd~xg~,(x)+. 

On the other hand, in view of the condition (W. E.)., we have, writing ~/, = 

= ~ + y' (x ,  a) ,  - 9 ' (x ) , ,  

1 1 

(9-4) i f ( x ,  y(x),, y'(x, a), + ~)da >-- I L(v~)da= L(~), 
, )  r J 
0 0 

x 

The function of ~ on the left of the inequality (9.4) thus has L(~) for an 

ordinary flat support at ~ = o, and, by the definition of tangent, we deduce at 

once that  
2C 

~,,(~)+ = ~  + ff , ,( t) ,d~ 
I ]  

2' 0 

Hence by (9.3), we must have when y = y(x)., 

p~-Qx=o 

at almost all the points x ' s u c h  that y'(x, a) does not reduce to 9'(x) almost 

everywhere in a. In particular, if the function 

~ ( x ,  u) = Py  - Q~ 
3 2 - - 3 7 5 3 4 .  Acta mathematica. 69. Iraprim~i le 4 m a r s  1938. 
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is different from zero throughout the region under consideration, y'(x, a), must 

- r  X reduce to y ( ) ,  almost everywhere, and our minimum cannot be attained along 

a generalized curve y(x),, y'(x, a), other than a trivial variant of an ordinary 

minimizing curve. 

We shall not dwell on the important part played by the restriction f2(x, y ) r  o 
in the classical theory of the non-regular problem as developed by Caratheodory 
(of. also TONELLI [I3]  , VO1. II, p. i93--2oo ). The object of these remarks has been 
to show the connection between our condition (W. E.), and these classical ideas. 

w io. General Form of the Condition (W. E.),.  We shall now consider a 

more general form of the condition (W. E.), which corresponds exactly to that  

of the condition (W. E.) in w 7, and our main theorem will be the exact analogue 

of Theorem (7.4). The necessary condition established in Theorem (7. I) reduces 

to the classical form (3.3) of the condition (W.E.}, whenever there exists a 

sequence of numbers {h~} tending to zero and containing an infinity of terms 

of both signs, such that, for almost every x, 

92 92 lim?upf  ,,f(t)dt-=liminff hJ(tldt=ff.(t)dt 
Xo ~'o ~o 

In exactly the same way, the necessary condition which will be established in 

Theorem (lo. I) below, reduces to the form of the condition (W.E.), stated in 

w 9, whenever there exists a sequence of numbers {hn} tending to zero and 

containing an infinity of terms of both signs, such that, for almost every x, 

x x 

lira sup ~ln~f(t) ,dt  = lim inf f ~ , , s ~ ) , d t -  
2:0 2"0 2:0 

where, in accordance with our previous notation, c~hf(t), stands for 

1 

f {f(t, y(t), 
0 

' ' t  + h, y (t, a),) -- f( t ,  ~](t),, y (, a),)} da/h, 

when h ~ o, and for o when h----= o. 

In our main theorem, the appropriate modifications, applicable to ghe gene- 

ralized problem, require hardly any new idea. The principal restriction (D), 
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will be the natura l  generalization of our condit ion (D), bu t  we shall make one 

fur ther  restriction (G)~ which will be seen in w I I to exclude only certain quite 

un impor tan t  generalized curves, and whose effect is, in particular, to ensure that ,  

in certain of our repeated integrals, the inner integral  exists in the Lebesgue 

sense. (Elsewhere, as usual, integrals will be in the general  Denjoy  sense.) 

We shall again suppose tha t  the ratio o~//hf remains bounded when x, y, 

y', h range in bounded sets. Further ,  we shall say that  a generalized curve 

y(x),, y'(x, a), fulfils the condit ion (G). if there exists a measurable funct ion 9(x), 

finite almost everywhere  in (x0, xa), such tha t  

I y'(x, ~), I < ~(x) 

for almost all a at  each point x. Finally, we shall say that  a generalized curve 

y(x),, y'(x, a), fulfils the condit ion (D).~, if the funct ion 

~,(~)f(x, y(x),, y'(x, ~),) 

has for  almost all x an integral  in a which is Denjoy  integrable in x, whenever  

~(x) has bounded derivates. 

(io. I) Theorem.  Let y(z'),, y'(x, a), be a generalized admissible curve which 

fulfils the conditions (G), and (D),, and for  which the integral (8.2) assumes a 

finite minimum; and let {ha} be a sequence of  numbers tending to zero which contains 

an infinity of  terms of both signs. Then there exists a constant c, finite or infinite, 

such that, for  almost every x, we have 

{f(z, y(x),, ,)'(x), + ~) - f ( x ,  u(x),, #'(x),)}/~ >_ 
x 1 

>~ c + lim,~ inffdtf 
Xo 0 

whenever ~ > o, and 

dacJ~[h,J(t, y(t),,  y'(t, a),) 

{ f ( x ,  y(x)., (j'(x). + ~) --  f ( x ,  y(x).,  #'(x).)}/~--< 

<- c + lira ~u~ f d,  da~/ lh~f( t ,  y(t)., y'(t, a).) 

;c o 0 

whenever ~ < o. In  the case of an infinite constant c, these inequalities are in- 

terpreted to mean that, for a~most every x, 
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limsup + = = - = ;  a,,~ lira inf i rm:  S(,)d,=--= iS~= + = .  

Xo fl'o 

P r o o f .  W e  may suppose tha t  nei ther  of the limits as n-+cr of the 

expression 
x 

f ,<J~t'lh,, f ( t), d t 
XO 

is infinite for almost all x, and moreover  tha t  ~ ' (x ) i s  everywhere finite and 

measurable (B). 

The funct ions 

tom(x, ~) = -- { f(x, y(x),, .O' (x), 

and 
Xo 

to (x, ~)=- lira inf tom (x, ~) 
n 

are then also measurable (B) and moreover  t0(x, I ) a n d  t o (x , -  I)are finite below 

in sets of positive measure. I f  the assertion of our theorem is false, the funct ion 

to(x, ~) therefore  fulfils the conditions of Theorem (4. I)! We shall show that  

this leads to a contradiction.  

As in the proof of Theorem (7.4), we see that  there exist constants  c o and 

7 0 >  o, and a bounded measurable funct ion t0(x), such that  both the subsets 

of (xo, xl) 
E 1 ~--- E [~o(X) > o] and E~ ---- S [~o(X) < o] 

x x 

have positive measure and tha t  in E 1 + E2 we have 

to (x, ~o(X)) + Co ~o(~) > to. 

Moreover  we may suppose fur ther  tha t  E 1 and E2 are perfect  sets on which 

each of the functions 

~o(X), i/~o(X), ~(x), ~' (x), / (x) ,  , / (x ,  v(x),,  ~'(x), § ~o(~)) 

is bounded and continuous,  and that ,  on each of the sets E 1 and E~, each of 

the  funct ions of x 

lim i n f f ~ h . f ( t ) , d f  and l im sup f~l[h,,f(f)df 
Xo 
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is either an infinite constant, or else a bounded and continuous function. And 

finally, that whenever x and ~ are points of t'71 + E~ distant less than a certain 

positive number ~o, we have for all n exceeding a certain integer ~o, 

} i 
(m. 2) f (x ,y (x) , ,v  (x), + Co(~))-/(x)-Co(X). ~o + N f ~ / ( t ) d t  < - 4~o. 

9:0 

This being so, let ~1 and ~ denote, respectively, a point of density of E~ 

and one of _N~, and suppose for simplicity that ~ < g~. (The proof proceeds 

similarly if ~1 > ~,  and we may dearly exclude the ease ~1 = ~.) We denote 

by {h'~} the subsequence of {h~} which consists of the positive terms not exceeding 

the numbers K ' .  (~ . - -~ )  and K ' .  (~- -x0)  where K'  is the upper bound of 

1~Co(X) in E1 + E~. For each n we can now determine in (x0, x~) two intervals 

I~ and J , ,  necessarily non-overlapping, which have the points ~1 and ~ ,  respectively, 

as their right-hand endpoints, such that 

f Co(X) dx = -- f Co(x) dx=  h'.. 
I n �9 E1 J n .  E2 

V'(x) to be Ca(x) when x < E 111 + E~ J~, and o otherwise, and We now define 

we write 

/ / V(x) ~- v'(t) d t  -= --  v'(t) dt; V,~(x) --~ Min (V(x), h'n). 

xo x 

We denote by V'n(x) the derivative of Vn(x) and we consider the generalized curve 

y~(x),, y',~(x, a). obtained by writing 

y~(x)| y(x), + V~(x); y',~(x, a), -- / :~'(x)* + Co(x) when x < E~ I ,  + E~ Jn, 

~ y (x, a), otherwise. 

We shall show that  for  sufficie~dly large u the integral 
Xl 1 

Xo 0 

exists and has a s~aller .value tha~ the integral 
Xl 1 

J= f f.o.(., o).). 
Xo 0 

This will contradict our hypotheses and so establish the theorem. 
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For brevity, we write ]~(x) . ,  ,:~/lhf~(x). instead of 

1 1 

f o).)do, f r 
0 o 

Denoting by c~, any constant, we have then 

~2 t 

f {f,,(.). - / (x ) .  - ~.,/,,(.) + >(x) ~/,,,(.)f,,(.).} dx, 
a" 0 

each of the terms under the integral sign, except perhaps the last, being integrable 

for trivial reasons. Now by integration by parts [lemma (6. 3)], we have 

X l  

a '  o 

X 1 92 

and here the inner integrand on the right-hand side reduces to 

,.,~'.~,,l,) f (t), 

except when t < (E, L, + E~ J.) in which case it reduces to 

r f ( t ,  y ( t ) . ,  ~' (t). + V',,(t)) 

which is bounded since [y ' ( t , a ) .  I < ~(t) and ~0(t)is bounded in the set E 1 + E 2. 

Thus 
~ l  X 1 X 

f - f ,  , )} ,],(x) r d x  = - -  ~ ,,(x) n(t) f ( ) .  d t  + O(h',, d x .  

X o a" o X o 

Now if x < ( E , I ~  + E~ J,,), we can determine ~ in this set so that [ x - - ~ l <  O(h'n) 

and that 

xo Xo ~o (1n + 40 . (xo, x) 

The last integral is o(I) as n-~r162 by continuity of the Denjoy integral of the 

function r which is independent of n. Hence, choosing 
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we o b t a i n  f r o m  (Io.  2) 

l a rge  n, 

Cn ~ e o + f ~ h ' , ,  f ( t ) ,  dt, 
9J 0 

[exact ly as in the  p roo f  of  T h e o r e m  (7.4)] tha t ,  f o r  all  

Th i s  c o m p l e t e s  t h e  proof .  
~ - - J <  o. 

I I. A d d i t i o n a l  R e m a r k s  on G e n e r a l i z e d  C u r v e s .  We shall now show tha t  
the general ized m i n i m u m  and  the existence of a min imiz ing  general ized curve are 
unaffected by  the restr ict ion to general ized curves which  fulfil the condit ion (G), .  

In  fact,  g iven any  general ized admiss ible  curve, we can de termine  ano ther  which 
fulfils this  condition and for which the value of the var ia t ional  in tegral  is not  

increased. 
The  general ized curve y(x)~, y'(x, a)~. will be t e rmed  bifurcating curve if there  

exist  two finite measurab le  funct ions  ~ l (X)and  ~e(x), where  ~ l ( x ) ~  ~(x) ,  such tha t  
for a lmost  all x the set  

E [y'(x, ~). ~ ~ (x), Y' (x, a) .  ~ ~_, (x)] 

is of measure  zero in a. We shall only deal with the case in which there  exists  a 

measurab le  funct ion a(x) such tha t  o ~ a(x)~--~ and 

y' (x, ct). = ~l(X) when o ~ a ~ a(x), 

y ' ( x , a ) . ~ ( x )  when a ( x ) ~ a ~  i. 

Actual ly  this is no real loss of general i ty ,  since our in tegrals  are unaffected by a 
rearrangement of y'(x, a). as funct ion of a. (For the definit ion of rea r rangement ,  cf 

HARDY, LITTLEWOOD and  POLYA [5, P. 276].) Ev iden t ly  any  b i furca t ing  curve fulfils 
the condit ion (G).. We therefore  need only prove 

( I I .  I) T h e o r e m .  Given any admissible generalized curve y(x)., y ' (x ,a) ,  there 
exists a bifurcating curve ~dth the same y(x)., such that the value of our variational integral 
is not increased when we replace the given generalized curve by this bifurcating curve. 

To obtain such a b i furca t ing  curve it  is ev ident ly  sufficient to es tabl ish the  

existence of measurab le  funct ions a(x), ~l(X), ~(x) ,  such that ,  for a lmos t  all x, 

o ~-- a(x) ~ i, ~l(x) ~ ~(x) ,  a(x)~l(x ) + (i - -  a(x))~u(x) -~- y'(x), 

a(x)f(x,  y(x). ,  ~l(x)) + (i - -  a(x))f(x, y(x)~, ~e(x)) ~ K(x), 

where K(x) is a finite funct ion measurab le  (B) nowhere  less than  f ( x ) .  and with 

the same integral.  Such a funct ion K(x) cer ta in ly  exists  provided t ha t  f ( x ) .  is 
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finite above, and we m a y  clearly suppose this to be the case. We m a y  suppose 
fur ther  tha t  y'(x). = o. 

Wri t ing  q)(x, ~) = K(x) - - f ( x ;  y(x),, ~), we have by  hypothes is  

1 1 

f / ( , , .  ~) ~ ( x ,  y'(~,  ~ ) . ) d ~  -> o ,  ~/(~, ~ ) . d ~  = o ,  

0 0 

and we wish to show tha t  there  exist  measurable  funct ions a(x), ~l(x), ~(x), such 
that ,  for a lmost  all x, 

o -< a(x) _< ,,  ~,(x) < ~.(x),  ~ (~)~ , (x)  + (1 - a (x) )~ . (x)  = o. 

a(x)~(x ,  ~,(x)) + (1 - a(x))~(x,  ~(x)) --- o. 

For this purpose, let Q be the set of four-dimensional  points  (a, ~ ,  ~ ,  x) such tha t  

( I I .  3) 0 ~< a ~ t ,  ~1 ~ ~.3, a~l  -~ (t  - -  a)~ 2 : o, a~ ) (x ,  ~1) -~ ( i -  a ) ~ ( x ,  ~2) ~ o. 

Clearly Q is a Borel set. We shall see tha t  its projection on the x-axis includes 
every point  x of (x0, xl). 

We denote by  E 1 the set  of x for which q)(x, o)>--o ,  and by  E~ the set  of the 
points  x, not  belonging to Ex, for each of which there exists a value c such tha t  

q)(x, ~) + c~ <-- o for all ~. Final ly  we denote by E a the set  of x not  belonging to 

E l + E ~ .  
Let  now x be any  point  of (x0, xl). If  x ~ E ~ ,  the relat ions (i~. 3) are fulfilled 

when a = o, ~ = ~ = o. If  x ~ E~, the relat ions (~ i. 2) require tha t  the non-posi t ive 
funct ion of 

+ (x ,  y ' (x,  a),) + cy ' (x ,  a),  

have  a non-negat ive  integral  in a;  this funct ion then  Vanishes a lmost  everywhere  in 
a, and in part icular ,  by  the second of the re la t ions ( i i .  2), a t  two values of a for 
which y'(x, a). assumes values ~1 and  ~.~ where  ~1 -< o and  ~ >-- o. Since q)(x, o) < o,  
this  implies  ~, < o < ~ .  Choosing a so tha t  a~l + ( i - - a ) ~ =  o, the relat ions 
( I r . 3 )  are fulfilled by the sys tem (a, ~1, ~2, x). F inal ly  if x < E a ,  w e  m a y  apply  
Theorem (4. i) (in the par t icular  form rela t ing to funct ions  independen t  of x), and 

we find tha t  there exist numbers  ~1, ~.~, Co, 7o such tha t  ~l < o < ~_~, 70 > o, and 

�9 (.% ~,) + Cot, > 70, o (x ,  ~2) + c0~., > 7o. 

Choosing a as before, 
s t ronger  form 

the relat ions ( i i .  3) are fulfilled, the last  of these in the  

a ~ ( x ,  ~,) + (~ - -  a ) ~ ( x ,  ~.,) > 70. 
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Thus every x of (Xo, xl) belongs to the projection of the Borel set Q. By a simple 
extension of lemma (5.2), the set Q therefore contains the graph of a vector func- 
tion whose components a(x), ~l(x), ~2(x) are measurable. This completes the proof. 
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