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The present study arose from an attempt to characterize structurally the com-

pletion of certain classes of functions connected with vector analysis and partial

differential equations. As examples may be mentioned the class of irrotational vector

fields or of solenoidal vector fields, the class of Beppo Levi functions (characterized

by a finite Dirichlet integral), or the graph of a system of linear first order partial

differential operators with constant coefficients. The completion refers to an LP-metric,

p=1, and takes place within a givén region X in Euclidean n-dim. space R®. Re-

stricting the attention to sufficiently differentiable functions or vector fields, one may

characterize the classes in question by certain classical relations involving integration
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over arbitrary smooth curves or surfaces. (Thus the irrotational vector fields in R® are
characterized by the vanishing of the circulation along closed curves homolog zero, the
solenoidal fields by the vanishing of the flow through closed surfaces homolog zero, etc.)
These restricted classes are, however, incomplete in the LP-metric, and the question
arises how to describe the structure of the functions (or vector fields) in the com-
pleted classes. It is known that these completions may be viewed as “weak exten-
sions” (cf., e.g., Friedrichs [12, 13], Weyl [36], Hormander [20]). Thus a vector field

f€LP(X) is irrotational (in the generalized sense) if, and only if, f(f-rot v)dx=0
X

for every smooth field » which vanishes outside some compact subset of the given
region X. The same idea is fundamental in the theory of distributions due to
Schwartz [34].

In order to obtain a new insight as to the structure of such completions, one
may return to the integral relation valid for sufficiently smooth functions or fields
from the class in question. When passing to more general functions or fields, such
as those from an [L*-class, one may consider the extended class which arises when
one requires that the integral relation shall remain valid for all curves or surfaces in
question. This idea has been used by several authors, e.g., Bocher [5], Evans [11].
It turns out, however, that such extensions are usually incomplete just like the ori-
ginal classes. The problem arises, therefore, to which extent the integral relation sub-
sists within the L?-completion of the class in question. The answer may be expressed
in terms of a concept which will be called an exceptional system of curves or sur-
faces. This concept is independent of the particular class of functions or vector fields;
it depends solely on the exponent p of the LP-class. A system E of curves (or surfaces)
in B™ is called exceptional of order p if there exists @ Baire function f€LP(R"), =0,
such that the line integral (or surface integral) of -f over every curve (or surface) from E
equals + co.(1) In terms of this concept, the completion within I? is characterized, in
each of the above cases, by the validity of the appropriate integral relation for “almost
every”’ curve (or surface), i.e., for every curve (or surface) which does not belong to
some exceptional system of order p. (Cf. Theorem 10, Chapter III, for the case of
irrotational vector fields.)

This notion of exceptional systems of curves or surfaces in R" is directly con-
nected with the concept of extremal length introduced by A. Beurling in the early thirties,
though not published until 1951 in the article by Ahlfors and Beurling [1] containing

(1) Cf. the well-known fact that a point-set E < R" is of Lebesgue measure 0 if, and only if, there
exists a Baire function / € L? (R"), >0, such that f(x)= + oo for every z € E.
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applications to the theory of analytic functions of a complex variable. Later contribu-
tions to the theory of extremal length were made by Jenkins [21], Hersch [18, 19],
and others. If E denotes a system of plane curves C with line elements ds, the
extremal length of E was defined in [1] by the following expression

A(E)= sup L,(E)}*/A,,
e
where L,(E)= inf J'gds; A,= J'dex (dx=dzx, dx,),
CeE ¢ R

and the weight function g=g (x)=p (x,, #,) ranges over all non-negative Baire(!) func-
tions such that L,(E) and 4, are not simultaneously 0 or + oo.

For our purpose it is preferable to operate with the module M=1/2 rather than
the extremal length A itself. Moreover, we shall replace the exponent 2 by an arbitrary
exponent p, 1<p< oo, and pass from plane curves to k-dimensional surfaces in R",
1<k<n—1. This generalized module may perhaps be called the module of order p.
If E now denotes an arbitrary system of k-dim. surfaces in R", its module M (E)=
1/4,(E) of order p may be defined equally well by

M, (E) = inf 'ff”dx (dx=dz, ... dx,),
fAE

where the symbol fARE (f is associated with the system E) means that f is a non-

negative Baire function, defined in R", such that

(1) It was not required in [1] that ¢ should be a Baire function; it was merely assumed that the
integrals J’Q“ dz and J.Q d s should be defined, the latter for every C € E. The present restriction to
R ¢

Baire functions causes, however, no change in the value of the extremal length 4 because the Lebesgue
measurable weight-function p>0 may be replaced by a Baire function g =g which equals ¢ almost
everywhere, (We might even restrict the attention to lower semi-continuous functions since there
corresponds to any function 9>0, ¢ € L? (R"), and any £>0 a lower semi-continuous function g, >g
such that f@fdx< f@pdw+8.)
R" R"
On the other hand, we may equally well admit quite general functions ¢ >0 provided f@* dx
R

is replaced by the corresponding upper Lebesgue integral (and fQ d s by the corresponding upper or
c

lower Lebesgue integral, or even the lower Darboux integral). Herscr [18] uses, however, the upper
Darboux integral f 0*dz (and the lower Darboux integral J‘@ds), but this leads to an extremal
Re 2
[+
length A* which in general is smaller than the above extremal length 4. The module M*=1 / A* in the
gense of Hersch is related to the above module M=1/1 like the exterior Jordan measure to the
exterior Lebesgue measure. In particular, M* is not countably sub-additive (cf. Theorem 1 (b), §1).
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J'fda_>_1 for every surface S€ER.
S

(A similar definition for the case 0<p<1 would lead to the value M,(E)=0 for
every system E of surfaces (or curves).)

In terms of this straightforward generalization of the concept of extremal length,
it is easily verified (Theorem 2) that a system E of curves or surfaces in R is excep-
tional of order p if, and only if, the module of order p of E equals zero: M,(E)=0.

In Chapter I some elementary properties of M, are studie.di under more general
circumstances (systems of measures y instead of systems of surfaces). As a set-function,
M, has some resemblance with an exterior measure (cf. Theorem 1-and the remark
following it). Theorem 3 contains, in particular, a generalization of the well-known
fact that mean-convergence implies convergence almost everywhere of a suitable sub-
sequence. This result indicates the role of exceptional systems by the above instances
of functional completion.

Chapter II deals with k-dimensional Lipschitz surfaces in R", 1<k<n—1. The
principal problem treated in this chapter is the characterization of those subsets of
R" for which the system of all k-dimensional surfaces intersecting the set, is excep-
tional of order p. For p=2, it is found that these sets are identical with the sets
whose exterior capacity of order 2k equals 0. There are substitute results for p=2
(Theorems 6, 7, and 8). The proofs of these results depend on the theory of gener-
alized potentials of functions from the class L* and on the theory of singular inte-
grals (Hilbert transforms) in R" The last section of the chapter is devoted to the
study of certain simple systems of curves or hypersurfaces for which M, and A, may
be expressed in terms of the capacity of a condensor, or a thermal conductivity, cf.
Theorem 9. Methodically, these results are related to the method of prescribed level
surfaces, devised by Pdlya and Szegd [31] with the purpose of estimating capacities
etec. The fact that critical points may occur causes, however, some technical com-
plications.

Chapter III describes the role of exceptional systems of curves in connection
with (generalized) irrotational vector fields and Beppo Levi functions. A vector field
f€L?(X) is irrotational in a region X < R" if, and only if, the circulation of f vanishes
along almost every closed curve homolog zero in X (Theorem 10). Next, a Beppo

Levi function (of order p) in X is defined as a primitive » of a differential form

fw)dz= 3 fi@) dz,
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where each f;€ L?(X), in the sense that, along almost every curve Cc X,
b
u(®)— (@)= [f(2)-da,
a

a and b being arbitrary points of C. The field f=(f,, ..., f,) is necessarily irrotational
(Theorem 11). The class of Beppo Levi functions of order p in X is denoted by
BIL?(X). It follows at once from the definition of Beppo Levi functions that the
equations du/0x;=f,(x) subsist almost everywhere in X (Theorem 12), so that a Beppo
Levi function may be defined equivalently as a function which is absolutely continuous
along almost every curve and whose gradient belongs to L?(X). In consequence of
Theorem 7, a function « € BL?*(X) is determined only quasi-everywhere, i.e., except
in some set of exterior capacity 0. There is a substitute result for p=+2, p>1, (Theo-
rem 13). Finally it is shown that, for p>1, the class BL?(X) is the perfect pseudo-
functional completion in the sense of Aronszajn [2] of the class of smooth functions
whose gradients belong to L?(X). In particular, the class BL?(X) is identical with
the class of “fonctions (BL) précisées” in the sense of Deny and Lions [10], which
in turn is identical with a class of functions considered by Aronszajn and Smith [3].

Other applications of the concept of exceptional systems of surfaces or curves,
in particular to systems of linear partial differential operators, will be described in a
subsequent article.

CaarTER I

The Module of a System of Measures

1. The module of order p

We consider measures in a fixed abstract set X. (By a measure in X is meant
a countably additive, o-finite set-function with non-negative values (the value + oo
being admitted), defined on a o-field of subsets of X.) The completion of a measure
p is denoted by . The domain of 7 consists of all sets <X such that AcE<B
for suitable A and B from the domain of x with u(B— A4)=0; then i (E)=u(A4)=pu(B).

One such measure in X will be kept fixed throughout the present chapter. This
basic measure will be denoted by m and its domain of definition by IR. It is as-
sumed that X €IR. (By the applications described in the following chapters X will
be Euclidean n-dimensional space R", I will be the system of Borel subsets of R7,

m the n-dimensional Borel measure and hence 7 the n-dimensional Lebesgue measure.)
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We shall now consider other measures, or rather systems (=sets) of other measures,
in relation to this fixed measure m. We denote by M the system of all measures u
in} X whose domains contain the domain It of m. With an arbitrary system E of
measures u €M we associate the class of all non-negative m-measurable functions f
defined in X and subjected to the condition

_f]‘dyZl for every u€E.
X

We write fAE to signify that f is associated with the system E in this manner.

The module M, is now defined as follows:

M, (E) = inf [fPdm (0<p<eoo),
Al ¥

interpreted as + oo if no functions are associated with E.(!) As a partial motivation

for this definition it may be mentioned that the measure m (E) of an arbitrary set

E€IR equals the minimum of ff(x)”dm(x) when f ranges! over all non-negative
X

m-measurable functions such that f(x)=1 everywhere in F. A minimizing function f
is the characteristic function yz for E. This analogy expresses, by the way, an actual
connection between the measure m and the module M, in the special case where the
system E consists of “Dirac measures”. (With any = € X is associated the Dirac measure
% defined by y,(4)=x4(x)=1 or 0 according as A does or does not contain z.) If
E denotes a system of such measures y,, obtained by taking for x the points of some
given set K €IR, then it follows easily that M,(E)=m(E). Returning to general
systems of measures, we shall establish a few simple properties of M,.

THEOREM 1. The module M, is monotone and countably sub-additive:

(a) M, (E) <M, (E") if ECE.
(b) M, (B) < ; M, (E) if E= g E..

Proof. The monotony of M, follows at once from the fact that f A B’ implies f A E
if EcE’. The subadditivity may be proved as follows. If f(x)=sup f,(x), where each
1

fi is a non-negative m-measurable function defined in X, then f is likewise such a

function, and

if"dms izé[ﬂ’dm.

(3) The only case in which no functions are associated with E in the manner explained above is
the case where E contains the measure £ =0.
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To see this, we define, for an arbitrary index =,
gn (%) =max {fl (®), ..., fn (Z)} 3 X;= {x €X: fi (%) =0n (x)}

Then g, is m-measurable, X;€IR, and X= U X,. Hence,
=1

J‘g?,dmstzl fgﬁdm=izl ﬁdms:% ff dm.
x TX 4 T x

The desired inequality now follows for n— oo since g, (z)—f(x) monotonically, and

hence I g%dm—>f fPdm. Next, let f; be so chosen that f; A E, and
x x

[ dm<M,(E)+e-27
X
Then fAE, and

M®)= | Pdms S ff:’dms S M, (B +e.
¥ i-lx f=1

Remark. If, in particular, the systems E, are ‘“‘separate” in the sense that there
exist mutually disjoint sets S;€IN such that u(X—S)=0 when y€E;, then the sign
of equality holds in Theorem 1, (b). In fact, if f AE, and hence fA each E, and if
we define functions f; by f{(x)=f(x) or =0 according as €S8, or ¢S, then f; AE,.

Hence ff”dm= fﬁ’dMZMp(Ei),
8 x

i

)

and consequently f ffadm= 3 J‘ fPdm= > M, (E),
X s i
i

which implies that M, (E)= 3 M, (E).

To the above elementary properties of the module M, (or the generalization of
extremal length 1,=1/M,) one may add Lemmas 1, 2, and 3 in Ahlfors and Beur-
ling [1], p. 115, all of which may be extended to the present case of an arbitrary
order p and systems of measures instead of families of curves. We shall say that a
system E of measures u €M is minorized by a system E’ of such measures if there
corresponds to any u€E a measure u’ €E’ such that p>gu' (that is, u(4)=p’(4)
for every point-set A €IM).
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The three lemmas may now be generalized as follows:

(¢) If E is minorized by E', then A,(E)=2,(E').
(d) If p>1, if the systems E,, E,, ... are separate, and if a system E is minorized
by each E,, then

1. 1

I (BT 3 1y (B

(e) If the systems E,, E,, ... are separate, and if each E; is minorized by a system E,
then
A, (E)y 1> iE%(Ef)“; ie., M,(B)> ;M,, (E).

Statement (e) contains the above remark as a special case and is proved exactly
like it. In particular, the sign of equality holds if E= U E,;, where the E; are separate
i

(but otherwise arbitrary) systems. Statement (c) is easily verified. By the proof of (d),
it is convenient to express the definition of the “extremal length” 4, in the following form :

Jp(B)=sup L, (Ey’; =20, feL’(m); [fPdm=1,
1

where L,(E)=inf,,EEffd u. If 4,(E;)=0 for some ¢, the corresponding term may be

neglected. If A,(E;)= 4 oo for some ¢, it follows from (c) that A,(E)= -+ co. Thus we
may assume that 0<4,(E;)< + co for every 4, and also that 0<2,(E)< + co. To any
given number & >0 corresponds a function f;=0, f; € L? (m), such that

[fdm=1, and L.(E)> 1, (B)" &,

Choosing disjoint sets S; so that u (X —8;)=0 when y €E;,, we may assume, more-
over, that f,=0 in X — §,. Define f(x)= > ,f;(x), where £,>0, > tf =1. It follows that
i i

[Pdm=3S&[fdm=3#=1.
Hence, j-p(E)ZLf(E)p.

Let u €E. By assumption, there are measures y; € E; such that p=>y;. Consequently,
ffd.“ =2 tiffldﬂz > tifftdﬂt?- 2 4Ly (B) = Z t 2, (B)'? — 3 b6
1 () 12 1
It follows that LE)= D 4 4,EMN - D 4e,
i i

and hence A (B)= (‘Z t; Ay (B)VP)P.
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In Holder’s inequality )
(; 8 Ay (B < ; & (iZ 2y (By)p-T)P1
the sign of equality holds if, and only if, the numbers #f are proportional to the
numbers A, (E;)®~D. This optimal choice of the multipliers ¢ leads to the desired
inequality.
The sign of equality holds in (d) if, in particular, E= > E;, where the E, are
i

separate (but otherwise arbitrary) systems. In faet,

L/(E)< iZ L, (Ey)

for arbitrary f>0, f€LP(m), since y; €E; implies E 1 EE. Defining ¢,= {f f”dm} llp,
E 8

and f;(x)=t"f(x) or =0 according as z belongs or does not belong to S:, we have
f = z tl fb and
‘ [Pdm= 3 . (1)
i

On the other hand, L,(E)=t, L;(E;), and consequently
L, (B)< ;L,(E,)= 3 tLy(B)< 3 2, (B)'”.
Applying Holder’s inequality as above, we obtain
LEPS 3 - (3 1, @)

Combining (1) and (2), we arrive at the desired inequality:

1

3 (B)< (3 A (B

2. Exceptional systems of measures

A system EcM will be called exceptional of order p (abbreviated: p-exc) if
M, (E)=o.

The well-known fact concerning point-sets EcX that 7 (E)=0 if, and only if,
there exists a function f€LP(m), =0, such that f(x)= + o for every z € E (the
value of p>0 being irrelevant), may be generalized as follows:

TarEoREM 2. 4 system EcM is p-exc if, and only if, there exists a function
f€LP(m), =0, such that
ffd,u= + oo for every u€E.
x
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Proof. If f has these properties, then n fAE for every n=1,2,...; and
f n'fPdm=n"? f fPdm—>0 as n—>oo; hence M, (E)=0. Conversely, let M, (E)=0 and

choose a sequence of functions f, A E so that f fodm<4~". Writing f (z) = {> 2" f, ()*}"'*,
we infer that If"dm= > 2"fﬂ;dm< co; on the other hand, jfdp,Z f2"“’f,,du22"“’

for every u€E and every n=1,2, ..., and hence ffdy= + oo,

A proposition concerning measures y which belong to some specified system
EcM, is said to hold for almost every u€E, of order p, (abbreviated: p-a.e. u €E)
if the system of all measures u € E for which the proposition fails to hold is excep-
tional of order p. This amounts to the existence of a function f€L?(m), f=0, such

that the proposition holds for every u€E for which f fdp<oo.
x

THEOREM 3. (a) Any subsystem of a p-exc system is p-exc.
(b) The union of a finite or denumerable family of p-exc systems is p-exc.
(¢) If p>gq, then every p-exc system of finite measures is g-exc.
(d) If EcX and Wm(B)=0, then g(E)=0 for p-a.e. u€M.
(e) If f€LP(m), then €L () for p-a.e. u€M.
(f) If a sequence of functions f,€LP(1m) converges in the mean of order p with
respect to W to some function f, i.e.,

lim [|f—ffdin=0,
—>0 X

then there is o subsequence of tndices 1, tending to oo with the property that, for
p-ae. n€M, f, converges to f in the mean of order 1 with respect to fi:

lim [|f,—fld@=0 for p-ae p€M.
y=>00 X

Statements (d), (e), (f) remain valid if 7 and i are replaced by m and p, respectively.

Proof. Statements (a) and (b) are contained in Theorem 1. To prove (c), let E

denote a p-exc system of finite measures y €M, and let f€L”(m), =0, be so chosen

that f,‘d u=+ oo for every u€E. Now, f7*€L%(m), and an application of Holder’s
inequality shows that ff""’ du= + oo when u €E since yu(X) < oo and p/g>1. In fact,

+oo= [fap<(f 1 du)™” p(Xy-m.
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As to statements (d), (e), (), we begin by proving the corresponding statements in

which % and g are replaced by m and u, respectively. The statement corresponding
to (e) is then contained in Theorem 2, while (d) may be proved as follows. Let
EeM, m(E)=0, and f(x)=+oco for x€E, f(x)=0 for ¢ E. Then f belongs to
L?{m) and

f}‘du=(+ ) -u(E)= +oo for every u such that p(E)>0.
As to (f), we choose an increasing sequence of integers i, so that

5{ |f;, @) — f (@) P dm (x) <277,

and write g, (¢)=|f, (x)—f(x)]. Introducing the systems
A={peM:[gdu>2"}, B,= UA, and E=NB,
we have 2°¢g, A A, and hence
M (A< [(@gyPdm=2" [gdm<2".
This implies, in view of Theorem 1, that

M, () <M, (B,)< 3 M,(A,) <2,

Consequently, M,(E)=0. To every u€M—E corresponds an index n such that
1¢B,, ie, [|f,—fldu= [g du<2 for every »>n. Hence lim [t~ fldu=0. It

remains to reduce the original statements (d), (e), (f) to the above corresponding
statements in which 7 and # were replaced by m and u, respectively. As to (d),
let EcX and assume that # (£)=0. There exists a set E* €I such that m (E*)=0
and E*>E. The system of all measures p such that g (E)> 0 is, therefore, contained
in the p-exc system of all measures u such that u(E*)>0. As to (e), the function
{ may be replaced by an equivalent m-measurable function f*. Applying (d) to the
set K ={x:f(x)=+["(x)}, we infer that ji(E)=0 for p-a.e. u; in particular,

fiflaa=[if|da=[I/ldp (<o) for pac. p
Statement (f) may be treated in a similar manner, and the proof is complete.

Simple examples show that the infimum in the definition of M, (E) is not nec-
essarily attained by any function fAE. However, the following theorem subsists
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for any order p>1 and any system E of measures u%0, y € M: There exisis a func-
tion f=>0 such that ff”dm=M,,(E) and ffd,uzl for p-a.e. p €E. (The former prop-
X X

erty of f obviously only depends on the m-equivalence class of f, and so does the
latter by virtue of Theorem 3 (d).) The existence of f is clear if M,(E)= 4 co; and
if M,(E)< + oo, it is a consequence of the well-known facts that the Banach space
LP(m) is uniformly convex when p>1, and that any convex, closed, and non-empty
subset of a uniformly convex Banach space contains a unique vector with minimal
norm (cf., e.g., Nagy [28], p. 7). For any system E of measures u €M, u %0, the set
of all functions f€.L”(m), =0, such that ff du=>1 for p-ae. u€E, is convex and
non-empty, and it is closed in L® (m) by virtue of Theorem 3 (f). From the uniqueness
of the minimal vector follows that the minimal function f is uniquely determined up

to a set of measure m =0. Simple examples show that the restriction p>1 is essential

for the existence as well as for the uniqueness of f.

CrarTER II

The Module of a Sysiem of Surfaces

Notations. By R" we denote the Euclidean n-dimensional space with a fixed
Cartesian coordinate system. The origin is denoted by 0, and a point z is identified
with the vector from 0 to z. The coordinates of a point z will be denoted by
z,, »=1,2,..,n, and we write z= (2, %y ..., %,) and |z|=(2f+ 25+ - +25)} The
closure of a set £ < R" is denoted by E. The open ball {y € R":|y—z|<r} is denoted
by B,(x), and we write B;(x)={y€R":|y—z|=r}. If =0, we may use the nota-
tions B, and B;. The unit sphere in R" is denoted by Q=0Q,={x€R":|z|=1}. The
usual surface measure on Q is denoted by w, and we write w,=w(Q,) for the total

surface measure of Q,, the value of which is
w,=27"?/T (n/2).

The system of Borel subsets of a given Borel set X < R" is denoted by B(X), in
particular by B if X =R" The n-dimensional Borel measure is denoted by m, and
the n-dimensional Lebesgue measure by #i,. The Lebesgue classes L? refer to 7,, and

we write L”(X) if the functions are defined only in a subset X < R". Likewise, mean

convergence refers to 7, unless otherwise stated. We write ||f|l,=([|f(2) l”dx)llp.
X
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By C"(X) is denoted the class of all real-valued continuous functions in X (open)
having continuous partial derivatives of order h everywhere in X. In the case A=0
(continuous functions), we may write simply C(X). If, in addition, each function is
required to vanish outside some compact subset of X, we obtain the subclasses
C%(X), in particular Cy(X) for A=0. The functions in these subclasses will be under-
stood as defined in the entire space E", vanishing outside X. The symbol

o

for a partial differentiation of order % will be written shortly as D,, where
o= (0tg, Ug, ..., ).

The order & of the differentiation will be denoted by |a|. When speaking about “all
derivatives Dy u of orders |oc|§k” of a function u, we include the derivative of order

0, the function w itself.

1. Lipschitz image and Lipschitz surface

A subset X CR" is called a Lipschitz image of a subset T < R* if there exists a
Lipschitz transformation of 7 onto X. A Lipschitz transformation of T onto X is a
one-to-one mapping of 7T onto X such that

Mo~ < |7 — 2| <]t 1] M

whenever a’, '’ € X correspond to ¢, t” €7T. Here ¢ denotes a suitable constant. In
the sequel it will be assumed that 7' is a non-void open subset of R, the dimension
k being kept fixed, 1 <FkZn. Hence T and X are countable unions of compact sets.
In view of a theorem of Rademacher [32], each of the Lipschitz functions z; has
almost everywhere in 7T a total differential with respect to t=(f, ..., #). Thus, for
a.e. fixed t€7 and every ¢=1, .-, n,

k
a—x= > ay(ti—t)+o(|t' —t]) as t'—t, (2)
j=1

where x;=2x(t), ;= ('), t' €T, and a;,=0%;/0t, evaluated at the point t. This im-
plies, in particular, the existence of a “tangent plane” Il at z, given parametrically
by the differential mapping of R* onto Il obtained by neglecting the remainder term
in (2) and allowing #' to take arbitrary values ¢ € R*. In fact, it will be shown

presently that the rank of the matrix {a;;} equals k. With any symbol a=(a,, ..., )
12 - 573805. Acta mathematica. 98, Imprimé le 10 décembre 1957.
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where each a;, j=1, ..., k, is one of the numbers 1,2, ..., n, we associate the Jacobian
minor
0 (x,z,, vees x“k)
= —det. 5
qu a (tly aney tk) {aai.f} ( )

evaluated at the point ¢. These minors form the components of an antisymmetric
tensor of rank k. The quantity
1 2)%
== 2 4
q ( X MZskq (4)
represents the ratio of k-dimensional area by the above differential mapping of R*
onto the tangent plane II. The functions ¢, and ¢ are measurable. We proceed to

prove the inequalities
cF<q< i (5)

(In particular, ¢=+=0, so that the rank of {a;} is indeed k.) Writing 1=t —1, ¢=2'—=,
we consider the linear mapping of R* into R" given by the equations

k
&= D a7 (6)
i1

It follows easily from (1) and (2) that, by the mapping (6), the linear ratio |¢|/|| in
any direction is between ¢! and ¢. Now, there exist k orthogonal unit vectors ¢®, ..., &o
whose images ¥, ..., #*> by the mapping (6) are likewise mutually orthogonal. Since
¢ 1<|y?|<¢, it follows that the ratio of k-dim. area g(f)=|7"] ... [#*| is between
¢ * and c*.

A subset E<X is a Borel set if, and only if, the corresponding subset F<T

is a Borel set (in R¥). Using these notations, we define
ux(B)=[q()dt. (7)
F

From the results of Rademacher [32] concerning transformations of integrals it follows
in a well-known manner that ux(E) is independent of the parametric representation
of the Lipschitz image X. (In particular, uy equals the restriction of m, to X if
k=n.) Since ¢ is bounded, we have uyx(E)< oo for every bounded set E €3 (X). It
follows that uy is a (o-finite) measure on X. We call it the surface measure on X.
By integrations with respect to uy (or jix), we shall write do instead of duy (or
d jiy). The following lemma will be used in the next section.
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LemMmA 1. Given a Lipschitz image X < R" of an open set T < R¥, and a point
x* € X. There exists a constant K, depending only on X and z*, such that the inequality

Iu(x*)ng;!m; | Dyu|do

i

holds for any function u€ C*(R").

Proof: Denote by t* the point of 7' which corresponds to xz* by a parametric
representation t—x(¢) of the Lipschitz image X. Since 7 is open, there exists a closed
ball A <7 with the centre t*. Denoting by a the radius of A and by ¢ the constant
introduced in (1), we consider the closed ball B< R™ with the centre z* and the
radius a/c. The inverse image F={t€7:z(t)€ B} is then contained in 4 in view
of (1). Now, choose a function ¢ € C*(R") so that ¢(z*)=1 and @(z)=0 outside B,
and keep ¢ fixed. Corresponding to an arbitrary function u € C*(R") we write f(z)=
@(x)-u(x). Then fE€C*(R"), and f(x)=0 outside B. Hence any derivative D,f of
order || <k is continuous in R" and vanishes outside B. This implies that the com-

posite function D,f(z(¢)) is continuous in 7 and vanishes outside 4. For |a|=Fk, write

0 Ly, d La, d zak

o (£) = )
A TR TREP T

the argument of 9z,;/3¢; being
D=ty s by Br, .o BR).

With this notation, it is easily verified that

fah =] 3 Daf(e) palt)dt (8)
where Q={t€A:<t} for every j=1, ..., k}.
In fact, integrating first with respect to i, and writing

t=(t15 aang tk—l), 7={Kl, ...,,0(;‘_1),

we obtain, since £V, ..., %P are independent of
o &
* 9D,f0%
f > Duf(x®) pa(t)dti= 3 {f > —yf—fdtk 2,(7)
lal= v ap=1 Oy, O

= .77_ D, fz (™) p, (x).
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0 Lo, 9 Tay_y

Hore el S
PO = T

the argument of 9,;,/0t being t” as above, j=1, ...,k—1. In a similar way one
may integrate successively with respect to #;_j, ..., ¢, and the formula (8) results.
Since |8x,/0t;|<c, we have |p,(t)|<c*. Moreover, dt=da/q(t)<c*ds, and hence,
from (8),

1e)<e*[ 3 |Daf@]doa).

Clearly, Dyf=Dy(p-u)= wzk P p D,

where the coefficients @, 5 =@q, 5(x) are certain functions of z derived from the func-

tion ¢. Hence

where K =c¢** max max x
18l<k zeB |u|z=k|¢°"ﬁ( )

is a finite constant. This completes the proof of Lemma 1.

Now, let 1<k<n-—1. A non-void subset S<R" will be called a %-dimensional
Lipschitz surface (or manifold) in R" if there corresponds to every point z* €8 an
open set UcR" such that 2* €U, and SN U is a Lipschitz image of some open set
T < R*.(*) From Lindel6f’s covering theorem follows that 8 is a Borel subset of R";
in fact, S is a countable union of compact sets. Moreover, it is easily verified that
there exists one and only one measure ug defined on B(S) which agrees with the
surface measure uy on every Lipschitz image X=8nU of the above type. This
measure ug is called the surface measure on S. By integrations we shall write do

instead of duyx (or djix).

2. Exceptional systems of surfaces

In order to apply the notions and results of Chapter I to systems (=sets) of sur-

faces, in particular curves, in R", we take X =R", M =B, m=m, and hence #m = m,.
s £ b ? n n

(1) According to this definition, a connected 1-dimensional Lipschitz surface means a simple con-
tinuous curve, either “closed” and rectifiable, or “open” and locally rectifiable. The restriction to
simple curves is, however, not necessary ; the results of the present paper are likewise valid for systems
of parametrically given continuous curves (with or without multiple points), provided they are locally
rectifiable in the sense that every arc corresponding to a compact sub-interval, is rectifiable. More-
over, no point of a curve should correspond to an interval of parameter values.



EXTREMAL LENGTH AND FUNCTIONAL COMPLETION 187

We denote by §* the system of all k-dimensional Lipschitz surfaces in R". For any
system Ec§ we define its module M, (E) as the module M, of the system of meas-
ures us, SEE, these measures being extended in such a way to B =3B (R") that
s (R*—8)=0. Thus, for any p such that 0<p< oo,

M, (E)= inf [t@pde,

R?

where f A E means that f is a non-negative Baire function such that

ffdo‘Zl for every S€E.
S

The results of Chapter I may be carried over. In particular (Theorem 2), a system
E of k-dimensional surfaces is exceptional of order p, i.e. M,(E)=0, if and only if

there exists a Baire function >0 such that f€L? and yet f fdo= + oo for every
S

S €E. (Instead of a Baire function, one might equally well consider a lower semi-
continuous function; cf. the note on p. 173.)

For systems of surfaces, the only values of p which are of interest are the values
p=1. If O<p<l, any system of surfaces is p-exc. For the sake of simplicity, we
restrict ourselves, by the proof, to systems of regular C'-manifolds rather than general
Lipschitz surfaces. In view of Theorem 3 (b), it suffices to prove that, when 0 <p<1,
the system of all k-dim. surfaces which intersect the cube Q,={x€ R":|x,|<a for

v=1,...,m} is p-exc for any a. Choose a Baire function ¢(f)=0 in the interval
I,={t: —a<t<a} so that ¢ € L?, and yet f¢(t)dt= + oo for every interval I<I,.
I

Define

f@)= 3 p@) for2€Q;  f@=0 for 2¢Qu

Then f€L? f=0, and J fdo= -+ oo for every k-dimensional regular C'-manifold §
S

which intersects @,. In fact, let 2* €SN Q,, and let t—>x(f) be a Cl-homeomorphism
of an open set 7' R* onto an open neighbourhood X of z* in S, with the property
that the rank of the matrix {0z,/0¢} equals k. If t* denotes the point which is

mapped into z*, there exist numbers oy, ..., 0 such that

0 (Tgys -.n»r Tayp)

=0 at t*.
9 (bys oonr b
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Since this Jacobian g, is continuous, the mapping #—>z'=(z,, ..., %) i3 a C'-homeo-

morphism of some open neighbourhood N of ¢* onto some open set N’c R*. Hence
J'fdovz ffdaz J‘gv(xa‘)do.z f(p(x¢|)|qa(t)|dt
5 4 % T

> J.tp(za,) |g. ()| dt= fq;(xal)dx’= + oo,
N N
Throughout the rest of the present paper, only values p>1 will be considered.

THEOREM 4. By a Lipschitz transformation of an open set X < R"™ onlo an open
set Y <R, any p-exc system of k-dim. Lipschitz surfaces contained in X 1is transformed

into a p-exc system of k-dim. Lipschitz surfaces in Y.

Proof. Denote by ¢ the constant introduced in the preceding section, now as-
sociated with the Lipschitz transformation z—>y=¢ (z) of X onto Y. It was mentioned

that the Jacobian
O (Y1 - Yn)

J =
0(Xyy -.es Ty)

exists a.e. in X; its absolute value |J| represents the volume ratio dy/dz, and it
was shown that ¢"<|J|<c" a.e. in X. If g denotes a non-negative Baire function
in Y and if g€ L?(Y), then the corresponding function f defined in X by f(x) =g (@ (x))

is a Baire function in L?(X). Moreover,
c‘"ff(x)”dxs fg(y)”dySc"ff(x)”dx.
x ¥ X

It is easily shown that ¢ maps any k-dim. Lipschitz surface §;=X onto a surface
S,<=Y of the same kind. The ratio of k-dim. surface area g (x) =do,/d o, is subjected
a.e. on 8, to the inequalities ¢ *<p(x)<c*. This may be shown in a manner similar

to the procedure by the proof of (5), §1. Hence,

c*[tde,< [gdo,<c*[fdo..
8, S Sy

z ¥

If E, denotes a system of k-dim. Lipschitz surfaces in X and E, the corresponding
system in Y, then it follows easily that

TP M, (E,) S M, (B,) < cFP" M, (E,).

This implies, in particular, the statement of the theorem.
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A Lipschitz family of k-dimensional surfaces will be defined in the following way.
Let T denote a non-void open set in R™ with points = (£, ..., ¢,). Writing ¢ = (11, ..., ),
we consider the orthogonal projection of 7' onto the (n — k)-dimensional ¢'-plane. This
projection 7" is an open set in the #'-plane. For every ¢ €7", the set of points t€T
whose projection is ¢, is a k-dim. plane Lipschitz surface 7'.. By a Lipschitz trans-
formation t—>x=¢(f) of 7 onto some (open) set X <R", the family E of these plane
surfaces T, is transformed into a family F of Lipschitz surfaces S, =g (T:). Such
a family will be called a Lipschitz family of k-dim. surfaces in R™ Restricting the
parameter point ' = ({xi1, ..., ¢,) to some set E'<7”, we obtain a system of k-dim.
Lipschitz surfaces Sy. Let p=1. In order that this restricted system be p-exc, it is
sufficient and, provided p=1 or m,(X) < oo, necessary that #i,_,(E')=0. By virtue of
Theorem 4 we may, in fact, just as well consider the system of plane surfaces 7',
t' €EE’, instead of the surfaces S;. If m,_4(E')=0, choose a Borel set A’ so that
EcA'cT and m,_(4")=0. Write f(i)= + oo if '€ 4’ and f(¢) =0 otherwise. Then

feL? for any p, and ffdo=+oo for any ¢ €E’'. Conversely, let p=1, or let
Ty

my, (X) < oo and hence m, (7)< co; and assume that the system of plane surfaces 7',
t'€E’, is p-exc. If f has the properties stated in Theorem 2, then so has the function
g defined by g (t)=f(t) for t€T, g(f)=0 otherwise. It follows that g € L' (R"). In view
of Fubini’s theorem, g is integrable over 7', for a.e. ¢ € T".

A Lipschitz family of surfaces is a very special system of surfaces. In the following
sections more interesting systems of surfaces will be considered. It will appear that
the notion: a p-exc system of k-dim. Lipschitz surfaces, depends effectively on the

value of p>1.

3. The system of all surfaces intersecting a given point set

We denote by §(E) the system of all k-dimensional Lipschitz surfaces(!) which
intersect a given non-void set E < R". According to a previous remark, §¥(E) is p-exc
for any p<1, irrespective of the choice of E. For p=>1, the problem whether §*(E)
is p-exc depends, besides on E, largely on the number kp, as shown by Theorem 8.
We begin by showing that §%(X) is not p-exc when kp>n. This is implied by the
following theorem.

(*) The results of the present section (Theorems 5-8) would remain valid even if only very regular
k-dim. surfaces were considered (e.g. connected analytic manifolds). In fact, by the proofs of the
necessity parts (of Theorems 5 and 6) only k-dim. circular disks are considered. For a comment in
the opposite direction concerning the case k=1, see the note on p. 186.
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THEOREM 5. The system of all k-dimensional Lipschitz surfaces which pass through
a given point of R", is exceptional of order p if, and only if, kp<n.

Proof. Let the given point be the origin 0, and write |z|=r. If kp<n, define
1

f@)y=r"% for r<1, f(x)=0 for r=1. It follows that f€ L? since fr‘k”r”"ldr< oo
0

when kp<mn. If a k-dim. Lipschitz surface S passes through O, then so does a Lip-
schitz image X <8 of some open set 7 < R*. Using the notations introduced in §1,
we may assume that =0 corresponds to ¢t=0. Then |z|<c¢|t|, and hence, in view
of (5), §1,

[fdo=[f@®)q@dt=c[|t|Fdt=+ oo,

X T T

Next, if kp=n, take f(x)=r""(log (2/r))™® for r<1, and f(z)=0 for r=1. If
k/n<a<1, then f€ L?, and f fdo = + oo for any Lipschitz surface § passing through 0.
S

Finally, in the case kp>n, we may exhibit a system of plane k-dim. surfaces through
0 which is not p-exc. We shall use the following integral formula for the mean value
of the integrals of a Baire function f(x) over all k-dim. planes L passing through

the origin 0 in R":
f (ff(x)do(x)) du(L)="" flxl"‘"f(x)dx. (1)

¢ L R"

Here I* denotes the system of all k-dim. lirear subspaces (=‘planes” through 0) in
R", and u is a certain measure defined on a o-field of subsystems of L* and invariant
under orthogonal transformations of the space R" (with 0 as a fixed point). The
formula holds in the sense that, if one side of (1) is defined, then so is the other,
and they are equal. This is the case, in particular, if f>0. The measure y is well
known in an explicit form from integral geometry (cf. Herglotz [17] and Blaschke [4]),
and a proof of (1) may be based upon this explicit expression. An alternative. pro-
cedure is employed in a note [15], based on the theory of invariant integration in
compact topological groups. Returning to the case kp>n of Theorem 5, we consider
for any plane L€LF the intersection S=L n B, with the unit ball B, in R". The
system of all these special k-dim. Lipschitz surfaces § is not exceptional of order p
when kp>n. In fact, if ¢ is a non-negative Baire function in L?, we may apply (1)
to the function f defined by f(z)=g(x) for x € B,, f(x)=0 otherwise:

f ( f g(w)da(x))du(lz)=% flxl"‘”g(x)dx. (2)
B,

¥ LnB,
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The integral on the right is finite in view of Holder’s inequality since g € L?(B,),
and |z|*~" € L"®"D(B,) when kp>n; in fact,
1 1
kp-n_,
[7‘”‘ wpoT I ldr= fr"'l dr< oo,
0
It follows that g(x)do(x)<oo for p-ae. LELE
LB,
For an arbitrary (non-void) set E < R", the question whether or not §*(E) is

p-exc is connected with potential theory, -as shown by the following theorem.

THEOREM 6. Let p=1 and kp<n. In order that the system S°(E) of all k-di-
mensional Lipschitz surfaces which intersect a given set E < R™ be exceptional of order p,
it s mecessary and, when p>1, sufficient that there exist a function f€LP(R"), {=0,
whose potential of order k

UVi@)= [le—y|*"fy)d
Rn

equals + co for every x € E, without being identically infinite. For p=1, the stated condi-
tion s sufficient under the additional assumption that € Z, i.e.,

[ f(z) log* f (@) dz < oo.
Rn

Remark. Let >0 be locally integrable in R (i.e., integrable over bounded sets).
In order that the potential U’ of order a, 0<a<mn, of f be not identically infinite,

it is necessary and sufficient that

[+]a) " f@)dz< o,

Rn
or, equivalently, that “yl“‘" flx—y)dy < oo for some, and hence for any, pair (a, )

By

where 0<a<oo and x€R". When one of these equivalent conditions is fulfilled,
U’ is locally integrable, in particular U (x)< oo a.e. in R". An application of H&l-
der’s inequality shows that the above condition is fulfilled if f€ L provided p=1
and o«p<n. Hence, in the formulation of Theorem 6, the words “without being

identically infinite” could be dispensed with, except in the case kp—=n.

Proof of Theorem 6. The proof of the necessity of the stated condition is again
based on the integral formula (2). For an arbitrary fixed z € R", write g (y)=f(x—y),
and apply (2):
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f ( f I‘(x—y)dc(y)) du (L)=% lel"""f(w*y)dy-
B,

Lk LnB,
Now, if §¥(E) is p-exc, there exists a Baire function f€L? f=>0, such that

[tdo=+ o

for every S €§*(K), in particular for every k-dim. “circle” §=L n B;, L € I¥, and hence

ff(:z:—y)do‘(y)=+oo when LEL*, x€E.
InB,

Combining these two formulae, we infer that f ly|* " fx—y)dy= + oo for every € E.
B,

If kp<mn, the function f has the properties stated in the theorem. In fact, f€ L7,

and U} (x)= + o when z €E since

Ui @)= [yl " fz—y)dy;

B,

and, finally, Uj = oo as it was mentioned at the end of the above remark. If kp=mn,

the function f may be replaced by
hi@=1+]z)f@) (x>0).

Again, f,€L?, and Ul(x)= + oo for every z€E since f,(x—y)=(2+]|z|) *f(x—y)
when y € B;; and, finally, Ul % oo since

[@+]2)* " @y de= [+ f @) da< oo
R" R"
in view of Hélder’s inequality.

The proof of the sufficiency is based on the theory of singular integrals (Hilbert
transforms) in R" as developed by Calderon and Zygmund [6]. We begin with a
simple lemma concerning the convolution gxf of two functions. By local mean con-
vergence is understood mean convergence over every bounded subset; in particular

the functions in question must be locally integrable.
Lemma 2. Let p=1. (a) If p €L and fEL?, then ¢ % f€EL?, and

g fllo <l ll 1l f1l5-

(b) If p.—>g@ in the mean of order 1, and if f€ LP, then @, f—@ % f in the mean
of order p.
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{¢) If @@ locally in the mean of order 1, and if f€LP and | vanishes outside
some bounded set, then @ % f—>@ % f locally in the mean of order p.

Proof. It follows from Holder’s inequality that

lx@) @ P < ([ = 0l lp @[] o @)1 dy)
<[lf-wPlewldy ([low|dy) .

Hence NixgPdz<[[|t@-nPlewdzdy-([lp@)|dy)"
= [lf@Pdz (@) dy)"

This proves statement (a). Statements (b) and (c) are easily derived.

Consider now the kernel ¢ (z)=|«z{*"" and, as an approximation, the function

k—n
(P(s) (@) = (I xlz + 82)7; x €R", ¢ real. 3)

The function ¢ (x) has continuous partial derivatives of all orders with respect to
the variables @, . . ., x,, ¢ except at the point (x, £)=(0, 0). By an arbitrary deriva-
tion D, with respect to x,, . .., x, one obtains

n
~Je]
b

k-
Du(p(E) (x)= H,(x, ¢) (l X |2 -+ SZ)T (4)

where H,(x,¢e) is a homogeneous polynomial in =y, ..., x,, & of degree |a|. Hence

there is a number C, independent of (x, &) such that

[Ed]
|Hala, 6)| < Oy (|2 +64) 7, (5)
and lD“(p(s) (x)lS01(|xl2+82)k~—‘%‘jsolix‘k—|ai_n. ©)

The continuity of D,¢® implies, in particular, that
D, ¢ (2)—>Dyp(x) as &0, (7)

pointwise for =0. If |a|<k, the same limit relation (7) holds in the sense of local
mean convergence of order 1. This follows easily from the theorem of Lebesgue on
the interchange of integration and passage to a limit when an integrable majorant
exists. In fact, the majorant C,|x|*!*!"* obtained in (6) is locally integrable when
| <k,

Now, let =0, f€L? where p=1, and assume that f(x) =0 outside some bounded

set. Consider the convolutions
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w@=[p@—yfWdy=Uk@); 9@ =[¢® @@y iy dy. (8)
R" R

For ¢+0, say >0, u® €0 (R"), and Dy, u® = (Dy¢®)%f for any a. Moreover

lim @ (x) =u(x) 9
>0
pointwise everywhere in R" since the integration and the monotone limit process

may be interchanged. In view of the above remarks and Lemma 2 (c),
D, u®—>(Dy p)*f (10)

locally in the mean of order p, as ¢—0, provided |a|<£%.

In the case |a|=Fk, the above crude method cannot be applied since D,¢ fails
to be locally integrable. Nevertheless, it may be proved that, even in this case,
D,u® converges (even “globally’’) in the mean of order p, as ¢—>0, provided p>1.
The corresponding statement for p=1 does not hold in general. However, under the
additional assumption f€Z, D,u® does converge in the mean of order 1 over every
set of finite measure, in particular over every bounded set, i.e., locally. These state-
ments are formulated as a separate lemma (Lemma 3) given below.

The sufficiency of the condition stated in Theorem 6 may now be proved as
follows. Since any subset of R® may be covered by a countable family of bounded
sets, ‘we may assume, in view of Theorem 3 (b), that the given set E is bounded.
Now, let f,€L?, f,>0, U=+ oo in E, and Uk . (If p=1, it is assumed, in addi-
tion, that f, €Z.) Choose a radius ¢ so that Ec B, and put f(x)=f,(x) for z€ B,
f(x)=0 for x € B,. Then f has, likewise, the properties stated in the sufficiency part
of Theorem 6. In particular,(')

u=Ul=@xf=+ oo everywhere in E. (11)

With this function f we form, besides the potential %, the “approximate potentials”
u?=¢@x%f as in (8). According to the above discussion, any derivative D,u® of
order ]ocl =<k converges locally in the mean of order p as ¢—>0. Writing g¥ (x) = Dy u® (x)

for x€ B,, ¢ (x)=0 for z € B;, we infer that the functions g% converge in the mean

(*) It suffices to prove that U{c‘_f (x) < co when | zl <a. Clearly, Bs_|z| < B, (x) and B;_ 121> B; (x).
Hence

i@ = [ |yl "h@-nays [ |yl hE@-ndy<oo

Bg @) Ba-1z)

because U{é$oo. (Cf. the remark following the formulation of Theorem 6.)
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of order p over R" as £¢—0. In view of Theorem 3, (b) and (f), there is a sequence
{e,} tending to O such that each derivative D,u®’, 0<|a|<Fk, converges in the mean
of order 1 over SN B, for p-a.e. k-dim. Lipschitz surface 8. We conclude that the
system §(H) is p-exe. because the derivatives D,u® do not all converge in the mean
of order 1 over SN B, if SES*(E), that is, if § intersects E. In fact, let x*€ESNE
and choose a k-dim. Lipschitz image X (of an open set) so that z*€ X<Sn B,.
(Recall that E<B,) If each of the sequences {D,u®’} were mean-convergent over
S n B,, and hence over X, it would follow from Lemma 1, § 1, that the numerical sequence
{u (x*)} would be bounded, which is impossible since z* € E and hence, in view of

(9) and (11),
lim ¥ (&%) =u (2*) = + .

V—>00

Except for Lemma 3, the proof of Theorem 6 is now completed.

LemMA 3. Let k be a positive integer. Denole by

ak (P(e)

K®=D.o®—
«9 0%q, ... 0%y,

an arbitrary derivative of order |a|=k of the function
=
@ (@) =(lxP+e*) 2, x€R"
Consider, for £>0, the convolution infegral

9° @)= [ K®@—y) fy)dy.
Rn

(a) If fEL?, 1<p< oo, then g converges in the mean of order p over R" as e—0.

(o) If f€Z, ie., f is measurable and f|f(x)| log* |f(x)|dz < oo} and if moreover
Rn
f(®)=0 outside some bounded set, then ¢*® converges in the mean of order 1 over

every subset of R™ of finite measure as ¢—O0.

This lemma may be derived from the theory of singular integrals in R" as de-
veloped by Calderon and Zygmund [6]. The kernel

H,(x, 0)

|x|n+lc

K (x)=Dyp(x)=

(12)

fulfills the requirements listed on p. 89 of [6]. The “smoothness” condition is satisfied
with o ()=t since |z|* K (») has continuous partial derivatives for z=+0. The decisive

condition
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(M=) [K@)do@)= [ H, (@ 0)do@)=0 (13)
Q Q

is likewise satisfied by the kernel (12). The following simple consideration may easily
be turned into a formal proof of this fact. Denote by G the compact group of all
orthogonal substitutions in R" (with 0 as a fixed point). In a new coordinate system
in RB" the transition to which is given by an orthogonal substitution g € G, the dif-
ferential operator D, is transformed into some linear homogeneous differential operator
P,(D) of the same order |a|=k. (Here P,(D) is obtained from a polynomial
P,(5)=P,( ..., &x) by the substitutions ,=8/0%,, =1, ..., n.) Since ¢ (z)=|z|*"
depends on |z| only, ie., p(gz)=g(z), it follows that

ng(D)<p(x)dw(x)=M for every g€d. (14)
o

Now consider the differential operator P (D) whose corresponding polynomial P({) is

the mean value f P,(l)dg, where dg refers to the Haar measure on G. It follows
G

from (14) that
[P(D)g(x)do(x)=M. (15)
Q

Being invariant under G, the polynomial P(l) depends only on |{|=(Zf+ - +a):

P(Cp s Ea)=P( 2], 0, ..., O).

As P(¢) is homogeneous of degree |a|=k, we infer that P({)=0 if k is odd, whereas
P () equals a constant times (Z3+ ---+(2)*2 if k is even. In view of (15), the desired
result M =0 is now obvious for odd %k, and for even k it follows from the well-known

identity
A™(|z|*"-")=0 in R"—{0},
applied to m==k/2.

For any >0 write(!)

f@= [ K@-y9}i@ydy. (16)

B, (x)
In view of [6], Theorem 7, p. 108, f, converges in the mean of order p as &0,
provided f satisfies the assumptions stated in our Lemma 3. (In the case (b), the

mean convergence applies to sets of finite measure only.) It may be noted that,

('1) In CarLDpERON and ZYGMUND [6] our f: is denoted by f; with 1=1 / €. Moreover, our B, (x)
and B, () are called I, (x) and T, (z), respectively.
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according to Theorems 1 and 2, p. 116 and p. 118 in [6], the limit f of f, likewise
exists pointwise a.e. in R", and thus f(x) equals the Hilbert transform of f given a.e.
by the singular integral
@ = [K@—yf@)dy,
an

interpreted as the Cauchy principal value.

To complete the proof of Lemma 3, it remains to be shown that ¢ —f, con-
verges in the mean of order p over R* when f€LP, 1 <p< oo, This may be done in
the manner described for the case k=1, =2 on p. 125 of [6]:

@k [KoG-niwdy- [Ke-niway-3 [ (2 10,
R" n

B, (2) R

KE®(x)—- K (z) for |z|>1,

h N(z)=
where (=) {K(”(x) for |z|<1.

If |z|=r=1, it follows from (4) and (12) that

n+k
nik nik

1+ T N(2)=H,, 1)—(1 +;1§) * H,(z0)
llﬂc
~H,(2,1)— H,(z, 0)—((1 +rl2) z —I)H.,(m, 0). a7)

Now, ¢9(x)=¢“(x), and hence H,(x, —¢&)=H,(x, ¢), so that only even powers of
& occur in the homogeneous polynomial H,(x, £). Thus the degree of the polynomial
H,(z,1)— Hy(x,0) is <|a|—2=Fk—2, and there is a constant C, such that

|Hy (@, 1) — Hy (x, 0)| < Cpr*™2 for r>1.
1+_Ic

1
Moreover, (1 -I—;z-) 1< Cyr % for rz1,

C, denoting a suitable constant. Finally, it follows from (5) that |H,(x, 0)|< 0, 7"
In view of these three inequalities, we infer from (17) that

n+k

R N (@) | <1+ T | N(2)|<(Cy+C,C5) 772,
ie., | N (x)|<Cyr 2™ for r>1. (18)

On the other hand, it follows from (4) and (5) that
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n+k

|N (z)|=|Hy (2, 1)|- (1+7}) 2 <C;(1+7%) 2 for r<l. (19)
Defining Cy=max (C,, 27"2C,), and

2
y)(r)={05 (mé) for r<1

Cyr 2" for r=1,

wof 3

we obtain from (18) and (19) the inequality
|N (@)|<y(=z|) for z€R

Since y(r) is a decreasing function of r, and [y (jz|)dz< co, it follows from Lemma
Rﬂ.
2, p- 113 in [6], that
1 r—
@ -1 =5 [¥(2) 10 dy>a-fe (20)
Rﬂ
in the mean of order p over R" as é—0. Here 4= fN (y)dy is a constant (depending
Rn
on n, k, and «).(*) It may be noted that (20) holds likewise in the sense of pointwise
convergence a.e. in R™ This follows from Lemma 1, p. 111 in [6].
This completes the proof of Lemma 3 and hence of Theorem 6. In order to
obtain a further characterization of the sets E such that S¥(E) is p-exc, one may

apply the following theorem from potential theory.

THEOREM A. Let p>1 and O<ap<n. In order that there exist a function
f=0, f€ L?(R™), such that UL (x)= + oo for every x € E, but U, % oo, it is
capg, B =0, provided 1 <p<2.
(a) mecessary that { Pas P P )
capap_. B =0 for every £>0, provided p>2;

(b) sufficient that {cap"‘”E:O’ provided p=2. ,
capPypi: £ =0 for some £¢>0, provided 1<p<2.

Remark. When ap<mn, the requirement that U’ oo is always fulfilled for
f€L?, as pointed out in the remark following Theorem 6. The capacity of order «
in R" refers to the kernel |#|* ™ when 0<a<mn, and to the kernel log (1/|z|) when
a=n. By capacity is meant exterior capacity. Note that the conditions (a) and (b)

are identical in the case p=2.

(1) Tt follows from (13) that 4 = lim j EV () dx.

a—>oe Bﬂ
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Part (a) was established for the case n=1, ap<n, by Littlewood and du Ples-
sis [26], who also showed that the & cannot be dispensed with when p>2. Using
their method, J. Deny [9] treated part (a) for general » in the case a=1,1<p<2,
ap<mn. Part (b) is related to a result of H. Cartan [8], Théoréme 3 bis, p. 96. A
complete treatment of both parts (a) and (b) of Theorem A will appear in [16].

Combining Theorem 6 and Theorem A, we obtain

TueorREM 7. Let p=1 and kp<n. In order that the system S¥(E) of oll k-di-
mensional Lipschitz surfaces which intersect a given set E < R" be exceptional of order p,
it s

capx, E =0, provided 1 <p<2,
(a) necessary that .
capPyp-. =0 for every ¢>0, provided p>2;

E=0, ided p=>2,
(b) sufficient that { Pk prov P .
CaPrpic B =0 for some ¢>0, provided 1 <p<2.

Thus, in the case p=2, the condition capsy E =0 is both mecessary and sufficient.

In view of Theorem 7, it is convenient to make use of the concept of capacitary
dimension as introduced by Pélya and Szegd [30]. Corresponding to an arbitrary set

E < R", there is exactly one real number o, 0<a<n, such that
(a) capr_q-.E=0 f{for every ¢>0, and
(b} capn_4+;E>0 for every £>0.

(When o=0, only part (a) applies, and when o=mn, only part (b) applies.) This
number o« is called the capacitary dimension of E. In view of certain relations be-
tween capacities and Hausdorff measures established for closed sets by Myrberg [27]
and Frostman [14], and for arbitrary sets by Kametani [22, 23] and Carleson [7],
the capacitary dimension is identical with the Hausdorff dimension. We denote it by
“dim” and write eco-dim E=n—dim E. From Theorem 7 together with Theorem 5 is
thus obtained the following weaker result, in which it is merely assumed that p>1.

TagorEM 8. If kp<co-dim E, then S°(E) is exceptional of order p. If kp>
co-dim E, then S*(E) 1is not exceptional of order p unless E, and hence S¥(E), 1is void.

4. The case p=2

The extremal length as introduced by Beurling refers to the most important
case in which the order p equals 2. This is also the only case in which Theorem 7
gives a condition at the same time necessary and sufficient in order that $*(E) be

13 ~ 573805. Acta mathematica. 98. Tmprimé lo 10 décembre 1957,
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p-exe, the condition being: capg, £ =0. For systems of curves (k=1), the capacity in
question is then of order 2, and this is the classical harmonic capacity: logarithmic
capacity in the plane, Newton capacity in R® and capacity with respect to the kernel
|z[>~™ for general #»>3. As pointed out in [1], the extremal length A, for a system
of plane curves is a conformal invariant.

It is known that there is in the case p=2 an even closer connection between
extremal length and capacity than expressed in Theorem 7. Since no complete proof
seems to have been published(!), we shall give a detailed treatment of a typical case.

THEOREM 9. Let K be an arbitrary compact subset of R*, n=>=3, and G the un-
bounded component of R"— K. Denote by €=C (oo, K) the system of all curves C<@
connecting the point at infinity of R® with K, and by H=H (oo, K) the system of all
closed hypersurfaces H <G which separate the point at infinity from K. Then

Here a"=(n—2)w, is the elementary flux in R", i.e. the constant in Poisson’s formula
and in Gauss’ theorem; in particular a,=4m. A curve C is said to connect the point
(or sphere) at infinity with K if the curve has a parametric representation t—x(¢),
a<t<b, such that |z(f)]—>cc as t—>a and z(t)—>K as t—>b (in the sense that the
distance between z(f) and K approaches 0 when {—b). The curves considered in the
theorem should be locally rectifiable, but the theorem would subsist even if only
analytic curves were admitted. By a closed hypersurface is meant a compact (n— 1)-
dimensional Lipschitz surface, not necessarily connected. The theorem would remain
valid if only analytic manifolds were considered. If H,, ..., Hy denote the connected
components of a closed hypersurface H, and if I,, ..., Iy are the interior (bounded)
regions determined by H,, ..., Hy, then H is said to separate the point at infinity

N
from K if I,, ..., Iy are mutually disjoint and K< { I,.
k=1

By the proof we shall use certain well-known results from potential theory (see e.g.

(*) The proof of Theorem 9 and related theorems is simple in the special case where there are no
eritical points for the vector field grad » defined presently, and where, in addition, K is sufficiently
regular (so that the classical Dirichlet problem may be solved in the unbounded component G of
R"—K). HerscH [19] treats the case where K is homeomorphic to a solid sphere in R3. Contrary to
the situation in the corresponding two-dimensional problem, critical points can, however, occur even in
this simple case, e.g. if K is obtained by removing a thin “slice” from a solid torus; ef. a similar
example due to J. J. GERGEN, Amer. J. Math., 52 (1930), 198-200. For n > 3, there are no critical points
if K is convex (WaLsH [35]).
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Frostman [14]), or, equivalently, results concerning the Dirichlet problem. Corresponding
to an arbitrary compact set K < R" of positive capacity (of order 2) there is a (unique)
measure p >0, supported by K (in fact, by the boundary of the unbounded com-
ponent G of R"—K), with the following properties:

(a) The potential u= U} of order 2 of i is <1 everywhere in R".
(b) u=1 everywhere in R"—G except at the irregular points (if any) of the bound-
ary of G.

This measure g is called the equilibrium distribution on K. Its total mass u(K)
equals cap, K. The equilibrium potential w = U% is superharmonic and positive every-
where in R", bounded away from 0 in any bounded part of R", and harmonic and
<1 in G@. Moreover, u is regular at infinity; in particular lim |z|"~%u(x)=cap, K.
Finally, (1) i

0
flgradu[zdx=fa—::da=any(K)=a~n cap, K 1)
G H

when H €H (oo, K), and e and d o denote the inward unit normal and the surface element
on H. It is convenient to define grad =0 in R"—G.

Corresponding to an arbitrary compact set K< R"™ and a number £>0 there
exists a compact set K* without irregular points, such that K*> K and 0 < cap, K* <
cap, K +¢. One may, for example, choose K* as the set of all points within a suitably
small distance from K.

Proof of Theorem 9. 1°. M,(H) < (a, cap, K)™!. We may assume that cap, K > 0.
If w=U% denotes the equilibrium potential associated with K, then

|grad u|/(a, cap, K) A H
since, for every surface H € H,
ou
|grad u| do > ﬁdo=an cap, K.
H H
Hence M, (H) < (a, cap, K)~* [ | grad u[* d = = (a, cap, K)™.

2°. My(0)<a, capy K. Choose a compact set K* without irregular points so that
K*> K and 0< cap, K* < cap, K +¢. Denote by u* the equilibrium potential associated
with K*. Then |gradu*®| A C since, for every curve C €C,

(*) The validity of the Gauss-Green integral formula for a region bounded by a closed Lipschitz
hypersurface follows from the results of ScraupEr [33], Chapter III, by which only “one-sided’
Lipschitz conditions are assumed. (Cf. Theorem XIX, p. 47, for the case of a connected boundary.)
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f|gradu*|dstgradu*-dx=fdu*=l.(1)
C (o) C

Hence M, ()< f |grad v* [* dz=a, cap, K*,
from which the desired inequality follows when &¢—0.

3°. M, (C)=a, cap, K. We may assume that cap, K >0. Let » denote the equi-
librium potential associated with K, and % the (positive) minimum of the lower semi-
continuous function » on K. A point x € G is called critical if grad w vanishes at z.
The set of all critical points will be denoted by X, and the set of all critical values
y=u(x), €X, will be called I". Since u is regular at infinity, the set X is bounded,
and the critical values are therefore bounded away from 0. We denote by E, the
equipotential set {zx € B" : u (x)=a}.

Levma 4. For every a ¢, O0<a <7, the equipotential set E, is a compact analytic
(n— 1)-dimensional manifold (not necessarily connected) separating the point at infinity
from K. In particular, E,€H.

Proof. Clearly E, is a bounded subset of @ since u—>0 as |z|—>co, and u=1y
in R"—@. From the lower semi-continuity of u follows that the set {x € B": u(z) <a}
is closed, and it is a subset of @, in which % is continuous. Hence E, is closed.
From a classical theorem on implicit functions follows that E, is an analytic manifold
because grad v =0 on E,. Denote by H, an arbitrary connected component of E, and
by I, and J, the corresponding interior and exterior regions. The boundary of each
of these regions is H,. From the superharmonicity of u follows that u >« everywhere
in I; the alternative u=a in I, would imply =« in G since G contains points
of I,. Any two of the interior regions are disjoint. In fact, if 2° € I, n I, then I,c I,
since otherwise the region I, would contain some boundary point &€ H, of I, and
this is impossible because w=a on H, whereas u>a in I;. Similarly I,<I;, and
hence I;=1I,. It remains to be shown that every point of K (or, more generally, of
{x €R":u(x)>a}) belongs to some I,. Denoting as above by e the unit normal on
Hy pointing into I,, we have ou/de=grad u-e>0. (Clearly, du/0e=0 since u>a
in I, and the sign of equality cannot occur since |0u/de|=|grad u|+0 on E, be-
cause o ¢ I'.) It follows that u<a in J, everywhere sufficiently close to H,. Now, let

% (2®)>a«, and consider a half-line L connecting z° with the point at infinity. Since

(1) Throughout the rest of the article, we reserve the dot ‘*+” to scalar multiplication of
vectors, In this manner, the “dz’ in line integrals will not be misunderstood as a volume element.



EXTREMAL LENGTH.AND FUNCTIONAL COMPLETION 203

u(z)->0 as |z]|—>oo, the closed set {x € L:u(z)<a} is not void, and hence it contains
a point & closest to 2% Since u(£)<a<yx, & must belong to @, where u is continuous.
Thus u(§)=«, and € H, for some k. The segment on L between 2° and £, the
latter point being excluded, must belong to I, or to J, since #>« on the segment.
But the segment cannot belong to J, since it was shown above that u<a in J,
everywhere sufficiently close to Hy. Thus it has been proved that the interior regions
I,, constitute the totality of connected components of the open set {x € R": u(z)>«}.
(Hence {z€R":u(x)<a}= rk] Jre)

If we interpret the vector field v = grad u as a stationary velocity field in G,
the orthogonal trajectories of the sets E, are the lines of flow. For any given point
£ €@, the initial value problem

Z—?=v(x); z=¢§ for t=0, (2)
has a unique solution x=x (£, t)=T;£ in G. This solution may be continued within
@ in some maximal open interval 7~ (§) <t< 1™ (£), and z (¢, t) depends analytically on
(&,1). If £€X, then z(§,t)=¢& for —co <t< + co, For fixed £€ G — X, the equation
x=2x(§,t) determines an analytic curve F, called a line of flow, as ¢ ranges over the
interval 17 (£)<t<z*(£). Such a line of flow never passes through a critical point
because of the unmiqueness of the solution of (2). The potential u increases with ¢
along a line of flow since

u_ dx |
7; —gadu dt—|v| >0. (3)

In particular, a line of flow has no multiple points. Moreover, the limits

w* (&)= lim u(@(&);  w(€) =, lill}é)“ (=, 1)

. 7 ()
exist.

LeMMA 5. If 7+ (&)< + oo, then x (&, t)—~K as t—1* (£).
Proof. Since u increases along Fg, (£, t) belongs to the bounded set
{x€G:u(x)>u()}

when ¢>0, and thus there exists at least one limit point for z (£, t) as t—1* (£). The
function |[grad | is bounded in any set G, G at positive distance from K, and
hence the total arc length described within G, by z (&, ) for 0<t<t*(§) (< + o0),
is finite. A limit point 2° € G for = (£,%) as {—>7 (£) must therefore be the only limit
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point in R", The finiteness of ¥ (£) implies, in view of the uniqueness of solutions
of (2), that no critical point can be the limit of z (&, t). Neither can a point 2° € G — X
be a limit point for x (£,t) since then u(2°)=wu*(£), and the lines of flow would form,
in some neighbourhood of z° a regular family of curves orthogonal to Ey,+ and
depending on n—1 parameters; and thus the line of flow F; could be continued
across Eyu+ (g, in contradiction with the definition of %™ (£). It follows that, actually,
z (&, 6)—~K as t—>7t ().

After these preparations, the proof of the inequality M,(C)=a, cap, K may be
completed as follows. Choose a positive number « <7 smaller than any critical value
of u. According to Lemma 4, the equipotential set K, is a compact analytic (n—1)-
dimensional manifold separating the point at infinity from K. (Incidentally, H, is
connected and homeomorphic to the sphere S"~!, but we shall not use this fact.)
Since there are no critical points in the exterior region {z € R":u(z)<a}, it follows

by the argument employed in the proof of Lemma 5 (in the case 2° € @ — X) that
|z (&, 8) >0 as t—>17 (&) (4)
for every £€E, (Actually, 77 (§)= — oo, but this will not be needed.) The trans.

formation ¢: (&, t)—=x(£,t) between E,xR' and G, is analytic and one-to-one, and
hence its domain A<E,xR' and range D=¢(A) are open. The set A consists of
all pairs (£,¢) with £€E,, v~ (&) <t<t*(£), and D consists of all points z € G which
may be reached in a finite time by lines of flow passing through K, In the open
set D one may use (& ¢) as “Gaussian coordinates”. The volume element dz at a

point x=x(&,t) of D is given by

dx=(v-e)dadt=z—1—:dadt,

where the inward unit normal e and the surface element do at x refer to the surface
T.E, passing through z. Since dive=Au=0 in G, it follows from Gauss’ theorem
(applied to a “tube” formed by lines of flow) that the infinitesimal flux (v-e)do is
constant along the tube and hence equal to the corresponding infinitesimal flux through
the surface element dg, on E, at the point £. Here the normal e has the direction

given by grad u=wv(£), and hence()

(}) An alternative, more formal proof of (5) depends on the properties of the Jacobian

Oler o) _ 5 055 e )
= = ;= : vy > t))s
A(ty, cestn-1,8) =1 9t =1
where t'={(;, ....tn—1) is & set of local parameters for the analytic hypersurface Ey, and py, ..., Py

are certain minors. This Jacobian is independent of ¢ because the transformation z— Tz is volume
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dz=|v(&)| do.(§) dt. (5)

If A* denotes the set of all pairs (&,¢) with £€E, and 0 <t <zt (£), then D* =g (AY)
is contained in the bounded set Io={z € R":u(x)>wu(£)}. The volume of D* is finite

and equals

ma (D*)= [lo(&)]7* (£) doulf).
Ea

It follows that 7% (£) < oo almost everywhere on E,. According to Lemma 5 and the
limit relation (4), the line of flow Fg connects the point at infinity with K for almost
every &£ €E,. The system F of all lines of flow connecting the point at infinity with K,
is a sub-system of €. If fAF, in particular if fA C, then

=t (&)
f f=(&, t))|v($(5,t))ldt=ffd821 for a.e. £€E,
7 (§) F¢

since F;€F for a.e. £ €FE, Applying Schwarz’ inequality, we obtain

= (§) (&)
[ f@@Enrde [ |o@E)Pdt=1 for ae. EE€E,.
T (&) 7 (&)

The second integral equals u' (&) —u~ (£§)<1. A fortiori,

(B
| f@En)Pdt=1 for ae. &€,
TS
Multiplying by |v(£)|d o, (&) and integrating over E,, we conclude that, according to
(5) and (1),

Tt (&)
[1@?dz> [f@Pda=[|o©)|do. (&) [ (& n)*dt
m D E, T (&)

> [|v(&)|doa(&) =a, cap, K.

Ey

Note that it has been proved that M,(C)=M,(F)=a, cap, K, and that the infimum

in the definition of M, is an actual minimum attained by the function f=|grad u|.

preserving as a consequence of the equation div v=0. (Liouville’s theorem, see, e.g., Kerroca [24]
p- 35.) And for t=0, the minors p; serve to define the unit normal e and the surface element d g4 on
Eyat §=£(t), ..., tn—1) as follows:

egdog=p;dt,

where di'=dt; ... dty_;. Hence J=(e-v)doy/dt’, and

do=Jdt' dt=(e-v)dogdt=|v(&)|dogdt.
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4°. M, (H) = (a, cap, K)™'. We first assume that cap, K >0 and that K contains
no irregular points. The equilibrium potential % then equals 1 everywhere in K, and
hence n=1. It follows from a result of Kellogg [24], p. 276, that the set I' of critical
values of u is denumerable, and that the critical values may be arranged as an in-

creasing sequence, finite or infinite,
O<)py<ye<--- (<),
where lim ;=1 if I' is infinite. In fact, the theorem of Kellogg implies that, when
i

0<a<pB<1, all critical points of the “bounded closed region” {x €@:a<u(zx)<p}
lie on a finite union of equipotential sets E,. From Lemma 4 follows that E,€H
when a¢I’, O<a<]1.

The critical equipotential sets E, divide the rest of G into open sets Gy, Gy, ...

containing no critical points. In each of these open sets, say in
G={x €ER": y,<u(x) <¥is1},

we introduce Gaussian coordinates. We shall again use the lines of flow as parameter
curves {corresponding to n—1 parameters), but the remaining Gaussian coordinate
will now be the value of the potential w, y;<u <1, instead of the time {. From (3)

we obtain, along any line of flow,
du=|v|Pdt=|v||dz|=]v|ds,
where s is the arc length on the line of flow. Hence the volume element is

du dau.

||

The system of all equipotential surfaces E,, u¢I', will be denoted by E. If fAE,

dr=dsdo,=

in particular if f A H, then ffdo‘uZI for y;<u<yi;1. Moreover, f|'v|dau=a,n cap, K
E, Ey
in view of (1). Inserting these results in Schwarz’ inequality

[Iv]do, [£lv| dou=( ffdau)z,
Eu Eu Eu

we obtain, after having multiplied by du and integrated over the interval p; <u <y,
Yi+1
Yi+1 f du
ffzdx= f duflev]‘ldauz %
: . A

a, cap, K )

@; ¥i E
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A similar inequality holds for each of the remaining open sets Gy (whether I' is finite
or infinite), and consequently

1

fdu
ff(x)zdzzz ff(x)zdw> 2 !
R® * G;

~ a, capy, K " an cap, K
t

Note that it has been proved (under the present restrictions on K) that M, (H)=
M, (E) = (a, cap, K)™?, and that the infimum in the definition of M, is an actual mini-
mum, attained by the function |grad u|/(a, cap, K).

In the general case where K is an arbitrary compact set we choose a compact
set K* without irregular points so that K*>K and 0< cap, K* < cap, K +¢. Since
H (oo, K)o H (o0, K*), it follows from Theorem 1 (a) that

M, (H (o0, K)) = M, (H (o0, K*)) = (a, cap, K*)™,

from which the desired inequality follows for &—0. This completes the proof of
Theorem 9.

There are many theorems of the same type as Theorem 9, expressing capacities
or conductivities, etc., in terms of the extremal length, or module, of appropriate
systems of curves or hypersurfaces. (See, e.g., Hersch [19].) Thus one may replace
the point or sphere at infinity in Theorem 9 by a finite external boundary of @
and at the same time replace the capacity of K by the capacity of the condensor
formed by the external and internal boundary of G. This more general version of

Theorem 9 is valid even in the plane (when we define ay,=2mx).

CumarreER III
Applications to Functional Completion

1. Irrotational vector fields

If X is a region (=non-void connected open set) in R*, we denote by N(X)
the system of all closed curves(!) contained in X and homolog zero in X. A con-

tinuous vector field f=f(x)=(f, ..., f») is called irrotational in X if the circulation

rO)=]3 fidm= [f-ds

ci= ¢

(*) As to the type of curves considered, cf. the note on p. 186.
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equals 0 along every curve C €N (X). According to a classical theorem, a field f whose

components belong to C*(X) is irrotational if, and only if,

oh _0h _

oz, o1, 0 everywhere in X; 4, j=1, ..., n

The class of bounded continuous vector fields and the subclass of bounded continuous
irrotational vector fields are complete in the topology corresponding to uniform con-
vergence in X. It is, however, often desirable to admit other topologies, in particular
the topology corresponding to mean convergence in X. We shall, therefore, consider
the class L? (X) of all vector fields f={(f,, ..., f») whose components belong to L” (X),
where p is given, 1 <p< + co. The corresponding limit concept is mean convergence
of order p for each component. This class of fields L?(X) is complete in view of the
Riesz-Fischer theorem, and the subclass of continuous fields belonging to L?(X) is
dense in L?(X). (In fact, the class of fields f€ Cy(X) is dense in L?(X).) The con-
tinuous irrotational fields belonging to L?(X) form a linear subclass I? (X) of L” (X).
This subclass is not closed in L” (X). The fields which belong to the closure I’ (X)
within L? (X) will now be called irrofational fields in L? (X). Thus a field f€ L”(X)
is irrotational if, and only if, there exists a sequence {f*’} of continuous irrotational
fields f* € L? (X) converging to f in the sence that || f*’ —f||,—0 as »—oco. No matter
how such a field is chosen within its equivalence class, the circulation need not exist
(as a Lebesgue integral) along ewvery closed curve (even if only very “regular’ curves
are admitted). For p<n, this appears from the example on p. 212. Examples of a
different nature exist for arbitrary values of p. However, in view of Theorem 3,
(b) and (e), each component f; of an arbitrary field f € L” (X) is integrable over p-a.e.

curve iIn X.

THEOREM 10. In order that a vector field f€ L”(X) be irrotational, it is necessary
and sufficient that the circulation of | vanish along almost every (of order p) closed curve
homolog zero in X.

Proof. As to the necessity of the stated condition, let f*—f in L”(X), and
assume that each f® belongs to I? (X). According to Theorem 3, (b) and (f), there
is a subsequence {»,} such that f*?—f in the mean of order 1 on p-a.e. curve in X.
Hence, along p-a.e. curve from N(X), the circulation of f equals the limit of the
circulations (=0) of 2.

The sufficiency part will be proved by approximating an arbitrary field f satis-
fying the stated condition by fields g* € I” (X) such that ||g® — f||,—>0 as ¢-0. Each
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of the fields g® will be defined as a mean value of fields g (x,?), where the para-
meter £ ranges over the ball B,< R". And each of these fields g (z, t) is derived from
the given field f by a deformation z—>y=¢;(x) of the underlying region X. We
begin by defining such a deformation for every vector ¢€R" of length |¢|<1. It is
not difficult to construct a function g =p (x) € C*(X) with the properties

(a) 0<p<l; (b) lgra,dgl<%; (6) p(x)<3d(x),

where d(x) is the distance between z and the boundary of X. (If X=R", put
d(z)= + c0.) For any vector t€ B;, the deformation

x>y=@(xr)=x+p(x)t

is a one-to-one mapping (continuously differentiable) of X into X. (By the method
of successive approximations it may be easily shown that ¢, maps X onto X; but we
shall make no use of this fact.) In view of property (b),

le@)—e @) |<}]e' —a"],

and hence 2 —2'|<|y —y'|=2|2 —2"],
so that ¢, is a Lipschitz transformation, and |9y/92|<2, j=1,..., n. The volume
ratio is

J=det {0y,/02;} =1+1¢-grad g;

in particular, }<J<2. If f€ L?(X), and f*(x)=f(p;(x)), then f* likewise belongs to
L? (X), and

1 =2 Il <21l £]l,- ()
If CeEN(X), then C;=¢,(C) likewise belongs to N(X).

Let E denote a p-exc system of curves in X. Corresponding to an arbitrary
closed curve Cc X we consider the set T of vectors {€ B, for which the deformed
curve C;=q;(0) belongs to E. We show that m, (T)=0. In view of Theorem 2, there
is a Baire function k€ L”(X), >0, such that the integral of & over any curve from

E equals + oo. For an arbitrary vector {€B;, we have

fh(y)dsy= fh(x—kg(x)t)g—zydszs 2fh(x+g(x)t)ds,.
¢ i ¢

Ct

Now, fdtfh(x+g(x)t)ds,=fds,fh(x+g(x)t)dt<oo.
¢

B, ¢ B

since the inner integral on the right is a continuous function of x€ X. (In fact,



210 BENT FUGLEDE

1
fh(x+@(x)t)dt=w j h(z)dz,
B ¢ By gy @
and the integral of & over By, (zr) is continuous since h € L”?(X) is locally integrable
in X, and B,y (z) varies continuously with z € X.) Consequently, f h(y)ds, < oo for
a.e. t€ B, K

The given field f€ L? (X) is integrable over C, and the circulation of f vanishes
along C, for p-a.e. CEN(X), ie., for every curve C €EN(X) which does not belong
to some p-exc system E of curves in X. For any ¢€ B,, consider the deformed field
g (3¢, 1) defined in X by

x,t)—Zf. (x%—,(mf()a"‘”‘) (@)

where f*(x)=f(p;(z))=f(xz+po(x)t). For an arbitrary curve C €N(X), the field f is
mtegra.ble over C;=¢,(C), and the circulation of f vanishes along C;, for a.e. t€B;:

[fy)-dy=0 for ae. tEB,.
G

It follows from the inequalities

‘Zf:(y <2lf @], ds,<2ds,

that the deformed field g (+¢,?) is integrable over C provided f is integrable over C,;
and then

0
[own-da= [ 3@ %an- [ 1-a
i, 6:&:,
¢ ¢ ToA
Consequently, f g(x,t)-dx=0 for a.e. t€ERB,. (3)
c

For any ¢, 0<e<1, define a field ¢ in X by

1 S U VPO 7S
i (Bu) f 0@ 0 d =gy f (” @ +4- 1 (=) ax)‘“
BB BB

As above, it is easily verified that ¢ is a continuous field in X. Moreover, it follows
from (3) by application of Fubini’s theorem that

o @)=
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ff”@%dx=”%1B)fdthWJydx=0
¢ n {3 Bs &

for every curve C€N(X). Thus ¢® is a continuous irrotational field. A standard

argument shows that ¢ € L?(X) and ||¢® —f||,~>0 as e—>0. In fact, it follows from
Holder’s inequality and Fubini’s theorem that, for every j=1,...,n,

flg(") z)—fj(x)l”dx=J m. (B.) J(gf(x,t) fy(®) dt da
fd“’ )f|91(93 t)y—f ()" d¢
X E
_ ! dt ¢ °d 4
_mn(Bs)f flgi(x’ )= fi (@) d. (4)
B, X
According to (2) and property (b) of p, we have
g, (=, = @) | <1f @) ~ @) [+ 3 [¢] [ @] (8)

Since the class Cy(X) is dense in L”(X), there corresponds to any given number
7>0 a field f€(y(X) for which

= Fll<n. (6)
From (1) we obtain, writing f*(z) = (g (x)),
”f*”pszllf”p; ||f*—f*||p32||f~f“p<2’7- (7)

Since the continuous field f vanishes outside some compact set E <X, fis uniformly
continuous, and hence there is a number 6 =6 (1) <1 such that |f(y) — F (@) | m. () <#%”
provided |y—=z|<6. In view of property a) of g, this condition is fulfilled when
y=@(x)=2+0(2)t, and |¢t|<6. Hence,

I7*=fll,<n when |¢|<o0. ®)
Applying Minkowski’s inequality to (5), we obtain in view of (6), (7), and (8)
lgs (%, ) = Hllo <17 = Bl + IFF = Flls + 15— Fillo+ 3 1211l
<2n+n+n+i[e @1,
=4n+|¢|lIfll,,
provided |t|<6. Consequently,

llgs (%, )= Fll,<5% when t<z(y),
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where 7 (1) =min (0 (5), /|| f||,). Inserting this on the right of (4), we conclude that
19— fill,<5% when &<z (). This completes the proof of Theorem 10.

Remark. It is not necessary to verify the condition of Theorem 10 for general closed
curves from N (X). It suffices to consider boundaries of rectangles R < X whose sides are
parallel to two of the coordinate axes. Take, for simplicity, the case »=2. Such a
rectangle is given by its vertices (a,, a,), (a,, by), (by, by), and (b, a,). It can be proved
that a field f€L”(X) is irrotational if (and only if) the circulation of f vanishes
along the boundary of almost every such rectangle R, ie., for almost every choice

of the four numbers a,, a,, b;, and b,.

Example. Let p<m, and choose « so that 0 <a<(n—p)/p. Write |2|=r and
u=r"% The vector field f defined (a.e.) in the unit ball B, by

f=gradu= _“r'z_x&’ T={(Zy, ..., Tn) =0,

belongs to L°(B,), but the circulation is not defined along any curve passing through
0 since u(x)—>co as z—0. (No matter how f is changed on a set of measure O, the
circulation will be undefined on “most of” these curves, e.g. on a.e. straight segment
through 0.) Nevertheless, the field is irrotational in view of Theorem 5 and Theorem 10
since the circulation of f is 0 along any closed curve not passing through 0. If p=mn,
choose a so that 0<a<1—="', and write u=(log (2/r))*. The field f=grad » will
then have the same properties as the above field. For p>n, the circulation of an
arbitrary field in L”(X) is, according to Theorem 3 (e¢) and Theorem 5, always de-
fined along “most of”’ the curves passing through an arbitrary given point of X.

A set EcR" will be; called ezceptional of order p if there exists a function
h€L’(R"), h>0, such that U= + co everywhere in E, but UYz* . The class of
all exceptional sets of order p in R" is denoted by €”. In view of the remark
following Theorem 6, the condition Ur=oco is always satisfied when p <= (and
hEL?(R")). When p>n, the class €” contains only the void set. Obviously, any
subset of a set from €7 belongs to €7, and it is easily verified that the union of any
sequence of sets from &7 belongs to €°. An exceptional set has Lebesgue measure 0.
From Theorem A follows, in particular, that E €&’ implies cap, & =0 provided
1<p<2, whereas the converse is true when 2<p<n. A set E is exceptional of order 2
if, and only if, cap, F=0. (The capacity of order 2 is the classical harmonic capacity:
logarithmic capacity in the plane, Newton capacity in R?, etc.) For the phrase “except
in some set E €E””, we shall write briefly: (exc €”). From Theorem 10 and the suffi-
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ciency part of Theorem 6 we obtain the following corollary: Consider a vector field
fEL?(X), p>1. If there is a set EE€E® such that the circulation of f exists and equals
0 along every closed curve C €N (X) which does mot intersect E, then [ is irrotational.
This corollary does not admit a direct conversion. However, the following statement
is a simple consequence of Theorem 10 and the necessity part of Theorem 6. Let
EcX and E ¢ €7, p>1. Corresponding to an arbitrary irrotational vector field f€ L? (X)
there exist closed curves intersecting £ along which the circulation of f is defined

and equal to 0.

2. Beppo Levi functions

In classical vector analysis a function u is called & primitive of a differential form

2 fi(x)dx; (where f,, ..., f, are continuous functions in a region X < R") if du=7 fidx,

ie., gradu=f; or, equivalently, if

b n
u(b)—u(a)=ji§1f,dxf

whenever ¢ and b are points of X, and the integration refers to an arbitrary curve
in X leading from @ to b. (If X is multiply connected, the various ‘“homology classes”
of curves leading from a to b give, in general, different values of the line integral,
and » must then be allowed to become multivalued.) In order that there exist, cor-
responding to a given differential form of the above type, a primitive in X, it is
necessary and sufficient that the field f=(f,, ..., f,) be irrotational in X. A primitive
is determined uniquely in X up to an arbitrary additive constant.

We shall now consider the corresponding problem concerning fields
f= (fp vees [n) € L7 (X).

For simplicity, we shall assume that the given region X is simply connected. A single-

valued function w is called a primitive of a differential form  f,(x)dx; (where
1

fir .- [n € LP (X)) if, along p-a.e. curve Cc X,

u(b)—~u(a)=

[ ——

2 fida, @1
i=1
a and b being arbitrary points of C,

THEOREM 11. In order that there exist, corresponding to a given differential form
zf‘dx,, i€ L?(X), a primitive in X, it is necessary and sufficient that the field
f={f .-, f») be irrotational in X.
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Proof. If u is a primitive of the given differential form, it follows, by applica-
tion of (1) to closed curves and coinciding points a =5, that the field f is irrota-
tional. Conversely, assume that f€L”(X) is irrotational in X. Denote by A a non-
negative Baire function in L”(R") with the properties that U} co, and that the

circulation of f exists and equals O along every closed curve € < X such that

fhds< oo.(1) The set E={wx€X:Uf(x)=+ oo} is then exceptional of order p. If
é

z€X—E, it follows from the integral formula (1), p. 190, (or by a direct argument

involving polar coordinates and Fubini’s theorem) that fhds< oo for almost every
L

straight line L through x. This implies that any two points of X — E may be connecied
by a polygonal line L< X such that f hds< oo, (Since X is connected and open, it
L

suffices to verify this in the case where the line segment ab determined by the two
points @ and b belongs to X. Consider the hyperplane H orthogonal to ab and passing
through the midpoint c. Since ab has a positive distance from the boundary of X,
the point ¢ has a neighbourhood V in H such that, for every v €V, the segments

av and vb belong to X. Since a € X — E, ‘I"hds< oo for a.e. v €V (where “a.e.’”’ refers

av

to m,_y in H), and similarly f hds< oo for a.e. vEV. It follows that h is integrable
b

over the polygonal line avd for a.e. v€V.) Now, choose arbitrarily a point z° € X — E
and keep it fixed. For any x € X — & define

T

u(x)=jf-dx,

Fid

where the line integral refers to an- arbitrary curve Cc X leading from 2° to z and

for which fhds< oo, It was shown above that such curves exist, and it follows from
c

the definition of A that the line integral is independent of the choice of C. In this
way a function # has been defined everywhere in X -—E, and the equation (1) is

(1} A Baire function &, € L” (R™), h, >0 possessing this latter property, exists according to Theo-
rems 10 and 2. If p<n, take h=h,; if p=n, take h(z)=(1+ |.1r:|)—°‘h1 (z), where a>1—n/p. It follows
then from Holder’s inequality that

[a+]|a) " r@dz= [ @+|z) "%k @) do<oo,
R" R?

and hence U{‘$ oo in view of the remark following the formulation of Theorem 6. Clearly,

J hds<oo implies [ h, ds< oo since C is bounded.
c e}
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easily verified for any curve Cc X such that f hds<oco. When p>mn, U} is finite
C

and continuous everywhere, and it may be shown that the primitive % constructed

above is defined and continuous everywhere in X.

TursorEM 12. If u is a primitive function of a differential form 3 f; d;, f,€ L” (X),
13

then the partial derivatives of order 1 of wu exist almost everywhere in X, and the equa-
tion grad w=f, that is,
du_

P fix), 1=1,...,mn,

holds almost everywhere in X.

Proof. Consider a straight line L=L (a,, ..., z,) parallel to the z,-axis, given by
the constant values of x,,...,x,. It follows easily from Theorem 2 and Fubini’s
theorem that (1) holds along X N L (x,, ..., x,) for almost every choice of (x,, ..., %,)
in the projection of X on the hyperplane given by x,=0. Hence u is absolutely
continuous, as a function of z,, on XN L, with the derivative du/0x, =f, (z) for
almost every value of x, in the projection of X N L on the z,-axis. In particular,

ou/ox,=f,(z) a.e. in X, and similarly for the other coordinates.

TeEOREM 13. Let u be a primitive function of a differential form f-dz, f € L? (X).
(@) In order that w be likewise a primitive of g-dx, g € L? (X), it is necessary and
sufficient that f(x)=g (x) almost everywhere in X.
(b) In order that v be, likewise, a primitive of f-dx, it is necessary and, provided
p>1, sufficient that u{(x)— v (x) be constant (exc €P).

Proof. (a) If f(x)=g(z) a.e. in X, it follows from Theorem 3, (d), that f(x) =g (x)
b b

almost everywhere on p-a.e. curve (<X, and hence J' f-dx=fg-d z along p-a.e.
a a

curve Cc X, a and b denoting arbitrary points of . This implies the sufficiency of
the condition. The necessity is contained in Theorem 12, which states that f is de-
termined uniquely a.e. in X by the equation f= gradu. (b} The general case may
be easily reduced to the case wu=f=0. If v is a primitive of 0:-dz, then v(z)=
constant in X (exc €”). In fact, » is constant along p-a.e. curve C< X. Choose a

Baire function k€ L (R"), h>0, so that U} = + oo, and v is constant along every curve

C< X for which fhds< oo, (Cf. the proof of Theorem 11.) The set
C

E={x€eX:Ut(x)= + oo}
14 — 573805. Acta mathematica. 98. Imprimé le 12 décembre 1957.
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belongs to €7, and any two points @ and z of X—E may be joined by a polygonal
line Lc X such that fhds< oo. Consequently v(x)=v(a) for every xt€ X —E. Con-
L

versely, let v(z)=c (a constant) for every € X — E, K being exceptional of order p.
When p>1, it follows from Theorem 6 that p-a.e. curve C < X is contained in X — E
and hence v=c on the curve. Thus v is a primitive of 0-dx.

Let 1<p< oo, Any function # which is a primitive of some differential form
frdz, f€L” (X), is called a Beppo Levi function (of order p) and we write

grad u={.

The class of all Beppo Levi functions of order p in X will be denoted by BL”(X).
The intersection S”(X)=BL?(X)N C*(X) consists of all functions u € C* (X) for which
grad u € L” (X).

TrREOREM 14. Let w”€BL?(X), v=1,2, ..., and assume that grad 4 converges
in the mean of order p over X. Then there exist a function u€ BL?(X), a subsequence

{vs}, and a corresponding sequence of constants c,, such that
u®? —c,—~>u  pointwise in X (exc &),
and grad u®”—>grad u in the mean of order p over X.

Proof. Since the class of irrotational fields in L? (X) is, by definition, closed in
L?(X), the limit in mean f of the sequence of irrotational fields f* = grad »® is
irrotational and hence of the form f= grad u, u € BL?(X), by Theorem 11. In view
of Theorem 3, (b) and (f), there exist a subsequence {»,} and a Baire function % € L” (R"),
k>0, such that U}z oo (cf. the proof of Theorem 11) and the following two state-

ments hold for any bounded curve €<= X for which jhds< oo
¢

) W) @)= [[-dzs u(@)—ua)= | f-da,

a a
the integration being performed along C, on which ¢ and x are arbitrary points.
(i) f*@—f in the mean of order 1 on C.
The set E={x€R": Ut (x)= + o} belongs to E”. Select a point a € X — E. An arbi-
trary point x € X — F may be connected with a¢ by a polygonal line L< X for which
fhds< oo (cf. the proof of Theorem 11). Writing c,=u"?(a)—u(a), we obtain from
L

(1) and (ii)
w? () —cq—>u(x) as g—>oo, x€X — K.
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The class BL?(X) is a completion of the above class S” (X) of “smooth” Beppo
Levi functions, in the sense described in the following theorem, which is a conse-

quence of Theorems 10 and 14.

TusorEM 15. If w€BLP(X), there exists a sequence of functions u €C"(X)
such that grad «® € L? (X)), and grad w—>grad w tn the mean of order p over X, while

u®—u pointwise in X (exc E).

Now, let p>1. In the terminology of Aronszajn [2], Theorems 13, 14, and 15
above imply that the class BL”(X) is the pseudofunctional completion of the class
87 (X) relative to the class €” of exceptional sets. (Since the LP-norm || grad u||, is
an improper norm of u, one must first convert it into a proper norm in a well-
known manner by adding a suitable "expression which does not vanish when u is
equal (exc €7) to a constant=0.) This completion is perfect because there corresponds
to any given set K €E”, Ec X, a family of functions »® € 87 (X) such that {u*} is
a Cauchy sequence (with respect to the above-mentioned proper norm) as g—0, and

yet lim «® ()= + oo for every x€E.(2)
>0

In the particular case p=2 it is known that this perfect pseudofunctional com-
pletion of 87 (X) is identical with the class of “fonctions (BL) précisées’’ in the sense
of Deny and Lions [10]; see also Aronszajn and Smith [3]. These functions are
characterized by the following properties:

(a) grad u € L*(X), interpreted in the sense of the theory of distributions,

(b) to every £>0 there is an open set G' with cap, @ <e such that the restriction
of u to X— @ is continuous;

or, equivalently, by the following structure properties:

{a;) = is absolutely continuous along almost every line parallel to one of the coor-
dinate axes,

(a,) the partial derivatives of u of order 1, which hence exist almost everywhere
in X, belong to L?(X),

(b) as above.

(1) It is easy to reduce the proof of this statement to the case where E is bounded. Then a
function jGLp (Rn), f=0, may be so chosen that u=U{= + oo everywhere in E, and f vanishes
outside some bounded set. Following the procedure described in the proof of Theorem 6 (in the case
|| =k=1), we define

1-n
w? @)= [(o-ypren T
R"

fy) dy.

This family of functions has the desired properties.
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The former characterization (a), (b) shows that this class is independent of the choice
of the coordinate system (it is even invariant under arbitrary Lipschitz transforma-
tions of the underlying region X). The structure of the functions in the class appear
perhaps more clearly from the properties (a;), (a,), and (b).

The functions studied originally by B. Levi [25] were more special; in particular
only continuous functions were admitted. The class of functions determined by the re-
quirements (a;), (a,) alone was investigated by Nikodym [29], who introduced the name
Beppo Levi functions. This wider class forms, likewise, a pseudofunctional completion
of the class S?(X) (with larger exceptional sets than above). This completion is,
however, not perfect. It depends, moreover, effectively on the choice of the coordi-
nate system.—From the results of the present section follows, for any p>1, that the
perfect pseudofunctional completion of S (X), being identical with the class which
we have denoted by BL”(X), is characterized by the following structure properties:

(A;) u is absolutely continuous along p-a.e. curve in X,
(A,) the partial derivatives of w of order 1, which hence exist almost everywhere
in X, belong to the class L*(X).

(The associated class &” of exceptional sets was defined on p. 212.)—In this manner,
the continuity assumption (b) has become superfluous, and at the same time the
dependence of (a,) on the coordinate system has disappeared. Furthermore, these
properties (A,), (A,) exhibit clearly (cf. Theorem 4) the invariance of the class B L”(X)

under Lipschitz transformations of the region X.
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