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§ 1. Introduction. The object of this note is to introduce new variational
methods, which belong to the order of ideas of Minkowskr's theorem on the
existence of a flat support for a convex figure. We here apply these methods
to the inhomogeneous form of the »simplest problem» of the Calculus of Varia-
tions, and we establish, by means of them, a necessary condition, of a very
general form, for an attained minimum. In the proof, an important part is also
played by theorems of measurability which belong to the theory of Analytic and
Projective Sets. '

Our necessary condition generalizes at the same time the necessary condition
~of WE1ERSTRASS, the equations to an extremal of EviLir and Dv Bois Revmonn,
and the equation Q(z, y)= o to certain limiting solutions of CARATHEODORY.

Our methods enable us to dispense with many classical restrictions on the
integrand f(z, y, y'). The important restrictions of ToxeLLr on the existence
and order of magnitude of the partial derivative f;, are replaced by weaker restric-
tions on the behaviour of the corresponding partial finite-difference ratio. Apart
from these weakened restrictions which concern only the dependence of f on the
variable y, our integrand may be any function measurable (B).

We use integration consistently in the general Densoy sense. This corresponds
to an enlargement of the class of admissible curves. We consider also a still
further enlargement obtained by admitting what we term generalized curves.

In variational problems such as we treat here, in which no restriction is
imposed on the order of magnitude of f, these enlargements of the class of
admissible curves do not necessarily lead to corresponding generalizations of the
classical problems. It is easily seen, however, that our methods apply also — and
are indeed slightly simplified — when classical restrictions are imposed on the
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admissible curves, in particular when integration is understood in the LeBEscur
sense instead of in the general Denjoy sense.

Finally, although throughout the present note we limit ourselves to the
simplest problem of the Calculus of Variations, itlmay be observed that our
methods do not demand such a limitation and that further applications, par-
ticularly to problems with subsidiary relations and to isoperimetric problems,
are possible.

§ 2. Admissible Curves. We begin with some elementary remarks. The
simplest problem of the Calculus of Variations consists in determining the mini-

mum of an integral

Ly

f Fla, y(a), o (@) dac

To

for a given f(x, ¥, ') and fixed ends y(x,) = ¥y, ¥(x,) =y, when y(z) belongs to
a certain class of »admissible curves» which must be explicitely defined, and
which certainly includes all the functions y(x) with continuous derivatives of all
orders which fulfil the boundary conditions y(x,) = v,, y(x,)=¥;.

The classical theory of the Calculus of Variations was concerned with the
case in which the admissible curves consisted of these analytic curves only.
Modern researches have shown that in order to treat the classical problem satis-
factorily it is convenient to enlarge the class of admissible curves. This is
because the variational methods so far known depend on the existence of a
sminimizing> curve in the class of admissible curves, i. e. a function y(x) for which
the minimum is attained. To ensure, as far as possible, that such a minimizing
curve should exist, the class of admissible curves has, since the days of Weier-
strass, been enlarged, successively, by the inclusion of functions y(x) with bounded,
piecewise continuous, derivative y'(z) (CaraTuEoporY [2]) by the inclusion of
absolutely continuous functions y(z) for which ¢'(x) then denotes the derivative
almost everywhere (TONELLI [13]), by the inclusion of certain non-rectifiable curves
(Me~ncER [10, 11]), and by the inclusion of »generalized curves» (below §§ 8—r1).
Another interesting extension, due to Mc¢ Suane [8], consists in the inclusion of
certain admissible curves of a corresponding parametric problem.

Apart from their bearing on the classical form of the problem, these ex-
tensions have an interest of their own owing to the fact that modern Analysis
is now chiefly concerned with the more general processes of integration. In the
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investigations of the following §8, we shall limit ourselves to two extensive
classes of admissible curves, the »ordinary» and the »generalized»> curves as we
term them, and we shall interpret integration in the general Denjoy sense. We
do not concern ourselves with the corresponding results for the more restrictive
classes of admissible curves. It has already been remarked (§ 1) that such results
may be derived by applying our methods in an appropriately specialized form.

Actually the relations between the problems which arise from the various in-
terpretations of the class of admissible curves (and which have been studied by
LAVRENTIEFF (6] and ToNELLI [1g]) are still rather obscure. It is easy to construct
examples in which the minimum of our integral has different values for certain
of these classes. This state of affairs is of frequent occurrence in problems with
subsidiary relations [cf. (a) below], and the fact that it oceurs also in the simplest
problem in ordinary form [cf. (b) below] may perhaps be accounted for by the
similarity of these two types of problems.

(a) Let (A) denote the class of pairs of real functions y(x), z(x) with continuous
derivatives ' (x), 2/ (x) such that [2'(2)]®= 1 + [y'(x)]® and (B) the corresponding class
of y(x), z(x) with bounded, piecewise continuous ¢'(x), z’(x) fulfilling the same rela-
tion. The minimum of the length

&y

f (o W+ ) d

o

of the curves of (A) such that y(x,), z(ry) = o, 0 and y(x,), z(x,) =1, 0, is clearly
+ o, since no curve of (A) can have these ends. The corresponding minimum in
(B) is evidently V2 - (x; — ).

By slight modification of the subsidiary relation 2z’2= 1 + y'?, we can arrange
to have a finite, but extremely large, minimum length for the class (A), and a mini-
mum length not exceeding 2 - (1, — ) for the class (B).

(b) Let now D, be the domain of the (x, y)-plane for which

o<x=1 and o=yloglog(e/z)<1+1Vua;
and let

flx, y, y') = o'log (¢/x))¥ exp {— y/[x log (¢*/x)]}

for all y and all (®, %) in D,, except when z = o, in which case we have also
y=o0 if (x,y) lies in D,, and we choose at this point f(x, y, y') = o for all ¥’
Here ¢ is the natural logarithmic base and ! is a number exceeding 2 but otherwise
arbitrary. By choosing ! large enough, the partial derivatives of f up to any ass1gned
order can be made continuous in D,.

This being so, we denote by (4,) the class of functions y(x) with bounded
derivative y'(x), such that the point (r, y(z)) lies in D, for each z of the interval
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o =<z=1, and that y(o)=o0, y(1) = 1; we denote by (B,) the corresponding class
of absolutely continuous y(x). By the change of variable z =y log log (¢%/x), we
easily see that the minimum of the integral

1

f flz, ylo), ¥ (@)dx

0

has the value ¢ for the class (B,) and a value not exceeding ¢~V for the
class (4,).
(In fact, when we change our variable, the problem becomes

1
fx’ez'<”)dx = Min. subject to z(o) = z,, 2(1)=1,

0

where the relevant value of 2, is o for the case of the class (4,) and 1 for that
of the class (B,), and the admissible curves may be taken to consist of all the
absolutely continuous z(x) defined for o <X x =< 1 which have the assigned end-values

and fulfil the inequalities o < z(x) < 1 + {Vx. The minimum ¢~ ®+!~1 is attained
for the curve z(x)={(1 — z))x + 2z, —lx log x. In fact, without appeal to general
theory, if we write

g=gle,2)=1+(z+ llogx — 1)/(1 — x),
we see that
d

e’ = — %{(I —m)xle 9} + ale9 - {9 — 1 — (2 + g)},

and the result follows, in view of the inequality ¢* — 1 — & > o which holds for
all real o % o.]

§ 3. Classical Form of the Condition (W.E.). ZLet us suppose for the
moment that f(x, ‘y, y') has continuous partial derivatives up to those of the
second order, and that y(z), defined for zy <x <z, is restricted to have a
continuous detrivative y'(x) and to assume the values y(x,) =y, and y(x) =y,
at the ends.

The classical theorems of Euler and Weierstrass assert that if y(x) is a

minimizing curve for the integral of f, we must have, for all x, firstly

(3.1) Frle, yla), v’ @) =c + f A 90, vt



Necessary Conditions in the Calculus of Variations. 233

where ¢ is a constant, and secondly
3.2)  Sfloyl) @)+ ) —fle gyl @) — Lhvle yla), y'(@) = o,

whatever be the real number {. Hence, substituting from the first relation, we
conclude that there exists a constant ¢ such that, for every x of [x,, x;] and
for all £,

(3.3) flo, yl@), y'(x) + O) —fle, y(@), v @) —C {e+ ffy(t, y(t), ¥ ()dt; =o.

The most elementary properties of a derivative show, conversely, that this condi-
tion, if it holds for all {, implies both the preceding ones. We call it the cond:-
tion (W.E,) in classical form. The study of its extensions is the main object
of the following §§.

The intimate connection of this condition with the theorem of MINEKOWSKI on
the existence of a flat support is at once clear when we consider the case in which
flx,y,¥)=F() is independent of both x and y. If we limit ourselves to a
minimizing curve of the special form y(x) =ax + b, ¥ (x) = a, where a and b are
constants, and if we suppose, for simplicity, that x, = o, x; = 1, the necessary condi-
tion (W.E.) in order that

(3.4) Fla) (=[F(a)dx) SfF(a + 7/ (x))dx whenever f’ly'(x)dx:o,

becomes: there exists a constant ¢ such that
(3-3) Fla + ) = Fla) + ¢ for all L.

The classical theory of the Calculus of Variations thus shows that (3.4) implies
(3.5) when F({) has a continuous second derivative. Evidently (3.5) always im-
plies (3. 4).

The equivalence of (3.4) and (3.5) is known as Minkowski’s theorem. This
theorem, which remains valid WHeh we remove the restrictions of existence and
continuity of a second derivative, is one of the most powerful tools of modern ana-
lysis (cf.,, for instance, HarDY, LitTLEWOOD and Porya [5] p. 94, Th. 112, and, in
abstract form, Banacu [1} p. 24, Th. 1)

Actually, cur whole study of the condition (W.E.} of the Calculus of Variations
may be regarded as the study of the variational generalizations of Minkowski's
theorem. It would clearly be absurd to re-introduce into these generalizations the
classical restrictions of differentiability, ete. of the integrand f(x, y,y"). In the
sequel, we therefore dispense with these classical restrictions.

30—37534. Acta mathematica. 69. Imprimé le 4 mars 1938.
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§ 4. Problems Independent of the Variable y. We shall suppose in this §
that f(x,y,%) has the special form ¢(z,4). This special case will serve as a
basis for our later results.

In the classical Calculus of Variations, a still more special case occurs in the
trivial lemma, often termed »the fundamental lemma» of the Calculus of Variations,
which is of use in establishing the Du Bois Reymond condition (3.1). This trivial
lemma asserts that, if, for a given function f(x), we have

Ty Xy

f?/(r)f(x) dx= o whenever fy'(oc) dx = o,

2y 2y

then there exists a constant ¢ such {hat f{x)=c for almost all x. Clearly this lemma
is a consequence of the condition (W. E.) for the cases f(x,y, y) =y f(z) and

fla,y, 9 )= —4 f(x). The place of this lemma is here taken by the more general

result that the condition (W. E) is valid as it stands, when f(x, vy, y') has the form
I4

@ (x, ¥).

This result will follow from the main theorem of this §. It evidently includes
Minkowski's theorem (vide the remarks of § 3). It's usefulness lies in the fact that
it enables us to derive a conclusion which is, in appearance, stronger than the hypo-
theses. If in (3. 3) we choose for £ any integrable function #’(x) and denote by 7(x)
the integral of the latter from x, to x, we obtain from (3.3}, by integration, the
inequality '

x, x

f 9o,y (@) + @) de = f o (o, ' (@) de + enley),

Tg %o

and this inequality now applies to comparisom curves of a much more general kind
than were originally admitted, since they need not pass through the end y; at x=ux;.

It is convenient to state the main result of this § in the following form:

(4. 1) Theorem. Let ®@(x,§) be a function measurable (B) which is defined
Jor all real § and for all x of a set E throughout which @ (x, 0) <0, and suppose
that the subsets of E in which @ (x, 1) and @ (x, — 1) are finite below respectively,
are of positive measure. Suppose further that to each real number ¢ there exists a
subset of E of positive measure at every point x of which we have @ (x,{)+c¢{>o0
Jor some T depending on x. '

Then there exist a bounded measurable function {,(x) and constants ¢, and y,,
such that both the subsets of E
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E =E[{(x) > 0] and E,=E[}(x)<o]
x . ed
have postteve measure, and so that, in E, + E,, we have

@ (x, §y(x)) + e 5ol@) > 7.

We shall see, when we deduce Theorem (4.4), below, as an immediate
corollary, that this statement differs only in minor details from the assertion of
the necessity of the condition (W. E.) for problems independent of y.

It may be remarked further that Theorem (4.1) generalizes Minkowski's
theorem: to obtain the latter, simply choose @ (x, {) to be of the form F(a)—IF'(a+3),
independent of x.

Proof of Theorem (4.1). We denote by O the set of the values of ¢
for each of which there exists a bounded non-negative measurable function {,(x)
and a positive rational number y such that

(4. 2) @ (x, 5y(x)) + e Lylz) > 7

for all x of a subset of F of positive measure. We denote by 0" the set of
the values of ¢ for each of which there exists a bounded non-positive measurable
function {y(x) and a positive rational number y with the same property. It is
clearly sufficient to prove that O’ and 0" contain a commeon value c,.

Now we see at once that the sets 0" and O” are open. In fact, if ¢ belongs
to the set O’, for instance, then so does the interval (¢ — h, ¢ + h) provided that
o< h<y/K, where y is the rational number, and K the upper bound of the
function (,(x), associated with the particular value of ¢. Moreover, for sufficiently
large 7y, the sets O and 0" include respectively the values ¢ = n, and ¢=—n,;
we have, in fact, for large n,, @ (x, 1) + n, > 1 and @ (x, — 1) + 7, > 1 in subsets
of E of positive measure, so that we can choose [,(x) =1 when ¢ = #,, and
Golw) =— 1 when ¢ = — n,.

The sets O' and O” are thus non-empty open sets. To prove that their
common part is non-empty, it is sufficient to show that thesr sum is a contenuwm.

Let therefore ¢ be any real number. We have to show that there exist a
bounded measurable function (y(x) of constant sign and a positive rational
number y, such that the inequality (4. 2) is valid for all x of a subset of E of
positive measure. Keeping ¢ fixed, let E, x be the subset of E at each point x
of which there exists a value of [ such that

(4.3) [|<K and @z, 0)+c¢l=y>o0,
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the numbers y and K being rational. The sets E, x, as projections of plane
Borel sets, are measurable (cf., below, lemma (5. 1) or, for instance, Saxs [12],
Chap. II, § 5) and their sum for all rational y and K has positive measure by
hypothesis. Hence, one at least of the sets FE, x has positive measure. It clearly
contains a subset of positive measure at every point z of which there exists a
value { of constant sign for which the inequalities (4. 3) are satisfied. In this
last subset we can, finally, by lemma (5. 2) below, locate another subset of positive
measure in which there is a measurable function { = {,(x) of constant sign for
which the inequalities (4.3) are satisfied. This shows that any real number ¢
belongs to the set O + 0" and so completes the proof (subject to the measur-
ability considerations of lemmas (5. 1) and (5. 2) of § 3).

As an immediate corollary, we establish, for problems independent of y, the
condition (W. E.) in the following form:

(4.4) Theorem. Let ¢(x,§) be any finite function of the variables x, §, and
y' (x) a finite function of x (not necessarily integrable in any sense), both measurable
(B), such that @ (x, y (x)) s integrable (Denjoy) and that the inequality
Xy Ty
[o@v@+d@riz= [y
holds* whenever 7' (x) is a bounded function measurable (B) such that
f 7 (z)dx=o0.

Then there exists a constant ¢ such that, for almost every x of (x,, x,), the tnequality

(4-5) ey @+ ) -y @) —cl=0
holds for all L. In particular, we therefore have®
[oev@+i@as= [pey@iete [
Jor all Denjoy integrable 4’ ().
To obtain this theorem, it is sufficient to apply Theorem (4. 1) to the function
@z, 0)=o¢(r, ¢ (x) — @ ¢ (@) + {) — which is measurable (B) by lemma (5. 3)

! We suppose this only when the left-hand side exists.
* Asserting at the same time the existence of the left-hand side.
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below — on the assumption that there is no constant ¢ for which (4.5) holds
for all { at almost every z, an assumption which has to be shown to be untenable.
Clearly, the function {,(x) whose existence is established in Theorem (4.1) may
be supposed (by replacing it by o in part of E, or E, if necessary) to fulfil the

f@o(x) dx = o.

Therefore, choosing 7'(x) = ,(x), we obtain

condition

Ly

f (o, /(@) + 7/ (@) — g (o, o/ @)} dw < — 7 f dz <o

o E+E,

and this contradiets our hypotheses.

§ 5. Lemmas Concerning Measurability. We now come to the measurability
considerations needed in § 4. We denote by [E], the projeétion of any set E,
in the plane or in space, on to the x-axis. We denote further by | E| the
Lebesgue measure of any linear set FE.

(5.1} Lemma. Let E be a plane Borel set. Then [E). is measurable and E
contains a closed set H such that |[El, — [H):| < e.

This is proved almost explicitely in Lusix [7, p. 152]. The set E is, in
fact, the projection on a plane, of a so-called »elementary set> E* in three
dimensions, and E* contains a closed set H* such that |[E*], — [H*|;| <e.

(5.2) Lemma. If K s a plane Borel set and |[El:| > o, then E contains
the graph of a measurable function f(x) defined on a subset of [El. of positive
measure.

We may suppose E closed, by lemma (5. 1), and bounded. The function
Slz) defined as the least value of y such that (x, y) < E for fixed «, is then
lower semicontinunous and so measurable.

(5.3) Lemma. Let ¢z, ) and flx) be measurable (B). Then so is the function
(@, f(z) + 0.

This is obvious if ¢ and f are continuous, and by passage to the limit with
S it remains true if ¢ is continuous and f measurable (B). TFinally, keeping f
fixed and passing to the limit with ¢, we have the desired result.
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§ 6. Lemmas Concerning Denjoy Integration. We state here, for convenience,
the few, not quite trivial, relevant results concerning Denjoy integrals in the
general sense. They are among the most immediate consequences of the de-
finitions. -

(6.1) Lemma. Let f(x) be Denjoy integrable in (x,, x,). Then its indefinite
integral 1s a continuous function F'(x) such that, given any non-empty perfect set P,
there exists a non-empty portion of P (common part of P with an open interval) on
which f(x) is absolutely (Lebesque) integrable and for whose complementary intervals
(@n, bu) the series D\ | I (by) — F(an)| converges.

n

The property expressed by the above lemma, may be regarded as a definition
of what we mean by an indefinite integral in the Denjoy sense.

(6.2) Lemma. A function flx) which is Denjoy integrable in (x,, x,), ¢s
almost everywhere in (x,, x,) the approximate derivative of its indefinite integral F(x).

We give the proof of this well'known result as it is short. Suppose, if
possible, that a set E of positive measure consists of points at which there is no
approximate derivative. Then F contains a non-empty perfect subset P, every
non-empty portion of which has positive measure. In P we locate a portion &
to which the conclusion of lemma (6. 1) applies. The function g(x)=f(x) in @
and constant with the value {F(b,) — F(ay)}/(by — @s) in each complementary
interval (an, b,) of ), is then absolutely integrable and therefore almost every-
where in @ the derivative of its integral . At almost any point of density
of @, f is thus the approximate derivative of F| since in @ we have f=g¢ and"
also F'= (. This is a contradiction and the lemma is proved.

(6.3) Lemma. If f(x) ¢s Denjoy integrable in (a, b) and @(x) bounded and
measurable, and if F(x) and ®(x) are their indefinite integrals, then the integral
b

f £la) 0(2) dz

[13
exists and its value is

b
F(5) o) — Fa) @(a) — f F() (@) da.
This can be proved by the same method, and is indeed only a special case

of general theorems on integration by parts. For other proofs and for the deeper
properties of Denjoy integrals, cf for instance Saxs [12] Chap. VIIL
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8§ 1. ‘The Condition (W. E.) on an Ordinary Curve. We shall now extend
the condition (W. E.) to problems no longer restricted to be independent of y.
We denote by f{z,y, %) a real function, measurable (B) and everywhere finite,
of three variables. We write

(7. 1) M [ =M e, y, ) =S, y + 1, o) — flae, y, )} /0

when h is any real number # o, and M, f =0 when h=o0. This ratio M, f,
which vanishes identically in the case of a problem independent of y, will be
restricted by conditions enabling us to generalize the results of § 4.

We shall suppose the problem to be such that the ratio M) remains
bounded when x,y,y, h range in bounded sets. This is always assumed in the
investigations of Tonelli and classical writers.!

We denote by (x,,y,) and (v, ,) two fixed finite points of the plane such
that 2, <x,. We call ordinary admissible curve, a pair of functions y(x), y'(x)
such that

(7.2) y(e) =y, + f Y Bt =y, — f v{f) dt
and for which the integral K ’
(7.3) f e, y(@), o @) da

exists (finite or infinite), each of these integrals being understood in the general
Denjoy sense.

For brevity we write /() for f(t, y(t), y' (1)) and also M, (1) for M f(t, y(t), 5" (2)),
etc. We say, further, that a curve y(z), ¥ (x) fulfils the condition (D) if the function

Muw [, y(@), ' ()
is Denjoy integrable whenever 7(x) has bounded derivates. We shall confine
ourselves to the study of »minimizing» curves which fulfil the condition (D).

This restriction is also assumed, actually in a much more stringent form, in the
investigations of Toxerur [14] and Mc¢ Suane [9].

(7.4) Theorem. Let y(x), 4 (x) be an ordinary admissible curve which fulfils
the condition (D) and for which (7.3) assumes a finite minimum; and let {h.} be a
sequence of numbers tending to zero which contains an infinity of terms of both signs.
Then there exists a constant c, finite or infinite, such that, for almost every x, we have

! Here, an even weaker (fractional Lipschitz) condition would suffice.
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e, y0e) 9/ 0) + 0 = s, (o) o DV = o + i int [ M, F(0) a1
whenever £ > 0, and "
e y(e) /@) + 8 ey @VE = o+ Nimap [ s 110t

whenever [ < 0.
In the case of an infinite constant ¢, these inequalities are interpreted to mean
that, for almost every x,

lim supfﬁﬂhnf(t)dt= + o {f c=— o0; and
n
nminffmhnf(t)dt=—oo, if o=+ 0,

Proof. We may suppose that neither of the extreme limits as » > of
the expression

f M, f(t)dt

is infinite for almost all x, since there is then nothing to prove. We may suppose
further that y'(x) is everywhere finite and measurable (B). The functions

@, ) = — 1 f . y(a), ' (@) + O) — fla) — ¢ f M, (0 1)

and
@ (x, {) = lim inf @, (x, {)

are then also measurable (B), and moreover @ (x, 1) and @ (x, — 1) are finite below
in sets of positive measure. If the assertion of our theorem is false, the function
@ (z, () therefore fulfils the conditions of Theorem (4.1); we shall show that this
leads to a contradiction. ’ '

By Theorem (4. 1), there exist constants ¢, and y, > 0, and a bounded measur-
able function fy(x), such that both the subsets of (x,, z;)

E=E[f(r) > 0] and Ey=E[{(z)<o]
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have positive measure and that in F, + E, we have

@ (z, 5y(x)) + ¢ Lolx) > pp.

By replacing 5y(z) by o at certain points, if necessary, we may suppose that E,
and E, are perfect sets of posittive measure on whick each of the functions

Co(w), I/Co(x), ?/,(.’l‘), f(x)7 f(xa q/(x)v yl(x) + CO(%))

is bounded and continuous, while on each of the sets E, and E, each of the func-

tions of x

lim inf f M, f(t)dt and lim sup j M, f(t) dt

is either an infinste constant or else a bounded and continuous function. Further,
except in the »trivial»> case in which, on the whole of E,,

lim inffc%’l;,nf(t)dt: 4o,
n
the function N

an(x) = Min {O,fmhn f(t) dt — lim inff:?ﬂhnf(t)dt}

is finite on FE, and tends to zero ag % — . Hence, replacing F, by a perfect
subset of positive measure if necessary, we may (in view of Egoroff's theorem)
suppose that the sequence {an(x)} converges uniformly to zero in E,. Denoting
by K, the upper bound of {,(x), we have in E,,

Dy (2, 5o(@) — @ (z, Lo{x)) = K, an(x),
and it follows that, for all #n exceeding a certain constant #,,

@ (&, 5o(@) + ¢0 Sola) > 6.

Similarly this extends to the »trivial» case and to the set F,. Finally, by con-
tinuity, we can determine d, > o so that +f x and & are any two points of B+ FE,
such that |x — E] < 6, and if n is any integer exceeding ny, then

05 9y + bl — £ =) Lo+ [ oS00t} < —

31—37534. Acta mathematica. 69. Imprimé le 4 mars 1938.
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This being so, let & and &, denote, respectively, a point of density of E,
and one of F,, and suppose for simplicity that & < &. (The proof proceeds
similarly if £ > £.) We denote by {h's} the subsequence of {k,} which consists
of the positive terms not exceeding the numbers K’y . (&, — &) and K. (§, — )
where K’, is the upper bound of 1/[,(x) in E, + E,. For each » we can now
determine in (z,, ,) two intervals I, and J,, necessarily non-overlapping, which
have the points & and §,, respectively, as their right-hand endpoints, such that

[ syie =~ [rwaz =1,
I

R

We now define
7 wlx) == So(x) when x < (E, I, + E,J3).

== 0 otheririse;
nll(m) :j '7,’,11 (t) dt= — / 7]’1;(t) dt.

We write for brevity 75(z), 5'(x) instead of 7,(z), #",(x). Evidently the function

7a(z) which may be written Min (5(x), A'») is monotone increasing in I,, monotone

decreasing in .J, and constant in each of the three remaining parts of (x,, z,).
We shall now show that for sufficiently large n the integral

T, = jf(x y(x) + (@), y' (@) + o'nlz) doe

exists and has a value which is smaller than that of
I = [ Fleyla) v de.

This will evidently contradict our hypotheses, since y(x) + 5a(x), ¥ () + 7'n(x) is
an admissible curve; and our theorem will then be established.
For brevity, we write fu(x), M) fu{x) in place of

S y(@), y' (@) + 'nl@), M flz y)y'(z) + ().

Denoting by ¢, any constant, we have then
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(9;' —_ (7 = \/ {/;l(x) - j’(x) — Cn "]/n(:v) + 'I]n(x) my;n(.c) f;;(:b‘)} dx,
Xy

each of the terms under the integral sign, except perhaps the last, being inte-
grable for trivial reasons. Now, by integration by parts {lemma (6. 3)], we have

xy

/.'nn (.’l_) (%.};l(:r) fn (.L') dx=— ]. 17’11 (;L‘) { /. m’i)z(l) /,,(t) dtjl

-dx,

and here the inner integrand on the right-hand side reduces to
mfzn(ﬂ f(t)

except when ¢ < (K, I, + E,J,) in which case both are bounded, since # () and
7'x(t) are then bounded. Thus

kN @y

j . 'r;,l(i) M0 flx)de = — / n'n(x) { ] Mo [l dEt + O (}L’n)} dz.

To Xy

Now if x < (E, In + E,Ju), we can determine £ in this set so that |z — &| < O(R'x)
and' that

f M, F(1) dt = fr%n',.f(t) dt— f My, () dt+ f Mo f(t)dt+ f Moo Fll)dt.

I, 120, %) Jy - (20, 2)

The last two integrals are o(1) as » >, by continuity of the Denjoy integral
of the function My f(f) which is independent of #». Hence, choosing

s
s

ens eyt ’ My, flt)dt,

Yy

we -Obtain

TIn— T == .(f,, () = f(x) — 9'ulx) - Jl‘co + j My, flt)dE + o (1)}) dx

Zo

and by (7.5), for all large =,

! Remembering that Mhf = o for /i = o, by definition.
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c°7;a—-c7<f—(4iyo+o(1))dx<o.
E I, ¥ EJ,

This completes the proof.

§ 8. Generalized curves. By a generalized admissible curve, we shall mean
two finite functions measurable (B), y(x)., ¥ (x, @),, the latter defined foro <« <1
as well as for z, < z < x,, such that ‘

(8. 1) « =Y + fdtfdayta fdtjdajta

and for which the integral

(8.2) f d f daf(@ y@h o (@ o))

exists, each of these integrals being interpreted as a repeated integral in the
general Denjoy sense.

For a given function f(z,y,y’) and fixed end points (%o, ¥,), (z,, ¥,), the
problem of the minimum of (8.2) in the class of pairs of functions y(x),, ¥ (z, @),
subject to (8.1) will be called the generalized minimum problem. It is closely
connected with the ordinary minimum problem for the simple integral (7.3)
subject to (7.2).

It is possible to show, by quite elementary methods, that when the functions
concerned are sufficiently smooth, the double integral (8.2) for a pair of functions
y(x)e, ¥ (x, @), subject to (8.1) can always be approximated, as closely as we please,
by a simple integral of the type (7.3) corresponding to a pair of functions y(x),
9 (x) subject to (7.2). When this is the case, the value of the minimum is clearly
the same for the generalized problem as for the ordinary problem.

To obtain such an approximation, we divide the range of x into parts 4;
(t=1,2,..,N), and, in each of these, we divide the range of a into parts B
(k=1,2,...,N;). Further, we divide A4; into parts A;; such that the length of
4,1 is the area in (2, @) of [4; X B; ), and we choose for ¥ (x), when x < 4y 1, the

constant value
I ’
T | dx | dey(z, a
IA“lf f y (@ o),
4;  Byy
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and defime y(z) =y, + f y'()dt. If the subdivision is suitably chosen in correspond-

o
ence with a positive number ¢, arbitrarily small, we shall have, when the functions
concerned are sufficiently smooth,

|?/(w) - ?/(x)*l <& for all x, ylxy) = y(xo)* = Yo» yloey) = yley)s = oy,
and

Ty

lfmjﬁwuwmmymmd—fMMMM@yh»s
xg 0 .

o

= 2 I Ai,kl ' IMA,',kf(xy ?/(-’B), yl(x)) - MAi, Bi,kf(xi y(:)c)*, y,(x) a)a)l
i,k .

where M, f(x) denotes the mean wvalue of a function f(x) over a set A, and where
My, g flx, @) denotes that of a function f(x, @) over the plane set [4 X B] of values
of (x, a). :

If the functions are substantially constant in the divisions chosen, the two
mean values occuring in each ferm of the sum on the right-hand side of our last
inequality will differ by as little as we please, and the sum itself will be arbitrarily
small.

The importance of our generalization of the problem, first given in a slightly
different. form in the paper [16], lies in the fact that a menimum which is not
attained in the ordinary problem may be, and frequently is, attained in the gene-
ralized problem.

This is so, for instance, in the simple example, due to CaraTHEODORY [3],

(L + 0+ .
2+ g — 1’

S, 9, 9)= Lo=Yo=Y1 =0, % = 1.
In this example, we have f= 2, with equality only if y =0 and y = * 1.
Clearly, for an ordinary curve y(x), 4 (x) subject to (7.3), the conditions y(x)=
¥’ (x) = * 1 at almost all points x, are not compatible; but they become compatible
as soon as we replace the former by Iy(w)l << & where ¢ > o. In fact, denoting by
n any positive even integer exceeding 1/e, we need only choose for our curve, the
zig-zag defined in each of the n intervals (k — 1)n <z <#k/m (k=1,2,...,n) by

o,

X

Y (x) = (— 1), y(x)=fy'(t)dt.

]



246 L. C. Young.

1t follows that for the ordinary problem the minimum is unattained and has the
value 2. The minimum for the generalized problem clearly has the same value,
but this value is attained when we choose, for all «,

Y=o, ¥'(x, @)y = —1 (@ <), y'le, q) = 1 (€= "1e).

§ 9. The Condition (W.E.), and Classical Non-regular Problems. For

brevity, we write

f({L),, = j.f(xa ?/(x)m ]/’(.’IZ. a):) de, j_’/(‘l’)t - j‘.ﬁl(xy y(:t)n ']/’(.’L‘, “)t)d“,

i), = f y (2, ). da, ete.

0

In the next §§, we shall establish the necessity of a condition which extends
to generalized curves the results so far established for ordinary curves. In its
simplest form, the condition may be written

F@ @)y 7@+ U= fla)s — L { ¢+ f f;,(t).dt} >0,

and is a direct extension of the condition (W.E.) in classical form (§ 3). We
shall call it the condition (W.E),.

It is convenient to express this condition in geometrical language. We require
a few preliminary definitions.
A function F(f) will be termed convex at {,, if we have

— o <) < aF() + bF(L,) whenever a =0, b =0, a + b=1, af, + b5, ={,,

provided only that {; and {, belong to the interval of definition of F(f). [Geo-
metrically, this implies that at {, the graph of F({) does not lie vertically above
any chord joining two points of the graph. Convexity at {, thus defined, is not a
purely »local> property, since it depends on the values of F({) in the whole in-
terval of definition. It must not, therefore, be confused with »local convexity» such
as occurs when, for instance, F({) has a positive second differential coefficient F' (L)
in the neighbourhood of a point {,] We shall understand convexity at {, to imply
that F({) is never — o, except in the case in which {, is an endpoint of the in-
terval of definition of F({); this is implied in the definition when a suitable con-
vention is made regarding indeterminate forms o — oo, With these conventions,
Minkowski's theorem (§ 3) asserts that a function F({) defined for all { is convex at
o if and only if theve exists a linear function L(L) such that
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(9. 1) L) < F(Q) for all §, and L(L,) = F(E,).

We say that the function F({) has at §, the Aat support L({), if L({) is a
linear function of { which fulfils the conditions (9. 1). Minkowski's theorem asserts
that a flat support exists at {, if and ounly if F({) is convex at {,. The condition
(W.E.) in its classical form requires that the function

F() = f(x, ylx), y'x) + )

shall have at { = o the flat support

LQ=rle) + ¢ { ¥ ffy(t)dt}»

This condition can, therefore, only be fulfilled when F({) is a convex function of {
at {=o0. Il is the condition (W.E.), which provides the generalization applicable to the
HOR-CORVEX Case.

We call generalized flat support of F([) at {,, a linear function L(} such that
L{) = F({) for all

and that L{{,)= F({,) for certain values {, = {,(¢) with the average

1

[ Cul@da = Gy,

As is easily seen, in order that a linear function L({) which nowhere exceeds
F({) be a generalized flat support of F({) at {,, it is necessary and sufficient that
there exist fwo values {, and {, such that

5 =8 =10, and L{§;) = F(,), L&) = F().

The condition is clearly necessary; and, when it is fulfilled, we can choose for {,(a)
a stepfunction which assumes at most the two values {; and {, and which has the
average (,. The case {,=1,—={, is that of a flat support in the ordinary sense.

Y Y
\

y-F(5) il

t
|
|
!

|
l ¥I(g) : y-Lrg)
i |

T %, ¢ T, €

generalized flat support at ¢,. ordinary flat support at &,.
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With these conventions, we see that the condition (W. E.), requires that the function

FQ)=fla, ylx)y, ¥ (). + )

shall have .
L) = Fla)a + - { ; f j;,u),,dt}

as a generalized flat support at [ = o.

It is clear geometrically that the condition (W.E.),, as distinct from the
condition (W.E.), can only arise in the case of a function f(x, y, ") which is
not convex in ¥, i.e. in the case of a variational problem which is not »regular».
In order to illustrate the meaning of the condition from the classical point of
view, let us now consider a case in which f(xz, v, ¥') is differentiable as often as
required but not convex in 4. We shall suppose, with (. CARATHEODORY (3, 4],
that there exist functions p(z, y, o) and p(x, y, 1), differentiable as often as ne-
cessary, such that p(x, y, o) < p(z, v, 1) in the region under.consideration and that,
as function of y’, f is convex at every point y' outside the interval p(x, y, o) <
=<y =<plx, v, 1) and not convex at any point y' inside. If y' lies in this in-
terval, it is easily seen that the function

F)=flz 9,9 +0)
has for { =0 exactly one generalized flat support, namely
Pz, y) + (4’ +0)Qx, )
where Pz, y) + 4 Q(x,y) is the linear interpolation of f, as function of ¥/,
between ¥ = p(z, y, 0) and ¢ = p(x, y, 1), and may therefore! be written
Sl 9, 0) + (4 — »)folz, 9, p)

where p may be either p(x, y, 0) or p(x, y, 1). Hence, for each of these two
values of p, a simple calculation shows that we have identically in z, ¢

(9.2) : Py— Q=fy—pQy— Q.

This being so, let y(z),, ¥'(x, @), be a generalized curve along which f fulfils the
condition (W.E.), for almost all x, and let = be almost any point for which
¥ (x, @), does not reduce for almost all @ to 7 (2),. Then clearly, in view of the
condition (W. E.),,

p(@, y(@)y, 0) = 7 (#)s < pl, ylx)s, 1)

! It is tangent to f at the two extreme values of ¥’
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so that the only values that can be assumed by #'(z, «) in positive measure of
, are p(x, y(x),, o) and p(x, y(),, 1). For this x and for y = y(z),, we therefore
have, by (9.2), neglecting a possible set of measure zero in «,

P?/ - Q’C :fll(xz y(x)m ?/'(7/': d)*) - Q-’b - f’/,(x1 a)s Q!/'
Moreover, by definition

Q('% !/(x)*) :_ﬂ/(x, !/(x)*, yl(x3 a)*)

independently of «. When we integrate both these relations with respect to «,
the former gives, for almost any x,

Py = Q= fla) = Q= 5@ @ = fle) — -1 Qe y(a).),

and hence, substituting for ¢,

(0.3 Py = Qe =fife) = 1= Fylo)..

On the other hand, in view of the condition (W.E.),, we have, writing 9, =
=0+ ¥ (@ o) — 7',
1 1

(0.4) f £, y@h, o (0, @)y + e = f Lindde = L(Q),

0

where L(0) = fiw), + ¢ { ¥ f A, dt}.

The function of { on the left of the inequality (9. 4) thus has L({) for an
ordinary flat support at {=o0, and, by the definition of tangent, we deduce at
once that

frla)e=c+ f fulDadt.

Hence by (9.3), we must have when y = y(x),,
Py— Q=0

at almost all the points z 'such that »'(x, ¢) does not reduce to i (z) almost
everywhere in «. In particular, if the funetion

.Q(Z', ?/) = R./ - Ql‘

3237634, Acte mathematica. 69. Imprimé le 4 mars 1938,
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is different from zero throughont the region under consideration, ¥'(z, ), must
reduce to 7 (x), almost everywhere, and our minimum cannot be attained along
a generalized curve y(z),, 4'(z, @), other than a trivial variant of an ordinary
minimizing curve.

We shall not dwell on the important part played by the restriction Q(x, y) # o
in the classical theory of the non-regular problem as developed by Caratheodory
(ef. also ToNELLI [13], vol. I, p. 193—200). The object of these remarks has been
to show the connection between our condition (W.E.), and these classical ideas.

§ 10. General Form of the Condition (W.E.),. We shall now consider a
more general form of the condition (W.E.), which corresponds exactly to that
of the condition (W.E.) in § 7, and our main theorem will be the exact analogue
of Theorem (7.4). The necessary condition established in Theorem (7. 1) reduces
to the classical form (3.3) of the condition (W.E.), whenever there exists a
sequence of numbers {h} tending to zero and containing an infinity of terms

of both signs, such that, for almost every x,
lim sup f M, f()dt =lim inf f My f(t)dt = f £t

In exactly the same way, the necessary condition which will be established in
Theorem (10.1) below, reduces to the form of the condition (W.E.), stated in
§ o, whenever there exists a sequence of numbers {h,} tending to zero and
containing an infinity of terms of both signs, such that, for almost every =,

lim supj Wh dt=lim 1nff‘9%hn ) dt = ff,/

where, in accordance with our previous notation, M f(f), stands for

1

( {Ft, y(@)e + hy o' (8, @)y — F(t, y(0)s, ¥ (5 @))} dalh,

v
4]

when % 7 o, and for 0 when h=o.
In our main theorem, the appropriate modifications, applicable to the gene-
ralized problem, require hardly any new idea. The principal restriction (D),
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will be the natural generalization of our condition (D), but we shall make one
further restriction (&), which will be seen in § 11 to exclude only certain quite
unimportant generalized curves, and whose effect is, in particular, to ensure that,
in certain of our repeated integrals, the inner integral exists in the Lebesgue
sense. (Elsewhere, as usual, integrals will be in the general Denjoy sense.)

We shall again suppose that the ratio My f remains bounded when z, v,
y’, h range in bounded sets. Further, we shall say that a generalized curve
y(x),, ¥ (x, @), fulfils the condition (G), if there exists a measurable function ¢(x),
finite almost everywhere in (z,, ), such that

|9, o). | < pla)

for almost all ¢ at each point x. Finally, we shall say that a generalized curve
y(®)., ¥ (z, ), fulfils the condition (D),, if the function

m’?(@)f(xa y(x)*, y'(xa a)*)

has for almost all x an integral in ¢ which is Denjoy integrable in x, whenever
n{z) has bounded derivates.

(10.1) Theorem. Let y(x),, ¥ (x, @), be a generalized admissible curve which
Sulfils the conditions (@), and (D),, and for which the integral (8.2) assumes a
finite minimum; and let {h,} be a sequence of numbers tending to zero which contarns
an wnfinety of terms of both signs. Then there exists a constant ¢, finite or infinite,
such that, for almost every x, we have

{fla, y@)e 7 (@) + 8 —flo, y(@) 7 (@I =
=¢ + lim mffdtfdagﬂhn f& g, ¥ (¢ o))

whenever { > 0, and

{fle, y@)s, 7' @) +8) —flz, yla), T@IVE=

=< ¢+ lim supfdtfdamhnf(t y(t)s, o' (¢ a.)

whenever § <<o. In the case of an infinite constant c, these inequalities are in-
terpreted to mean that, for almost every z,
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lim supfm;,nf(t)*dt= + o0 {fe=—00; and lim inffmhnf(t)dt=——oo tf c=+ 0.
n n

Proof. We may suppose that neither of the limits as 7—>o of the
expression

f M, £(1). dt

is infinite for almost all 2, and moreover that j'(x) is everywhere finite and
measurable (B).
The functions

O, 0) = — {f<x, Y@, 7@ + 8 — Flae— L - j %mtmt}

and
@ (xz, §) = lim inf @, (x, )

are then also measurable (B) and moreover @ (x, 1) and @ (x, — 1) are finite below
in sets of positive measure. If the assertion of our theorem is false, the function
@ (x, ;) therefore fulfils the conditions of Theorem (4.1). We shall show that
this leads to a contradiction.

As in the proof of Theorem (7.4), we see that there exist constants ¢, and
yo> 0, and a bounded measurable function {,(x), such that both the subsets

£ 0y Y1
of 6o, 2 E, =E[{(x) > o] and E,=E[(x)<o]

have positive measure and that in F, + E; we have
@ (z, Lolax)) + €0 Lolw) > 7o.

Moreover we may suppose further that E;, and E, are perfect sets on which
each of the functions

Co(x)y I/Co(x)’ q’(x)a .77'(90)7 f(x)*’ f(x, f’/(x)#, g'(x)* + C(\(x))

is bounded and continuous, and that, on each of the sets E, and F;, each of
the functions of «

lim inf f My, f(O,dt and lim sup f M, () dt
To Lo
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is either an infinite constant, or else a bounded and continuous function. And
finally, that whenever 2 and § are points of F, + E; distant less than a certain

positive number J,, we have for all »n exceeding a certain integer #,,
I
(10.2) £ e, #10), + o) = o) = Lfe)- [ ]m gt <= 1o

This being so, let & and &, denote, respectively, a point of density of E,
and one of E;, and suppose for simplicity that £, < &. (The proof proceeds
similarly if & > &,, and we may clearly exclude the case £, =2£&,.) We denote
by {#'n} the subsequence of {A,} which consists of the positive terms not exceeding
the numbers K'-(§,— &) and K’ -(§, —x,) where K’ is the upper bound of
1/6,(x) in E, + E,. For each » we can now determine in (x,, ;) two intervals
I, and J,, necessarily non-overlapping, which have the points & and §,, respectively,
as their right-hand endpoints, such that

fgo dx_—fco ) dz=H'n.

Ty B

We now define #'(x) to be {,(x) when x < E, I, + E,J,, and o otherwise, and

we write
n()f t-——f dt; alw) = Min (5(a), ).

We denote by 7y(x) the derivative of #.(x) and we consider the generalized curve
YalZ)s, ¥'nlz, @), obtained by writing

[ . T CO ) when x < E; I, + Eyda,

Yyn(x)y = y(@)s + mulz); ¥ l 7 (x otherwise.

We shall show that for sufficcently large » the integral

I = f dx f da f(z, yu(x),, y'n(z, a),)

exists and has a smaller value than the integral

g-—:fdxfdaf(ny(x)*’ :’/(x7 a)$)~

This will contradiet our hypotheses and so establish the theorem.
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For brevity, we write fu(#),, M fulz), instead of

1

ff(a:,y() oz, a), fm Vil @) de.

0

Denoting by ¢, any constant, we have then
&= [ el b= o) + o) Moo )

each of the terms under the integral sign, except perhaps the last, being integrable
for trivial reasons. Now by integration by parts [lemma (6. 3)], we have

f () Mo fult)s dio = — f n'nm{ f %ﬂﬂﬁl(t)*dt}dx,

and here the inner integrand on the right-hand side reduces to
Mo (1)
except when ¢t < (K, I, + E,J,) in which case it reduces to
Mo F(t, y(8)ss 7 (t)e + 0'a(t))

which is bounded since |y'(t, ), | < @(f) and @(¢) is bounded in the set E, + E,.

Thus
f () M1 o) dx———f ol {fm 0. dt + O, )}

Now if o < (E, I, + E,J,), we can determine £ in this set so that |z —&| < O(k'y)
and that

fﬂnn(t)f(t)*dt=f<%h'n dt—fc%hn )s dt + fmn(t UNG
; Ly + Ty - (20, 2)

The last integral is o(1) as n— o, by continuity of the Denjoy integral of the
function 97{41(;) J(t), which is independent of #. Hence, choosing
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Cn = ¢ + /\cﬂh’n f(t)* dt,

we obtain from (10.2) [exactly as in the proof of Theorem (7. 4)] that, for all
large =,

(‘711, - g< 0.
This completes the proof.

& 11. Additional Remarks on Generalized Curves. We shall now show that
the generalized minimum and the existence of a minimizing generalized curve are
unaffected by the restriction to generalized curves which fulfil the condition (G),.
In fact, given any generalized admissible curve, we can determine another which
fulfils this condition and for which the value of the variational integral is mnot
increased. .

The generalized curve y(x).,y (x, @), will be termed bifurcating curve if there
exist two finite measurable functions £,(®) and &y(x), where §,(x) < {,(x), such that
for almost all x the set

I;I[y’(w, @) # Gilx), o (x, @)y # Lo(x)]
is of measure zero in . We shall only deal with the case in which there exists a
measurable function a(x) such that o < a(x) < 1 and

Y (e, &), = L (x) when o < a < alx),
y (2, @), = Colx) when alr)<e=<r.

Actually this is no real loss of generality, since our integrals are unaffected by a
rearrangement of y (x, ), as function of a. (For the definition of rearrangement, cf
Harpy, LiTTLEW0oD and PorLva (5, p. 276).) Evidently any bifurcating curve fulfils
the condition (G),.- We therefore need omly prove

(r1.1) Theorem. Given any admissible generalized curve y(x),, ¥ (x, ), there
exists a bifurcating curve with the same y(x),, such that the value of our variational integral
is not increased when we replace the given gemeralized curve by this bifurcating curve.

To obtain such a bifurcating curve it is evidently sufficient to establish the
existence of measurable functions a(x), {;(x), {,{x), such that, for almost all x,

o =al@) <1, {i(x) < Glx), @) + (1 — a(@)lz) =y (@),
ax) f(x, y(a)s, §() + (1 — a(@) flz, y(@)s, Lolx)) < Klx),

where K(z) is a finite function measurable (B) nowhere less than flz), and with

the same integral. Such a function K(x) certainly exists provided that f(x), is
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finite above, and we may clearly suppose this to be the case. We may suppose
further that ' (x), = o.
Writing @(x, {) = K(x) — f(x, y(x),, {), we have by hypothesis

1 1

(11.2) [«D(x, y (@, @))de = o, fy'(a-, &)da—o,

0

and we wish to show that there exist measurable functions a{x), {,{x), {;(x), such
that, for almost all x,

o <a(r) =1, {|{x) = (), ala)C(x) + (1 — al@))lslx) = o,
a(z) @z, §i(2) + (1 — alx) D, §(x) = o.

For this purpose, let ¢ be the set of four-dimensional points {(a, {,, {,, =) such that

(II' 3) o=a= I, ;3‘1 = C29 aCl + (I - a’)CE =0 aLD(x, Cl) + (I - a)q)(x9 C2) = o.

Clearly ¢ is a Borel set. We shall see that its projection on the xz-axis includes
every point x of (2, x,).

We denote by E, the set of 2 for which @(x, o) = o, and by E, the set of the
points x, not belonging to E,, for each of which there exists a value ¢ such that
@(x, ) + ¢ <o for all {. Finally we denote by E, the set of x not belonging to
E, + E,

Let now = be any point of (x,, x,). If x<<E,, the relations (1r1.3) are fulfilled
when a=o, {, ={,= o. If x < E,, the relations (11. 2) require that the non-positive
function of «

Oz, y' (x, a),) + ey (x, a),

have a non-negative integral in «; this function then vanishes almost everywhere in
a, and in particular, by the second of the relations (11.2), at two values of & for
which ¢ (x, @), assumes values {, and §, where {; < o and §, = o. Since ®@(x, o) < o,
this implies §; << o << {,. Choosing a so that al; + (1 —a){, =o, the relations
(11.3) are fulfilled by the system (a,, ,, x). Finally if x < E,, we may apply
Theorem {4.1) (in the particular form relating to functions independent of x), and
we find that there exist numbers ;, &, ¢, ¥, such that §; << o < {,, ¥, > o, and

O(x, §)) + 681 > 7y, @la, §y) + ¢o8s > 75-

Choosing @ as before, the relations (11.3) are fulfilled, the last of these in the
stronger form

a®(x, L) + (1 — a)@(x, §5) > 7,
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Thus every x of (x,, x;) belongs to the projection of the Borel set §. By a simple
extension of lemma (5.2), the set @ therefore contains the graph of a vector func-
tion whose components a(x), {,(x), {;(x) are measurable. This completes the proof.
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