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Introduction

For some parabolic differential equations it is known that any solution in a cy-
lindrical domain with axis #>0, tends to a limit as {—oco provided the boundary
values and the coefficients of the equation tend to a limit as ¢—oo. Furthermore,
the limit of the solution is known to be the solution of the limit equation. For second
order parabolic equations, this has been proved by the author [5] for the first mixed
boundary value problem, that is, when the solution u is prescribed on the lateral
boundary of the cylinder. Extension to equations with a nonhomogeneous term which
is “slightly” nonlinear in u, is also given in [5]. In [6] it was proved that if both
the coefficients of the parabolic equation and the boundary values admit an asymptotic
expansion in ¢! ((—oo), then the same is true of the solution. Asymptotic conver-
gence for solutions of second order parabolic equations satisfying a nonlinear boundary
condition (generalized Newton’s law of cooling) was established by the author in [7].

The present paper consists of two parts. In Part I we consider second order
parabolic equations and establish the asymptotic behavior of solutions, both for the
first and the second (and even more general) mixed boundary value problems. The
nonhomogeneous term is a nonlinear perturbation. The domains are “almost cylindrical,”
ie., the cross sections ¢=const. tend to a limit as {—co. For the first mixed boundary
value problem, the present treatment is not only an improvement of the analogous
results of [5], but it is also a much more simplified treatment. Thus for instance,

we do not make here any use of existence theorems for parabolic equations. We
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use however the Schauder existence theory for elliptic equations [17] and, for the
second mixed boundary problem, recent results of Agmon, Douglis and Nirenberg [1].

In Part II we consider general nonhomogeneous parabolic equations of any
order in an “almost cylindrical” domain, and solutions having prescribed Dirichlet
data on the lateral boundary. We first prove that if both the coefficients of the equa-
tion and the boundary values tend to a limit as {—oc, then the solution u (z,t) con-
verges in the L, norm to a solution of the limit elliptic equation. The special case
of homogeneous equations in a cylindrical domain with zero boundary values was
proved by Vishik [20]. In our derivation of the L, convergence, we make essential
use of some results of the paper of Agmon, et al. [1], already mentioned above. Having
derived the L, convergence, we use it to get a wuniform convergence. Here we make
use of the fundamental solutions for parabolic equations [4] [19] and also (for cylin-
drical domain—where stronger results are derived) of Green’s function considered by

P. Rosenbloom [16]. Finally, we derive asymptotic expansions in ¢ ' for the solutions.

Part I. Second order parabolic equations

In this part we consider the asymptotic behavior of solutions of second order
parabolic equations satisfying either the first or the second (and even more general)
boundary conditions. In § 1 we state the main results about uniform convergence
(as t—o0) of solutions of the second mixed boundary value problems (Theorems 1, 2).
Theorem 1 is proved in § 2 and Theorem 2 is proved in §§ 3, 4. In § 5 we discuss
the asymptotic expansion in ¢! of solutions, as #—>co. The results of §§ 1-5 are
extended in § 6 to solutions of the first mixed boundary value problem. Finally, in
§ 7 we consider the behavior of solutions satisfying a generalized second boundary

value condition.

1. Statement of results for the second boundary value problem

Let D be a domain in the (n-+ 1)-dimensional space of real variables ()
= (%, ..., %,;,t) bounded by a bounded domain B on ¢{=0 and a surface § in the half
space t>0. We denote by B, the intersection D N {t=7} and assume that for every
>0 B, is bounded and nonempty. We further denote by D, (D, =.D) the domain
Dn{0<t<t} and by S, the set SN{0<t<7}. The boundary of a domain G is de-
noted by &G, the closure of a set G is denoted by @, and the complement in a set

G, of a set G, is denoted by G,— G,. Later on we shall assume that there exists a
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bounded domain € in the z-space such that, as {—oco, B,~>C in a certain sense.
For simplicity we assume throughout this paper that € and S are each composed of
one surface, but all the results can easily be extended to the case that C and S are

each composed of a finite number of surfaces.

DeriNiTiON. We say that w (y,t)—z(z) uniformly in (y,t) €D, z€C as y—>=,
t—>oco and also write
Lim w (y,t) =z (x),

y—>z
t—>00

if for any £>0 there exist 6>0, ¢{,>0 depending on ¢ such that |w(y,t)—z ()| <e
whenever (y,f) €D, z€C, |y—x|<8, t>t, A similar definition can be given for funec-
tions defined only on 8.

Consider the equations

n 2

Fu z du du
_ ) . _or_ for (z,8) €D,
Lus3 o007 0+ 3 b ) ool hu—yy =(w0+betu) for @0
(1.1)
Lyv= % a;; (x) Fo +§b(x)?ﬁ+o(x)v—f(x)+k(xv) for z€C (1.2)
0 _i.j=1 iy % axiaxj & (] 670, - ’ ) .
where u=1u (2,t),v=v (), and the boundary conditions
@“a(;; D g tu )=kt for (z)€S, (1.3)
d—;’%—!—g(x)v(x):h(x) for z€0C. (1.4)
Here aLﬂc’t)=lim > ay(x,t) cos [v(x,t), x,—]au(y’ ) (1.5)
oT vz nin1 Y

for all rays p issuing from («, {) and pointing into the interior of B,. We ecall ou/eT
the transversal (or comormal) derivative of w. In (1.5), v (x,#) is the outwardly directed

normal to @B, at the point («,¢). Similarly we define

do@ . 2 3o (9)
= hgnza (@) 008 [v(2), 2] (L6)

as the transversal derivative of v (), where the rays y start at z and point into the
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interior of C. In order to avoid confusion later on, we have denoted the transversal
derivative on 8 by 8/67T and on ¢C by d/dT.

DerFiNITION. Given a bounded domain G in the z-space, its boundary &G is
said to be of class O™** (m integer, 0 <f<1) if to each point y of G there corre-
sponds a sphere V (in the z-space) having y for its center and such that ¥V Né @ can

be represented, for some 4, in the form
xiZW(xl’ ooy Lin 1, Xigly «oey xn); (1.7)

where v possesses m Holder continuous (exponent ) z-derivatives. If the functions
w are only assumed to be m times continuously differentiable, then @ G is said to
belong to the class O™,
For any function w=w (x) in G we introduce the norms:
|w|6;=l.;1€.‘(t;). |w@)|, |w|f=|wl|i+HS w),
ai G
oz "

lwléin= 2

li|<k

’
o

where 8/8x denotes any partial derivative with respect to the z; and 0<ea <1, and

HE (w)=1ub | (@) =w )],
nyea |z—y|
When there is no confusion, we omit the superseript ¢ from the norm sign.

When we write, for functions z (z) defined on 8@, the norm |z|3%, we mean the
following. A finite covering of @@ is given and, hence, in each such portion z be-
comes a function of n—1 variables. We then take [z|3° to be the sum of the d-
norms of z in these portions. We shall clearly assume then that 8 G is of class C°
with e>d. Let the above finite covering be composed of portions 8 G; of 9 G and let
w=1 be the representation (1.7) for 8G;. We then define

|8 G|m+ﬁ:;,’/’j,m+ﬁ-

Finally, we denote by |G| the diameter of G.

We shall need, later on, various assumptions on L, Ly, f, k, g, b and D. For the
sake of clarity we list most of them now.

(A) The coefficients of L are continuous in D and are bounded by a positive
constant M, and L is uniformly parabolic in D, that is, there exists a positive con-
stant” M’ such that, for all (z,£) in D and for all real veetors &= (&, ..., &),
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n n

Zl% @) &E=>M 2 & (1.8)

Sy =1
(Ag) The following limits exist, uniformly in (z,¢) € D and y€C:

lim a; (x, t)=a;(y), Lm b (x,)=0b;(y), lim c(x, t)=c(y).
T—=>Y =Yy T->y
t—>o00 t—o0 t->00

The functions a; (y), b; (y), ¢ (y) are Holder continuous (exponent &) in C.

(B) f(z,t) is a continuous function in D.

(By) As x>y, t—oo, f (x,t)—f (y) uniformly with respect to (x,¢)€D and y€C,
and f(y) is Hélder continuous (exponent «) in C.

(C) E(x,t, u) is continuous for (x,f,)€D, — oo <u< oo, and

where u, is a sufficiently small constant (depending on M, M’, the «-norms of the
coefficients of L and Lu.b. (|B;|+|2B;|,); see (D)).
¢

(Co) As w—y,t—oc0, k(x,t,u)—>k(y, w) uniformly with respect to (z,t)€D, y€C
and % in bounded intervals. The funection k (z, ) is Hoélder continuous in (x,u) for
2€C and u in bounded intervals, and @k (x,u)/du is continuous for x €C and » in

bounded interval, and

< (1.10)

’a}c(x,u)
U

where u, is a sufficiently small constant (depending on the same quantities as the
to in (L.9) and, in addition, on bounds on |f|, ¢, |k| and |2 Clz.,).
(D) For every t>0, 3B, is of class O* and lu.b. (|B;|+]|2B;|;) < co.
t

(Dg) 8C is of class C*** and to every point = on & C there corresponds one and
only one point (x;,t) on each B, (t>0) such that () z;—z as {—> oo, uniformly with
respect to x on 9, and (ii) as ¢— oo, the direction cosines of the normal » (z;,£) to
0B; tend to the direction cosines of the normal v (x) to 8 C at x, uniformly with

respect to & on 0C.

Remarks. (a) By (A,), (D) it follows that if z(z) is continuously differentiable
in & neighborhood of ¢ C, then as {->oco 8z (2:)/8 T—>dz(z}/d T uniformly with respect
to x on 2C. (b) If D is a cylindrical domain, then (D,) reduces to the assumption
that 9 B,=2C is of class O***.

(E) h(x,t) is a continuous function for (z,¢) on S.
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(By) As t—co, h(w, t)—h (x) uniformly in x€0C.
(F) g (x,t,u) is continuous for (x,t) €8, — co <u < oo, and there exists a positive

constant g, such that

g (z,t,u)

g for (z,8)€8, — oo <u << oo, u=0. (1.11)

(Note, by taking »=0, u—0 that ¢ (z,?, 0)=0.)

(Fy) As t—>oco0, g (2t u)—>g(x)u uniformly with respect to x on 6 and % in
bounded intervals. (Note, by (F), that g (x)>u,>0.)

(G,) @;(x) belong to C*** in some outside neighborhood of & C.

(Gy) 80 is of class 0=

DrriniTIoN. We say that u(z,t) is a solution in D of the system (1.1), (1.3)
if (i) » is continuous in D, (i) the derivatives du/dw, &*w/dx; dx;, du/0t are con-
tinuous in D and (1.1), (1.3) are satisfied. We say that »(x) is a solution in C of
the system (1.2), (1.4) if (i) v is continuous in C, (ii) the derivatives 0v/0 x;, & v/6 x; 0 s
are continuous in C and (1.2), (1.4) are satisfied.

We can now state the main results on the uniform convergence of solutions of
{1.1), (L.3) as t—oo.

THEOREM 1. Assume that (A)—~(F) hold and, in addition, that

lim kb (z,t)=0, lim f(x,¢)=0, lim sup ¢(x,#)<0 (1.12)
t-—>00 too0 t—>00
uniformly with respect to (x,1) €S, (%,t) € D and (x,t) € D respectively. If u (z,t) is a solu-
tion in D of the system (1.1), (1.3), then, uniformly in (z,t) € D,
lim w (x, £) =0. (1.13)
t—o0
TeEoREM 2. Assume that (A)—~(F), (A)—(Fy) (Gy), (Gy) hold and that ¢ (x)<0. If
w (%, t) 45 @ solution in D of the system (1.1), (1.3), then

lim u (z, ) =v (y) (1.14)
T—>Y
t—>00

uniformly with respect to (x,t) in D and y in C, and v (y) is the unique solution in C of the

system (1.2), (1.4).
In a preliminary report [9] we have proved Theorem 1 as stated above, and Theo-

rem 2 without assuming (G,), (Gy).
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In the proof of Theorem 2 there appears a decisive lemma (Lemma 3, below)
whose proof involved tedious potential theoretic calculations. The present proof avoids
these calculations by simply using a recent result of [1]. However, we have to as-
sume (Gy), (Gy)

In the course of the proof of Theorem 2 it will be shown that if 2 (x), g (x)
belong to C'** then v (x) belongs to C*™* in (, and thus it satisfies (1.4) in the classi-
cal sense.

From the proofs of Theorems 1, 2 it will become clear that they remain true if
8/8 T is replaced by any other oblique derivative 8/8 T provided, as t—>oo, 8/8 T—>d/dT
{(at the corresponding points).

2. Proof of Theorem 1

We introduce the function . .
@ (@)= — ™, 2.1)

where R is a positive number satisfying 22, <R for all (x,t)= (2, ..., 2, ¢) in D, and

A is a positive constant. A and R will be determined later. ¢ (x) satisfies
(L) (x,8)= —ay, (x,t) Ae?™ —b, (x,t) L™ +c (2, t) (*F —e*™)  for (x,t) €D,

o ¥ (:!) AT, g ! AR Az
— 7 > — 12 — 1 .
6T +g(x, t,(p(x)) Le T+/,L1 (6 [ ) for (x,t)ES

Using (A), we may choose A sufficiently large such that
(L) (1) < — 2 +c(x,t) (*F —e*™)  for (x,t) €D. 2.2)
Having fixed A, we choose R so large that

8—%5(,@ +g @ t@®)=u,>0 for (x,¢)€S. (2.3)

7

Note that the constants A, R, u, are independent of (»,t). By (1.12) it follows

that there exists a sufficiently large number & such that
ez, t) (e*F — ey < for all (x,t) € D D;. (2.4)
Substituting (2.4) into (2.2), we get

(Lo)(x,t)<—26 for (x,t)€D—D;, (2.5)
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where 2= g.lb. ¢ >0. For later purposes we define
(x, t)eD

§o= g.lb. @ (x), &= Llub. ¢ (). (2.6)

(r,t)eD (z.tyeD
The funection ¢ (x) will now be used to construct a comparison function which

will majorize the solution u (x,t). Consider the function

p(x) o
%6 w5

(x) A 4 (x) e—'y(t~o)

vz t)=2¢ 2.7)

where ¢, 4,4 are any positive numbers, and ¢>&. Using the properties of ¢ (x) derived

above, we get

e, e A
(2, 8) < (—+—+ - e”’(t"’)) dy, (2.8)
v 6 pa 0 !
Ly@,t)<—2e-2 6 -2 4 eV 4y A—éle‘y(t"’). (2.9)
Ha 0o do
Defining y=206/6,, 8,=08/6, (2.10)
and using (2.8), we obtain from (2.9)
Ly(x,t)< —e—0d,p(x,t) for (x,{)€D—D,. (2.11)
Using (1.11) and the choice of R, we also get
3”;(;; D gt p@t)>e for (z0)€S. (2.12)

The function y (x,t) will now be used to estimate u (z,t).
Let ¢ be an arbitrary positive number. If we prove that for a sufficiently large
number g =g (¢)
|u(x,t)|<Adye for (x,t) € D—D,, (2.13)

where A, is a constant independent of &, g, then the proof of Theorem 1 is completed.
Now, by (1.12) there exists ¢=o0 (¢) >0 such that

|k (z,t)|<e for (w,t)€S—S,, (2.14)
|f(x,t)|<e for (z,t) €D — D, (2.15)

We take ¢ such that also ¢>& (and then (2.11), (2.12) hold). We next take in
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the definition of y above the numbers o, ¢ to be the same numbers as the present

ones, and
A=1ub. |u(z, 0)] (2.16)
:l:eBa,

We shall prove that

u(z,t)<yp(x,t) in D—D,. (2.17)

The proof is based on an argument similar to that appearing in [21]. We first note,
by (2.14), (2.15), (2.16) and (1.9), that

Lu> —g—py|u| for (z,t)€D— D, (2.18)
du/oT+g(x,t,uy<e for (x,t)€S— 9, (2.19)
u(x,0)<y(x,0) for x€B,. (2.20)

Consider now the set 2 of points ¢> ¢ such that ¢>w in D, — D,. By (2.20), 2 is
nonempty. It is clearly an open set. If we prove that 2 is closed, then the proof
of (2.17) is completed. Suppose then that ¢ is such that v (z, 7)>wu (x, 1) in D,— D,
and we have to prove that v (x,t)>u (x,t) for x € B, If this is not the case, then
the function 4 (z,¢)=w (»,t) —u (%, {) obtains its minimum zero in the set D,— D, at
a point (2°,f) on B, We shall derive a contradiction by proving that (z°,¢) can belong
neither to ¢ B; nor to B,.

If («°, t) €0 B, then, noting that 8/67T is a derivative along an outward direction

to 0 B,, we get
@20 i(y,t) &
|a®—y| o

L (2%, 1)

0= o
a7

as y—>2° along the transversal ray issuing at the point (2%, ¢). Since also g [z, , u (z, t)]

=9 [x’ 2 L' (x’ t)] at = xo’ we get

@8(“’%@ +g02% 89 @ 0] < ?Z;(LTO’” +g[2° ¢, u (2% 1)],
which contradicts (2.12), (2.19) combined.
If («°,t) € B; then, at that point,
u=vy, |u|=vy, ou/ox,=oy/om, oulot>oy/ot. (2.21)
Also, since (a;) is a positive matrix,
2 ay aij;pxj =2 ay 662::0; at (2%, t). (2.22)
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Combining (2.21), (2.22) we conclude that, at the point (z°,¢),
Lu+e+py|u| <Ly +e-tuqp.
The last inequality however, contradicts (2.11), (2.18) combined, provided
o < 05 (2.23)

Hence, assuming u, to be sufficiently small so that (2.23) is satisfied, we conclude
that (2°¢) cannot belong to B, This completes the proof of (2.17).
In a similar way, replacing (2.11), (2.12) by

Lyp>e+8, 9], %+g(x,t,1p)<—-a, (2.24)

where $= —y and replacing (2.18), (2.19) by
ou
Lu<e+ py|ul, ﬁ+g(x,t,u)>—s, (2.25)

we can prove that 4> ¢ in D — D;. Combining this ineqality with (2.17), and recalling
the definition of ¢ in (2.7), we have

|u (2, 1)] <g @ (2) +i @ () +64<p () e ?¢?  for (x,t) €D —D,. (2.26)
2 0

Taking o sufficiently large such that 4 d, ¢7¥@"?/§,< & the proof of (2.13) is completed.

From the above proof the following corollary follows.
CorOLLARY 1. If the assumption (1.12) in Theorem 1 is replaced by
hl}l_joup | (2, )| <e, liltn_)iup [f(z,t)|<e, lirtriiup c(x,£)<0 (2.27)
uniformly in (x,t) € D, and if the other assumptions of Theorem 1 remain unchanged, then
h’x?_)iup |u @, t)|<A e (2.28)

uniformly in (x,t) € D, where A, is a constant independent of &.

3. Proof of Theorem 2 for smooth b, g

In this paragraph we prove Theorem 2 under the additional assumption that 4, g
are C'** in some outside neighborhood of 9. This assumption will be removed in

§ 4. We need a few preliminary results.
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We recall that & C is of class C***. Now at every point 2° of 8C we draw an
outwardly directed normal y (2°) to 8C and denote by # (2°) the segment on y (2°) of
length & (¢’ >0) and initial point 2%, We obtain a family N of straight segments.
It is elementary to see that every point z outside C' and sufficiently close to & C lies
on one and only one normal segment # (2°) provided ¢ is sufficiently small, say 6’ <4.
In what follows we take ¢ =34.

We now measure any fixed distance §, 0<3<4 on each 7 (z),z€0C and denote

the set of the end points by ¢ Cs. The following lemma is well known.

Levwma 1. Each 8Cj is a surface orthogonal to the family N, and lub. |8 Csl2+a
< const. < oo, ’
Using local coordinates @;=f;(s) (1<i<n,s= (8, ...,8,-1)) for 6C, we can re-
present & C; locally in the form
@ =f (s)+g:(s)¢, 3.1)
where g; (s) is (—1)""! times the determinant of the matrix obtained from the matrix

(8f,/2s;) (i indicates rows, j indicates columns) by erasing the ith row. ¢ is defined by

t=4/g(s), 3.2)
n ¥
where g(s)= [21 (g4 (s))z] . (3.3)

We next need a recent result of Agmon etal. [1, Chapter II]:

LeEMMA 2. Consider the system (1.2), (L.4) with k=0 and assume that 3 C is of class
C**%, that f and the coefficients of L, are C*(C), that ay; are C*** (8 0), and that h, g are
O (@C). If c(2)<0, g(x)>0, then there exists a unique solution of (1.2), (1.4) which is
of class C*** (C), and

[vlEra <K ([RRES A+, (3.4)
where K depends only on bounds on the quantities

M’: laii‘?fou Ia'ijlo(c:’ |bi|$, Icla(c:’ Igltl?-?ac: |1/g|80’ |0|, |80|2+o¢'

We are now going to consider differential systems analogous to (1.2), (1.4) in
each C;, Cj being the interior of dCs. The solution +°(x) will be ‘“close” to both
% (z,t) ((—oc) and v (z) appearing in the formulation of Theorem 2. We put C'=C5,
where 8 appears in Lemma 1, and write ¢’ for the closure of /. We may assume
that the a; (x) are C*™* in C'—C, as follows by assumption (G,).

Every function p () defined in C or on 8O can be extended to O’ — C as follows.
Let x€C'—C and let 2° be the point on & C such that x lies on #(2°). We then
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define p (z)=p (2°). We extend in this manner the functions b, (z), c (x), f (%), k (z, u)
(u fixed). It is clear that the extended functions have the same Holder-continuity
properties (in x) as the original functions. We denote the transversal derivatives at
the point = on 7 (2°) by d/dT°.

Consider the system

Lyo® (v)=f (®) + k (x,v) in Cs (8.5)
d;’(;ff) +g (@)’ (@) =h (@) on 8Cs. (3.6)

We shall prove:

LemMA 3. The system (3.5), (3.6) has (for 0<5<38) a unique solution v° (x) and
as 6—0,
d’ (x) do’ ()
_.3c S (N _ b (! —
[o=2l5—0, lélelbké' {IU (&) =0 (@] + ar a1

}_>o, (3.7)

where v=2" and z' is the point on 8Os which lies on ¥ (x).

Proof. Using the maximum principle [11] and (1.9) we easily conclude that if a
solution ¢ exists, it must be bounded independently of J, the bound being dependent
only on the given functions of the system and on |C|. Hence, without loss of gener-
ality we may assume that k(x,u), for |u| larger than a certain a priori determined
constant, satisfies the regularity assumptions in (C), (Cy) with constants independent of «.

We next consider the set Zy of functions w defined in Cj; which satisfy |w|, < N.
We define a transformation 7'w as follows. Replace in (3.5) k(x,v) by k(x,w). Tw
is the solution of the modified system (3.5), (3.6). By Lemma 2 it exists and (using
Lemma 1)

|Twlg2, <K (|hlat]fle+ kL),

240

where K is independent of 8. Noting that |k|,< K, + u, K, N, where K,, K, are con-
stants independent of N and §, we conclude, upon taking N =K (|h|i1o+|f].+ Ky +1
and assuming g, to be sufficiently small, [T w12+a<N . Hence, T'w maps Zy into a
compact subset.

T is also a continuous transformation on Z,. Indeed, if we write the differential

systems for T'w,, T'w, and subtract one from the other, we find, using Lemma 2, that
|Tw1_Tw2|2+a<K3|k(xa wy) — k (x, wy) |a<K4|w1_w2Ioc'

Having proved that 7' is a continuous transformation of a convex and bounded subset Zy



ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF PARABOLIC EQUATIONS 13

of a Banach space Z, into a compact subset, we can apply Schauder’s fixed point
theorem [18] and conclude that there exists a fixed point v=7T .

To complete the proof of Lemma 3 we have to prove (3.7). The second state-
ment of (3.7) follows from the inequality |o° Igf“<N , which, in particular, guarantees
the equi-continuity of {v°} and of their first derivatives in their respective domains Cj.
The first statement follows by either an appropriate use of the maximum principle,

or by the comparison argument of § 2.

CoroLLARY. From the above proof if follows that the convergence in (3.7) is uni-

form with respect to f, h, provided |f|s, |h|i+a are bounded by a fized constant.

Proof of Theorem 2. Given any positive number g, we shall prove that there
exists f>0, p>0 depending on & such that

|u(@,t)—v(y)|<de for (x,t)€D—D,, yel, |x—y|<p. (3.8)

Here and in the following, A4 is used to denote any constant independent of ¢. In
[6] we simply defined w=u—v and applied Theorem 1 to w. This method, however,
fails in the present case, mainly since D is not necessarily a cylindrical domain. To
overcome this difficulty, we shall not try to estimate w— v directly. Instead, we shall
approximate v by a family of functions +% (§—-0) and estimate u— 5.

We introduce the functions
h(x)=h(x)—e for z€0C, f @=f(x)+e for x€l (3.9)

and apply Lemma 3 with f,& replaced by f,, h,. We conclude that for every

0<06<0 there exists a unique solution v} (x) of the system

Lyv5 () =f, (x) + k (r,0}) for x €, (3.10)
ad
d—g*ﬁ—%g(x) v% (®)=h, (x) for x €8 C;. (3.11)

We define v, (z)=0%(z). By Lemma 3 and its corollary we also conclude that

there exists a fized 0>0 depending on g, such that

l.u.}j). |0 (x) — v, (x)|[<e, (8.12)

avl(zy dod(x')| e
ab, [ SR 8 .
I:clelalé a1 A 4’ (3-13)
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’ 7 8
Lub. |g(e) v @) g () ) )| < 5, (3.14)
Lub. |k (z)—h@)| <. (3.15)
zedC 4

Consider the function
w(x, t)=u(x,t)— 05 (x) for (x,t)€D—D,.
Here ¢ is a sufficiently large number such that all the domains B{ (which are the
projections of B; on $=0) lie in a fixed closed set contained in the interior of Cj,

provided £> o (recall that & is a fixed number). The function w (,{) is thus defined

in D—D,, and it satisfies the differential equation

Lw=Lu—(L— Ly — L,2%

=[f (@, 8) = f, @]+ [k (@, 8, u) — k (@, w)] + [k (2, ) — & (2, 93)] -+ (L — L) v
=F(z,t). (3.16)

By the corollary at the end of § 2 we obtain
|w(x, t)|<4 for all (z,t) €D— Dy, 8.17)

provided ¢ is sufficiently large. Hence, k(x,t, u)—>k(x,u) as t—oo, uniformly in

(z,t)€D. We also have
Lub. [v]7t<4, (3.18)
t>o

since |J B; is contained in a closed set interior to Cjs.
t>c

Combining these remarks and using (3.9) we obtain
Lw<k(x, t)w, (3.19)

where | (2,t)| < p, ((@,t)€D—D,), provided ¢ is sufficiently large. We turn to the
boundary condition. By (D),

x;—x, direction of » (%, t)—> direction of » (x) (3.20)

as t—>oo, uniformly in z €2 C. Using the definitions (1.5), (1.6) and Remark (a) in
§ 1 (following the assumption (D,)), we get

g (@) v5 () — g () 0} () >0 as t—>co, (3.21)
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oy () dvl (@)
aT gy 0 ast—ee (3.22)

uniformly with respect to x on @C. Now, on & B; we have

ow (x, t)

302 (w)
orT

+ q (xt) w (xb t) = [g (xt) u—g (xt! { u)] +h (xta t) - 8T

— g (x) ”i ()

dol(x) ou; (xt)]
A o7

=[g (w)u — g (2, t, w)}+ [k (2, ) — b, (2')] + [
+[g (@) 0% (@) —g (@) (x)]=1, + [, + I, + 1. (3.23)

As t—oo0, I;—>0 by (F,) and (3.17); I, becomes larger than 2, by (E,), (3.9) and
(3.15); I; becomes smaller than ¢ by (3.13), (3.22), and I, becomes smaller than 1¢
by (3.14), (3.21). The above statements hold uniformly with respect to x €2C. We

conclude that
dw (x,t)
hé—T——I—g(x)w(x, $)>0 for (x,t)€S8—8,, (3.24)
provided ¢ is sufficiently large.
With the aid of (3.19), (3.24) we proceed to estimate w. ¢ is now a fixed num-
ber. Consider the function
Oz, t)=—Ayp () e 7, (3.25)

where ¢ (z) and y are defined in §2. Using the properties of @ (x) derived in § 2 we
conclude that

LO>k(z,t)|0| for (v,t)€D—D, (3.26)
a—qé(”,fpﬁ+g(x,t,e)<o for (x,1) €8—9,, (3.27)

provided ¢>4, which we may assume. Taking

A,=6" l.u.;o. |w(z, 0) |+ 1,

we can use the comparison argument of §2 to conclude that
w(z,8)>0(x,t) for (x,t)ED—D,. {3.28)

Taking ¢>0¢ such that Ay (r)e " ?<¢ and using (3.25), (3.28) we get, using the
definition of w,
u(x, t)>0 (x)—e for (z,1) €ED— D, (3.29)
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Since 4 (z) is a continuous function in Cj, there exists >0 such that
|5 (@)= vl (y)|<e if |[x—y|<B, y€C, z€C,. (3.30)
Combining (3.30) with (3.29), (3.12) we get
w(x,t)>v, (y)—-3e if yeCl, (x,8)€ED—D,, |z—y|<p. (3.31)

Consider now the function
B (x)=v(x) —v, (). (3.32)

It satisfies the system of differential inequalities

Lyo> —e—uy|9| for z€C, (3.33)
%$+g(x)v<e for z€0C. (3.34)

Using the comparison argument of § 2 (considering L,v as (L,—3,/2t)v) we easily
obtain,
tx)<de for z€C, (3.35)
Combining (3.35), (3.32) with (3.31) we get
wiw, t)>v(y)—Ae, if (x,t)€ED—-D,, yel, |[z—y|<p. (3.36)
In a similar way, by defining A* (x)=h (z) +¢, " (®)=f(x)—& we can prove that

w(@t)y<v(y)+Ae, if (x,8)€D—D,, y€C, |x—y|<p. (3.37)

Combining (3.37) with (3.36), the proof of (3.8) is completed.

From the above proof we easily derive:

CoROLLARY 2. If the assumptions: f(x,t)—f(x), h(x,§)—>h(x), g, u)—

g (x,t)u are replaced by

lim sup |f (2, t)—f(y)|<e, limsup |h(x,t)—h(x)|<e,

z->Y >y

o e (3.38)
lim sup | g (z, ¢, w)—g (@) u|<e|u| (>0),

t—>c0

uniformly with respect to (x,t)€D, y€C; (x,t)€S, y€dC and (2, 1)ES, y€0 0, u in
bounded intervals, respectively, and if the assumptions of Theorem 2 are otherwise the

same, and if g (x), h(x) are C*™ on 8C, then
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lim sup |u (z,0)—v (y)|<Ae (3.39)
T—>Y
t—>00

uniformly in (x,t) €D, y €0, where A is a constant independent of . If h(x), g (%),
1/g (x) and f(x) are bounded by K,, then A depends on K, but not on h (z), g (%), f (%).

This corollary will be used in the following section.

4. Proof of Theorem 2 (for general h, g)

It remains to prove Theorem 2 in case %, g are only assumed to be continuous.
The essential point is the proof of the existence of a solution » (x) of (1.2), (1.4).
Once this is proved, the proof of Theorem 2 can be completed as follows.

We have to prove (3.8) for every ¢>0. We construct C*** functions §, b in a
neighborhood of ¢ C which satisfy

Lub. [|g @ =7 @]+ @)=k @< (4.1)
Let @ (z) be the solution of (1.2), (1.4) with g, 5 replaced by §,%. By the results of

§ 3, ¢ (x) exists and, by Corollary 2,
lu(@,ty—5(y)|<Ade if (x,t)eD—D, yeC, |z—y|<p (4.2)

for ¢ sufficiently large.
Next, the function w (x)=v (x) — ¥ () satisfies:

Lyw (@) =k@)w (|k|<p,) for z€C, (4.3)
dw/dT+g @) w=1[h(@) —h @)]+[gl)—§@)]6=H @ for x€aC. (4.4)

By the maximum principle we find that ¢ is bounded independently of & (provided
we take, as we certainly may, A, § and 1/§ to be bounded independently of ¢). It
thus follows that | H (x)|<4,e, Where 4, is independent of e.

We can now apply to the system (4.3), (4.4) either the maximum principle, or
the comparison argument of §2 (writing L,w=(L,—3/8¢)w). We conclude that

|w(x)|=|v@)—5(x)[<d,e forall z€C, (4.5)

where 4, is independent of ¢. Combining (4.5) with (4.2), the proof of (3.8) is com-

pleted. It thus remains to prove the existence of v ().

EXISTENCE oF v. We recall that the coefficients of L, have been extended to C'.

We now need to introduce a principal fundamental solution of L, This is a funda-
2 — 61173055, Acta mathematica. 106. Imprimé le 26 septembre 1961.
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mental solution I'(z,¢) in the whole n-dimensional space E, of an elliptic equation
which coincides with Lyu=0 on C’. Furthermore, it satisfies (uniformly in & in

bounded sets)
T
I’ (z, £)—0, 8—8(:;1@ -0 as |x|—>oo. (4.6)
In the general case that L, is already defined in the whole space E,, the construc-
tion of I' is fairly complicated. It was given by Giraud [10]; see also [13, § 20].
In our present case, the construction can be simplified and we proceed to describe it.
We first extend the coefficients of L, into the whole space F, in such a manner
that for some R>0

a; () =0y, b (x)=0, c(@)=—k<0 if [x]>R

(k constant) and such that all the coefficients are again Hoélder-continuous (exponent «)
in B, and ¢(x)<0 in E,. In what follows we shall consider only the case that n>2.
In the case n=2 some of the formulas take a different form, but the methods and
results are the same.

Let J (t) be the Bessel function which solves the equation

2 —
(flt;] ZLTI%T—J:O
and which, for {—0, satisfies
JO)=K& " (1+0@), J B=2-n) K& " (1+0(®), 4.7)
where K is a positive constant. Furthermore,
J(t)=0( ™), J #=0 (™) as t— oo, (4.8)

where m is some positive constant. Following the parametric method we proceed to

construct a fundamental solution I (z, &) in E, for the elliptic operator
L,=[Ly—c (x)] -1, (4.9)

which has for its essential singularity the kernel

n—2
T, (2, £) = o7 (20 6) (0= 6) (= )] (4.10)

| det (a” (2))

Here (¢) is the matrix inverse to (ay).
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We write I'; in the form (compare [13, p. 55])
En
Noting that 2 ay; (§)8®T,/0a,02;=k*T), and assuming that the second term on

the right side of (4.11) is of smaller order of singularity compared with the first term
(this can very easily be verified a posteriori), the equation L,I'|=0 implies that

FT,
K (2, &) =2 [ay (x) — ay (£)] o 0%, +2b (x ) - (4.12)
Note that
| K (z,&)] < Ix——_é%‘exp{—mlx—ﬂ}, m=m (k), (4.13)

and A, is independent of k. We next observe that if we prove that
L |K (2,£)|de<g<1 (o constant), (4.14)
n
then the solution of (4.11) is given by iteration, that is,
I (x, &) =T (, &)+ Zf () K™ (n, &) dy, (4.15)

where K°= K. Indeed, using (4.14) and the elementary inequality

1 1 const.
adn< i ——p, 4.16
[ < o

provided 0 <f<n, 0<y<n, f+y<n, one can prove, by induction, that for j > and
for all x€E,, f€E,

K9 (z, &) + K5, &)|dn< const. ¢, (4.17)
s n n @

where the constant is independent of j. Furthermore, noting by (4.8), (4.10), (4.12),
that (4.6) is satisfied for I' replaced by Iy and for I' replaced by each term

L T, (@, 7) K™ (n, &) d,

we conclude, upon using (4.17), that (4.6) is satisfied also with I' replaced by I,.
It remains to prove (4.14).
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Noting that in (4.13) m (k)—>oc as k—oo, it follows that if k is sufficiently large

then (4.14) is satisfied.
We proceed to construct I". We write it in the form

D@ §=T,( E)+f| | L' (@ n)y () T1 (g, &) d, (4.18)

n|<R
h _ c)+k if |n|<R ‘ 419
here v 01 {O if [p|>R ( )

In the bounded domain (£,7), |£|<R, |%|<R we can apply the Fredholm theory.
It follows that if (for any fixed ) a unique solution I'(z,£) of (4.18) does not exist,

then there exists a nontrivial function w(£) which satisfies the equation

w(5)=7/(§)fl \ Ty (& n)w)dy=y &)@ (&) (4.20)
n|<R

for ]5|<R, where @ (£) is an abbreviated notation for the integral. However, we
can then define (&) for all £€E, (in terms of the integral) and it satisfies the
equation

Lyw= I+ ) ®=0 in B,
By (4.6) with I" replaced by T';, @ (£)->0 as |&|—>co. Applying the maximum prin-
ciple [11] we conclude that @%=0, which is a contradiction.

We have thus proved that for every x € K, there exists a unique solution T (x, &)
of (4.18) for [£[<R. We can now use the right side of (4.18) to define I' (x, £) also
for |&|>R.

In order to study the behavior of I'(z, &) as z—& and as |z|->oco we first mul-
tiply both sides of (4.18) by T (2', 2) and integrate with respect to z, || < R. Next we
multiply the resulting equation by I', ("', ') and integrate with respect to x'. Proceeding in
this manner n— 2 additional times, we obtain n+ 1 integral equations: the first one
determines I', the second equation determines [I'\ T, etc. The last equation (with
variables 2™, &) determines { ... [T;...I', T (n integrations) and the nonhomogeneous
term is continuous in ™, and tends to zero as |2™|—co. Therefore, the same can
be proved for the solution [ .. [I,...IT' (n integrations). We now turn to the

(n— 1)th equation, (n— 2)th equation, etc. In this manner we conclude that
I'(z, &) =T (x, &) +1" (z,8), (4.21)

where I satisfies (4.6) with I" replaced by IV, and I has a smaller order of singu-
larity than I'y. Thus,
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where 4 is a constant. We have thus completed the construction of the prineipal
fundamental solution I.

We now return to the proof of the existence of v (x). We consider the space Zy
of functions w(x) on C with norm |w| <N for some £¢>0. We define #=Tw as

follows:

W (%) = LC L@, &pEd- L L' (@, ) [f () + & (1, w ()] d (4.23)

where u(z) is defined for x €2 C as the solution of

arl (=,
IR N SR E S PICED

b @+ [ [Ty @r @ U+ ke mdn=i @), @20

Here d2 is the surface area element on #C. By the properties of I' [15] [13, 28-30]

it follows that if u(x) is continuous on 8C then & (z) is a solution of the system

Lyw=f@x)+k(x,w) in C (4.25)
d?,}x)ﬁ-g(x)w(x):h(x) on ¢ (4.26)

in the sense defined in § 1. Hence it remains to prove the following two statements:

(a) p(x) exists as a unique solution of (4.24),

(b) W=Tw has a fixed point.

Proof of (a). Since the kernel of (4.24) is integrable, it is sufficient (by Fred-
holm’s theory) to show that if

d
b @)+ fac Hl(%% 7@, 5)] w(Ed3 =0, (4.27)

then #=0. Consider the function

z (x) = LCF @ & upE) d2. (4.28)
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By (4.27), dz(z)/dT+g(x)z(x)=0 on ¢C. Using the maximum principle and the
positivity of g (z) we easily conclude that z=0 in C. We next consider z (z) in E,—C.
In this domain it satisfies Lyz=0 and it vanishes on & C. Since by (4.6) it also tends
to zero as |x|-—> oo, the maximum principle yields 2=0 in H,—C. Applying the jump
relation for the transversal derivatives of simple layers (a simple layer is a function of

the form (4.28) with any function u) we get u (x)=0.

Proof of (b). By a comparison argument similar to that given in § 2, we find that
v (z), if existing, is a priori bounded. Hence we may change the definition of & (x, u)

for large « without restricting the generality of the proof. We thus may assume that

ok (x,u)

P <K, forall 2€C, —oco<u<oo, (4.29)

lk(x,u)|<K1,

where K, is a constant. Solving (4.24) we then find that

Lub. |pu@)|<K, Lub. |k (@), (4.30)
redcC

zedC
where K, is independent of h. Using (4.29) and the definition of h we conclude that

Lub. |u(x)| <K, (4.31)
zedC
where K, is independent of both N and the particular w of Zj.
Using [15, Theorem 8] we further get |@|.<K,, where K, is also independent
of both N and w in Zy. Hence, if we take N=K,, then T maps Zy into itself.
T (Zy) is compact, since by [15, Theorem 8] we have |®|;< K; for any <1, and
it is enough to take f>s.
The continuity of 7' on Zy is easily proved using (4.24) and (4.23). We can thus
apply Schauder’s fixed point theorem [18] and conclude the existence of a fixed point

for 7. Having completed the proof of (b), the proof of Theorem 2 is completed.

Remark 1. The above proof of the existence of v (x) does not make use of the

assumptions (G,), (G,). Furthermore, # 0 need only to be C'**.

Remark 2. Corollary 2 at the end of §3 holds also under the weaker assumption

that g () and & (x) are only continuous on o C.

Remark 3. If g(z,t,u) is monotone decreasing in u, then existence of a solution

for the system (1.1), (1.3) was proved in [7].
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Remark 4. 1 a;€C%* (0), b;€C***(C), then we can write Ly in a variational
form and use the (1+«) estimates of Agmon et al. [1] instead of the (2 + ) estimates.
It is then sufficient to assume in the above proof of Theorem 2 that &C belongs
to O**°

5. Asymptotic expansion of solutions

We shall need the following assumptions:

(D*) D is a cylinder and 8B (or 80C) is of class C*™*.
(C*) k(x, t, u)=0.

(A,) For (x,t) in D,

M3

a; (x, £)= > al; (@)t 2+t 0 (1),
A=0

b (x, t) = %bf (@)t +t "0 (1),
A=0

clx, 1) = j}njc" (@)t +t"o (1),

A=0

where o (1)—>0 as t—>oo, uniformly in x€ B; the functions a¥, b, ¢* belong to C* (B)
and af also belong to C'** (9 B).

(B,,) For (z,t) in D,

m

fla, )= 2 @)t +1 "o (1),
=0

where o (1)->0 as ¢— oo, uniformly with respect to z€ B, and the f* belong to C* (B).
(E,) For (x,t)€EdB,

h(x, t) =§0M (@)t +t ™o (1),

where o(1)—>0 as t-—oco, uniformly in #€8B, and the Ah* belong to C'** (0 B).
(F,) glx, t, u)y=g (x, t)w and for x€o B,

gz, t)= g’1 (%) A 1),
=0

where o0(1)~>0 as t—>co uniformly in z€8B, and the ¢* belong to C*** (2 B).

We introduce the operators
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z Pl i v
v= e bt (@) —+ ¢ 5.1
”zﬂa, 8x,8xj+i§1 (x)8x¢+c () v, (6.1)

ov (x)
o (5.2)

do(z
an= 3 ah @) cos (v @), 2)22
tLi=
We can now state:
TarorEM 3. Let the assumptions (A), (B), (C*), (D%), (), (F) and (A,), (B,),
(En), (F,) be satisfied for some non-negative integer m and let ¢® (x)<0. If u(x, t) is
a solution of the system (1.1), (1.3) then

u(, t) =§0M @)t +tmo(1), (5.3)

where 0(1)=>0 as t—oco, uniformly in x€B, and the v« (v) are determined successively

by the following system.:

ys
Lyu* (@) =" (@) — 2 —1)u* " (@)~ 3, L,w* ™ (x) (w€B) (5.4)
du* L od
1;,—’(190)+90(x)u( =1 (x) — Eg (x)—ﬂgldTﬂul“ﬂ(x) (x€2B). (5.5)

It is wunderstood that for A=0 the right sides of (5.4), (5.5) are replaced by f°(x) and
B0 () respectively.

6. The first mixed boundary value problem

In this chapter we shall prove analogs of Theorem 1.2 to the case of the first
mixed boundary value problem. The boundary conditions (1.3), (1.4) are replaced by

ulx, t)y=h(x, ) for (x, t)€S, (6.1)
v(x)=h(z) for z€oC. (6.2)

The assumptions (D), (D,) are replaced by the weaker assumptions:
(D) lub. |B;| < oo,
t
(Do) &C is of class C*'* and to every x on &C there corresponds one and only

one point (x;, t) on each &B; such that z;—x as {— oo, uniformly in z€2C.

THEOREM 4. Let the assumptions (A)~(C), (D'), (E) be satisfied and assume that

lim A (z, t)=0, lim f(x, t)=0, lim sup c(z, {)<0 (6.3)
t—>o00 t—>00

t—>o0
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uniformly with respect to (v, t) €S, (x, t)€D ond (x, t)€ D respectively. If u(x,t) is a
solution in D of the system (1.1), (6.1), then u (x, {)—0 as t—co, uniformly with respect
to (z,t) in D.

The proof is similar to that of Theorem 1, and employs the same function @ ()

and a comparison argument similar to that used in § 2. Details are omitted.

THEOREM 5. Let the assumptions (A)~(C), (D), (B) and (A,)—(Cy), (Do), (Ey)
be satisfied and let ¢ (x) <O0. If u(x, t) is a solution in D of the system (1.1), (6.1) then
lim u (z, t) = v (y) (6.4)

Z—Y
t—>00

uniformly with respect to (x,t)€D, y€0, and v (y) is the unique solution in C of the
system (1.2), (6.2).

Proof. We first prove the theorem in the case that h(z) is a polynomial. The
proof is then similar to the proof in § 3, except that instead of using Lemma 2 we
use Schauder’s (24 «) estimates [17] (see also [3], [18]). The existence of v (x) follows
by using these estimates and Schauder’s fixed point theorem, as in § 3. The family
v’ of approximating functions is constructed as follows:

Let 5 be a sequence of domains which tend to ¢ (as 6—0) from the outside,

and which satisfy:
l.%.b. [8Cs [P < oo, (6.5)

We can construct the (s in such a manner that there exists a one-to-one correspond-
ence x>’ from 8C onto 8Cs such that 2°->z as §—0, uniformly in x€0C.

We next take C’ to be any fixed domain containing €, and extend the coef-
ficients of the system (1.2), (6.2) to €' in such a manner that they remain Holder-

continuous (exponent o). This can be done even with preserving the Holder coefficients
(see [12]).

In each C5; we solve the problem
Ly’ =f(x)+k(x, +*) in O (6.6)
v (@)=h(x) onadCs. (6.7)
By the Schauder estimates (and on using (6.5)) we get

[« |§ﬁx< const. independent of 4. (6.8)
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From this inequality we get a lemma analogous to Lemma 3, and we then complete
the proof by the method of § 3. Furthermore, Corollary 2 can also be extended to
the present case.

In the general case that % (z) is not a polynomial, but only a continuous func-

tion, we construct, for any given £>0, a polynomial % (x) such that
|h—h§¢<e. (6.9)

The existence of »(x) is proved by approximating A by smooth functions %, and
finding, by wusing interior (24 «) estimates [17, 13, 3], that the corresponding solu-
tions v,, converge to a solution in the interior of C, whereas, by using the maximum
principle, we find that the convergence is uniform in (. Hence lim v, is the desired
solution v.

By the maximum principle we have
|6—w|§<Ae, (6.10)

where A is independent of e, and ¢ is the solution of (1.2), (6.2) when % is re-
placed by A.
The proof of Theorem 5 can now be completed (similarly to § 4) by applying

to 4, u a corollary analogous to Corollary 2, and by using (6.10).

Remark 1. 1f a,;€C***(0), b,€C***(C), then we can write L, is a variational
form and use the «-estimates of Agmon ef al. [1] instead of the (24 «) estimates. It

is then sufficient to assume that @ ¢ in Theorem 5, is only C*

Remark 2. In [6] we have proved an analogue of Theorem 3 for the first mixed

boundary value problem.

7. Generalized second houndary value problem

In this section we discuss the extension of Theorems 1-3 to the case where in-
stead of (1.3) we have

ou (x, t)

P +g(z, t,uy=h(z,t) on S, (7.1)

where du/0t=pf(x, t)0u/dt+8wu/eT. It will be assumed that

(G) f (x, t) is continuous on S and 0 < g (x, ¢) < const. < oo,

Theorem 1 remains true if we replace (1.3) by (7.1) and assume that (G) holds.
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To prove this statement we proceed along the proof of § 3 with appropriate
modifications. Thus, in the definition of y (2, t) we take y smaller than that in (2.10),
depending on lw.b. 8. We thus derive (2.11) and

M-I—g (@, £, p (@, 1) > e. (7.2)
ot

If we prove that the function w(x, )=y (z, {) —u (z, t) is positive in D~ D;, then
the proof is easily completed.

The proof can be given similarly to that of § 2, noting that /87 is a derivative
in an outward-upward direction.

We note that the uniqueness of u, for more general quasi-linear equations and
with k in (7.1) being a nonlinear function of u, du/dx;, was proved in [8].

Theorem 2 can also be extended to the present problem, and also Theorem 3

with the u*(x) depending also on the coefficients in the expansion of f§ (z, t).

Part 1. Higher order parabolic equations

In this part we prove that if the boundary values and the coefficients of a para-
bolic equation of any order tend to a limit as #-—>oco, then the solution also tends
to a limit which will be the solution of the limit elliptic equation. The convergence
is first proved in the L, sense and then it is extended to a uniform convergence.
Naturally, since an appropriate maximum principle for higher order equations is not
known, the regularity assumptions on the differential system will be stronger than in
the case of second order equations. The methods are also quite different.

In §1 we state some results of Agmon et al. [1], part of which overlap with
results announced by Browder [2). These are used very substantially in the following.
In §2 we formulate the main result on L, convergence. (The domain is not neces-
sarily cylindrical.) The proof is given in §3. Using the L, convergence we proceed
in §4 to establish uniform convergence. We finally discuss in § 5 the question of
asymptotic expansion of solutions. )

In what follows, the notation introduced in Part I, § 1 will be used freely. All

the functions are real.

1. Auxiliary theorems on elliptic equations
Let G be an n-dimensional bounded domain and denote

=Ly, vevr Zn)y ="{85 -uv, %),
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li|=d,+ - +i,, &i=al ... xi», D'=D} ... Di,
where D,=8/8x, Consider in G the differential equation of order 2m

LOuE|i|<22mai (%) D' u () =f (). (1.1)

Ly is said to be uniformly elliptic in G if for any €6 and any real vector &,

AT (=1)" 3 a (@) E<AEF" (4g>0, 4,>0).

=2

Together with (1.1) we consider the boundary conditions, on 8@,

where » is the outwardly directed normal to 8G. We state the following results of

Agmon et al. [1, Chapter IV] as a lemma.

LemMa 4. Let L, be uniformly elliptic in G, and assume that 8G is C*"**** for
some mon-negative integer k, that f(x) and a;(x) are C***(G) and that the ¢; belong to
CPmrEite @), If the system (1.1), (1.2) cannot have more than one solution, then there

exists a unique solution w(x) of (1.1}, (1.2) and it satisfies
m-1
|%|smsksa< K ('f|k+oc+ > |<Pilzm+k—j+cc): (1.3)
i=0

where K is a constant depending only on Ay, |6Q |amsira, and on the (k+ o) norms of
a; in B.

For elliptic equations in variational form Agmon et al. derived in [1, Chapter IV],
existence and a priori estimates for |%|m-1+x:e (£>0). We formulate this result for

the equation (1.1):

Levmma 5. Let L, be uniformly elliptic in G, and assume that 8G is C" 175+
for some mon-negative integer k<m+1, that f(x) is O*(G), that @; is C" T (5@),
that a, (x) is C*(G) and that a;(x) is CVV"""*(G) if |i]|=m. If the system (1.1), (1.2)
cannot have more than one solution, then there exists a wunique u(x) of (1.1), (1.2) and

it salisfies:

m-—1
,ulrﬁ—1+k+a<K (If'“+ 720 I(Pilm-lw'»k—iﬂz), (14)

where K is a constant depending on A,, [6G|m_1+k+a, on the «-norms of the a; and on
the (1] —m+1+«) norms of the a, with |i|>m.
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2. Statement of the main result on L, stability

We shall consider the parabolic equation (u=wu (z, t))

8_u+Lu58_u+ > ax, ) D'u=f(x,t) in D (2.1)
ot ot i em

and the Dirichlet boundary conditions

& .
—a—:‘,=(p,.(x, ) (0<j<m—1) on 8B, 0<t< oo, (2.2)
t

where », is the outwardly directed normal to 8 B;. For clarity we first state the
assumptions needed later. In what follows, 4 will denote any constant independent
of t, h.

The assumptions on D will look somewhat complicated. Roughly speaking, it will
be assumed that § is smooth and the B, tend regularly (or smoothly) and sufficiently
fast to their limit C.

Assumptions on D

(A)) |8 Bilamia< 4.

(Ay) There exists a one-to-one transformation x>z, from & B; onto & B,, for any
t, 7, such that if x;,,—x, =& , (%), then

. 1

(i) for |A|<1, l—h—||et,h|‘,7fjl+a<A,

. 1 d . . 1

(ii) as hA—0, 7 Etn (xt)—»d—? uniformly in x,€0 B;, and %—? =o0(l) as f—> oo,
m—1+a

1
(A;) The function N, , (xt)=}~L o8 {v; (%), Peyn (¥eyr)} satisfies
(i) for |R|<1, |Ny,|02,, ., <A,
v,
dt
(A;) There exists a bounded domain C=B, such that there is a one-to-one

correspondence x>z, between 8B, and 0B, |8BL,° |m+“< oo and the function g (x;)

= — X, satisfies

(ii) as h—>0, N, , (xt)—Jll‘Z(tx—t) uniformly in x, €9 B,, and —0(1) ast—oo.

m—-1l+o

|&:]0%, ., =0 (1) as t—> oo,
(A;) The function N, (x;)= cos [ (%), Voo (X)] satisfies

|V, |22, =0 (1) as t—>oo.
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Assumption on the boundary values

Roughly speaking the assumptions are that the ¢; are sufficiently smooth and

they converge sufficiently fast to a limit as t—co. More precisely:
(B) 2 , o (75 1) lgff—j+o¢<A
]

(B,) The functions R}, (x;)= ;L lg; (@e1n, t+ D) —q; (2, t)] satisfy:

m—1
(i) for |A|<1, jZ)IRg.h]?nB—tle+a<A'

[7:7]

d
7";1 =o(l)

1 0. m-1
(i) as A0, R;‘,h(xt)»‘i%m uniformly in 2,88, and >
=0

m—1-—7+a

as t—o0,

(B;) There exist functions g¢;(x.,) of class 0" 7** on 9@ B,, such that the functions
8] () = @j (%1, 1) — @5 (0) satisfy
| Si]oB:, ;. .=o0(l) as t—>oco. (2.3)
Assumptions L, L, f
(Cy) L is uniformly parabolic, that is, for every (z, t{)€D and any real vector &,

=2

A EPT< (1" 3 (@ 8 <A [EF" (4,>0, 4,>0).

(Cy) L is positive in the Ly-norm, that is, there exists >0 such that for every
t>0 and for every function # of class C*" (B;), C" ' (B which vanishes on 8B,

together with its first (m —1) normal derivatives
f v (x) Lo (x) dx>yf (v () d=.
By By

(C;) There exist functions a;(x), f(x) defined in the closure of the domain
By= U B;, and satisfying: f and @, belong to C*(By) for [i|<m, and the a; belong
t>0
to OW-m*1*= (B} if 2m>|i|>m.

(C)) As t—>c0
”f(': t)*f(')”Bl—%O’ [i|<22m ”a’i(': t)_a(')”Bt—_>0'

In (C,) the following notation has been employed:

boll= ([ @ @raz)’ o olle=([ o oras) .
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Remark 1. If in (C,) we make a stronger assumption about the vanishing of ¢
on ¢B;, namely, if we assume v to have compact support in B;, then we obtain a

new assumption, say, (C3). It can be shown that (C;) is equivalent to (C,).

Remark 2. The assumptions (C,), (C,) combined imply (using Remark 1) that
Ly defined by (1.1) is a positive operator in B,. Hence the existence theorems of
Lemmas 4, 5 can be applied.

Before stating the result of the L, convergence we have to introduce one more
notation. We denote by 0 B; , (g >0) the surface obtained from 8B; by shifting each
point of 0B; a distance ¢ along the inner normal. By B:, we denote the interior
of 0B, It is well known that 0By, for small ¢, is orthogonal to the family of

the normals issuing from & B;.

THEOREM 6. Let the assumptions (A;)—(A;), (B)-(By), (C))—(C,) be satisfied. If
u (x, t) s a solution of (2.1), (2.2) in D, then

Nu(-, t)—v()|]Po—>0 as t—oco0, (2.4)

where o=1u.b. |2, — 2, |—>0 as t—>co (and hence Bi ,—>B. in a uniform manner), and
1€ By
v (x) 18 the unique solution in B, of the system (1.1), (2.2), where @; (%)= @; (@)
The assumptions of Theorem 6, with the exception of (2.3), seem to be quite
natural. It would be desirable to assume «=0 in (2.3). For the case of two space

dimensions this can be done (see the end of § 3).

3. Proof of Theorem 6

Let v (x, t) be a solution of the Dirichlet problem

Lyv (x, t)=f(2) in B, (3.1)
Y
6—1—5%.’—t)=<p,~ (%, t) on &B,. (3.2)

Be Lemma 4 and our assumptions, v exists and satisfies

[v (-, )3 < H, (3.3)

2mto

where H, here and in the following, is used to denote any constant independent of
t, h. We shall first estimate the L,(B;) norm of the function

z(x, H)=u(z, t)—v(z, ). (3.4)
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z satisfies the system

920 S 4 (@ ) D'2=f(@ t) in D, (3.5)
9t <em
7_ 5 ov
where f=[f (z, t)~f(®)]— 2 [a(z t)—a;(x)] Dv——,
|i<am ot
J
P%_0 on oB, 0<t<oo, (3.6)
3’Vt

In writing (3.5) we have assumed however that dv/0¢ exists. We now proceed
to prove the existence of dv/0¢ and to estimate it.

Consider the function v, (x, t)=[v (x, t+k)—v (%, t)]/h. It is defined in B; N Bi.p
(here we imagine, for simplicity, that the B, 0 <o < oo, lie on the hyperplane {=20).
For small ¢>0, the points x;, on 0B, are in one-to-one correspondence with the
points 2, of 8B, and the transformation x>, is of class C* '™* Hence, using
(A,) there is a one-to-one transformation x; ;<> ;.5 from ¢B; , onto 0B, which is
of class C" '** We take

o=lub. |2 — x| ' (3.7)
P
and then v, (x, t) is defined in B; ..

v, satisfies the differential equation
Lyv, (z,8)=0 in B, ,, (3.8)

ai
S U= @i (%1,5) on 0 By, 5, (3.9
a’l/t_g
where v; , is the outward normal to &B;, (and hence 8/8v;,=28/6%,), and where

1[ & o
Qi (T, 6) = 5 [BTJZU (@t,6, t+ R)— oyl v (X3, 5, t)]

; i
:}%{_@—jv(xt,u, t+h)__6_v(xt+h, H‘h)]

ovi 8"’Z+h
1] & o 1
5 [57{0(%:,6, t)—gﬁv(% t)] +;b[%‘ (@tsns t+h)—@; (2 B)]
=QF + OF + @f. (8.10)

By assumption (B,),
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k |0B
| D395, ;. <A, (3.11)

provided |h|<1, which we may assume.

" 1(*d &
Next writing —(Dé‘=}~b fod—l 8—17{1)(th'6+ (I1—-A)x, t)da

and using (3.3) and the differentiability assumptions on 8 B;, we obtain

[ Dz ?nB_‘l_,-+a<H%, (3.12)

where for simplicity, we take k>0, here and in the following.

To estimate ®F, we write it in the form

i
h

1o 17
(I)l 2;0 8_14 U(.’L‘gyg, t—i—k)—ﬁv(xh,h, t‘!‘h)

1[e & ,
+Z [87}@ CACTA t+h)_u@v{+h O (Xns H'h)] =0f; + Q. (3.13)

@71 can be estimated similarly to ®f. We thus get (using (4,), (i)

|@F [oBsn < H %+H. (3.14)
Using (3.3) we obtain
H
| DL Bty S [ 008 e (@), wewn @ean)] 0P, - (3.15)

Combining (3.11)—~(3.15) and recalling that, by assumption, ¢/k < 4, we obtain, using (A),

| in |02 . <H. (3.16)

m~1—j+ta
Applying Lemma 5 to the system (3.8), (3.9) and using (3.16), we get

[o,|247, <H. (3.17)

m—-1+a
Also, by the interior. estimates of [3] we have, for any compact subset E of B,
| 93 |2m 1o < const. |v, |00 < H, (3.18)

where H' depends on E but not of &, if k is sufficiently small.

Using the assumptions (A;)—(A;) it is seen that as A—0, lim gy, (%, ,) exists.
Denoting it by ¢@; (z;), we have
3 — 61173055. Acta mathematica. 106. Tmprimé le 26 septerbre 1961.
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. "1 d g dy dzx
o7 L <H % e Rl ): 1 3.19
l¢]’m~1~]+z (2:0 dt m~1—j+a+ dt I dt mlia 0( ): ( )
where 0(1)—=>0 as t— oo,
The system
Lyv=0 in B, (3.20)
/.
é;€:=q% on 8Iﬁ, Ci21)

has, by Lemma 5, a unique solution % (z, {) and, by (3.19),
|5l 1a=0 (L). (3.22)

We claim that dv/0t exists and is equal to #. Indeed, by (3.17), (3.18) it follows
that any sequence {%,} (h~>0) has a subsequence {h;} such that the corresponding v,
converge in the interior of B; to a solution v of Lyv' =0, and v’ has a finite (m — 1+ «)
norm in B; and satisfies (3.21). Hence, the limit »" coincides with #. Since v is
uniquely determined, it follows that as A—0, v, converges to », uniformly in every

compact subset of B,, Hence dv/8¢ exists and is equal to 2. By (3.22) we also have

By

v
ot

=o0(l), as t—oo. (3.23)

m—1+a
It is now easy to complete the estimation of z. By assumption (C,),
lf (-, ty—f()||[P—0 as t—oo. (3.24)
By (3.3) and by assumption (C,),

> e+, t)~—a (+) D'v||P—0 as t—oo. (3.25)

li|<2m
Combining (3.25), (3.24), (3.23) we conclude that, in (3.5),
lF (-, O][Pr=e (t)—>0 as t-—oo. (3.26)
Multiplying the equation in (3.5) by z(z, ) and integrating over B;, we obtain, upon

making use of the boundary conditions (3.6) and the positivity of L,

y’ (t)+2y1p(t)<2f flx, )z (z, t)de, (8.27)

where y (t) = f (2 (x, t))*dz. Using Schwarz’s and the inequality By <}(ep®+*/e)
Bt

(>0,>0,y>0), we get
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! 1 2 <
v ) +yy () <; & (1). (3.28)

We claim that y (t)—0 as t—co. Indeed, for any given §>0, we choose #, such
that & (£) <dy?/2 if t>t, Integrating (3.28), we obtain

i |
pE)<e [f ;—/ & (r) e dr+ey (to)} <g 4 P (t) <0

if ¢t is sufficiently large. We have thus proved that
lu(-, ) —v (-, =2, D[P0 as t>oo. (3.29)

We next consider the function

w(z, t)=wv (x, {)—v (z), (3.30)
where v (x) is the solution of
Lyv=f(z) in B, (3.31)
v .
5y =V (o) (0<j<m—1) on &B,. (3.32)
w satisfies the system
Lyw=0 in By, (3.33)
dw .
6—1}{=(pj (xt,g) (O <] <m— ].) on é)Bt’U, (334)
where o=lub. |v,— .| (3.35)
z:€0B;
and where
& & & o
@7 (%0,0) = [87;” (1,0, t) — Favid (@, t)] + [m V(@) — E A (xt,.,)]
+ s (@0 1) — @y (@) | =W+ P+ W (3.36)
Using (3.3) and (A,) we get
[P <Ho. (3.37)
Next, by assumption (B,),
W55 jpa=0(1), as t—>oco. (3.38)

To estimate Wi, we write it in the form
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o & o 4
Y= [m ¥ (Too) — 7 ¥ (2, d)] -+ [év—io v (1, 4) — _‘v(xt,o')] =W - P,

o, dvi

Since, by Lemma 5 with k=1, we have

mta

lo () nz<H,
we easily get, using (4,),
|Wor |0 <H 2= 2o 3., =0(1) as t—>o0.
Finally, using (4;), (3.40),
| W5 |07 hn <H | cos [¥ (%), oo (Xeo)] |21, =0 (1) as t-—>oo.
Combining (3.36)—(3.39), (3.41), (3.42) we easily get
|97 105525 =0 (1), as t—>oo.
Using Lemma 5 with k=0 we obtain,
m—1+o m 1+zx

v () —v () [pty  =|w (-, B)ots as f—oo,

Combining (3.44) with (3.29), the proof of Theorem 6 is completed.

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

Remark. From the above proof we see that the assumption (2.3) was needed in
making use of Lemma 5 with f=0, £=0. Hence if Lemma 5, for f=0, k=0, holds
with =0 in (1.4), then it is enough to assume, in (B;), that (2.3) is satisfied for
a=0. Also, it is enough to assume that (A,)—(A;) and (B,), hold with «=0. The
desired a priori inequality (that is, (1.4) with k=a=0, f=0) can be viewed as a gener-

alization of the maximum principle to higher order equations. It was recently proved

by Miranda [14] for n=2, provided L, is positive in the sense that

fB O (@) Lyv (@) dx=p, >, J‘Bm(Dii)(x)fdx (76> 0)

lij<m

for any ©€C*" (B.,), ¥€C" *(By), and v having zero Dirichlet data on &B..

Added in proof: Extending Miranda’s results S. Agmon (in Bull. Amer. Math.
Soc. 66 (1960), 77-80) has very recently proved maximum principles and, in particular,
Lemma 5 for f=0, k=0, «=0, provided the a,(x) belong to " (G) and 2@ is of
class C*". Hence, if @, (x)€C"(B,), then Theorem 6 holds when the assumptions

(Ay)-(Ag), (B,), (B;) are weakened by taking a=0. A similar improvement holds also

for Theorem 7-9 below.
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4, Uniform convergence

Having proved the L, convergence of w(x, t) to v (x), we proceed in this section
to derive, under stronger assumptions, uniform convergence. The first result is about
convergence for x in compact subsets of B,. The second result is about convergence
in the whole domain D, provided D is a cylinder. Finally we mention a few addi-

tional results that can be derived by some modifications of the methods.

4.1. Convergence in compact subsets
We need the following additional assumptions:
(C;) As t—> oo
1= ()00, 3 o, ) =a () [P0,

(Cs) The coefficients g, (x, f) of L have |4| continuous derivatives in D which are
bounded (in D) by a constant A4.

THEOREM 7. Let the assumptions (A)~(A;5), (B)—-(By), (C))~(Cy) and (Cy), (Cs)
be satisfied. If u(z, t) is a solution of (2.1), (2.2) then for every compact subset G of B,

lu(-, t)—v(-)|§—>0, as t->oco, (4.1)

where v () is the solution of (1.1), (1.2) with ¢; ()= @; (%)

Note that (4.1) is equivalent to the statement u (x, £)—v (y) as x>y, {—oo uni-
formly in z€@, y€G.

Proof. In the proof of Theorem 6 we introduced the functions z(z, t)=u (z, t)
—v(x,t) and w(w, t)=v(z, {)—v (x). For the second function we derived a uniform
convergence to zero (see (3.44)). For z (z, £), however, we derived only L, convergence
to zero (see (3.29)). It thus remains to prove uniform convergence for z. By the
estimates in § 3 and by (C) we already know that z satisfies (3.5), (3.6) and

[7 (-, t)]g*—=0, as t-—>oo, (4.2)

Hz(-, t)”f‘—>0, as {—oo, (4.3)

Let £ be a domain which satisties G< H < E< B,,. Consider the cylinder @ with
base B and O0<t<oo. If t is sufficiently large, say ¢>p, then @ — @, is contained
in D—D,. Let K (x,t & 7) (t>1) be a fundamental solution of L*—8u/07 (the ad-

joint of L+@u/ot) as a function of (&, 7), with singularity at (x, t), in the cylinder
@ —Q,. Under the assumption (Cj), its existence was proved by Slobodetski [19] (and,
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under slightly stronger assumptions, earlier by Eidelman {4]) and certain smothness

and boundedness properties have been derived. In particular,
f |K (x, t; & 7)|dE<H, (H, const.), (4.4)
E

provided 7>p, 0<t—7<1, and

f (K (¢ & T)PdE<H, (H, const.), (4.5)
E

provided 7>9, t—7=1.

We introduce a function (&) which is 1 in some neighborhood of @, zero out-
side £ and which is defined and of class O*" for all £. Writing down Green’s identity
for the operator L-+0/01 with the functions z (&, 7), y (§) K (=, t; &, 7) and integrating
over the domain £€E, t—1<7<t we find, for any fixed z€G, t—1>¢

t
(@, t)=ft71fEf(s, Dy K (@ t; & ) dEdv
—f f 2(& 1) (L*—%) (& K (= t; & v)]dEdr
t-1JFE
+f z (&, t—l)'lp(S)K(x, t; &, t~1)d§ET1+T2+T3. (4.6)

By (4.2), (44) and by (4.3), (4.5) we get
| T,1§—0 as t—>o0, |T,[6—0 as t—>oo. 4.7

Next, since =1 in some neighborhood of @, (L*—2/07) (y K) must vanish for
& in this neighborhood. Since z€@, it follows that if (L* —8/07) [y (&) K (v, t; &, )]0
then |z—&|>B>0 for some constant f independent of ¢, 7. Hence (by results of

[19], [4])
0
l(L*—E‘) v (§) K (z, £ & T)]| < H,, (4.8)
where H, is independent of z, ¢, &, 7, provided z€G@.
Combining (4.8) with (4.3) we get
| T, ) —~0 as t—>co, (4.9)

which, combined with (4.7), (4.6), completes the proof of the theorem.
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4.2. Convergence in the whole domain D

We shall prove convergence in the whole domain D, for cylindrical domains.
For such domains the assumptions (A;)-(4;), (By)—(B,;) of Theorem 6 take a much

simpler form and we therefore reformulate them.

(4) D is a cylinder and 8B is of class 0?7
(B) ;‘%(',t) gfl—j+ac<A7 Z]%(')?ﬁ-imgA
7

0B

0
?}W(*” =0, 2o H=@()liga=o@) ().

m—1—jt+a
We shall need the following new assumption:

(C2) L is strongly positive in D, that is, for any w (z, t) which is of class C*" (D)
and with compact support in D,

f?l'Libdxdt>;v > J(Diib)zdwdt (y>0).
D i D

lil<m
THEOREM 8. Let the assumptions (A), (B), (C)), (C), (Cy), (C1), (Cs) be satisfied
and let 2m>%n. If u(x, t) is a solution of (2.1), (2.2) then
|u (-, t)—v()]|§—0, as t—>o0, (4.10)
where v (x) is the solution of (1.1), (1.2).
Proof. As in the proof of Theorem 7, we only have to consider z(z, t). More

specifically, we have to prove that

Lub. |z (z, t)|—0, as t—>oco, (4.11)
reB

where z is the solution of (3.5), (3.6) and (4.2), (4.3) hold.
We shall make use of Green’s function @ (z, t; &, v) constructed by Rosenbloom
[16, 122-123] for all (x,t)€D, (& t)€D, (v, t)+ (& 1), t>7. By our regularity as-

sumptions on the coefficients of L it follows that z can be represented in the form
t
2 (=, t)=f f G(x,t;f,r)f(&r)derJrf G t; & t-1)z(&t-1)dE.  (4.12)
t~1 J B B

Furthermore, we have [16]

Hy

G—q)yen (Ha const.), (4.13)

f Gz, t; & T)PdE<
B

provided 0<t—v<1. Using Schwarz’s inequality in (4.12) and making use of {4.13),
(4.2), (4.3), the proof of (4.11) immediately follows.
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Bemark 1. The assumption 2m>%n was used only in concluding via (4.13), that
¢
f f |G(x, t; & 7)|d&dv < const. independent of . (4.14)
t-1J B ‘

If one could establish (4.14) for any m, n then Theorem 8 would follow for any m, n.

Remark 2. The assumption (Cs) may become too restrictive in some applications.
In some cases this assumption may be replaced by the assumption (C,). We give
one example:

Suppose (A), (B), (C))—-(C,) are satisfied, and suppose that

of (-, | 2 o8
i\ t)= i > 0’ LA PR ’
@ (@, 1) =a; () l ot - 8t(p]( )2m—j+a—>0
32 OB
—atz%(-,t) . —0, as t—o0,
m—-1-j+a

If 2m>%n, then (4.10) holds.
Indeed, by the method of § 3 we can prove that

Lo B

—uv(-,t =o0(1), as t— oo,
|8t ( )2m+oc ()

82 B

v (1) =o0(l), as {—o0.
ot m—~1+a

We now differentiate (3.5), (3.6) with respect to ¢ and apply to 9z/0¢ the argument
applied in § 3 to 2. We get

B

0z(, 1) —0, as {—oco. (4.15)

at

Using L, estimates for elliptic equations (for instance [1, Chapter IV]) we obtain, using
(4.15) in (3.5), (3.6) (for each fixed ¢),

> |[Diz(-, t)||°—=0 as t—oo. (4.16)

li|<2m

Since 2m>1n, we conclude from (4.16), upon using Sobolev’s lemma, that (4.11) holds.

The above method can be used even in case 2m <} n. We then apply it several
times (estimating successive {-derivatives of v, z). Naturally we then have to make
further assumptions on the rate of convergence of ¢, and f as {—oo. Note, finally,

that if it is a priori known that > |D'u(-, )| <H, (H, independent of ¢) then we

li|<am
may take in the above proof g; (x, t) depending also on #, provided

B
—0, as t—>o0,

H%aa-,t)
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Remark 3. In the proof of Theorems 6-8 we could define v (2, t) in a different
manner, namely, » is the solution of
Lv=f(x) in B,
o)
5{;=(p] (%t, t) on aBt.

In the case f=0, ¢;(x,)=0 this gives a new result. Indeed, we obtain the conclu-
sion of Theorem 6 under somewhat different assumptions on the rate of convergence
of the coefficients. The method is the same as in § 3.

Remark 4. For second order parabolic equations it is seen from the proofs of
Theorems 1, 2, 4, 5 that if both the coefficients and the nonhomogeneous terms tend
to their limits faster than ¢ (f), then the same is true of the solution. Here & (f) is
any monotone function which decreases to zero as t—oco (for instance, ¢ (1) =t*, 1 <0).
This result can easily be proved also for higher order equations, by following carefully

the proofs of Theorems 6-8.

5. Asymptotic expansion of solutions
We shall need the following assumptions:

B*) For every §, o<j<m—1,
Y 7 7

k
#r @ 0= > o @y @ 0"

K
a'nd Z_:OIW? 2675—7'+oz<A9 ,@J ( " t) ,grn;l~f+oz<A’
d . 0B .
11 (pf ( ) t) '_>0’ |¢J ( *y t) I?nB—l—/+ac—_)O’ as f—>oco,
dt m-1-j+a

(C*) For every j, 0<|j|<2m

a; (x, ty= > a; (@)t +a, (x, t)t7"
A

f ) =l_§ fae?+f@ "

k k
a‘nd Az()'a;h'ng; 220|f1l5<A: [a.?ll?[—m+1+rx<A> lf Iy-l >m:
lla; (-, 91P=0, [[7(-, 9][®>0, as t->co.

We can now prove the following theorem.
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THEOREM 9. Let the assumptions (A), (B¥), (Cy), (C,), (C¥) be satisfied. If u(x,t)
is a solution of (2.1), (2.2) then

u(x, t) =é0ul (@) ¢+ (x, t) ¢, (5.1)

where || (-, t)||P—0 as t—oo, and the u' satisfy the equations

o ut 2
7+ Lo wt=f @)~ (A -1 (@) — ; L, v " (x), (5.2)
a%ul ()=¢%(x) (0<j<m-—1) on 8B, (5.3)

where L= > af () DY, and if A=0 it is understood that the right-hand side of (5.2)

lij<2m

is replaced by f° (x).

The proof can be given by induction on k. The case k=0 is a consequence of
Theorem 6. The passage from k to k-1 is performed similarly to the case of second
order equations in [6] and, therefore, we omit further details.

In view of Theorems 7, 8, we can state a theorem similar to Theorem 9 which

is concerned with uniform convergence.
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