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1. Introduction

The purpose of the present paper is to lay down the foundations of a general
theory of stochastic population processes (see Bartlett [2] for references to previous
work on this subject). By population we mean here a collection of individuals, each
of which may be found in any one state x of a fixed set of states X. The simplest
type of population process is one where there is only one kind of individual and where
the total size of the population is always finite with probability unity (finite uni-
variate population process). The state of the whole population is characterized by the
s)ates, say #;, ..., %,, of its members, where each of the z; ranges over X and n=0,1,2, ...;
thus we may have for example a biological population whose individuals are charac-
terized by their age, weight, location, etc. or a population of stars characterized by
_their brightness, mass, position, velocity and so on. Such a population is stochastic in
the sense that there is defined a probability distribution P on some o¢-field B of sub-
sets of the space X of all population states; in §2 we develop the theory of such
population probability spaces; the approach is similar to that of Bhabha [4], who, however,
restricts himself to the case where X is the real line and P is absolutely continuous.
By taking the individual state space X to be arbitrary (i.e., an abstract space), we
are able to make the theory completely general, including for example the case of
cluster processes, where the members of a given population are clusters, i.e., are them-

selves populations, as in Neyman’s theory of populations of galaxy clusters (cf. Neyman
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and Scott [13]). In § 3 we develop an alternative and largely equivalent approach
where the state of the population is characterized by an integral-valued function N
on a class of subsets of X, N(4) representing the number of individuals in the popula-
tion with states in the subset 4 of X. §4 is devoted to the study of generating func-
ttonals, which play a role analogous to that of probability and moment generating
functions in standard probability theory; generating functionals were introduced in this
connection in Kendall [8] and Bartlett and Kendall [3] (see also Bartlett [1]). In § 5
we extend the theory to multivariate populations, where there is more than one kind
of individual (e.g., biological populations comprising several species) and population
processes, where the population state is a function of some independent variable such
as time or space coordinates: an example is that of cosmic ray cascades, which are.
populations of several kinds of elementary particles (electrons, photons, nucleons,
mesons, etc.), characterized by their energy, momentum, position, etc., developing in
time through the atmosphere. In § 6 we extend the theory still further to the case
of populations whose total size can be infinite with positive probability. Finally, in
§ 7 we consider as examples special types of population processes: cluster processes;
processes with independent elements; Markov population processes, where we treat the
problem of obtaining the probability distribution of the process from given reproduc-
tion and mortality rates; lastly, the important case of multiplicative population pro-

cesses, where each ‘“‘ancestor’” generates a population independent of the “descendents

of other “‘ancestors”.
2. Point Processes

We start with the space X of all individual states x. If the members of the popula-

tion can be distinguished from each other, then a state of the population is defined as

an ordered set z”=({(z,, ..., x,) of individual states: i.e., it is the state where the popu-
lation has » members, the ith being in the individual state x;, t=1, ..., n. The popula-
tion state space X is the class of all such states 2" with n=0,1,2, ..., 2° denoting con-

ventionally the state where the population is empty.

If the members of the population are indistinguishable from each other, then a.
state of the population is defined as an unordered set o™ ={x, ..., z,} of individual states:
i.e., a state where the population has » members with one each in the states y, ..., x,.
The population state space X is now the set of all such 2® with n=0,1,2, .., 2% de-
noting again an empty population.

A triplet (X, B, P), where X is a population state space, B a o-field of sets in X

and P a probability distribution on B constitutes a model of a stochastic population
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and will be called a point process, (1) or more precisely a single-variate point process.
We shall often use the single letter x to symbolize a point process.

Let X" be the set of all states 2" with n fixed; X" is a subset of X. If the
individuals are distinguishable, then X" is the Cartesian product X x X x ... x X, » times.
If n+k, then X" and X* are disjoint, and all subsets A™, A% of respectively X"
and X* are disjoint. It follows that every set 4 in X can be expressed uniquely as
a sum of disjoint sets 4 =2350A4%, where 4™ =4 n X" (throughout this paper we
shall use N, U to denote respectively set intersections and unions, and +,2 to denote
unions of mutyally disjoint sets). The folloving results are obvious: let 4, 4,, 4,, A,(t€T)
be sets in X, —A the complement of 4, ¢ the empty set and 4™ =4 n X" then

=3 (X" - 47), 2.1)
A, N A,=o implies that 4/ N 4§ =90 (=0,1,2,...), (2.2)
Ud,=> U4® and N 4,=> N AP (2.3)

teT n=0 teT teT n=0teT

If we wish to differentiate between the two cases of distinguishable and indis-
tinguishable individuals, we shall denote the population state space in the latter case
by Xs, points in Xs by x™, the set of all points ™ with n fixed by X™, subsets
of X™ by A™, and so on. Let m be the permutation iy, ...,%, of 1,...,n, let A% be

the subset of X" obtained from A™ by the permutation (z,, ..., ;) of the coordinates
%, ...,%, of each 2" in A™. 4 in X is symmetric if AW =4nX"=A for all per-

mutations 7. The symmetrization of 4 is the symmetric set U, 4, The relation be-
tween the two cases of distinguishable and indistinguishable individuals is that given
X, we have the transformation T from X onto X which maps every "= (xy, ..., %)
into ™ ={x,,...,x,}; clearly the inverse image T '{z™}=>,{2"},, and hence there
is a one-to-one correspondence between subsets of ¥ and symmetric subsets of X:
thus we can identify sets of states in a population with indistinguishable individuals
with symmetric subsets of the state space X of a population with distinguishable
individuals.

Let B be a o-field of sets in X; we call the pair (X, B) the ndividual measure
space. Let B™ be the minimal ¢-field of sets in X" cotaining all product sets 4,x...x 4,
such that 4,€B, i=1,...,n, and let B be the class of all sets 4 =272, A4™ in X such
that A™€B”*, n=0,1, 2, ...; by an abuse of standard notation we write B =Y 3_o B*; then

(1} The term ‘“‘point process” is due to Wold [17]: see also Bartlett [1] and [2].
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Lemma 2.1. B is the minimal o-field of sets in X containing all sets A™ €B”,
7n=0,1,2,...

Proof. That B is a o-field follows immediately from (2.1) and (2.3); if B’ is a
o-field containing all 4” €B”, it will contain all unions 2320 A™ of such 4™; hence
B'>B.

We call the pair (X, B) the population measure space. In the case of a popula-
tion with indistinguishable individuals, starting from (X, B), we define (¥, B) as above,
and then define the ¢-field By to be the class of all sets 4 in X such that 7°'A4 €B;
thus By may be identified with the o-subfield of all symmetric sets of B. Sets of B
or Bs will be called measurable. In order to avoid trivial difficulties, we shall assume
as a rule that B contains all singletons {z}; it then follows that B contains all sin-
gletons {x"} and By contains all singletons {z™}.

We now turn to the definition of a probability distribution P on B. The restric-
tion P™ of P to sets in X" is a measure on B, p,=P™(X") is the probability that

the size of the population is n, and > p,=1. Conversely, we have:

Lemma 2.2. If P™ is a measwre on B*, n=0,1, ... such that > o P™ (X" =1,

then the function P on B whose value at A=27q A™ is
P(4)= 3 P™(A™) (2.4)
n=0

is the unique probability distribution on B whose restriction to B" agrees with P™ for

all n.

Proof. Clearly P>0, P(X)=2>7_oP™(X")=1; if {4,} is a disjoint sequence of
measurable sets, then by (2.3) and the definition of P

o0

(a3

n=0 k=

ap)= 5 3 powap)- 5 Py
1 n=0 k=1 k=1
hence P is ¢-additive and therefore a probability distribution on B. Finally, if P’ is
a probability distribution on B which agrees with P™ on B" for all n, then clearly
P'(A)=P(A) for every A€B.

Exactly the same considerations apply to a probability distribution Pg on the
o-field By in the case of indistinguishable individuals. A probability distribution P on
B determines a unique probability distribution Py on By such that for every 4 €Bg

Ps(A)=P(T'4). (2.5)
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Conversely, it can be shown that a probability distribution Py on By determines a
unique symmetric probability distribution P on B (by this we mean a distribution on
B which is invariant under coordinate permutations) to which it is related by (2.5).
Thus we can identify a distribution on Bg with the corresponding symmetric distri-
bution on B, and we shall use the same symbol Py for both. It follows from the
foregoing discussion that a point process (X, B, Ps) with distinguishable individuals
and a symmetric distribution and the corresponding process (X, Bs, Ps) with indis-
tinguishable individuals are to all intents and purposes the same thing; we shall hence-
forth identify the two under the name of symmetric point process (symbolized by the
single letter X;). With each point process (X, B, P) is associated a unique symmetric

point process (X, B, P5) obtained by symmetrization of P: that is for each A €B,
Po(d)= 5> — 5 P®(4D). (2.6)
n=0 1. #

Point processes and their distributions which are associated with the same symmetric
point process will be called countably equivalent.

A particularly simple class of point processes is the class of compound processes
(cf. Feller [6], p. 268) where given that the population is of size =, the states of the

n individuals are independently distributed with the same distribution @ on B; hence
PP =p,@* (n=0,1,2,...), (2.7

where p, is the probability that the population is of size n, @*" is the nth product
measure on B" generated by @; clearly P™ is symmetric. Two examples are the
Poisson process, where p, =m"e"™/n!(m >0) and the geometric process, where p, = (1 —q)¢"
0O<g<l).

A real-valued function ¥ on X is a mapping of X into the real line; y may be
identified with the sequence {y,} where y, is the restriction of y to X" and is there-
fore a real-valued function on X". We say that y is measurable if y *(S) € B for every
Borel subset S of the real line; similarly y, is measurable if y;'(S)€B" for every

Borel set §. The following lemma is evident:

Lemma 2.3. A function y on X is measurable if and only if each of its restric-

tions y, 18 a measurable function on X", n=0,1,2, ...

It follows that a sequence of measurable functions y, on X*, »=0,1,2, ..., de-
termines a unique measurable function y on X whose restrictions to X is y,. Following

the usual terminology, we say that a measurable function y on X determines a random
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variable on the point process (X, B, P). The ewpectation value of y with respect to P,

defined in the usual way,
Ey=f y(z" z &) P™ (da™), (2.8)
X

clearly exists if and only if each integral fx»y, P™(d2") in the series above exists and
their sum is absolutely convergent. If y is symmetric (i.e., invariant under coordinate
permutations) then [yyP(dz") = [y Ps(dz"), where Pgis the symmetrization of P; con-
versely, if P is symmetric, then [yyP(da") = [y'> P(dz"), where ¥ is the symmetri-

zation of y:

s ")— Zyn (), (r=0,1,2,..). (2.9)

It will be convenient to admit infinite expectations: i.e., Hy= + oo if the right-hand

side of (2.8) diverges definitely to = oo.

3. Counting Processes

We shall now turn our attention to an alternative method of characterizing sto-
chastic populations, namely, the method which assigns to sets 4 in the individual
state space X the number of individuals N(4) which are in states x€4; we restrict
ourselves in the present section to populations whose total size N(X) is finite with prob-
ability unity. 1t is convenient to treat this approach by relating it to the previous
one. It is intuitively obvious that if in a population of total size n there are one
individual each in the states Zy, ..., T,, then the number of individuals with states in

a given arbitrary subset 4 of X is given by the expression
N |2 =2 6(4|x): (3.1)
i=1
where (4 |x) is the characteristic function of the set A:

(3.2)

1 if ze4
Alx)=
0 if z¢A.

For each fixed 4 in X, N(4|-) is a function on the symmetric population state space
Xs, while for each fixed 2™ € X5, N(-|2™) is a function on the class U of all subsets
of X. Clearly each such function on U will have the following properties: it is (1) non-

negative, (2) finite, (3) integral-valued and (4) completely additive, in the sense that if
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{4,,teT} is an arbitrary indexed collection of mutually disjoint sets in X, then at
most a finite number of sets, say 4, ..., 4s, can be such that N(4;)>1 and
N(Cter As)=Dser (N| At) =271 N(Ay). The converse is also true; call counting measure
a function on U which has the properties (1) to (4) above, and let N be the class of

all counting measures on U; then
THEOREM 3.1. Relation (3.1) defines a one-to-one correspondence between Xs and N.

Proof. Tt follows immediatély from the additivity of N that N(s)=0. Let N(X)=m,
and let k, be the smallest integer such that there exists a set 4, such that N(4,)=k,:
then b, <n and N(X —4,)=n—k,. If k;<n, let k, be the smallest integer such that
there exists a subset A4, of X — A, such that N(4,)=Fk,: then k, +%k,<n and
N(X — (4, +A4,)y=n—k,—k,. Repetition of this procedure must obviously terminate
after r<n step, yielding r pairs (k;, 4,) such that D k=n,4,n4;=0 if ¢+4 and
Di-14;=X. It follows that if B< A4, then either N(B) =4k, and N(4,— B)=0or N(B)=0
and N(4,—B)=k;. Let G be the class of all subsets B of A; such that N(B)=0.
Let us index the elements of G with the indices t€7; we may assume that 7' is the
class of all ordinals f<a, where o is the least ordinal with the same power as T':
thus G={B;, t<u«}. We now show that there exists a disjoint indexed class {C,, t < «}
of subsets of 4; such that B,= Ut<, B;= ¢, 0. Let Oy= B, and let ;= B;— U, B;
then clearly C;nCy=o if t+t. Suppose that U, B,=>,.:C, for some £>0 and
<o. Then clearly this equality holds for £+ 1. Furthermore if ¢is a limit ordinal and
the equality holds for all s<¢, then B,c Y, C, and hence Usc; B, < Dse: C. On the
other hand from the definition ;< B, for every t< o« and hence >;.: 0, < U B
hence U, By=2s<: C,. Tt follows by transfinite induction that >;.,C,= Ui, B:
Therefore by the assumed complete additivity of N,

N(B)=N(U B)=N(3,.0)= 3 N(C)=0,

t<o

since C,<B; and N(B;)=0 for all {<«. Hence if we let D=A4;— B,, then N(D)=1k;
therefore D +0. We assert that D is a singleton, say {y;}; for suppose not; then
there exists a non-empty proper subset E of D such that N(Z)=0; hence E €G and
therefore D—E=(A4;—~B,)—E=A4;,—B,=D; hence E=g, which is a contradiction;
hence D={y;}, N{y;} =k;, and for every B< A4, N(B)=k, if y,€B and N(B)=0 if
y;¢B. This result is true for j=1,2,...,r. Hence if we set 2™ ={x,, ..., 2,}, where
Xy =Ty= ... =Ty, =Yy, Tiy41= ... =Ty, 11, =Y, and so on, then for every 4 X, N(4)=
2710(A4lx;). This completes the proof that relation (3.1) defines a one-to-one corre-

spondence between Xs and MN; we shall denote this mapping by the letter Tgy.
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If now we are given the symmetric point process (Xs, Bs, Ps), let By=Ts3 Bs,
ie., By is the o-field of all sets of functions N € # whose inverse image belongs to Bs.
Let Py be the probability distribution on By such that Py(d)=Ps(TsyA) for every
A €By; we write Py=1T%yPs. Then the triplet (N, By, Py) constitutes a probability space,
which we shall call a counting process and denote briefly by N. In other words, T'sy
defines a one-to-one measure-preserving transformation from xg onto N.

We now turn to a closer study of the ¢-field By. We note that for fixed 4, the
function N(4|:) on ¥Xs defined by (3.1) is measurable if and only if 4 is measurable.
This leads to the following theorem:

THEOREM 3.2. The o-field By is the smallest o-field containing all sets {N|N(A4;) = k;;

i=1,2,...,n} in N, where A; is measurable and k; is a non-negative integer, i=1, ..., n.

Proof. Let {4,, ..., 4,} be a measurable finite partition of X: i.e., a disjoint finite
collection of sets in X such that 2j.; 4;=X. Let Cy denote the class of all symme-

trized product sets

(A x ... xAF)s =3 (APrx ... x Ak, (3.3)
formed from such partitions for all finite sets of non-negative integers {k,, ..., k,} with
r=1,2, ..., and let Cy be the class of all sets {N|N(4;)=k; ¢=1,...,r}. The trans-

formation 7'gy establishes a one-to-one correspondence between elements of €y and Cy:
Tsw(AP % ... x AF)g={N | N(A) =ki; i=1,...,r}, (3.4)

since by Theorem 3.1 if n=%k +... + %, then each function N satisfying the condition
in the right-hand side of (3.4) determines a unique ™ ={x,, ..., x,} such that k, of
the coordinates belong to A4, ¢=1, ...,r, and conversely. We now remark that if
{B,, ..., By} is an arbitrary finite collection of non-empty measurable sets in X, then
there exists a finite measurable partition {4,, ..., 4,} of X for some r>n such that
each B;, j=1, ..., n is the union of one or more of the 4, It follows that the sym-
metrized product set (B, x...xB,)s is the union of a disjoint collection of sets of the
form (Afl‘x...XA;h), where h>1 and k,+...+k,=n, ie., of sets belonging to C.
Now by Lemma 2.1 Bg is the minimal ¢-field containing all symmetrized product sets
(Byx...xBy)s, and hence is the o¢-field generated by Cs. It then follows from (3.4)
and Theorem 3.1 that By is the o-field generated by Cy. Because of the additivity
of N, the random variables N(B;), j=1, ..., », can be expressed as sums of one or
more of the random variables N(4,), and hence each set of the form {N|N(B;) =k;

j=1,...,n} can be expressed as a union of sets belonging to Cy. Hence the smallest
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o-field containing all such sets coincides with the o-field generated by Cy, i.e., with By.
This completes the proof of Theorem 3.2.

It follows from (3.4) that if {4,, ..., 4,} is a finite measurable partition of X
and k,+ ... +k,=n then

Py{N(A)=k; i=1, ..., r} = PP (A7 x ... x AFr)g

— n! pPm Ak‘ A
Bl k1S A, (3.5)
where Pg is a symmetric distribution on B. It will be seen from the proof of Theo-
rem 3.2 that we can use (3.5) in order to express the joint distributions of N(A) for
any finite collection of measurable sets in X in terms of the distribution Ps on B.
Thus for example the distribution of N(A4) is

Py(N(4)=n)= 5 Py(N(4)=n, N(X— d)=F)

k=0
-3 (”:’“) PYR (A (X — AYF). (3.6)
k=0 .

In the case of a Poisson process, where P§’=m e ™Q*"/n!,

" nl

PN{N(A1)=701-; i=1,...,7’}=m;" _kal( ) ri(Ar)
1-
;Hl mk?c’:( i) gmacan, (3.7)

hence the N(4;) are mutually independent Poisson variates with means m@(4)),
=1, ...,7r '

Theorem 3.2 leads to the conjecture that in the definition of a counting process
we could restrict the domain of the functions N to the ¢-field B. This is in fact true
if B includes all singletons, in the sense that this last condition together with condi-
tions (1) to (4) in the definition of M ensure the one-to-one correspondence between
Xs and M; the proof of Lemma 3.1 can be modified to show this. We take in the
proof all the sets 4,, j=1,...,r and B,, t€T to be measurable; then B,= U:., B; is
measurable. For if it is not then B, A4;; hence A;— B,+¢ and therefore contains
at least one point y; but {y} €B by hypothesis; therefore the smallest measurable set
B, which contains B, is a proper subset of 4;. Suppose N(B,)+0; then N(4,~ B,)=0;

&

hence A;—B,€G, which is a contradiction; hence N(By)==0 and therefore B,=B,;
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hence B, is measurable. The rest of the proof follows as before. We see thus that
the restriction is in fact trivial, since under these conditions each N defined on B
extends uniquely to the o-field U of all subsets of X. It will be convenient never-
theless in what follows to make this restriction, since we shall always be dealing
with measurable sets only. An open question is whether g-additivity alone is sufficient
to ensure the truth of Theorem 3.1: i.e., does g-additivity imply complete additivity
for finite integral-valued measures on U or B? Ulam () {16] has shown that a sufficient
additional condition for such measures on U ig that the cardinal of X be accessible,
and one may conjecture that the same is true for such measures on a o-field B con-
taining all singletons.

We shall now consider the measures generated by the moments of a counting
process N. Writing as before p,=P™(X"), let my= > #*p, and ma, = 2% n!p,/k! be
respectively the kth moment and factorial moment of the distribution {p,}, and write

My = My =m.

LeMma 3.3. The mean

=]

MA)=EN(A)= > | 3 6(A]z) PO (da") = 3 n PP (AxX"Y) (3.8)
n=1Jxn i=1 ne1
defines the value at A of a measure M on B which is finite if and only if m< oo,
and a-finite if and only if M(A4;))< oo for each A; of some measurable countable parti-
tion {4;} of X.

Proof. The lemma follows at once by known results from the fact that M is
seen in the right-hand side of (3.8) to be the sum of a series of measures on B. We
shall say in what follows that M exists only if it exists as a finite or ¢-finite measure.

We shall call M the mean distribution generated by N. It is instructive to re-
derive (3.8) using expression (3.6) for Py(N(4)=n) and the relation

PP AxX Y= f Xké(A EA) 111[6(A |z,) + 8(X — A x)] P§° (da™)
k-1 k—l ) )
=3 ( ; )PE;’”(Af“x(X—A)""J‘l). (3.9)
7=0

From (3.6) and (3.9) we obtain

(1) T am indebted to Drs. Erdés and Le Cam for this reference.
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)= S nPu¥)=n= S 3 () PO - g

n=0

:z _ZO( 7 )P(k)(AI+1><(X Ak] 1 ZkP(k)AXXk 1)
21 i P

Consider now the kth product measure N, generated by N on B*. It follows
from (3.1) that for each 4™ eB*

n

N (AP |2™) = Zl... ilé(A(")]x,-l, ooy Tig) (3.10)
=1  ig=

where §(:|y, ..., ;) is the product measure J(-|z;)x .. X0(+|2); in other words, the
function N,(-|z™) assigns measure 1 to every singleton {(a, ..., %)} in X* such that
x; €{x;), ..., 2}, 7=1,...,k and measure 0 to the rest of X*. Hence N, is itself a
counting measure on BY and the expectation M, = EN, is the mean distribution of N,;
it therefore follows from Lemma 3.3 that M, i¢s a measure on B¥, finite if and only
if m, < oo, g-finite if and only if M,(4{®)< co for each set A of some measurable
countable partition of X*. We call M, the k-th moment distribution generated by N.
The expression of M, in terms of Pg is rather complicated in general. A much
simpler expression obtains for the k-th factorial moment distribution My, = ENy,, where

Ny, is the counting measure on B* defined by the relation

Nap(A®|a™)y = 3 8AP|a, ..., zs) (n=k); (3.11)
Gy e ik
in other words N, (-|+™) assigns measure one to every singleton {(, ...,2s)} such

that z, =, +...+ay and z;€{z,, ...,2,}, j=1, ..., k, and measure O to the rest of X*.
M, is the mean distribution of Ny, and hence a measure on B¥, finite if and only
if mg, < oo, o-finite if and only if Mgy, (AP¥)< oo for each A® of some countable

measurable partition of X*. Tt is then easily seen that

M,y (AP) Z > AP, ..., xy) PV (da™)
i

= Xn by .=

PP (A® x X7y, (3.12)

In particular M, (A4%) is the usual kth factorial moment of the random variable N(A4).
Moment distributions can be expressed in terms of factorial moment distributions;
for example,

M,(A®) = M, (A®)+ M(DA®), (3.13)

where DA® is the set of all x€X such that x=y and (x,y) € A®.
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In the case of a compound process, where P™ = p, @*", (3.12) takes the simple form

had n!
M(’c)(A(k)) = Z

“ (n—k) |pn Q™ (A(k)) = My Q (A(k)) > (3.14)

hence M, exists if and only if my, < oo, in which case it is of course finite; the
o-finite case is thus excluded for compound processes. For the Poisson process M, =
mFQ**, and for the geometric process My, =k!m* Q™ with m=g¢/(1—¢). An example
of a population process that has moment distributions of all order which are ¢-finite

rather than finite is the following: suppose P™ =p,Q%", where @, is a probability

distribution on B, »n=1,2, ...; then the kth factorial moment distribution
it n!
(u = —_— *k
W= 2 gy P

may be defined as a o-finite distribution even when m, is infinite: it is sufficient
that there exist a non-decreasing sequence of measurable sets {X,;} such that X, 4} X,
and a non-decreasing sequence of positive numbers {a;} such that a;,~>1 and @,(X;) <a}
for i=1,2,..., and n=1,2,.... Thus let X=[0,1), g(A)=>% ¢ p,A", and let @, be
defined by the cumulative distribution 2™ on [0, 1]; then

x o d
M(x)= fo M(dy) 2721 np " = xgl—(:),

i S ! d9(A)
—_ Ky e n n__ K k
My (2, ...,xk)—fo J;) My (dy )~n§k (n~k)!p"x1 e Tp=ap .. xk[ Fr P
k=2,3,...).
[} lﬂ
Take gAy=ai+(1—a) gz n =1
where 0<a<1; then
Mx)=ax— (1 —a)zlog(l —x)~>oc as x—1,
Moy @y, ..,m)=(1—a)(k—2) af ... 2k (1 —a; ... 2)" F—>c0 as 2, ...4—>1, (£=2,3,...).

We have thus constructed a process where m, is infinite and yet M, exists as a
o-finite distribution for all k>1.

Let m be a measure on B, let 7z, be the nth product measure generated by =
on B", and suppose that P§’ is absolutely continuous with respect to m, with density

fn; then M, if it exists, is absolutely continuous with respect to 7z, and its density is
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& n!

/l(k)(xk) = ngk F’C)' J.X”_kfn (.’tl, ey @) nnﬁk(d.’tk_l dxn). (3.15)

The factorial moment density uu, is also called in the literature the product moment
density (cf. Bartlett [2], p. 79, Ramakrishnan [14]). Note that the moment distribu-
tions M, are not absolutely continuous for k>1, but exhibit ‘“mass” concentrations
on subsets of X*: thus it will be seen from (3.13) that M, has such a concentration

on the “‘diagonal” of X2.

4. Generating Functionals (1)

Let (X, B) be the point process measure space generated by the measure space
(X,B); let M be the space of all bounded measurable complex-valued functions &

on X; M is a linear vector space and becomes a Banach space under the norm
[€11= sup [§@)]. (4.1)
zeX

Consider now the symmetric measurable function w(z")=§&(x,) ... &(%,) on X. The prob-

ability generating functional (briefly, p.gfl.) of a probability distribution P on B is

GlE]=Bw= 720 Xn.f(xl) o E(an) P (da™) = ngo GPE] = i:opn Z™E, (4.2)

where p,=P™(X"), Z®=G"/p, if p,>0 and Z™ =0 if p,=0. It is clear that:

(1) each ™ or Z“™ is a functional defined on the whole of M;

(2) G is a functional defined on a domain De< which includes the sphere
8, ={&|||&||<ry}, where 7, is the radius of convergence of the associated prob-
ability generating function (briefly p.g.f.) g(A) = >0 P, A", which is the value of
G at £=4, where ] is an arbitrary complex variable; hence r,>1;

(3) since w is symmetric, two countably equivalent distributions have the same @,
and hence G is not altered if we substitute for P in (4.2) its symmetriza-
tion Ps;. We see thus that to each symmetric probability distribution on B
there corresponds a unique p.gfl. defined on some domain in P which in-
cludes the unit sphere S,={£}||&]|<1}. The functional Z™ on M is the ana-
logue of the nmth power of a complex variable in the sense that Z™[1&]=

A"Z™([£]; in the case of a simple compound process where P™ =p,Q*", if

Z[E]= f @ Q(dw),

(1) See Bartlett [1] and [2], Bartlett & Kendall [3] and Kendall [9].
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then Z™ = 2", and G[&]=g(Z[&]). Thus for a Poisson process g(A) = exp m(A— 1)

and hence
G[E]=expm fX[E(x) — 1] Q(dz) = exp L[E(x) — 1] M{dx);

1

for a geometric process g(A)=[1—m(A—1)]"" and hence

-1 -1
G[51={1—m f [5<x)—1m<dx)} ={1— f [§<x)—1]M<dx)} .

We will now establish the connection between probability generating functionals
and functions in the case of counting processes. We define the integral of a measur-

able function # on X with respect to N to be the random variable

n

| o) waal#™ =3 [ 0w dtaol)= Z00e0. «3)

i=1

Hence, taking log & to be the principal branch of the logarithm of &,
Q[&]=E&(x,) ... &(x,) = E exp izllog Ex)=E expf log &(z) N(dx). (4.4)
= X
Let {4,, ..., 4;} be a finite measurable partition of X. We define the multivariate p.g.f.

k 0 0
gy Ay oo d A =BTIAT @0 =3 > Py(N(A)=mni; i=1, ..., k) A]* ... 2%, (4.5)
i=1

n,=0 ng=0

where 2, ... 4, are complex variables of modulus <1. Now set
k
)= 3 2o (4.6)

in (4.4) and (4.2) respectively, and we find

x
G&]=E exp '21

Ag

k k
log > 2;0(4;|x) N(de)=E [] ¥ =g(Ay, Ap; .3 s Ai)  (47)
=1 i=1

S n k
61e1= 3 [ T1 3 2,004,120 P (e

f
(g + ...+t o },Z"Pfgn”""Jrnk)(A?lx XAZk)‘ (4.8)

el o«
=2 .2
n;=0 7ng=0

ny ..oyl

By identifying the coefficients of A{*... 4% in (4.7) and (4.8) we find again expression
(3.5) for Py(N(A4)=mn;1=1,..,k).
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The analogy between probability generating functional and function carries to the
generation of probabilities by differentiation: thus for the multivariate p.g fl. g(4,, ... Z) =
2. DPny oo M AT ATE, we have

Grut e
!l g Py = l:a_/;?” 512‘"9(21’ “"Zk)]x,-...-;.k-o. (4.9)
In the case of the p.g.fl. G[&], let 7, & be fixed elements of M, assume that |||/ <1,
and let r be the largest real number such that #--A£€S, for |2|<r. Considered as

a function on the complex plane A

. * X [n), S
Gty+221= 5 5 (2) 2 [ ste) . stmantenen .nten) PO
n-0k 0 k Xn
is the limit of a uniformly convergent sequence of polynomials in 4 in any closed
region interior to the circle || <7, and hence an analytic function of 2 in this circle.

We can therefore rearrange the series in the form

Gly+28]— 2 A 2. (Z) f &) o Em) ki) - () P (da). (4.10)
It follows that G[y+ >f;4&,], where ||5]|<1 and &€M, i=1, ...k, has first partial
derivatives with respect to the 1, in some open region, say D,, of A* containing the
origin, and is therefore an analytic function of the k complex variables 4, ..., 4, in
Dy, with partial derivatives of all order which are independent of the order of dif-
ferentiation. This enables us to define the k-th order vartation of G as follows (cf.
Hille and Phillips [8], p. 109)

ok K
k v )9 i
5515‘:(][77] {8}.1 a)'kG |:77 ! igl;.igi]}l,—lzﬂ---ulk—()
2 !
= n%k (niz—k)! fxnfl(ml) s E (@) @ 1) - i) P (da). (4.11)

The analogue of (4.9) is then

%5, G101 = k! f () o el PO, (4.12)

Set in (4.12) E(x)=0(4;|x) @G=1, ..., k), (4.13)

where A,, ..., 4; are arbitrary measurable sets in X; then
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1
PP (A4, ... ><Ak)=ﬁ agl_uekG[O]. (4.14)

This last result shows that @ determines Ps uniquely. For suppose Pjs has the same
p.gfl. G. Then by (4.14) Pj agrees with P for all measurable product sets 4, x ... x 4,
and hence on the smallest field containing all such sets. But B is the minimal o-field
containing this ficld, and hence by the uniqueness of the extension of a measure,

P agrees with Ps on B. We have thus proved:

THEOREM 4.1, Let (X,B) be the point process measure space generated by the
measure space (X,B) and let M be the space of all bounded measurable complex-valued
functions on X. There is a one-to-one correspondence given by (4.2) between the class of
all symmetric probability distributions on B and the class of all probability generating

functionals on the unit sphere S, in M.

Carrying the analogy between probability generating functions and functionals
still further, we can use the latter to generate factorial moment distributions when they
exist. For suppose that M, exists as a o-finite distribution on B; if & () ... &c(x)

is integrable with respect to M,, then

o !
f £ o Gulm) Moo (d) = 5 —o f £,(@) . &) PO (d)
Xk n—k)! Jxn

n-—-k

= }]11)1} 6’;.“5’:0[77]. (4.15)

The second expression in (4.15) follows from the first by (3.12); we can invert sum-
mation and integration here because M, is the sum of a convergent series of meas-
ures. The third expression follows from the second and (4.11) by dominated con-
vergence. Set & as in (4.13), with A, ..., A, such that M (4,X...x4;) < co and we

find that
M4, x...xA)— liﬁll 6’5‘1_._5)‘0[17]. (4.16)
..

It then follows by the same arguments as where used in the proof of Theorem 4.1

that:

LeMMma 4.2. The p.g.fl. of a point process uniquely generates all its existing finite

or o-finite factorial moment distributions.

If r,>1 then all the M, are finite and we can set #=1 in (4.10) to obtain

the expansion of @ in terms of factorial moment distributions:
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(=]

Q1+ &)= E A2 (3R) né(xl) o & () PSY (da)

n-k

=1+ 2 @) (@) Moo (4. (4.17)

It is legitimate in this case to substitute A£—1 for A& in the right-hand side of
(4.17), and this leads to the relation

A = z »3 f E(@y) . £(a) My (d%)
= goln Xuf(:vl) E(xn)P(s"’ (dx"), (4.18)

which yields an expression for P§’ in terms of M, that is the inverse of expression
(3.12) for M, in terms of P§’, namely:
S Vi

PP (4™)= 3

(m) k-n
v LMo (A< X5, (4.19)

The characteristic functional @[6] of a point process may be obtained from its
p-g.fl. G[&] by the substitution £=e® where 0 is real; thus

p[6]=FE exp (iJ~ O(x)N Z exp (([0(z)) + ... +0(x,)]) P (dz")  (4.20)
X

n-0JXn

is a functional on the whole of the space My of all real-valued bounded measurable
functions on X. We can use it to generate the moment distributions when they exist.
Let J[0]=fx0(x)N(dx). If M exists as a o-finite distribution on B and if 6 is inte-
grable with respect to M, then

EJ[6)= 21 Ln EIO(x,)P‘S"’ (dx")=f 6(x) M(dz). (4.21)

X

If M, exists as a o-finite distribution on B* and if 6, ..., is integrable with respect
to M,, then it follows immediately from (4.21), since M, = EN, just as M = EN, that

k k
E’HJ[O,]=EHf 0, (z) N (dx) = J 6,(z,) ... O () Ny (dz®)
i1 -1Jx

= f Xkel () ... blzy) My (dz"). (4.22)

Hence, since for 4, ..., 4, real
2 — 622908, Acta mathematica. 108. Imprimé le 19 décembre 1962.
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k k
j=1 j=1

is the characteristic function of the k random variables J[6,], ..., J[6;], we have

k ak S
8% ...0, (0] = {a—ag ?J[Eff"’] L-...xw_o

=1 f 6, (xy) ... O () M (d2™). {4.24)

It follows as before that p generates uniquely all existing moment distributions. If

my< oo for all k and D% ¢(i4)*my/k! converges, then it is easily seen that

pi)-1+ 3 fem 6 () M (d2"). (4.25)

5. Stochastic Population Processes

We now turn our attention to stochastic processes where the ‘‘dependent variable’
is a population variable of the kind defined in §§ 2 and 3. Let (2, Bg, Py) be a given
probability space, let (X, B; t€T) be an indexed family of individual measure spaces
and (X, B, t€T) the associated family of population measure spaces. Suppose that
for each ¢t €T there is defined a random variable 2" (f, ) on ) taking its values in
X, Let X;=Ilier X: and let B,=[1;cr B,; i.e.,, B; is the o-field generated by the
field of all measurable cylinders AxxXr g, where K is a finite subset of 7' and
Ag €By=[liex B;. Then the measurable transformation w->z" (¢, w) yields a prob-
ability distribution P; on By, and we may call (¥Xr, By, Pr) a stochastic popula-
tion process in the point process formulation of § 2. For each t€T and w €L, the
transformation (3.1) defines a counting measure N(:; w) on B,. Let (M;By,; t€T) be
the family of counting process measure spaces generated in this way; then the trans-
formation yields the stochastic population process (Hr, Byr, Pyr) in the counting pro-
cess formulation of §3, where My=[licr W, and By,=]l:cr By,. The standard me-
thods and results of the theory of stochastic processes apply to this case and will
be discussed here only briefly (cf. Kolmogorov [10], Doob [5]).

If T is finite, we have a multivariate population process and the results of the
previous sections extend in an obvious way. Formally, if T=(1, ..., k), this extension
may be achieved by substituting the vector ny—{n,, ..., n} for n and letting >.,
stand for X% ... 2% o Thus let X "7 =], X} then X,=2.,X"" and if 4 is a



POPULATION PROCESSES 19

subset of X, then A =3,., A", where A®" =4 n X", Similarly, let B"7 =[]¢, B®;
then By is the o-field consisting of all A =3 ,, A™® such that 4" € B"*. A sequence
of measures P"? on B™* such that 2., P"? (X"7)=1 determines a unique probability
distribution Pr on By such that Pp(d)= 2., P"T(AMD) for every A=, A" be-
longing to Br. Let N, be the associated counting measure on B;, let N, be defined
in terms of N; by (3.11) and form the product measure Ny = N,y X ... X N(ny; then

the generalization of expression (3.12) for factorial moment distributions is

k

Mgy (A7) = ENngy (A" =3 T]

rTi=

n,+r,)

Plor+rr) (A("T) % X"T) (51)

-

Let £ be a bounded measurable function on X, and let &={¢,, ...,&}. Then the
p-gfl. of P; is by definition

Glér]=2 [ &) ... & (af)) PO (da"T), (5.2)
Xnp i=1
where 2"7 ={z™, ..., 2™} stands for a point in ¥r, z"={zf,...,2%} for a point in

X and z® for a point in X;.

The concepts and properties of stochastic independence, conditional distributions
and conditional expectations all carry over to population processes. Thus if x,y are
two population processes with individual measure spaces respectively (X, B,), (¥,B,)
and associated population measure space respectively (X, B.), (Y, B,), then a proba-
bility distribution for the y population conditional on the state of the x population
is a function Q on B,xX such that for every fixed z* € X, Q(-|2*) is a probability
distribution on B, and for every fixed A €B,Q(A4|-) is a measurable function on X.

The corresponding conditional p.g.fl. is

Q¢ = nZ_O ) E(ya) Q7 (dy" | 2F). (5.3)

Of particular importance in the theory of cluster and multiplicative population pro-
cesses (see § 7) is the case where @ has the multiplicative property; this may be ex-
pressed as follows: let N(4|2*) be the value at 4 €B, of the counting process asso-
ciated to the point process with distribution Q(-|2*); then for all 4 €B,

k

A[:v" A|x,

te 1

where N(A4|x),...,N(4|z,) are mutually independent random variables. If this is
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the case, then it is easily seen that the conditional p.g.fl. (5.3) factorizes as follows:
k
G[¢|a")= [T | 2. | (5.4)

Returning to the case where 7' is infinite, if K is a finite subset of 7', then
we obtain by projection the multivariate process (Xg, By, Pg), where Pg(A) = Pr(AxXr_x)
for every A € Bi. The family of all such multivariate processes for all finite subsets
of T is consistent, in the sense that if K'<K, then Pg.(4)=Pr(Ad*xXx_x) for all
A €Bg.. A stochastic population process is often specified by means of a consistent
family of multivariate distributions {Px} defined for all finite subsets K of T'; hence
we need an extension theorem which will guarantee that such a family has a unique
extension to a probability distribution Pr on By. Kolmogorov’s extension theorem
is proved (Kolmogorov [10], p. 29) for stochastic processes which take their value in
a Euclidean space. It is not difficult to see that this proof can be generalized to
the present case if each X, is a Euclidean space with the usual topology, or even
more generally a locally compact Hausdorff space, and each B, is the ¢-field generated
by the Borel sets of X;. We have in fact available a further generalization due to
I. E. Segal [15] which as applied to the present case states that given a consistent
family {P}, and without any restrictions on the X, there exists a probability space
(Q, Bg, Py) and an indexed family of “generalized” random variables on this space
with index set 7' whose joint probability distributions for finite sets of indices agree
with the family {Pg}.

6. o-finite Population Processes

So far we have only considered populations whose total size is finite with prob-
ability one; we will now extend the theory to the case of populations that can be
infinite with positive probability. This is most conveniently done in terms of counting
processes: for a given measure space (X, B), let N, be a space of uniformly o-finite
counting measures on B: by this we mean the set of all integral-valued completely
additive measures N, on B such that N,(X;})< oo for each X, of a given fized non-
decreasing sequence of measurable sets {X;} such that X;1 X. A o-finite counting
process is by definition a probability space N,=(H,, B,, P,), where B, is a suitably
defined o-field of sets in H, and P, is a probability distribution on B,. Given such
a probability space, let N, be the restriction of H, to X,: i.e., N, is the set of all

restrictions of elements of Y, to X,, and is therefore the space of all finite counting
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measures on the o¢-field B, of all measurable subsets of X,; let B, be the restriction
of B, to X;: ie., the class of all sets S, in M, whose continuation 8% to X belongs
to B, finally, let @, be the function on B, whose value at S, is @Q.(S,) = P,(5%).
Clearly B, is a o-field of sets in M, €, is a probability distribution on B, and
N, = (N, By, @) is a finite counting process, which we may term the X,-restriction of
N,. The sequence {N;} (or equivalently the sequence {Q.}) is consistent under restric-
tions in the sense that if >k and § is the continuation of the set S, €B, to X,
then 8% €B; and Q.(S,) = @;(S%). Conversely, let (M, B,) be the finite counting process
measure space generated as in § 3.1 by (X, B,) and let ¢, be a probability distribu-
tion on B,. If the sequence {Q,} is consistent under restrictions, then we can apply
Kolmogorov’s extension theorem. The measurable cylinders of § 5 are here the meas-
urable continuations S%, where S, €B,. The class C, of all such measurable continua-
tions is obviously a field of sets in M,; we define a function @, on C, as follows;
if S€C,, then there exists an integer %k such that §=8%, where S, €B,; we set
Q,'8) = @Qu(8y). This definition is consistent: for if S=8% =S87(>k), then clearly
S;=48% and hence because of the consistency condition Q,(Sy)=@;(S,). Clearly Q, is
finitely additive and normalized to unity. If we now take B, to be the ¢-field gen-
erated by C,. then by Kolmogorov’s theorem @, has a unique extension to a prob-
ability distribution P, on B,. We have thus proved:

THEOREM 6.1. A sequence of finite counting processes {N,} consistent under re-
strictions determines a wunique o-finite counting process N, such that N, is the X,-re-
striction of N, k=1,2 .... Conversely if N, is a o-finite counting process with finite

X, -restriction Ny, then the sequence {N,} is consistent under restrictions.

Using the same notation as in the last paragraph, we define the p.g.fl. of the

o-finite counting process N, to be

G,1E]1=F expf log £(z)N, (dx). (6.1)

This functional is defined on a certain domain D, in the space M of all bounded

measurable complex-valued functions & on X. The p.g.fl.

G418 = exp L log £(x)N,(dx) (6.2)

of the Xj-restriction N, of N, is obtained from @, by setting £(x)=1forallz € X — X,

in (6.1). The sequence {G;} defined in this way is consistent under restrictions in
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the sense that whenever j>k, G, agrees with G, if &(z)=1 for all z€ X;— X,. It can

now be seen to follow from Theorems 4.1 and 6.1 that:

THEOREM 6.2. A sequence of finite counting processes {N,} is consistent under
restrictions if and only if the corresponding sequence of p.g.fls. {G} isso. A functional
G, on a domain D, in M is the pg.fl. of a o-finite counting process N, if and only
if there exists a sequence of measurable sets {X,} with X, 4t X such that: (1) D,, contains
at least all & such that ||&||<1 and, for some k, &(x)=1 for all x € X — X,;; (2) each X,-
restriction. G, of G, is the p.g.fl. of a finite counting process and the sequence {G.} is
consistent under restrictions. If this is true then the corresponding sequence of finite

counting processes {N;} determines N, uniquely.

Two examples which will serve to illustrate the theory are the Poisson and geo-

metric o-finite population processes, with p.g.fls. respectively

Qo] = expfx [£(x) — 1] M (dx), (6.3)

-1
Gu{E}= {1 : -fx [&(z) — I]M(dx)} , (6.4)

where M is a o-finite measure on B. It can be seen that both functionals satisfy
the conditions of Theorem 6.2; in fact if M(X;)< o for k=1,2,... and X, 1} X, then
the X,-restrictions form consistent sequences of finite respectively Poisson and geometric
population processes.

The definition of moment and factorial moment distributions given in § 3 for
finite counting processes extends immediately to the o-finite case. Thus if the X,-
restrictions N, of N, have finite mean distributions M= EN,., then the mean distribu-
tion M=EN, of N, is a o-finite measure on B such that M(X,)= M (X;)< oo,
k=1,2,...; in fact for every 4 € B, we have

M(A)= lim M¥ (4 n X,)

k—>o0

in the extended number system. Similar considerations apply to the higher ordel
moment distributions. TIf follows that the result of § 4 on the generation of moment
distributions by generating functionals also extend to the o-finite case. Take for
example the o-finite Poisson and geometric processes. Their mean distributions are
the ¢-finite measures M in respectively (6.3) and (6.4), and their kth order factorial
moment distributions are respectively M, = M** and My, =k! M**.

We have so far considered o-finite population processes as counting processes.

Associated with each finite X,-restriction N, of the o-finite counting process N, will
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be a finite symmetric point process, say z;; we may therefore say that the sequence
{x,} is consistent under restrictions, and that it determines a unique ¢-finite sym-
metric point process x, associated with N,. The ‘“sample space” of x, is the class
X, of all countable sets of points {z;} in X such that {;} N X, is finite for k=1,2, ....
The connection between N, and 2, is then expressed by:

TuroREM 6.3. The relation

No(d[{z}) = 2 8(4]x) (6.5)

defines a one-to-one correspondence between X, and H,.

Proof. Clearly if N, is defined by (6.5) then it is an element of H,; the con-
verse part of the theorem is an easy extension of Theorem 3.1.

Let P, be the probability distribution of the associated point process x;, k=
1,2, ...; then

¢=lim lm [1- 3 PP (xp) (6.6)
can be interpreted as the probability that the total population is infinite. The Pois-
son and geometric processes for example have ¢=0 if M is finite and ¢=1 if
M(X)=oo. A trivial example of a process with ¢ positive but less than one is a
mixture with p.gfl. @=al,+(1—-a) G, (0<a<1), where G, is the p.g.fl. of a ¢-finite
process with ¢=1 and G, that of a finite process.

If X, is any measurable subset of X, we can define the X,-restriction N, of N,
exactly as before: we call X, N-finite if N, is a finite counting process. Clearly the
joint probability distribution of any finite collection N, ..., N, of finite restrictions of
N, is uniquely determined by the distribution of N,. In terms of p.g.fls., we can
generalize expression (6.2) as follows: let &, be a bounded measurable function on X,
and let & on X be such that & (x)=§&, () for all #€X, and & (2)=1 for all
x€X—-X,, v=1,...,k; then the p.gfl. of the joint distribution of the N, is

01ty - 51=Ga[ 3 8] )

Suppose now that X, ..., X, are mutually disjoint. Let Xz=2%; X,, let N be the
Xp-restriction of N, and let Py be the probability distribution of the associated sym-
metric point process xx. It is then easily seen that G[&,, ..., & ] can be expressed in

terms of Py as follows:
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oo o . ; i

2 (g ) !
Gléy, o 8= 2 .0 2 [1
v n,=0 ng--0 nl! ”’k! X;’x...xxzk;-_l

&y (a) .. & (@) POt (dgit 2 T0) 0 (6.8)

this is in fact a generalization of expression (4.8) and the proof is similar.

7. Examples

We shall now illustrate the general theory by means of examples of special types
of population processes. The treatment will be very brief throughout and we shall
omit the proofs. Details of most of the material in this section will be published

elsewhere. (1)

1. Cluster processes.(?) A cluster process is a population process where the
individuals are grouped in independent clusters. Each cluster is itself a population
whose state is characterized by the ordered pair (x, "), where x is characteristic of
the cluster as a whole and y" means that the cluster contains n individuals in states
Y1 - Ya- Let (X, B;) be the measure space of all cluster state variables z, (Y, B,)
that of the population state variables y*, and let Q(-|z) be the probability distribu-
tion of the population contained in a cluster in state z: Q is a conditional distribu-

tion on B,xX. The independence of the clusters is expressed by the fact that the

distribution of any k clusters in states 2= (x,, .... ;) is the conditional probability

QY(- |2F)=Q(- ) X ... X Q(+ | a) (7.1)

on BEx Xk Let Z[&|x]= > f E(y™, ) Q™ (dy” | ). (7.2)
n«~Q n

and let P be the cluster population distribution relative to the states z, with p.g.fl.
G,; then it is ecsily seen to follow from (7.1) that the p.g.fl. of the whole cluster

process is

G[&]= Zo L" Z{E|z)) ... Z1E |2 P (da™) ~ G {Z[€] 1} (7.3)

The theory is easily extended to higher order cluster processes, where the individuals

(") Note added in proof. Seo J. E. Moyal, Proc. Roy. Soc. A, 266 (1962), 518-526.
(%) See Neyman and Scott (13).
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are members of 1st order clusters, which are themselves members of 2nd order clus-
ters, and so on.

One sees from (7.3) that a cluster process is a generalization of a compound
process: in fact, if X reduces to a single state, p, is the probability of n clusters,
g(A) =23-0Pn A", then

Gl&]= gopn LZ;O f " v Q" (dy")] = g(Z{&]); (7.4)

i.e., we have here a compound process whose “individuals” are independent popula-
tions with distribution @ on B,. If ¥ reduces to a single state, then &(y", x) = £*(x); let
g¢a(x) be the probability of » individuals in a cluster in state z, g(&|x) = 27 ¢¢,(x) & (2);
then

G[§]= EO Lng(f |21) ... 9(&|2n) P™ (da) = Gy [g (5] )]s (7.5)

we call a process of this type a simple cluster process.
As illustrations we consider the Poisson and geometric cluster processes, with p.g.fls.

respectively

Gl&]=exp fx {Z18)|2] -1} M (dz) =exp > [E(y" ) =11 M® (dy"dx),  (7.6)

=1 vexx

GIE]1=1— fX{Z[sli— 1} M (dz)] ™' = [1 - .§ f o [ — NU® @y dx)}_l, (7.7)

where M™ is the measure defined for each 4 € B'xB, by
M‘”’(A)-:fxfyné(A[y",x)Q(m(dy”[x)M(dx), (n=1,2,...). (7.8)

The factorization of & in (7.6) shows that a Poisson cluster process may be regarded
as the sum of an infinite series of independent Poisson processes with mean distribu-
tions M™. If Y reduces to a single state, we obtain the simple Poisson cluster pro-

cess with p.g.fl.
G[E]=exp gl @) — g, (2) M (da). (7.9)

2. Counting processes with independent elements. The simple Poisson cluster
process has a feature which is immediately apparent from the form of its p.g.fl. (7.9),

namely, that it constitutes a counting process N with independent elements: by which
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we mean that for any finite measurable partition {X,, ..., X;} of X, the X;-restric-
tions Ny of N are mutually independent; for clearly the p.g.fl. of the collection
{Nl’ Nk} is )

k
G[fp- ’Slc] CXP ZJ I:Z ) 1] Qn(x)M(dx)
k o0
=exp 3 3 f —1gu () M (de) = G&] ... G4 (110)

a result which is still true if M is a ¢-finite measure on B. This is in a sense the
most general distribution for a counting process with independent elements: that not
all such processes conform to it is ecvident from the counter example of a counting
process where N(A)= 2,4 n,, where the n, are a countable collection of mutually
independent non-negative integral-valued random variables and cach =, is attached to

a point x, € X. Such trivial cases are excluded in the following lemma:

Let N be a o-finite counting process with independent elements such that Py{N(4)=0}>0
for every measurable N-finite set A: then My(A)— —log Py{N(A)=0} is a o-finite meas-
ure on B. If M, is nonatomic, then the p.g.fl. of N is of the form (7.9) with M,=M.

Since every singleton {z} is an atom of M,, the condition that M, be non-
atomic implies that M, {x} =0 and hence that Py{N{z}=0}=1, which excludes the
counter example above. Note that if X is the real line, then this theorem is a special
case of the Iévy-Kolmogorov decomposition of infinitely divisible distributions (cf.
Feller [6], p. 271).

3. Time-dependent Markov population processes. A time-dependent Markov
population process is characterized by its transition probability P(A,t|2*,s) (the prob-
ability of a transition from state z* at time s to some statc 2* € A at time ¢>s)

defined for all ¢>s and satisfying the Chapman-Kolmogorov equation
P(4,t|, 5>~.2 PA t|y, u) PP (dy, u|2,5), (t=u>s). (7.11)

The “time-axis” 7' may be the real line (continuous time processes) or the set of all
integers (Markov chains). For continuous time processes, transitions which involve a
change in the size of the population must be of the nature of sudden “jumps”, so
that the general theory of discontinuous Markov processes (Moyal [12]) is applicable.

The transition probability P satisfies the integral equation
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o t P
P(4,t|a", s)=Py(A4,t]|2" s) + 2 f ij(A,t[y‘, ) QP (dy’, du |2, 5) (7.12)
i=0Js JX

(symbolically, P=P,+ Px@), where P, is the probability of a transition 2z*—~4 in
(8, 1) without jumps, and hence conserving the total number of individuals, @ is the
joint probability of the lst jump time and consequent state (i.e., the state of the
population resulting from the jump) conditional on the “initial” state 2* and time s.
Given P, and @ satisfying the consistency conditions given in Moyal (12), the problem
is to solve (7.12) for P. The solution is of the form

[k o0

P= ngoPn = nZOPo*Qm (7.13)
where {@,} is the Markov chain obtained by iteration of Q(Q,.1=Q,%Q); P, is the
transition probability involving exactly = jumps; @, is the probability of the nth
jump time and consequent state conditional on some “initial” state and time;
o (t| 2", 8) =@, (X, t| ¥, 5) is therefore the cumulative probability distribution of the nth
jump time conditional on (z,s) and hence the probability of <n jumps in (s, 1)
conditional on 2* at s; 6, =lim.,. 0, is interpreted as the probability of infinitely
many jumps in (s, t) conditional on z* at s. The solution (7.13) is “honest’” (i.e., P
is normalized to unity) and unique if and only if ,=0.

If the process is purely discontinuous with finite “‘jump” rate g(2*,¢) and prob-
ability W(d4|2*¢) of a transition 2*—>A given a “jump’ at #, then under certain
regularity conditions (cf. Moyal (12)) (7.12) is equivalent to the ‘“backward” integro-

differential equation
(—g—;+q(x’“,s))P(A,t[xk,s)=q(x",s) 2| Pty )Wy | 2", s),  (7.14)
i—0JXi
or in terms of transition generating functionals

(_a_i+4(xk»8)) G[E, t]|a", s1=q(2*,s) % f jG[E,tlyj,s]W“)(dyf(x", s). (7.15)
j=0J X!

As an example, we consider the #ime dependent Poisson process with ‘birth-rate”
g(t) and probability W (4, ) of the “created” population at each birth, both independent
of the state of the population at ¢. Then clearly the p.g.fl. of the process must be
of the form

Q& ¢ 2, s]=E(;) ... E(m) GplE. 1, 8], (7.16)
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where G, is the transition p.g.fl. conditional on 0 individuals at s. The “backward

equation” becomes

_9

s G =1q(s)Go ]gl vaj [E(wy) ... E(y) — 1] W(D(d!/j, 8)=q(s) G [Gw—1], (7.17)

where Gy is the p.gfl. of W. The solution of (7.17) with the initial condition
Gl s,8]=1 is

Golf 1, s]= eXPJ. {Gwl&, ul—1}q(w)du, (7.18)

which by comparison with (7.6) is seen to be the p.g.fl. of a cluster Poisson process

with mean density of clusters ¢ on (s, £).

4. Multiplicative population processes. A multiplicative population process(!)
is loosely speaking a Markov process where the individuals at a given time, say s,
are the ‘“‘ancestors” of mutually independent populations at times ¢>s. More pre-
cisely, a multiplicative process is characterized by the fact that its transition prob-
ability P has for all £>s the multiplicative property defined at the end of §5; hence
by (5.4) the transition p.gfl. ¢ conditional on k “ancestors” in state x,, ..., x; always

factorizes as follows:

G[.f,t|xk,s]=lf[1G[§,t|xi,s], (t=s). (7.19)

Such a process is therefore uniquely characterized by the transition probability
P(-, t|x, s) or the p.gfl G[E,t'x, s] conditional on the state of a single “‘ancestor’.
If follows from the Chapman-Kolmogorov equation (7.11) that G satisfies the func-

tional relation
Getlwsl=3 | 1 GIE |y ul Py u]z, 9)
=G[G& t] - u), |z, s], (E=u>s). (7.20)

It can be shown that the mean distribution M of P satisfies an analogue of the

Chapman-Kolmogorov equation:
M(A,t]x,s):f MA, tly,u) M (dy,u|z,s), (t=u>s). (7.21)
X

Similar relations may be found for higher order factorial moment distributions.

(1) See Bartlett [2] and Harris [7], where further references will be found.
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In the continuous time case, the integral equation (7.12), expressed in terms of

p.gfls., takes the form
Gl t|x, 8] =Go&, t| 2, 8]+ H{G[&,t -, 1, t|x, s}, (7.22)

where G, is the p.gfl. of Pj, and H is the p.g.il. of Q:

] t
Hin,t|x,s]= zof fxnn(yl,u o N (Yoo ) @ (dy" du | @, $). (7.23)
The mean distribution M of P satisfies the integral equation (analogous to (7.22))
t
M(A, t|z, s)=MO4,t|x,s) —|—f f MA,t|y, u)Adydu|z,s), (7.24)
s JX

(symbolically, M = M®+ MxA), where A is the mean distribution of @ and M =P,
Let {A™} be the sequence defined recursively by AT =A™xA; then the smallest
non-negative solution of (7.24) is of the form (corresponding to (7.13))

M=73 MP=3 MOxA®, (7.25)
n=0

n=0
Similar results hold for the higher-order factorial moment distributions M, of P.
For example My, satisfies the equation Mo, = MY+ Mg %A, where

: ¢
M (A, ¢ |z, s) = f fsz*z(A, t!yz, u) A, (dy? du |z, s),

Ag, is the 2nd order factorial moment distribution of @ and
M2 t|ay, 2y, 8) =M (- |2y, )X M (-, t|x,,s)

whose minimal non-negative solution is
Mg, = 2 M= Z MPxA™ (7.26)
-0

As an example, consider the “birth-and-death” purely discontinuous, time-homoge-
neous multiplicative population process with constant jump rate ¢ and probability
W(Alx) of a transition x—>A4 given a jump. The “backward” equation (7.15) then
takes the form

(5+9) 61eln-ar o el 01, 121
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where K is the p.g.fl. of W. Equations (7.25) and (7.26) then yield

Md|zt)= 2 %e”“‘ ™ (4|z); (7.28)
n=0 .
t
Modlzsn= [ adu [ [ aalssi—nTo@tlan@slse, @20
0 xJxt

where I' is the mean, I'p, the 2nd order factorial moment distribution of W, and
{T'™} is defined recursively by I'**P=I"™xT.

Consider now the particularly simple case where at each “birth” the “parent”
remains in the same state x, and only one ‘“newborn” is produced in a state whose
probability distribution @ is independent of the ‘“‘parent’s” state x. Let A, u be the
(constant) birth and death rates; then (7.27) becomes

0
(B 3+u) atelan-praielma| otelnnoam, (7.30)
whose solution can be expressed in a closed form:

-1
1+e ™ [E—Z+(Z—1)e" [1 +P71_—1(Z—1)(e“"“‘—1)] if A+p,

1+ (E—Z)e ¥+ (Z—1)[1 - 2(Z— 1)) it A=y,

Q|2 t]= (7.31)

where Z[£]= [x&(x) @ (dz). Let u=0 and we obtain the p.gfl. of a geometric popu-
lation process with mean distribution M = (e* —1) @:

GLE |z ) =E(@)[1— (¢ —1) L[é(x)—l]@(dw)rl. (7.32)

We say that the process is time-homogeneous if P(A,t|x,s) depends only on t—s;
when this is the case we write P(-|-;t) for the transition probability, G[£|x; {] for its
p.gfl. and p™(x;t)=P™ (X"|x;¢). One is interested in the asymptotic properties of
these distributions as ¢—oco. The following results can be proved: (1) For fixed z,
the extinction probability p'®(z,t) is a non-decreasing function of ¢ and converges as
t—>oo to the asymiotic extinction probability p,.(x), which is the smallest non-negative

solution of the functional equation
&(w) =G [&|x;t]; (7.33)

(2) In the case of multiplicative chains, let p™ (x) = P™ (X™|a; 1), m(z) = > 7-1 np™ ()

and me, (%) = D=z n(n—1)p™ (x); then p,(x)=1 if sup,cx m(x) <1 and sup,ex pe(x) <1
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if inf,ex m(z)>1 and mg, is bounded; (3) In the continuous time case, if the p.g.fl.
of P satisfies (7.22), time-homogeneity implies that Q(4,¢|x,s) depends only on £ —s;
hence we write it as Q(4,t|x). Let W(4|z)=lim;, Q(4,t|x) and let K be the p.g.fl.
of W. We define an associated multiplicative chain by the sequence of p.g.fls. {K,}
defined recursively by K. [£|x]=K{K,[£| ']|x}. The asymptotic extinction proba-
bilities of the continuous time process and its associated chain are identical, so that
(2) applies with m and m, respectively the total mean and 2nd order factorial mo-

ment of W.
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