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Introduction

The Plateau Problem consists in showing that the greatest lower bound of the
areas of surfaces with a given boundary is attained. This depends primarily on the
meaning we attach to the word surface. In the classical conception we start with a
two-dimensional manifold R with boundary C and a set 4 homeomorphic to C; we
then say that § is a surface of class Gp with boundary A if there is a continuocus
mapping of R onto § which maps C onto 4 (1—-1) and bicontinuously. In this sense
the problem was very elegantly solved by Jesse Douglas in the 1930’s [5].

But this solution leaves the question incomplete in a number of 'importa,nt re-
spects. In the first place the problem so posed deals only with a class of surfaces
which are all of the same topological type and for each topological type we have a
separate theorem. Now if we are prepared to consider as a surface any set S which
is a mapping of a manifold B whose boundary is homeomorphic to A4, then surely
we should be interested in the class of all such S where R is allowed to vary. When
dealing with the problem in this light it seems intuitive that a minimum will be
attained provided we admit as surfaces sets which, while they are manifolds at points
away from the boundary, will, when the boundary is complicated, have infinitely many
loops and infinite connectivity near the boundary. However this involves a comparison
between surfaces which are not mappings of a common base space, and the classical
methods are inherently very ill adapted for this. In the second place while it is
intuitive that any set which is a surface of minimum area in some sense will be
locally well-behaved, this is a result which it would be nice to prove and this cannot

be done if we only consider locally well-behaved surfaces in the first place. In other
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words it would be nice to investigate the structure of sets of minimum area without
prejudging the issue by assuming that the sets are manifold like.

Finally the classical solution dealt only with the two-variable case. A great deal
is known about functions of two variables particularly about harmonic and conformal
functions and these are particularly relevant to this problem; on the other hand little
is known about functions of m variables and hence the study of the Plateau problem
for m-dimensional surfaces was beyond the scope of the classical methods.

We considered that a possibly fruitful approach might be to consider as a surface
any closed set § containing the boundary A provided only that it satisfied some
topological condition ensuring that it “spanned the holes in A4”. Tf we could prove
that the minimum area was attained in such a wide class we might then go further
and investigate what sort of structure a minimum area surface must have. This pro-
gramme has been carried out in the present work. The reader should note that once
we have proved that the surface of minimum area is locally Euclidean then in the
two-dimensional case we link up with the classical theory established by Lebesgue,
Tonelli, Rado, Douglas, Morrey, McShane, and others, to whose papers the reader is
referred. For [10] if a manifold is of minimum area in the sense of Hausdorff meas-
ure (which we use) then it is so also in the sense of Lebesgue area and hence (e.g.
[12]) it is a minimal surface in the sense of differential geometry. Of course for three
or higher dimensional surfaces this still leaves an important problem.

However to get back to the question of defining a surface, so far we have
merely replaced the question of what we mean by saying “S is a surface” by the
question of what we mean by “S spéns the holes in 4. But it is precisely to
answer this last question that algebraic topology was invented and I was very for-
tunate in having from the start the co-operation of Dr. J. F. Adams who devised
suitable definitions of a surface and wrote an appendix to this paper proving that
his definitions had the intuitively plausible properties which would permit us to cut
holes in surfaces and patch these again by other surfaces and generally indulge in
natural geometrical constructions. He also devised a multitude of ingenious examples
both to illustrate his definitions and to show their limitations; these also are given
in his appendix. I should also like to take this opportunity of thanking Dr. H. B.
Griffiths without whose presence in Bristol the writing up of this paper might have
suffered a great deal more, from the fact that Dr. Adams was 150 miles away in
Cambridge. The methods of algebraic topology are powerful by their abstraction
and generality and this implies as usual that they are not easily visualized by the

non-specialist. I have no doubt that our definitions will be generally accepted as
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reasonable but it seemed desirable to state two special cases which can be deduced
from our general theorems and which can be stated in geometrically plausible terms.
They do in fact, for this very reason, cover what I feel are the most interesting
results of this paper.

The reader will have noticed that T have not discussed the meaning of area.
All reasonable definitions of area should have the same value on Minimal surfaces
and so the choice does not seem inherently important. One could define what is an
equivalent of Lebesgue area for arbitrary sets and I shall discuss this in the section
on unsolved problems, but since we are dealing with the problem from a set theo-
retic point of view it seems sensible to use a measure rather than an area. Haus-
dorff spherical measure—first introduced into this field by A. S. Besicovitch [3, 4]—has
proved a powerful tool and I have chosen it. The main justification for this choice
lies I feel in the existence of this paper.

In order to state the first of the geometrical theorems mentioned above we will
have to talk about one boundary B being “near” to another boundary 4. To say
merely that B lies in a neighbourhood of A4 is altogether too crude and cannot be
enough; on the other hand, since in our case we cannot demand that A and B are
homeomorphic the Frechet concept of distance is not applicable either. The following
definition meets the case:—If 4 and B are two finite sets of disjoint simple closed
Jordan curves then B is said to be near 4 if there exists a manifold R (which may
be one-sided or two-sided) and a classical surface S €, with boundary 4+ B such
that the whole of § lies near 4. Suppose now that given a finite set 4 of simple
closed disjoint Jordan curves (which may be knotted or interlinked in any manner)
in three-dimensional Kuclidean space, we define 8 to be a surface of class § with
boundary A4 if it is the sum of a monotone increasing sequence of manifolds whose

boundaries tend to 4. Then we have

TrEOREM 1. The minimum area in ¢ is attained.

As for the second of our “special case theorems”, suppose that 4 is a homeo-
morph of an (m—1)-dimensional sphere surface in n-dimensional Euclidean space—
in other words a topological m —1 sphere. We say that a set S is a surface of class
G* with boundary 4 if S is closed and contains A while there is no continuous
mapping of S into 4 which maps each point of 4 onto itself—that is if 4 is not
a retract of S. If § is a surface in this sense and there are no proper subsets of
8 which are surfaces with boundary A4 then we say that S is a proper surface. We

then have
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THEOREM 2.

i) The minimum area tn G* is attained.

ii) Ewvery surface in G* contains a proper surface.

iii) Every proper swrface of minimum area in G* has positive m-dimensional Hausdorff
measure and s locally Euclidean of dimension m at almost all points not belonging
to A.

Theorem 1 solves the problem of finding a surface of minimum area in a class con-
taining all manifolds. Theorem 2 is interesting not only because it is the first case
of a solution of the Plateau problem for m dimensional surfaces (m>2) but also be-
cause of the extreme weakness of the definition of a surface together with the great
strength of conclusion (iii). Example 7 of the Appendix gives a proper two-dimen-
sional surface of minimum area of class G* whose boundary is a simple closed Jordan
curve but which does not belong to § and has a line along which it is not locally
Euclidean. Examples 8 and 9 of the Appendix however show that even ¢* is not
exhaustive and that there are sets not belonging to it which we might well wish to
call a surface. The matter is dealt with further in the section on unsolved problems.

I shall next state the theorem of which Theorems 1 and 2 are special cases.
First I will define a surface; this definition is given again with more detail and some

discussion in Dr. Adams’ appendix.

DeriniTiON. Let G be a compact Abelian group. Let S be a closed set in n-dimen-
sional Euclidean space and A a closed subset of S. Let m be a non-negative integer.
Then there is defined the Cech homology group H, (S, 4; G); if A is empty this is
written H, (S; G). Let K be the kernel of the inclusion homomorphism

i* tHy 1 (4; G)—Hp 1 (S5 Q).

Let L be any subgroup of Hy, 1(A; G). Then we say that S is a surface of class G°¢
with boundary > L if K> L. Moreover if S is a surface in the above sense but there
are mo closed proper subsets of S containing A which are surfaces with boundary > L
then S is said to be a proper surface.

It will be proved that every surface contains a proper surface. Let W, be the
volume of an m-dimensional solid Euclidean unit sphere, and let A™ dencte Haus-

dorff spherical m-dimensional measure.

Main TaeOREM. The minimum area of surfaces of class G with boundary > L

i3 attained and if S is a proper surface of mimimum area then S will be locally
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Euclidean at all non-boundary points at which the lower density does not exceed one,
that is at almost all non-boundary points. Moreover if PES— A and S (P, r) is a sphere
not meeting A then A™SS (P, r)= W, r™

It will be shown that theorem 1 follows from this by taking G to be the group
of integers modulo 2 and that theorem 2 follows from the case where (' is the group
of real numbers modulo 1.

The proof of the main theorem is long and intricate--indeed it takes up almost
the whole rest of the paper-—I am therefore going now first to give the main struc-
ture and general ideas of the proof without any attempt at rigour or precision. I
shall use the language of the case m—2, n=3.

In the first place the class of closed sets is known to form a locally compact

metric space with the obvious distance function d (X, ¥)=- Max d (z. Y) + Max d (y, X).

reX yeY

The topological condition we impose on a set to make it a surface is preserved under
convergence in this space provided the boundary is kept fixed and hence any boun-
ded class of surfaces with a given boundary is compact. Thus in order to prove
the existence theorem we need only find a sequence of surfaces whose areas tend to
the minimum and such that the convergence is lower semi-continuous in area. Now
we cannot just take any sequence because a surface may have long thin tentacles
which contribute little to the area but result in the limit set containing a lot of
unnecessary points. In order to cut out the possibility of such tentacles we divide
space into cubes and amongst our surfaces of arca near the minimum we select the
one which meets the least number of such cubes. To obtain a sequence of surfaces
we take the cubes of finer and finer mesh. The fact that this will cut out the ten-
tacles is plausible but the question is how to express it. Suppose A4 (P, r) is the
area of the part of the surface inside a sphere § (P’ ») of centre P and radius r and
that I (P, r) is the length of the intersection with the sphere surface then at the end
of a tentacle A (P, r)/r® will be small for small » and we must therefore show that
under the above construction 4 (P, r)/r* will be bounded below whenever r is larger
than the cube mesh.

In the Appendix Dr. Adams proves various theorems of the kind that if we cut
a hole in a surface and replace it with another surface then we still have a surface.
In Chapter 1 I utilise these to construct a number of sets having suitable epiperimetric
properties which are then available to patch holes in surfaces in this way. The epi-
perimetric inequalitics used are of two types, the first is 4 <kI* where A4 is the area

of the construct and ! the length of its boundary (in the case m —=2). From this we
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obtain fl(P, rydr<A (P, ry<kI® (P, r) whence we can prove that I (P, r)>r/2k and
AP, ry>r*/k.

The second type of inequality is 4 <1lr from which we can prove that 4 (P, r)/r?
is increasing.

In Chapter 2 we use these techniques to obtain a sequence S, of surfaces whose

areas tend to the minimum and with the property that ¢ (P, r)=lim 4, (P, r)/r*

is bounded below for all P of the limit surface § and all » such that P is further
than r from the boundary. This incidentally implies that S has finite area. We con-
sider this sequence further in Chapter 3.

Let B be the greatest lower bound of ¢ (P, r}). We can find P, and r, so that
¢ (Py, 1)) <B+e. As indicated above we can show that ¢ increases with r and we
use this to show that we can find r; such that for every sphere S (P, r)<= S8 (P, r,)
B<¢ (P, r)<p+e. Clearly the surface will be very well behaved in 8 (P, r;). We
show first that in each S (P, r)= S (P, r;) there will be a substantial spherical hole
containing no points of S. This depends effectively speaking only on S having zero
three-dimensional measure. Now we can show that at a point of S on the boundary
of this hole there will be a tangent plane in quite a strong sense. Thus we obtain

an everywhere dense set of tangential bits of 8. Next we show that unless most of

these tangent bits pass through P the equation fl(P, r)< A (P, r) can be strength-
ened to 'fl(P, ry<(1—k)A (P, r) whence we obtain fl(P, r)<i(1—k)rl (P, r) which
leads to a contradiction. Thus most of these tangent bits pass through all points
PeS near them and hence they all lie in the same plane. The existence of a tangent
plane now gives §>1. Thus ¢ (P, r)>1 whence a direct application of the definition
of Hausdorff spherical measure gives lower semi-continuity and hence the existence
theorem. We have incidentally proved a tangential property which is then used in
Chapter 4 to prove local Euclideanness by means of theorem 3 which may be of in-
dependent interest since it does not use the fact that the set is a surface but is
applicable to any point set.

This theorem (1) says roughly that if the contents of each sphere S (P, r) with P€S

20008 then the surface is locally Euclidean.

lie in a narrow strip of width less than 2
It should be noted that the strip is allowed to vary both with P and r.
The proof consists of constructing inductively a series of disks which converge

to a piece of the surface and are such that each disk is the image of the previous

(1) Stated near the end of Chapter 4.
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one in such a manner that both the mapping function and its inverse are Lipschitz
with constant k& where k is fixed throughout the series. Once this series has been
constructed the rest is easy.

In order to construct this series suppose we consider neighbourhoods of a definite
more or less fixed size on the surface; from the point of view of ignoring smaller
variations than this there will be a tangential direction at each point of the surface.
Suppose we have constructed a disk which is parallel to the surface at each point
and also a system of moving co-ordinate axes attached to each point near S, which
vary subject to a Lipschitz condition and whose first m axes lie in the tangent plane.
Consider now a system of much smaller neighbourhoods (whose size must be neither
too big nor too small). We can take a network of points X; on S whose distances
apart are of the order of magnitude of these neighbourhoods and which “cover’” the
whole of S. At each of these points we set up co-ordinate axes appropriate to the
tangential direction given by the new size of neighbourhood. We now refer the di-
rections of these co-ordinate axes to the previous system of “larger scale” moving
co-ordinate axes. The direction cosines so referred will not vary very rapidly and
we can now perform an averaging process by which we obtain a new system of Lip-
schitzian moving axes more or less equal to the new smaller scale axes at the X;.
These new axes will be defined at each point P of the disk already defined and each
point X; of our network will have co-ordinates with respect to these axes. For each
P we now perform an averaging process of these co-ordinates over the X;. This maps
P onto a new point P*; as P varies on the disk, P* traces out a new disk through
the X; and parallel to the surface from the point of view of the new smaller neigh-
bourhoods. This completes the induction.

This process involves several averaging processes, each of which introduces com-
plicated estimations; in addition we must consider a large number of small quantities
which must be chosen to have the right relationship in order of magnitude, conse-
quently the proof is in parts unavoidably messy—particularly lemma 4. This completes
the proof of the main theorem. To prove theorem 1 we must first prove that when
G is the group of integers modulo 2 and m =2, n=23 the density does not exceed
one at any point. This is done in Chapter 5. Consider the part of the surface in
the sphere S (P, r); dilate this to unit radius. In this way we obtain a series of
minimum surfaces in the unit sphere. These surfaces will converge in a subsequence
to a surface of minimum area whose area is then shown to be equal to that of the
cone with the same boundary. Hence we have a cone of minimum area which it can

be shown by methods of the calculus of variations must be a plane disc.
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The proof of Theorem 1 is then completed by means of a simple construction,
while Theorem 2 is shown to follow almost at once from the main theorem with
G = group of reals modulo 1.

I will now discuss some as yet unsolved problems.

ProBLEM 1.

A surface of minimum area is known to be locally Euclidean p.p.; it remains
to prove that it is differentiable and that it is a minimal surface in the sense of

differential geometry, where m > 3.

ProBLEM 2.

The structure of surfaces of minimum area at points where they are not locally
Euclidean. I conjecture that for each m, n there exists k=k (m, ») such that a min-
imum surface will consist of the union of at most % half discs at every point and
that when G is the group of integers mod 2 the number of half discs is even in
every case. The reader should study examples 7, 8, 9 of the appendix. We cannot
demand that the surface shall be locally a disc everywhere except when m=2 and
n=3 and G= Integers mod 2. For consider m=2, n=4 and a boundary consisting
of B?+y*=1, 2=0, t=0 plus 2>+#=1, x=0, y=0. The origin is a singular point.
An extension of the method of Chapter 5 might again be helpful. Certainly the crux
of the problem seems to be to prove that if a cone is a minimum surface then it

consists of plane bits.

ProBLEM 3.

If m>2 it has not been proved that there exists a minimum in the class of
discs. Suppose we take all the surfaces S, of Chapters 2 and 3 to be discs it might
still be possible to carry out everything to this point—care would be needed with
Chapter 1. We then have a situation where a sequence of discs S, whose area ap-
proaches the minimum converges to a set S lower semi-continuously. We must then

prove that S is a dise: very difficult.

ProBLEM 4.

A very special case of part of the last problem but possibly the crux. Let M
be a manifold with boundary C. Let D, be discs with the same boundary. Let u
be the lower bound of the areas of discs with boundary C. Suppose D,—M and

A*D,—~A*M=yu. Prove that M is a disc. Also the same for m-dimensional sets.
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ProBLEM 5.

If m=2, n=3, 0= Integers mod 2 and the boundary is a finite set of disjoint
polygons prove that the surface of minimum area is a manifold. This should not
be hard. (%)

ProOBLEM 6.

To find a definition of surface which includes examples 8 and 9 of the appendix.
The point appears to be that a physical deformation cannot tear apart points once
they have been brought together and hence lies somewhere between a deformation
retraction and an isotopy. It should certainly be studied. It is not even obvious

how best to define a “physical deformation’.
ProBLEM 7.

Suppose D is an open set on a surface S. Let u (D) be the lower bound of the
areas of surfaces with the same boundary as D. Consider the class of finite sets of
disjoint sets D;. Define A4 (S) as the least upper bound of 3 u(D;). A (S) considered
as the area of the surface should be a powerful tool. Perhaps the D; should be taken
to be the part of S in a sphere; it seems likely that this will give the same value
but might be easier to handle. (This in itself might he interesting to prove.)

The author used A (S) with the D, restricted to be simply connected Jordan
domains to investigate two dimensional discs in three space. In this case 4 (S) was
shown to be lower semi-continuous and equal to the Lebesgue area and it was then
proved that, if 4 (8)< oo, 4(8) equalled the Hausdorff measure of the set points of
S where a tangent plane exists. These results are likely to extend in some form; the
last result would be particularly interesting for m>2, or even for m=2, n>3.

ProOBLEM 8,

In theorem 1, provided we assume that the curves of 4 are tamely- embedded
in three space, it might be possible to replace G by the class of sets S such that
for each £>0 there exists a manifold with boundary A4 coinciding with 8 at points
further than ¢ from A4.

It is not clear if this is a more interesting form of the theorem but it is much

harder to prove, as the essential restriction on A4 shows.
ProBLEM 9.

This is a minor problem concerned with the question of whether the term in-

trinsic area has any real meaning. Suppose S; and S, are two topological 2-spheres

(*) This has now been solved by the Author.
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in three-space. Suppose given a homeomorphism ¢ between them such that if C; = ¢ (C,)
and C,, C, are continua on S; and 8, then their diameters are equal. Prove that
8, and S, are congruent apart from translation, rotation or reflection. For polyhedra

the result is easy.

ProeLEM 10.

This is to generalise Theorem 2 to the case where the boundary is any manifold.
Example 4 of the Appendix shows that the problem is non-trivial.

Conjecture:—If M < § is an (m— 1)-dimensional manifold (and &= reals mod one)
the necessary and sufficient condition that 8 is a surface with boundary M is that
there shall be no (m— 1)-dimensional set M*, S> M*> M which is a retract of S.

Notation.

Throughout the following work we use the following symbols:—
Suppose P is a point, X a set of points, [| a plane, r a positive number, S,
a surface, then
S (P, r) is the closed solid sphere with centre P and radius r.
S° (P, r) is the open solid sphere.
s (P, r) is the surface of the sphere.
(X, r) is the set of points whose distance from X does not exceed r.
C (P, X) is the cone with vertex P and base X.
c(L Xx) isPZX I, where I, is the closed interval joining P to its projection on [].
K. (P, r)=8,8(P, r).
I, (P, ry =8,s(P, ).
A™X is the m-dimensional Hausdorff spherical measure as defined at the beginning
of Chapter 1.
LEMMAs 14-26.4 belong to the appendix.
LeEMmAs 1-15 belong to Chapter 1.
LeMmas 1*-7* belong to Chapter 3.
LeMMAs 1'-5" belong to Chapter 5.
Chapter 4 is written independently from the rest of the paper and can be read
on its own; its lemmas are numbered 1-9.
The group @ involved in the definition of a surface is kept fixed throughout the

bulk of the paper and will therefore be suppressed. Moreover I use the following

notational convention:—
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Suppose {4}, {B;} are two sets of closed sets and that X =73 A4, + 3 B;, and that
L,cH,(4;) and M;cH,(B,) while 7, denotes the natural inclusion homomorphism
then

SLi=2 M,

will mean St (X, A Li=3 ¢, (X, B))M,.

This notation is very convenient when such equations are quoted for reference—
particularly if the A4, and B; are very complicated expressions.

There is no possibility of ambiguity provided the conventional equation is not
manipulated, but the reader must be warned that without reference back to the pa-

rent equation any manipulation may lead to false results.

Chapter 1

Suppose X is a set in N-dimensional Euclidean space. Consider a set of spheres
S (P, r;) such that r,<d and X CZS (Py, 7). 1 define Ay X to be the lower bound

of > W, r" taken over all such sets of spheres; where W, is the elementary volume
i

of an m-dimensional solid unit sphere. Let then A™X = lim AJ X.
8—0

Levmma 1. If A" X < oo, and we have a class of spheres such that there are arbi-
trarily small spheres of the class with centre at any point of X, then we can select a
non-overlapping set of spheres of the class containing almost all of X.

This may be proved by a straightforward generalisation of the proof of the first

main theorem in [2].

LemMMA 2. If X is an m-dimensional unit cube then A™ X =1. Moreover if P—P*
is @ mapping of the space into itself such that |P* Q*|<A|P Q| and 8 is a set of points
such that S—S* then A™S*<AmA™S.

This result is, of course, classical. It can be deduced immediately from the de-

finition by the use of lemma 1.

Lemma 3. If A" X < oo then

. AmMmM
0<iim A ESP1) g
r—0 Wm ™

at almost all points PE€X. Moreover we can find a Gs set containing X and of the
same measure.

This is a straightforward generalisation of results in the early part of [1].
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LeMMa 4. Suppose X, is the set of points of X at a distance h from a fixed
M-dimensional plane in N-dimensional Euclidean space, N—1>M >0. Then

[ A" X, dh<A™X.
0
This is a straightforward generalisation of lemma 3 of [3].

LeMma 5. If X is an (m— 1)-dimensional polyhedron then the cone C (P, X) with

vertex P, on X will be an m-dimensional polyhedron and if X< S (P, r), then

m—-1
Anop, X< X

This is clear by lemma 2.
LevMma 6. If T] is an M-dimensional plane let O (1], X)= > Ip where I is the
PeX
tnterval joining P to its projection on [[. Then if X<([[,7) and N—1>M=0

AmC (], X)< 2W W rA™ ' X.

m—1

Suppose {S (P, r;)} is a set of spheres 7;<<§ such that

ZS (P;, ;)2 X and
Z W1t T<SAP T X +6.

Let P;, 0<j<(r—r;)/r; be the point on Ip, whose distance from P; is jr, If
PcS(P;, 1)
I,=> S (P, 2r;) and hence
7

2m W, om W,
ALC(IL ST ZWa@nm<;

Wm—l

r(AF 1 X +9).

’I'Z W,,,_l T{nﬁlg
m-1 i

Whence letting 6—0 the result follows.
Lemma 7. If A= A; where A;< 8 (P, r;) and £>0 there will exist a surface
141
X with boundary(t) o Hy_1(A) such that X is contained in the convex hull of A+ P, and

m—1
M(] +e)
m

ATX LD
7

() Hry is Hy, if m>0 and Ker ¢ if m=0.
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and there is an m-dimensional polyhedron X' contained in X such that
A" (X-X') <e.

If we define A°X to be the number of points in X if this is finite and co other-
wise the lemma will be trivially true for m=1 by taking X==X'=0C (P, 4). I will
now prove the lemma by induction. Suppose then that the lemma is true for

m=my—1. Let ry= max r;, Take §>0. If A™ 14,40 we may, by Lemma 3, choose
7

an open set (;>A4; such that A™ 4G, <(1+8)A™ ' 4, Then at almost all points
PeA4,; there will exist arbitrarily small »<¢ such that S(P, r)<@; and

rA™ *As (P, 1)

my—1 .
A™ 48P, r)>(1-6) pra|

(1)
for otherwise there will exist +* such that for all r<r* we have, using Lemma 4,

fA'"rZAs(P, Hadt<A™ 1 AS(P, < IO AT " As (D), @)
0

my—1

Writing [ A™ 2 As(P, t)dt=F (r), we obtain
[

1-— ‘ -1
( 6)717" (r) for almost all ». Hence r (r)}mo 1

F< ., =1 Fr)~ 1-6 1

Integrating this from r, to 7, we have

F (7'1) - (’1) (my~1)/(1—9)

£
—= Fo <1y <7°.
F(’z)/ Ta E e

Letting ,—0 we obtain F(r)y=o (™). (3)
Hence there will exist 7,, 27" 1<y, <2 "<+* such that
A" 2A3(P, r,)=0(r72) as n—>co.
Thus by (2) above A™ T AS(P, r)=0(rF"!) as n—>oo.
But A™ ' A8(P, r) is a monotone increasing function of r and hence
A" P AS(P, r)=0(r™"1) as r—0

which can only happen at a set of points P of A™ ! measure zero, by Lemma 3.
Thus (1) is established.
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We may therefore by Lemma 1 cover almost all of A by a set of non-over-
lapping spheres {S (P, g;)} such that g;<d, P;€4 and

0. A" %4 s (P, 0))
my— 1

A™TAS (P, 0)=(1—9) . 4)

Moreover if P;€A4; we may suppose that S (P, o)) < G;.

We will choose a finite subset of these non-overlapping spheres such that

S AT AS (P ) > ATt A -6,

Since A™ ' As(P;, 0)=0 for all i, we then have

A™ 4 —iZS(Pi, 0:) <0. (5)

If we write Dy=A—> 8(P;, o) and D,=AS(P,, p) we will have 4=Dy+> D; and
i i

D; D=0 if i%4' %0, and Dy-D;=As(P;, 01).
Hence if X; is a surface with boundary > Hy, s (4 s (P;, o;)) then by Lemma 15 A
Hyp 1 (Dy+ Z X) +'Zo Hy, 1 (Di+ X)) Hpyo1 (4). - (6)
i iz
Now by our inductive hypothe:is we may choose X; so that it lies in the convex
hull of P;+A4s(Py, p;) and

<Qi A" 2 As (P, 0i)

Am,,—l Xi
my—1

(1+9) (7)

while there is an (m,~— 1)-dimensional polyhedron X;< X; such that

SA™ T AS(P;, )

Am,,»l (X’i_){;’)< AmrlA

(8)

In view of {6) above, Lemma 3 A and 11 A imply that
X=C(Py, Dy+2 X)+2 C(P;, D;+ X,)
i i
is a surface with boundary > H,,_q(4).

Since P;€A4 and X; lies in the convex hull of 4, X will lie in the convex hull

of Py+ 4.
X'=C(P,, >, X;) will be a polyhedron and
i

X =X'+0(Py, Do+ 2 X~ Xi)+ 2,0 (P, D+ X))
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8 (Py, 1)+ 2 8 (P, 0y = 8 (P, 4+ 6)

and so by Lemma 6 and (4), (5), (7} and (8) above

A™ (X —X) < QW"ﬂo{(roJr 5) (5+8)+3 o (1 + i—t‘;) A™A8(P, gi)}
me—1 i -

<2 W,

2 6 my—1
< Wt {2(3(7‘0+(5)+1T5A A}

which is less than ¢ provided § is small.
Moreover by Lemma 5 and (4) and (7) above
< 7‘j+5 Z ]-_‘I;((ZAm‘,‘lAS(P“Qi)g

i=1 My P,-eAf]-’_

Tj—HS-—ii gA'"“"lAGj

M=

.

My

o 1402 4
AETO) Ame1 4

my, 1—0 A o

-,

A\
I

which, by taking ¢ small, establishes the lemma.

LEMMA 8. There exists KY < oo such that af A ©s @ bounded set in N-dimensional
Euclidean space, and m>=2, then there will exist o surface X with boundary > H,_1(4),

lying in the convex hull of A, such that

AP X <Kp{A" 4}mien=D
and X4, Kn{A™1 4Dy,
Write {Am T AP D =,

Consider first the case m=2. Suppose 3 is an (¥ —1)-dimensional plane and that we
have some Cartesian co-ordinate system in which the axis of x is orthogonal to 3.
Let >, be the set of planes parallel to > and passing through the points with x co-
ordinate £-+2Al where 1 takes all integer values, positive, negative or zero. By

Lemma 4
21
[A*(A3)dt<AA=1
0

and hence there will be f, such that 4 3 is null. Taking N orthogonal systems of

planes we see that 4 may be divided up into a finite number of closed disjoint

subsets A4,;, each contained in a cube of side 21. If P,€4, then 4;,<S (P, 2ll/ﬁ)
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so that, by Lemma 3 A, X = Z C(P;, 4;) will be a surface with boundary > H,_; (4),
and by Lemma 6,
A*X<2-2lVN-A'A=4VNEP.

Moreover X is contained in the convex hull of 4 and
X<(4,21VN)<(4, 41VN),

so that taking KY¥=4VN we have our result.

To consider the general case let P (m, N, k) be the proposition:—there exists
kRN < oo such that given k orthogonal (N —1)-dimensional planes in N-dimensional
Buclidean space and a set A mo point of which lies further than {A™ ' APV from
any of these planes, and m > 2, then there will exist a surface X with boundary > H,, 1 (4),

lying in the convex hull of A and such that
A" X <FKN{A" 4}mienD
and X (d, Ky {A™" 431D,

We have above proved the proposition P (2, N, k) k< N. Consider now P (m, N, N);
jn this case A will be contained in a cube of side 2/ and we may prove the pro-
position exactly as above. P (mgy N, 0) is simply the case m=m, of the lemma.
Suppose then that P (m,—1, N,0) and P (m, N, k,) are established; I will deduce
P (my, N, ky—1) and hence, since we know P (my, N, N) we can conclude by down
wards induction on k that P (mg, N, 0) holds and then the lemma will follow by in-
duction on m.

Suppose now that A satisfies the hypotheses of P (m,, N, ky—1). Let > be a
plane orthogonal to the k,—1 planes of that proposition, and suppose we have some
Cartesian co-ordinate system in which the x axis is orthogonal to X. Let 3; be the
system of planes parallel to > and passing through the points with x co-ordinate

Al+t where A takes all integer values, positive, negative or zero. By Lemma 4
1
[A™ 24 5)dt<A™ 4=
0

Hence there is a #, such that
A™ 34 3, <™ 2 (9)

Let {3} (¢=1,2 ... n) be the smallest set of consecutive planes of 3; containing 4 >,
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Since 4 is bounded this will be a finite set of planes. There will, by P (m,—1, N, 0),
exist a surface X; with boundary > H,, , (4 3)

Amo~1 X,-<OK,2X,,—1 {Amr2A Zz_}mn—l)/(mrm_ (10)
Moreover we may suppose that X, lies in the convex hull of 4 3, 4 and, by (9), that
X, c(43;, "Kn,-1 1) (11)

Let 4, (i=1,2 ... n—1) be the part of 4 between 3, and 3;.y, including the points
on these planes. Let A4, be the part of 4 on the opposite side of 3, to 3, again
including 4 3,; similarly define 4,. In order to simplify the notation I will use the
symbols X, and X,,; but they will denote null sets. Then A=ZA,-, A;-A4;,=0

|i—i'|>1, and 4, -4i;1=A3;;1. Hence by Lemma 16 A
n
iz;)Hmu_l (-Xi +A1 +Xi+1)DH,,,u_1 (A) (12)

Now X;+ X1+ 4, satisfies the hypotheses of P (my, N, k,) and hence there will exist
a surface Y; with boundary > H, 1 (X;+4;+ X;,1) lying in the convex hull of 4
and such that

AT Y <FE AN (X 4 X+ AP, (13)

and Y, (Ai+ X+ Xppa, {A™ X+ Xy + A)J7D), (14)

n

By (12) and Lemma 11 A z Y; will be a surface with boundary = H, _1(4). By

i=0

(9), (10), (11) and (14)
Yic(4, °Ky 11+ {2°Ky 1+ 131D ),

Hence if we take " 'Kj >°Kn 1+ {2°Ky -+ 1}Vo=D
3
'ZO Y, {4, * K} 1.
Finally by (9), (10) and (13)
A Z0 Y, <"Kj, .E(:) {A™ P X+ AT X+ AT 4D

<SEEY Y A™ U X+ A X+ AT 4,3 meD
t=0

2 - 60173032. Acta mathematica. 104. Imprimé le 21 septembre 1960
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n
< qu%o {lma‘l + ZOK;’:;,,,—I Z {Amn_zA Zi}(mn—l)/<mr2)}mo/(mo~l)
i=1

< koKﬁ {lmu_l +92 OK% 1 { Zn: Amo—2 A zi}(mu_1)/(mo'2)}mn/(mo"1)
o ° P .

< "“K,’i {lm"_l + 2 OK% 1 lmo—l}mo/(mo—l)

<MK {L+2°K i}l e

which, for a suitable choice of " 'K} is less than " 'Ky {A™ ' A}"™/™Y so that

the lemma is established.

LEMMA 9. There exists 1<*Kpy < oo such that if A is a sel lying on s (P, r) and
7
Ky
boundary > H,_1(4) such that

{A"T APHemD < and m>2, then there will exist a surface X* < s (P, r) having
Am X* <*Kr7\ri {Am—l A}m/(m_l).
If X is the surface of Lemma 8 and we take *KY>2 K} then
Xc8(P, ry—8S (P, Lr).

We may therefore, by Lemma 6 A, take X* to be the conical projection of X onto
s(P, r) from P.

LeMma 10. If C is an open cube of side a lying in d-dimensional Euclidean
space, m<d<N, and A is a set lying on the surface ¢ of C, and S<C is a surface
with boundary > L, 1< H,_,1(4) such that

“m
AmSO<4m {* N}m—l:
m
then there will exist a surface S*<c with boundary =L, _; and such that

A" (S*— 8) < 2™ N™ A™ (S O).

Let P be the centre of ¢. By Lemma 4
e
[A™ 1 8s(P, r)dr<A™(SO).
P13

Hence there exists ja<ry<io such that

A"t 8s (P, 70)<‘£A_“ﬁ0)_ (15)



THE PLATEAU PROBLEM 19

4 A™ 1y(m-1)
Hence {A™ 185 (P, rg)™ D < {w} x %o

x T4k TR
Moreover by Lemma 12 A there exists

g1 Hp 1 (Ss(P, ry)) and g%_1 < Hp_y (S8 (P, ry) + A)

such that S—S(P, r,) is a surface with boundary g% ; and
Gn-1+gn-12 Lin_1. (16)

We may thus apply Lemma 9, so that there exists a surface X*<s(P, r,) with
boundary = g1, such that

A" XF<T Ky (A" S s (P, r) ™D, (17)

By Lemma 11 A and (16) above 8'=X*+8—8 (P, r,) will be a surface with bound-
ary D Lp_q, and by (15) and (17)

A™(S )< A™(SO)+ 7K {w} =1

[ 4

m mi(m—~1y

(A" S )™ (KX

<2A™(80).

Let now S* be the conical projection of 8’ from P onto ¢. By Lemma 6 A S*
will be a surface with boundary > L,_;, and since §'¢=Sc¢ and 8’ has no points
in §(P, o) it follows from Lemma 2 that

A" (8 —8)< 2" N™ A" (S )< 2" N" A™ (S O);
which proves the lemma.

Lemuma 11. There exists K=K (N, m)<oco such that if we have a system of
parallel equal open cubes of side a whose centres form a lattice parallel to the cubes and

of modulus, ja, and we have a surface S, with boundary L, 1< H,_,(A), such that

. 3 (2m+2 Nm)~N+majm
A (S A) < 3m4m {*KZ}W—I

and SO, A<cl where CY is a cube of the system and c§ is its boundary, then if
{OF} is the set of cubes of the system meeting CY there will exist a surface 8* < cf with

boundary > L, 1 such that
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ACY=0=8*0F=0,
and A™(S*—A)<KA™(S— A).

By Lemma 10 we may assume without loss of generality that Sceci and

(2m+2 Nm)fN+m+1 a™

gm.4m. {*Kx}m—l .

A™M(S—A)<

Now our system of cubes will divide the whole space into non-overlapping cubes of
side la, each of which is either contained in a cube C} or does not meet it. Thus
we have N sets of non-overlapping open k-dimensional cubes, {Df}, of side {a such
that:—

Each Dj*! will be a face of some Dj*, N=>k,>1, (18)
DE-CY+0=DFcCY, N-1>k>0. (19)
N-1
e-Cfc' S > DR (20)
k=0 p¥ccl

Let Ty, k>0, be the class of those D such that
DESDF=A-DE=0, k >k (21)

Write S=S8""!. Suppose now that we have a surface S* with boundary o L,,_; lying
on ¢f and not meeting any Df€T,, k>¢>0 and that

(2m +2 Nm)m—t a™

m t__
A (S A)<3m,4m_{*Kﬁ}va'

If DieT, then for k>t
Df> Di= DE€el= DE- §=0. ‘ (22)
Hence we can find a set Gi> D, open in N-dimensional space, such that
St G < DL (23)
Now by Lemma 12 A there exist
Ly 1< Hyy (8D~ D}})

and Lt ycHp, (A +rzst {D:— DY)
t
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such that - Df is a surface with boundary > L¥ ; and §t—> Di=8'—3 G! is a sur-
I rl
face with boundary > L i, while
Lfn_l‘(‘ZLﬁ_lDLm‘l. (24)
7

Consider first the case {>m.

In virtue of (23) we can apply Lemma 10 so that there exists a surface Sj*

CDt D%, with boundary Lif_y, such that
A™ (St — 8t- DY) <27+ NmA™ (St- DY). (25)
Hence by Lemma 11 A and (24) 8" '={8*—> Dj} + > Si* is a surface with boundary
> Ly 1, and by (25) " "
A (81— A) <A™ (St — A) + 27 L NmAM (S — 4)< 272 N AT (St A),

whence in particular
(2m +2 Nm)m —»t+la/m

m t—-1__ .
A S =A< e

Moreover if D¥eT,, k>t
St-1 D = (St—IZDﬁ,)I),’-“-FIZ Sf,*-chS*-D;f+1§E,-D§=0
and if DieT, ' t
871 Dj~ (8= 3 D)) Dj+ 3 8} Dj< 3 (D} — Dj) D =
i I I
Thus we obtain a sequence of surfaces S¢ ending in S™ such that for k>m
DFeT,=8™-D¥=0 (26)
and A (8™ — 4)< (2P R NPT A (S — 4). (27A)

On the other hand if t=m and D"+ A=0, A" D} S™< A™ (8" — A) < (Aa)™, so that by
Lemma 8 A, L™ 1 =0, while if t<m A™? (Dt——DJ)—O so that L, _; =0 by Lemma 17 A.
Hence in either case by (24) and Lemmas 11 A and 1A

Stl= (8~ D+ S (Di— DY) §t=8t— > D!
I I I

is a surface with boundary > L, _;.
We can thus construct a surface S~ '=8* which does not meet any Df €T,
k>0, and by (27)
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AP (S* — A< @MPENMV AT (S — A). (28)
On the other hand if C-A4=0 we have for any Df <O} by (19)
DY Df=DF-CV+0=DE-O¥+0=D¥ <OV =D - A =0,

and hence Df<CF=DfeT,.
Thus by (20) §*-C¥=0 which establishes the lemma.

Lemma 12. If 5 is an m-plane through P, e <%, A<s(P,r) (3, €r), Ly 1< Hp 1(A4)
and X is a surface with boundary > L., 1 then either
2m
AP X W Ant g 2 W,
Wm—l
and the projection of X onto 3 contains 3 S (P, r)(1—¢&)) or there exists a surfece X'
with boundary > L., 1 such that
22" W
m X' < m—lA . m .
A A W er
Let A* be the conical projection from P onto s (P, r) of the orthogonal projection
of 4 onto 3, and let C' be the conical projection from P onto s (P, r) of C (3, A).
By Lemma 10 A if K is the algebraic boundary of C in A -+ A* then there will exist
LY 1< H,_;(A*) such that
K+ L:(nfl:)Lm—l (29)

and K+ L, oL .. (30)

Now by Lemmas 6 and 2

m m 2m
A"'0<2 W'—”-sr-A"”lA- r <2 Wn,
WmAl

. m-1
W ’(1—3)1‘ gr- A" (A).

Now if Ln_1=0 we may by Lemmas 11 A and 1A take X'=C+A4*=C and if
L7, _1+0 then by Lemmas 11 A, 6 A and 8 A the projection of X +C onto 3 will

contain > S (P, r) from which the lemma follows.

Lemma 13. If S is a surface with boundary > L, 1< Ly, _1(A4) and G is an open
set such that A-G=0 then there will exist Ly_y< H,_ (S (G—G)) such that SG is a
surface with boundary > Ly_, and if X is a surface with boundary > Ly ; then
(8 =)+ X will be a surface with boundary > L, 1. -

This follows at once from Lemmas 11 A and 12 A.
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LemMMaA 14. The class of surfaces with boundary = L is locally sequentially compact.
By [7, § 28], if S, is any sequence of surfaces with boundary = L there will
exist a subsequence Sy converging to a set S in the sense that for any >0 Sy, < (S, €)

and S<(8u, &) for large n,.

oo
Moreover S8=T11 > Su
k=1 ixk

and hence by Lemmas 7 A and 21 A, § is a surface with boundary = L.

LemMa 15. If 8 s a surface with boundary oL then there will exist a proper
surface S°< 8 also with boundary > L.
This follows from Lemma 21 A.

Chapter 2

Consider a system 7', of equal parallel open cubes whose sides have length 272"
and whose centres form an N-dimensional lattice parallel to the sides of the cubes
and of modulus 272"/3. Let

r,=27"
G=37, 2%" )N
U, = (2K)" o

{1\ \™ (m+2 Nmy~N+m+l g-2am
o {5 (%) (JTZ) ;(2K>"n-urn-3'"-4'"~{*K%}'"'l} ’
where K>1, KY and *KXY are the constants defined in Lemmas 11, 8 and 9 re-
spectively.
Suppose now that I' is a closed set and that L, ;< H,1 (I'). Let p(Ly_1) be
the greatest lower bound of A™S8 taken over all sets § which are surfaces with
boundary > L, ;. Let «,(S) be the number of cubes of 7', having points belonging

to S. Let «, be the greatest lower bound of «, (8) taken over all surfaces S with

boundary > L,_; and such that
A" S8 <pu(Lp_1) +éepe

Since the «,(S) are positive integers o, will be attained and so we have a surface

8, with boundary > L,_; meeting only «, cubes of 7', and such that
A"y <L)t e M

Let I', be the class of spheres not meeting I' and with centre on 8.
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Suppose that there exists a sphere 8 (P, r)€I', such that
r>%r, and A"K, (P, r)<2¢,. (2)

Then we will show that there exists ¢, 3r,/8>¢" >r,/4 such that

En{A™ 'L, (P, ¥ 3™ D <u, [A" 1, (P, t)dt. 3)
4

For if not

d
- F (P, 3)

K% (m—1)m d . )
{Z} {7, z)}<m—1>/m>1 for almost all z, §r,>2>1r,

(Fo (P, ry=[ A" 11, (P, r)db).
0
Integrating this from r,/4 to 3r,/8,

KN (m-1)/m
m {f} {F, (P, 3r,)}V™ —{F (P, tr )} > 17,

n

so that by Lemma 4 and the definition of &,,

m m—1
m "n Un
A K.,,(P, T)?Fn(P,%i‘n)>(8—/;ﬁ) (i(—,Nn) 226‘".

a contradiction with (2) above which establishes (3).

By Lemmas 8, 13 and 4 there will therefore exist a set K (P, r') such that

Sr={8,— K, (P, )} + Ky (P, r') is a surface with boundary >L,_1,

St—KX(P, r)=8,— K, (P, ), (4)

Su S(P, ry=K3 (P, 1), (5)

and A"E% (P, r)<uy [ AV, (P, ) dt<u, A" K, (P, 7). (6)
0

Let T,(P) be the class of cubes of T, contained in S (P, ir,). T,(P) will have at
most (37, 22"}V =g, members, let them be C,, C, ...Co,.
T will now inductively define at sequence of at most g, + 1 surfaces S} as follows:—
Let 8% =8%. Suppose that we have defined a surface 8% ' with boundary > L, _:
and that
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8318, — K, (P, 1), 7
AP {8y — (S, — K, (P, ")} <QK)"*A™ K} (P, r), (8)
and if ¢<4;—1, 4,>1 then
[8,— K, (P, )] Ci=0= 83710, =0, 9)
while for C€T,, i,>1
SE2C=0=83"10=0. (10)

If now [8,~K, (P, r')]1C;,=%0 or if 83 'C;,=0, I define 8% by

Sy =i, an

otherwise we have
(8w — K (P, )] Ci, =0, (12)

and hence by (8)

A" S O < AP S — (S~ K, (P, ¥')] Ci, + A" S, — K, (P, )] C,,
<@K)"TA" K (P, ). (13)

Now by (6), (2) and the definition of &,
(2m+2 Nm)7N+m+1 .2—2nm

g4 PKN

2K) AT KE (P, r)< @Kl L uy A" K, (P, ') < (2 K)*" uy £, <
(

and we may apply Lemmas 11 and 13 to construct a set Sp*~! such that if
Sip = (8371 = Cy,) + 870, (14)

then S% is a surface with boundary > L, ; and

AT (S =S S K A (SO, (15)
Spile a',, -0, (16)

and for any C€T, »
S 10, 0=0=8"10=0. (17)

Let (7'), (8), (9') and (10") be equations (7), (8), (9) and (10) with 4, substituted
for ¢,—1. (7') follows from (7), (12) and (14); (8') follows from (14), (8), (15) and
(13). (9') follows from (9), (14), (16) and (17); (10’) follows from (14) and (17).
Thus the inductive definition of the S’ is established.



26 E. R. REIFENBERG
Now if n>N and C€T,
CS8 (P, r)+0=C8 (P, ir,)+0=0<8 (P, Lr)=CET, (P). (18)

Thus if 8,C0=0 either C8 (P, )0 so that CE€T, (P) and §»C=0 by (9); or else
CS (P, r)=0 so that

8C=8,0<8,C+ K5 (P, r)C=0;

whence 8 C'=0 by (10).

On the other hand there will be a cube C of T, containing P and then, since
n>N, C<8 (P, r,/4)= S (P, r') so that by (18) and (9) 8% C'=0. Thus S will have
points in fewer cubes of 7, than S,. But by (8), (6) and the definition of u,

A" 8o < 2Ky A" KX (P, ')+ A™ (S, — K, (P, ')
<S(2EK)y"u, A" K, (P, ¥')+ A" (8, — K, (P, ©')) < A™S,..

This contradicts the definition of «,, and hence (2) above must be false.
Thus if »>1r, and S(P, r)€l,

A" K, (P, r)=2¢,. (19)
Thus by Lemmas 8 and 13
Ky {A" 1, (P, r)}™™ V2 A" K, (P, r)~ e, 2 A" K, (P, r)>%jA'"*1 I, (P, t)dt.
0

d
aFn (P’ ’r)
That is W> (2 KY)-m=nim,

Integrating we find that
1 1 1 im Ny—(m-1/m
,,;{Fn(P: 7)} /m_;b{Fn(Pf%’rn)} >(r”%rn)(2Km) ¢ .

Consequently there exists a constant A=A (N, m) such that if S(P, r)€l, and r>r,,
F, (P, r)>Ar". (20)

By Lemma 14 there will exist a surface S, with boundary > L,_, such that there exists

a subsequence of the n in which the 8, converge to S,,.
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Chapter 3

27

I will now investigate the properties of a sequence of surfaces such as we have

just constructed. Let then {S,} be any sequence of surfaces with boundary > L, _;

such that, if P€S, and S(P, 7):T'=0 then,
Am Sn<lu (Lm,l)"i‘é‘n
and A"S, S (P, ¥)y=Ar" for r>r,

where A is fixed and &,—~0 and r,—0.

1)
(2)

Suppose further that there exists a surface S, with boundary = L,_; such that

8,8, 1 will write
ln(P’ r):SnS(P’ 7‘)
Kn(P’ r)ISnS(P’ r)

Fo(P,r)=[A™ 1, (P, tydt
[

and for convenience I shall write

a4, < lim @, <a, to mean ¢, < lim a,< lim a,<a,.

n-—>o00

N—=>00 N->»0

Let I'™ be the class of spheres S (P, ) not meeting I' and with P€S,.
Leuma 1%, If S(P, r) does not meet T' then

m-1
Fo (P, )< A" K, (P, r><M—;§(P’—”+sn.

This follows at once from Lemmas 4, 13 and 7, and (1) above.

Let now § be the greatest lower bound of lim ‘/—X-—WK"—;};’—Q taken over all S(P, r)eT™.
N-—>00 m
LEMma 2%,
A
=2—>0.
B w

m

It P€eS, and # <r then, for all sufficiently large n, we can choose P,€S, so

near to P that K, (P, r)> K, (P,, 7).

m

W, r"

Hence by (2) above >

for all " <r, whence the lemma follows.
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Fu (P, 7) taken over all S(P, )€™ is .

Lemma 3*. The greatest lower bound of lim W
By Lemma 1*
r
lim 7, (P, r)= 1_i}£1fA'"”Wn (P, tydt
N—20 n—o0 o
7 r
>f lim A", (P, t)dt>fli_m %(AmKn (P, t)—¢,) dt

1

f’f-ﬁ Wt dt> B W™

T

=f7—n]im A"K, (P, t)dt>

n—>00

FulPo7) o d since F, (P, r)<A™K, (P, 1) it must

Thus f is a lower bound of lim W

n—o0

be the greatest.
Lemma 4%, If ry>r, and S (P, r)) €ET* then

i B P B (P
ot Woart e Wars

__Fn(P>rl) —-_Fn(P>r2)
ﬁ> _ e
and S o T W,

for every subsequence {n;} of the integers.
By Lemma 3*
F, (P, r)=23pW,ry for all large n.

Hence, for large n
F, (P, 2L W,r¥ for all r>r,,

so that by Lemma 1%, for almost all »>r,,

d &n
E’F"’(P, 7‘) (1+—%ﬂer£n-—£n).

Sl=

F,(P,r<

Lr.@
4 >ﬁ”-(1 o )
r

Thus Fn (P’ 7') —%ﬂ erén

Integrating from r, to 7,
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F,(r) i ( e )
1 L>1o 1 - ,
B ) B\ T W,
F,(r)/ Wl { —¢ r{"}
so that R s expi——2 log —b.
Fo(ry)/Wory” P YipW,g 8 0p

Whence the lemma follows.

Lemma 5% If >0 and p>m then given >0 there will exist & =¢' (n, B, p, m),
n'=n"(n, B, p,m) and A=24(n,p,p, m) such that if S(P',r')ET*, and K, (P', r') les
within n'v' of some p-dimensional plane []p through P'; and

7

_ m-1 P

< lim A——Vll;l(id—,;,tlﬂqm' ®)
n—>ooo m
AmEK, (P

p< fim NI g @

for every S(P,r) of T™ contained in S(P’,r'); then there will exist P€S, such that
K, (P, A7) lies within nAr’" of some p—1 dimensional plane through P, and S (P, lr")
<S8 (P, 7).

We will first prove that if we write B’ =27 @7=-m+DLI®=m 5=PI0=m 4/ then there will
exist Q€]]p such that S(Q, R)<S(P',1r') and K,(Q, R’) is null. For suppose
not:—then if 8 (@, 2R)= S (P, 1+') and @, €[], K,(Q;, R') will not be null and hence
will contain @; €8,. Thus

S(Qi, R)=8(Q:, 2R )=S (P, ') and hence

lim A" K, (@, 2 R)> lim A" K, (@, R)>f W, R'™. (5)
n—»00 n—>o0 .
But we can find {r'/16 pR'}* points @, of []» 8 (P’, 1r'—2 R’) no two of which are
within 4 R’ of each other, and hence

(B+) Wa2 s lim A K, (P, }7)

n—-co

r O\ A
>3 lim A™ v 2R)2 (——]) - e
;hinA K, (@ 2R (16pR’) BWnR

n—-o0

This contradicts the definition of R’, provided & <g.

Suppose now that §(@Q, R) is the largest sphere with centre @ having no points
of 8, in its interior. Since P'€8, S(Q, R)<=S (P, }r).
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Suppose P€S, lies at distance B from ¢. K, (P, r) will have no points inside
S(Q, R). Let I,=1,(P, r) and let 1% be the set of points of I, whose join to P makes
an angle not greater than § with @P produced. Let P, be a point on ¢ P produced
and denote the distance P P, by z<r. Suppose S,<(8,, 8,) where §,—~0. By Lemmas 7

and 13 we then have

(A™ L, — A" (Vi + 2+ xr?/R+6,)

+ AR VR4 — 27 cos 0=m A" K, (P, r)—me,. (6)
Take z=13/R, cos 6=2(r,/R)", and
R/2000>ry>1>14: (ry/R)t =1,.
Then after some manipulation we obtain
1 (rg\™"
m—1 0<_ ‘o m—1
AR Py (R) Sn AT,

_sy, .
+7‘10(%) {7‘Am1ln—mAmKn(P, T)-Fmsn—}—%ro.(%) Amlln}

2 G) o () A () am g A
ro(R) 8 AP 4 S (B) A+ (2] A, il R

Hence lim fA’" 18 d z(%) :LIZ JA"’ 17,dr

+(%) {hm fA’" 1, dr— f lim mA K"T(P’ r)dr}'

AN

n-—>oc

Thus since m=2

. t‘ s —%g
lim J Am‘llZdr<g(%) (/3+e’)er5"+(;—g) {e Wpord+B Wnri'}

3 7'0 59 —?s , m 7-_0 s m
<2(R) (B+e) Wro (R) 8W,,,7'0+(R B W, (7)

Let now C, be the set of points whose join to P makes an angle not greater than
6 with QP produced. Then by (4), Lemma 4, (3) and (7),
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lim A" K, (P, r,) Cy
n—>00
<Iim A" K, (P, rp)— lim A™{K, (P, r)— Cs}

7o

<(B+e) Wyry — lim | A1, —Bydr

<(B+e)Wyrd — lim {JA’"‘llndr~fA'"“1lzd¢—J A™L lﬁdr}
<(B+E) Wyrd — lim fA’”’llnerrli—m A™ 8 dr+ lim fA”"llndr
’ m m 3 ro s ’ m
<(ﬂ+€)Wm7'0 _ﬂWmf'() +§ R (ﬁ"‘l‘S)WmTO
9/ <
+(%) & W, +( ) B Warg -l-(R) (B+e) Wyl (8)

Let [I be the N—1 dimensional plane through P orthogonal to QP. Let A=r,/27;
then by the definition of R’

2 1+ QOP-mADIG—m) o= Tow o i (9)

R

I will now show that if 1 is chosen sufficiently small then we can choose & so
small that K, (P, jr))=K, (P, Ar') lies within inr,=%inA? of [[. For suppose
than P* €K, (P, 1r,) lies further than l#r, from []. P* will not lie in S (Q, R) and
hence if 1 is chosen so small that r,/2 B <z, P* must lie on the opposite side of I]
to Q. Thus S (P*, 1nry—1ir, cos B)c S (P, ry) Cp so that by (4) and (8)

W,Bre (i—n—% cos 6) < lim Amg (P* M~lro cos 0) <lim A" K (P, r,) C,

N—>00 2 n—>c0

< Worp o ﬁ’)!/s( oy e W,
% €& mTo 3 RI ﬂ & m o R & m ¥o
(S oms () grermars

Now cos =2 (r,/R)" so that we obtain

D)
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But by (9) above if A is sufficiently small we can choose ¢ so small that (10) gives
a contradiction. Hence K (P, Ar') lies within {5 A+ of II.

On the other hand P€8(Q, R)<=S8(P', 1r') so that K (P, ArY= S8 (P, r). If IT*
is the plane through P parallel to IIp, I1* will lie within %'7 of II,- and hence
Ky(P,Ar") will lie within 29" 7" of II*. QP is orthogonal to II and makes an angle
with IT* whose sine is less than #'r’/R <y 20°-™+DI@=™ pPl"=D < gin 7 /4, if 3’ is
small. Hence Ky (P, Ar") will lie within V(%n Ar'¥ 4 (3nAr'+49 7')® of the intersec-

tion of Il and IT*. If 5’ is taken small, this proves the lemma.

LeMMA 6. Given £>0 there will ewist ey=¢gy (&, B, m) and v=2 (£, B, m) such that
if S(P',r)eT* and

m-1
B < lim lim fA by (P UL <ﬂ+eo (11)
p< lim %<ﬂ+so (12)

for every S(P,r)<8(P',r") with P€S, then to each such sphere S(P,r) there will
correspond P* € S,, and an m-dimensional plane 11, through P*, such that

S(P*, vr) =8 (P, 1) (13)
and Ky (P*, vr)> (I, Evr). (14)

We need only note that K (P, r) lies at zero distance from the plane Il consisting

of the whole space and then repeated applications of Lemma 5% will give the result.

LEMMA 7% Given 6>0, ¢>0 and & 0<£&<1-—cos 8. If S(P,r) is a sphere such
that for arbitrarily small >0 we can find o non-overlapping set of spheres {S(P;, 1)}
such that

8 (P;, r) <8 (P, r), (15)

1 <o, (16)

A" Ko (P, 1) > W, ol 17)

> Warl > e, (18)

and Ko(Py,r) < (I, E7) 19)

where 1I; is an m-dimensional plane through P; making an angle of more than 0 with
PP,;; then
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r

1 —cos 0—'5)'" (20)

fA’”‘llo(P,t)dt<A’”K0(P,r)—eg(— 5
0

Suppose Il is an m-dimensional plane and that @, and @, are two points of II
at a distance o apart; I then define d(«,p,t) and o (e, g, ) to be respectively the
diameter and A™"' measure of I18(Q,,0)s(Q, t). It follows immediately from the

definition of the symbols concerned that

to

Jo (a0, bydt=A"T1S (@, 0) 8 (@ ), 20
0
and that for 6>
AP 1 S(Q10)s (@ VS Wia{dd(x, 0, 8)}" <o (o, 0, ). (22)

We now choose a set of spheres S(P,,7,) such that 7, <4,

KO (P: 7') - Z KO (Pi: Ti)c Z S(Pjr 7-]_)’ (23)

and Am{Ko(Pﬂ”)’" EKO(Pi;ri)}+6> Z W ri. (24)
By (22) and (21)

fA’” o (P 6) S (P, 1) dt < W, v7. (25)

By (19), (22) and (21), if PP,>1r,

r
fA(’;" TIPS (P, ) di< f o (PP, 7, t)dt
PP;~ri o8 8—1i&
7 PPi-7; €08 0 —1:&

<JG(PP1, T, t)dt_‘ f O'(P.Pl‘, 7, t)dt< er;m "‘Wm (]’-;coziu) r{n. (26)

Now gince the S(P;, ) are non-overlapping there is at most one ¢=4¢; such that
PP;<r;<d and by (22) and (21)

jA'" (P, 1) S(Py,, 1) dE<S W, it < W, 0™ (27)

Thus by (25), (26), (27), (24), (17) and (18)
3 — 60173032. Acta mathematica. 104. Imprimé le 23 septembre 1960
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[AF G (Potyde = [ AFTH{D S(Py )+ 3 S (Pir)} o (Py 1) dit
0 0 I '

r 7

< S [AF LR S (P rydb+ D [AF T (P, 1) S (P ) dt
i vt

<SS W+ 3 er{"{l—(%) }+ W, 8™
i i

SAM{K (P, )= 3 Ko(Py 1)} +0+ W, 0"+ A" 3 Ky (P, ri)—eo.(lﬁcog 0—5)
1—cosf—¢

<A’"K0(P,r)—eo-( 5

) +6+W, 0"

Thus, letting 6 -0, we obtain (20) which proves the lemma.

Take £>0 and define ¢ and v as in Lemma 6*, where we may clearly suppose
that & <p. There will exist S (P, r,) €™ such that

AP K, (Pury)_, | &

< li < .
p< lim =50 ’3+50,3

Nn—>o0

(28)

Thus there will be a subsequence {n;} of the integers such that lim A™ K, (P,, r,)
T—>%0

exists and

. A"K, (P, 7)) g?

<lim ———2 <+ ——. 2

p<lm =y "% <P¥50p (29)

If now ry<}r, is sufficiently small and P € 8,8 (Py, r,)

—— AP K (P, 1, 1) e
<1 L LB+
pslim = e P

i—00

2
PulPiry=ra) g, & (31)

< lim <
and hence B < lim W (r—ro)" 5} 25 B

1—>00

Thus by Lemma 4%, if t<r, —7r,,

= Fu (P, 1) £
<lim ————<f+-=—. 2
P W <P sp %)
I will now show that for r <% (r, — 1)
— A" K., (P,7)
<lim ———— < ,
p<lim =y o <Pre (33)

for, if not, there will exist arbitrarily large =; such that
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A" Ky, (P, r)
“—Wr—>ﬂ+%8;
hence for all ¢ such that
1
L l\m 34
r<t<r(ﬂ Fzs_) =1 <r—r, (34)
Btie
A Kﬂz(Pa t)
W “>p+te
so that by Lemma 1%
AL (P )= W,,,(,H%s)mzm-l—@?f

and hence

I " 7
fAm~1 1. (P, t)ydt= fAm—l I, (P, t)dt+ fA”‘—llni (P,t)dt
0 0 r

’

”
> [ A" Ly (P ) dt+ Wy (B+Fe) (/™ —1™) —m e, ]Og%.
0
Thus letting n; — co, and using (32)
82 ’ 7
(/34‘@)7’"257""%‘(54‘%8) (Tm—Tm)

which since e<f gives a contradiction with (34).
It follows from (33) that

ﬂ<lizlg%,ﬂ<ﬂ+s. (35)

m
{—o0 m?

(33) and (35) hold whenever r <% (r, —7,) and P € 8,8 (P;, r,) which will eertainly be
the case if S(P,r)e€l* and S(P,7)<=S8(P,,r,). We may therefore apply Lemma 6*
to conclude that to each such S(P,r) there will correspond P* €8, and an m-dimen-
sional plane 11, (P) such that

S(P*, vry=S(P,r) {36)
and K, (P*, vr)< (I, (P), Evr). (37)
Hence for large =, K, (P vryc (1, (P), 2&vr). (38)

Moreover for large n; by (33)
A" Kn (P*, 3vr)> 3 BW,, 27" o™ ™ (39)

and by (35) Fr (P*,0r)<(B+2&) Wyv™r™.
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Hence we can find g;, Jvr<g;<vr such that
A" 1 (PY 0) <2(B+26) W, o™ 1™t (40)

Then by Lemma (12) in view ot equation (1) together vith Lemma (13) either

2m
A" K (P*, 00> Waol' == Mo 2 eor A1 (P, 00
m-1
22m+2 ?n
> Wagh 2 (B 2e) o @
I)Vmﬁl
or else
_ﬁ W €L<Ame(P*, évr)<A Kni(P*;Qi)
A2n IVm f2m+2 W2
’)5@7‘ Am llm(P*a Qi)+8ni T 5 /3+28 vmr +£n' (4:2)
IVm 1 IV

The latter is impossible if & is small and hence (41) must hold.
Letting ¢ —>occ through a subsequence such that g; tends to a limit o we have

Yvr<p<wr and for each 6>0

— . " 22m+2 Wg,, ‘ o
731!11 Kn(P',0+0)=Wao _77—1—5(67—26)” r
3m+2

using (33) and letting § -0 we find ﬁ+e>1~Tﬂ(ﬁ+2e)§. Since & and & may
1

m—

be chosen arbitrarily small we thus find that
p=1. (43)
Suppose now that we have a finite set of non-overlapping spheres S (P;, ;) €T,
and contained in an open set G. Then
> War'< 2 lim A" K, (Pi, ;) < lim A" > Ko (Piy 1)< lim A™ S, 6. (44)
v ¥ p—>oo n—-o0 ¢ n-—>o0

If 8>0>0 we will be able to find a finite set of points {P,} belonging to S;— (I’, 8')
and such that S,—(I',¢")< > S(P;, 6) and P;P;.>0 if 144",

Each sphere S (P;, 8) will be met by less than 5" others. We may divide the set
of spheres 8 (P;, 8) into subsets 2; such that each >, consists of disjoint spheres and
if S(P;,8) does not belong to any >, (=1, 2 ... j,) then it must meet at least one
sphere from each of these sets. Clearly there are at most 5 sets >, and hence by

(44) above and (1)
2 Wno" <8 u(Ln-1)
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Consequently AF(So— (0, N <8Y u (Lm-v).
Letting first § and then>6' —0 we find that
A" (8, —T) < oo. (45)

Suppose now that G-I'=0. By Lemma 1 we may cover almost all of S,G by a set
of arbitrarily small spheres S (P;, ;) contained in ¢ and belonging to I'*, and by (44)

we then have
Z W< hin A™S, G (46)

fi—>o0

whence by the definition of A™X

A" 8, G< lim A™ 8, 6. (47)
n—>0Q

In particular

A" 8g=A" (8, —T)+ A" (T) < lim A" (S, —T)+ A" T < lim A™ 8, = (Ly-1)-

n—oc n—>00

Consequently by the definition of p(Lmn.)
A™ Sy = p (L) (48)
Taking this in conjunction with Lemma 15 we have thus proved the following:

THEOREM. If T' is any closed set and L, < H,,_1 (') then there will exist a proper
surface Sy with boundary oD L, ) which minimizes the area in the class of all such
surfaces.

On the other hand suppose S, is any proper surface with boundary = L. such
that A™Sy=u(Ly-1). Suppose 8 (P,r)€T*, then A" ' 8,s(P,r)*=0 for if it were zero
H, 1(Sys(P,r)) would be null by Lemma 17 A and consequently, by Lemmas 13

and 1A, S;—8(P,r) would be a surface with boundary > L, _; so that §, could not
be a proper surface.

By Lemmas 8 and 13
A" KO (P, 7')<K,1x {Am—l lO (P, 7.)}711/(7"-1)

and hence by Lemma 4

\
[A™ (P 1y dt <KX {A™ 11, (P, )},
0

Hence ;—r Fo(P,r)

— e > NYy—(m--1y/m
(= Vel
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Integrating {Fo(P, r)}m = (KN} im g
and hence A" Ky (P,r)>Fy(P,r) > {Ky} "0,

It follows that if we put S,=S8, for every n we will obtain a sequence satisfying
our hypothesis (1) and (2) and consequently we may apply the subsequent results.

I will now prove the following:
THEOREM. If S, i a proper minimal surface and P, €8,—1I' is a point such that

lim & Ko (Pr7) ) (49)

)
r—>0 m’

and &* >0 then there will exist R,>0, R,>0 such that to each point X € 8,8 (P, R,)
and each R < R, there will correspond a plane p2 x through X such that

SoS(Py, B)) S(X, R)=(s2x, 6" R)S(X, B)
x S(X, Ry<(S,S(P, R,), " R)S(X, R)
and there will exist a plane > through P, such that
S, S (P, R)< (2, e* Ry).
Take & such that 160 (m+ 1) (m+2) £t < &* (50)
and let g,=¢,(£), v=v(£) be defined as in Lemma 6*. Take &< g, such that
Bme)'m<tvé (51)
and 6 such that l1—cos 0=3¢. (52)

By (49) and (43), (28) will hold for some sufficiently small », and hence there wiil
exist 7,>0 such that, by (33), (35), (36) and (37) if P, P'€.S, and

S(P, )8 (P, r') =8 (Py, 1)

L. (P.t)dt
{0( ) A" K, (P, 1)

W, m W,
m m

then: 1< <l-+e (53)

and there will exist P* €S, and an m-dimensional plane II,(P) through P* such that

S(P*, vryc= 8 (P, 1) : (54)
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and K, (P*, vr)= (I, (P), Evr). (55)

Note first that by (51), (52)

I ST G S Sl L e A " "\" (56
2(m+3)(1+e)W'"(8) v ( 2 ) +W'"(2) > (e W'"(z) . 09

Suppose now that @, ... @,.2 are any m+2 points of K,(P’, 17'). Take 6>0. By
Lemma 1 we can find a finite set of non-overlapping spheres S (Ps, gs:) contained
in S(P’, }r') such that g5 <48, Ps €8, and

; A" KO (Pgi, Qaﬂ?%Am KO (PI, 17")

1 w r'\™
nd 5= "Ky (P, 1r')= Z— =) . 57
and hence ;W,,,g.; 2(1+3)A o (P, 1) 2(1+s)(8) {67)
Moreover for each j<m+2 and each ¢
S(Péi: Qéi)cS(P/: %T')CS(Q]-, %TI)CS(P,9 1")‘ (58)

We then obtain a set of spheres S(Pj,vgs) such that Py €8, and there exists a
plane IT,,(Ps) such that Py € K, (Ps, gs) and

K, (P5, vgs:) = (IL, (Psi), Evoai). (59)

Let ojs be the set of ¢ such that Pj; @, makes angle of more than § with IL, (Py).
1 will now apply Lemma 7* taking

sy aTale)
B m <3 (1 re)\8)

Suppose there exists arbitrarily small § such that

Z W,,,g{"(;v"'>ee

ieaj(;

then by (20)

l _ L E\m
JA'" o (@ 1) té.A"’Ko(Qj,%f')“e"(} 2 {Lé)
0
and by (53) this contradicts (56).
Thus for all sufficiently small §

W, o™ r\"
Wohom<s—nt (T
ie%a mQio¥ <2(m+3)(1+s)(8)
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and hence, by (57), since there are only m-2 points ¢;, we may choose J, so small
that there exists ¢, not belonging to any ojs,. Thus P @; makes an angle of less
than 6 with Il (P;;) for each j. We have therefore shown, since 1—cos § =3¢, that
given any m+2 points Q; of K, (P’, 1r") we can find a plane II,, such that each ¢;
lies within 1+ sin 6 <3¢ & of II,,.

Suppose now that QF ... @%., are the vertices of the m-dimensional tetrahedron
of largest area with vertices in K,(P’, 1), and let this area be 4. Let @ be any
other point of K, (P’,1r). Let II, be the plane defined above corresponding to
QF ... @h.1, Q. The area of each face of the tetrahedron A with vertices QF...Q% 1, @
will be at most A and hence the area of the projection of A onto II, will be at
most (m+2)A4, and so the volume of A cannot exceed 3(m+2) Ar' &t. Thus @ must
lie within (m+ 1) (m+2)7 &8 <e*r' /64 of the plane of @F ... Q5.1

This has been proved for every point of K (P’, 1) and hence for each S(P’, )
<=8 (P;,7,) we can find a plane Il (P’, »"} passing through P’ such that

% 7
KO (P,> %T,) < (Hm (P,’ 7‘,)7 83; ) ’ (60)

By (63) there will exist =, 1+ >ax> %+ such that
A" K (P, x)= W, ", (61)

A" (P )< (1 +e) W, (A /3y (62)
so that if £* is small

W, &
Wp1 4°

A" Ko(P',z)> A", (P, x)- 22" (63)
But §, is a surface of minimum area so that by (60), (63) and Lemmas (13) and
(12) the projection of K, (P, x) onto I, (P’, #') will contain IL,, (P’, ') S(P’, z (1—1¢&*)).
By (60) the projection of K, (P',x)—K,(P',1r) onto II,(P’,7') will not meet

* 7

8 (P', - §37r) and hence

’ * 7
(Ko (P, 4r), & ;—) > (Ko Rt L x) ST, (P, ) S(P, §1). (64)

Write R, =r,/4, Ry=r,/16

> =1, (P, 4R), r2x =II,(X,8R).
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If X€K,(P,, R, and R<R,
S(X, R) CS(PD Rl):

S(X,8R)<=S(Py, 15)
and S(Pp 4R1) CS(Plr 72)

whence the theorem follows from (60) and (64).
Thus taking the above in conjunction with the theorem of Chapter 4 the main
theorem of this paper is established.

Chapter 4

Lemma 1. If 3 and 3’ are m-planes through a point O and 11, II' are N—m
planes through O orthogonal to 3 and 3’ respectively, then if

280, )=(Z, p), (1)
then H8(0, 1) (1T, 28). (2)

Let X be a point of II such that |OX|=1. Let X* be the projection of X
onto 3'. Then X* will be within 8|OX*| of 3 and hence

| XX*|+8l0X*|>|0X]|.
That is (1-|0X*»E+B|0X*|>1,
whence |OX*|<2/3/(1—|—,82)<2/3.

Since X X* is orthogonal to 3’ the distance of X from I’ is equal to |0 X*| and

the lemma follows.

Levmma 2. If {Bi}, {k%} are two sets of N orthogonal unit vectors, (k=1, ..., N),

such that
|hi—ki|<p (k=1 ..., N) 3)

and 3,, 3, are two m-planes, through a common point O, containing {hi} and {h}}

(k=1, ..., m) respectively, then
2180, 1) = (34, N ). (3)

Suppose P€3,, |OP|=1, then the vector OP will be of the form > i, kL, where
1

m
2 2i=1. Let P’ be the point of 3, such that OP = > A, k%, then
1
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PP |=0P—0P|=|3 4Gk ~KD)|<f 3 |2l <NB.

Lemma 3. Suppose hy, ..., hy and gy, ..., gy are two sets of orthogonal unit vectors,
and that 3, and 3, are m-planes containing hy, ..., h, and g,, ..., g, respectively and

passing through a point O, S; and 3, are two planes through O such that

3. 8(0,1)=(3, d) (5)

3:8(0, )= (Sh, 4), (6)

and ]hi—g,-|<1p, =1, ..., N, (7)
1

where d< 360 N (8)

and b< 360 N2 9)

For i<m define b to be the projection of h; on S, and h;" by the equations

by =ht (10)
r—-1

b =hf— 3 (ki -bf)hi'/

t=1

2

”
b

,  rsm (11)

and then define hi to be the unit vector parallel to h; .

Let T,, I, T, II; be the N—m planes orthogonal to S,, S, S, and S, re-
spectively and for i>m define hf to be the projection of h, onto I, and ki’ by the
equations

Bms1=hmi (12)

B o=hf— S (b hR/|RE, m<r<N (13)
t=m+1

and then define h; to be the unit vector parallel to hi’.
Define g; (i=1, ..., N) similarly.
Then hy, ...,hy and gi,...,9x will form two sets of orthogonal unit vectors such

that 3, and 3, contain hy, ..., h, and g1, ..., gn respectively and
| hi - gi| <4000 N* (¢ + y). (14)

Consider first ¢ <m. By their definition the ;" will lie in 3, and we can prove
by induction that
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Rk =0, t<r<m. (15)
It follows from (4) that 5,80, 1) (Sh, 4)
and hence |nf — k| <d, (16)
so that |nf-Rfl<2d, i+j. ("

We will now prove by induction that if ¢>p

|By  hi|<3d. (18)
and |hy|>1. (19)

If p=1 this is true by (10), (17) and (16). Suppose then that (18), (19) hold for p < p,.
By (11)

Pl 17 rr
hpo'h’;|<|h:0-h:|+4lgl (he - Rp) (B - R3)|
<2d+4(p,—1)-9d°
which by (8) <2d+d<34d.

By (11), (18) and (19)

hp—hy | <6Nd.
Thus by (16) | By, — bp | < (BN +1)d. (20)
Hence |k, |>1 which completes the induction. Moreover, again by (20),
|hi—hi|<2sin } sin " (6N+1)d<(12N+2)d, i<m. (21)
Now by Lemma 1 and (4) II, S0, 1) = (11, 2d) (22)
and so repeating the above procedure we obtain for i>m
|hi—hi| < (24N +4)d. (23)

The h; are unit vectors by definition, and by (15) and the fact that I, and
S, are orthogonal, they will be orthogonal.. Moreover by induction from their de-
finition we can prove that the first m of them ke in 3;. We may similarly prove
the corresponding result for the g/.

Moreover using (6) instead of (4) we may derive a set of N orthogonal unit
vectors {f;} from the A, just as the A/ were derived from the h, We will then have
as an analogue of (23)

I —hi|< (24N +4) 4, (24)

and f, ... f, will lie in 3.
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Let gi*, i<m, be the projection of g; into ;. Then we have

m

g:k=2<gz.fr)fn i<m

r=1

and 7= 2 (9 )by, t<m.
r=1

Hence by (24)

10 =671 < 3 Lac £ 1y =1+ 100 g fo—g0 ] < Q4N +8 ) 4.

Now by (7) |hf —gi*|<y and hence by (27)
|hf — g7 | <y+ (48 N*+8N) ¢.
I will now prove by induction that if r>¢
|Be R —g¢ - gF | <3y +3(48N*+8N) .

and [k g |<8Ny+8N (48 N*+8N) 4.

(25)

(26)

(27}

(28)

(29)

(30)

These are true for t=1 by (28), (10). Suppose they hold for r>¢ and #<t, By (11)

and (18) and the corresponding results for the g;

i - hY =g gt | <| Y- b —gf - B |+ 98 kY — g8, 97 |
to—1

| 2 (R RE) (RE - R})/

t=1

2

rz
gt

RV ARY A A ARY Vi

b= 17
<R gkl + R gt |+ S (8 WP

he' =g - gr|/

5t 144 s
+gllgt gF |y hE—gi gt/ | B B

gt - gr | 11/]R

*=1/lg¢

oo, .
+ 2 gt g2l |
i=1

<29+2(48N*+8N)p+(12Nd+12Nd) By +3 (48N> +8N) ),

+9Nd* 16 8Ny +8N (48N*+8N) )

<3y+3(44 N*+8N) 4.

Furthermore by (28), (29), (30), (18) and (19)
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hi, — g1,

<| |kt —gi,

t,—1 » N 5 5 .
SRR AL AR AT T

Zar

Ry ge

hi'-hiy—g: gt/
<y+(@A8N2+8N)p+2N (3y+3(48N>--8N)¢)

+3Nd-12(8Ny-+8N (48N> +8N) ).
<8Ny+8N (48N*+8N)é-

-1
<[h—gil+ 2

h'/

+lge"-gi, k'[P —gi/

Hence, since by (19) |A:’

>1 and similarily |g;"|>1, we have for i<m
[hi —gi|<2sin  sin"' (16 Ny + 16 N (48 N>-+-8N)¢)
<32Ny+32N (48N*+8N)¢.
Now by Lemma 1 and (4), (5), (6)
5 8(0,1) = (M, 24d)
5 S0, 1) = (I, 2d)
II; 8(0, 1) = (ITz, 24).
Hence we may repeat the above arguments for ¢>m to prove that
|hi—gi| <16 Nyp+32N (24 N*+8N)¢.

(31) and (35) imply (14) since N >2, which proves the lemma.

Levma 4.
If <272 gnd N>3
and 29 — 22N+20 N12N€'_% (37) 7] :N—24N8§
E=¢t (39) o =&t
B, =1 41)  u=st
1 .,
— 928N .
0=2""¢ (43) b=y
— 950N /(02N +24) = _ 5’;5
[=2""e 45)  0=7,
tken 7]:24N+4Ol—18 (47) Z,> 8

n<{I20N (N +20)2°V ™ 8NV} 1 (49) Eo;>2eRy+2epa,

3> 4000 N* (42 +0.0) (51)  A+2eu<p
Sho< (53)  de<—r
2= 360 N2 €=360 N2

(32)
(33)
(34)

(35)

(36)
(38)
(40)
(42)

(44)

(46)

(54)
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6> 10N (N +20) 2°¥ L (8 N)y
o, 0=400e R,

2NS 2%
+2% 4 ginl
100 M@+s1n 29}

sin@?{

6N O<
Hl8N+3 1 -1
PN g o<

1_
0 <1

. R. REIFENBERG

(55) E=>4eu+Néou (56)
(57) £ > 3200 N2 230N (§ £ 4 4 gk 4 gLUN+8y (58)
(59) NE+2BVB N3 5t <L (60)
©61) mo T EFBN+2BVE N < L (62)
63) @No+8He "<y (64)
(65) Nou<ié. (66)

When any of the above symbols occur in the subsequent work they will be taken to have

the values here assigned.

LeMMA 5. Suppose {X.} is a finite set of points and f(X,) a unit vector defined

at these points such that

[X,—Xi|>a  i+4, {67)
and |f(X)—f(Xi)|<n  provided | X;—X;.|<Za. (68)
Then for all X such that
| X —X;|<2« for some 1, (69)
we may define f(X) so that
14292 |H{X)|>1-29 (70)
and 1 X)=f(X,) when X=X, (71)

while if each point of the interval X' X'' lies within 2 of some X; then

|£(X7) = F(X")] <10 (N +20) 2°*+ 4

Define f(X) by

‘X/_X/rl
T

(72)

Z_ f('Xz)/l X - Xi |(N+20)

fX)==

Z IX _Xi I*(N+20)

when X=X, for any ¢. (73)

Let X, be the nearest X; to X; that is, choose X, to be an X, so that |X —X,|=

=min | X — X,|. Then by (67)

| X-X,|>3a, i%0 (74)

and by (69)

| X —X,[<2a (75)
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Now there are, by (67), at most 2V(r+2)¥ points X; such that
ra<|X,—X;|<(r+1)o. (76)

[X_XOI N+19 . 9 N+19
< 2V (r+ 2V [
IXO—X“)}.'z I:’X lel Z (7'-*_ 2)

Hence by (75)

r>i-1 r—2
A+ 1)V (A + 1Y _
< 92N+19 A1y __ < 92N+19 ) 7
B =3 (e )(r— ) G-ha—syp 70
. IX X N+20
iz |f(X1) l |X X
Hence |H(X) = f(X)| < =X
=
. X_XO N4+20
which by (68) <y + i i x

which by (77) and (74), (75)
4 92N+22 (A+1)"

DRV RNV T
which by (48) Sy 2800 38
and by (47) <2n. (78)
Moreover (1)
N+20
, , T (X [ FF
\ﬁf(X)lﬁla‘XU(X)*f(Xo)] = a—)(" Z X—Xo N+20
T | X— X,
. x| X=X XX -1 XX, S| x|
20 X)-f(X i |
_ W20 311X~ o>l|X_Xi X_XP |
o= X_XO N+20
_ _x e | X=Xl 2 IXXIIXXl IXXI
+(N+20) If(X) f(XO)I__ X XO *
Z X_XO |X-X1'2
i | X— X,
N+20
Now —a—aX|X~X,-|<1 XX

() Differentiation along an arbitrary line.
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so that by (78), (74), (75) the above is

N+19

-1—2172

i+0

N+19

10V +20))|

X-X X-X,
|i§0|f<Xi)—f<X0)l’X_Xj ¢

X-X,

o

which by (68), (74), (75) and (77) with A’ =1 and A'=7

N+19
+2
| Xo— X2

N+19

XX,
X - X,

XX,

XX,

/

(N+20)‘

1#0

=

10 (N + 20) Ny 2. 22 g4 1yY
,—’37](2N.8N.4N+19+W) (jw

10 (N + 20)

. |26N+407]+23N+38 A—XSI’

which by (47)

10 (N + 20)

. . 26N+41 7’}. . (79)

N

Now (78) and (79) imply (70) and (72) respectively so that the lemma follows.

LeMmma 6. Suppose we have t orthogonal unit vectors f,(X,), ..., f:(X,) defined at
the points {X,} of Lemma 5, satisfying the conditions of that lemma, and extended as in
that lemma. Then there will exist a set of t orthogonal unil vectors g,(X), ..., g:(X),
coinciding with the {f;(X)} at the {X,}, defined at all X such that

| X —X,|<2a for some ¢ (80)
and such that, if each point of the interval X' X" lies within 2« of some X,, then for

1<t'<t

| X'~ x|

lge (X')— g (X")| < 10N (N + 20) 2741 (8 N)' 5 (81)

Define g¢,(X) to be the unit vector parallel to f,(X) and define g, (X), ¢ >1,

inductively as the unit vector parallel to gf (X), where
. t—1
ge(X)=fe (X) - 21 {fe (X) -9, (X} g, (X). (82)

Clearly the g, (X) will be orthogonal.
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I will now prove (81) by induction. For if ¢'=1 then by (70) and (72), since

n<t.
L 10(N+20) 287+ | X' — X' |

|9, (X)) — g, (X"")| <2 sin } sin

«(1—27)
<40 (N +20) 26V+41 ) BI—E{—)—(‘—l, (83)
which implies (81) for ¢ =1.
Suppose now that (81) holds for ¢’ <#,, Then since g, (X) is a unit vector
-1
|98, =g X< (B = o (74 3 e (X720, (X = fe (X 07 (X7
bl 1
+ 2 fe(X7) g, (X | gr (X))~ 9 (X7)]
t—1
<| e, (X') = fo (XY |+ 21X =1 (X7 9:(X9)]
+fo X 9 (X) =g, X |+ [ o, X)) |9, (X) — 9, (X))
te-1
<A @)= 1 X+ 5 | f (X~ fo (X |+ 219, (X) = g, (X)) 10, X))
which by (70), (72) and (81)
I_ 1 I_XII
<10N (N +20) 26N+41nu+21\7(1+ 29)+ B N)*"110 N (N +20) 2274 g—“—J
o
which since n <} and {;>1
<10N(N+20)26N+41-(8N)’°n|X —X |-1+3N. (84)

8N

In particular taking X" to be an X, such that |X'—X''|<2«, and noting that,
by induction on (82), we can show that g¢; (X,)=/f, (X,) which is a unit vector, we
obtain, using (49) that

[g5(X')|=1—20N (N +20) 287+ 8Ny >4

and similarly that lg% (X" | =4

4 — 60173032, Acta mathematica. 104. Imprimé le 23 septembre 1960
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Henc by (84)

[g:, (X') — g5, (X")| <2 sin } sin™! [10 N (N +20) 287+ (8 N) by

<10 N (N +20) 20V (8 N) by

| X' —X"| 1+3N 6

| X' —X"| 1+3N 6

Xl . XII
<SION (N +20)28Y 41 (8 N) by I—7——'

which establishes the lemma.

4N 5

8N

d

LEmmA 7. Suppose S, is a set and S is a subset of Sy such that if X €8 and

0<R< R, then there will exist an m-plane pXx through X such that

8, S(X,R)< (r2x,e R)S(X, R)
and raux S (X, R)<=(8,,eR)S (X, R)
and suppose further that there exists o plane X such that
8o (X, e By).
Then if we have a sequence of numbers {o;} such that

i+l
o;

and a set of points {X;} belonging to S such that
| Xy—Xpj|>a; a7

and for all X€8 Min [ X — X;| <oy

then there will exist, for each j, and X €(S, o) a set of N orthogonal unit vectors

(he(X)}  k=1,.., N

such that if the interval X' X'' lies within «; of S then
1 6 ’ 17
[ R (X7) — g (X )|<ZJIX - X"

and if X€S then S8 (X, ua) < Tk, Eoy) S(X, woy)

and z]"YS(X’/’LOCJ)C(SO’SQI)S(X’/‘“J')’

where X is the m-plane through X containing the vectors {hy (X)} k=1, ...

(85)

(86)

(87)

(89)

(90)

(92)

(93)
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Consider first the case j=1. Let {h1; (X)} be a system of orthogonal unit vectors
independent of X such that the first m of them are contained in X. >1 will be the
plane through X parallel to Z. (91) will be satisfied since |k (X’) — b (X7)|=0.
It Xe8 then by (87) Xc(Z,eR;) and hence by (87) and (50) S, S(X,puoy)<=
c(Ze,R)S(X,poy) = (Tk, 26 Ry) S (X, p oty ) = (Tk, £ o) S (X, p o), which proves (92);
and using (86)

ua,EXS(X,,u“l)C(SO: S/AOCI)S(X,/,Locl)C(E, 8R0+8/’60‘1)S(X’/A“1)C
(%, 2eRy+euo) S(X, poy).

Hence Z}S(X,,uocl)C(MZX,,‘ZeRo—l-euocl)S(X,[uocl),
which by (86) <(8y,2eBy+2epma) S(X, poy),
which by (50) = (8p, &) S (X, poy),

which proves (93).
We will now prove the lemma by induction on j. Suppose then that the {; (X)}
exist as demanded. Since 2uo; <R,, we may by (85) and (86) define TF’ = to be

ij+1
a plane through X;;,; such that
SO S (Xij+1 ) 2/4 OC]-+1) < (Z{;;;;-i—l’ 2 ey OCj+1) N (Xij+1 3 2,“ ij+1) (94)
and S S (X1, 21} S (Sgy 2epatyin) S (Xijar, 20 tyi1)- (95)

I will now apply Lemma 3. Take <{h;(Xij;1)} to be the {k} of that lemma,
define {h;.1,x (Xi1)} to be the {hi} of that lemma and similarly for the g of that
lemma taking some ¢ 1.

The planes X,, ¥,, X;, X; will be planes through O parallel to X%, 7

. 1) S
Tk, and &} | respectively.
Suppose [ Xijs1— Xijpr| <Aajia. (96)
Then by our inductive hypothesis (91), since Ao 1=Apa; <o
[P (Xij1) — by (X 1) | < 6 A, (97)
which we will take as (7) of Lemma 3 with
p=04%o. (98)

Now by (95)
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ijgﬂ S (Xiji1s 1) S (Sy, 28 potgi1) S (Xijia, 2 pajyn)
(S S (Xij1, 201+ 2epmay41), 28 poryyn),

which by (92) < (Z&ml yEa;+2¢epayi), since Zuogat2epay <poy.
This together with the corresponding result for i’ may be taken as (4) and (5) where

=§oc;+26yocj+1
J 2]

d (99)

(8) will then be satisfied by the definition of &, x4 and g. By (95) for ¢

01 S (X jar, praye1) < (8o, 2epaisn) S (Xingin, proyea),
which by (96) < (8y, 28 potyi1) 8 (Xijar, (A+ p) 0y41),
(S 8 (Xijs1, A+ p+2ep) o41), 26 oyia),
which by (52) and (94) < (N, e pagi).
This may be taken as (6) of Lemma 3, where
p=4e, (100)

and (9) is satisfied by the definition of &.
We may therefore define {;.1x(Xi;1)} and by (14), (98), (100)

|hj+1k (Xij+1) — h,‘+1k (Xi'j+1) I < 1000 N3 ((SZ.Q + 48)
which by (51) <. (101)
I will now apply lemmas 5 and 6. (96) and (101) give us (68), we may there-
fore by these lemmas extend the definition of the vectors {A;,1x(X)} to all points
X such that | X —X;;,1|<20,; for some i; which by (90) includes all X €(S, ay.1).

Moreover, if every point of the interval X’ X'’ belongs to (S, «;.1) and hence lies

within 2¢;,1 of some X;;,; we have by (81)

XI___XII
[Bji1k (X7) = hjoai (X7)| S 10N (N +20) 28V 4 (8 N)V [X— x| = I,
F+1
. 6 7 7
which by (55) < | X' —X"|,
i1

which establishes (91) for j+1.
Furthermore, if X €S there will by (90) be an X;; ., such that

| X — Xip1| <oyia. (102)
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Let X* be the plane through X parallel to X% . Then by (102)

L
So 8 (X, pra1) =8 8(Xijra, 2uety11) 8 (X, potia),

which by (94) o (ZK!

Xij.10 2epoy ) S(X, pay1).
Now X €88 (X, 1 oj.1) and hence this < (X*, 4epua.1) S (X, payi1), which by Lemma
2 and (91) for j+1
c (RN depuo+NOuoy 1) S (X, o).
By (56) this establishes (92) for j+1.
On the other hand, by Lemma 2 and (91) for j+1

TS (X, proy.a)< (= NOpag1) 8(X, prajer),
which by the above

c(ZX)  Nopa+2epo,1) 8(X, poyi).

Xij+1°

Now Nd+2e<1 and so this

i+1
< (ZXii+1

S(Xiji1,2u0541), 2e o+ N o) 8 (X, wayia),
which by (95) <(Sy,depayr+NOpoy1) S(X, payia),
which by (56) establishes (93) for j4-1; and hence by induction proves the lemma.

Lrmma 8. Suppose S, is a bounded set, and S is a subset of S, such that if
X€S and O0<R<R, then there will exist a plane g2y through X such that (85) and
(86) hold; and suppose further that there exists a plane X such that (87) holds, and that

2o ts a topological disk contained in X, while 8,,...,8;,... are subsets of S such that

&
(Sl, Tﬁ%) o3, | (103)
and 8j1128, (S5, 4441, (104)
where By, (88)
]

Then there will, for each j, exist a topological disk &' such that S'=X, and
e (8, 105
S e (Syfl ; 100) (105)

: 1
and 1 < — (106)
f 1PQl<55
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and PQ belong to S~ then PQ will make an angle of less than 0 with %',
Moreover, there will be a homeomorphism between &' and & such that if P, Q€S and
P*, Q* are the images in S’ of P, Q respectively then, if (106) holds,

1 P*Q*
<<
5| Pg | 2 (107)
and |PP*|<ia.. (108)
507

Note first that given any bounded set S we may define a set of points {X,},
for each j, to satisfy (89) and (90). For any set of points of § such that (89) holds
will have a finite number of members, and if we take the set with the largest pos-
sible number of members (90) will hold as well. Thus the conditions of Lemma 7
hold and we may apply the results of that lemma.

In particular if PES1<(S; 1, 0;/100) then P will belong to (S, 1) so that
Y51 will be defined.

I will now prove the lemma by induction. Consider first the case j=2. If we
denote X, by S' then (103) will become (103); and since X} is the plane through P
parallel to £,, by Lemma 7, PQ will make an angle of less than %60 with X} when
P, QeS'. Suppose then that 8! exists and (105) holds while if P,Q€S ' and (106)
holds then PQ makes an angle of less than 0 with %', Suppose

1
Pe (Sj_l, T(_) ozj). (109)

Let {z*(P)} be the co-ordinates of the point X referred to axes with origin P and
directions {hy (P)}.

Define 1l (P)= VEiL, [}, (P) (110)
fis (P)=| P Xy | (111)

fi(P)=fi;(P) when |PX;|<2 (112)

fo (P)=F1; (P)+ [ (P)—2 o when |PX;|>20. (113)

We can choose an X;;, denoted by X,;, such that for all ¢ such that
|PQ|<}oy (114)
we have |QX;|>}a, 10 (115)
and 1@ X,;|<2a;. (116)
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For by (89), (90) and (109) if we choose X,; so that

[PX0j|=miin[PX,~j|, (117)
the result will follow. In particular (115) and (116) will hold when @=P.

|PXH|
oy

Suppose T-1<

<T. (118)
Let N (T) be the number of points X;; satisfying (118). By (89) the spheres S(X;;, § o)
are disjoint and contained in S(P, (T +1)«;) so that
N(T)<2¥(T + 1)V, (119)
I will now prove a number of estimations.

[%} <16 and fi/-(P)>%oc,», i+0. (120)

Suppose first that |PX,;|< (,u—ll—o) o, 1+0. (121)

Then by (109) there will exist X €S such that

1
< — o 122
and thus ]XX” | < U o. (123)
Hence by (92) X, Tk, Eay). (124)

There will exist ¥,;, belonging to the plane through P parallel to X%, such that
1
| Xy, Yyl < (§+—1—0) %. (125)

Now the interval PX lies in (S,«;). Thus by (91) and Lemma 2

Yijc{zé’,NalPYUHPXl}. (126)
&y
Hence by (122), (121), (125),
. N6 1
X, < {27% 10 (ut&) oy + (f‘i‘iﬁ) OCj} (127)

so that by (110), (115), (66), (36) and (39),

1 N 1 i
filf(P)>1°€j—TO(/A+§)ocj—<§+E)aj>%. (128)
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1

Hence in this case fu (P )= g s (129)

if, on the other hand, |PX,|> ([u —]—1(—)) o (130)
. 1 1

then fu Pz (P)— 2,2 pu— 10~ 2oy = s also. (131)

Thus using (116) with Q=P (120) will follow.

fo(P) _ 8
If T>25, 77— < 5. 132
fu (P) ST (152)
FOI‘, if T>5, 2“]<%(T—1)“]<%|PXHI so that f“(P)>|PXIJ|“2(Z}>%|PX1]]
23 (T -1)oy> % (T o), which since fy; (P)<2a; by (116) proves (132).
Let ¢f be the angle between X;X,; and hy(P). Now X;X,; is fixed and

hence by (91)
m sin* {§| P —P|/20;} O
PP |P' —‘Pl “j.

(133)

Thus by (118) and (116)
|x1’§(P)_m(l)c](P)l=|leX0,| |COS¢:C|<|X”X0/|<|X”P|+|PX0]|<(T+2)(Z1 (134)
and by (118), (116) and (133)

0
513[%5‘(13)—$57(P)]‘=|Xﬁxoi|

2 4

7
1
1f T<p—r, |of(P)—ai;(P)|<B&w,  k>m. (136)

For by (109) there will exist X such that (122), and hence by (118), (123) hold.
Then by (92) X, and X, will ie within £o; of X% and hence the angle between
X,;X,; and its projection on Tk is less than sin™'|2&a;/X;; Xy;|. The angle between
any line in X% and its projection on X% will by (91) and Lemma 2 be less than
sin"! (N 8/ay) | X P| < sin"'(N.§/10). Thus the angle between X;;X,; and X} is less
than sin™'|2¢ a;/X;; Xy;|+ sin™! (¥ 5/10).

Now k>m so that hy (P) is orthogonal to X% and hence

2 N
sin {sin“1 £ +ain~?! —6} ’

|2f; (P)— 55 (P)| = | Xy X5 | | cos ¢ | <] Xy X5 X, X,)] 10
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280, N& NS
< Xy X |22 120 coey + 2 %X, X,,
I .7X0]| IX17X01[+ 10 l 2§a7+ 10 {!XU‘Pi—i—lP OJl}
Nou 2N§
< o — j iy
2& 10 oc]+—10 o;

which by (66) gives (136).

0 0
fis (P) 55 for (P) —fos (P) 51 (P) <8001N
[fy (P o
For let v, (P) be the angle between PX,; and hy (P); then by (91)

S|PP| .

|9 (P)— o (P')|<2sin" '} - +PX,; P
7
. _..8|PP| |PP|
<2sin7'{ A= + sin! o
o | P Xos| | PP
0 0 1
Th v (P S —+ im0
* lap%( )} “:+‘PX07|

Hence, using (116)
na 75, (P)|< 9 | PX,;| cos ; (P)| <1+28+1<3.
oP 7 oP 0J i

9k

Hence by (135) 5p 20

(P)|<(T+2)6+3

so that by (110) a%f;j (PY|SNTO+2N5+3N

whence by (113) and (111) 8—813 fy (P)|[<1+NTG§+2N6+3N<4N+NTS.

Hence using (120)

0 0
fii(P)a—ﬁfoi(P)_foi(P)ﬁfij(P) <(4N+NT6)(1+16)
s (PP - f4(P)

Now when T>u+1, f; P)>Ta—20;> 3 Ta;, by (113) and (118), so that

174N+NT6) 344N+NTH) {
< <{34Nos+
fu (P) Toy

>

136 N} 1 800N

ol o

while if 7<pu-+1, then by (120), (36), (39), (66)

57

(137)

(138)

(139)

(140)

(141)

(142)
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1T@N+NTO) _1T4N+Nud+No).8_800N

fi (P) % Ty

so that (137) is established in either case.

Let P* be the point whose kth co-ordinate with respect to axes {h; (P)} at
origin P is

Sk (P) [fy (P "

if
R BT L (143)
' 0 if k<m.
Consider k> m.
o 3 (e )ty () [ 2]
;a_P(pk_xOJ' (I,))’< 5? Z [.f()i (P)]4N <
v Ly (P)
fos P)]|* 8 & fos (P)]*1 foi (P
s S am-aey| s[RI gy o [ 2]
4 fﬁ (P) oP o~ +4 N i fi]' (P) opP fl] P)
Z I:foj (P)] Z I:foj ]
7 Ly P 7 Ly ()
[fo: (P)TN ' [fm P] "
ra| T O80T P s )iy oy [ )
: jo (P)

el )

fos (P)]*Y
Now > . (P) =1 so that by (137) this less than
i ij

3200 N*

2] o -]

fw'(P)]w_l £ (P)— 2k,
Z l:/il (P) {55 (P) — =5 (P)}!

i

B a

which by (119), (120), (132), (134), (135) and (136)

3200 N2
+
%

3

P 4N
5 et 2y b 21} [0 7]

< 2 162X (T+ 1Y (T+2)6+ 2{—8

1<T<A4 r5a T

4N
} SN (T 1YW (T+2)68

920 N2 4N-1
+u« 1649129 (T 1)W-3 8 o+ D {%} 2T + 1)”(T+2)oc,-}

o%; {1< <4 T>A

-{1+16 164712V (T + 1)V +16 > {;}4N12N(T+ 1)N} (144)

1<T<A T>4

provided 5 <A <y—1.
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This is less than

218N+26A1+214N+26A2+3200N2 {218N-25A1+214N~2 Az} {1+218N A1+214N+1 A2}3

where A= > TVgAvE
1<T<4
1
d A= S p-3N+2 o g-3N+4 . <9 A-3N+3
o =2, 2 T T
Consequently

3‘613 [ph — xk; (P)]| < 218V +2 § AN+2 4 914N43 5 4-3N+3

+ 3200 Nz {218N~2§AN+2 + 214N—1 A—3N+3} {1 +218N AN+2_I_214N+2A,3N+3}
<3200 N2 2%V {5 AN 4 £ 42N 4 4-2N+5)
<3200 N?2%Y {5 AV*2 4+ £ AP+ £ A1} since N> 3.

Now 5<& V¥ <1 by (36), (39), (42) so that we may satisfy (144) by taking
AP =7t whence, using (58)

6% [Pk — 265 (P)]| < 3200 N2. 238V {5 g1 . gd 4 gl/AN+8Y (145)

If now P, Q€S ' and |PQ|<a;/20 then the whole interval PQ will by (105) be
contained in (S;_y, ;/10) and by (114) we can use the same X,; for each point of

the interval. Thus we may integrate (145) to obtain, for k> m,
| Pk — b; (P)~ gk + 8 (@ | < | P Q. (146)

Let Xg; be the projection of X,; onto [[5, the plane through P containing {hj (P)}
k>m. .

S|ak (P) -2k (P)] [f o (P)]W

| X5 P*|< N Max - JuB
s [fo;(P}]
i [fu(P)

which by (119), (120), (132), (134) and (136)

4N
<N 3 16 2Y(T+1V3&0y+N > (§) V(T + 1Y (T +2) o

1<T<a r>a \T
<SAOVREN (A Ea;+id,0)
< PINER N (ANIRE g 4TINS oy TN R (AR g L g N2 o
< IV I (£ 4 gy < IOV I £t o

(147)



60 E. R. REIFENBERG

Now we know that P makes an angle of less than {6 with P by our inductive
hypothesis, and there will exist X €8 such that | P X|<a;/100. Then by (92) and (93)

T8 (X, pa)<(Sp, E0) S(X, pay) = (8o S (X, poy+ &), Eo) (X, poyy)<
< (So S (X, ‘ucx,-,l), 50{;)8 (X, lLt(Z]-)C (27;1, 250!;_1)8()(, /,Ld;).

Hence, by (91) and Lemma 2, @ will lie within
+N6|PX||PQ|+2§ocj
X

-1

|PQ|sin 16 ~|PQ|+

7

of XF.

NS|PX||PQ|
]

Thus the angle between P @ and ¥% is less than
N6|PX|+2§zx,-1+N6|PX|}< ot {Sin %6+2N6+2_§}’
-1 H o [#4] 100 ou
which by (59) is less than 6. If then Q” is the projection of @ onto [T
|PQ|=|QQ"|=|PQ] cos 6. (148)

sin™! {sin 10+

Let X§ be the projection of X, onto ][5, and Z the projection of X& onto
[Te. Then ZX{ will be the projection of X§ X, onto [T». Now X§ X, is perpendi-
cular to [[pand by (91) and Lemma 2 the angle between ZXg; and [} is less than
sin"! N§|PQ|/a; hence '

P
| Z X5 <| X§) Xoy] sin {sin‘1 JEL—@}
7

N6
<|X3oniHPQ|7
¢

(149)
N N§
<lexy| 1P <P Xol+ Pl IPQIS”,

which by (116), (106)<3N§|PQ|.

By (91) and Lemma 2 the distance of X§; from the plane through @ parallel
to [T5 is at most'N|QX0°j|~6|PQ|/ocj and hence since |QXy;|<|PXy|+|PQ|<3a
we obtain

|1ZX§|-1QQ°||<3Ns|PQ|. (150)

Hence by (148) and (149)
|PQ|+6No|PQ|>|XE X8 |>|PQ|cos6—6NS|PQ)|. (151)
Let P** be a point such that X§ P** and Xg; P* are equal vectors. Consider
two coordinate systems, both with origin X§, the first with axes {h; (Q)}, the second

with axes hy, (P). Let {¢}'} be the coordinates of @* in the first system and {pi*'} those

of P** in the second.
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= qF — af; k>
* k
, ps—x0; (P) k>m
and * 153
" P {=0 k<m. (153)

Let {px} be the coordinates of P** in the first system. Then
p’,ﬂ"" z {h]k Q) h}t (P)} P**,- (154)

Hence | o — pi* | <|PE* [hie (Q) - e (P)— 1] + Zp**’[hjk(@)-hﬂ (P)]

<|Zp**' (@) + (it (P) = by (@)1,

which by (91)< Max |pt* | N6 |PQ|/o
<|P*X5}|-N6|PQI, (155)
o
Thus by (147), (153) and (146)
|px —qi | <2V NS & | PQ|+C | PQ), (156)
so that by (60)
[Q* P**| <2V N3 |PQ|+ N | PQ|< 200|PQ[ (157)
Hence by (151) and the definition of P**
Q> i
|PQ|(1+6N6+200) 7 ¢'[>|Po] (cos0 6N 200)
which by (61), (46) gives
| P* Q|
2> =1 158

Let XF be the plane through X& parallel to 35. This plane contains X& X,; since
it is orthogonal to []7. By (105) there will exist ¥, €.S;_; such that

Py, <2 (1£9)

zoo
Then since | Xy ¥,|<|Xo;P|+|PY,|<30y<po, there will exist Y,€X%, by (92)
such that

|7, Y,|<&q (160)
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and since |X; Y,|<|XyY,|+|Y,Y,|<4oy there will exist Y,€X by (91) and.
Lemma 2 such that, using (116)

N
|Y2Y3|<4oc,--7ja|PX0j|<8Néoc,-. (161)
Now P Xg; is orthogonal to >7 and hence
|PXE|<|PY,|< i+5+szva) "
0j 3 100 J
so that by (147) and (62)

*| g 18N +38 <X
| PP*| {100+§+8N6+2 Nf}cx] =0 (162)

We have therefore established the existence of a homeomorphism P—P* for P€S!
which by (158) and (162) satisfies (107) and (108). Let 8’ be the image of §~! under
this homeomorphism. Since X, X{; lies in XF, X¢; will, by (91) and Lemma 2, lie
within N | Xo; X3;|- 6| P Xoy|/a; of Tk, Thus since | X, X§;| <| P Xy;| <2 ;, e obtain

| X3 Yy| <4 N oy, (163)

where Y, is the projection of X§; on Xk, .
But by (93) Tk, S (Xoj, p o) = (Sp, ) and | Xo; Y[ <4NSa+20<poy so that
there will ba a point Y, €S8, such that

| Y, Y| <& (164)
But |Y;P|<(§+4Nd6+2)a so that by (105) ¥,< (S;_1, 4 y) whence by (104) Y, €S,
Thus since by (147), (163), (164), (63) and (64)

| P* Y5|<(§-|-4N6+218N+3N§*)oc,-<%%

j %j+1

TS, ==). 165
5 C( ” 100) (165)
Suppose now that |P* @*|<a;,1/20. Then by (162), (65) | PQ|< aj:1/20+ o;/25
<@;/20. Now by (157) and (158) the angle between P* P** and P* Q" is less than
2 sin™' (1/100). But P* P** is parallel to X§; X§; and by (149) and (151) since

X% ZX§ is a right angle

. N§

XL X87Z< sin-l{ 3 }

cos 6—6 N 6 (166)
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while Z X§ is orthogonal to [[5 and hence by Lemma 2 and (91) makes an angle
of less than sin™' {N §|P P*|/«;} with T5«. Thus using (162) we see that the angle
between P* Q* and Xh. is less than

oo (LN 3N§ .1 (N6
2 sin (100 s eso—ens) T o)

which is less than 160 by (36), (44) and (46). This together with (165) completes the

induction and proves the lemma.

LemMa 9. Under the conditions of Lemma 8 there will exist a subset S of S and

a homeomorphism P'—>P between X, and S such that
prp|<®. 167
| | 40 (167)

Suppose P'€8'=73, and define P’ €S’ to be the image of P/"'€8 ! under the
homeomorphism between S’ and S ! defined in Lemma 8.

o1 .y
By (108) |P]P] |<5—0‘(06j+1+06j+2 ), 7 >],
%j+r1 P
<——(1
50 (LTete -.)
which by (65) <°Z'—61. (168)

Now o;—>0 as j—>oo and hence the sequence P’ converges to some point P such that

i D i1
'P|< .
| P1P|<e (169)

Moreover, by (105) P€§. (167) is a particular case of (169) and it only remains to
show that P'—P is a homeomorphism.

" Suppose |PrQ' | =d < 0. (170)

Choose j, such that Hio g1 g Ferd, (171)
0 20 80’

this is possible by (65). | P Q| <271d, <y, (172)

This is true for j=1 by (170). Suppose then that

|PFlQit<2i2q (173)
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52 %
then by (171) 2 d<‘)0<20 (174)
so that by (107) | P Q<2 14,

which proves (172) by induction. Thus by (169) and (171)

|PQ|<2" 1d+“’2“61<%g"°“. (175)

But by (171) j,—>oco as d—0 so that by ( |PQ]—>O as d—0. If, on the other
hand, P=@, then by (169)

|P"Q‘|<-°%l for all j (176)

and hence by (107) | PP Q= | P Q|- 277+ (177)

Thus |P' Q' <2 ¢’ a,/20<(1/20Y &, for all j so that |P'@Q'|=0, i.e. P'=@", which
completes the proof.

THEOREM. If S, is a bounded set of points in Ey, and P is a point of S, such
that to each R< R, and each X €8, 8 (P, R,) there corresponds a m-plane 3% through
X such that

SOS(X’ R)C (RZX’ 8R)S (Xa R) (A)

and r2x 8 (X, R)< (S, ¢ R) S (X, R) (B)
and X is an m-plane through P such that

(>, e Ry)> 8, (€)

Then if £<2 2" there will exist a topological m-disk S such that S,S (P, (1/16) R,)
=8c 8,8 (P, By).

Take 8=28,8 (P, Ry) (178)
R,
8;= SOS( 5 +20+4Z<x¢) (179)
“2
S0=3 8 ( 40) (180)

The conditions of Lemma 8 will then be satisfied; for (104) follows at once from (179)
and S;=8 by the definition of «;, p; it remains to prove (103).
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By (B) and (C)
2pS (P, TV (Sy, e TV (Z, e T+ Ry).
Hence by (B)
Z8(P, TV (rZp, e T+ e Ry) S (P, T)=(Sp, 2¢ T + ¢ Ry).

Thus taking T =Ry/2+ «,/40 (103) follows from (57).

We may now apply Lemma 9. There will be a topological disk S< S which by
(178) is contained in S8 (P, By). Suppose then that Q€S8 (P, & R,); note first that
by (B), (C), (57) and (180)

S (Q; %RO) (%R‘,ZQ7 %SRO)C ((SO, %ERO) S (Q, %Ro)’ %8 RO)

(181)
3 1 . O 1 Oy
< (E, ESRO) S (Q, gRo(l +8)) < (Z, 16) S(P, §R0)C (ZO’ 40),
and that by (B) and (A)
S(Q, 27" Ry (2-n-12,30, 27" e R) = (85, 2" e R)S(Q, 27" 'R, 2" e Ry) 182)

(S, 8(Q, 27" Ry (1+¢)), 27" e B)) < (3-n g2, 27" ¢ Ry).
By Lemma 9 we have a homeomorphism P'«»P between X, and S. Define a con-
tinuous mapping P*=¢ (P') of X, by:—
[P when PeS(Q, 1R,
[PI when P¢S (Q, 3 R,)
ll ['i)%ll#)] Py [&—;I‘?F@] P otherwise.

When P' belongs to the boundary of X, then by (180) P'¢S(Q, 7 R,/16 + a,/40) so
that by (167) P¢S(Q, 3RB,/8) and hence ¢ is the identity on the boundary of X,
Moreover, by (167)

Pi=

|1_3P2|<Z—(2) and |P1P2|<:—8 (183)
and hence (S, 8 (Q, éRO) c$ ()8 (Q, L Ro- %) 5. (184)

There can be no continuous mapping v, which maps S8 (Q, i R,) onto

(@, 5 By) (yr,20, § & By)

and is the identity outside s(@, } R,), where s (P, r) denotes as usual the surface of
the sphere. For if there were, y,¢ would be the identity on the boundary of X,

and by (183), (184) and (181)
560173032, Acta mathematica. 104. Imprimé le 21 septembre 1960
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Y3 b (Zo) S s {[d (Z0) = S(Q,  R)I+ ¢ (Z) S(Q, 3 Ry)}

o s 1 0
< (20, 4-(2)) ~8(Q, }Ry)< (20, ﬁ) -8 (P, ERO) ,
which gives a contradiction, since X, is a disk. In fact I shall now prove by induc-
tion that, for n> 3, there can be no continuous mapping v, which maps S §(Q, 27" R,)
into s(Q, 27" By) (2-7 r Zg, 27" ¢ By} and is the identity outside S(Q, 27" R,).
For suppose y,.1 did exist. Then by (A) and (182)

vns1{S8(Q, 27" R)}<[S(Q, 27" Ry)— S (Q, 27" Ry)] (27 50> 2 " & Ry)
+5(Q, 27" Ry) (2 2, Bq, 27" 6 Ry)

and this set can be mapped into s (@, 27" Ry} (e—» r,.2g, 27" ¢ Ry)- by a mapping which
is the identity outside S (@, 27" R;), so that we can construct yp,; and this proves
the result.

In particular then, S8 (Q, 27" R,) cannot be null for any n>3, which, since S
is closed, proves that Q€S and so the theorem is established, since @ is any point
of 8,8 (P, & R,).

Chapter 5

Throughout this chapter we will take the group G involved in the definition of

“Surface” to be the group of integers mod 2.

Lemma 1. If L is a simple rectifiable curve with end points A, B and of length
l <1y, whose projection onto a plane 11 through A, B lies on a circular arc T of radius r,
and centre P, and if C (P, L) is a surface of mintmum area, then L will be the subarc
AB of T.

We can, of course, prove this lemma independently but in fact it follows at once
from the classical theory. C(P,L) will be a disc of minimum area in the sense of
A® measure and hence also [10] in the sense of Lebesgue area it is therefore [12] a

minimal surface in the sense of differential geometry and the result follows at once.

LeMMa 2. If L* is a simple closed rectifiable curve on s (0,1) and C (0, L*) is a
surface of minimum area then L* will be a great circle.

By taking the intersection of (' (0, L*) with a narrow right circular cylinder
whose axis passes through O orthogonally to A’ B’ if follows from the previous lemma

that every small subarc 4’ B’ of L* is a great circle arc and hence the lemma follows.

LemMa 3. If L* is a continuum of finite linear measure on s (0,1) and



THE PLATEAU PROBLEM 67

*
lim AS—;Q;’E— <1 (10)

>0

for all QEL*, then L™ is either a simple closed Jordan curve or else a simple arc.
By [1, Lemma 4, Chap. VIII] L* is an arcwise connected set. Let K be the set

of points P of L* which are interior points of some simple Jordan arc in L*. Suppose

P€E; let I' be an open arc in L* containing P. Clearly ' E. If Q€T then for

some small 7 S (@, r) will not contain either end point of I' and
AS(Q,nL*<97/4 (11)
and AS@nNT =2r. (12)

Suppose there exists @ €8 (@, 3r) (L*—T). There will be an arc [V< L*§(Q,r)
joining @’ to a point on s(Q,r). Thus by (11), (12)

AT -D)8(@Q r<ir
and AT 8(Q,7r)>1r.

Hence I meets I in §(Q, 7). Let @ be the first intersection of I with I' counting
from @’. Then (10) will be contradicted at @’. Hence L*S(@Q, r)<I'. Thus I' is
open in L*. Let I'; be an open subarc of I' containing P with end points 4,, B €E.
Consider Po€E. L*—T} will have at most two components. Let F, be the compo-
nent containing 4, . Then F, will be an arcwise connected set. If F, <& F there will
exist Q' €F,—E. Let IY<L* be an arc joining @ and A4p. Suppose Q' €F,—1I".
Then there will be an arc I'""<F, joining ¢ to a point IV. Let Q" be the first
intersection of I with I counting from ¢’. If Q" is 45, or an interior point of I" we
obtain a contradiction with (10) while if @* =@’ thenIV +I" is an arc in L* containing
@' as an interior point so that contrary to hypothesis @ €E. Hence IV =F, so that
either F, is a simple arc or else F,<E. In the latter case the arcs I'p, PEF, form
an open covering of the closed set F, and hence by the Heine-Borel theorem F, is
the sum of a finite number of arcs. We may apply the same argument to the other
component of L*—T, (if any) so that L* is the sum of a finite number of arcs.
Now by (10) L* cannot contain three otherwise disjoint arcs meeting in a point and

hence the lemma easily follows.

Lemma 4. If L is a continuum of finitelinear measure, L<s(0,1), k, € H, (L) and
the minimum of the area in the class of surfaces with boundary k, is L AL then L is a

great circle. Moreover, if the minimum of the area in the class of all surfaces with
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boundary > H, (L) is AL then L will consist of a finite number of simple arcs meeting
only at their end points.
Suppose that Q€L and that

AS@nL
r

lim

r—0

=Fk. (13)

Let ¢(r) be the number of points in s(@,r)L. Then by Lemma 4

lim1 txyde<k
r—~0 0

and hence if [k] is the integral part of k there will exist arbitrarily small , such that
[t @) da<ry [} ([k]+1—k)+k]
0

and hence there will exist ; such that
tr)<i(kl+1-k)+Ek
in which case since t(r;) is an integer
t(r)) <k (14)

Suppose first that k>4. Let P;(:=1,2,...) be the points of s(@,r,) L. 1f ¢(r)<3,
let B=2 QP; the joins being taken on (0, 1). Then

AB<kr,—r +o(r). (15)

If ¢(r,)>4, choose the notation so that |P, P,| minimizes |P; P;|, then P, QP,<in.
Let G be the centroid of the spherical triangle P, @ P, and let B= GP,+GP,+GQ+
+ Z@—I", Then

i>2

AB<(k—=2)r,+3(V2+2V5)ry+o (r) <kr,—gsry +o(ry). (16)
In either case B is a continuous image of Z@I_’, and hence by Lemmas 2 A, 6 A, 4A,
13A and 11A, C(0,B+L—8(Q,r)) +8 (@ 7)s(0,1) is a surface with boundary
S H,(L). Thus, since L consists of the sum of rectifiable arcs [1], by (13), (14)
and (15)

JAL<}{kr,—&r +AL—kri+o(r)}+{m+o(@)}ri,

which gives a contradiction when 7, is small. Thus k<4. Suppose now k>2 and

consider the two cases of the lemma separately.



THE PLATEAU PROBLEM 69

Case 1. Surfaces with boundary k.
Suppose Ls(Q,r)=P,+P,+P,. By Lemma 14 A we can choose B,AB<2r,,
so that by Lemmas 4 A, 11A

CO0,B+L—-81{Q,n) +8(@,r)s(0,1)

is a surface with boundary k,. If Ls(Q,r;) consists of less than three points we can

choose B to be their join to achieve the same result. Thus by (13)
YALSE{2r+AL—kri+o(r)}+{m+o(r)}#
which again gives a contradiction for small r,. Thus in this case k<2 for every Q€ L.

Case 2. Surfaces with boundary = H, (L).

Let X be the component containing @ of LS (@, 7). Xs(Q,r) will consist of
exactly three points P+ P,+P,. For if not then [7, § 29 XIII] we can find two
closed disjoint sets X', X" such that X'+ X" =LS(Q,r,) and X's(Q,r,) consists of
at most one point B; X' s(Q,r,) consists of at most two points, whose join I will
call B,. Then by Lemmas 15A, 11 A and 4 A (taking Aozmm, A;=X" and
A,=X"" in 15A)

CO,L—-8(Q,r) +B,+B,)+8(Q,r)s(0,1)
will be a surface with boundary > H, (L) whence

LAL<}{AL+2r,—kry+o(r)}+{n+o(r)}H}

which gives a contradiction when k> 2 for small 7.

Let now 1 be the greatest lower bound of A Y taken over all subcontinua of
LS (Q,r) containing P,+P,+P,. By compactness and lower semicontinuity in the
class of continua of bounded linear measure [1, VIII, Theorem 12] 1 will be attained,
in ¥, say. Y, will be an arcwise connected set and hence we can find R€Y, and
three arcs PyR=N,, P,R=N, and P, R=N, contained in ¥, and not meeting except
at E. (B could be one of P, P,, P, in which case the corresponding arc is null.)
By the definition of A, Y,=N,+N,+N,.

I will now show that LS (Q,7)=N,-+N,+N,. If not ALS(Q,r)—A=a>0.
N+ N,+ N, will divide S (@, r,) s (0, 1) into three domins D,, D,, D, where the boundary
of D; is an arc of s(Q,7)s(0,1) plus N, +N,, j+k=i. Let A, be the complementary
domain of D;— L whose boundary contains the arc P, P, of s (@, ;)s(0,1). Let D; be
an interior complementary domain in D; of Ny+ Ny+A,. L isa continuum of finite
linear measure and hence a Peano space. Suppose there were a complementary do-
main A* of D} in D, other than the one containing A,. A,, Df and A* are dis-

joint, with their boundaries in L. Moreover, (boundary A*)< N,+ N;+ (boundary
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DT)CN2+N3+K1, which since N,+ XN, can not bound a domain means that the
boundaries of the three domains have a continuum in common—which is impossible.

Thus the complement of D} in D, is a single domain and the boundary of the
domain {].Tf }° is a simple closed Jordan curve consisting of a subarc N; (possibly
null) of N,+ N, together with an arc M;cL~N,—N,. No two such arcs M; can
have more than one point in common.

Now by the definition of A, AN/ N,<AM; and AN N;<AM,; and hence
AZD} <(m+o(r)) (3AM,?. Hence for small 7,

A8 (Qr)— A —A,—A)<107(ALS(Q,7,)— A< 107 o

We can therefore find a simply connected Jordan domain A in S (@,r,) such that
S(Q, ) >A>LS(Q,7) and A’A <11xma®. Consequently by Lemmas 4A,13 4,11 A,
O(O,L—S(Q,r1)+N1+Nz+N3)+K is a surface with boundary o= H,(L) and so
JALSLAL-ALS(Q,r)+A)+11moa® whence 1<22ma. But a<ALS(Q,r)
<(k+o(r))r, and hence for small r, we have a contradiction. Thus LS (Q,r,)
=N,+N,+N,. The set of points where k> 2 consists therefore of isolated points and
hence of a finite number of points.

If there are no such points then by Lemma 3’ L will be either a simple arc or
else a simple closed Jordan curve. But if L were a simple arc then by Lemma 5 A,
H,(L)=0 and hence by Lemma 1A, L would be a surface with boundary > H, (L)
which since A’L=0<} AL is not the case. Thus in this case L is a simple closed
Jordan curve and hence by Lemma 2’ a great circle. On the other hand, suppose
there is a finite set of points {@;} at which k>2. To each such point we can take
an open neighbourhood consisting of three arcs Ny;+ Ng;+ N;.

X=L—ZNU+N2]~+N3]- will be a closed set, each component of X will meet at

7

least one _I\Ti,- and hence X has only a finite number of components. By Lemma 3’
each component of X will be either a simple arc or else a simple closed Jordan curve,
and the latter leads to a contradiction at the point where it meets an N,. Hence

the lemma is established.

THEOREM 4. If S is a proper mintmal surface with boundary hi€H,(4) and

PeS—4 then
2
mA K(P,r) <

i 1.
}L—O 7
2
Let a=1im£5(—fi). (17)

r—0 7T
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Suppose there exists >0 and ;>0 such that for all r<n
ANKP,r)y<ir(1—0)AL(P,r). (18)

Then, by Lemma 4, for all sufficiently small »

T T 9
AZK(P,r)>fAl(P,t)dt>fQAMdt
(1]

Ct(1-9)
0

>[2nta(l-10)1—08)"dt>a(l—-38) (1-0) " nr®
0

which contradicts (17).

Hence we can find a sequence r,—0 such that
AK(P,r))>31-2""r, AL(P, 1) (19)

By Lemmas 12 A and 11 A there exists 27 € H; (I (P, r,)) such that K (P, r,) is a proper
minimal surface with boundary A7. If follows at once from Lemma 4A that
MNEK(P,r,)<4dmrs.

Suppose now that €' is any finite set of components of I (P,7,). We can find an

open set (, such that
C< G L(P,r,)<(C, 27" r,) (20)

and AGU(P,r))<AC+2"r,. (21)

By [7,§ 29, XIII] and an application of the Heine-Borel theorem we can find two
closed disjoint sets ¥, and F, such that

I(P,r,)=F,+F} and CcF,c@G,l(P,r,). (22)

By Lemmas 13 A and 11 A there will exist A" € H,(F,) and A"*€H, (F}) such that if
Y and Y* are surfaces with boundary A" and A"* respectively then
A Y+ A Y*> A2K (P, ). (23)
Hence by Lemmas 7 and 8 and (19) above
F(A-2"r AUP, 1) <A K (P,r,)<} (r, AF3)+ K3 {AF,}%

"n

Thus either AF,> S K3

orelse AFf=2"2AF,.

In the former case, by (21), (22), for large =,
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]- -n n <
AC>r, (—8 Kg—Z )>A~~- (24)
and in the latter, using (19)

AC<AF, <2 " AF*<2"2AL(P,1,)

K2 "MAZK (P,r,) r <27 Al 1 <27 8

(25)

Now € is the sum of any finite set of components of I (P,r,) and hence it follows
that I (P,r,) has at most 2567 Ki components of measure greater than r,/16 K3 and

that if C, is the sum of these components then
A{Q(P,r,)—C} <278, (26)

Les us now take O to be C, in the above construction of F, and Fj.

Let A,, A% be the sets on the unit sphere s(0,1) congruent to F,, F» apart
from a change of scale of ratio r,:1 and let B, be the set congruent to C, apart
from a similar change in scale. Let k,, ki be the elements of H,(4,), H, (4%) cor-
responding to k,, k% in the obvious way.

Now by {1, VIII, Theorem 12] there will exist a closed set 4 having a finite

number of components and such that there exists a sequence {;} in which

B,—~4 and AA<lim AB,,.
—>00

By (20) and (21)

4,~A and AA<lim A4,,. (27)
Suppose now that X is any surface with boundary = H,{(4). Let D be an open set
on s(0,1) containing 4. Then by Lemma 23 A there will exist h€ H, (4) such that
for some arbitrarily large n;,, D is a surface with boundary —h-+k,. Hence by
Lemma 11 A, X+ D will be a surface with boundary ky,. Thus by (23), (26) Lemma 7
and (19) _

AN (X+Dy=5(1—-2"") A 4,,—27M. (28)

A*D may be chosen small and 7, large and hence A®X >} lim A 4,, which by (27)
Ni—>00

>3 AA.
Consequently by the second half of Lemma 4’ each component of A is topologi-
cally a finite simplicial complex and so H,(A4) has only a finite number of elements.
Suppose now that we have an infinite sequence of domains D> 4. By Lemma
23 A, to each D there will correspond k€ H, (4) such that D is a surface with bound-

ary —h-+k, for some arbitrarily large n;. Since there are only a finite number of
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elements in H, (4) we can choose k, to correspond in this manner to an infinity of
the domains D. If now Y is any surface with boundary kA, then by (23), (26),

Lemma 7 and (19) _
AN (Y+D)yz3(1-2"") A4, —27""" (28 a)

Choosing the sequence of domains D so that A* D0 and taking n,; large we obtain

A*Y>3limAA4,, (29)

which by (27)=} A 4.

Hence by the first half of Lemma 4’ each component of A is a great circle. But any
two great circles meet, and hence 4 is a great circle; so that A 4=2II. Then by
Lemma 7, (29), (26) and the definition of 4,

Al(Pyrﬂi) <1

23'57'7%

lim

Ni—>00

(30)

Thence by the application of Lemma 7 and the minimum area property of K (P,r,)

the theorem follows at once.

Lemma 5. Suppose A is a closed set, h€H, (A), S a proper surface of minimum
area with boundary h, X a closed subset of S not meeting A; then there exists a topolo-

gical relative manifold M with boundary T' such that
So>MoM-T'>X. (31)

By Theorem 4 and the main theorem of this paper, to each P€X there corresponds
an r>0 and a disc D (P) in S—A containing SS(P,27). Let G (P) be the compo-
nent containing P of S8°(P,r). These form an open covering of X and hence by
the Heine-Borel theorem we can find a finite set of spheres S (P;,7;) such that

2 G (P)>X. 1 shall now construct a set of values r;, <#:<27r; such that

ASs(Pi,r))< oo, (32)
Ss(Py,ri)s(P;,r;) consists of a finite set of points if i (33)
and Ss(Pi,ri)s (P, 17y (Pr,ri)=0 if i£j+1. (34)

Since A8 < oo we may, by Lemma 4, choose 7, to comply with (32). Suppose now
that r1,73,...,7, have been chosen to comply with (32), (33), (34) for 4, j, k<. Then
again by Lemma 4, (32), (33), (34) will hold for 4,4, k<a-+1 for almost all 7.
Let D; be the set of interior points ef the set obtained from the closure of the
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component containing P; of 88°(P;,r;) by adding all interior complementary domains
relative to D (P)).

Then G (P)<D,c D (P) (35)
I'i=D,— Dic8s(P;,r;). (36)
Thus XD>X (37)
AT, <o (38)
121. I';T; consists of a finite set of points (39)

s
and [TT%=0 for i+j=+k. (40)

Moreover, T'; divides D (P,) into just two domains D (P;)— D, and D, of both of which
it is the total boundary and hence by (38) it is a simple closed Jordan curve and

D; is a simple closed Jordan domain. By (39) D; > D; will have only a finite num-

i
ber of components.

Lot {Qis} (1<B<a;) be those which consist of single points. Each @i will then
be at a positive distance from D; > D,— @i from which it follows that
it

Q& D 3 Dy, (41)

Hence @i does not belong to X and is therefore at a positive distance from it. We
can therefore find o; disjoint cross cuts Az of D; dividing D; into D¥ plus‘ a; domains
D,z such that

Diﬁ . (X +j§ Dj — Qzﬂ) = 0 (42)
and Diﬂ o Qiﬂ . (4:3)
o ay
Let P;k = _D;k - DT, then P;k (e Fi + z 115 e Z Qiﬂ (44)
1 1
% %j
and hence by (42) IFTfeli-Tiy—2> Q-2 Q. (45)
1 1
By (42) DX (46)
and by (45), (39) and (40)
>TYT} is a finite set of poits (47)

154
and D¥TFTE=0 if ¢==5=+EL. (48)
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Suppose now that there were a point @ which is a component of Df > Df. @ will
s
not be a Qs in virtue of (41), (45) and (40). Let ¥ be the component containing
Q of D;> D;. By (42)
i=i -
Dig (Y= Qi) =0

and for each j=1 Dig (Y —Qjg) =0.
_. Y
Hence Y<(Df+ % Qi) (‘g (D} + % Qsp))-
Joi

Hence the points of ¥ nearer to @ than any of the Qs will lie in D} > D} and
hence Y =@, a single point which contradicts the definition of Y. o

Let now M°=3Df. T shall show that M =M is a topological relative manifold.
At each point of M° M is locally a disec. M — M°cET§ -3 Df. There will thus by
(47) and (48) be just two kinds of points in M — M° those belonging to just one I},
which are edge points of the disc DJ, not belonging to any other D}, and points P

belonging to two I'Y; I'T and T'5 say. P will be at a positive distance from > D and
41,2

hence, since P will not be a component of Df > Df it will not be a component of
1

Df Di. Thus Tf¥—P meets Di near P and vica, versa. Since I'f and I'f meet in
only a finite number of points Df + Di will be locally a half disc at P with boundary
through P. Thus M is a half disc at each boundary point which completes the proof.

We are now in a position to complete the proof of Theorems 1 and 2.

Theorem 1. Take @ to be the group of integers modulo 2. Suppose the boundary
A consists of the digjoint simple closed Jordan curves 4, ..., 4,. For each £¢>0 we
can cover each A4, by a finite set of spheres of radius less than }e¢ whose sum forms
an open set M,> A4, We may clearly suppose that the M; are disjoint. Take X to
be a closed set in §— A containing S—X M;. We thus, by Lemma 5, obtain a mani-
fold M =M (¢) such that
S—A>M>8-2M,.

By Lemmas 24 A, 12A and 25 A the boundary of M (¢) will tend to A in the sense

of Theorem 1 as ¢—0 which completes the proof.

Theorem 2. Take G to be the group of real numbers modulo one. By Lemma
20A we can find a sequence of subgroups L; of H, 1(4) and a sequence of surfaces
8; with boundary =L, such that
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A™8—glb A™S.
Segr
By the main theorem and Lemma 15 we can take each S; to be a proper surface of
minimum area.

By [7 § 28] and Lemma 22 A the surfaces 8; will converge in a subsequence to a
set S whose algebraic boundary in A4 is not zero and hence by Lemma 20A, SE€EG*.
If PeS;, and A.S(P,r)=0 then, by the main theorem, A™S;S(P,r)=W,r".

Let S(P,r) be any sphere with centre on § not meeting A. Then for large 4
there will exist P;€S; such that

S(P;,r—¢e)<=S(P,r) and hence lim A"S; 8(P,r)=W,r".
i—>o0
Thus (compare equations (44)—(48) of Chapter 3) the convergence is lower semi-
continuous in area. Hence S has minimum area in G*, and by Lemmas 20A and 15
any proper surface of minimum area in G* will be a proper surface of minimum area
with boundary =L for some L< H,, ,(A) whence the rest follows from Lemma 19A

and the main theorem.

Appendix ()

Introduction. The main paper, to which this appendix is attached, makes use of
some results in algebraic topology; it is the object of this appendix to supply these
results. It will be clear to the reader that the formulation of these results has been
the result of much collaboration between E. R. Reifenberg and myself; I am happy
to acknowledge this collaboration.

The plan of this appendix is as follows. After the introduction comes a defini-
tion, defining the concept of a surface; this is the definition used in the main paper.
Next come a number of examples and counter-examples, intended to illustrate the
definition. Finally there come the results needed for the main paper, numbered as
Lemmas 1A to 26 A.

We now begin with a short recapitulation. The Plateau problem requires us to
find a surface of minimum area with given boundary. To give a solution, then, we
must clarify our ideas as to what a surface is, what its area is, and what we mean
by a surface with given boundary.

Let us begin by admitting that we shall consider surfaces of m dimensions, lying

(1) By Dr. J. F. Adams, Trinity Hall, Cambridge.
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in Euclidean space of n dimensions; the given boundaries, then, will be (m —1)-
dimensional. We have next to choose between two alternative points of view, which
are both classical in the subject. The one regards a surface as a continuous map (of
some standard space); the other regards a surface as a set of points. Throughout the
present work, a surface is a point-set; to be precise, a surface is a compact subset X
of Euclidean n-space R™ Further, its area is its Hausdorff measure A™(X). These
choices are made for good reasons, but their justification belongs to the main paper,
not to this appendix.

In this appendix, we shall consider the notion of a “‘surface with given boundary”.
In the spirit of the choices made above, the boundary will be (at least) a compact
subset A of Euclidean n-space R™ we are particularly interested in the case when 4
is a (topological) (m— 1)-sphere, or some other (m—1)-manifold. We shall certainly
require that X contains 4; but this condition is not enough by itself, since we do
not wish to admit 4 as a surface with boundary A. We have therefore to impose
some condition on X to ensure that it does “span the hole in 4”. Now algebraic
topology was invented to handle such questions, and we should not shrink from
using it.

We propose, then, to define the notion of a “surface with given boundary” in

terms of algebraic topology.

Definition of a Surface. We have first to indicate the notions of homology
theory which we shall use. The letter G will denote a compact Abelian group of
coefficients. The letter U will denote the additive group of real numbers modulo one;
the symbol Z, will denote the group of integers modulo two. We are particularly
interested in the cases G=U and G=2Z, Let X be a compact space, let 4 be a com-
pact subspace of X, and let m be a non-negative integer. Then there is defined the
Cech homology group H, (X, A; @) with coefficients in G (see [6] and [8]). If 4
is empty, this homology group is written H,, (X; @). Let Y be a second compact space
with a compact subspace B; and let f:X—Y be a continuous map with f(4)< B.

Then there is defined an induced homomorphism
fo Hn(X, A;)—>H, (Y, B; G).
In particular, if X<Y and 4< B, we may make use of the inclusion or injection
map defined by ¢ (x)==.
If X, 4 are as above, then we have inclusion maps
b Hy(4; G)—H, (X; &)
i Hy(X; Y—H, (X, 4; G).
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We have, moreover, a boundary homomorphism
0:H,(X,4;G)—~H, 1(4; G (for m>0)
and an augmentation homomorphism
e:Hy(X; G)—~G.

These groups and homomorphisms enjoy various good properties, which may be found
in [6].

We can now apply these concepts to the study of surfaces. Let 4 be a fixed

compact subset of R", and let X be another compact subset of R”, with X> 4. We

may associate with X the kernel K of the homomorphism
ty Hno1(4; Y—H, 1 (X5 G).
K is thus the set of elements b in H, ;(4; G) such that ¢xh=0.

DeFINITION. We shall call K the algebraic boundary of X. We illustrate this notion
at once by examples. We say that A is a refract of X if there is a continuous map
r;X—>A such that r(a)=a for a€A. If A is a retract of X, then the algebraic

boundary K of X is the zero subgroup; this is immediate, from the following diagram.

. H,(X;®)
by T
e 1 N
H, 1(4; Q) H,_(4; G)

Example 3 is a case in point. _

If X is an orientable manifold, as in Example 2, then K is the whole of
H, :(4;d. In this case, as in the next two examples, the group H,_ 1(4;G) is
isomorphic to @. If X is a non-orientable manifold, as in Example 6, then K con-
sists of the elements of order two in G. For example, if G=U, then K consists of
the residue classes {0}, {§}. If X is as in Example 7, then K consists of the elements
of order three in @. For example, if G=U, then K consists of the residue classes
{0}, {3}, {2}. Next, let L be a given subgroup of H,_;(4; ).

DErFINITION. We say that X is a surface with boundary o L if the algebraic bound-
ary of X contains L. Of course, if we take for L the zero subgroup 0 of H,_;(4; &),
then every set X (containing A) is a surface with boundary —0. This is a trivial
case. For every non-zero subgroup L of H,_1(4; ), the surfaces with boundary > L

constitute a significant class of surfaces. Finally, let & be a fixed element of H,_1(4; G).
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DEerFiNiTION. We say that X is a surface with boundary >h if the algebraic
boundary of X contains k. This is clearly equivalent to saying that X is a surface of
boundary - L, where L is the subgroup of H,_,(4; &) generated by h. It is also
equivalent to saying that there exists k€ H,, (X, 4; () with 0k=~h; this is immediate,

from the following exact sequence.

0 iy
Hm (X, A; G)_>Hm—1 (A, G)_>Hm—l (X’ G)

Examples and Counter-Examples
Example 1. If m=2, n=3 and X is a (topological) disc whose houndary curve

is A, then we certainly wish X to be a surface with boundary A. More generally:—

Example 2. Let X be an orientable {topological) m-manifold-with-boundary whose
boundary is the orientable (topological) (m — 1)-manifold 4. Then we wish X to be a

surface with boundary 4; and on our definition, it is one.

Ezxample 3. Take m=2 and n=3, and use complex numbers z to represent points
in a fixed plane in E® Let the set 4 be the circle |z|=1, and let the set X be
given by

|z|<1, [z—1]|=1, |z2+L]=>

vo=
Al

bl

so that X is a disc with two holes in it. In this case we do not wish X to be a
surface with boundary A4; and on our definition, it is not.

We remark that, in this example, the boundary 4 is a retract of X, but not a
deformation retract of X. For this purpose we recall that 4 is said to be a deforma-
tion retract of X if there is a retraction r:X-—>A which is homotopic to the identity
map, keeping 4 fixed. That is, 4 is a deformation retract of X if there is a continuous
map h:IxX—X (where I=[0,1]) such that

h{0,x)==x R(l,x)EA h(t,a)=a for t€I, a€ 4.

Example 4. We take m=3, n=3. Let the set A4 bz the torus or ring-surface

given in cylindrical polars by
=1+ ¢gteosu, OG=v, z=¢tsinu

(where ¢ is fixed and small, ¢=1, 0<u<2x, and 0<v<2x;). Let the set X consist
of the solid ring (given by 0<{<1), except that a small open spherical neighbourhood
of one internal point is removed. In this case, again, we do not wish X to be a surface
with boundary 4; and on our definition, it is not one. In this example the boundary

A is not a retract of X.
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Ezxample 5. We take m =2, n=3. Let X be the Mobius band given in cylindrical
polars by
r=1+e¢etcosu, O0=2u, z=¢gtsinu

(where ¢ is fixed and small, 0<¢<1, and 0<u<2m).

The boundary is given by t=1, and is a simple closed curve. It is intuitive that if
¢ is sufficiently small, there is a minimal surface which approximates closely to the

band. This example is a special case of:—

Example 6. Let X be a non-orientable (topological) m-manifold-with-boundary
whose boundary is the orientable (topological) (m — 1)-manifold 4.

Our definition gives us freedom either to accept this example as a surface, or to
reject it. This is done by choice of the coefficient group G; if we wish to accept

this example as a surface, we take G'=2Z,.

Example 7. The “triple Mobius band”. Take m=2, n=3, and let X be the set
given in cylindrical polars by

r=1+¢tcosu, 0=3u, z=g¢tsin u
(where ¢ is fixed and small, 0<¢{<1, and 0<u<2nx).

The boundary A4 is given by t=1, and is a simple closed curve. The set X is not a
manifold, for it has a singular curve, given by ¢=0, along which three sheets meet
at angles of 120°. However, it is intuitive that if ¢ is sufficiently small, there is a
soap film which approximates closely to the “‘triple Mébius band”. This example is a

surface (in the sense of our definition) if G=U, but not if G=2Z7,.

Example 8. We take m=2, n=3. The set X consists of one copy of Example 5
and one copy of Example 7, joined by a long, thin ribbon of surface. (With the co-
ordinates of Example 5, the axis of the ribbon is given by r>1, 6=0, 2=0; and
where the ribbon meets the band, they have the same tahgent planes. The ribbon
meets Example 7 similarly.) The boundary A4 is again a simple closed curve, going
(as it were) twice around the Mobius band, along one edge of the ribbon, three times
round the triple band, and back along the other edge of the ribbon.

It is intuitive that if the bands and the ribbon are made sufficiently narrow,
there is a soap film which approximates closely to this figure. However, this set X
is not a surface on our definition, since it admits a retraction onto its boundary A.
We show this as follows. The set X admits a deformation retraction (r' say) onto a
subspace Y consisting of two circles joined by an arc. The space Y admits a map

f: Y—A such that the circle corresponding to the Mdbius band maps with degree 2,
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while the circle corresponding to the triple band maps with degree —1. By the com-
posite map fr':X—A, the boundary 4 maps with degree 2-2—1-3=1. Therefore the
map fr'|4:A—4 is homotopic to the identity. By the homotopy extension theorem,
there is a map r:X—>4 such that r|A is the identity. Thus 4 is a retract of X.

Of course, it is not easy to visualise the map #, since it stretches the narrow
width of a band over the whole length of the figure. Similar remarks apply to the
next example.

Example 9. We take m=2, n=3. We shall construct a set which can clearly be
realised as a soap film whose boundary is a closed unknotted curve, but which never-
theless has a deformation retraction onto its boundary, and hence is not a surface on
our definition.

We begin by taking a very small regular tetrahedron A4 B( D, with controid
X=(—1,0,0), so disposed that 4, B lie in the plane y=0 with > —1, while C, D
lie in the plane z=0 with #< —1. The point X will be a singular point of our sur-
face. Near X, the surface will consist of the six triangles which have X as vertex
and a side of the tetrahedron as base.

We next reflect the tetrahedron 4 BC D in the plane x=0, so obtaining a tetra-
hedron 4'B'C’D’, with centroid X’'=(1, 0, 0). The point X’ will be a singular point
of surface similar to X.

We next draw a smooth arc « in the half-plane z=0, x< —1 which begins with
the segment X C, ends with the segment DX and encloses a convex disc §. Reflecting
in the plane =0, we obtain a smooth arc «' =X’'(" D’ X’ enclosing a convex disc §'.
Similarly, we draw a simple closed curve X 4 A’ X’ B’ BX which is smooth except at
X, X’ and lies in the strip y=0, |#|<1. The arcs «, o', X4 4’ X’ and X' B'BX will
be singular ares on our surface, along which three sheets meet at angles of 120°.

The whole surface consists of the discs 6 and ¢, together with a long, narrow,
endless ribbon. One edge of this ribbon is the boundary; the other edge is the follow-
ing arc: —

XAAX'DCX AAXDCXAA X BBXCDXBB X' ¢"D'X'BBX.
It is understood, of course, that the portion of the ribbon whose edge is said to be
A’ X'D’ contains the triangle A’ X’ D; similarly for all the other such triangles (except
CXD and C"X'D’, which lie in the dises ¢ and &').

This completes the description of our surface. Let us call it 8, and its boundary I'.
If IV is the simple closed curve X A A’ X’ B’ BX, then there is clearly a deformation

retraction ¢ :S-—>I". The map 7’ is a homotopy equivalence; its inverse is the injection

6 — 60173032. Acta mathematica. 104. Imprimé le 23 septembre 1960
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i:I"—=8. Let ¢:I'=8 be the injection of the boundary. Then r'¢:I'=I" is a map of
degree one, and hence a homotopy equivalence. Therefore i:I'8 is a homotopy

equivalence. The following lemma now shows that I' is a deformation retract of S.

LEMMA. Suppose that X is a complex, A a subcomplex, and that the injection
t:4—X is a homotopy equivalence; then A is a deformation retract of X.

(I must apologise to specialists in homotopy theory for including a proof they
may think unnecessary; I have been asked to do so for the benefit of other readers.
The same considerations dictate the use of the proof that follows, rather than the

obvious alternative proof by the method of Whitehead’s Theorem.)

Proof. We begin by showing that the map ¢:4—X has a homotopy inverse
r:X->A such that ri=1,. In fact, since ¢ is a homotopy equivalence, it has a homo-

topy inverse f:X—>A4. Since fi~1,, we have a homotopy h:IXA->A such that
h(0,a)=f(a), h(1,a)=a.

We may extend 2 to A :0xXUIxA4—>A by setting &' (0,z)=f(z). We can now
extend A’ to A" :IxX—>A by the homotopy extension theorem. Define »: X—A4 by
r(x)="h(1l,a); we have r(a)=a, that is, ri=1,. Moreover, we have f~7r:X—A4, so
tr~if~1x. We have shown the existence of thr required map r.

We will now show that there is a homotopy A :IxX-+X such that

KO,z)y=r(x), hQ,z)=2 k' a)=a for e €A.
We may begin by taking a homotopy A:IxX—X such that
RO, 2)=r(x), h(l,z)==z.
We shall now use the homotopy extension theorem on the pair
IxX, OxXUlIxXylIxA.
Define a map B:OxIxXUIx(OxXUlxXUuIxd4)—>X

by k{0, u, x)=1r(x) k0, x)="h(tr(z)
k@, 1, x)=h(t, x) Et,u,a)="h(t a).

(We easily verify that these are consistent.) By the homotopy extension theorem, we
extend k£ to k' :IxIxX-—+>X, and define »':IxX—X by &' (u, ) =F" (1, u, ). We have

MO, 2)=r(x), kQ,z)==2 I (u,a)=a.

This completes the proof.
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Results. We now proceed to prove the results which are needed for the main
paper. We retain the notations already introduced, but for brevity we omit the symbol
for the coefficient group G where no emphasis on it is needed. We make the general
convention that the letters A, B, C, D, X, Y and Z (with or without suffixes) shall
denote compact spaces; in much of what follows we shall treat them as abstract spaces,
since any embedding in R"™ is irrelevant. The definitions of “‘algebraic boundary’ and
“surface” remain meaningful. Since we shall have to deal with a number of inclusion
maps, we make the convention that if a space Y contains a subspace Z, then i (Y, Z)

shall denote the inclusion map from Z to Y.

Levma 1A If X=A4, then the algebraic boundary of X is zero.

This is immediate, because the induced homomorphism @ (X, 4), : Hpn_1 (A)=Hp 1 (X)
reduces to the identity homomorphism of H, 1(4).

For our next lemma, we recall that ¢:H (4)—G is the augmentation homo-

morphism.
Lzmma 2A. If X is coniractible, then the algebraic boundary of X is
(¢) Hyp_1(4) if m>1
(#) Ker ¢ ¢f m=1.
This lemma will be used to show that contractible ‘“patches’ are good for patching

holes in surfaces. The result is immediate if m>1, since H,_;(X)=0 in this case.

The case m=1 is similar, since g:H,(X)~>G is then an isomorphism.

Lemma 3A. Suppose that X = |J X,, where the X, are disjoint and contractible.

1<rgN

Write 4,=ANX,; write &,: Hy(A,)=G for the augmentation maps. Define
' K,=>1i(4, 4,) ,JKer e, Hy(A4).

Then the algebraic boundary of X is
(2) Hp1(4) if m>1
(i) Ky if m=1.
The purpose of this lemma is similar to that of Lemma 2 A. The proof is also

similar, since Hn_; (X) is isomorphic to the direct sum > H,_;(X,).
1<rN

Lemma 4A. Suppose that X is a disc; write L for H,_, (A) if m>1, or for Ker ¢

tf m=1. Then X is a surface with boundary > L.

This is immediate from Lemma 2 A, since a disc is contractible.
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LemMmMA 5A. If A is a Jordan arc, then H, (A4)=0.

This holds because A4 is contractible.

Lzvma 6 A, Suppose that {: X, A=Y, B is a continuous map. Let L, be a sub-
group of Hy_,(A); let L be the subgroup of Hn_,(B) consisting of elements of the form
foh, where h€L,. Suppose that X is a surface with boundary > L,. Then Y is a sur-
face with boundary > Lg.

This is immediate by “naturality” ([6], p. 11, Axiom 2).

LeMMA TA. Suppose that L is a subgroup of H, 1(A), that X is a surface with
boundary o> L, and that Yo X. Then Y is also a surface with boundary o L.

This follows immediately from Lemma 6 A, by taking f to be the inclusion map.

LevMA 8A. Take n=m, and suppose that A is the unit sphere S™* in R™.
Then we have two cases.

() If X contains the unit solid ball E™, then the algebraic boundary of X is
H, ,(4) if m>1, or Ker ¢ if m=1.

(i) If X does not contain the unit solid ball E™, then the algebraic boundary of
X 18 zero.

Part (i) is immediate from Lemmas 2 A and 7 A. Part (ii) follows from the fact
that A is then a retract of X.

LEMMA 9A. Suppose that X=1xY and A=0xY U1 xY. Let iy, ¢, be the
obvious embeddings of Y in A as OxY and as 1xY. Let K be the subgroup of
H,,_1 (A) consisting of elements of the form i, h iy h, where h€H, 1 (Y). Then the
algebraic boundary of X is K.

This lemma, like the following one, is intended to allow the use of cylindrical
‘“patches”. The result is immediate, by using the homotopy axiom ([6], p. 11, Axiom 5)
which is valid for Cech homology.

LeMma 10A. Suppose that f:IxY—X is a continuous map. Set Ay,=f (0xY),
A,=f(AxY), and A=A4,U A,. Let us write fo for flOxY, f, for f|1xY. Suppose
that f, is a homeomorphism from 0xY to A,, and that we are given a subgroup L, of
H,_1(A,). Let K be the algebraic boundary of X. Then we conclude that there is a
subgroup L, of Hm_1(A,) such that

K+i(4,4,) JLoy=K+i(4,4,),L,.

Proof. For each element h° in H,_1(0xY) we have a corresponding element h, in

H,_ 1 (1% Y) such that
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T(IXY,0xY) B=i(IxY,1xY) A"

We have an isomorphism
fow: Hu1 (Ox Yy Hpy 1 (4y);

write Ly=fos Lyc H,, 1 (0xY); let L; be the corresponding subgroup of H,_;(1x Y);

define
lefl*Licﬂmd (A1)-
Then we have
O0=fi(IXY,0xY) B—fi(IxY,1x Y) A

=i(X,4),[ 4, Ay) fo*ho —i(4, A1)*f1*h1]-
Thus (A, Ag)ufouh® — i (4, 4,),f1 B €EK.

Since fo,h° may be a general element of L,, and f,,A' may be a general element of
L,, the required equation follows at once.

Lemma 11 A, Suppose that X = U X,. Suppose given subsets A, X, and A < X

1<rgN

writet B=AU U A,. Let L,, L be subgroups of Hum_1(A4,), Hn_1(A4); suppose that X, is
T

a surface with boundary > L,. Suppose we have

(Equation E) i(B,A),Lc > i(B,A4,).L,.
v

1<rg

Then X is a surface with boundary > L.
This result is needed in order to prove that after cutting holes in a surface, and

then patching it again, we still have a surface.

Proof. Suppose that h€L. Then
(X, A) k=1 (X, B), (B, A4)k

€i(X,B), 3 i(B 4L

€ > 1(X,X),i(X,4,)L,

1<r<N

€ > (X, X),0.

1<rgN

Thus h€Ker ¢ (X, 4),. This concludes the proof.
In applying Lemma 11 A, we require Equation ¥ as data; Lemmas 12 A to 16 A

are designed to supply this data, in the applications we have in mind.

LeEmmA 12 A, With the notations of Lemma 11 A, suppose further that AN X, < 4,
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and that if r=s, then X,NX;<c A, N A;. Let K, be the algebraic boundary of X., so
that K,c H,_1(A,). Then the algebraic boundary of X is given by

K=i(B, 4):' 31 (B, 4),K,].
Proof. By Lemma 11 A the algebraic boundary of X contains this subgroup;

we have to show the converse. That is, we have to show that if h€H, ; (4) and if
t (X, A),h=0, then there exist h" €H,_; (4,) such that

i (B, A),h=21(B, 4,)F.

This is proved by diagram-chasing in the following obvious diagram.
H,_.(A)

H,(X,B) —— Hupa(B) —— Hyp,(X)

M

sz (XT’Ar) e ;Hﬂwl (Ar)

r

R

In this diagram, the horizontal line is exact, and the isomorphism marked comes
from “‘excision’’ (see [6], pp. 11, 266, and cf. p. 33).

Levma 13 A. Suppose that A=A4,UA,, D=4, N A4,. Write K for Hn, 2 (D) if
m>2, or for the kernel of ¢: Hy(D)— G if m=2. Suppose that B is a surface with
boundary > K. Then we have
1(AUB, A, UB)Hy 1 (4, UB)+i(4VU B, A,U B) H, 1(A,UB)>i(4AU B, A), Hn_,(4).

This lemma would allow us to show that the union of two surfaces, one with
boundary A4, U B and the other with boundary A4,U B, is a surface with boundary 4.

We note that the subsidiary surface B is of one less dimension than those we are

ultimately concerned with.

The result is proved by diagram-chasing in the following diagram.
Hm—l (A) —> lip-1 (A:Al)

| .

Hyp1 (AU B)y—> Hy_1 (AU B)—> Hyp 1 (AU B, 4,U B)<— H,,_ 1(A2,D)

T b

Hm—l (A2UB)_THm—1 (AZUB,.D "—‘*Hm 2

~

H,_,(B,D)
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LeMmA 14 A, Take G=2Z,, m=2. Suppose that A=A, U A,, and that D=4, N A,
consists of three points. Suppose given h€H, (A). Then we can choose two of the three
points in D so that, if B is an arc joining them, there exist h'€ H, (A, U B),h*€
H, (A, U B) such that ¢ (AU B, A, U B),A* +i (AU B, A, U B) ,k*=1i (A U B, A),h.

Proof. Consider the (Mayer-Vietoris) homomorphism

] 7 0
H,(A)% H (4, 4,) < H, (4, D)% H, (D).

Let k€H, (4, D) be an element such that ik=jh. Since we have ¢8k=0 and
Hy(D)y=Zy+ Zy+ Z,, the element 9k must be one of (0,0,0), (0,1,1), (1,0, 1)
(I, 1,0). We can choose two points of D so that ok is zero on the remaining point
of D. Let B be an arc joining them; then we have an element L€ H; (B U D, D) such
that 9 L=0k. The proof is completed in a fashion precisely similar to that of Lemma
13 A, by diagram-chasing in the following diagram.

H, (4) — H, (4, 4,)

l l

H, (4, B)—>H, (4 U B) —> H,(AU B, 4, U By<—H, (4,, D)

| T 0

H, (4, B)—H, (A, U B, D) ——6>H0 (D
\ s
H,(BUD,D)
Lemma 15A. Suppose that

A=440 U 4,
1

<r<N
where AN A4,=D, if 1<r<N
A, nA4,=0 if 1<r<s<Ai.

Write K, for H,_o(D,) if m>2, or for the kernel of ¢: Hp o (D,)—>G if m=2,

Suppose that B, is a surface with boundary > K,, and wrile

C=4u U B,

1<rgN

Co=4,U_U B,

1I<rN

C,=A4,UB, (if 1<r<n).
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Then we conclude that

>

)
0<r<N

(C,C)Hin1(C)) 2 (C, A) Hp_1(A).

Proof. We may assume that ByN A =Dy, since the general case follows from
this one by a continuous map. The result is now immediate from Lemma 13 A, by

induction over N.

LEvma 16 A. Suppose that

where A,_10A4,=D, if 1<r<N
A, N4,=0 if |[r—s|>1.
Write K, for H, »(D,) if m>2, or for the kernel of e: Hy (D,)—>G if m=2. Suppose

that B, is a surface with boundary > K, (for 1<r< N); and set By=0, By.1=0. Write
C=4u U B,

ISrgN

C,=B,UA,UB,,; (if 0<r<N).
Then we conclude that
2> (0, C)Hu-1(C)) 24(C, A) Hp-1 (4).

0<r<N

Proof. We may assume that ByN 4= Dy, since that general case follows from
this one by a continuous map. The result is now immediate from Lemma 13 A, by

induction over N.
We now pass on to certain results concerning measure and dimension. We there-

fore revive the assumption that our spaces are compact subspaces of R", for some n.

Lemma I7TA. If A" 1 (4)=0, then H,_1(4)=0.
Proof. Since An_1(4)=0, dim (4)<m—2, by [8] Theorem VII, 3. This shows

that 4 admits arbitrarily fine coverings whose nerves are simplicial complexes of
dimension at most m—2. Hence the Cech homology group H, 1(A) is zero (cf.
[8], 151-152).

LeEvMMA 18A. If A ¢s a totally disconnected set and m <2, then H,_1(4)=0.

Since dim (4)=0, this follows in the same way as the preceding lemma.

LeMma 19A. If A™(X— A)=0 then the algebraic boundary of X is zero.

Proof. Given £>0 cover A with open sets O; of diameter <le. Set O=U O;

write X'=X nC0; then X' is compact and dim (X')<<m—1. Cover X' with sets P,
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of diameter <1¢ so that not more than m of them have a common point. Now
take for a covering of X the sets 0;, P;, and for a covering of A the sets O; together
with those P; which meet on 0;. Since no such P; is more than ¢ from A, such
pairs of coverings are cofinal in the set of all pairs of coverings. Moreover, when we
form the nerve of this pair, all simplexes of dimension >m—1 lie in the nerve N,.
As in Lemma 17 A, we conclude that H, (X, A)=0. The required result now follows

from the exact sequence
0
H,(X, Ay~ H, 1(4)— H,_; (X).

Leuma 20A. Take G=U. Suppose that A is a topological (m— 1)-sphere, that
XoA and that dim (X)<m. Then A is a retract of X if and only if the algebraic
boundary of X is zero.

We note that the assumption dim (X)<m is certainly valid if A™(X)< oo, by
[8], Theorem VII, 3. The result is immediate from Hopf’s Extension Theorem as

given in [8], p. 147] (Theorem VIII, 1'). We now pass on to three lemmas involving

limits.

LeEmmaA 21 A. Suppose given a set A, a fized subgroup L of H,_4(A4), and a
decreasing sequence of sets X, > A, each of which is a surface with boundary > L. Write
X=NX,. Then X is a surface with boundary > L.

Proof. Let h€L; then ¢(X,, A),h=0, by definition. Now, by the continuity of
Cech homology ([6], 260-261) the injections ¢ (X,, X) yield an isomorphism of H,, 1 (X)
with the inverse limit group Lim H,_;(X,). This isomorphism maps the element
i (X, A),h into the sequence {i(X,, 4),k}, that is, into the sequence of zeros, which
is the zero element of the inverse limit. Thus ¢ (X, A),A=0, and X is a surface with

boundary > L.

LemMma 22A. Take G=U. Suppose given a set A which is a topological (m — 1)-
sphere, and a decreasing sequence of sets X,> A such that the algebraic boundary of
each X, is not zero. Write X = X,. Then the algebraic boundary K of X is not zero

7

Proof. Let the algebraic boundary of X, be K,. It is immediate that K, ;< K,,
so {K,} is a decreasing sequence of subgroups. By the argument used in proving Lemma

21 A, we see that K= K,. Now (since we are using Cech homology with compact

coetficients) K, is compact. It is also a subgroup of H,_; (4, U), which is isomorphie

to U. The compact subgroups of U are (i) U itself and (i) the finite cyclic groups.
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We conclude that the intersection () K, is attained after a finite number of steps,
r

that is, N K,= K, for some n. Hence K is non-zero.
r

LeMmaA 23A. Take G=2Z,, m=2,n=3. All the sets considered will lie on the
sphere-surface S. Suppose given sets A, A,, D such that A,—~ A and A< Int D, where
the interior Int D is taken relative to the space S®. Suppose given h' € H, (A,). Then we con-
clude, there exists h € H, (A) such that, for infinitely many r, D is a surface with boundary =

i(AU A, A) B —i (AU A, A)h.

Proof. First, suppose S? triangulated. We may subdivide it so finely that every
“closed star’ either lies in D, or does not meet A. Then the closed simplexes, which
meet A form a subcomplex D, with A< Int Dy, D= D. The group H, (D) is finite.

Next, by repeating the subdivision, we may construct a decreasing sequence of
subcomplexes D; such that 4<Int D, and 4= D,. Thus H, (4) is isomorphic to
the inverse limit Lim H, (D;). :

We now argue by limits and finiteness to find a ¢ so large that ¢ (D, D,), H, (D;)
=i D,, 4),H, (4). In fact, suppose that A, is a class in H, (D,) which is in the image
i (D, D) H, (D;) for arbitrarily large s. Then Ak, is of the form ¢ (D;, D,).h, for at
(most) finitely many h,; one of these must be in the image ¢ (D,, D), H, (D;) for
arbitrarily large n. Continuing by induction, we obtain a sequence of elements %, € H, (D)
with hs_1=1 (Ds_1, D;),h,. This sequence defines an element of the inverse limit, and
hence of H,(4A). We conclude that if %, € H, (D;) it not in the image ¢ (D;, 4), H, (4),
then it is not in the image ¢ (D,, D,), H,(D;) for some finite s. Since H, (D,) is finite,
we can find at ¢ so large that

¢ (Dy, Dy) H, (D) =1 (D, A) H, (4).
For sufficiently large r, we now have 4,< D,. Thus for sufficiently large », we have
i (Dy, 4,),1 €1 (Dy, A),H, (4).

But the elements of i (D,, 4),H, (4) are finite in number. Hence we can find one of
them, say i (D,, 4),h, such that

i (D, A) R =1 (Dy, A),h

for an infinity of n. By the definition of the algebraic boundary, this completes
the proof.
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Levma 24A. Take G=1Z, m=2. Suppose that A is a finite set of disjoint
simple closed Jordan curves; let h€H, (A4) be the fundamental class of the manifold A.
Then any compact 2-manifold-with boundary whose boundary is A is a surface with
boundary >h. A

We note that the fundamental class 2 may be described as follows. Let us write
A= l;J A,, where the A4, are the separate Jordan curves. Then H, (A)gng (4,), and

H,(A,)=Z,. The component of h in each group H,(4,) is the non-zero element.
The lemma is a special case of classical results.

LEMMaA 25A. We take G=12Z, m=2, n=3. Suppose given C<S< M, where C
is a finite set of disjoint simple closed Jordan curves, S is a compact set, and M is an
open subset of R®. Let h€H, (C) be the fundamental class of the manifold C. Suppose
that 8 is a surface with boundary >h. Then there exists a compact 2-manifold R with
boundary T' and a continuous map f:R—M such that f|I' maps I' homeomorphically

onto C.

Proof. We first replace M by a finite complex N in R? such that Sc Nc M.
We now have ¢(N,C),h=0. Since ' and N are finite simplicial complexes, their
Cech homology groups and their singular homology groups are isomorphic (see [6]).
Thus in singular homology we have ¢ (N, C),h’' =0, where the element 2’ in singular
homology corresponds to h in Cech homology. The equation i (N, C),h’ = 0 means
precisely the following. There is a finite set of plane triangles P; Q; R; (which we
may suppose disjoint) and continuous maps f;: P;@; R, — N such that the parametrized
arcs f,(P;Q), fi(Q;R;), f;P;R;) have the following properties. Firstly, there is a
subset of them which consists of the simple closed Jordan curves of O, each repeated
once and once only. Secondly, the remaining ares fall into pairs of equal arcs.

We now construct a quotient space R from the triangles P;@; R;, as follows.
If a typical pair of equal arcs is f;| P; @), f.| @ Bx then we indentify corresponding
points on the sides P;@Q; and @, R, of the triangles P;@Q; R; and Py @, R,. The maps
fi pass to the quotient, and define a map f: R—N. The space R provides the 2-mani-
fold required.

Levma 26A. Take G=Z,. Suppose given A and h€H, _1(A); let L be the sub-
group of H, 1(A) consisting of h and 0. Then a set X containing A is a surface
with boundary > L if and only if there exists k€ H, (X, A) such that 0k=h.

As remarked above, this is immediate from the exact sequence

0
Hm (X’A) _>Hm—1 (A) '—>Hm—l (X)

This completes the results needed for the main paper.
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