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Introduction 

The Plateau Problem consists in showing that  the greatest lower bound of the 

areas of surfaces with a given boundary is attained. This depends primarily on the 

meaning we attach to the word surface. In the classical conception we start with a 

two-dimensional manifold R with boundary C and a set A homeomorphic to C; we 

then say that S is a surface of class ~a with boundary A if there is a continuous 

mapping of R onto S which maps C onto A ( 1 -  1) and bicontinuously. In this sense 

the problem was very elegantly solved by Jesse I)oug]as in the 1930's [5]. 

:But this solution leaves the question incomplete in a number of important re- 

spects. In  the first place the problem so posed deals only with a class of surfaces 

which are all of the same topological type and for each topological type we have a 

separate theorem. 1h'ow if we are prepared to consider as a surface any set S which 

is a mapping of a manifold R whose boundary is homeomorphic to A, then surely 

we should be interested in the class of all such S where R is allowed to vary. When 

dealing with the problem in this light it seems intuitive that  a minimum will be 

attained provided we admit as surfaces sets which, while they are manifolds at  points 

away from the boundary, will, when the boundary is complicated, have infinitely many 

loops and infinite connectivity near the boundary. However this involves a comparison 

between surfaces which are not mappings of a common base space, and the classical 

methods are inherently very ill adapted for this. In the second place while it is 

intuitive that  any set which is a surface of minimum area in some sense will be 

locally well-behaved, this is a result which it would be nice to prove and this cannot 

be done if we only consider locally well-behaved surfaces in the first place. In other 
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words it would be nice to investigate the structure of sets of minimum area without 

prejudging the issue by assuming that  the sets are manifold like. 

Finally the classical solution dealt only with the two-variable case. A great deal 

is known about functions of two variables particularly about harmonic and conformal 

functions and these are particularly relevant to this problem; on the other handli t t le  

is known about functions of m variables and hence the study of the Plateau problem 

for m-dimensional surfaces was beyond the scope of the classical methods. 

We considered that a possibly fruitful approach might be to consider as a surface 

any closed set S containing the boundary A provided only that  it satisfied some 

topological condition ensuring that  it "spanned the holes in A".  If  we could prove 

that  the minimum area was attained in such a wide class we might then go further 

and investigate what sort of structure a minimum area surface must have. This pro- 

gramme has been carried out in ~he present work. The reader should note that  once 

we have proved that the surface of minimum area is locally Euclidean then in the 

two-dimensional case we link up with the classical theory established by Lebesgue, 

Tonelli, Rado, Douglas, Morrey, McShane, and others, to whose papers the reader is 

referred. For [10] if a manifold is of minimum area in the sense of Hausdorff meas- 
/ 

ure (which we use) then it is so also in the sense of Lebesgue area and hence (e.g. 

[12]) it is a minimal surface in the sense of differential geometry. Of course for three 

or higher dimensional surfaces this still leaves an important problem. 

However to get back to the question of defining a surface, so far we have 

merely replaced the question of what we mean by saying "S  is a surface" by the 

question of what we mean by "S  spans the holes in A".  But it is precisely to 

answer this last question that  algebraic topology was invented and I was very for- 

tunate in having from the start the co-operation of Dr. J. F. Adams who devised 

suitable definitions of a surface and wrote an appendix to this paper proving that  

his definitions had the intuitively plausible properties which would permit us to cut 

holes in surfaces and patch these again by other surfaces and generally indulge in 

natural geometrical constructions. He also devised a multitude of ingenious examples 

both to illustrate his definitions and to show their limitations; these also are given 

in his appendix. I should also like to take this opportunity of thanking Dr. H. B. 

Griffiths without whose presence in Bristol the writing up of this paper might have 

suffered a great deal more, from the fact that  Dr. Adams was 150 miles away in 

Cambridge. The methods of algebraic topology are powerful by their abstraction 

and generality and this implies as usual that  they are not easily visualized by the 

non-specialist. I have no doubt that  our definitions will be generally accepted as 
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reasonable  bu t  i t  seemed desirable  to  s ta te  two special cases which can be deduced  

from our  general  theorems and  which can be s t a t ed  in geomet r ica l ly  plausible  terms.  

They  do in fact ,  for this  ve ry  reason, cover wha t  I feel are  the  most  in teres t ing  

resul ts  of th is  paper .  

The reader  will  have no t iced  t h a t  I have  no t  discussed the  meaning  of area.  

Al l  reasonable  def ini t ions  of a rea  should have  the  same value  on Minimal  surfaces 

and  so the  choice does no t  seem inheren t ly  impor t an t .  One could define wha t  is an  

equiva len t  of Lebesgue a rea  for a r b i t r a r y  sets and  I shall  discuss th is  in the  sect ion 

on unsolved  problems,  bu t  since we are  deal ing wi th  the  p rob lem from a set theo- 

ret ic  po in t  of view i t  seems sensible to use a measure  r a the r  t h a n  an  area.  I t aus -  

dorff  spher ica l  m e a s u r e - - f i r s t  in t roduced  into th is  field b y  A. S. Bes icovi tch  [3, 4 ] - - h a s  

p roved  a powerful  tool  and  I have  chosen it.  The ma in  jus t i f ica t ion for this  choice 

lies I feel in the  existence of th is  paper .  

I n  order  to  s ta te  the  first  of the  geometr ica l  theorems ment ioned  above  we will 

have  to  t a lk  a b o u t  one b o u n d a r y  B being " n e a r "  to  ano the r  b o u n d a r y  A.  To say  

mere ly  t h a t  B lies in a ne ighbourhood of A is a l toge the r  too crude a n d  cannot  be 

enough; on the  o ther  hand,  since in our  case we cannot  d e m a n d  that, A and  B are  

homeomorphic  the  F reche t  concept  of d is tance  is not  app l icab le  either.  The following 

defini t ion meets  the  c a s e : - - I f  A a n d  B are  two finite sets of d is jo in t  s imple closed 

J o r d a n  curves then  B is said to  be near  A if there  exists  a mani fo ld  R (which m a y  

be one-sided or two-sided)  and  a classical surface S E OR wi th  b o u n d a r y  A + B such 

t h a t  the  whole of S lies near  A.  Suppose now t h a t  given a f ini te  set A of simple 

closed d i s jo in t  J o r d a n  curves (which m a y  be k n o t t e d  or in te r l inked  in a n y  manner)  

in  three-d imens ional  Euc l idean  space, we define S to  be a surface of class 0 wi th  

b o u n d a r y  A if i t  is the  sum of a monotone  increasing sequence of manifo lds  whose 

boundar ies  t end  to  A.  Then we have  

THEOREM 1. The minimum area in O is attained. 

As for the  second of our  "specia l  case theorems" ,  suppose  t h a t  A is a homeo-  

morph  of an  ( m - 1 ) - d i m e n s i o n a l  sphere surface in n-d imens iona l  Euc l idean  s p a c e - -  

in o ther  words a topologica l  m -  1 sphere.  We say  t h a t  a set S is a surface of class 

0* wi th  b o u n d a r y  A if S is closed and  conta ins  A while there  is no cont inuous  

mapp ing  of S into  A which maps  each po in t  of A onto i t s e l f - - t h a t  is if A is n o t  

a r e t r a c t  of S.  I f  S is a surface in th is  sense and  there  are  no p roper  subsets  o f  

S which are  surfaces wi th  b o u n d a r y  A then  we say  t h a t  S is a proper surface. W ~  

then  have  
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T H E O R E M  2. 

i) The minimum area in 6" is attained. 

ii) Every sur/ace in 6"  contains a proper surface. 

iii) Every proper surface o/ minimum area in 6"  has positive re.dimensional Hausdor// 

measure and is locally Euclidean o/ dimension m at almost all points not belonging 

t o A .  

Theorem 1 solves the problem of finding a surface of minimum area in a class con- 

taining all manifolds. Theorem 2 is interesting not only because it is the first case 

of a solution of the Plateau problem for m dimensional surfaces (m>2)  but also be- 

cause of the extreme weakness of the definition of a surface together with the great 

strength of conclusion (iii). Example 7 of the Appendix gives a proper two-dimen- 

sional surface of minimum area of class 6" whose boundary is a simple closed Jordan 

curve but which does not belong to ~ and has a line along which it is not locally 

Euclidean. Examples 8 and 9 of the Appendix however show that  even 6" is not 

exhaustive and that  there are sets not belonging to it which we might well wish to 

call a surface. The matter is dealt with further in the section on unsolved problems, 

I shall next state the theorem of which Theorems 1 and 2 are special cases. 

First I will define a surface; this definition is given again with more detail and some 

discussion in Dr. Adams' appendix. 

DEFINITION. Let G be a compact Abelian group. Let S be a closed set in n-dimen- 

sional Euclidean space and A a closed subset o/ S. Let m be a non-negative integer. 

Then there is de/ined the Cech homology group Hm(S, A; G); i/ A is empty this is 

written Hm (S; G). Let K be the kernel o/ the inclusion homomorphism 

i,  :Hm-1 (A; G)-->Hm-1 (S; G). 

Let L be any subgroup o/ Hm-1 (A; G). Then we say that S is a sur/ace of class ~a 

with boundary ~ L if K ~ L. Moreover if S is a surface in the above sense but there 

are no closed proper subsets of S containing A which are surfaces with boundary ~ L 

then S is said to be a proper surface. 

I t  will be proved that  every surface contains a proper surface. Let Wm be the 

volume of an m-dimensional solid Euclidean unit sphere, and let A m denGte Haus- 

dorff spherical m-dimensional measure. 

MAIN THEOREM. The minimum area of surfaces of class ~G with boundary ~ L 

is attained and if S is a proper surface of minimum area then S will be locally 
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Euclidean at all non-boundary points at which the lower density does not exceed one, 

that is at almost all non-boundary points. Moreover i] P C S - A and S (P, r) is a sphere 

not meeting A then A m S S  (P, r) >~ Wm r "~. 

I t  will be shown t h a t  theorem 1 follows from this  by  t ak ing  G to be the  group 

of integers modulo  2 and  t h a t  theorem 2 follows from the  case where U is the  group 

of real numbers  modulo  I. 

The proof of the  ma in  theorem is tong and  i n t r i c a t e - - i n d e e d  it, t akes  up a lmos t  

the  whole rest  of the  pape r - - - I  am therefore going now first  to  give the  main struc- 

ture  and  general  ideas  of the  proof  wi thou t  any  a t t e m p t  a t  r igour  or precision. [ 

shall  use the  language of the  case m -  2, n - - 3 .  

In  the  f irst  place the  class of closed sets is known to form a local ly compac t  

met r ic  space with  the  obvious d is tance  funct ion d (X, Y) :- Max d (x, Y) + Max d (y, X).  
x ~ X  yE Y 

The topological  condi t ion  we impose  on a set to  make  i t  a surface is preserved  under  

convergence in this  space p rov ided  the  bounda ry  is kep t  f ixed and  hence a n y  bonn- 

(ted class of surfaces ~ i t h  a given b o u n d a r y  is compact .  Thus  in order  to  prove  

the exis tence theorem we need only  f ind a sequence of surfaces whose areas  t end  to 

the  m i n i m u m  and  such t h a t  the  convergence is lower semi-cont inuous  in area.  Now 

wc cannot  jus t  t ake  any  sequence because a surface m a y  have long thin  tentac les  

which cont r ibu te  l i t t le  to  the  a rea  bu t  resul~ in the  l imi t  set conta in ing  a lot  of 

u n n e c e s ~ r y  points .  In  order  to  cut  out  the  poss ib i l i ty  of such ~;entacles we divide  

space into cubes and  amongs t  our surfaces of a rea  near  the  min imum wc select the  

one which meets  the  least  number  of such cubes. To ob ta in  a sequence of surfaces 

we t ake  the  cubes of finer and  finer mesh. The fact  t h a t  this  will cu t  out  the  ~ n -  

tacles is plausible  bu t  the  quest ion is how to express  it .  Suppose A (P, r) is the  

area  of ~he pa r t  of the  surface inside a sphere S ( P ,  r) of centre  P and radius  r and  

t h a t  l (P, r) is the  length  of the  intersect ion with the  sphere surface then a t  the  end 

of a ten tac le  A ( P ,  r) /r  2 will be smal l  for small  r and  we mus t  therefore  show t h a t  

under  the  above  const ruct ion  A (P, r) /r  2 will be bounded  below whenever  r is larger  

than  the  cube mesh. 

I n  the  Append ix  Dr.  A d a m s  proves var ious  theorems of the  k ind  t h a t  if we cut  

a hole in ,~ surface and  replace i t  wi th  ano ther  surface then  we sti l l  have a surface. 

I u  Chap te r  1 I ut i l ise  these to cons t ruc t  a number  of sets having  su i t ab le  ep iper imetr ic  

proper t ies  which are  then  avai lab le  to  p a t c h  holes in surfaces in this  way.  The epi- 

per imet r ic  inequal i t ics  used are  of two types ,  the  first  is A <X:I 2 where A is the  area  

of the  cons t ruc t  and  1 the  length of its b o u n d a r y  (in the  case m = 2 ) .  F r o m  this we 
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obtain f 1 (P, r) d r < A (P, r) < k l ~ (P, r) whence we can prove t h a t  l (P, r) > r/2 Ic and 

A (P, r) > r2/Ic. 

The second type  of inequali ty is A < �89 r from which we can prove tha t  A (P, r)/r ~ 

is increasing. 

I n  Chapter 2 we use these techniques 4o obtain a sequence Sn of surfaces whose 

areas tend to the min imum and with the proper ty  tha t  q~ (P, r)= lira An (P, r)/r ~ 

is bounded below for all P of the limit surface S and all r such tha t  P is fur ther  

than  r from the boundary.  This incidentally implies t ha t  S has finite area. We con- 

sider this sequence further  in Chapter 3. 

Let  fl be the greatest  lower bound of r (P, r). We can find P0 and r 0 so tha t  

~b (P0, r0)<f l  § e. As indicated above we can show tha t  r increases with r and we 

use this to show tha t  we can find r 1 such tha t  for every sphere S (P, r ) c S  (Po, rl) 

fl ~< r (P, r) < fl + e. Clearly the surface will be very  well behaved in S (P0, rl). We 

show first t h a t  in each S (P, r ) c  S (P0, rl) there will be a substantial  spherical hole 

containing no points  of S. This depends effectively speaking only on S having zero 

three-dimensional measure. Now we can show tha t  at  a point  of S on the boundary  

of this hole there will be a tangent  plane in quite a strong sense. Thus we obtain 

an everywhere dense set of tangential  bits of S. Nex t  we show tha t  unless most  of 

these tangent  bits pass through P the equation f l (P, r)~< A (P, r) can be strength- 

ened to f l (P, r) < ( 1 -  k) A (P, r) whence we obtain f l (P, r) < ~ ( 1 -  k) rl (P, r) which 

leads to  a contradiction. Thus most  of these tangent  bits pass through all points  

P E S near them and hence they  all lie in the same plane. The existence of a tangent  

plane now gives fl >~ 1. Thus r (P, r) >/1 whence a direct application of the definition 

of Hausdorff  spherical measure gives lower semi-continuity and hence the existence 

theorem. We have incidentally proved a tangential  p roper ty  which is then used in 

Chapter  4 to prove local Euclideanness by  means of theorem 3 which m a y  be of in- 

dependent  interest since it does no t  use the fact  t ha t  the set is a surface but  is 

applicable to  any  point  set. 

This theorem (1) says roughly tha t  if the contents of each sphere S (P, r) with P E S 

lie in a narrow strip of width less than  2 -2~176176 N, r, then the surface is locally Euclidean. 

I t  should be noted tha t  the strip is allowed to va ry  both  with P and r. 

The proof consists of constructing induct ively a series of disks which converge 

to  a piece of the surface and  are such tha t  each disk is the  image of the previous 

(1) Stated near the end of Chapter 4. 
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one in such a manner  t h a t  bo th  the  mapp ing  funct ion and  i ts  inverse  are Lipschi tz  

wi th  cons tan t  k where k is f ixed t h roughou t  the  series. Once this  series has  been 

cons t ruc ted  the  res t  is easy.  

I n  order  to  cons t ruc t  th is  series suppose we consider  ne ighbourhoods  of a def ini te  

more or less f ixed  size on the  surface; f rom the  po in t  of view of ignor ing smal ler  

var ia t ions  t h a n  this  there  will be a t angen t i a l  d i rec t ion  a t  each po in t  of the  surface. 

Suppose  we have  cons t ruc ted  a d isk  which is para l le l  to  the  surface a t  each po in t  

and  also a sys tem of moving co-ordina te  axes  a t t a c h e d  to  each po in t  near  S,  which 

v a r y  subjec t  to  a Lipschi tz  condi t ion  and  whose f irst  m axes  lie in the  t a nge n t  p lane .  

Consider now a sys tem of much  smal ler  ne ighbourhoods  (whose size mus t  be ne i the r  

too big nor  too  small).  We  can t ake  a ne twork  of po in ts  X~ on S whose d is tances  

a p a r t  are of the  order  of magn i tude  of these  ne ighbourhoods  and  which "cove r "  the  

whole of S. A t  each of these po in t s  we set up  co-ordina te  axes  app rop r i a t e  to  the  

t angen t i a l  d i rec t ion  given b y  the  new size of ne ighbourhood .  W e  now refer the  di- 

rect ions of these co-ordinate  axes  to the  previous  sys tem of " la rger  scale" moving  

co-ordinate  axes.  The d i rec t ion  cosines so referred will no t  v a r y  ve ry  r ap id ly  and  

we can now per fo rm an  averaging  process b y  which we ob t a in  a new sys tem of Lip-  

schi tz ian moving  a x e s  more or less equal  to the  new smal ler  scale axes  a t  the  X~. 

These new axes will be def ined a t  each p o i n t  P of the  d isk  a l r e a dy  def ined and  each 

po in t  X~ of our  ne twork  will have  co-ordinates  wi th  respect  to  these  axes.  F o r  each 

P we now per form an  averaging  process of these  co-ordinates  over  the  X~. This maps  

P onto a new po in t  P*; as P var ies  on the  disk,  P* t races  ou t  a new disk th rough  

the  Xi a n d  paral le l  to  the  surface from the  po in t  of v iew of the  new smal ler  neigh- 

bourhoods .  This comple tes  the  induct ion .  

This process involves  several  averag ing  processes, each of which in t roduces  com- 

p l ica ted  es t imat ions;  in add i t i on  we mus t  consider  a large n u m b e r  of small  quant i t i es  

which m u s t  be chosen to  have  the  r ight  re la t ionship  in order  of magni tude ,  conse- 

quen t ly  the  proof  is in pa r t s  u n a v o i d a b l y  m e s s y - - p a r t i c u l a r l y  l emma 4. This completes  

the  proof  of the  ma in  theorem.  To prove  theorem 1 we m u s t  f irst  prove  t h a t  when 

G is the  group of in tegers  modulo  2 and  m = 2, n = 3 the  dens i ty  does no t  exceed 

one a t  a n y  point .  This  is done in Chap te r  5. Consider  the  p a r t  of t he  surface in 

the  sphere S (P, r); d i la te  th is  to  un i t  radius .  I n  th is  w a y  we ob ta in  a series of 

m i n i m u m  surfaces in the  un i t  sphere.  These surfaces will converge in a subsequence 

to  a surface of m i n i m u m  area  whose area  is t hen  shown to  be equal  to  t h a t  of the  

cone wi th  the  same bounda ry .  Hence  we have  a cone of m i n i m u m  area  which i t  can 

be shown b y  me thods  of the  calculus of va r i a t ions  m u s t  be a p lane disc. 
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The proof of Theorem 1 is then completed by means of a simple construction, 

while Theorem 2 is shown to follow almost a t  once from the main theorem with 

G = group of reals modulo 1. 

I will now discuss some as yet  unsolved problems. 

PROBLEM 1. 

A surface of minimum area is known to be locally Euclidean p.p.; i t  remains 

to prove tha t  i t  is differentiable and tha t  i t  is a minimal surface in the sense of 

differential geometry, where m>~ 3. 

PROBLEM 2. 

The structure of surfaces of minimum area at  points where they are not locally 

Euclidean. I conjecture tha t  for each m, n there exists k =  k (m, n) such tha t  a min- 

imum surface will consist of the union of a t  most  k half discs at  every point  and 

tha t  when G is the group of integers mod 2 the number of half discs is even in 

every case. The reader should s tudy examples 7, 8, 9 of the appendix. We cannot 

demand tha t  the surface shall be locally a disc everywhere except when m = 2 and 

n = 3 and G--= Integers mod 2. For  consider m = 2, n = 4  and a boundary consisting 

of x 2 + y 2 = 1 ,  z = 0 ,  t = 0  plus z * + t  2=1,  x = 0 ,  y = 0 .  The origin is a singular point. 

An extension of the method of Chapter 5 might again be helpful. Certainly the crux 

of the problem seems to be to prove tha t  if a cone is a minimum surface then i t  

consists of plane bits. 

PROBLEM 3. 

If  m > 2  it  has not been proved tha t  there exists a minimum in the class of 

discs. Suppose we take all the surfaces Sn of Chapters 2 and 3 to be discs i t  might 

still be possible to carry out everything to this po in t - -ca re  would be needed with 

Chapter 1. We then have a situation where a sequence of discs S~ whose area ap- 

proaches the minimum converges to a set S lower semi-continuously. We must  then 

prove tha t  S is a disc: very difficult. 

PROBLEM 4. 

A very special ease of pa r t  of the last problem but  possibly the crux. Let  M 

be a manifold with boundary C. Let  Dn be discs with the same boundary.  Let  /~ 

be the lower bound of the areas of discs with boundary C. Suppose D~-->M and 

A ~ D~-->A ~ M=~u. Prove tha t  M is a disc. Also the same for m-dimensional sets. 
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PROBLEM 5. 

I f  m = 2, n = 3, G = Integers  mod  2 and  the  boundary  is a finite set of disjoint 

polygons prove tha t  the su r f a c e  of min imum area is a manifold. This should not  

be hard. (1) 

PROBLEM 6. 

To find a definition of surface which includes examples 8 and 9 of the appendix.  

The point  appears to be tha t  a physical deformation cannot  tear  apar t  points once 

they  have been brought  together  and hence lies somewhere between a deformation 

retraction and an  isotopy. I t  should certainly be studied. I t  is no t  even obvious 

how best  to  define a "physical  deformation".  

PRORLE~ 7. 

Suppose D is an open set on a surface S. Let  # ( D )  be the lower bound of the 

areas of surfaces with the same boundary  as D. Consider the class of finite sets of 

disjoint sets D,. Define A (S) as the least upper  bound of ~ # (D~). A (S) considered 

as the area of the surface should be a powerful tool. Perhaps the D, should be taken 

to be the par t  of S in a sphere; it seems likely tha t  this will give the same value 

bu t  might  be easier to handle. (This in itself might  be interesting to prove.) 

The author  used A (S) with the D, restricted to be simply connected Jo rdan  

domains to investigate two dimensional discs in three space. I n  this ease A (S) was 

shown to be lower semi-continuous and equal to the Lebesgue area and it was then 

proved that ,  if A ( S ) <  oo, A (S) equalled the Hausdorff  measure of the set points of 

S where a tangent  plane exists. These results are likely to extend in some form; the 

last result would be part icular ly interesting for m > 2 ,  or even for m =  2, n >  3. 

PROBLEM 8. 

In  theorem 1, provided we assume t h a t  the curves of A are tamely, embedded 

in three space, i t  might  be possible to replace ~ by  the class of sets S such tha t  

for each e > 0 there exists a manifold with boundary  A coinciding with S at  points  

fur ther  than  e f rom A. 

I t  is not  clear if this is a more interesting form of the theorem but  it is much  

harder to prove, as the essential restriction on A shows. 

Pt~OBLEM 9. 

This is a minor problem concerned with the question of whether the term in- 

trinsic area has any  real meaning. Suppose S 1 and S~ are two topological 2-spheres 

(1) This has now been solved by the Author. 
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in three-space. Suppose given a homeomorphism r between them such that  if C 1 = r (C2) 

and C1, C 2 are continua on $1 and S~ then their diameters are equal. Prove that  

S 1 and S 2 are congruent apart  from translation, rotation or reflection. For polyhedra 

the result is easy. 

PROBLEM 10. 

This is to generalise Theorem 2 to the case where the boundary is any manifold. 

Example 4 of the Appendix shows that  the problem is non-trivial. 

Conjecture:--If  M c S  is an (m-1)-dimensional manifold (and G= reals rood one) 

the necessary and sufficient condition that  S is a surface with boundary M is that  

there shall be no ( m -  1)-dimensional set M*, S D M * D M  which is a retract of S. 

N o t a t i o n .  

Throughout the following work we use the following s y m b o l s : -  

Suppose P is a point, X a set of points, l-[ a plane, r a positive number, S~ 

a surface, then 

S (P, r) is the closed solid sphere with centre P and radius r. 

S o (P, r) is the open solid sphere. 

s (P, r) is the surface of the sphere. 

(X, r) is the set of points whose distance from X does not exceed r. 

C(P, X ) i s  the cone with vertex P and base X. 

C (1-I, X) is ~ Ip where I T is the closed interval joining P to its projection on ~ .  
p G X  

K~(P, r)=S~S(P,  r). 

l~ (P, r) = S~ s (P, r). 

Am X is the m-dimensional Hausdorff spherical measure as defined at the beginning 

of Chapter 1. 

L E M M A S 1 A-26 A belong to the appendix. 

LEMMAS 1--15 belong to Chapter 1. 

LEMMAS 1"--7" belong to Chapter 3. 

L•MMAS 1'--5' belong to Chapter 5. 

Chapter 4 is written independently from the rest of the paper and can be read 

on its own; its lemmas are numbered 1-9. 

The group G involved in the definition of a surface is kept fixed throughout the 

bulk of the paper and will therefore be suppressed. Moreover I use the following 

notational convention:--  
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Suppose {A,}, {B,} are two sets of closed sets and tha t  X =  ~ A ~ + ~  Bs, and tha t  

L, ~ Hm (A~) and M, ~ Hm (Bs) while i ,  denotes the natural  inclusion homomorphism 

then 

Y Li = ~ Ms 

will mean ~ i ,  (X, As) L~ = ~ i ,  (X, Bs) M,. 

This notation is very convenient when such equations are quoted for reference--  

particularly if the Ai and B, are very complicated expressions. 

There is no possibility of ambiguity provided the conventional equation is not 

manipulated, but  the reader must  be warned tha t  without reference back to the pa- 

rent  equation any  manipulation may  lead to false results. 

Chapter 1 

Suppose X is a set in N-dimensional Euclidean space. Consider a set of spheres 

S ( P ,  r~) such tha t  r~<~ and X ~ . S ( P s ,  rs). I define A ~ X  to be the lower bound 
s 

of ~ Wm r~ taken over all such sets of spheres; where W~ is the elementary volume 

of an m-dimensional solid unit sphere. Let  then A m X = lira A~ X. 
&-~0 

LEMMA 1. I /  A m X <  oo, and we have a class o/ spheres such that there are arbi- 

trarily small spheres o/ the class with centre at any point o/ X ,  then we can select a 

non-overlapping set o/ spheres o/ the class containing almost all of X .  

This may  be proved by a straightforward generalisation of the proof of the first 

main theorem in [2]. 

LEMMA 2. I /  X is an re.dimensional unit cube then A m X  = 1. Moreover i /P-->P* 

is a mapping o/ the space into itsel/ such tha t[P*  Q*[<~ ~]FQ[ and S is a set o/points 

such that S-->S* then A m S* <~ xm A m S. 

This result is, of course, classical. 

finition by  the use of lemma 1. 

LEMMA 3. I /  A m X < ~  then 

at almost all points P EX.  

same measure. 

I t  can be deduced immediately from the de- 

0 < l i t  Am X S (P, r) 
r-~0 Wm r m 

<~1 

Moreover we can /ind a G~ set containing X and o/ the 

This is a straightforward generalisation of results in the early par t  of [1]. 
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LEMMA 4. Suppose Xh is the set o/ points o/ X at a distance h /rom a [ixed 

Then M-dimensional plane in N.dimensional Euclidean space, N - 1  >~M >~ O. 

~ A m - I X  dh<<.AmX. h 
0 

This is a s t ra ight forward general isat ion of l emma  3 of [3]. 

L~MMA 5. I/  X is an (m-1)-dimensional polyhedron then the cone C (P, X)  with 

vertex P, on X will be an m-dimer~ional polyhedron and i/ X c S (P, r), then 

AmC(p ,  X)<~ r A m - i X  
m 

This is clear by  l emma 2. 

L~MMA 6. IJ 1-I is an M-dimensior~l plane let C(I~, X ) =  ~ I~ where I~ is the 
P e X  

interval joini~l P to its projection on 1-[. Then i/ X c (I~, r) and 3 ; - 1  >~ M >1-0 

2 m  W m  " m 1 
A m C ( 1 - I , X ) ~ m  i r A  - X.  

Suppose {S (P.  r~)} is a set of spheres r~ < d such t h a t  

S ( P .  ri) ~ X and 

W rm-l<<.A~-lX+(}. m - 1  i 
i 

Let  P~j, O Ej<~(r-r~)/r  i be the  point  on Ip~, whose distance f rom Pi is j r~. I f  

P c S (P~, r~) 
/ v ~  ~ S (P~j, 2 ri) and  hence 

J 

<~ r 2" Wm 2 m Wm 
A2m~ C (1-I' X)"~ ~ -- Wm (2 r~ <~ --Wm-~ r ~ Wm_~ rm-~ <~ -Wm_~ r (A~-~ X + (~)" 

Whence lett ing 8->0 the result  follows. 

LEMMA 7. I/  A =  ~ Aj where A j c S ( P o ,  rj) and s>O there will exist a sur/ace 
i = 1  

$ X with boundary (1) ~ H~n-1 (A) such that X is contained in the convex hull o / A  §  and 

Am X < ~ rjAm-~ AJ (l + e) 
) m 

(1) H* is Hm if m>O and Kere  if m=O. 
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and there is an m-dimensional polyhedron X '  contained in X such that 

A ~ ( X - X  ') <e .  

I f  we define A ~  to be the number  of points  in X if this is finite and  ~ other- 

wise the lemma will be tr ivially t rue for m =  1 by  taking X = X ' = C ( P o ,  A). I will 

now prove the lemma by  induction.  Suppose then tha t  the lemma is t rue for 

m = m o - 1 .  Let  to= max rj. Take ~ > 0 .  I f  A m ~  we may,  by  L e m m a  3, choose 
] 

an open set Gj~Aj  such tha t  Am' 1AGj<~.(I+5)A'~'-IAj .  Then a t  almost  all points 

P E Aj there will exist arbitrari ly small r < 5 such tha t  S (P, r ) =  G~ and 

Am~ A S  (P, r ) > ~ ( 1 - 5 )  r Am~ A s (P '  r) (1) 
m o - 1 

for otherwise there will exist r* such tha t  for all r < r* we have, using Lemma 4, 

f Am~ t ) d t < A  m. ~ A S ( P ,  r)<. 
0 

Writ ing i Am~ A s (P, t) dt = F (r), we obtain 
O 

F (r) ~< ~ F '  (r) for almost  all r. 

(1 --  5)  r A m~ A s ( P ,  r)  

m 0 -- 1 
(2) 

F'(r)  - 1  1 
Hence ~ ~> m~ . -  

1 - 5  r 

In tegra t ing  this from r 2 to r 1 we have 

F(rl) ~rlt(m'-l)/(1 ~: 
F (r2) ~ \r~/-- r2 < rl < r*. 

Let t ing r2-->0 we obtain F (r) = o (r ~~ 2). (3) 

2 - n - - 1  Hence there will exist r~, < r = < 2  -~ <r*, such tha t  

0 r m~ 2 A m ~  ( ~  ) as n - ~ .  

Thus by (2) above Am~ A S ( P ,  r~)=o(r~ ~ as n-->cr 

But  A m'-I A S  (P, r) is a monotone increasing function of r and hence 

A ~~ A S (P, r) = o (r m~ as r-->0 

which can only happen a t  a set of points  P of A m~ measure zero, by  Lemma 3. 

Thus (1) is established. 
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We m a y  therefore by  L e m m a  1 cover Mmost all of A by  a set of non-over- 

lapping spheres {S (Pc, ~c)} such tha t  ~c < 8, Pi E A and 

Am_I A S (Pc ' ~h)~> ( 1 _ ~ )  ~ Am~ A s (P. O~) 
m 0 - 1 (4) 

Moreover if Pc E Aj we m a y  suppose tha t  S ( P .  ~c) C Gj. 

We will choose a finite subset of these non-overlapping spheres such tha t  

~A~~ ~ ) > A  ~~ 1 A - &  

Since A"~ (P~, Q~)=O for all i, we then have 

A m'-~ A - ~ S (P~, e,) < 8. (5) 
C 

I f  we write D 0 = A - ~ S ( P . ~ c )  and D ~ = A S ( P , ~ c )  we will have A = D  0 + ~ D ~  and 

D~. D~, = 0 if i 4= i' 4= O, and D o �9 D~ = A s (Pc, ~c). 

Hence if X~ is a surface with boundary  ~ H* m.-2 (A s (Pc, ~)) then by  Lemma 15 A 

Um,-~ (Do+ ~ X~)+ ~ H,~~ (D~+X~)DHm._~ (A). (6) 
i>~O 

Now by our inductive hypothe.qs we m a y  choose X~ so tha t  it lies in the convex 

hull of Pi + A s (Pc, Qc) and 

Am.-1 X~ < Q~ Am~ A s (Pt, Qc) (1 + 8) (7) 
m o - 1 

while there is an (m o -  1)-dimensional polyhedron X~cXc such tha t  

X'  A m" 1AS(P~, ~c) 
Am,-, (Xc - ~) <~ 6 Am. 1 A ( 8 )  

I n  view of (6) above, L e m m a  3 A  and  11 A imply  tha t  

X = C (P0, Do + ~ Xc) + ~ C (P ,  D~ + X d 

is a surface with boundary  ~Hrn0-1 (A). 

Since P~ E A and Xi lies in the convex hull of A,  X will lie in the convex hull 

of Po+A. 
X ' =  C(P o, ~X~) will be a polyhedron and 

l 

X = X ' + C ( P  o, D o + ~ X ~ - X ~ ) + ~ C ( P c ,  Dc+Xd. 
i i 



T H E  P L A T E A U  P R O B L E M  15 

S (P0, ro) + ~ S (P,, Q~) c S (Po, ro + d) 
i 

and so by Lemma 6 and (4), (5), (7) and (8) above 

A m ' ( x - x ' ) " ~  W,,~ ( r ~  I + ~ _ ~ ] A m ~  

2too Win~ [ + b) + 1 2 ~  A'~.-~ A} ~< ---:~--- ~2 b (r o 
Wmo-1 [ 

which is less than s provided d is small. 

Moreover by Lemma 5 and (4) and (7) above 

_ ~r~+O ~ l + d A ~ ~  ~ A S  Am~ x '  ~ 2 . - -  Z ~ - (P*, o~) 
J= 1 m 0 Pi E A] 

which, by taking d small, establishes the lemma. 

<~ ~ rJ+(5 I + ~ A m , - 1 A G  j 
j=l mo 1 

< ~ r j + 5  (l+5)~Am ~ 1A. 
~=1 mo 1 -  d ~ ~ J' 

L E M M A 8. There exists K N < oo such that i/ A is a bounded set in N-dimensional 

Euclidean space, and m>~ 2, then there will exist a sur/ace X with boundary D Hm i (A), 

lying in the convex hull o/ A ,  such that 

and 

Write 

A m X < K Nm~*A ~ - 1  A } m / ( m - 1 )  

X c  (A, K~ {A m-1A}ll(m-1)). 

{A m-1 A } l / ( r n - 1 )  = I. 

Consider first the case m = 2. Suppose ~ is an ( N -  1)-dimensional plane and that  we 

have some Cartesian co-ordinate system in which the axis of x is orthogonal to ~. 

Let  ~t be the set of planes parallel to ~ and passing through the points with x co- 

ordinate t+2 ,~ l  where 2 takes all integer values, positive, negative or zero. By 

Lemma 4 
e l  

f A ~ ~t) d t < A  1 A = l  
0 

and hence there will be t o such that  A ~t~ is null. Taking N orthogonal systems of 

planes we see that  A may be divided up into a finite number of closed disjoint 

subsets At, each contained in a cube of side 21. If P~EA~ then A ~ c S ( P ~ ,  2IVN)  
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so that, by Lemma 3 A, X =  ~ C (P,  A~) will be a surface with boundary ~Hm-1 (A), 

and by Lemma 6, 

A2 X < ~ 2 . 2 1 V N . A I  A = 4  VN1 ~. 

Moreover X is contained in the convex hull of A and 

xc(A, 21V )c(A, 4l 

so that  taking K~ v = 4 I/NN we have our result. 

To consider the general case let P(m,  N, k) be the proposition:--there exists 
k N Km< ~ such that given k orthogonal (N-1)-dimensional  planes in N-dimensional 

Euclidean space and a set A no point o/ which lies [urther than {Am-I A} 1/(m-i) /tom 

any o/these planes, and m >~ 2, then there will exist a sur/ace X with boundary ~ Hm-1 (A), 

lying in the convex hull o/ A and such that 

A m X ~< kK~ {A m-1 A} m/(m-l' 

and X c  (A, kKN {A m-1 A}ll(m-1)). 

We have above proved the proposition P (2, N, k)k<~N. Consider now P (m, N, N); 

i n this case A will be contained in a cube of side 21 and we may prove the pro- 

position exactly as above. P(mo, N, 0) is simply the case m = m  o of the lemma. 

Suppose then that  P (m 0 -  1, N, 0) and P (m0, N, k0) are established; I will deduce 

P(mo, N, k o -  1) and hence, since we know P(mo, N,  N) we can conclude by down 

wards induction on k that  P (m0, N, 0) holds and then the lemma wiU follow by in- 

duction on m. 

Suppose now that A satisfies the hypotheses of P ( m  0, N, k 0 - 1 ) .  Let ~ be a 

plane orthogonal to the k o -  I planes of that  proposition, and suppose we have some 

Cartesian co-ordinate system in which the x axis is orthogonal to ~. Let ~t be the 

system of planes parallel to ~ and passing through the points with x co-ordinate 

1 + t where )t takes all integer values, positive, negative or zero. By Lemma 4 

l 

f Am.-2 (A Zt) dt<~A".-1A =lm~ -1. 
0 

Hence there is a t o such that  

A m'-~ (A ~,)  < I m'-~. (9) 

Let (~,} (i = 1, 2 ... n) be the smallest set of consecutive planes of ~t, containing A ~t~ 
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Since A is bounded this will be a finite set of planes. There will, by P (mo - l, N, 0), 

exist a surface X~ with boundary ~Hm~ (A ~ )  

A , , , - I r  ~o,,-N {Am.-2 ~t}(mo-1)/(mo-2). (10) 

Moreover we may suppose that  X~ lies in the convex hull of A ~i ~ A and, by (9), that  

Xt ~ (A ~ ,  ~ 1). mo-I (11) 

Let  A~ (i = 1, 2 ... n -  1) be the part  of A between ~t and ~t+l, including the points 

on these planes. Let  A 0 be the part  of A on the opposite side of ~1 to ~2, again 

including A ~1; similarly define A=. In order to simplify the notation I will use the 

symbols X 0 and Xn+* but they will denote null sets. Then A = ~ A ~ ,  At" A v = 0  

[ i - i ' [ > l ,  and A t ' A t + I = A ~ + I .  Hence by Lemma 16A 

Z Hm~ (Xt + Ai + Xt+l) ~ H~.-I (A). (12) 
i - 0  

Now Xt + Xf+l + At satisfies the hypotheses of P (m o, N, ko) and hence there will exist 

a surface Y, with boundary ~Hmo-1 (X~+A~+Xt+I) lying in the convex hull of A 

and such that  

A m~ Yt ( ko~'N . . . . .  (A m'-I (Xt + Xt+, + A~)} m~176 -1), (13) 

and Y~ c (At + X, + X,+,, {A m~ (X  t -b Xi+l + At)}l/(ra~ (14) 

By (12) and Lemma 11 A ~ Yt will be a surface with boundary ~Hm~ (A). By 
t=0 

(9), (10), (11) and (14) 

y~ c (A, ~ ~ ' 1 )  l / (m~ l). m~ l +  {2 mo-l t  

H e n c e  i f  w e  t a k e  k~176 >/~176 + { 2  ~ 1 + 1} 1/(m~ 

~. y t c  {A, k~ 1}. ~ rn o 

Finally by (9), (10) and (13) 

A~ {Am' 'x ,+A  + Am. ' A,} 
t=O t=O 

n 
<~ k~176 { ~. Am.-l X, + Am~ X~+l + Ara~ At} tool(too-I) 

l=O 

2 -- 60173032. Acta mathematlca. 104. I m p r i m 6  le 21 s e p t e m b r e  1960 
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~-~ k~ f l  m' - I  @ ~ OKN ~ { i  m ' -2  A ~i}(m'-l)/(m~ rod(m~ 
m~ (. mo-1 

i=1 

~'~k~ glm~ m~ 1 ~  A OKN r Ar~,-2 ~i}(mozl)/(mo-2)}mo/(mo-1) 
too( 

i=1 

4 koKN {1 m~ + 2 0 K N  lm~ m~ mo mo 1 

ko N ~< Kmo {1 + 2 ~176176176 1) lm~ 

which, for a suitable choice of k~ is less than ~'-1KN {A m. 1A}md(m~ so that  mo m~ . 

the lemma is established. 

* N LEM~A 9. There exists 1< Km < c~ such that i/ A is a set lying on s (P,  r) and 

{Am_ iA}i/(m_l )< r ~ x ~ ,  and m>~ 2, then there will exist a sur/ace X * c  s (P, r) having 
Km 

boundary DHm-1 (A) such that 

A m X* <. *K~ {A m-1 A} m/(m-1). 

If  X is the surface of Lemma 8 and we take * K ~ > 2 K ~  then 

X c S ( P ,  r ) - S ( P ,  ~r). 

We may therefore, by Lemma 6 A, take X* to be the conical projection of X onto 

s (P, r) from P. 

L EMMA 10. I /  C is an open cube of side o~ lying in d-dimensional Euclidean 

space, m < d <~N, and A is a set lying on the sur/ace c o /  C, and S c C  is a sur/ace 

with boundary D Lm-~ c Hm-1 (A) such that 

O~ m 
A m s c < ~ - ( , K N m } m - 1 ,  

then there will exist a sur/aee S* c c with boundary D Lm-1 and such that 

A m ( S * - S )  < 2 m+~ N mAm (SC). 

Let P be the centre of C. By Lemma 4 

f A ' n - l S s ( P ,  r) dr<~A m (SC). 

Hence there exists 1 ~ < r0 < �89 ~ such that  

A m-~ S s  (P, ro) ~< 4Am (SC) (15) 
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Hence {A~_l S s ( P ,  ro)~/(m_l)< {4Am(SC)ll/(m-1) ~ ro 
4 Km Kin" 

Moreover by Lemma 12 A there exists 

g~_I~H,~_I (Ss (P ,  to) ) and 2 g,n_l~ Hm_l (Ss (P, ro)§ A ) 

such tha t  S - S  (P, ro) is a surface with boundary ~ g ~  1 and 

g,n-1 gm-lDLm 1. (16) 

We may  thus apply Lemma 9, so tha t  there exists a surface X * ~ s ( P ,  r0 )wi th  

boundary 1 gm-~, such tha t  

A m X  �9 �9 Y { A m - l S s ( p  ' ~< Km r0)} m/(m-1). (17) 

By Lemma l l A  and (16) above S ' = X * + S - S ( P ,  to) will be a surface with bound- 

ary ~Lm-1, and by (15) and (17) 

A m ( s , C ) ~ A m ( S c )  * N 4 A  SC) 

A m (SO) [~l(m-~) 
< ' A m ( S c ) + * K ~  (Am ~/m * N(m-~)/,,, 

s c) (Kin) ] 

<2Am(SC) .  

Let  now S* be the conical projection of S" fl'om P onto c. By Lemma 6 A S* 

will be a surface with boundary ~Lm_l,  and since S ' c - S c  and S ' has no points 

in S (P, �88 c~) i t  follows from Lemma 2 tha t  

A m (S* - S) < 2 m X m A ~ (S' C) <~ 2 m +~ 57 m A m (S C); 

which proves the ]emma. 

LEMMA 11. There exists K = K ( N , m ) < o o  such that if we have a system o/ 

parallel equal open cubes o/ side a whose centres form a lattice parallel to the cubes and 

o/ modulus, ~!a, and we have a surface S~ with boundary Lm z c H m  1 (A), such that 

A m ( S -  A) < (2m~2 N m ) - N + m  am 

3 m. 4 m. { * K ~ F  ' 

and S ~ C ~ ,  A ~ c  N where C~ is a cube o/ the system and c~ is its boundary, then if 

{C N} is the set of cubes of the system meeting C~ there will exist a surface S * c  co N with 

boundary ~ Lm 1 such that 
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A C ~ = O ~  S* CN=O, 

and A m (S* - A )  <. K A m (S - A) .  

By Lemma 10 we may assume without loss of generality that  S ~  c y and 

(2m+2N m) N+m+l a m 
Am ( S - A ) <  ~ . ~ -  ~ . ~ _ ~ .  

O "~ t  " ~ L X m j  

Now our system of cubes will divide the whole space into non-overlapping cubes of 

side ~ a each of which is either contained in a cube C N or does not meet it. Thus 3 

we have N sets of non-overlapping open k-dimensional cubes, {D~}, of side ~a such 

t h a t : - -  

Each n ~  ' - 1  will be a face of some D~,', N>~k0~>l. (18) 

D ~ . C ~ = i = O ~ D ~ c C ~ ,  N - l ~ > k > ~ 0 .  (19) 

N - 1  

c~.  C~ c ~ ~ D~. (20) 

Let  Fk, k>~ 0, be the class of those D~ such that  

D ~ ' ~  D~ ~ A .  D~,'=O, k ' ~  k. (21) 

Write S = S N-1. Suppose now that  we have a surface S t with boundary ~ Lm-1 lying 

on c~ and not meeting any D~ q Fk, k > t>~ 0 and that  

(2 m+~ Nm) m-t a m 
A m (S t - A )  < 

3 m �9 4 m . {*K~} m-I" 

I f  D~EFt then for k > t  

r 

D~, ~ D~ ~ D~ E rk ~ D~. S t = 0. 

t t Hence we can find a set Gj ~ Dj, open in N-dimensional space, such that  

S t G~ c D~. 

:Now by Lemma 12 A there exist 

L'~_~ c Hm-1 (S t {Di - D~}) 

C and Lm-, gin-1 ( A + S S t { D ~ - D ~ } )  
Ft 

(22) 

(23) 
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such t h a t  S t.  D~ is a Surface wi th  b o u n d a r y  D L~ : and  s t -  y D~ = S t -  ~ G~ is a sur- 
Ft Ft 

t face wi th  b o u n d a r y  ~ L,~ :, while 

Ltm-: + 5 L~_:  ~ Lm-1.  (24) 
1 

Consider f irst  the  case t >  m. 

I n  v i r tue  of (23) we can a p p l y  L e m m a  10 so t h a t  there  exists  a surface S t* 

c D ~ - D ~ ,  wi th  b o u n d a r y  L ~ - I ,  such t h a t  

Am(N- - S t .  D~) V 2m+: eVm A m (St. D5). (25) 

Hence b y  L e m m a  l l A  and  (24) S t 1 {S  t D t = - ~ ,} + ~ S~* is a surface wi th  b o u n d a r y  
rt rt 

D Lm-, ,  and  b y  (25) 

A m (S t - :  - A )  ~ A  m (S t - A )  + 2 m+I N m A  m ( S t - A )  ~ 2  "+2 N m A  " ( S t - A ) ,  

whence in pa r t i cu l a r  

Moreover  if D~ E Fk, k > t 

{~m+2 N-m,im--i+l m 
A m ( S t _ :  .< ' -  _ , a 

D t D k t* 
I't I 't  Ft  

and  if D~EFt  

t - I  t t t S Dj = ( S t - Z D ~ , ) D I + Z S ~ ,  *. D I ~ ( D ~ , - D } , ) D }  = 0 .  
Ft Ft Ft 

Thus we ob ta in  a sequence of surfaces S t ending in S m such t h a t  for k >  m 

D~ e r~ ~ sa"  D~ = 0 (26) 

and  A m (~.~m _ A )  • (2 m+2 Nm) N-m A m (S - A) .  (27) 

On the  o ther  hand  if t = m  and D ~ . A = 0 ,  A m D ~ n S ' ~ < ~ A " ( S m - A ) < r  v~ ~ / , so t h a t  by  

L e m m a  8 A, LJmmx=O, while if t < m A  m-1 ( D ~ - - D ~ ) = 0  so t h a t  st Lm-:  = 0 b y  L e m m a  17 A. 

Hence  in e i ther  case b y  (24) and  L e m m a s  11 A and  1 A 

S t-1 = (S t -  ~ D~) + ~ (D~ - D~) S t =  S t - ~ D) 
Ft Ft Ft 

is a surface wi th  b o u n d a r y  ~ L m = : .  

W e  can thus  cons t ruc t  a surface S - : = S *  which does no t  mee t  a n y  D~EF~, 

k>~0, and  b y  (27) 
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A m ( S * - A )  < (2 m+2Nm) N-m A m ( S - A ) .  

On the other hand if c N ' A = O  we have for any D ~ c C  N by (19) 

- -  It" D~," = D~ ~ D~,'. C~ v 4= 0 ~ D~,'. C~ 4= 0 ~ D~," ~ C~ ~ Dj, �9 A = 0, 

and hence D~ ~ C~ v ~ D~ 6 Fk. 

Thus by (20) S*. C ~ =  0 which establishes the lemma. 

(2s) 

L]~M~tA 12. I /  ~ is an m-plane through P, t < l ,  A c s ( P , r ) ( ~ ,  er), Lm l ~ H m  I(A) 

and X is a sur/ace with boundary ~ Lm-1 then either 

A m X >  ~Wmrm Am_IA 22~Wm " - - - - ~ r  
W m  1 

and the projection o/ X onto ~ contains ~ S ( P ,  r ) ( 1 - e ) )  or there exists a sur/ace X '  

with boundary ~ Lm 1 such that 

2 ~m Wm 
A m x '  < ~ A m - I A . _ _ e r .  

Wm 1 

Let A* be the conical projection from P onto s (P, r) of the orthogonal projection 

of A onto ~, and let C be the conical projection from P onto 8(P,  r) of C(~,  A). 

By Lemma 10 A if K is the algebraic boundary of C in A + A *  then there will exist 

Lm-1 c Hm-1 (A*) such tha t  

K + L m  1 Lm-1 (29) 

and K + Lm-1 ~ Lm* 1. (30) 

Now by Lemmas 6 and 2 

AmC<'2mWmwm-, . ~ m 22mw �9 ~ r . A  m 1A ~< ~m '~m.~r .  Am-l(A).  

Now if Lm_l* = 0  we may  by Lemmas l l A  and 1 A  take X ' = C + A * = C  and if 

L*_14:0 then by  Lemmas l l A ,  6 A  and 8 A  the projection of X + C  onto ~ will 

contain ~ S (P, r) from which the lemma follows. 

LEMMA 13. I /  S is a sur/ace with boundary ~ L m _ i c L m  1 (A) and G is an open 

set such that A �9 G= 0 then there will exist Lm* 1 cHin-1 (S ( G -  G)) such that S ~  is a 

sur/ace with boundary ~Lm-1  and i/ X is a sur/ace with boundary ~ L *  1 then 

( S - G ) +  X will be a sur/ace with boundary ~ Lm-1. 

This follows at  once from Lemmas 11 A and 12A. 
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LEMMA 14. The class o/ sur/aces with boundary D L is locally sequentially compact. 

By [7, w 28], if S~ is any sequence of surfaces with boundary ~ L  there will 

exist a subsequence S~ converging to a set S in the sense tha t  for any s > 0 S ~  (S, s) 

and S c (S~, s) for large ni. 

Moreover S =  ~ "~ S~ 
k = l  i ~ k  

and hence by  Lemmas 7 A and 21 A, S is a surface with boundary D L. 

LEMMA 15. I /  S is a sur/ace with boundary D L then there will exist a proper 

sur/ace S~ ~ S also with boundary ~ L. 

This follows from Lemma 21 A. 

Chapter 2 

Consider a system T~ of equal parallel open cubes whose sides have length 2 -2= 

and whose centres form an N-dimensional lattice parallel to the sides of the cubes 

and of modulus 2 2=/3. Let  

rr~ ~ 2 - n  

an=  (3 rn22n) N 

u .  = (2 K)-" ,~  

sn = min 

where K > I ,  K~ and 

spectively. 

Km are the 

' (2K)  ~  u~. 3 m. 4 ~ .  { * g ~ }  ~ - ~ ] '  

constants defined in Lemmas 11, 8 and 9 re- 

Suppose now tha t  F is a closed set and tha t  L m _ l c H m _ l  (F). Let  # (L~_I)  be 

the greatest lower bound of Ares  taken over all sets S which are surfaces with 

boundary D Lm_I. Let  ~ (S) be the number of cubes of T~ having points belonging 

to S. Let  a~ be the greatest lower bound of ~, (S) taken over all surfaces S with 

boundary ~Lm-1 and such tha t  

A m S < t e ( L ~  1) ~- en .  

Since the a~ (S) are positive integers ~n will be attained and so we have a surface 

S~ with boundary Dim-1 meeting only ~ cubes of T~ and such tha t  

A m Sn < fl (L~_I) + s~. (1) 

Let  F ,  be the class of spheres not meeting F and with centre on S,. 
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Suppose tha t  there exists a sphere S (P, r )EF~ such t h a t  

r > �89 r n and  A m Kn (P, r) < 2 e~. (2) 

Then we will show tha t  there exists r ' ,  3 r~/8 > r'> r~/4 such tha t  

r e 

K~ {A m l l. (P, r')}ml<m-i) < u,~ f hm-l l~ (P, t) dt. (3) 
o 

For  if not  
d 

KNl(m-1)/m ~xF" (P' x) 
us j  (F n(p,x)}<m 1)/m > 1  for almost  all x, ~r n>x>�88 n 

r 

(Fn (P, r )=f  A m-1 In (P, Odt). 
o 

In tegra t ing this from rn//4 to 3 r~/8, 

I u ~ j  

so t h a t  by  L e m m a  4 and the definition of s~, 

A m K . ( P , r ) ~ F a ( P ,  Sr { r n ~ m { U ' i  ~-1 

a contradict ion with (2) above which establishes (3). 

By  Lemmas  8, 13 and  4 there will therefore exist a set K* (P, r') such t h a t  

S * = ( S ~ - K ~ ( P ,  r')}+K* (P, r') is a surface with boundary  ~L~_~,  

S * - K *  (P, r ' )=S~-K~(P,  r '),  (4) 

S* S (P, r ') = K* (P, r'), (5) 

r p 

and  A'~ K * (P, r') <. u~ f Am-l l~ (P, t) dt < u~ Am Kn (P, r'). (6) 
0 

~). Tn (P) will have at  Let  Tn (P) be the  class of cubes of Tn contained in S (P, l r 

most  (3r~22~)N=a~ members,  let them be C 1, C 2 . . .C,,.  

I will now inductively define at  sequence of at  most  an + 1 surfaces S~ as f o l l o w s : -  

Le t  S ~ = S*. Suppose t h a t  we have defined a surface S~ -1 with boundary  ~ Lm_x 

and tha t  
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~ 0 - 1  n D S n - K ~  (P, r '), 

A m iS  *~ ( S n - K n ( P , r ' ) ) } ~ <  ~~ m * (2K) A Kn (P, r'), I n - -  

and if i~<i o - 1 ,  i o > 1  then  

[Sn - Kn (P, r')] C, = 0 ~ Si~ - 1  C i = 0 ,  

while for C E Tn, i o > 1 

If  now [Sn - Kn (P, r')] C~. 

otherwise we have 

S i. 2 C = O : : > S i ~  n n 

~=0 or if S~ 1C~~ I define S~ by  

S ~  = S t ~  
n 

25 

(7) 

(S) 

(9) 

(10) 

(11) 

Let  (7'), (8'), (9') and 

for i 0 - 1 .  (7') follows 

(13). (9') follows from (9), (14), (16) and (17); (10') follows from ( 1 4 ) a n d  (17). 

Thus the inductive definition of the S~ is established. 

Si~ 1Ci. C : 0 = > S - i ~  (17) 

(10') be equations (7), (8), (9) and (10) with i o subst i tuted 

from (7), (12) and (14); (8') follows from (14), (8), (15) and 

[Sn - Kn (P, r')] C~~ = 0, (12) 

and hence by  (8) 

A m ~S ~'-1 ( S n - K n  (P, r'))] C~~ + A  m [ S n - K n  (P, r')] C~. A m Si~- l C(~~ ~ t n - 

<~ (2 K)  ~o-1A m K* (P, r'). (13) 

Now by  (6), (2) and the definition of sn 

(2m+2 Nm) N + m + l .  2-2rim 
( 2 K ) i ~  (P, r')~< (2K)  ~n-1 u n A m K n (  P,  r ' ) ~ ( 2 K ) a ~ u n e n  ~ 3m,4m.{*KN}m 1 

and we may  apply  Lemmas 11 and 13 to construct  a set S *~~ such tha t  if 

S~ = (S~ - 1 -  C~.)+ S*~~ (14) 

then  Sk is a surface with boundary  ~ L m - 1  and 

Am,e.~, 1 ~i0-1,<~ ]S~'-Ic ~ (15) ton -~ ,n  ) - ~ K A  mt n ~~ 

S.~~ ~ C~~ - C~. (16) 

and for any  CETn  
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Now if n > N  and CETn 

C S (P, r '):~O~CS (P, ~ r ~ ) 4 0 ~ C c S  (P, ~rn)~CETn (P). (18) 

Thus if S ~ C = 0  either CS(P,  r ' )~:0 so that  CETn(P)  and S~ '~C=0 by (9); or else 

CS(P,  r ' ) = 0  so that  

,~ C=S* CcS~ C + K* (P, r') C = 0 ;  

whence S:'C=O by (10). 

On the other hand there will be a cube C of T~ containing P and then, since 

n > N ,  C c S ( P ,  r~/4)cS(P,  r') so that  by (18) and (9) S"2C=O. Thus S~  will have 

points in fewer cubes of T~ than S~. But  by (8), (6) and the definition of u~ 

AmS~<~(2K)~'AmK* (P, r')+ A~(Sn-  K~(P, r')) 

<(2K)",u~A~K~(P, r')+ A'~(S~-K~(P, r'))<AmSn. 

This contradicts the definition of ~ ,  and hence (2) above must be false. 

Thus if r>~r~  and S ( P , r )  EF~ 

AmKn (P, r)~> 2e~. (19) 

Thus by Lemmas 8 and 13 
r 

K~ {A'n-~ ln (P, r)}m/(m-~) ~ Am g~ (P, r) - e~ ~ ~ Am g~ (P, r) ~ ~ f A'~- ~ l~ (P, t) dt. 
0 

d 
~xF~ (P, r) 

That is {F~ (P, r} (m-l)/m >~ (2 K~) -(m-1)lm. 

Integrating we find that  

1 {F n (p,  r )} l /m _ 1 {F n ( p ,  1 rn)}i/m ~ ( r -  1 rn ) (2 KN) -(m-1)/m. 

Consequently there exists a constant A = A  (N, m) such that i/ S(P,  r)EF~ and r>r~, 

F~ (P, r) > A r ~. (20) 

By Lemma 14 there will exist a sur/ace S o with boundary ~ Lm-1 such that there exists 

a subsequence o/ the n in which the S~ converge to S o. 
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Chapter 3 

I will now investigate the properties of a sequence of surfaces such as we have 

just  constructed.  Let  then {S~} be any sequence of surfaces with boundary  ~ L m - 1  

such that ,  if P E S n  and S ( P ,  r ) . F = 0  then~ 

AmS~</~ (Lm 1)+en (I) 

and A m Sn S (P, r) ~> A r m for r > r~, (2) 

where A is fixed and  en-+0 and rn-->0. 

Suppose further  t ha t  there exists a surface S O with boundary  ~ L m  1 such tha t  

S~---~S o. I will write 

In (P, r) - Sn s (P, r) 

K~ (P, r) = Sn S (P, r) 

F~ (P, r) -= ~f A m I l~ (P, t) d t 
0 

and for convenience I shall write 

a 1 ~< lira an ~< a2 to mean  a 1 ~< l i m a  n ~< lim an ~< a2. 
n -->0r n-)*~ n - ~  

Let  F* be the class of spheres S (P, r) not  meeting P and  with P E S  o. 

LEMSIA 1". I /  S ( P ,  r) does not meet F then 

Fn (P, r) <~ A m Kn (P, r) <~ 
rAm l l , ( P , r )  

m 
~- ~n .  

This follows at  once from Lemmas  4, 13 and 7, and (1) above. 

A m K~ (P, r) 
Let now fl be the greatest lower bound o / l i m  

n-~ar Wm rm 

L E M M A  2 " .  

fl>~ A - > O  
Wm 

taken over all S (P, r) E F*. 

I f  P r  0 and r ' < r  then, for all[ sufficiently large n, we can choose P n f S n  so 

near to P tha t  K~ (P, r ) ~  K~ (P~, r'). 

A r 'm r' 
Hence by (2) above f l > ~  for all < r ,  whence the lemma follows. 
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LEMMA 3*. The greatest lower bound o/ l im Fn(P' r_~_)) taken over all S(P,  r) EF* is ft. 
n~r Wm r m 

By Lemma 1" 
T 

lim F~ (P, r) = lim f A 'n-1 l~ (P, t) dt 
n--->oo n - - > ~  

0 

f ~> lim A m-1 l~ (P, t) dt>~ lim ~- (AmKn (P, t ) -e ,~)dt  

0 0 

=j mlimA~K.(P,t) dt~ f T"flW.,t"dt>~fiWmrm. 
0 0 

Thus fl is a lower bound of lim F~ (P, r) and since F~ (P, r) ~< A m K~ (P, r) it must 
n-.~o Wm r ~ 

be the greatest. 

LEMMA 4*. I[ r l>r  2 and S (P ,  rI) EF* then 

lim F~ (P, rx)>~ lim F .  (P, r~) 
- -  m 

rt4.._>o o Wm rE ~4._.>~ Wm re 

and l i t  Fn (P, rl) >~ l~m Fn (P, r~) 
~ i ~  Wm rE n~oo Wm r~ 

/or every subsequence {n~} o/ the integers. 

By Lemma 3* 

Fn (P, r2) 1 m >~flWmre for all large n. 

Hence, for large n 

F,~(P,r)>~lt~Wmr me for all r>r2, 

so that  by Lemma 1", for almost all r>r~, 

~'~ (P,  r) < ~ d r ~ fl Nm r r  - e~ " 

Thus Fn (P, r) ~ - -  " 1 W~.rom . r ~p'W.,e 

Integrating from r 2 to r 1 
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logF~(rl)>~logr'~ ( en ) 
Fn (r2) ~ .  1 l fi Wm r~ , 

<r )/Wmr; exp log r;/ 
so that  F~ (r2) / Wm r~ Wm r~ r~]" 

Whence the lemma follows. 

LEMMA 5*. I /  fi > 0 and p > m then given ~1 > 0 there will exist s' = e' (~, fl, p, m), 

~'=~'  (~l, fl, p ,m)  and ~ = 2 ( ~ , f i ,  p , m )  such that i/ S (P ' ,  r')EF*, and Ko(P' ,  r' ) lies 
within ~' r' of some p-dimensional plane He, through P'; and 

fi~< lim f Am-~ln(P' t)dt<~fl+e' 
n-->~ g m  rm 

0 

(3) 

fl < l i~  Am K~ (P, r) 
~-~:r Wmrm < f l+e  (4) 

/or every S (P ,  r) o/ F* contained in S (P ' ,  r'); then there will exist P E S  o such that 

K 0 (P, ~ r') lies within ~ ,~ r' o/ some p - 1  dimensional plane through P, and S (P, ~ r') 

~ S ( P ' ,  r'). 

We will first prove that  if we write R'  = 2  -(6p-m+I)/<p m) p ~1<~ m) r' then there will 

exist QEI~e, such that  S ( Q , R ' ) ~ S ( p ' , l r  ') and Ko(Q,R '  ) is null. For suppose 

not : - - then  if S (Q,, 2 R') c S (P', �88 r') and Q, E~-Ip,, K o (Q,, R') will not be null and hence 

will contain Q[ E S o. Thus 

S (Q~, R') c S (Q, 2 R') ~ S (P', r') and hence 

lim AmK~ (Q,, 2R')~> lim AmK~ (Q,, R ' ) ~ f l  ,m ' w m  R . ( 5 )  
n-->oo n -~oo  

But we can find {r ' /16pR '}  p points Q, of [Ie, S (P ' ,  � 8 8  no two of which are 

within 4R '  of each other, and hence 

( f l+# )  Win2 mr'm~> lirn A m K n ( P  ', �89 
n--->r 

, [ r' ~P 

n---+r 

This contradicts the definition o/ R', provided e' <ft. 

Suppose now that  S (Q, R) is the largest sphere with centre Q having no points 

of S o in its interior. Since P' E S o S (Q, R ) c S  (P', ~r'). 
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Suppose P E S o lies a t  d i s tance  R from Q. K 0 (P, r) will  have  no po in ts  inside 

S ( Q , R ) .  Le t  l n = l n ( P , r )  and  le t  1 ~ be the  set of po in t s  o f l = w h o s e  join t o P m a k e s  

an  angle no t  g rea te r  t h a n  0 wi th  QP produced .  L e t  Po he a po in t  on QP produced  

and  denote  the  d is tance  P Po b y  x < r. Suppose  Sn c (So, On) where 6~-*0. B y  L e m m a s  7 

and  13 we then  have  

(A m-1 l ~ -  m-1 0 ( ) /p  + x 2 + A ln) xr2/R+~n) 

m-1 0 +A In t / x 2 + P - 2 x r  cos O>~mAmKn(P, r ) -mcn.  (6) 

Take  x = r~/R, cos 0 = 2 (to~R) '1", and  

R /2000  > r o > r > r o �9 (ro/R)t = r 1. 

Then  af ter  some man ipu l a t i on  we ob ta in  

r o 

1 / r  \-'~* f I Am Kn(P, r)+men + ~r o. l= 

'{ ,} roaR ) ( ~ n A m - l l n ~ - 2  A m - l l n - F  X m - l l n  r ; 

Hence  

r0 Ya 

j 3'r'' f l ira Am-ll~ dr<~-I'~ l im Am-llndr 

+ 

ro (r,'' ; 
' ~  / l im A m-1 In 
R! I ~  

r l  

d r -  f lim mAmK~-!P' r)dr}. 
n---~ ~ r 

Thus since m >~ 2 

~o 

j ~< _3 '/, -% 
l im Am-llOdr..~2 (fl+e') Wmr•+ {e' Wmrg+fi Wmrr} 
n---->~ 

rx 

<~} (fl+e')Wmrg+ e'W,nrg+ flWmrg. (7) 

L e t  now Co be the  set of po in ts  whose join  to  P makes  an  angle  no t  g rea te r  t han  

0 wi th  QP produced .  Then  b y  (4), L e m m a  4, (3) and  (7), 
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lira A m K~ (P, ro) Co 
n-->oo 

< lira A ~ K~ (P, ro) - lira A m {K,  (P, ro) - Co} 

ro 

< ( ~ + e ' ) W m r ;  ~ -  lim t~Am-x(l~- l~ 
n-->r . 

0 

ro ro ~'1 

{ f  f f } < ( f l + s ' ) W m r g -  lim Am- l l~dr  - Am-~l~ dr - Am-~l~dr  
n-~cr 

0 rz 0 

ro ro 

f -;  <~(fl+e') Wmrg- lim Am-ll,~dr+ l im A m 11~ 
0 r~ 

<~ (fl + e') Wm rg - fl Wm rg + } (fl + e') Wm rg 

r l  

d r +  lira A ~ ~l~dr 
n--*~o . 

0 

+ ~' Wmo'~on-I - fl  W m r ~ n - ~ - % ~ )  ( f l - t - 8 ' )  Wm?'~ n. ( S )  

Let 1-[ be the N - 1  dimensional plane through P orthogonal to QP. Let ~=ro/2r ' ;  

then by the definition of R' 

2 ~ .  2(6p-m+l)/(p-m) ioPl(p m) ~R~2~.r~ (9) 

I will now show that if Z is chosen sufficiently small then we can choose s' so 

small that Ko(p ,  l r o ) = K o ( P , ~ r  ') lies within -~ur0=�89 of rI. For suppose 

than P* E K o (P, �89 lies further than �88 ro from 1-I. P* will not  lie in S (Q, R) and 

hence if ~ is chosen so small that ro/2 R < U, P* must lie on the opposite side of H 

to Q. Thus S (p* 7tl ~ t o _  21 ro cos O ) c S  (P, ro)Co so that by  (4) and (8) 

U - ~ c ~  ~<limA mK~ P*, Uro 1 ~-~o~ 4 2 r~ cos 0 ~< lira A m K~ (P, ro) C O 
n--+oo 

--~ Wmr~+-~\R ! (/5+d) Wmr~+ dWmr~+ 

:Now cos 0 = 2  (ro/R) 'l' so that we obtain 

(10) 
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But by (9) above if 2 is sufficiently small we can choose t '  so small that  (10)gives 

a contradiction. Hence Ko(P, 2r' ) lies within �89 of 11. 

On the other hand P ~ S ( Q , R ) c S ( p ' , � 8 9  ') so that  Ko(P, 2 r ' ) ~ S ( P ' , r '  ). If II* 

is the plane through P parallel to He., l]* will lie within ~' r' of IIp. and hence 

Ko(P,~r '  ) will lie within 2~ ' r '  of ]1". QP is orthogonal to II and makes an angle 

with H* whose sine is less than ~'r'/R<<.~'2(6"-~+l)/(P-'~)p~/(m--~)<sin ~/4, if ~' is 

small. Hence K o (P, 2r') will lie within l/(~-~] ~tr') ~ + (�89 ~ ~r' + 4~' r') 2 of the intersec- 

tion of [i and [i*. If ~' is taken small, this proves the lemma. 

LEMM). 6*. Given ~ > 0 there will exist t o = t o (~, fl, m) and v = v (~, fi, m) such that 

i/ S (P', r') E F* and 

fl~< lim f A~-~ I~(P' t )d t  <~ 
Wmr, ~ f l §  o (11) 

n--> r162 0 

- -  A m K . ( P ,  r) 
f l~  lira ~<fl§ (12) 

n---> ~ W m  r m  

/or every S (P ,  r ) c S ( P ' ,  r') with P ES  o then to each such sphere S (P ,  r)there will 

correspond P*E S o, and an m-dimensional plane [ira through P*, such that 

S (P*, v r) c S (P, r) (13) 

and K0 (P*, v r ) ~  (lira, ~vr). (14) 

We need only note that  K o (P, r) lies at  zero distance from the plane [IN consisting 

of the whole space and then repeated applications of Lemma 5* will give the result. 

LEMMX 7*. Given 0>0 ,  e0>0 and ~, 0 < ~ < l - c o s 0 .  I /  S ( P , r )  is a sphere such 

that /or arbitrarily small (~ > 0  we can /ind a non-overlapping set o/ spheres (S  (P~, ri)} 

such that 

and 

where 

S (P~, rt) c S (P, r), (15) 

r~ < 8, (16) 

AmKo (Pi, rt)> Wm r~', (17) 

H Wm r~ > ee, (18) 

K0 (P .  rt) c (Hi, ~r~) (19) 

Hi is an m-dimensional plane through P~ making an angle o/ more than 0 with 

P P~ ; then 
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f (1-c~ ~ ~. A m - l l ~  d t < ~ A m K ~ 1 7 6  2 
0 

(20) 

Suppose H is an m-dimensional  plane and  t h a t  Q1 and Q2 are two points  of H 

a t  a distance ~ apar t ;  I then  define d(~,  ~, t) and  a (~ ,  e, t) to be respect ively the 

d iameter  and A ~ 1  measure  of H S(QI ,~)s (Q~, t  ). I t  follows immedia te ly  f rom the 

definit ion of the symbols  concerned tha t  

to 

f a (~, e, t) dt  = A ~ II S (Q1, o~) S (Q2, to), (21) 
0 

and t h a t  for b > o  

A~ -~ S (Q~, e) s (Q2, t) < Wm_l {�89 d (~, e, t)} m-1 < (l (~, Q, t). (22) 

We now choose a set of spheres S (PC, r~) such t ha t  ~ < 8, 

K o (P, r) - ~ K o (Pc, ri) = ~ S (Pj, rj), (23) 
1 

and 

B y  (22) and  (21) 

A m {K o (P, r) - ~ K o (P~, r~)} + 5 ~> ~ Wm r'~. (24) 

f A~ ~ 1 o (P, t) S (Pj, rj) d t <~ W,, r'~. (25) 
0 

B y  (19), (22) and  (21), if PP~>~r~ 

r f f A'~ -1 to(P, t) S(Pi ,  r~) dt<~ or (PP.  % t) dt  
0 PPI  -- rl c o s  0 - rl 

~ ( P P ~ , r ~ , t ) d t -  f ~ ( p p ~ , r . t ) d t < ~ W m r ~ _ W  m l - c o s O -  m , ~  r~ . (26) 

0 0 

Now since the S(P~, rz) are non-over lapping there is a t  most  one i = i o such t h a t  

P P i < r , < ~  and by  (22) and  (21) 

i A ~ -  1 lo (p, t) S (Pco, ri.) d t ~ Wm r~: ~ Wm 6 "1. 
0 

(27) 

Thus by  (25), (26), (27), (24), (17) and  (18) 

3 - 60173032.  A c t a  r n a t h e m a t i c a .  104. I m p r i m 6  le 23 s e p t e m b r e  1960 
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r r 

f A'~-' 1 o (P, t) dt = f A~ -1 {~. S(P,,  rj) + ~ S (P,  r~)} l o (P, t) dt 
0 0 ~ i 

~< ~ f A~- I  l0 (p,  t) S (P,, rj) d t + E ~ AY -~ lo (P, t) S (P~, r~) d t 
) 0 i 0 

4 A m { K ~  ~i K~247247 Wmbm+Am ~ K ~ 1 7 6 1 7 6  m 2  

1 - c o s  0 - ~  +d+Wmdm. <~AmK~176 2 

Thus, let t ing 6-->0, we obtain (20) which proves the lemma. 

Take ~ > 0 and define e and v as in Lemma 6", where we may  clearly suppose 

tha t  s < ft. There will exist S (P1, r l )E F* such tha t  

AmKn (P1, r l )  ~ f l  § 82 

fl <~ lim Wm r? 50 fl" (28) 
n---> or 

Thus there  will 

exists and 

be a subsequence {ni} of the integers such t ha t  lim Am K,,(P1, rl) 
i-->~r 

m K 8 2 A ni (P1, rl) 
fl ~< lim ~< fl J, (29) 

i-~ oo Wm rl ~ 50 fl" 

I f  now r 2 < �89 r 1 is sufficiently small and P E SoS (P1, r2) 

- -  A m K ~ ( P ,  r t -  r2) ~ fl § 83 
fl < !im wm ( q -  r,,) m 25 fl '  %---> r 

(30) 

F . i  (P, r 1 - r2) e 2 
and hence fl~<lim ~ ~ f l + 2 5 f l .  (31) 

Thus by  Lemma 4*, if t < r 1 -r2,  

- -  Fn~ ( P ,  t) e 2 
fl~< lim ~<fl+ 

~-~o W~ t m 25 fl" 
(32) 

I will now show tha t  for r <  �89 (r 1 - r2 )  

_ _  m K 
fl ~< lim A ~, (P, r) 

i--~r W m  rm 
~<fi§ (33) 

for, if not,  there  will exist arbi trar i ly large nl such t ha t  
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hence for all t such that  

A m K~, (P, r) 
W m ~ m  > ~ - t - � 8 9  

1 

r < t < r \fl + ~ e ] <r l - - r2  
(34) 

so that  by Lemma 1" 

and hence 

AmK=~(P't)>fl+ �88 
Wm t m 

A'~-al (P,t)>~ Wm(/~-~-l s)$nt m - 1 - -  rt i 

m ~n,, 

f Am-~l~(P, t )  dt  = f A m - l l ~ ( P , t )  d t +  f A m - l l ~ ( P , t )  dt 
0 0 r 

r r r 

>~ f A m-~ l~,(P, t ) d t +  Wm(fl + k s ) ( r  'm-rm) - m s ~ ,  l o g - .  
0 r 

Thus letting n~-+ c~, and using (32) 

(fl + ~ f l )  r 'm~ fi rm + (fl + ~ e) (r'm-rm) 

which since e <fi  gives a contradiction with (34). 

I t  follows from (33) that  

fl ~< l i~  Fn~ (P, r) 
i~-~ Wm r~ < fi + s. (35) 

(33) and (35) hold whenever r < � 8 9  and P E S o S ( P I ,  r~) which will certainly be 

the case if S(P,  r)E F* and S(P ,  r ) c S ( P 1 ,  r2). We may therefore apply Lemma 6* 

to conclude that  to each such S(P,  r) there will correspond P*E S o and an m-dimen- 

sional plane Ilm(P) such that  

S (P*, v r) ~ S (P, r) 

and K o (P*, v r) c (IIm (P), ~ v r). 

Hence for large n~ K~  (P*, v r) ~ (IIm (P), 2 ~ v r). 

(36) 

(37) 

(38) 

Moreover for large n~ by (33) 

AmK~,(P *, �89 �89 v~r ~ (39) 

and by (35) F~  (P*, v r) < (fl + 2 e) W~ v m r m. 
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Hence we can find Q~, �89 v r < o~ < v r such tha t  

m--1 A Im(P ,~i)~2(/3§ m-1. (40)  

Then by Lemma (12) in view ot equat ion (1) together  vi th  Lemma (13) either 

Am K~,(P *, ~ ) ~  W m q ~ - - -  
2 2m 

Wm.2$vr .  Am Xl~(p*,o~) 
W r a  - 1  

>1 Wm e~ '~ - 

or else 
v m r" 

�89 2 ~ < A ~ K , , ( P  * , ~ v r ) ~ A m K m ( P * , e ~ )  

2 2" Wm A m 1 Ini (P*, ~) + en~ <. Win--1 <<" IV,. 1 .2~vr"  

2 ~" +-~ W~ 
Win-1 " ~(fl + 2e) vmrm' (41)  

~(~+2e) vmrm+en,. (42) 

The latter is impossible if } is small and hence (41) mus t  hold. 

Let t ing i-->oo through a subsequence such tha t  ~, tends to a limit ~ we have 

� 8 9 1 6 2  and for each 6 > 0  

- -  2 2~+2 W~ 
lira K.~(P*,e +~) ~ Wme m-  W m ~  (fl + 2e) v '~rm; 

ni--->r162 

2 '~m+2 Wm 
using (33) and letting 6 --> 0 we find fl + e >~ 1 

be chosen arbitrari ly small we thus find tha t  

Wm 1 ( /3+2e)$ .  Since ~ and s m a y  

13 ~> i. (43) 

Suppose now tha t  we have a finite set of non-overlapping spheres S(P~, r~)EF*, 

and  contained in an  open set G. Then 

Wm r [  ~< ~ lim A m Kn (P,  r~) <~ lira A m ~ Kn (P~, r~) ~< lira A m Sn G. (44) 
i i n--~ r162 n - + ~  i n - ~  

I f  6 ' >  6 > 0  we will be able to find a finite set of points {P,} belonging to S 0 -  (F, 6') 

and  such tha t  S 0 - ( F ,  5 ' ) ~  ~ S(P,,  6) and P, P e > 6  if i # i ' .  
i 

Each  sphere S (P,, 6) will be met  by less than  5 y others. We may  divide the set 

of spheres S (P,, 6) into subsets ~j  such tha t  each ~ j  consists of disjoint spheres and 

if S (P,, 6) does no t  belong to any  ~j  (?" = 1, 2 ... ?'0) then it mus t  meet  at  least one 

sphere from each of these sets. Clearly there are at  most  5 N sets ~ j  and hence by  

(44) above and (1) 
Wm6m<~5N#(Lm 1)- 

i 
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Consequently A~ ~ (S O - (F, ~')) < 5N# (L~- 1). 

Let t ing first 6 and  then 5'--~ 0 we find tha t  

A ~ (So - F) < ~ .  (45) 

Suppose now tha t  G . F = 0 .  By  Lemma 1 we m a y  cover almost  all of So G by  a set 

of arbitrari ly small spheres S (Pi, r~) contained in G and belonging to F*, al=d by  (44) 

we then have 
Wm r~' < lim A m S~ G (46) 

i n-->or 

whence by  the definition of A ~ X  

Am So G~. lira Am S~G. (47) 
n ~ o o  

In  part icular  

AmSo=Am(So-F)-§  lira A m ( S ~ - F ) + A m F <  lim Ams~=,u(L,~ 1). 
n ~ o r  n--+o~ 

Consequently by the de/inition o/ #(Lm-1) 

A m S O = # (Lm_~). (48) 

Taking this in conjunction with Lemma 15 we have thus proved the following: 

THEOREM. I/ P is any closed set and L,n-l CHm 1 (F) then there will exist a proper 

sur/ace S O with boundary ~ Lm-1 which minimizes the area in the class o[ all such 

sur/aces. 

On the other hand  suppose So is any proper surface with boundary  ~ Lm-1 such 

tha t  A m So = / t  (Lm-1). Suppose S (P, r) E F*, then A m 1 So s (P, r) ~ 0 for if it were zero 

Hm l (Sos (P , r ) )  wou]d be null by  Lemma 1 7 A  and consequently,  by  Lemmas  13 

and 1A,  S o - S ( P , r )  would be a surface with boundary  ~ L m  1 so tha t  S o could not  

be a proper surface. 

By  Lemmas  8 and 13 

A m K o (P, r) ~ K N {A m-1 l o (P, r)} m'(m-1) 

and hence by Lemma 4 

i A ~ lo (P, t) dt  <~ K ~  {Am 1 o (P, r)) m(m-1). 1 

0 

d 
Hence d-r F~ (P' r) 

{F0 (P, r)} (m-~)/m ~> {KN} -<m--~,+m. 
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Integrating 

and hence 

E .  R .  R E I F E N B E R G  

{F ~ (p, r)}l/m ~ {KN}-(m 1)/m r 

A m K o (P, r) > /F  o (P, r)/> {K~} -(~-1) r m. 

I t  follows that  if we put  Sn = So for every n we will obtain a sequence satisfying 

our hypothesis (1) and (2) and consequently we may  apply the subsequent results. 

I will now prove the following: 

THEOREM. I[ S O is a proper minimal sur/ace and P1 E S o - F  is a point such that 

lim Am K~ (PP r) ~< 1 (49) 
r ~  Wm r m 

and e* > 0  then there will exist R 1 > O, R o > 0  such that to each point X E SoS(P1 ,  Ro) 

and each R < R o there wiU correspond a plane R~x through X such that 

S O S (P1, R1) S (X, R) c (R~x, e* R) S (X, R) 

R~x S (X, R) c (S O S (P~, Ri) , 8* R) S (X, R) 

and there will exist a plane ~. through P, such that 

S o S (P1, R1) ~ (~,  e* Ro). 

Take ~ such that  160 (m + 1) (m + 2) ~�89 < e* (50) 

and let eo=eo(~), v = v ( ~ )  be defined as in Lemma 6*. Take e<eo  such tha t  

(8 m e) 1/m < ~ v ~ (51) 

and 0 such tha t  1 - c o s  0 = 3 ~ .  (52) 

By (49) and (43), (28) will hold for some sufficiently small r 1 and hence there will 

exist r 2>0  such that,  by (33), (35), (36) and (37) if P,  P ' E S  O and 

S ( P ,  r ) ~ S ( P ' ,  r ' ) c S ( P 1 ,  r~) 

f l o (P. t) d t 
A m K o (P, r) 

then: 1 ~< o -- ~<- ~ 1 § e (53) 
Wm r m Wm r m 

and there will exist P* E S o and an m-dimensional plane IIm (P) through P* such that 

S (P*, v r) ~ S (P, r) (54) 
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and K o (P*, vr) ~ (II~ (P), ~vr). (55) 

Note first that  by (51), (52) 

vm 1 - c o s O - - ~  m+wm(r'~m>(l+ e) Wm (r'~ m 
2 \ 2 ]  ~2!  " 

Suppose now that  Q1 ... Qm+2 are any m + 2  points of Ko(P' ,  1 , r ) .  Take ~>0 .  By 

Lemma 1 we can find a finite set of non-overlapping spheres S(P~, ~ )  contained 

in S(P', ~r') such that  ~ < ~ ,  Po~ fiS O and 

A m K o (P~,  ~ ) / >  �89 A ~ K o (P ' ,  ~ r ' )  
i 

and hence ~ WmQ~>~2 l(l+e) A ~ K  0~ tP'  ,s!r'~J~>2(l+e)Wm (~)m (57) 

Moreover for each ] ~ m + 2  and each i 

1 r S(Po. ~ )  c S(P ' ,  ~r )~S(Q~, �89 (5s) 

We then obtain a set of spheres S(P~,vQ~) such that  P*~ ES 0 and there exists a 

plane IIm(P~) such that  P~ E Ko(Po~ , eo~) and 

K o (P~, v~o~) ~ ([Im (Poi), ~ vQo~). (59) 

Let  aj~ be the set of i such that  P~Qj makes angle of more than 0 with IIm(Poi). 

I will now apply Lemma 7* taking 

e~ 3)(1 +e)  

Suppose there exists arbitrarily small 6 such that  

then by (20) 

Wm ~'~ vm ~ eo 
ie(~j6 

j "Am-xl~176189176 2 
0 

and by (53) this contradicts (56). 

Thus for all sufficiently small 

W m 
ieajO 

WmVm (:)m 
2(m+3)(l+e) 
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and  hence, by  (57), since there are only  m § 2 points  Qj, we m a y  choose ~0 so small 

t h a t  there exists i o not  belonging to any  aj~.. Thus P~,i0 Q~ makes  an angle of less 

t han  0 with IIm(P~0i,) for each j. We  have therefore shown, since 1 - c o s  0 = 3~, t ha t  

given any  m + 2  points  Qs of Ko(P' ,  ~r') we can find a plane I I~  such t h a t  each Qj 

1 ' r '  ~�89 lies within ~ r sin 0 < ~ of II~.  

Suppose now t h a t  Q~* ... * are Qm+l the vertices of the  m-dimensional  t e t rahedron  

of largest  area with vert ices in Ko(P' ,  a , ~r  ), and  let this area be A. Le t  Q be any  

other  poin t  of Ko(P' ,  1 , ~ r  ). Le t  IIm be the plane defined above corresponding to 
Q~ * Q1 ...Qm+l, Q �9 .. Qm+l, Q. The area of each face of the t e t rahedron  A with  vert ices * * 

will be a t  mos t  A and hence the  area of the project ion of A onto IIm will be a t  

mos t  ( m + 2 ) A ,  and  so the  volume of A cannot  exceed ~(m+2)Ar '~ �89  Thus  Q mus t  

lie within ~ ( m §  1 ) ( m + 2 ) r ' ~  ~ < ~ * r ' / 6 4  of the plane of Q~ ... Q*+I. 

This has been proved  for every  point  of Ko(P' ,  ~r') and hence for each S(P ' ,  r') 

~ S  (P1, r2) we can find a plane Hm (P' ,  r ')  passing th rough  P '  such t ha t  

K 0 ( P '  , ~ r ' ) ~  I Im(P ' ,  r '), 3 2 ] "  (60) 

B y  (53) there  will exist  x, �88 r' > x > ~ r' such t h a t  

A m K o (P', x) ~ Wm x m, 

A m-110 (P ' ,  x) < (1 + e) W m (1 r')m/~ r' 

so t h a t  if e* is small 

A m K o (P ' ,  x) > A m-110 (P' ,  x) .  2 ~m Wm . ~* x 
Win-1 4 " 

( 6 1 )  

(62) 

(63) 

Bu t  S o is a surface of m i n i m u m  area so tha t  b y  (60), (63) and  L e m m a s  (13) and  

(12) the project ion of K 0 (P ' ,  x) onto IIm (P' ,  r ') will 'contain IIm (P ' ,  r ' )  S (P ' ,  x (1 - ~ r 

B y  (60) the  project ion of K o ( P ' , x ) - K o ( P ' , ~ r '  ) onto Hm(P' ,r ' )  will no t  mee t  

S (P' ,  ~r' - ~* r'] - ~ - /  and  hence \ 

K o ( P ' , s r ) ,  ~ K o ( P ' , l s r ' ) , ~ - §  ~ I I m ( P ' , r ' ) S ( P ' , ~ r '  ). (64) 

Wri te  R 1 = r 2 / 4  , R 0 = r2/16 

= Hm (P1, 4R1), R~x = I I m  ( i ,  8R) .  
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If  X E K 0 (P1, R0) and R < R 0 

S (X, R) ~ S (/)1, R~), 

S ( X ,  8 R ) ~ S ( P 1 ,  r~) 

and S (P1, 4R1) ~ S(P1, re) 

whence the theorem follows from (60) and (64). 

Thus taking the above in conjunction with the theorem of Chapter 4 the main 

theorem of this paper is established. 

Chapter 4 

LEMMA l. I/ ~ and ~' are m-planes through a point 0 and II, II' are N - m  

planes through 0 orthogonal to ~ and ~' respectively, then i/ 

then 

~' s (0, 1) ~ (~, fl), (1) 

HS(O, 1 )c ( I I ' ,  2fi). (2) 

Let X be a point of I I  such that  I O X  I=1. Let X* be the projection of X 

onto ~ ' .  Then X* will be within f l{OX* I of ~ and hence 

Ixx*l+~lox*l>~loxl, 
That  is (~-iox*l~)~+~lox*l~, 

whence I 0 X* I < 2 ~/(1 + ~ )  < 2 ~. 

Since X X *  is orthogonal to ~ '  the distance of X from 1]' is equal to I OX*{ and 

the lemma follows. 

LEMMA 2. I/  {hi}, {h~} are two sets o/ N orthogon~l u~it vectors, ( ~ =  1 . . . . .  Y)o 

such that 
I h~ - h~ I < fi (k = 1 . . . . .  N) (3) 

and ~1, ~2 are two m-planes, through a common point O, containing {h~} and {h~} 

(Ic = 1 . . . . .  m) respectively, then 

~1" S(0, l) c (~2, Nil). (3) 

m 
Suppose P E ~ ,  I O P I = 1, then the vector O P will be of the form ~ k h~, where 

1 

~ J t ~ = l .  Let  P '  be the point of ~2 such tha t  O P ' =  ~ 2kh~, then 
1 
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[PP'I=IoP-oP'I=I~ X~(h~-h$)l<fi ~1 I '~l<Nfl" 

LE~MA 3. Suppose h 1 . . . . .  hzr and gx, ..., gN are two sets o/ orthogonal unit vectors, 

and that ~h and ~g are m-planes containing h I . . . . .  h m and gl . . . . .  gm respectively and 

passing through a point O; ~'h and ~'g are two planes through 0 such that 

and 

w h e r e  

~ S(0, 1) c (~h, d) 

~ S(0, l )~(5g,  d) 

5~ s(o, 1)~ (z~, r 

]h~-g i ]<% i = 1  . . . . .  N, 

1 
d<360N2 

(4)  

(5) 

(6) 

(7) 

(s) 

1 
and ~ < 360 N ~" (9) 

For i ~ m de/ine h~ to be the projection o/ h~ on ~'h, and hi" by the equations 

h'~' = h~ (10) 
r - 1  

h ' / = h * -  ~ (hi ' .h*)h; ' / lhi ']  2, r<<.m (11) 
t = l  

and then de/ine h'~ to be the unit vector parallel to h'" i �9 

Let IIh, IV[g, I]~, YI~ be the N - m  planes orthogonal to 5h, 5g, ~'h and 5~ re- 

spectively and /or i > m  de/ine h* to be the projection o/ h~ onto H~, and h" by the 

equations 
h~§ * hm+l (12) 

r - I  

h : ' = h * -  5 (h;"h*)h; ' / Ih; ' l  ~, m<r<~N (13) 
t = m + l  

and then de/ine hi to be the unit vector parallel to hi'. 

De/ine g~ (i = 1 . . . . .  N) similarly. 

Then hl . . . .  , h'N and g~ . . . . .  g'N will /orm two sets o/ orthogonal unit vectors such 

that 5"h and 5~ contain h'a . . . . .  h'~ and g~ . . . . .  gm respectively and 

I h; - a;[ < 40O0 N ~ (r + ~). (14) 

Consider first i < m .  By their definition the hi' will lie in ~ and we can prove 

by induction that  
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h'~"h~'=O, t < r < m .  

I t  follows from (4) that  5aS(0, i ) ~ ( 5 ~ , d )  

and hence I h* - h~l < d, 

so that  Ih* .h*l~2d,  i #  i. 

We will now prove by induction that  if q > p  

In;'.n*l<ud. 

and IhL'l > -~. 
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(15) 

(16) 

(17) 

(18) 

(19) 

If p =  1 this is true by (10), (17) and (16). Suppose then that  (18), (19) hold for P<Po. 

By (ll) 
pu--1 

h t t  , H ] p..h.l<lh*~ E (h~ .hp0)(hT.h*)] 
t = l  

~ 2 d §  ) . 9 d  2 

which by (8) <~2d+d<~3d. 

By (ll), (18) and ( 1 9 )  Ih'p:--h*I<~6Nd. 

Thus by (16) Ih~i-hp01 ~ ( 6 N +  1)d. (20) 

Hence I h~l > ~ which completes the induction. Moreover, again by (20), 

Ih~-h:l<~2sin l s in - l (6N+l)d<~(12N+2)d ,  i<~m. (21) 

Now by Lemma 1 and (4) II~ S(0, 1) c (]]h, 2d) (22) 

and so repeating the above procedure we obtain for i > m 

I h, - h;[ < (24N + 4) d. (23) 

The hi' are unit vectors by definition, and by (15) and the fact that  t]~ and 

~ are orthogonal, they will be orthogonal.. Moreover by induction from their de- 

finition we can prove that  the first m of them lie in ~ .  We may similarly prove 

the corresponding result for the g[. 

Moreover using (6) instead of (4) we may derive a set of N orthogonal unit 

vectors {[~} from the hi, just as the hl were derived from the h~. We will then have 

as an analogue of (23) 

I/~ - h;l~< (24N + 4) q~, (24) 

and /1 .../m will lie in ~ .  
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Let ** g~ , i ~ m ,  be the projection of g~ into ~ .  Then we have 

g* = ~ (g~'h) h, i < ~  (25) 
r = l  

and g** = ~ (g~. h;) hr, i ~< m. (26) 
r = l  

Hence by (24) 

lg*-g**l  <~ ~: Ig,/~l Ih -h ; l+ lh ; I  Ig,'tr-g~.h;l<~(2aN~+S-'V)r (27) 
r = l  

Now by (7) I h i - g i  I~<~o and hence by (27) 

I h* - g* I ~< V + (as N ~ + 8 N )  r  (28) 

I will now prove by induction that if r >  t 

h " h *  ;' * <  " - g  "g~l 3 ~ f + 3 ( 4 8 N 2 + 8 N ) r  �9 (29) 

and I h;" - g ; ' l  ~< 8 N V  + 8 N (as  N ' + 8 ~v) r  (30) 

These are true for t = l  by (28), (10). Suppose they hold for r > t  and t < t  o. By (11) 

and (18) and the corresponding results for the g~ 

* * h *  * * * - '  * h *  * * Ih;:.h~ -g;'.g~ I~<1 ~..h~ -g~~ I*Jg," ~-g,.'g~ I 
t o - 1  

+ ] 5 (h; ' .  hr.) (hi ' .  h* hi' F - '  " * " " * " '  " ' ~  )/1 , ~gt "gt~ "g~l/Igt  I 
t = l  

t o - 1 

h* * * h "  h* "" * ~1 . - g t o l  + E ~ * - g r  I + t ~  Ih;'.~t*.l ~ �9 ~ - g t  .g~ I/Ih;' l  ~ 

to 1 
, , . ]~H 2 + Z Ig;"gr I lh; ' .h , -g; ' .g , .VI- t  1 

, = 1  

t o - 1  

+ Z I g ; "  gt*l I g~" g*l 11/J h;" [~- 1/q g~' [2[ 
t = l  

~<2~p+2(48N 2 + 8 N ) r  ( 1 2 N d +  12Nd) ( 3 ~ + 3 ( 4 8 N 2 + 8 N ) r  

+ 9 N d  ~. 16 (8N~fl+ 8 N ( 4 8 N  2 + 8 N ) r  

~< 3~p + 3 (44N2+ 8N) r 

Furthermore by (28), (29), (30), (18) and (19) 
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to 1 
Ih, .  g,0 I-<l I h , - g , . l +  ~ J(h;" h* . . . .  I ~ �9 * . . . .  . . . .  �9 * �9 ,.) h,/Ih, - (~;" g,.) g,/Ig, I~l 

t -1  

t r l  
~ l h * - g . l +  ~ l h ; ' . h *  " * . . . .  * h "  ,0 * _ ,.-g, "g,ol/lh, l+Ig, "g,.l I , /lh;'12-~;'llg;'l'l 

<W+(48N2 + S N ) r  2N (3w+ 3(48N2 + SN)r 

+ 3Nd .  12 ( 8 N ~ +  8N(48N 2+8N)  ~). 

< 8 N w +  8N (48N2 + 8 N ) r  - 

Hence, since by (19)Ih~' l> 1 and similarily Ig; ' l>~, we have for i K m  

Ild-g~ IK2 sin �89 sin-~(16N~f+16N(48N2+8N)r 

K32NyJ+ 32N (48N2 + S N)r 

Now by Lemma 1 and (4), (5), (6) 

11~ S(0, 1) ~(I la ,  2d) 

ll~ S(0, 1) ~(II~, 2d) 

n;  s(o, 1)~(nL 24). 

Hence we may repeat the above arguments for i > m to prove that  

l h; - g; I -<< 1 6 N ~  + 3 2 ~ v  ( 2 4 ~ '  + s N ) 4 .  

(31) and (35) imply (14) since N >  2, which proves the lemma. 

and 

LEMMA 4. 

29 = 22N+20 N12N~--,} 

Ro= 1 

O = 2 23N ~ I]12 

~- = 250N ~1;(12N+24) 

I[ 6 ~ 2 -2~176176 and N >~ 3 

(37) ~ =N-24Ne ~" 

(39) 51 = ,~�89 

(41) y = s  -�89 

(43) d = ~ 

(45)  0 = '~ 
4 '  

2 > 8  

~oq > 2eR o + 2eycq 

2 + 2 ~ # < #  

1 
4 e < - -  

360 N 2 

then U = 24N+4~ 2 18 (47) 

< { 1 2 0 N  (N-~- 20)  26N+41 (8 j_~)N}--1 (49) 

r/>~ 4000 N a (4e + O 2 ~)) (51) 

1 
d2~ < 360N ~ (53) 

45 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(38) 

(40) 

(42) 

(44) 

(46) 

(48) 

(50) 

(52) 

(54) 
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5/> 10N(N + 20)26N+J'I (8 N)Nr/ (55) 

0~ 10 ~ 4O0sR o (57) 

sin 0 i> [ 100 ' /s s + s in �89 0 (59) 

6N6 < 1 (61) 

21s~'+3 N ~ ,  ~ e -1 < 1 (63) 

o < ~ (65) 

E. R. REIFENBERG 

~ > 4 e # + N ~ / ~  (56) 

~> 3200N 2 236N ((~ ~ ~ + ~ + ~1/(4N+8)) (58) 

N ~" § 218N+3 N 3 ~ ~�88 ~ ~5 (60) 

~oo + ~ + 8N 5 + 2~SN+S N~{ < ~o (62) 

(4N(~ + ~) s ~2~o (64) 

N (~/~ < �89 ~. (66) 

When any o/ the above symbols occur in the subsequent work they will be taken to have 

the values here a~signed. 

LEM)IA 5. Suppase {X{} is a /inite set of points and /(Xi)  a unit vector defined 

at these points such that 
IX~-X~,I>:r i 4 i ' ,  (67) 

and I[ (X~) - [ (X~')I < ~ provided I X~ -- X~, [ < ,,!, a. (68) 

Then /or all X such that 

we may define / (X )  so that 

I X -  Xi[ <~ 2 :r /or some i, (69) 

1 +2-q~>l/(X)]~> 1 - 2 ~  (70) 

and l (X) = / (X~) when X = X~, (71) 

while i/ each point of the interval X'  X "  lies within 2 :r o/ some Xt then 

I1 ( x ' ) - / ( x " )  I < lO (N + 20) 26z~*'u r/ 
Ix'-x"l 

Define [(X) by 

5 f (x~)/I x ,  x~ I ("~~ 
l (x) 

i 

when X ~ : X i  for any i. 

(72) 

(73) 

Let X o be the nearest Xt to X; that  is, choose X o to be an X~ so that  [ X - X o I =  

= m i n  I X - X ~ I .  Then by (67) 
i 

I x - x , l > l ~ ,  i . o  (74) 

and by (69) [ X -  Xo I ~< 2 ~. (75) 
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Now there are, by (67), at most 2N(r+2) ~ points X, such that  

r a <  [ X o - X ~ l <  ( r+  1)a. 
Hence by (75) 

.y [I.X:Xol-1 "+"  [ 2 ] "+~  
,~~ LI x - x~ I ]  < ,.>~-12~ (r + 2) ~ L~J 

H e n c e  

~< .92N~ 1.9 (2' + 1) N 1 ~< 2~_~v+1o 
(2' - 3) N+'r ~>;.,E 1 (r - -  2) (r - 3) 

(2' + 1) N 
(2' - -4 )  ( 2 ' - -  3) N+lT" 

X - X 0 N+20 

E Ii(x~)-l(Xo)l -~x i l  
[1 ( x )  - 1 (Xo) l < 

X _ Xo  ~v-~ 2o 

which by (68) ~< ~] + 

which by (77) and (74), (75) 

which by (48) 

and by (47) 

Moreover (1) 

X - X 0 N+2O 2 ~ _ ~  
[X o Xi[>~ 

~ Z] + 22N+22 ( 2 + 1 )  N 
(~--  4) (2 - -  3) N§ 

~< ~ + 2 aN+4~ A-is 

(76) 

(77) 

< 2 7. (7s) 

X Xo N+I9 Ix_xol_lX_Xol lx x, i i 
Ix-x,F I 

X - X 0 N+20 

X -  X o N+19 IX c~ I + (N+ 2o)I / (x)- 1 (i~ ,~+o -x~l~IX-Xol-IX-Xol~Ix-i~llx_x~l ~ 
. I 

X X o  N+2o 

(~) Differentiation along an arbi trary line. 
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so that  by (78), (74), (75) the above is 

I X-X o N+10 [ X - X  o N+10 < 1 0 ( N + 2 0 )  E I/(X~)_/(Xo)I[~I + 2 ~ q ~  
~ o  ~+o X - X ~  

which by (68), (74), (75) and (77) with 2 ' = 2  and 2 ' = 7  

10 (N__~- 20) 3 ~ ~0 ~ X  X0 N+19 +2 ~ X-~ittX X0 N+19 
O~ �9 i X o _  X i l > ~  ~ 

N/ 
( 2 2N+19 sN] 2" 2 2N+19 (2 @ 1) N 

lO (N + 20) [ 2~N+4o ~ + 2aN+aS ~ ~sl, 

which by (47) 

~< 10 (N + 20) 26N+41 7" (79) 
6~ 

~'ow (78) and (79) imply (70) and (72) respectively so that  the lemma follows. 

LEMMA 6. Suppose ue have t orthogonal unit  vectors /I (X,) . . . . .  / t (X,)  de/ined at 

the points {X~} of Lemma 5, satis/ying the conditions o/ that lemma, and extended as in 

that lemma. Then there will exist a set o/ t orthogonal unit  vectors gl (X) . . . . .  gt(X),  

coinciding with the {/t (X)} at the {X,}, de/ined at all X such that 

I X  - X~[ <~ 2 c~ ]or some i (80) 

and such that, i/ each point o/ the interval X '  X "  lies within 2 o~ o] some X~, then /or 

l<~t'<~t 

Igt" (X') - gt, (X") I < I0N (N+ 20) 2 ~ (8 N)t" ~ I x '  - X " l  (81) 

Define gl (X) to be the unit vector parallel to /1 (X) and define gt, (X), t ' >  1, 

* X  inductively as the unit vector parallel to gt, ( ), where 

t' 1 
gt, (x)  = l,, (x)  - E {1,, ( x ) .  gr (x)}  gr (x) .  (82) r~l 

Clearly the gt.(X) will be orthogonal. 
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I will now prove (81) by induction. For if t ' =  1 then by (70) and (72), since 

7< �88  

191 (X') - gl (X") ] ~< 2 sin �89 sin -1 10 (N + 20) 2 ~N+41U I X'  - i " l  
~ ( 1 - 2 ~ )  

~< 40 (N + 20) 2 6N+41 ~] IX' - X "  I (83) 

which implies (81) for t ' =  1. 

Suppose now that  (81) holds for t ' <  t 0. Then since g~ (X) is a unit vector 

* X '  * " ~ I X "  X '  X '  Ig,.( ) - g . ( x  )l<<-II,~ I+r~llt~ ).g~( )--lt.(X")'gr(X")l 

to-1 
Z "  + ~x[h~ ).g,.(x')[ [g,.(X')--gr(X')[ 

~~ - 1 

<ll~,(x')-h.(x")l+ ~ I h . ( x ' ) - / ~ . ( / ' ) l  Ig~(x')l 
r = l  

+ l / , . ( x " ) l  Igr(x')-g~(X")l+l/,,(x')l Ig~(x')-g~(x')l 
t~ 1 

x "  x '  x " +  x "  <lh~176 )1+ ~ lb.( ) - h . (  )1 2[gr(x')-g~(X")l 1/,~ )1, 
r = l  

which by (70), (72) and (81) 

< lO N (N + 20) ~ + , 1  ~ IX' - X"l  ~-2N(l+ 2~) .  (8N) t~ 10N(N+20)  26N+4~ U - -  
Iz' x"l 

6~ 

which since U < ~ and t o> 1 

~< 10N (N+  20) 26N+41 �9 (8N) t~ ~7 Ix'-x"l  1 + 3 N  
8 N  

(84) 

In particular taking X"  to be an X~ such that  I X ' - X " I  ~<2c~, and noting that,  

by induction on (82), we can show that  gt* (X~) =[t.(Xr) which is a unit vector, we 

obtain, using (49) tha t  

I g~. (x')  [ >~ 1 - 20 N (~V + 20) 26N+~1 (8 lV)NV/> 

and similarly that  I g,*. (x") I ~ > ~. 

4 - -  60173032. A c t a  m a t h e m a t @ a .  104. I m p r i m 6  le 23 s e p t e m b r e  1960 
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Henc by (84) 

[9t. (X')  - gt. (X") [ ~< 2 sin �89 sin -~ [10 N (N + 20) 26y+41 (8 ~-r) t.~ 

I X ' - X " I . I + 3 N  6 ~< 10 N (N + 20) 26 N+41 (8 N) t~ 
:r 4 N  "5 

< 10 N (N + 2o) 2 ~+~1 (s N) ~.~ [ x '  - x " [ ,  

which establishes the ]emma. 

]X ' -=X"[  l+8N3N.6] 

Suppose S O is a set and S is a subset o/ S O such that i] X E S  and LEMMA 7. 

0 < R < R o then there wil l  exist an m-plane REx through X such that 

S o S (X, R) c (REx, s R) S (X,  R) (85) 

and n~x  S ( X ,  R) c (So, c R) S (X,  R) (86) 

and suppose /urther that there exists a plane F~ such that 

Soc  (Z, e Ro). (87) 

Then i/  we have a sequence o/ numbers {~j} such that 

-~J+~ = e (88) 
(Zj 

and a set o/ points {X~j} belonging to S such that 

] X~j- X~.jl > ~ j i # i '  (89) 

and /or all X e S Min I X - xijl ~< ~j (90) 
i 

then there will exist, /or each j ,  and X E (S, gj) a set o] N orthogonal unit  vectors 

{kin (X)} k = 1 . . . . .  N 

such that i/ the interval X '  X "  lies within ~j o/ S then 

(~ ' X "  Ih,,(X')-h,,(X")l<- ~ [ X  - I (91) 

and i/ X E S then S O S (X,/~ ~j) ~ (~Jx, ~ ~j) S (X,/~ aj) (92) 

and ~ S (X, ~ @ c (So, ~ @ S ( i ,  # @, (93) 

where Zsx is the m-plane through X containing the vectors {h m (X))  k =  1 . . . . .  m. 
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Consider first the case j = 1. Let  {h~k (X)} be a system of orthogonal unit vectors 

independent of X such that  the first m of them are contained in Y,. y l will be the 

plane through X parallel to Y~. (91) will be satisfied since ] h l k ( X ' ) - h l k ( X " ) l = O .  

If X E S  then by (87) X ~ ( G ,  eRo) and hence by (87) and (50) S o S ( X ,  H a l ) c  

(Z e, R0) S (X, H ~1) C (G 1,  2 e R0) S (X, H gl ) c (G 1, ~ ~1) S (X, H gl), which proves (92); 

and using (86) 

#~qZ X S (X,H ~1) c (So, eH 0~1) k~/(X, H ~1) ~ (Z, e R 0 -~ ~/(~ 0(:1) S (X, H (2:1) ~ 

(Z~x, 2 e Ro + e H c~) S (X,  H a~). 

Hence Z~x S (X, H ~ )  ~ (,~lZX, 2 e R 0 + e H a~) S (X, # a~), 

which by (86) c (So, 2 e R o + 2 e/~ e~) S (X, # a~), 

which by (50) ~ (So, ~ ~l) S ()t~, H gl), 

which proves (93). 

We will now prove the lemma by induction on j.  Suppose then that  the {h~ (X)} 

exist as demanded. Since 2H~xl<Ro,  we may by (85) and (86) define Z~+lxis+l to be 

a plane through X~j+~ such that  

S O S (Xi j+ l ,  2 H o~j+l) c iv~+l t~x~j + l , 2 e H ej+ l) S (Xij+ l , 2 H ocj+ l) (94) 

and Z j+15]+1 S (Xi]~ lr , 2/z ~r c (So, 2e l l  r ) S (X~]+I, 2H 0r ). (95) 

I will now apply Lemma 3. Take {hjk (X~j+I)} to be the {hk} of that  lemma, 

define {hj+l,k (X~j+~)} to be the {h~} of tha t  lemma and similarly for the g of that  

lemma taking some i':4= i. 

] J The planes Eh, No, E2, E~ will be planes through O parallel to Ex~j+l , Exi,j~ 1, 

Y/+a and E j+l respectively. Xij+l zi,y+l 

Suppose I Xi]+I - XP]+I I < ~ ~j+l. (96) 

Then by our inductive hypothesis (91), since ~ ~j+l = ~ p ~j < :9 

I hj~ (x, j+l)  - hj~ (X,,j+I) I < d ~ e, (97) 

which we will take as (7) of Lemma 3 with 

~v=d~o. (98) 
Now by (95) 
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~j+l x~j+l S (X~j+I,/~ ~j+l) c (So, 2 ~ # ~j+l) S (X~j+I, 2/~ ~j+l) 

C (SoS (Xtt+l,2/go~t+l + 2e~o:j+l ), 2e~a ~S+l), 

] which by (92) C(Zxo.+l,~a/-t-2~a~y+l),  since 2#~ j+l+2e /~o : j+ l<~j .  

This together with the corresponding result for i" may be taken as (4) and (5) where 

d - ~ ~j + 2 s/~ ~j+, (99) 
# as+ 1 

(8) will then be satisfied by the definition of ~,/~ and 9. By (95) for i' 

Z 1+1 ~(Xi'.i+l, ~a~t+l) C(S 0, 2eja~i+l) S(Xi,./+l ~6~1+1), Xi'] + 1 ) 

which by 06)  ~ (S o, 2e~uaj+l) S (X~j+I, (2+#)  ~j+l), 

which by (52) and (94) = / ~ ' J + l  4 " I~..~i]+l, ~,[~gOC]+l). 

This may be taken as (6) of Lemma 3, where 

q~ = 4 e, (100) 

and (9) is satisfied by the definition of e. 

We may therefore define {hi+l~(X~i+l)} and by (14), (98), (100) 

I hi+l k (Xi]+l) - hi+1 k (Xi']+l) I < 1000 ~V z ((~ 2 e ~- 4 e) 

which by (51) ~<~/. (101) 

I will now apply lemmas 5 and 6. (96) and (101) give us (68), we may there- 

fore by these lemmas extend the definition of the vectors {hi+~ (X)} to all points 

X such that  [X-X~s+I[~<2~i+I for some i; which by (90) includes all X~(S,o~i+~). 

Moreover, if every point of the interval X' X"  belongs to (S, ~j+I) and hence lies 

within 2Oq+l of some X~+~ we have by (81) 

I hs+lk (X') - hj+lk (x") I ~< 10 iv (N + 20) 26N+41 (8 N)N~I IX' - X"[ ,  
~1+1 

which by (55) ~< ~̀ Ix ' -  x,,[, 
0~1+1 

which establishes (91) for j +  1. 

Furthermore, if X GS there will by (90) be an X,j+I such that  

I x -- X i )+ l  l <  ~j+l-  (102) 
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Let E* be the plane through X parallel to E ;+1 Then by (102) xi]+l �9 

S o S (X, ~ 5]+1) c S O S (X/]+l , 2 ~t 5]+1) S (~., ~ 5]+1) , 

which by (94) c/EJ+x 2e#5t+I) S(X,#~j+I). Xij+ 1 , 

Now X E S O S (X, # 5j+1) and hence this c (E*, 4 e # ~j+l) S (X,/~ ~S+l), which by Lemma 

2 and (91) for ?'+1 
(E~ 1, 4 e # 5j+1 + N 8# 5j+1) S (X, # 5j+1). 

By (56) this establishes (92) for j +  1. 

On the other hand, by Lemma 2 and (91) for j + l  

Z'~ 1 S (X, # 5j+,) c (X*, N ~ # 5j+1) S (X,/J 5;+1), 

which by the above 

cIEJ+* N ( ~ # ~ s + . + 2 e # s j + I )  S ( X ,  ttsj+I). X i j +  1 

:Now N ( $ + 2 e < l  and so this 

C [E 1+1 S (Xi]+l, 2 ~t 5)+1), 2 e ~t o~j+ 1 -~-N~/t 5s+,) S (X,/~ 5j+1), 

which by (95) ~ (S O , 4 e # 5j+1 + N ($/~ 5j+1) S (X, # 5j.+,), 

which by (56) establishes (93) for j +  l; and hence by induction proves the lemma. 

LEMMA 8. Suppose S o is a bounded set, and S is a subset o/ S o such that i/ 

X E S  and O < R < R  o then there will exist a plane REx through X such that (85) and 

(86) hold; and Suppose further that there exists a plane ~ such that (87)holds, and that 

~o is a topological disk contained in ~,  while S 1 . . . . .  Sj . . . .  are subsets o/ S such that 

$1, 52 (103) 
( 1 0 0 )  ~ E ~  

and Sj+I ~ S O (Sj, 4 5j+1), (104) 

where 5s+~ = Q. (88) 
~j 

Then there will, /or each j ,  exist a topological disk S j-1 such that S 1= Eo and 

S J - I c ( s j : I ,  1~0)  (105) 

1 (106) and i/ [ p Q ] < ~ 0  5 j 
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and P Q  belong to S ]-1 then P Q  will make an angle o/ less than �89 with E~ -1. 

Moreover, there will be a homeomorphism between S i-1 and S j such that i] P, Q E S j 1 and 

P*, Q* are the images in S j o/ P, Q respectively then, i/ (106) holds, 

1 ]P* Q*[ 
-~< - - - [ ~ <  2 (107)  
2 P Q I  

1 
and I P P *  I < ~ ~j. (108) 

Note first that  given any bounded set S we may define a set of points {X~j}, 

for each j ,  to satisfy (89) and (90). For any set of points of S such that  (89) holds 

will have a finite number of members, and if we take the set with the largest pos- 

sible number of members (90) will hold as well. Thus the conditions of Lemma 7 

hold and we may apply the results of that  lemma. 

In particular if P ES j l c ( S j  1, aj/100) then P will belong to (S, aj-1) so that  

y.~-i will be defined. 

I will now prove the lemma by induction. Consider first the case ] =  2. If we 

denote Y'0 by S 1 then (105) will become (103); and since E 1 is the plane through P 

parallel to Y'0, by Lemma 7, P Q will make an angle of less than �89 0 with E~ when 

P, QES  1. Suppose then that S j 1 exists and (105) holds while i/ P, QES  j-1 and (106) 

holds then P Q  makes an angle o/ less than �89 with ESp -1. Suppose 

( ' )  P E Sj_I, 1~0 aj . (109) 

Let  {x k (P)} be the co-ordinates of the point X referred to axes with origin P and 

directions {hjk (P)}. 

Define 11~ (P) = I/Eta= 1 [x~s (P)]~ (110) 

1~ (P) = I PX,jl (111) 

/,j (P) =/,~ (P) when [P X,j [ ~< 2 aj (112) 

/,J (P) =/*~ (P) + /5  (P) - 2 :r when ]PX~j[>>- 2 as. (113) 

We can choose an X,j,  denoted by X0s, such that  for all Q such that  

I PQ] < . �88 aj (114) 

we have [QX~jl>~�88 iq=o (115) 

and ] Q i o j [ <  2 aj. (116) 
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For by (89), (90) and (109) if we choose X0j so that 

]PX0j  I = min [PX,jl, (117) 
i 

the result will follow. In particular (115) and (116) will hold when Q=P. 

Suppose T -  1 ~< IPX~Jl <~ T. (118) 
~j 

Let N (T) be the number of points X~j satisfying (118). By (89) the spheres S(X~j, �89 
are disjoint and contained in S(P,(T+I)~j) so that 

N (T) ~< 2 N (T + 1) N. (119) 

I will now prove a number of estimations. 

/0J ~ 16 and ]~j (P) >~ 
(P)] 1 

/~j (p)j ~ ~j, i#O. (120) 

first that lPX,j[<(~--~)~j, i#o. (121) Suppose 

Then by (109) there will exist X ES such that 

1 IP Xl < y6 :,, (122) 

and thus (123) 

Hence by (92) X~jc (E~, ~ag). (124) 

There will exist Y~j, belonging to the plane through P parallel to E~c, such that 

t X~j Y~jl ~< (~e + 1 )  ~.  (125) 

Now the interval P X  lies in (S, aj). Thus by (91) and Lemma 2 

Y~j~ {Zip, N~ 'P  Y~JI (126) 

Hence by (122), (121), (125), 

so that by (110), (115), (66), (36) and (39), 

>1 N~ ( 1 )  ~j- (128) 
/l~J(P)~ 4 ~ lO (~+~)~ ~ + 1 0  ~ > 8 - "  
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Hence in this case /~ (P) >~ 18 a~; (129) 

if, on the other hand, IPX,~I ~ ( / ~ - ~ ) ~  (130) 

1 - 2 ) ~ > ~  1 then /~ (P)/>/~ (P) - 2 ~ >~ # - 10 8 ~ also. (131) 

Thus using (116) with Q=P (120) will follow. 

/0~ (P) 8 (132) If T ~> 5, ]~;-(~ ~< @. 

For, if T>~ 5, 2~j~< �89189 so that  /,j(P)>~lPX~jl-2~j>~�89 
>~ �89 (T - 1) ~j/> �88 (T ~j), which since /o~ (P) < 2 aj by (116) proves (132). 

Let ~ be the angle between X~jXoj and hj~(P). Now XuXo~ is fixed and 

hence by (91) ]~l sin-l {OIP'-Pl/2~} (~ 
~< lim - - -  (133) 

Thus by (118) and (116) 

Ix~(P)-~gj(P)l:lx,jXoJl leosr (134) 

and by (ll8), (116) and (133) 

~< @ + 2 )  ~ j . :  = ( T + 2 ) 5 .  (135) 
~j 

1 I/ T<~#-~, Ix~(P)-x~j(P)l<.3~o~j, k>m. (136) 

For by (109) there will exist X such that  (122), and hence by (118), (123)hold. 

Then by (92) X~j and Xoj will lie within ~ j  of ~ and hence the angle between 

X~jXoj and its projection on Y/x is less than sin-ll2~o~j/XuXojl. The angle between 

any line in ZJx and its projection on Z~ will by (91) and Lemma 2 be less than 

sin -1 (N(~/~j)IXPI <~ sin -1(No/10). Thus the angle between X~jXo~ and ~ is less 

than sin-112 ~ ~j/X,j Xoj I + sin -1 (N~/10). 

:Now k > m so that  h m (P) is orthogonal to F~o and hence 

J { 11V(~] 1 Ix~(p)-x~oj(P)l=lx~,Xo, I leos+71-<lx, x0,l sin sin -I 25~, +s in-  10-/  I X~j X0Jl 
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2 ~ j  N6] ~ < 2 ~ j + N 6  
<lx~r162 ix,, Noel +-io ~{]x~jel+IexoJl} 

~ 0  ~ 2Nd 
< 2 ~ +  a j +  ~ 0 -  ~ ~ , 

which by (66) gives (136). 

/oJ (P) ~ p  1# (P) (P) ~ / o ~  (P) - 

[/ij (P)]2 
800N 

~j  

For let ~fj (P) be the angle between PXoj and hj~ (P); then by (91) 

I~vj ( P )  - Fj (P ' ) [  ~< 2 s in  -1 �89 - -  
,~ lP P'[ 

~- PXoi P( 

(137) 

Thus 

Hence, using (116) 

~ < 2 s i n  -1 �89 alPP'l  l- sill -1 [PP'I 
aj [ e X o j [ - [ P P '  I" 

1 (138) ~p~j(P) <~ § 

Hence by (135) 

so that by (110) 

whence by (113) and (111) 

Hence using (120) 

~x~y(P) <~ ~ IPXoj] cos I ~p ~j(P) ~<1+2(~+1~<3. (139) 

x~.(P) ~<(T+2)~+3 

t~p/~'j (P) ~-<NT6+2NO+3N (140) 

/fi/~j (P) <~I+NT(~+2Nd+3N~4N+NT& (141) 

/*J (P) )r (P) -/oJ (P) ~p/*J (P) 

[f~j (p)]2 
(4N+NTS) (1 + 16) 

~< (142) 
/~j (P) 

Now when T/> # + 1,/,~ (P) ~> T aj - 2 ~j ~> �89 T ~.j, by (113) and (118), so that 

17(4N+NT(5) 34(4N+NT6) { 136N/1 - 800N 
/~j (P) T ~j ~< 34 N ~ + ~< - -  ; 

while if T < # + I ,  then by (120), (36), (39), (66) 
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17 (4N + NT(~) <17 (4N + N u6 + NS).S<800N 
/is (P) as ~S 

so that (137) is established in either case. 
Let P* be the point whose kth co-ordinate with respect to axes {hsk(P)} at 

origin P is 

[ ~ x~- (P) [/,s (P)] ' N 
p~ = ~ [ [ t i ( p ) ] _ i y  if k>m (143) 

0 if k<~m. 
Consider k > m. 

[s0,(P)l'" 

[7.~P3 J [s~ (P)]'~ ~7 ~" ~'l~j[s~ (p)] ,N'xk'P'--x~'(P))+'st s 4 N ~ L~J[S~ L~Jrs~ (p)] ,N ~fiO I_li,[S~ (P)](P)J 

+4N Z rto,(P)]'"-' ~ [s0,m)] 
L ~ J  ~ [S,s (P)J [Sos (p)],N 

[~ [Sos ( p ) ] , , / ~ - -  ~ {x~.(P)-x~,(P)} L ~ J  
L ~ J  J 

[So, m)l '" :Now ~ / ~ J  >/1 so that by (137) this less than 

L ~ J  ~ (P)} -~ 3200 N' [[o, (P)]'N-~ x k 

+ 3200 h r~ ;, ~ [So, (P)l '"-' [So, m)1'" 
L ~ J  II~{x~(P'-x~'(P))L~J 

which by 

< 

(119), (120), (132), (134), (135) and (136) 

~ 16~.2~(T+l)~(T+2)~+ ~ "2~(T+l)~(T+2)~ 
I~T~A  T>A 

3200 N2 { [8 )4N-1 } 
Z 16'N-i2N(T+l)N'3eO~i+T~>AI~ I 2N(T+I)N(T+2)~, 

O~.i I ~ T ~ A  

/ {;}" } �9 1 + 1 6  2 16'~-~2~(T+1)~+16 ~ 2~(T+l) ~ 
I<. T<~A T> A 

(144) 

provided 5 < A < ,u - 1. 
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This is less than 

218N§ a A1 + 214N§ a A2 + 3200 2V ~ {218~-2 ~ AI + 214~-2 A2} {1 + 2 I~N A~ + 2 ~4N§ A~}, 

where A 1= ~ T N+I~<A N+2 
I<~T~A 

1 T <~2A -3N+~. and A2=T>A ~ T-3N+2<~A-~N+4 T>A ~ (T--1) 

Consequently 

I ~ 218N+2 (~ AN+2 + 214N+3 (~ A-SN+S [P~ - Xokj (P)] 
i 

+ 3200 N 2 {218N-2 ~ A N+2 + 214N-1 A sN+~} {1 + 2 ~sy A N+2 + 2 ~ y ~  A sN+~} 

~< 3200 N 2 236N {~ A N+2 + ~ A 2N+4 + A -2N+5} 

~< 3200 N 2 2 ~6N {~ A N+2 + ~ A 2N+4 + A -i} since N ~> 3. 

Now 5 < ~  1/(4N+8)<#_ 1 by (36), (39), (42) so that  we may satisfy (144) by taking 

A2N+4=$ -~, whence, using (58) 

(p)] < [p~ - x~s 3200 N 2. 236N {(~ ~- ~ -~ ~�89 -~ ~1/(4N+8)} .~< r (145) 

If now P, Q6S j ~ and IPQl<o~J20 then the whole interval PQ will by (105) be 

contained in (Sj-1, =J10) and by (114) we can use the same X0j for each point of 

the interval. Thus we may integrate (145) to obtain, for /c>m, 

I P~ - x~. (P) - q: + x~j (Q)[~< ~ IF Q I. (146) 

Let  Xo~ be the projection of X0j onto ]-I~, the plane through P containing {hjk (P)} 

k > m .  
4 N  

I x~ (P) - xo~, (P) l L ~ J  

[So,(P!l'" ' 

L/~s (P)J 

which by (119), (120), (132), (134) and (136) 

<~N ~ 164N.2N(T+l)N3~o~j+N ~ 2N(T+I )~ (T+2)~ j  
I<~T<~A T>A 

~< 2 lsN§ N (A 1 ~ ~ + �89 A~ o~) 
(147) 

2 lsN+2 N (A ~+e } ~ + A a~+a ~) < 21s~+e N (A N+2 ~ OCj + A N-~ 0r 

< 218N+2 .N (~t + ~�88 ~< 218N+a N ~�88 o~ i. 



6 0  E. R. REIFENBERG 

Now we know that  P Q makes an angle of less than �89 0 with Zip 1, by our inductive 

hypothesis, and there will exist X E S such that  I PX[ <~ ~J100. Then by (92) and (93) 

ZJx S (X,/~ @ c (So, ~ @ S (X,/~ @ = (So S (X,/~ ~j + ~ @, ~ @ S (X,/~ @ 

C ( S o S ( X  , [JO~j 1), ~ i )  S (  X ,  ~(X])C (Z~ 1, 2~ ~1_1) S (X, ~t ~1). 

Hence, by (91) and Lemma 2, Q will lie within 

IPQI sin Io+.N~,PX,I I IpQ] ~2,~,_I[pQI+N,~,P.X,I I IPQI of Z~. 
O~j- 1 /~ O~j O~j 

Thus the angle between P Q and Z~ is less than 

s i n  -1 {sin �89 N6[PX ~ 2~,~ ~J 1+ 2 N ~ +  2 ~/, N~[PX[I<"- Bin ~r J 1 {sin 10 ~- 10-()- ~-~j 

which by (59) is less than 0. If then Qe is the projection of Q onto 1-[~ 

I PQl~>lQQ~l >~]PQI cos 0. (143) 

Let X o be the projection of X0j onto ]-~, and Z the projection of X~ onto 

1-[~. Then ZX~ will be the projection of XoQXoj onto 1-~. Now XQ. Xoj is perpendi- 

cular to 1-[{~ and by (91) and Lemma 2 the angle between ZX~. and 1-~ is less than 

sin -1 N6 [PQI/~j; hence 

(149) 

<~]QXoJl IPQ]~/< (I PXoj[ + IPQ I}[PQ I N~jS, 

which by (116), (106)<3NSIPQ [. 
By (91) and Lemma 2 the distance of XoQj from the plane through Q parallel 

to l--[JR is at  most NIQX o l.oleQI/ j and hence since IQXo l<lPXo l+iPQl<3   
we obtain 

I I z x ~  I -  I QQ~I I < 3 N ~ IPQI. (150) 

Hence by (148) and (149) 

IPQl+6N~[PQl>~l P ,~ Xoj Xoj]>~[pQ[ cos O-6 N ,~[PQI. (]51) 

Let  P** be a point such that  X Q P** and X~j P* are equal vectors. Consider 

two coordinate systems, both with origin X0~, the first with axes {h~k (Q)), the second 

with axes hjk (P). Let  {q~'} be the coordinates of Q* in the first system and {p~*'} those 

of P** in the second. 
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Then q*' { =0= q~ - x~j (Q) k<~mk > m 

and p~,,{=p*-x~j(P) k>m 
=0  k<m. 

Let {p~'} be the coordinates of P** in the first system. Then 

N 

P;' = Z {h,k (Q)" h,t (P)} p~*'. 
t= l  

(152) 

(153) 

(154) 

Hence I p~ ' -  p~*'l < IP:*' [hj~ (Q)- h,~ (P) - 1] + E p~*' [hj~ (Q). h# (P)]] 
t ~ k  

N 

~< [ E P~*' [hja (Q). (hit (P) - h,t (Q))][, 
t= l  

which by (91)< Max IPt I'2vaIPQI/~j 
t 

<IP* xs .N~IPQI, 
~j 

Thus by (147), (153) and (146) 

Ip'k'-q~'[ < 21s~+a N~ ~ ~t I PQ[ + ~ [PQ[, 
so that by (60) 

IQ*P**[<-21s~+3Na(~IPQ[+N~IPQ <2~]PQ[. 

Hence by (151) and the definition of P** 

(155) 

(156) 

(157) 

( 1) p, ( 1) IPQI l + 6 N a + ~ 6  >/[ Q*I>~IPQ[ c o s 0 - 6 2 v a - 2 ~  6 , 

which by (61), (46) gives 

~>lP* ~*1>~ (15s) 
[PQI ~" 

Let E P be the plane through X~j parallel to E~. This plane contains XoPj Xoj since 

it is orthogonal to 1-I~. By (105) there will exist Y1ESj_I such that 

[ P Y I I <  ~J (150) 
200" 

Then since ]Xoj Y1 ] < I Xoj P I + [ P Yl [ < 3 aj < ~ ~j, there will exist Y2 e E~oj by (92) 
such that 

[ Y1 Y21 < $ ~, (160) 
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and since ]Xoj Y21<[Xos YI[+I  Y1Y21<4~J, there will exist Y a e Z e b y  (91) and  

Lemma 2 such that, using (116) 

I Y2 YaI<4~,.N~[PXo, I<.8N(~gj. (161) 

Now P X~j is orthogonal to ~P and hence 

so that  by (147) and (62) 

{ 1  } + (162) I P P * l •  l ~ + ~ § 2 4 7  ~j45- ~. 

We have therefore established the existence of a homeomorphism P-->P* for P E S j 1 

which by (158) and (162) satisfies (107) and (108). Let S ~ be the image of S j 1 under 

this homeomorphism. Since XojX ~ lies in E e, X~j will, by (91) and Lemma 2, ]ie 

within N ]/oJ XPjl "5 [P Xoj [/~j of E~os" Thus since I Xoj i~ j [  ~ I P i o j  I < 2 ~j, we obtain 

Ixg, Y41 < 4 N ~  ~,, (163) 

where Y4 is the projection of X~  on ZJ XOj" 

But by (93) Z j S (Xoj , # ~j) c (So, ~ o~j) and I X0j Y41 ~< 4 N (5 ~ + 2 ~j < ~u ~j so that  Xoj 

there will ba a point Y5 E So such that 

] Y4 Y5 [< } ~J" (164) 

But  [YhPI<.(}+4N~+2) o:j so that by (105) Yhc(Sj_~, 4~j) whence by (104) Yhe&. 
Thus since by (147), (163), (164), (63) and (64) 

~]+i 
IP* Ys[<~(~§ O§ 21sN+~N ~t)o~j<~lO 0 

SJ= (Sj, 100]" ~j+~ (165) 

Suppose now that I P* Q* I~< ~++1/20. Then by (162), (65) ]pQI  ~< ~+~/20§ ~J25 

<a+/20. ~low by (157) and (158) the angle between P* P** and P* Q* is less than 

2s in  -~ (1/100). But  P'P** is parallel to Xo~.X~ and by (149) and (151)since 
p ^ Q Xo/ZXo~ is a right angle 

Xo~ J ~  Z ~< sin -~ 3 (166) 
cos 0 - 6 ~  " 
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while Z X  Q is orthogonM to I ~  and hence by Lemma 2 and (91) makes an angle 

of less than sin -~ { N ~ I P P * I / ~ j }  with E~,. Thus using (162) we see that  the angle 

between P* Q* and E~, is less than 

which is less than ~ 0 by (36), (44) and (46). This together with (165) completes the 

induction and proves the lemma. 

L ~ M A  9. Under the conditions o/ Lemma 8 there will exist a subset S o /  S and 

a homeomorphism p l _ ~  between Eo and S such that 

~ (167) IPlPI<~6. 

Suppose pIESI=~0 and define P~ES j to be the image of P ] - I E s J  1 under the 

homeomorphism between S j and S J-x defined in Lemma 8. 

By (108) IPJPJ'l<l(~,+~+~r ...), j'.>>j, 

-<~J+I(I+Q+O2.. .)  
"" 50 

which by (65) ~< ~j+~ (168) 
40" 

:Now ~j-->0 as j---~ ~ and hence the sequence PJ converges to some point P such that  

] P i P  ~< O~J+l (169) 
"~40"  

Moreover, by (105) f fES .  (167) is a particular case of (169) and it only remains to 

show that  P ' - + P  is a homeomorphism. 

Suppose 

Choose J0 such that  

this is possible by (65). 

This is true for j = l  by (170). 

I P 1 Q11 = d < 1o :q. (170) 

~J0 > 2J0-1 d > ~r (171) 
20 80 ' 

IPSQJl<.2J-~d, j-<<k. (172) 

Suppose then that  

[PJ 1QS-1]~<2J 2d (173) 
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then by (171) 

so that  by (107) 

which proves (172) by induction. 
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2J-2d< ~. _< ~J 

[pJ QJ[ <~2J-l d, 

Thus by (169) and (171) 

(174) 

5i~ ~ 6r176 ~- 61~ (175) 
IP  QI<2J~ d + 2 0 -  "~ 20 

But  by (171) ~o-->~ as d-->0 so that  by (175) [PQI-+o as d-+0. If, on the other 

hand, P = Q ,  then by (169) 

6r IPJQJI .~-~ for all ?" (176) 

and hence by (107) I P j QJ[>~ I p I Q11 �9 2 -i+1. (177) 

Thus I P 1 Q11 ~ 2 s-1 ~t 61/20 ~ (1/20)t at 1 for all i so that  I P 1 Q11 = 0, i.e. p1 = Q1, which 

completes the proof. 

THEOREM. I /  S O is a bounded set o/ points in EN, and P is a point o/ S O such 

that to each R < R o and each X ESO S (P, Ro) there corresponds a m-plane REx through 

X such that 

S o S (X, R) c (REx, e R) S (X, R) (A) 

and RZx S (X, R) c (So, e R) S (X, R) (B) 

and F~ is an m-plane through P such that 

(5, e Ro) ~ So. (C) 

Then i/ e ~ 2  ~OOON, there will exist a topological m-disk S such that S o S (P, (1/16)R0) 

~ S ~  SOS (P, Ro). 

Take S = S o S (P, R~) (178) 

S~,=SOS P, + ~ + 4 t~l~t (179) 

~o= ~ S ( P, R~ ~2 ~ + (18o) 

The conditions of Lemma 8 will then be satisfied; for (104) follows at once from (179) 

and S j c S  by the definition of 61, Q; it remains to prove (103). 
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By (B) and (C) 

TEe S (P, T) c (So, s T) c (E, s T + s Ro). 

Hence by (B) 

E S (P, T) c (TEe, s T + s Ro) 8 ( P ,  T) ~ (So, 2 s T + s Ro). 

Thus taking T = R o / 2 +  zr (103) follows from (57). 

We may now apply Lemma 9. There will be a topological disk S ~  S which by 

(178) is contained in SoS  (P, Ro). Suppose then that  Q E S o S  (P, ~R0); note first that  

by (B), (C), (57) and (180) 

S (Q, ~ Ro) (~R~ ~ ~ R o) ~ ((S o, i s Ro) S (Q, ~ Ro), ~ s Ro) 
(181) 

1 ~2 

and that  by (B) and (A) 

8 (Q, 2 ~ 1Ro ) (2-~-~ R.E~, 2 -~-~ e t? o) ~ ((So, 2 ~ 1 e R o) S (Q, 2 - ' -~  17o), 2 -~-~ s R.) 
(182) 

c ( S o S ( Q ,  2-~-1Ro (1 +e)), 2-~ ~Ro) c (2-~ R F~o, 2 - n + l  eRo) .  

By Lemma 9 we have a homeomorphism pl~_~p between •o and S. Define a con- 

tinuous mapping p 2 = o  (p1) of Z 0 by : - -  

f P  when P E S ( Q ,  ~Ro) 

I p1 when P r S (Q, ~ Ro) p2 = / 

[ 

When P1 belongs to the boundary of ~0 then by (180) p1 ~.S (Q, 7 Ro/16§ ) so 

that  by (167) P ~ . 8  (Q, 3Ro/8 ) and hence ~ is the identity on the boundary of Y'o. 

Moreover, by (167) 

[pp~[<~2 and [P~P21<~ ~ (183) 
40 40 

and hence ~(2o)S Q , ~ R o  (Eo)S Q,~ o - ~  ~S-  (184) 

There can be no continuous mapping YJ3 which maps ,~S(Q, ~ R o ) o n t o  

s (Q, ~ Ro) (tRoEQ, s 1 s R 0) 

and is the identity outside s (Q, ~ R0) , where s (P, r) denotes as usual the surface of 

the sphere. For if there were, Fa~ would be the identity on the boundary of E o 

and by (183), (184) and (181) 

5--60173032. Acta  mathematica. 104. Imprim6 le 21 septembre 1960 
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~3 r (E0) c ~3 {[r (E0) - S (Q, ~ Ro) ] + ~ (Z0) S (Q, 1 R0)} 

which gives a contradiction, since E0 is a disk. I n  fact  I shall now prove by  induc- 

t ion that ,  for n~> 3, there can be no continuous mapping  YJn which maps S S (Q, 2 -n Ro) 

into s(Q, 2-nRo)(2-~  RoEQ, 2 -heR0)  and is the ident i ty  outside S(Q,  2-nR0).  

For  suppose ~ + 1  did exist. Then by  (A) and (182) 

Vn+l {S Z (Q, 2 -~ R0) } c [S (Q, 2 -n Ro) - S (Q, 2 -n-1Ro) ] (2-n RoEQ, 2 ~ s R0) 

+ s (Q, 2 -n-1Ro) (2-~ RoEQ, 2 ~+1 S R0) 

and this set can be mapped  into s (Q, 2 -~ Ro)(2-~ RoEQ, 2 -n s Ro) by  a mapping  which 

is the ident i ty  outside S (Q, 2 -~ R0), so tha t  we can construct  V~; and this proves 

the result. 

I n  part icular  then, S S (Q, 2 -~ Ro) cannot  be null for any  n>~ 3, which, since 

is closed, proves tha t  Q E S and so the theorem is established, since Q is any  point  

of S O S (P, ~ Ro). 

Chapter 5 

Throughout  this chapter  we will take the group G involved in the definition of 

"Surface"  to be the group of integers mod 2. 

LEMMA 1'. I] L is a simple recti]iable curve with end points .4, B and o] length 

l < r o, whose projection onto a plane II through A,  B lies on a circular arc T o] radius r o 

and centre P,  and i] C (P, L)  is a sur]ace o] m in imum area, then L will be the subarc 

A B  o] T.  

We can, of course, prove this lemma independent ly  bu t  in fact  it follows at  once 

from the classical theory.  C (P, L) will be a disc of min imum area in the sense of 

A e measure and hence also [10] in the sense of Lebesgue area it  is therefore [12] a 

minimal surface in the sense of differential geometry  and the result follows a t  once. 

LEMMA 2. I] L* is a simple closed recti]iable curve on s (0, 1) and C (0, L*) is a 

sur]ace o] m in imum area then L* will be a great circle. 

B y  taking the intersection of C (0, L*) with a narrow right circular cylinder 

whose axis passes through 0 or thogonal ly to A'  B" if follows from the previous lemma 

t h a t  every small subarc A'  B '  of L* is a great  circle arc and hence the lemma follows. 

LEMMA 3. I f  L* is a continuum o] ]inite linear measure on s (0, 1) and 
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A S (Q, r) L* 
lim ~< 1 (10) 
T-~ 2 r 

for all Q EL*, then L* is either a simple closed Jordan curve or else a simple arc. 

By [1, Lemma 4, Chap. VIII ]  L* is an arcwise connected set. Let E be the set 

of points P of L* which are interior points of some simple Jordan arc in L*. Suppose 

P E E ;  let F be an open arc in L* containing P. Clearly F e E .  If QEF then for 

some small r S (Q, r) will not contain either end point of P and 

and 

A S (Q, r) L* ~< 9 r /4  (11) 

A S ( Q , r )  F >~2r. (12) 

Suppose there exists Q' E S (Q, �89 r) (L* - P). There will be an arc P'  c L* S (Q, r) 

joining Q' to a point on s(Q,r). Thus by (11), (12) 

A ( F ' - F )  S (Q, r )<~l r ,  

and A F '  S (Q,r)>~ �89 r. 

Hence F'  meets P in S (Q, r). Let Q" be the first intersection of P '  with 1 ~ counting 

from Q'. Then (10) will be contradicted at Q". Hence L * S ( Q ,  � 8 9  Thus F is 

open in L*. Let Fp be an open subarc of F containing P with end points Ae, B,  E E. 

Consider PoEE.  L*-Fpo  will have at most two components. Let F A be the compo- 

nent containing A,o. Then FA will be an arcwise connected set. If FA r E there will 

exist Q ' E F a - E .  Let F ' c L *  be an arc joining Q' and Ae0. Suppose Q " E F A - F ' .  

Then there will be an arc F " c F A  joining Q" to a point F'. Let Q* be the first 

intersection of F"  with F'  counting from Q". If Q* is A,0 or an interior point of F '  we 

obtain a contradiction with (10) while if Q* = Q' then P'  + F"  is an are in L* containing 

Q' as an interior point so that  contrary to hypothesis Q' E E. Hence F'  =FA so that  

either Fa is a simple arc or else Fa ~ E. In the latter case the arcs Fe, P E FA form 

an open covering of the closed set Fa and hence by the Heine-Borel theorem Fa is 

the sum of a finite number of arcs. We may apply the same argument to the other 

component of L * - F , 0  (if any) so that L* is the sum of a finite number of arcs. 

Now by (10) L* cannot contain three otherwise disjoint arcs meeting in a point and 

hence the lemma easily follows. 

LEMMA 4'. I /  L is a continuum o// ini tel inear measure, L c s  (0, 1), lc 1 E H  1 (L) and 

the m i n i m u m  o] the area in the class o/ sur/aces with boundary IQ is �89 A L then L is a. 

great circle. Moreover, i /  the m i n i m u m  o/ the area in the class o/ all sur/aces with 
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boundary ~ H 1 (L) is �89 A L then L will consist of a finite number of simple arcs meetin~ 

only at their end points. 

Suppose tha t  Q E L and  tha t  

lim A S (Q, r) L 
r->~ r 

Let  t (r) be the number  of points in s (Q,r) L. 

]c. (13) 

Then by  Lemma 4 

lim -1 f t (x)dx<~k 
~ r  

o 

and hence if [k] is the integral par t  of k there will exist arbitrari ly small r 0 such tha t  

~o 

f t ( x )dx<ro[  �89 ( [ k ] § 2 4 7  
0 

and hence there will exist r 1 such tha t  

t (rl) < �89 (fie] § 1 -- })  + k 

in which case since t (rl) is an integer 

t (rl) < k. (14) 

Suppose first t ha t  ]c/> 4. Le t  Pi (i = 1, 2 . . . .  ) be the points of s (Q, rl) L. If  t (rl) ~< 3, 

let B = ~ Q P ~  the joins being taken  on s(0,  1). Then  

A B < ~  k r  I - r l  §  ( r l ) .  (15) 

I f  t (rl) >~ 4, choose the nota t ion so tha t  I P1 P~ [ minimizes I P~ PJl, then P1 Q^P2 ~ ~ 7~. 

Let  G be the centroid of the spherical triangle P1 Q P~ and let B = G P1 + G P~ + G Q + 

§ ~Q Pi .  Then 
i>2 

A B ~< (k - 2) r I § 1 (~/2- § 2 VS) rl § o (rl) ~ k r 1 - ~ r 1 § o (rl). (16) 

I n  either case B is a continuous image of ~ Q P~ and hence by  Lemmas  2 A, 6 A, 4 A, 

1 3 A  and l l A ,  C ( O , B + L - S ( Q ,  r l ) )+S(Q,  rl)s(0,1) is a surface with boundary  

~ H  I(L) .  Thus, since L consists of the sum of rectifiable arcs [1], by  (13), (14) 

and  (15) 
~AL-~I _<1 ( k r l _ ~ r l + i L - k r l + o ( r l ) } §  

which gives a contradict ion when r 1 is small. Thus k < 4. Suppose now k > 2 and 

consider the two cases of the lemma separately. 
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Case 1. Surfaces wi th  b o u n d a r y  /c 1 . 

Suppose  L s ( Q ,  r l ) = P I + P 2 + P a .  B y  L e m m a  1 4 A  we can choose B, A B ~ < 2 r l ,  

so t h a t  b y  Lemmas  4 A ,  l l A  

C ( O , B + L - S  (Q, rl) ) +S(Q ,  rl)s (0, 1) 

is a surface wi th  b o u n d a r y  /c 1. I f  L s  (Q, rl) consists of less t h a n  three  poin ts  we can 

choose B to be the i r  join to  achieve the  same result .  Thus b y  (13) 

�89 A L ~< �89 {2 ?'1 + A i - k r 1 + o (rl) } + {~ + o (rl) } r~ 

which again  gives a con t rad ic t ion  for small r 1 . Thus in this case lc <~ 2 /or  every Q E L. 

Case 2. Surfaces wi th  b o u n d a r y  ~ H  1 (L). 

Le t  X be the  component  con ta in ing  Q of L S ( Q ,  rl). X s ( Q ,  rl) will consist  of 

exac t ly  three  poin ts  P I + P 2 §  F o r  if no t  then [7, w 29 X I I I ]  we can find two 

closed d is jo in t  sets X' ,  X "  such t h a t  X'  §  = L S  (Q, rl) and  X ' s  (Q, rl) consists of 

a t  mos t  one po in t  B 1 X " s  (Q, rl) consists of a t  mos t  two points ,  whose join I will 

call  B 2. Then by  Lemmas  15A,  l l A  and  4 A  ( tak ing  A o = L - S ( Q ,  rl), A I = X '  and  

A ~ = X "  in 15A) 

C ( O , L - S ( Q ,  rl) + BI + B 2 ) + S  (Q, rl)s(O, 1) 

will  be a surface wi th  b o u n d a r y  ~ H  1 (L) whence 

�89 A L <  �89 { A L +  2 r l - k r l  +O(rl)} +{~+o(rl)}r~)} ,  

which gives a con t rad ic t ion  when /c> 2 for small  r 1 . 

L e t  now ~t be the  g rea tes t  lower bound  of A Y t a k e n  over  all  subcont inua  of 

L S (Q, rl) containing P1 + P 2 §  �9 B y  compactness  and  lower semicon t inu i ty  in the  

class of cont inua  of bounded  l inear  measure  [1, V I I I ,  Theorem 12] )~ will be a t t a ined ,  

in Y0 say.  Y0 will be an  arcwise connected  set and  hence we can f ind R E Y0 a n d  

three  arcs P1 R = N1, P2 R = N 2 and  Pa R = N~ conta ined  in Y0 and  no t  meet ing  except  

a t  R. (R could be one of P1, P~, P3 in which case the  corresponding arc  is null.)  

B y  the  def in i t ion  of ~, Y0 = N1 + N2 § ~ 3 .  

I will now show t h a t  L S ( Q ,  r l ) = N I §  ~. If  no t  A L S ( Q ,  r l ) - ~ = ~ > O .  

N 1 § N e § N 3 will d iv ide  S (Q, rl) s (0, 1) into three  domins  D1, De, Da where the  b o u n d a r y  

of Di is an  arc  of s(Q,r)s(O,  1) plus  Nj+Nk,j~=lcg=i. Le t  A 1 be the  complemen ta ry  

domain  of D 1 - L  whose b o u n d a r y  conta ins  the  arc  P~P3 of s (Q, rl)s (0, 1). L e t  D* be 

an  in te r ior  comp lemen ta ry  domain  in D 1 of N 2 + N 3 + A~. L is a con t inuum of f ini te  

l inear  measure  and  hence a Peano  space. Suppose there  were a c o m p l e m e n t a r y  do- 

ma in  A* of D* in D 1 o ther  t h a n  the  one con ta in ing  A 1. A1, D* and  A* are  dis- 

joint ,  wi th  thei r  boundar ies  in L. Moreover,  ( bounda ry  A*) c N 2 + N a + (bounda ry  
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DT)=Ns+Na+A1, which since N s + N  3 can no t  bound  a doma in  means  t h a t  the  

boundar ies  of the  three  domains  have  a con t inuum in c o m m o n - - w h i c h  is impossible.  

Thus the  complemen t  of D* in D 1 is a single domain  and  the  b o u n d a r y  of the  

doma in  {D*} ~ is a s imple closed J o r d a n  curve consist ing of a subare  N* (possibly 

null) of N s + N a toge ther  wi th  an  arc  M,  c L -  N s -  N a. No two such arcs M,  can 

have  more  t han  one po in t  in common.  

Now b y  the  def ini t ion of 2, A N * N  s ~ < A M i  and  A N O N  a<~AMt  and  hence 

A2D * ~< ( g + o  (r,)) ( 3 A M t )  s. Hence for smal l  r, 

A s (S (Q, r l )  - -  A 1 - -  A s - A 3 )  ~ l 0  ~7~ (A L S (Q, r l )  - 2) s < 10 ~ a s. 

W e  can therefore  f ind a s imply  connected  J o r d a n  domain  A in S (Q, rl)  such t h a t  

S (Q, rl)  ~ ~ L S (Q, rl) and  A s A < 11 7~ a s. Consequent ly  b y  L e m m a s  4 A ,  13 A, 11 A, 

C ( O , L - S ( Q ,  r a ) + N  I + N  2 + N a ) + A  is a surface wi th  b o u n d a r y  ~ H  I (L )  and  so 

� 8 9  r s ) + 2 ) + l l ~ a  s whence l~<22zea .  Bu t  a<~ALS(Q, rl) 

~(k+o(r l ) )r  1 and  hence for s m a l l  r 1 we have  a contradic t ion .  Thus L S(Q, rl) 

= N 1 + N s + N a. The set  of po in ts  where k > 2 consists therefore  of i sola ted  po in t s  and  

hence of a f inite number  of points .  

I f  there  are  no such po in ts  then  b y  L e m m a  3' L will be e i ther  a s imple arc or 

else a s imple closed J o r d a n  curve.  B u t  if L were a s imple arc  then  b y  L e m m a  5 A, 

H 1 ( L ) = 0  and  hence b y  L e m m a  1 A, L would  be a surface wi th  b o u n d a r y  ~ H 1 (L) 

which since A 2 L  = 0 <  �89 A L is no t  the  case. Thus  in this  case L is a simple closed 

J o r d a n  curve and  hence b y  L e m m a  2' a g rea t  circle. On the  o ther  hand,  suppose  

there  is a f ini te  set of po in ts  {Qj} a t  which k > 2 .  To each such po in t  we can t ake  

an  open ne ighbourhood consis t ing of three  arcs Nlf+Nss+Naj. 

X = L -  ~ N l j  + N2j + Nzs will be a dosed  set, each componen t  of X will meet  a t  
J 

least  one N~j and  hence X has  only  a f ini te  n u m b e r  of components .  B y  L e m m a  3' 

each componen t  of X will be e i ther  a s imple arc  or else a s imple closed J o r d a n  curve,  

and  the  l a t t e r  leads to  a con t rad ic t ion  a t  the  po in t  where i t  meets  an  N~j. Hence  

the  l emma is es tabl ished.  

I/  S is a proper minimal sur/aee with boundary h*EH 1 (A) and THEOREM 4. 

P E S - A  then 

l ira Az K (P, r) ~< 1. 
r ~  ~ r2  

Le t  a = l im - A~ K (P, r) (17) 
r--~ ~ r2  
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Suppose there exists 5 > 0 and r 1 > 0 such tha t  for all r < rl 

A 2 K  (P, r) < �89 r (1 - ~) A l (P, r). (18) 

Then, by  Lemma 4, for all sufficiently small r 

A2K(P,r)> Al (P , t )d t>  ( 2 A ! K ( P , t )  
3 t (1-~)  dt 

o 0 

> f 2 ~ t ~ ( 1 -  �89 (1-6)-l  dt>o~(1- �89 (1-5)-17~r 2 
o 

which contradicts  (17). 

Hence we can find a sequence rn-~0 such tha t  

A2K(P, %) > �89 (1 - 2 -~) % A  1 (P, r~). (19) 

By  Lemmas  12 A and 11 A there exists h~ CH 1 (1 (P, %)) such t h a t  K (P, r~) is a proper 

minimal surface with boundary  h~. If  follows at once from Lemma 4 A  tha t  
2 A2K (P, r~)--~4zrn. 

Suppose now tha t  C is any  finite set of components  of 1 (P, rn). We can find an 

open set G~ such tha t  
CcG~l(P,%)c(C,  2-~ rn) (20) 

and AGnI(P ,%)<AC+2 ~rn. (21) 

By  [7, w 29, X I I I ]  and an application of the Heine-Bore]  theorem we can find two 

closed disjoint sets F~ and F* such tha t  

1 (P, r,~) = Fn + F* and C = F~ c G~ l (P, r~). (22) 

B y  Lemmas  13A and 11A there will exist h ~ E H 1 (F~) and hn*EH1 (F*) such tha t  if 

Y and Y* are surfaces with boundary  h ~ and h a* respectively then 

A ~ Y + A  2 Y* >~A2K (P, r~). (23) 

Hence by  Lemmas  7 and 8 and (19) above 

�89 (1-  2-~)rnA I(P, rn)<A2 K (P,r~)<~ �89 (r~AF*) + K~ {AF~} ~. 

rn  
Thus either A Fn ~> ~ or else A F* ~> 2 n-~ A F~. 

I n  the  former case, by  (21), (22), for large n, 
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18 ) rn 
AC>rn ~K~2~-2 -~ > 1 6 K ~  (24) 

and in the latter, using (19) 

A C < A F~ ~< 2- ~ +3 A F* ~< 2- n +2 A 1 (P, r~) (25) 

~2-~+4 A2 K (P, rn)rn142-~+4.4~r~ r~l ~2 ~+s r~. 

Now C is the sum of any finite set of components of l (P, r~) and hence it follows 

tha t  1 (P, rn) has at  most  256 z~ K s 2 components of measure greater than r~/16 K~ and 

that  if C~ is the sum of these components then 

A {1 (P, rn) - Cn} <~ 2 -~+s r~. (26) 

Les us now take C to be C, in the above construction of Fn and F*. 

Let  A~, A* be the sets on the unit sphere s (0, 1) congruent to -Fn, F*n apar t  

from a change of scale of ratio r~ : l  and let B~ be the set congruent to Cn apart  

from a similar change in sea]e. Let  kn, k* be the elements of H 1 (As), H 1 (A~*) cor- 

responding to h~, h* in the obvious way. 

Now by [1, VI I I ,  Theorem 12] there will exist a closed set A having a finite 

number of components and such tha t  there exists a sequence {n~} in w h i c h  

Bn;->A and A A ~ lira A Bn~. 

By (20) and (21) 
A,~-+A and A A ~< lira A An i. (27) 

~-->~ 

Suppose now tha t  X is any  surface with boundary D H 1 ( A ) .  Let  D be an open set 

on s(0, l) containing A. Then by Lemma 23A there will exist hEHI(A ) such tha t  

for some arbitrarily large n~, / )  is a surface with boundary - h §  Hence by  

Lemma 11 A; X + / )  will be a surface with boundary k~. Thus by  (23), (26) Lemma 7 

and (19) 
A 2 (X +/5)  >/�89 (1 - 2 -~ )  A A~ - 2 -~+7. (28) 

A2/5 may  be chosen small and n~ large and hence A~X~> �89 lim A A~ i which by (27) 
~-->or 

~>�89 

Consequently by  the second half of Lemma 4' each component of A is topologi- 

cally a finite simplicial complex and so H 1 (A) has only a finite number of elements. 

Suppose now tha t  we have an infinite sequence of domains D D A. By  Lemma 
23 A, to each D there will correspond h E H 1 (A) such that  D is a surface with bound- 

ary - h  § k~ for some arbitrarily large nt. Since there are only a finite number of 
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elements in H 1 (A) we can choose h 0 to correspond in this manner  to  an  infinity of 

the domains D. I f  now Y is any  surface with boundary  h 0 then by  (23), (26), 

Lemma 7 and (19) 
A 2 ( Y + /5) />  �89 (1 - 2 -~ )  A A~ - 2-~+7. (28 a) 

Choosing the sequence of domains D so tha t  A e/)--> 0 and  taking n~ large we obtain 

A 2 y ~> 1 lim A A~ , (29) 
hi--> or 

which by  (27) >~ �89 A A. 

Hence by  the first half of Lemma 4' each component  of A is a great  circle. Bu t  any  

two great  circles meet, and hence A is a great  circle; so tha t  A A = 2 II .  Then by  

Lemma 7, (29), (26) and the definition of A n 

lira A l (P, r~t) ~< 1. (30) 
n~-+~--~ 2 7~ r m 

Thence by  the application of L e m m a  7 and the minimum area proper ty  of K (P, r~) 

the theorem follows at  once. 

LEMMA 5'. Suppose A is a closed set, h E H  1 (A), S a proper sur/ace o / m i n i m u m  

area with boundary h, X a closed subset of S not meeting A ;  then there exists a topolo- 

gical relative mani/old M with boundary F such that 

S D  M ~ M - F ~  X .  (31) 

B y  Theorem 4 and the main theorem of this paper, to each P E X there corresponds 

an r > 0  and a disc D ( P )  in S - A  containing S S ( P ,  2r).  Let  G(P)  be the compo- 

nent  containing P of S S ~ (P, r). These form an open covering of X and hence by  

the Heine-Borel theorem we can find a finite set of spheres S ( P ~ , r ~ ) s u c h  t ha t  

E G (P~)~ X. I shall now construct  u set of values r~ < r~ < 2 r~ such tha t  

t 
A S s (P,, ri)) < oo. 

S s (P, ,  r~)s (P~, r~) consists of a finite set of points if i # j  

/ 
and  S s (P,, r~) s (Pj, rj) s (Pk, r~) = 0 if i # j  # k. 

(32) 

(33) 

(34) 

Since A e S  < oo we may,  by  Lemma 4, choose r~ to comply with (32). Suppose now 

t h a t  rl ,  r,~ . . . . .  r :  have been chosen to c o m p l y  with (32), (33), (34) for i, i, k < ~. Then 

again by  Lemma 4, (32), (33), (34) will hold for i, j ,  k ~ < ~ + l  for almost  all r~+l. 

Let  D~ be the set of interior points ef the set obtained from the closure of the 
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component containing P~ of S S  ~ (P~, r~) by adding all interior complementary domains 

relative to D (P0. 

Then G (P~) ~ n~ c n (P~) (35) 

P~ = D~ - D~ ~ S s (P~, r~). (36) 

Thus X D~ D X (37) 

A F~ < ~ (38) 

and 

P~ P~ consists of a finite set of points 

F i F j P k = 0  for i # j ~ = k .  

(39) 

(40) 

Moreover, F, divides D (Pi) into just two domains D (Pi) - / ) i  and D, of both of which 

it is the total boundary and hence by (38) it is a simple closed Jordan curve and 

D, is a simple closed Jordan domain. By (39) /), ~ Dj will have only a finite num- 

ber of components. 

Let {Q,~} (1 K fl~<a,) be those which consist of single points. Each Qf~ will then 

be at  a positive distance from /), ~ /S j -  Q,~ from which it follows that  

Q~ r Di § ~ Dj. (41) 
Y=M 

Hence Q~ does not belong to X and is therefore at a positive distance from it. We 

can therefore find :q disjoint cross cuts 2i~ of D~ dividing D~ into D* plus ~ domains 

D~ such that  
/),Z- (X + ~ /S j  - Q,~) = 0 (42) 

and D~ D Q~. (43) 

Let P* = D~' - n*, then P~ c F, + 1~ 2, 8 - ~ Q~ (44) 

af ~] 

and hence by (42) P*. P* c P,. P j -  ~ Q,~- ~ Qj~. (45) 
1 1 

By (42) Z D* D X (46) 

and by (45), (39) and (40) 

l'~ P7 is a finite set of poits 

and P~ P* P * -  k - 0  if i # j # k .  

(47) 

(48) 
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Suppose now that there were a point Q which is a component of /)* ~ / ) * .  Q will 
j:t-i 

not be a Qk~ in virtue of (41), (45) and (40). Let Y be the component containing 

Q of / ] , Z / ] j .  By (42) 

1)~ ( Y - Q~) = 0 

and for each ? '# i  Ds~ ( Y - QJs) = 0. 

Hence 
:q r 

Y ~  (/]* + 5 O~a) ( 5 (/5" + 5 Q,~)). 
1 ]:~.i 1 

Henc~ the points of Y nearer to Q than any of the Qk~ will lie in D* ~ D* and 

hence Y =  Q, a single point which contradicts the definition of Y. 

Let now M ~ = ~ D*. I shall show that  M = M ~ is a topological relative manifold. 

At each point of M ~  is locally a disc. M -  M ~  ~ F * -  ~ D*. There will thus by 

(47) and (48) be just two kinds of points in M - M  ~ those belonging to just one F~, 

which are edge points of the disc D*, not belonging to any other D*, and points P 

belonging to two F*; F~ and P~ say. P will be at a positive distance from ~ /)* and 
i # 1 , 2  

hence, since P will not be a component of /)* ~ / ) *  it will not be a component of 

D* D*e. Thus F * - P  meets D~ near P and vica versa. Since F~' and F*2 meet in 

only a finite number of points D~ + D*2 will be locally a half disc at  P with boundary 

through P. Thus M is a half disc at each boundary point which completes the proof. 

We are now in a position to complete the proof of Theorems 1 and 2. 

Theorem 1. Take G to be the group of integers modulo 2. Suppose the boundary 

A consists of the disjoint simple closed Jordan curves A 1 . . . . .  A~. For each s > 0  we 

can cover each A t by a finite set of spheres of radius less than �89 whose sum forms 

an open set M~ D A~. We may clearly suppose that  the Mi are disjoint. Take X to 

be a closed set in S - A  containing S - E M ~ .  We thus, by Lemma 5'~ obtain a mani- 

fold M = M (s) such that  

S - A ~ M ~ S - E M ~ .  

By Lemmas 24A, 12A and 25A the boundary of M(~) will tend to A in the sense 

of Theorem 1 as ~->0 which completes the proof. 

Theorem 2. Take G to be the group of real numbers modulo one. By Lemma 

20A we can find a sequence of subgroups L~ of Hm-I(A) and a sequence of surfaces 

St with boundary D L~ such that  
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Am S~---->g l b AreS. 
Seq* 

By the main theorem and Lemma 15 we can take each Si to be a proper surface of 

minimum area. 

By [7 w 28] and Lemma 22 A the surfaces Si will converge in a subsequence to a 

set S whose algebraic boundary in A is not zero and hence by Lemma 20A, SEO*. 

If P E St and A. S (P, r) = 0 then, by the main theorem, A m Hi S (P, r) ~> Wm r m. 

Let S(P, r) be any sphere with centre on S not meeting A. Then for large i 

there will exist Pi E S~ such that  

S (Pi, r - e) c S (P, r) and hence lim A m Si S (P, r) >~ Wm r m. 
t-->OO 

Thus (compare equations (44)--(48) of Chapter 3) the convergence is lower semi- 

continuous in area. Hence S has minimum area in ~*, and by Lemmas 20 A and 15 

any proper surface of minimum area in 6" will be a proper surface of minimum area 

with boundary ~ L  for some LcHm I(A) whence the rest follows from Lemma 19A 

and the main theorem. 

Ap~ndix (1) 

I n t r o d u c t i o n .  The main paper, to which this appendix is attached, makes use of 

some results in algebraic topology; it is the object of this appendix to supply these 

results. I t  will be clear to the reader that  the formulation of these results has been 

the result of much collaboration between E. R. Reifenberg and myself; I am happy 

to acknowledge this collaboration. 

The plan of this appendix is as follows. After the introduction comes a defini- 

tion, defining the concept of a surface; this is the definition used in the main paper. 

Next come a number of examples and counter-examples, intended to illustrate the 

definition. Finally there come the results needed for the main paper, numbered as 

Lemmas 1A to 26A. 

We now begin with a short recapitulation. The Plateau problem requires us to 

find a surface of minimum area with given boundary. To give a solution, then, we 

must clarify our ideas as to what a surface is, what its area is, and what we mean 

by a surface with given boundary. 

Let us begin by admitting that  we shall consider surfaces of m dimensions, lying 

(1) By Dr. J. F. Adams, Trinity Hall, Cambridge. 
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in Euclidean space of n dimensions; the given boundaries, then, will be ( m - 1 ) -  

dimensional. We have next to choose between two alternative points of view, which 

are both classical in the subject. The one regards a surface as a continuous map (of 

some standard space); the other regards a surface as a set of points. Throughout the 

present work, a surface is a point-set; to be precise, a surface is a compact subset X 

of Euclidean n-space R ~. Further, its area is its Itausdorff measure A m (X). These 

choices are made for good reasons, but their justification belongs to the main paper, 

not to thi~ appendix. 

In this appendix, we shall consider the notion of a "surface with given boundary".  

In the spirit of the choices made above, the boundary will be (at least) a compact 

subset A of Euclidean n-space Rn; w e  are particularly interested in the case when A 

is ~ (topological) (m-1)-sphere,  or some other (m-1)-manifold.  We shall certainly 

require that  X contains A; but this condition is not enough by itself, since we do 

not wish to admit A as a surface with boundary A. We have therefore to impose 

some condition on X to ensure that  it does "span the hole in A".  Now algebraic 

topology was invented to handle such questions, and we should not shrink from 

using it. 

We propose, then, to define the notion of a "surface with given boundary" in 

terms of algebraic topology. 

Definit ion of a Surface.  We have first to indicate the notions of homology 

theory which we shall use. The letter G will denote a compact Abelian group of 

coefficients. The letter U will denote the additive group of real numbers modulo one; 

the symbol Z 2 will denote the group of integers modulo two. We are particularly 

interested in the cases G=  U and G=Zz. Let X be a compact space, let A be a com- 

pact subspace of X, and let m be a non-negative integer. Then there is defined the 

~ech homology group Hm(X,A; G) with coefficients in G (see [6] and [8]). If  A 

is empty, this homology group is written Hm (X; G). Let Y be a second compact space 

with a compact subspace B; and let ]:X---+Y be a continuous map with ] (A)cB .  

Then there is defined an induced homomorphism 

/. :Hm (X, A; G)-+Hm ( Y, B; G). 

In particular, if X c Y and A c B, we may make use of the inclusion or injection 

map defined by i (x)=x. 

If  X, A are as above, then we have inclusion maps 

i. : Hm (A; G)---+ Hm (X; G) 

~. : Hm (X; G)--+H m (X, .4; G). 
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We have, moreover, a boundary homomorphism 

~;H~(X,  A; G)-+Ha_~(A; G) (for m > 0 )  

and an augmentation homomorphism 

:H0(X; G)-+G. 

These groups and homomorphisms enjoy various good properties, which may be found 

in [6]. 

We can now apply these concepts to the study of surfaces. Let A be a fixed 

compact subset of R ~, and let X be another compact subset of R n, with X ~ A .  We 

may associate with X the kernel K of the homomorphism 

i ,  : Hm-1 (A; G)--+H~_I (X; G). 

K is thus the set of elements h in Hm_I(A;G) such that  i . h = 0 .  

DEFINITION. We shall call K the algebraic boundary of X. We illustrate this notion 

at once by examples. We say that A is a retract of X if there is a continuous map 

r:X-->A such that  r(a)=a for a EA. If  A is a retract of X, then the algebraic 

boundary K of X is the zero subgroup; this is immediate, from the following diagram. 

H~-I  (X; G) 
i , / /  ~ r, 

H~ 1 (A; G) § (A; G) 

Example 3 is a case in point. 

If X is an orientable manifold, as in Example 2, then K is the whole of 

Hm_I(A;G). In  this case, as in the next two examples, the group H,,_I (A; G) is 

isomorphic to G. If X is a non-orientable manifold, as in Example 6, then K con- 

sists of the elements of order two in G. For example, if G =  U, then K consists of 

the residue classes {0}, {�89 I f  X is as in Example 7, then K consists of the elements 

of order three in G. For example, if G= U, then K consists of the residue classes 

{0}, {~}, {~}. Next, let L be a given subgroup of Hm-I(A; G). 

DrFINITION.  We say that X is a sur]ace with boundary D L if the algebraic bound- 

ary of X contains L. Of course, if we take for L the zero subgroup 0 of Hm-I(A; G), 

then every set X (containing A) is a surface with boundary ~0 .  This is a trivial 

case. For every non-zero subgroup L of Hm_I(A; G), the surfaces with boundary ~ L  

constitute a significant class of surfaces. :Finally, let h be a fixed element of Hm-1 (A; G). 
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D E F I N I T I O N .  We say  t h a t  X is a sur[ace with boundary ~h if the  a lgebraic  

b o u n d a r y  of X conta ins  h. This is c lear ly equ iva len t  to saying t h a t  X is a surface of 

b o u n d a r y  ~ L ,  where L is the  subgroup  of Hm-I(A; G) genera ted  b y  h. I t  is also 

equ iva len t  to  saying t h a t  there  exists  k EHm(X, A; G) with  ~ / c - h ;  this  is immedia te ,  

f rom the  following exac t  sequence.  

0 i ,  
H.~ (X, A; G)-->H,~_~ (A; G)->Hr~-I (X; G). 

Examples  and Counter-Examples 

Example 1. I f  m = 2, n = 3 and  X is a (topological) disc whose b o u n d a r y  curve 

is A,  then  we cer ta in ly  wish X to be a surface wi th  b o u n d a r y  A. More g e n e r a l l y : - -  

Example 2. Le t  X ba an or ientable  ( t o po log i c a l )m-ma n i fo ld -w i th -bounda ry  whose 

b o u n d a r y  is the  or ien table  (topological)  ( m -  1)-manifold A.  Then we wish X to be a 

surface wi th  b o u n d a r y  A; and  on our defini t ion,  i t  is one. 

Example 3. Take m = 2 and  n = 3, and use complex numbers  z t o  represent  poin ts  

in a f ixed plane in E a. Le t  the  set A be the  circle I z l = l ,  and  let  the  set X be 

given b y  
Izl< , lz- l >l, Iz+ l  >1, 

so t h a t  X is a disc wi th  two holes in it. I n  th is  case we do no t  wish X to be a 

surface wi th  b o u n d a r y  A; and  on our  defini t ion,  i t  is not ,  

W e  remark  tha t ,  in this  example ,  the  b o u n d a r y  A is a r e t r a c t  of X,  b u t  no t  a 

de fo rmat ion  r e t r ac t  of X.  F o r  this  purpose  we recall  t h a t  A is said to  be a de[orma- 

tion retract of X if there  is a r e t rac t ion  r :X-+A which is homotopie  to the  i d e n t i t y  

map ,  keeping A fixed. Tha t  is, A is a de fo rmat ion  r e t r ac t  of X if there  is a cont inuous  

m a p  h:I• (where I =  [0,1]) such t h a t  

h(O,x)=x h(1, x) EA h(t,a)=a for tEI, aCA. 

Example 4. We t ake  m = 3 ,  n = 3 .  Le t  the  set A be the  torus  or r ing-surface 

given in cyl indr ical  polars  b y  

r =  1 + s t  cos u, O=v ,  z = s t  sin u 

(where e is f ixed and  small ,  t = l ,  04u~<27~,  and  0~<v~<27~). Le t  the  set X consist  

of the  solid r ing (given b y  0 ~< t ~< 1), except  t h a t  a small  open spherical  ne ighbourhood 

of one in te rna l  po in t  is removed.  I n  this  case, again,  we do no t  wish X to be a surface 

wi th  b o u n d a r y  A; and  on our  defini t ion,  i t  is no t  one. I n  this  example  the  b o u n d a r y  

A is no t  a r e t r ac t  of X.  
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E x a m p l e  5. We take m = 2, n = 3. Let X be the M6bius band given in cylindrical 

polars by 
r = l § e t cos u ,  O = 2 u,  z = e t s in  u 

(where ~ is fixed and small, 0 ~ t ~ l ,  and 0~u~27~) .  

The boundary is given by t =  1, and is a simple closed curve. I t  is intuitive that  if 

e is sufficiently small, there is a minimal surface which approximates closely to the 

band. This example is a special case o f : -  

E x a m p l e  6. Let X be a non-orientable (topological) m-manifold-with-boundary 

whose boundary is the orientable (topological) (m-1)-manifold  A. 

Our definition gives us freedom either to accept this example as a surface, or to 

reject it. This is done by choice of the coefficient group G; if we wish to accept 

this example as a surface, we take G = Z ~ .  

E x a m p l e  7. The "triple M6bius band". Take m = 2 ,  n = 3 ,  and let X be the set 

given in cylindrical polars by 

r = l + e t cos u ,  O = 3 u ,  z = ~ t s in  u 

(where ~ is fixed and small, 0 ~ t ~  1, and 0 ~ u ~ 2 ~ ) .  

The boundary A is given by t =  1, and is a simple closed curve. The set X is not a 

manifold, for it has a singular curve, given by t = 0, along which three sheets meet 

at  angles of 120 ~ However, it is intuitive that  if e is sufficiently small, there is a 

soap film which approximates closely to the "triple M6bins band". This example is a 

surface (in the sense of our definition) if G=  U, but not if G = Z  2. 

E x a m p l e  8. We take m =  2, n =  3. The set X consists of one copy of Example 5 

and one copy of Example 7, joined by a long, thin ribbon of surface. (With the co- 

ordinates of Example 5, the axis of the ribbon is given by r~>l, 0 = 0 ,  z = 0 ;  and 

where the ribbon meets the band, they have the same tangent planes. The ribbon 

meets Example 7 similarly.) The boundary A is again a simple closed curve, going 

(as it were) twice around the M6bius band, along one edge of the ribbon, three times 

round the triple band, and back along the other edge of the ribbon. 

I t  is intuitive that  if the bands and the ribbon are made sufficiently narrow, 

there is a soap film which approximates closely to this figure. However, this set X 

is not a surface on our definition, since it admits a retraction onto its boundary A. 

We show this as follows. The set X admits a deformation retraction (r' say) onto a 

subspace Y consisting of two circles joined by an arc. The space Y admits a map 

/ : Y - - ~ A  such that the circle corresponding to the M6bius band maps with degree 2, 



T H E  P L A T E A U  P R O B L E M  81 

while the  circle corresponding to  t he  t r ip le  b a n d  maps  with  degree - 1. B y  the  com- 

posi te  m a p  ]r':X--+M, the  b o u n d a r y  A maps  wi th  degree 2" 2 - 1 . 3  = 1. Therefore the  

m a p  [r'[A :A-+A is homotop ic  to  the  iden t i ty .  B y  the  h o m o t o p y  extens ion  theorem,  

there  is a m a p  r:X-+A such t h a t  r[A is the  iden t i ty .  Thus A is a r e t r ac t  of X.  

Of course, i t  is no t  easy  to  visualise the  m a p  r, since i t  s t re tches  the  na r row 

wid th  of a band  over  the  whole length  of the  figure. S imi lar  r emarks  a p p l y  to  the  

nex t  example .  

Example 9. We t ake  m = 2, n = 3. We shall  cons t ruc t  a set which can clear ly  be 

real ised as a soap f i lm whose b o u n d a r y  is a closed u n k n o t t e d  curve, b u t  which  never-  

theless has  a de fo rmat ion  re t rac t ion  onto  i ts  bounda ry ,  a n d  hence is no t  a surface on 

our  defini t ion.  

We begin  b y  t ak ing  a ve ry  small  regular  t e t r ahed ron  A B C D ,  with  cont ro id  

X =  ( -  1, 0, 0), so d isposed t h a t  A,  B lie in the  plane y = 0  wi th  x >  - l ,  while C, D 

lie in the  p lane  z =  0 wi th  x < -  1. The  po in t  X will be a s ingular  po in t  of our  sur- 

face. Near  X ,  the  surface will consist  of the  six t r iangles  which have  X as ve r t ex  

and  a side of the  t e t r ahed ron  as base.  

We nex t  reflect  the  t e t r ahed ron  A BCD in the  plane x ~ 0 ,  so obta in ing  a t e t r a -  

hedron  A'B'C'D' ,  with  cent ro id  X ' = ( 1 ,  0, 0). The po in t  X '  will be a s ingular  po in t  

of surface s imilar  to  X.  

W e  nex t  d raw a smooth  arc  ~ in the  hal f -p lane  z = 0, x ~ < -  1 which begins wi th  

the  segment  X C, ends wi th  the  segment  D X a n d  encloses a convex disc 3. Ref lec t ing  

in the  p lane  x =  0, we ob ta in  a smooth  arc ~'= X' C'D' X'  enclosing a convex disc (~'. 

Similar ly ,  we d raw  a s imple closed curve X A A ' X ' B ' B X  which is smooth  excep t  a t  

X,  X '  and  lies in the  s t r ip  y ~ 0, ] x I ~< 1. The arcs ~, ~', X A A' X' and  X '  B '  B X will 

be s ingular  arcs on our  surface, a long which three  sheets mee t  a t  angles  of 120 ~ 

The whole surface consists of the  discs (~ and  8', t oge the r  wi th  a long, narrow,  

endless r ibbon.  One edge of this  r ibbon  is the  boundary ;  the  o ther  edge is the  follow- 

ing a r c : - -  

X A A ' X ' D ' C ' X ' A ' A X D C X A A ' X ' B ' B X C D X B B ' X ' C ' D ' X ' B ' B X .  

I t  is unders tood,  of course, t h a t  the  por t ion  of the  r ibbon  whose edge is said to be 

A' X' D' contains  the  t r iangle  A '  X '  D; s imi lar ly  for all the  o ther  such t r iangles  (except  

C X D  and  C'X'D',  which lie in the  discs (~ and  (~'). 

This completes  the  descr ip t ion  of our surface. Le t  us call  i t  S, and  i ts  b o u n d a r y  F.  

I f  F '  is the  simple closed curve X A A 'X '  B' B X, then  there  is c lear ly a de format ion  

r e t r ac t ion  r '  : S - + F ' .  The m a p  r '  is a h o m o t o p y  equivalence;  i t s  inverse is the  in jec t ion  

6 - 60173032. Acta mathematica. 104. Imprim@ le 23 s e p t e m b r e  1960 
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i : P ' - ~ S .  Le t  i : I ~ - ~ S  be the injection of the boundary .  Then r ' i : F - ~ l  ~' is a map of 

degree one, and hence a h o m o t o p y  equivalence. Therefore i : I ~ S  is a h o m o t o p y  

equivalence. The following lemma now shows tha t  1 ~ is a deformation re t ract  of S. 

L EMMA. Suppose that X is a complex, A a subcomplex, and that the injection 

i:A-->X is a homotopy equivalence; then A is a de/ormation retract o/ X .  

(I mus t  apologise to specialists in homotopy  theory  for including a proof they  

m a y  think unnecessary; I have been asked to do so for the benefit of other readers. 

The same considerations dictate the use of the proof t ha t  follows, ra ther  than  the 

obvious al ternative proof by  the method  of Whi tehead 's  Theorem.) 

Proo/. We begin by  showing tha t  the map i : A - > X  has a homotopy  inverse 

r : X - ~ A  such tha t  r i=  1A. I n  fact, since i is a homotopy  equivalence, it has a homo- 

topy  inverse / :X-->A. Since / i ~ l A ,  we have a h o m o t o p y  h : I x A - - > A  such tha t  

h(O,a)=/(a) ,  h(1, a)=a.  

We m a y  extend h to h ' : 0 x X  U I xA-->A by  setting h' (O, x ) -  / (x). We can now 

extend h' to  h " : I x X - - > A  by  the homotopy  extension theorem. Define r:X-->A by 

r (x )=h(1 ,  a); we have r (a)=a,  t ha t  is, r i= lA .  Moreover, we have /~,,r:X-->A, so 

i r ~ i / , , ,  lx. We have shown the existence of thr  required map  r. 

We will now show tha t  there is a h o m o t o p y  h ' : I x X - - > X  such tha t  

h'(O,x)=r(x) ,  h'(1, x )=x ,  h ' ( t , a ) = a  for a E A .  

We m a y  begin by  taking a homotopy  h : I x X - - > X  such tha t  

h (0, x) = r (x), h (1, x) = x. 

We shall now use the h o m o t o p y  extension theorem on the pair  

I x X ,  0 x X u  l x X u I x A .  

Define a map  k : O x l x X  U I x ( O x X  U 1 x X  U I xA ) - -> X  

b y  k (0, u, x) = r (x) k (t, O, x) = h (t, r (x)) 

k (t, 1, x) = h (t, x) k (t, u, a) = h (t, a). 

(We easily verify tha t  these are consistent.) By  the h o m o t o p y  extension theorem, we 

extend k to /c' : I x I •  and define h' : I x X - > X  by  h' (u, x) = k' (1, u, x). We have 

h'(O,x)=r(x) ,  h'(1, x )=x ,  h ' ( u , a )= a .  

This completes the  proof. 
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Resul ts .  We now proceed to prove the results which are needed for the main 

paper. We retain the notations already introduced, but for brevity we omit the symbol 

for the coefficient group G where no emphasis on it is needed. We make the general 

convention that  the letters A, B, C, D, X, Y and Z (with or without suffixes) shall 

denote compact spaces; in much of what follows we shall treat them as abstract spaces, 

since any embedding in R n is irrelevant. The definitions of "a]gebraic boundary" and 

"surface" remain meaningfu !. Since we shall have to deal with a number of inclusion 

maps, we make the convention that  if a space Y contains a subspace Z, then i ( Y, Z) 

shall denot3 the inclusion map from Z to Y. 

LEMMA 1 A. I /  X - A ,  then the algebraic boundary o/ X is zero. 

This is immediate, because the induced homomorphism i (X, A) .  :Hm-1 (A)--+Hm~_I (X) 

reduces to the identity homomorphism of Hm 1 (A). 

For our next lemma, we recall that  s:Ho(A)--+G is the augmentation homo- 

morphism. 

LEMMA 2A. I /  X is contractible, then the algebraic boundary o/ X is 

(i) Hm I(A) if m > l  

(ii) Ker s i/ m= 1. 

This ]emma will be used to show that  contractible "patches" are good for patching 

holes in surfaces. The result is immediate if m >  1, since H~ 1 (X)= 0 in this case. 

The case m =  1 is similar, since s :H0(X)-+G is then an isomorphism. 

LEMMA 3A. Suppose that X =  [,J Xr, where the Xr are disjoint and contractible. 
l~<r~<N 

Write A r = A  (] Xr; write er:Ho(Ar)-+G /or the augmentation maps. De/ine 

K 0 = ~ i (A, A~) ,Ker s r c  H 0 (A). 
r 

Then the algebraic boundary o/ X is 

( i) Hm I(A) i/ m> l 

(ii) K o i/ m = l .  

The purpose of this lemma is similar to that  of Lemma 2 A. The proof is also 

similar, since Hm_l (X) is isomorphic to the direct sum ~ H~_I (Xr). 
l ~ r ~ N  

LEMMA 4A. Suppose that X is a disc; write L / o r  H,,_~ (A) i / m >  1, or/or Ker s 

i/  m = l .  Then X is a sur[ace with boundary ~ L. 

This is immediate from Lemma 2 A, since a disc is contractible. 
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LEMMA 5A. I f  A is a Jordan arc, then H,  (A)= O. 

This holds because A is contractible. 

LEMMA6A. Suppose that f : X , A - - > Y , B  is a continuous map. Let LA be asub-  

group of Hm_l (A); let LB be the subgroup of Hm-1 (B) consisting of elements of the form 

f.h, where h EL a . Suppose that X is a surface with boundary D L A. Then Y is a sur- 

face with boundary D LB. 

This is immediate by "natural i ty"  ([6], p. 11, Axiom 2). 

L~M~A 7A. Suppose that L is a subgroup of Hm-1 (A), that X is a surface with 

boundary ~ L, and that Y ~ X .  Then Y i8 also a surface with boundary D L. 

This follows immediately from Lemma 6 A, by taking f to be the inclusion map. 

LEMMA8A. Take n = m ,  and suppose that A is the unit sphere S m-1 in R ~. 

Then we have two cases. 

(i) I /  X contains the unit solid ball E ~, then the algebraic boundary of X is 

Hm-1 (A) if m > l ,  or Ker e if m = l .  

(ii) I f  X does not contain the unit solid ball E ~, then the algebraic boundary of 

X is zero. 

Part  (i) is immediate from Lemmas 2 A and 7 A. Par t  (ii) follows from the fact 

tha t  A is then a retract of X. 

L~MMA 9A. Suppose that X = I x Y  and A = O x Y U l x Y .  Let io, i 1 be the 

obvious embeddings of Y in A as 0 •  and as I • Y. Let K be the subgroup o/ 

Hm-1 (A) consisting of elements of the form i 1 , h - i  o,h, where h EH,,_i (Y). Then the 

algebraic boundary o I X is K.  

This lemma, like the following one, is intended to allow the use of cylindrical 

"patches".  The result is immediate, by using the homotopy axiom ([6], p. 11, Axiom 5) 

which is valid for ~ech homology. 

L]~MMA 10A. Suppose that f : I •  is a continuous map. Set Ao= / (O• 

A I = f ( I •  and A = A o U A  1. Let us write fo for / ] O •  f l / o r f ] l •  Suppose 

that fo is a homeomorphism from 0 • Y to Ao, and that we are given a subgroup L o of 

H~- I  (Ao). Let K be the algebraic boundary of X .  Then we conclude that there is a 

subgroup L 1 of H~- I  (A1) such that 

K + i (A, Ao) . L  o = K + i (A, A1) , L  1 . 

Proof. For each element h ~ in H,~-I (0• Y) we have a corresponding element h i in 

H~-I  (1 • Y) such that 
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i ( I •  Y, 0• Y) ,h  ~ 2 1 5  Y, 1• Y) ,h  1. 

We have an isomorphism 

/o, : Hm_l (0• Y)~=Hm_I (Ao); 

t 1 t 
~Tite Lo= /o ,  L ocHm 1 (0• Y); let L1 be the corresponding subgroup of Hm-1 (1• Y); 

define 
LI=  fl , L; c H~_I (At). 

Then we have 
O=f , i  (I • Y, 0 • Y) ,  h ~  • Y, 1 • Y) ,h  1 

= i (X, A),[ i  (A, Ao) fo,h ~ - i (A, A~),f~,hl]. 

Thus i (A, Ao),/o,h ~ - i (A, A~),/~,h ~ E K. 

Since fo,h ~ may  be a general element of L0, and f l ,h 1 may be a general element of 

L1, the required equation follows at  once. 

LEMMA 11A. Suppose that X =  [J X r .  Suppose g i v e n s u b s e t s A r c X ~ a n d A c X ;  

write B =  A 0 [J Ar. Let L~, L be subgroups of Hm-1 (Ar), Hm-1 (A); suppose that X~ is 
r 

a surface with boundary ~ Lr. Suppose we have 

(Equation E) i ( B , A ) , L c  ~ i(B,A~),L~. 
l<~r<~N 

Then X is a surface with boundary ~ L. 

This result is needed in order to prove tha t  after cutting holes in a surface, and 

then patching it again, we still have a surface. 

Proof. Suppose tha t  hEL.  Then 

i (X, A ) , h = i  (X, B) , i  (B, A) ,h  

C i ( X , B ) ,  ~ i (B ,A~) ,L  
�9 i < r ~ N  

e ~ i (X ,X~) , i (X~,Ar) ,L~  
l<~r<~N 

~ i (x, x~),o. 
l ~ < r ~ N  

Thus h EKer  i (X ,A ) , .  This concludes the proof. 

In  applying Lemma 11 A, we require Equat ion E as data;  Lemmas 12A to 16 A 

are designed to supply this data, in the applications we have in mind. 

L EMMA 12 A. With the notations of Lemma 11 A ,  suppose further that A ~ X~ ~ A ,  
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and that i/ r 4 s ,  then X r N X s c A r N A s .  Let Kr be the algebraic boundary o/ Xr, so 

that KrcHm_I  (Ar). Then the algebraic boundary o/ X is given by 

g = i (B, A) ,  1 [~ i (B, Ar),g~]. 
r 

Proo/. By Lemma 11 A the algebraic boundary of X contains this subgroup; 

we have to show the converse. That  is, we have to show tha t  if h6Hm 1 (A) and if 

i ( X , A ) , h = O ,  then there exist E6Hm-I (Ar)  such tha t  

i (B, A) ,h  = ~ i (B, A r),hr. 
,f 

This is proved by  diagram-chasing in the following obvious diagram. 

Hm_~ (A) 

Hm (X, B) > H,,_~ (B) 

Hm (X,, A,) ~, ~ Hm-~ (A~) 

H ~ - I  (X) 

In  this diagram, the horizontal line is exact, and the isomorphism marked comes 

from "excision" (see [6], pp. 11, 266, and cf. p. 33). 

LEMMA 13A. Suppose that A = A  1U A~, D = A  1N A 2. Write K /or Hm 2(D) i/ 

m> 2, or /or the kernel o/ e : H  0(D)-->G i/ m=2 .  Suppose that B is a sur/aee with 

boundary ~ K. Then we have 

i (A U B, A 1 U B),Hm_~ (A 1 U B) + i (A U B, A~ U B),H,,_~(A 2 U B) ~ i (A U B, A),H,n_~ (A). 

This lemma would allow us to show tha t  the union of two surfaces, one with 

boundary A 1 U B and the other with boundary A 2 U B, is a surface with boundary A. 

We note tha t  the subsidiary surface B is of one less dimension than those we are 

ult imately concerned with. 

The result is proved by diagram-chasing in the following diagram. 

Hm-1 (A 1 U B) 

Hm_ 1 (A) >IIm_ 1 (A,  A1) 

:" Hrn-1 (A U B) > Hrn-1 (A U B, A 1 U B) < Hr,-1 (A~, D) 

tIm_~ (A~ U B) > I-I~_~ (A2 U B, D) �9 H,~_~ (D) 

-. . . .  ;o 
H ~ - I  (B, D) 
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LEMMA 14 A. Take G=Z2, m = 2 .  Suppose that A = A  1 U A2, and that D = A  1 ~ A~ 

consists o/ three points. Suppose given h E H  1 (A). Then we can choose two o/ the three 

points in D so that, i/ B is an arc joining them, there exist h 1 E H 1 (A 1 U B),h2E 

H~ (A 2U B) such that i ( A  U B, A 1U B),h I + i ( A  U B,A~U B) ,h  2 = i ( A  U B , A ) . h .  

Proo/. Consider the (Mayer-Vietoris) homomorphism 

i H 0 H 1 (A) i H1 (A, A1) _~ 1 (A2, D) ~ H 0 (D). 

Let kEHI (Ae ,  D ) be an element such that  i k = j h .  Since we have e 0 k = 0  and 

H o ( D ) = Z 2 + Z 2 + Z e ,  the element O/c must be one of (0, 0, 0), (0, 1, 1), (1, 0, 1) 

(1, 1, 0). We can choose two points of D so that  ~/c is zero on the remaining point 

of D. Let B be an arc joining them; then we have an element L E H 1 (B U D, D) such 

that  ~ L = 0/c. The proof is completed in a fashion precisely similar to that  of Lemma 

13A, by diagram-chasing in the following diagram. 

H 1 (A 1 U B) 

H1 (A) ~ H1 (A, A1) 

>H 1 (A U B) > H I (A U B , A  1 U B) < 

T 
H1 (A2 U B) > H 1 (A~ U B, D) 

Lv.M•A 15A. Suppose that 

A = A  o U U A~, 
l ~ r ~ N  

where A o N A r = D r i/ 1 <~ r <~ N 

H 1 (A~, D) 

~ H. (D) 

H~ (B U D, D) 

A r N A s = O  i/ l ~ r < s < ~ N .  

Write K r /or Hm_e (Dr) i/ m >  2, or /or the kernel o/ e: Hm-2 (Dr)--->G i/ m =  2. 

Suppose that B r is a sur/ace with boundary D Kr, and write 

C = A U  U Br 
l ~ r ~ N  

C0=AoU U Br 
l~r~<N 

Cr= Ar U Br (i/ l~<r~<N). 
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Then we conclude that 

i (C, Cr),Hm_l (Cr) D i (C, AI,Hm_~ (A). 
0~<r~N 

Proo/. W e  m a y  assume t h a t  BN N A =DN, since the  general  case follows from 

this  one b y  a cont inuous  map .  The resul t  is now immed ia t e  from L e m m a  13A,  b y  

induc t ion  over  N .  

L]~MMA 16A.  Suppose that 

A (J A~, 
I ~ N  

where At-1 N Ar = D r i/ 1 <~ r ~ N 

A r f l A s = O  i/ ] r - s l > l .  

Write Kr /or Hm-2 (Dr) i/ m > 2 ,  or /or the kernel o/ e: H o (D~)-->G i / m = 2 .  Suppose 

that Br is a sur/ace with boundary ~ Kr (/or 1 ~ r ~ N);  and set B o = O, BN+I = O. Write 

C = A O  U B~ 
I ~ r ~ N  

Then we conclude that 
C r = B r U A r U B r + I  (i/ O<~r<~N). 

i (C, Cr),Hm-1 (Cr) ~ i (C, A),Hm-~ (A). 
O<~r<~N 

Proo 1. We m a y  assume t h a t  BN ~ A = DN, since t h a t  general  case follows from 

this  one b y  a cont inuous  map .  The resul t  is now immed ia t e  f rom L e m m a  13A,  b y  

induct ion  over  hr. 

W e  now pass  on to  cer ta in  resul ts  concerning measure  and  dimension.  W e  there-  

fore revive  the  a s sumpt ion  t h a t  our  spaces are  compac t  subspaces  of R n, for some n. 

L•MMA 1 7 A .  I1 A m - I ( A ) = O ,  then H m - I ( A ) = 0 .  

Prool. Since Am-1 (A)=0, dim ( A ) ~ < m - 2 ,  b y  [8] Theorem VI I ,  3. This  shows 

t h a t  A admi t s  a rb i t r a r i l y  fine coverings whose nerves  are  s implicial  complexes of 

d imension a t  mos t  m - 2 .  Hence the  ~ech homology  group Hm 1 (A)  is zero (cf. 

[s], 151-152). 

LEMMA 1 8 A .  I /  A is a totally disconnected set and m<~2, then Hm- I (A )=O.  

Since d im ( A ) = 0 ,  this  follows in the  same w a y  as the  preceding lemma.  

L]~MMA 19 A. I /  A m ( X - A ) = 0  then the algebraic boundary o/ X is zero. 

Proo/. Given e > 0  cover A wi th  open sets 0~ of d i ame te r  < l e .  Set  0 = 1 3  0i; 

wri te  X '  = X N C 0; then  X '  is compac t  and  d im (X')  ~< m -  I .  Cover X '  wi th  sets P j  
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of diameter < ~ s  so tha t  not more than m of them have a common point. Now 

take for a covering of X the sets 0~, Pj ,  and for a covering of A the sets O~ together 

with those Pj which meet on 0~. Since no such Pj is more than s from A, such 

pairs of coverings are cofinal in the set of all pairs of coverings. Moreover, when we 

form the nerve of this pair, all simplexes of dimension > m -  1 lie in the nerve NA. 

As in Lemma 17A, we conclude tha t  Hm ( X , A ) = 0 .  The required result now follows 

from the exact sequence 

Hm (X, A) --> Hm_ 1 (A) -->- Hm-1 (X). 

LEM~A 20A. Ta~e G= U. Suppose that A is a topological (m-1)-sphere,  that 

X ~ A  and that dim (X)<~m. Then A is a retract o/ X i/ and only i/ the algebraic 

boundary of X is zero. 

We note tha t  the assumption dim (X)~<m is certainly valid if A m (X)<  o o  by  

[8], Theorem VII ,  3. The result is immediate from Hopf 's  Extension Theorem as 

given in [8], p. 147] (Theorem VI I I ,  1'). We now pass on to three ]emmas involving 

limits. 

LEMMA 21A.  Suppose given a set A,  a /ixed subgroup L o/ Hm I (A), and a 

decreasing sequence o/ sets X r D  A,  each o/ which is a sur/ace with boundary D L. Write 

X =  N Xr. Then X is a sur/ace with boundary D L. 
r 

Proo/. Let hEL; then i(XT, A) ,h=O,  by definition. Now, by  the continuity of 

~ech homology ([6], 260-261) the injections i (Xr, X) yield an isomorphism of H ~ - I  (X) 

with the inverse limit group Lim Hm-1 (Xr). This isomorphism maps the element 

i ( X , A ) , h  into the sequence ( i ( X , A ) , h } ,  tha t  is, into the sequence of zeros, which 

is the zero element of the inverse limit. Thus i (X, A) ,h  = 0, and X is a smfface with 

boundary D L. 

LEMMA 22 A. Take G= U. Suppose given a set A which is a topological (m - 1)- 

sphere, and a decreasing sequence o/ sets X r ~  A such that the algebraic boundary o/ 

each Xr is not zero. Write X = N X~. Then the algebraic boundary K o] X is not zero 

Proo/. Let  the algebraic boundary of X~ be Kr. I t  is immediate that  K ~ + I c K ,  

SO {Kr} is a decreasing sequence of subgroups. By the argument used in proving Lemma 

21 A, we see tha t  K =  rl Kr. Now (since we are using Cech homology with compact 
r 

coefficients) K~ is compact. I t  is also a subgroup of Hm-1 (A, U), which is isomorphic 

to U. The compact subgroups of U are (i) U itself and (ii) the finite cyclic groups. 
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We conclude t h a t  the  in tersec t ion  f'l K~ is a t t a ined  af te r  a f ini te  n u m b e r  of steps,  
r 

t h a t  is, 17 K r=K~ for some n. Hence  K is non-zero.  
;r 

LEMMA 2 3 A .  Ta.~e G=Z~, m = 2 ,  n = 3 .  All the sets considered will lie on the 

sphere-sur/ace S 2. Suppose given sets A,  At, D such that At--> A and A c I n t  D, where 

the interior I n t  D is taken relative to the space S 2. Suppose given hr EH1 (Ar). Then we con- 

clude, there exists h E H 1 (A ) such that, /or in/initely many r, D is a sur/ace with boundary 

i (A U A~ A~),h T-  i (A U Ar, A),h.  

Proo/. Fi r s t ,  suppose S 2 t r i angula ted .  We m a y  subdiv ide  i t  so f inely t h a t  every  

"c losed  s t a r "  e i ther  lies in D, or does no t  mee t  A.  Then the  closed simplexes,  which 

mee t  A form a subcomplex  D, wi th  A c I n t  D1, D 1 c D. The group H 1 (D1) is finite.  

Next ,  b y  repea t ing  the  subdivis ion,  we m a y  cons t ruc t  a decreasing sequence of 

subcomplexes  Ds such t h a t  A c I n t  Ds and  A = ['1 Ds. Thus H 1 (A) is i somorphic  to  
8 

the  inverse l imi t  L im H 1 (D~). 

W e  now argue b y  l imi ts  and  fini teness to f ind  a t so large t h a t  i (D1, Dt),H 1 (Dr) 

=iD1, A ) , H  1 (A). I n  fact ,  suppose t h a t  h i is a class in H 1 (D1) which is in the  image  

i (D, Ds),H 1 (Ds) for a rb i t r a r i l y  large s. Then h 1 is of the  form i (D1, D~),h 2 for a t  

(most) f in i te ly  m a n y  h2; one of these mus t  be in the  image  i(D2, Ds),H I(D~) for 

a rb i t r a r i l y  large n. Cont inuing b y  induct ion,  we ob ta in  a sequence of e lements  h~ E H 1 (D~) 

w i t h  hs-1 =i (Ds-1, Ds),h,. This sequence defines an  e lement  of the  inverse l imit ,  and  

hence of H I (A). W e  conclude t h a t  if h 1 E H 1 (D1) i t  not in the  image  i (D 1, A ) , H  1 (A), 

t hen  i t  is no t  in the  image  i (D 1, D~),H 1 (D~) for some finite s. Since H 1 (D1) is finite,  

we can f ind a t  t so large t h a t  

i (D 1, Dt),H~ (Dr) = i (DI, A),H~ (A). 

F o r  suff icient ly large r, we now have  A~ ~ JOt. Thus  for suff ic ient ly  large r, we have 

i (n~, A~),h ~ E i (n~, A),H~ (A). 

B u t  the  e lements  of i (D1, A ) , H  1 (A) are  f ini te  in number .  Hence  we can f ind  one of 

them,  say  i(D1, A),h,  such t h a t  

i (D~, Ar),h ~ = i  (n~, A) ,h  

for an  in f in i ty  of n. B y  the  def ini t ion of the  a lgebra ic  bounda ry ,  th is  comple tes  

the  proof.  
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L~MMA 24A. Take G=Z2, m = 2 .  Suppose that A is a /inite set o/ disjoint 

simple closed Jordan curves; let hEHI  (A ) be the /undamental class o/ the mani/old A.  

Then any compact 2-mani/old-with boundary whose boundary is A is a sur/ace with 

boundary D h. 

We note tha t  the fundamental  class h may  be described as follows. Let us write 

A =  IJ At, where the Ar are the separate  Jordan curves. Then H I ( A ) ~ - ~ H I ( A r ) ,  and 

H I(Ar)~=Z2 . The component of h in each group H I(A~) is the non-zero element. 

The lemma is a special case of classical results. 

LEMMA 25A.  We take G=Z2, m = 2 ,  n = 3 .  Suppose given C c S c M ,  where C 

is a /inite set o/ disjoint simple closed Jordan curves, S is a compact set, and M is an 

open subset o/ R a. Let h E H 1 (C) be the /undamenta[ class o/ the mani/old C. Suppose 

that S is a sur/ace with boundary D h. Then there exists a compact 2-mani/old R with 

boundary [' and a continuous map / : R - + M  such that /I F maps F homeomorphically 

onto C. 

Proo/.. We first replace M by  a finite complex _h r in R 3 such tha t  S c Arc M. 

We now have i (N, C),h =0.  Since C and N are finite simplicial complexes, their 

Cech homology groups and their singular homology groups are isomorphic (see [6]). 

Thus in singular homology we have i (N, C),h' =0 ,  where the element h' in singular 

homology corresponds to h in ~ech homology. The equation i (N, C),h'= 0 means 

precisely the following. There is a finite set of plane triangles P~ Q~ Ri (which we 

may  suppose disjoint) and continuous maps /~ : P~ Q~ R~ --> N such tha t  the parametrized 

arcs /~(P~Q~), /~(Q~R~), /~P~R~) have the following properties. Firstly, there is a 

subset of them which consists of the simple closed Jordan curves of C, each repeated 

once and once only. Secondly, the remaining arcs fall into pairs of equal ares. 

We now construct a quotient space R from the triangles P~Q~R~, as follows. 

I f  a typical pair of equal arcs is / j lP j  Qj, /klQk Rk, then we indentify corresponding 

points on the sides P~ Qj and Qk Rk of the triangles Ps QJ Rj and Pk Qk Rk. The maps 

/4 pass to the quotient, and define a map / : R-->N. The space R provides the 2-mani- 

fold required. 

LEMMA 26A. Talce G = Z  2. Suppose given A and hEHm_I (A); let L be the sub- 

group o/ Hm I (A) consisting o/ h and O. Then a set X containing A is a sur/ace 

with boundary ~ L i/ and only i/ there exists ]c E Hm (X, A) such that ~ l~ = h. 

As remarked above, this is immediate from the exact sequence 

Hm (X, A) ~ Hm-I (A) ~ Hm-1 (X).  

This completes the results needed for the main paper. 
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