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Introduction 

The  presen t  s t u d y  arose f rom an  a t t e m p t  to  charac ter ize  s t r uc tu r a l l y  the  com- 

p le t ion  of cer ta in  classes of funct ions  connec ted  wi th  vec to r  ana lys is  a n d  pa r t i a l  

d i f ferent ia l  equat ions .  As  examples  m a y  be  men t ioned  t h e  class of i r ro t a t iona l  vec to r  

fields or  of solenoidal  vec tor  fields,  t he  class of Beppo  Levi  funct ions  (charac ter ized  

b y  a f ini te  Dir ich le t  in tegra l ) ,  or  t h e  g r a p h  of a sys t em of l inear  f i rs t  o rder  p a r t i a l  

d i f ferent ia l  opera to rs  wi th  cons tan t  coefficients.  The  comple t ion  refers to  a n  L~-metric,  

~o_> 1, a n d  t akes  place  wi th in  a g iven  region X in Euc l idean  n-dim,  space R ~. Re-  

s t r ic t ing  the  a t t e n t i o n  to  suff ic ient ly  d i f ferent iable  funct ions  or  vec to r  fields, one m a y  

charac te r ize  the  classes in  ques t ion  b y  ce r ta in  classical  re la t ions  involv ing  in t eg ra t ion  
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over arbitrary smooth curves or surfaces. (Thus the irrotational vector fields i n / ~  a r e  

characterized by the vanishing of the circulation along closed curves homolog zero, the 

solenoidal fields by the vanishing of the flow through closed surfaces homolog zero, etc.) 

These restricted classes are, however, incomplete in the LV-metric, and the question 

arises how to describe the structure of the functions (or vector fields) in the com- 

pleted classes. I t  is known tha t  these completions may be viewed as "weak exten- 

sions" (cf., e.g., l~riedrichs [12, 13], Weyl [36], HSrmander [20]). Thus a vector field 

] E L v (X) is irrotational (in the generalized sense) if, and only if, f (f. rot v) dx  = 0 
x 

for every smooth field v which vanishes outside some compact subset of the given 

region X. The same idea is fundamental in the theory of distributions due to 

Schwartz [34]. 

In  order to obtain a new insight as to the structure of such completions, one 

may return to the integral relation valid for sufficieptly smooth functions or fields 

from the class in question. When passing to more general functions or fields, such 

as those from an /F-class, one may consider the extended class which arises when 

one requires tha t  the integral relation shall remain valid for all curves or surfaces in 

question. This idea has been used by several authors, e.g., BSeher [5], Evans [11]. 

I t  turns out, however, tha t  such extensions are usually incomplete just like the ori- 

ginal classes. The problem arises, therefore, to which extent the integral relation sub- 

sists within the /2'-completion of the class in question. The answer may be expressed 

in terms of a concept which will be called an exceptional system of curves or sur- 

faces. This concept is independent of the particular class of functions or vector fields; 

it depends solely on the exponent p of the LV-class. A system E of curves (or surfaces) 

in R = is called exceptional of order p it there exists a Baire function t 6 L~(R~), f>_0, 

such that the llne integral (or surface integral) of f over every curve (or surface)trom E 

equals + oo.(1) In terms of this concept, the completion within / 2  is characterized, in 

each of the above cases, by the validity of the appropriate integral relation for "almost 

every" curve (or surface), i.e., for every curve (or surface) which does not  belong to 

some exceptional system of order p. (Of. Theorem 10, Chapter III ,  for the case of 

irrotational vector fields.) 

This notion of exceptional systems of curves or surfaces in R n is directly con- 

nected with the concept of extremal length introduced by A. Beurling in the early thirties, 

though not published until 1951 in the article by Ahlfors and Beurling [1] containing 

(1) Cf. the  wel l -known fact t h a t  a polnt -se t  E c R n is of Lebesgue measure  0 if, and  only if, there  

exists a Baire funct ion ] E L v (Rn), [ >_ 0, such t h a t  1 (x) = + oo for every x E E. 
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applications to the theory of analytic functions of a complex variable. Later contribu- 

tions to the theory of extremal length were made by Je~kins [21], Hersch [18, 19], 

and others. If E denotes a system of plane curves C with line elements ds, the 

extremal length of E was defined in [1] by the following expression 

X (E) = sup LQ (E)2/Ao,  
Q 

where Lq(E)= inf feds; A~= f~Zdx  (dx=dxldx~) , 
CeE C R ~ 

and the weight function 0 = 0  (x )=p  (xl, xz) ranges over all non-negative Bake(x) func- 

tions such that  LQ(E) and AQ are not  simultaneously 0 or + oo. 

For our purpose it is preferable to operate with the module M = 1/2 rather than 

the extremal length ~ itself. Moreover, we shall replace the exponent 2 by  an arbitrary 

exponent p, 1 < p <  ~ ,  and pass from plane curves to k-dimensional surfaces in R n, 

1 < k < n - 1 .  This generalized module may perhaps be called the module of order p. 

If  E now denotes an arbitrary system of k-dim, surfaces in R ~, its module M (E)= 

1/2v(E) of order ? may be defined equally well by 

M~(E)= inf fFdx ( d x = d x ~  ... dx,,), 
I^E 

where the symbol f A E ({ is associated with the system E) means tha t  / is a non- 

negative Baire function, defined in R ~, such that  

(t) I t  was not  required in [1] t h a t  ~ should be a Baire function; i t  was merely assumed t h a t  the  

integrals j Qz d x and  f e d s should be defined, the  la t ter  for every C E E. The present  restr ict ion to 
R ffi C 

Baire functions causes, however, no change in the  value of the  extremal  length ;t because the  Lebesgue 
measurable weight-function Q > 0  may  be replaced by  a Baire function ~ >__Q which equals Q almost  
everywhere. (We might  even restr ict  the  a t ten t ion  to lower semi-continuous functions since there  
corresponds to any  function Q >_ 0, ~ E L p (Rn), and  any  e > 0 a lower semi-continuous function Qe >-- 

R n R n 

On the  other hand,  we may  equally well admit  quite general functions ~ >__ 0 provided f Qz d x 
R I 

replaced by  the  corresponding upper Lebesgue integral (and f 0 d s by  the  corresponding upper  or is 
C 

lower Lebesgue integral, or even the  lower Darboux integral). HERSCH [18] uses, however,  the  upper 

Darbou:c integral ] 0 2 d x (and the  lower Darboux integral  f Q d s), bu t  this  leads to an  extremal  

length ~t* which in general is smaller t h a n  the  above extremal  length ~t. The module M* = 1/~* in the  
sense of Hersch is related to the  above module M = 1 /~  like the  exterior Jo rdan  measure to the  
exterior Lebesgue measure. I n  particular,  M* is not  eountably  sub-addit ive (cf. Theorem 1 (b), w 1). 
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f ~ d a ~> 1 for every surface S E E. 
S 

(A similar definition for the case 0 < p <  1 would lead to the value Mp(E)=0  for 

every system E of surfaces (or curves).) 

In  terms of this straightforward generalization of the concept of extremal length, 

i t  is easily verified (Theorem 2) tha t  a system E o/ curves or sur/aces in R '~ is excep- 

tional o/ order p i/, and only i/, the module of order p o/ E equals zero: Mp ( E ) = 0 .  

In  Chapter I some elementary properties of Mp are studied under more general 

circumstances (systems of measures/~ instead of systems of surfaces). As a set-function, 

Mp has some resemblance with an exterior measure (cf. Theorem 1 and the remark 

following it). Theorem 3 contains, in particular, a generalization of the  well,known 

fact tha t  mean-convergence implies convergence almost everywhere of a suitable sub- 

sequence. This result indicates the role of exceptional systems by the above instances 

of functional completion. 

Chapter I I  deals with k-dimensional Lipschitz surfaces in R ' ,  1 _< k_< n - 1 .  The 

principal problem treated in this chapter is the characterization of those subsets of 

R ~ for which the system of all k-dimensional surfaces intersecting the set, is excep- 

tional of order p. For p = 2, it is found tha t  these sets are identical with the sets 

whose exterior capacity of order 2 k equals 0. There are substitute results for p~: 2 

(Theorems 6, 7, and 8). The proofs of these results depend on the theory of gener- 

alized potentials of functions from the class L ~ and on the theory of singular inte- 

grals (Hilbert transforms) in R ' .  The last section of the chapter is devoted to the 

s tudy of certain simple systems of curves or hypersurfaces for which h42 and ~2 may  

be expressed in terms of the capacity of a condensor, or a thermal conductivity, cf. 

Theorem 9. Methodically, these results are related to the method of prescribed level 

surfaces, devised by  PSlya and Szeg5 [31] with the purpose of estimating capacities 

etc. The fact tha t  critical points may  occur causes, however, some technical com- 

plications. 

Chapter I I I  describes the role of exceptional systems of curves in connection 

with (generalized) irrotational vector fields and Beppo Levi functions. A vector field 

/ E/_P (X) is irrotational in a region X c R n if, and only if, the circulation of / vanishes 

along almost every closed curve homolog zero in X (Theorem 10). Next,  a Beppo 

Levi function (of order T) in X is defined as a primitive u of a differential form 

/ ( x ) . d x =  ~ /~(x)dx~, 
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where each /t E ~ (X), in the sense that ,  along almost every curve C c X, 

b 

u (b) - u (a) = f / (x). d x, 
a 

a and b being arbitrary points of C. The field 1 = (lx . . . . .  !n) is necessarily irrotationa! 

(Theorem 11). The class of Beppo Levi functions of order p in X is denoted by 

BI)'(X). I t  follows at once from the definition of Beppo Levi functions that  the 

equations Ou/axt=/~(x) subsist almost everywhere in X (Theorem 12), so that  a Beppo 

Levi function may be defined equivalently as a function which is absolutely continuous 

along almost every curve and whose gradient belongs to L~'(X). In  consequence of 

Theorem 7, a function u EBL2(X) is determined only quasi-everywhere, i.e., except 

in some set of exterior capacity 0. There is a substitute result for p=~2, p > l ,  (Theo- 

rem 13). Finally it is shown that ,  for p > l ,  the class BLJ'(X) is the perfect pseudo- 

functional completion in the sense of Aronszajn [2] of the class of smooth functions 

whose gradients belong to L~'(X). In particular, the class BL~(X) is identical with 

the class of "fonctions (BL) pr6cis~es" in the sense of Deny and Lions [10], which 

in turn is identical with a class of functions considered by Aronszajn and Smith [3]. 

Other applications of the concept of exceptional systems of surfaces or curves, 

in particular to systems of linear partial differential operators, will be described in a 

subsequent article. 

CHAPTER I 

The Module o f  a System o f  Measures 

l .  The module of order p 

We consider measures in a fixed abstract set X. (By a measure in X is meant 

a countably additive, a-finite set-function with non-negative values (the value + r 

being admitted), defined on a a-field of subsets of X.) The completion of a measure 

/~ is denoted by  ft. The domain of fi consists of all sets E c X such that  A c E c B 

for suitable A and B from the domain of/~ with # ( B -  .4)= 0; then/2 (E)=/~ ( A ) = #  (B). 

One such measure in X will be kept fixed throughout the present chapter. This 

basic measure will be denoted by m and its domain of definition by  ~J~. I t  is as- 

sumed that  X E ~ .  (By the applications described in the following chapters X will 

be Euclidean n-dimensional space R n, ~ will be the system of Borel subsets of R ~, 

m the n-dimensional Borel measure and hence ~ the n-dimensional Lebesgue measure.) 
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We shall now consider other measures, or ra ther  systems ( =  sets) of other measures, 

in relation to this fixed measure m. We denote by  M the system of all measures ~u 

in] X whose domains contain the domain ~J~ of m. With an arbi t rary  system E of 

measures ~u E M we associate the class of all non-negative m-measurable functions f 

defined in X and subjected to the condition 

f f d / ~ > _ l  for every ~ E E .  
X 

We write /A E to signify tha t  / is associated with the system E in this manner.  

The module M~ is now defined as follows: 

f/ dm 
/ h E  X 

interpreted as + ~ if no functions are associated with E.(1) As a partial motivat ion 

for this definition it may  be mentioned tha t  the measure m (E) of an arbi t rary set 

EE~J~ equals the mlnimum of f/(x)Vdm(x) when f rangesl over all non-negative 
X 

m-measurable functions such tha t  /(x)_> 1 everywhere in E.  A minimizing function / 

is the characteristic function gE for E.  This analogy expresses, b y  the way, an actual  

connection between the measure m and the module ~ in the special case where the 

system E consists of "Dirae measures".  (With any  x E X is associated the Dirac measure 

gx defined b y  zx(A)=za(x)=l or 0 according as A does or does not contain x.) I f  

E denotes a system of such measures Zx, obtained by  taking for x the points of some 

given set E E l ,  then it follows easily tha t  /V~ (E) = re (E). Returning to general 

systems of measures, we shall establish a few simple properties of My. 

TH~.OR~M 1. The module M~ is monotone and countably sub-additive: 

(a) Mp (E) _</V~ (E') if E c E ' .  

(b) My(E)_< ~M~(E,)  i/ E f O E , .  
t t 

Proof. The monotony of Mp follows at  once from the fact  tha t  / A E '  implies / A E 

if E ~ E'.  The subaddit ivi ty m a y  be proved as follows. I f  [ (x)=  sup f~ (x), where each 
t 

f| is a non-negative m-measurable function defined in X, then / is likewise such a 

function, and 

Z f/ dm. 
X ~ X 

(x) The only case in which no functions are associated with E in the manner explained above is 
the case where E contains the measure ~u- 0. 



E X T R E M A L  L E N G T H  A N D  F U N C T I O N A L  C O M P L E T I O N  177 

To see this, we define, for an arbitrary index n, 

a.  ( . )  = m a x  { h  (~) . . . . .  / .  ( . ) }  ; x ,  = { .  E X : / ,  (~) = a .  (~)}.  

Then g~ is m-measurable, X~ E ~J~, and X = 6 X~. Hence, 
t - 1  

X X| X~ X 

dm. 

The desired inequality now follows for n - + ~  since gn (x)-->/ (x) monotonically, and 

hence fg~dm--->fffdm. Next, let It be so chosen that  ~iAE~ and 
X X 

Then [ A E, and 

f ff  d m < Mp (E~) + ~- 2 -*. 
X 

~(E)<_ j /'am<_ ,-~ /~d,~<_ ,-~Mr(E')+~" 
X X 

Remark. If, in particular, the systems E, are "separate" in the sense that  there 

exist mutually disjoint sets 8, E ~ such that  /z ( X - S t ) =  0 when /z E E~, then the sign 

of equality holds in Theorem 1, (b). In fact, if { A E, and hence { A each Et, and if 

we define functions I! by ~t (x)= ] (x) or - 0  according as x E 8t or x ~ ~ ,  then ~, A El. 

Hence 
8 t X 

and consequently 
X t 84 i 

which implies that  Mr(E ) _> ~ M~(E,). 
i 

To the above elementary properties of the module Mp (or the generalization of 

extremal length ~ = I/My) one may add Lemmas 1, 2, and 3 in Ahlfors and Beur- 

ling [1], p. 115, all of which may be extended to the present case of an arbitrary 

order p and systems of measures instead of families of curves. We shall say that  a 

system E of measures # E M is minorized by a system E' of such measures if there 

corresponds to any /~EE a measure /z 'EE'  such that  /z_>/z' (that is, /z (A) >_ /z' (A) 

for every point-set A E ~ ) .  



178 B E N T  F U G L E D E  

The three lemmas may now be generalized as follows: 

(e) I f  E is minorized by E', then )~(E)>)~(E ' ) .  

(d) I /  p > l, if the systems Ex, E2 . . . .  are separate, and if a system E is minorized 

by each E,, then 
1 .  1 

(E) "---~-> 5 & (E,) ~--~. 
t 

(e) I f  the systems El, Es . . . .  are separate, and if each Et is minorized by a system E, 

then 
,~ (E) -1 -> Z &, (E,,)-' ; i.e., ~ (E) _> ~ M,, (E,). 

t t 

Statement (e) contains the above remark as a special case and is proved exactly 

like it. In particular, the sign of equality holds if E = LJ E~, where the Et are separate 
| 

(but otherwise arbitrary) systems. Statement (e) is easily verified. By  the proof of (d), 

it  is convenient to express the definition of the "extremal length" )~ in the following form : 

~(]~)=supLf(E)~; IE0, leL~(m); fFdm=l, 
] 

where L1(E)=in f~ ,~z f /d f f .  If  2~(E~)=0 for some i, the corresponding term may be 

neglected. If  ~ (E~)= + c~ for some i, it follows from (c) tha t  )~ (E)= + oo. Thus we 

may assume that  0 <)~ (E~) < § ~ for every i, and also tha t  0 < ~ (E) < § oo. To any 

given number e~ > 0 corresponds a function /~_> 0, /~ E / 2  (m), such tha t  

f / ~ d m = l ,  and Lri(E~)>~(Ez)l/P-et .  

Choosing disjoint sets S~ so that  ff ( X - S ~ ) =  0 when ff E E~, we may assume, more- 

over, that  {~ = 0 in X -  S~. Define / ( x ) =  ~ t~ ft (x), where tt-> 0, ~ tF---1. I t  follows that  
i t 

Hence, 2v (E) _> LI (E) ~. 

Let  # E E. By  assumption, there are measures ~ut E E~ such tha t  #_>ff~. Consequently, 

f ldff  =- Z. t,f / , d ~  ~ t, f l, dff,>_ Z t,L~,(E,)>_ ~ t,&(E,) 1 ' ' -  ~. t,~,. 
t i i i i 

I t  follows that  Ls(E)> ~ t,~(E,) ~/~- ~ t,~,, 
i | 

and hence ~t~ (E) _> (~ tt ~ (Et)l/~) p. 
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In H61der's inequality 1 

t | t 

the sign of equality holds if, and only if, the numbers t~ are proportional to the 

numbers )~(E~) 1/(~-1~. This optimal choice of the multipliers tt leads to the desired 

inequality. 

The sign of equality holds in (d) if, in particular, E-- ~ E~, where the Et are 
t 

separate (but otherwise arbitrary) systems. In fact, 

Lr(E ) _< ~ L~(E,) 
t 

for arbitrary [_>0, fELl(m), since #~EE, implies ~ #,EE. Defining t~= {f/Pdm} 1'~, 
i Et  

and /t (x)= t~'l/(x) or = 0 according as x belongs or does not belong to S~, we have 

f>- Z tth, and 
' fFdm>_ ~ t~. (D 

t 

On the other hand, Ls(Et ) = tt LI t (Et), and consequently 

LI(E)_< "~ Lr(E,)= ~ t,L,~(E,) <_ ~ t,~(E,) v' .  

Applying H61der's inequality as above, we obtain 
1 

Lf(E)~_ < "~. tF. (~)~  (E,)V:i-~) "-1. 
i i 

(2) 

Combining (1) and (2), we arrive at the desired inequality: 

1 
)~ (E) < (~ ~t, (~,)~-IF-1. 

2. Exceptional systems of measures 

A system E c M  will be called exceptional o/ order p (abbreviated: p-exc) if 

M,(E)=0. 

The well-known fact concerning point-sets E c X that ~ ( E ) = 0  if, and only if, 

there exists a function / E L  ~(m), / ~ 0 ,  such that / ( x ) = + c o  for every x E E  (the 

value of p>  0 being irrelevant), may be generalized as follows: 

T H~OR~.~ 2 .  A system E ~ M  is p-exc i/, and only i/, there exists a /unction 

/ E L ~ (m), j >_ O, such that 
f / d /~ = + ~ /or every g e E .  
X 
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Proof. If  f has these properties, then n - a f A E  for every n = l ,  2 . . . .  ; and 

] ( n - l f ) ~ d m = n - ~ f ~ ' d m - - > O  as n-->c~ ; hence Mp(E)=0.  Conversely, let M~(E)=0  and 

choose a sequence of functions f ,  A g so that  f f~ d m <  4-".  Writing f (x) = {~ 2 n fn (x)P} 1/r, 

we infer that f/Pare= ~ 2"flY'.am< ~ ;  on the other hand, ffdl~> f2"/Pf.d/~>_2 "'" 
n 

for every ~uEE and every n = l ,  2 . . . . .  and hence f fd / .~= + oo. 

A proposition concerning measures /~ which belong to some specified system 

E c M, is said to hold for almost every # E E, of order p, (abbreviated: p-a.e./~ E E) 

if the system of all measures /~ E E for which the proposition fails to hold is excep- 

tional of order p. This amounts to the existence of a function f E/F(m),  f ~ 0 ,  such 

that  the proposition holds for every ~u E E for which f f d/~ < oo. 
X 

THV. OR~.M 3. (a) An y  subsystem of a p-exc system is p.exc. 

(b) The union of a finite or denumerable family of p-exr systems is p-exc. 

(e) I f  p>q ,  then every T-exc system of finite measures is q-exc. 

(d) I f  E c X  and ~ ( E ) = O ,  then f i (E)=O for p-a.e, p E M .  

(e) If f E I2 (~), then l E L z (fi) for Io-a.e. i ~ E M. 

(f) I f  a sequence of functions h E s  converges in the mean of order la with 

respect to ~ to some function f, i.e., 

lira f l l ,- l l" d,~,=o, 
|.-~.o0 

then there is a subsequence of indices i, tending to co with the laroperty that, for 

l~-a.e. ~ E M, [~, converges to [ in the mean of order 1 with respect to fi : 

J'lf,,-fldp.=o for p-a.e. I~EM. 

Statements (d), (e), (f) remain valid if ~ and fi are replaced by m and it, respectively. 

Proof. Statements (a) and (b) are contained in Theorem 1. To prove (c), let E 

denote a p-exe system of finite measures ju E M, and let f E L p (m), f ~ 0, be so chosen 

that  f f d ~ =  + ~ for every juEE. Now, ]~/e E L~ (m), and an application of H51der's 

inequality shows that  ff~/e d #  = + ~ when ~u E E since # (X) < ~ and p / q >  1. In fact, 
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As to statements (d) ,  (e), (f), we begin by proving the corresponding statements in 

which ~ and fi are replaced by m and /~, respectively. The statement corresponding 

to (e) is then contained in Theorem 2, while ( d ) m a y  be proved as follows. Let 

Ee~)~, re (E)=0 ,  and f ( x ) = + o o  for x E E ,  f ( x ) = 0  for x ~ E .  Then f belongs to 

/2(m) and 

ffdp=(+ oo).~(E)= +oo for every # such that  p ( E ) > 0 .  

As to (f), we choose an increasing sequence of integers i, so that  

f If,, (~)-  f (~) I" ,t ,,, (~) < 2-,,-, ,  
X 

and write g, (x) = l f~, (x) - { (x)[. Introducing the systems 

A,={l~eM:fg, d/a>2-'}, B,t = U A~, and E =  fl  Bn, 
v > n  n 

we have 2~gv A A,, and hence 

M~(A~)_< f (2 'g , )~d~= 2~'f g ,~d~< 2 -" 

This implies, in view of Theorem 1, that  

(E) < My (B.) _< ~ My (A,) < 2 -~. 

Consequently, Mp(E) ~0 .  To every p E M - E  corresponds an index n such that  

p~Bn,  i.e., flf~-fldl~= fg~d#_<2-" for every v > n .  Hence limoflf,-fld~=O. I t  

remains to reduce the original statements (d), (e), ( f ) t o  the above corresponding 

statements in which ~ and fi were replaced by m and p, respectively. As to (d), 

let E c X and assume that  ~ ( E ) - - 0 .  There exists a set E*E ~ such that  re(E*)--0 

and E* D E. The system of all measures p such that  fi (E) > 0 is, therefore, contained 

in the p-exe system of all measures p such that  ~ (E*)> 0. As to (e), the function 

/ may be replaced by an equivalent m-measurable function /% Applying (d) to the 

set E = {x : / (x) * /*  (x)}, we infer that  fi (E) = 0 for p-a.e. # ; in particular, 

f l f l d ~ =  fir*Ida= fll'ld~ (<oo) for p -a .e .p .  

Statement (f) may be treated in a similar manner, and the proof is complete. 

Simple examples show that  the infimum in the definition of Mp(E) is not nec- 

essarily attained by any function f A E. However, the following theorem subsists 
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for any order p > 1 and any system E of measures p ~ 0, p E M: There exists a/unc- 

tion 1>o ,~h  that f /" d ,n=~(E)  ~ f /d/~>_l /or p-~.~. ~eE.  (The former prop- 
X X 

erty of / obviously only depends on the m-equivalence class of ], and so does the 

latter by virtue of Theorem 3 (d).) The existence of f is clear if Mp(E)= + ~o; and 

if Mp(E)< + oo, it is a consequence of the we[l-known facts that  the Banach space 

ZP(m) is uniformly convex when I0> 1, and that  any convex, closed, and non-empty 

subset of a uniformly convex Banach space contains a unique vector with minimal 

norm (of., e.g., Nagy [28], p. 7). For any system E of measures/~ E M , / ~ 0 ,  the set 

of all functions /EZP(m), /_>0, such that  f /dl~>_l for 10-a.e. /~EE, is convex and 

non-empty, and it is closed in L ~ (m) by virtue of Theorem 3 (f). From the uniqueness 

of the minimal vector follows that  the minimal function f is uniquely determined up 

to a set of measure m = 0. Simple examples show that  the restriction 10 > 1 is essential 

for the existence as well as for the uniqueness of ]. 

C H A P T E R  I I  

The Module o f  a System o f  Surfaces 

Notations. By R ~ we denote the Euclidean n-dimensional space with a fixed 

Cartesian coordinate system. The origin is denoted by 0, and a point x is identified 

with the vector from 0 to x. The coordinates of a point x will be denoted by 

x ,  v = 1, 2 . . . . .  n, and we" write x = (x 1, x~ . . . . .  x~) and ] x I = (~  + ~ + " "  + x~) t- The 

closure of a set E c R ~ is denoted by E. The open ball {y E Rn:] y - x [  < r} is denoted 

by Br(x), and we write B ~ ( x ) = { y E R  " : ] y - x ] _ > r ) .  If x=0,  we may use the nota- 

tions Br and B~. The unit sphere in R ~ is denoted by ~ = ~n = {x E R n :] x] = 1). The 

usual surface measure on ~ is denoted by to, and we write eon = to (~n) for the total 

surface measure of ~n, the value of which is 

The system of Borel subsets of a given Borel set X c R  n is denoted by ~ (X) ,  in 

particular by ~ if X = R n. The n-dimensional Borel measure is denoted by mn and 

the n-dimensional Lebesgue measure by ran. The Lebesgue classes I 2  refer to ran, and 

we write L~(X) if the functions are defined only in a subset X c R  n. Likewise, mean 

convergence refers to mn unless otherwise stated. We write []/llp=(f]/(x)11'dx) I'p. 
X 



E X T R E M A L  L E N G T H  A N D  F U N C T I O N A L  C O M P L E T I O N  1 8 3  

By C h (X) is denoted the class of all real .valued cont inuous functions in X (open) 

having continuous part ial  derivatives of order h everywhere in X. I n  the  case h = 0 

(continuous functions), we m a y  write simply C (X). If, in addition, each funct ion is 

required to  vanish outside some compact  subset of X, we obtain  the  subclasses 

Co h (X), in part icular  C O (X) for h =  0. The functions in these subclasses will be under- 

s tood as defined in the entire space R n, vanishing outside X. The symbol  

~h 

~x=, Ox~ ... ~x~  

for a partial  differentiation of order h will be wri t ten shor t ly  as D~, where 

The order h of the  differentiation will be denoted by  I 1. W h e n  speaking about  "all  

derivatives D~ u of orders [ ~ [ < k" of a funct ion u, we inelude the derivat ive of order  

0, the function u itself. 

1. Lipschitz image and Lipschitz surface 

A subset X c R n is called a Lipschitz image of a subset T c R k if there exists a 

Lipsehitz t ransformat ion of T onto X.  A Lipschitz trans]ormation of T onto X is a 

one-to-one mapping  of T onto X such tha t  

c-llt'-t'l<_l '-x"l<_clt'-t"l (i) 

whenever x', x"E X correspond to  t', t " E  T. Here c denotes a suitable constant .  I n  

the sequel it will be assumed tha t  T is a non-void open subset of R k, the  dimension 

k being kept  fixed, I < k(<=>n. I Ienee T and X are countable unions of compact  sets. 

I n  view of a theorem of Rademaeher  [32], each of the  Lipsehitz functions xl has  

almost  everywhere in T a tota l  differential with respect to  t = (t x . . . . .  tk). Thus, for 

a.e. fixed t E T and every i = l ,  ..., n, 

k 

x', -- x, = ~ a,j (t~ -- tj) + o (I t ' -- $1) as $'--->t, (2) 
3"=1 

where x~=x~(t), x~=x~(t'), t ' E T, and ao=Ox~/~t3" evaluated at  the point  t. This im- 

plies, in particular, the existence of a " t angen t  plane" [I  a t  x, given parametr ical ly  

by the differential mapping  of R ~ onto I I  obtained by  neglecting the  remainder  term 

in (2) and allowing t' to  take  arbi t rary  values t ' E R  k. I n  fact,  it will be shown 

presently t h a t  the rank  of the mat r ix  {a~j} equals k. W i t h  any  symbol  ~ = (~1 . . . . .  ~k) 

12 -- 573805. Aeta mathematica. 98. I m p r i m 6  1o 10 d6eembre  1957. 
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where each ~j, j = 1 . . . . .  k, is one of the numbers 1, 2 . . . . .  n,  we associate the gaeobian 

minor 

(x . . . . . . .  x~k) =de t .  {a~,j} (3) 
q~ - ~ (tl . . . . .  re) 

evaluated at  the point t. These minors form the components of an antisymmetric 

tensor of rank k. The quanti ty 

represents the ratio of k-dimensional area by the above differential mapping of R e 

onto the tangent plane II.  The functions q~ and q are measurable. We proceed to 

prove the inequalities 
c -e  < q<<_ c ~. (5) 

(In particular, q ~= 0, so tha t  the rank of {a,j} is i'ndeed k.) Writing ~ = t ' - t ,  ~ = x ' - x ,  

we consider the linear mapping of R e into R "  given by the equations 

k 
~ =  ~ a~jvr (6) 

I=I 

I t  follows easily from (1) and (2) that ,  by  the mapping (6), the linear ratio I~I/ITI in 

any  direction is between c -1 and c. Now, there exist k orthogonal unit vectors ~(1) . . . . .  ~(k) 

whose images ~a) . . . . .  ~(k) by the mapping (6) are likewise mutual ly orthogonal. Since 

c -1_< I~<i)[ < c, it follows tha t  the ratio of k-dim, area q(t) = I~(a'l ... [~<k' I is between 

c -k and c k. 

A subset E ~ X  is a Borel set if, and only if, the corresponding subset F c T 

is a Borel set (in Rk). Using these notations, we define 

lax(E) = f q(t) dt. (7) 
F 

From the results of Rademacher  [32] concerning transformations of integrals it follows 

in a well-known manner tha t  lax(E)  is independent of the parametric representation 

of the Lipschitz image X. (In particular, lax equals the restriction of mn to X if 

k = n . )  Since q is bounded, we have l ax (E)<oo  for every bounded set E E ! ~ ( X ) .  I t  

follows tha t  /Xx is a (a-finite) measure on X. We call it the sur/ace measure  on X. 

By integrations with respect to lax (or f ix) ,  we shall write d a  instead of d g x  (or 

d f ix) .  The following lemma will be used in the next  section. 
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L EMMA 1. Given a Lipschitz image X ~ R  n o[ an open set T ~ R  a, and a point 

x*E X.  There exists a constant K, depending only on X and x*, such that the inequality 

holds for any /unction u E C~(R=). 

Proo/: Denote  b y  t* the  point  of T which corresponds to x* by  a paramet r ic  

representa t ion  t-->x (t) of the  Lipschitz image X. Since T is open, there  exists a closed 

ball  A c T wi th  the  centre t*. Denot ing  by  a the  radius of A and by  c the  cons tan t  

in t roduced in (1), we consider the closed ball B c R  ~ with the  centre  x* and  the  

radius a/c. The inverse image  F = {t E T : x (t) E B} is then  contained in A in view 

of (1). Now,  choose a funct ion qgECk(R ") so t h a t  q ( x * ) = I  and  ~0(x)=0 outside B, 

and  keep ~ fixed. Corresponding to an a rb i t r a ry  funct ion u E C a (R a) we write [(x)= 

(x)- u (x). Then  / E C a (Rn), and  / (x) = 0 outside B. Hence  any  der iva t ive  D~ [ of 

order 10ci _< k is cont inuous in R = and  vanishes outside B. This implies t h a t  the  com- 

posite funct ion D~ ] (x (t)) is cont inuous in T and  vanishes outside A. For  I ~ I = k, write 

x~, ~ x~, a x~ a 
p ~  ( t )  = - -  

~tl ~t  2 ~tk ' 

the  a rgumen t  of ~x~i/Ot j being 

t ( j ) =  (t~ . . . . .  t~, t~+~ . . . .  , t~ ) .  

With  this nota t ion,  it is easily verified t h a t  

[(x*) = ~ i~=~ D~f(x(t))pc'(t)dt '  ( s )  

where Q = {t E A : tj <_ t* for every  i = 1 . . . . .  k}. 

In  fact ,  in tegra t ing first  wi th  respect  to t~ and  writ ing 

we obtain, since t (1) ..... t <k-l) are independent of t~, 

Wc 
t k t~ 

[atl=k a k = l  ~Xo~ k ~tk ] 

= Z D~[(x(t(~-l))) p~(v). 

p ~ ( ~ )  
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0 X~, 0 Xak_l 
t [ ~ e  p ~  ( v )  = - -  

0$1 0 tk-1 ' 

the a rgumen t  of Ox~j/Otj being t (j) as above, j = l  . . . . .  k - 1 .  I n  a similar way one 

may  integrate  successively with respect to tk-1 . . . . .  tl, and  the  formula (8 ) resu l t s .  

Since lax,/Otjl<_c, we have Ipa(t) l_<c k. Moreover, dt=da/q(t)<_c~d(~,  a nd  hence, 

from (8), 

Clearly, D~ / = D~, (ep . u) = I P~ ,  cp~ p Dtj u, 

where the  coefficients ~ . ~  = ~ . p  (x) are cer ta in  funct ions  of x der ived from the func- 

t ion  ~0. Hence 

y. (  ,,.al)lDaul d,' 
X ~l -<k ~ ffi 

where g = c  2kma x  max  ~ ]~ ,p (x) [  
IPl<k xeB I~1=~ 

is a finite constant .  This completes the proof of Le mma  1. 

Now, let 1 ~ k_< n - 1 .  A non-void  subset  S c R  ~ will be called a /c-dimensional 

Lipschitz sur/ace (or manifold)  in  R n if there corresponds to every point  x*E S an  

open set U c R  n such tha t  x*E U, a nd  S n U is a Lipschitz image of some open set 

T cRY.(1) From Lindel6f 's  covering theorem follows tha t  S is a Borel subset  of R ' ;  

in  fact, S is a countable  un ion  of compact  sets. Moreover, i t  is easily verified t ha t  

there exists one and  only  one measure jUs defined on ~ (S) which agrees with the 

surface measure #x on every Lipschitz image X = S  N U of the above type.  This 

measure #s is called the sur/ace measure on S. By integrat ions  we shall write d a 

ins tead of d/~x (or dfix). 

2.  E x c e p t i o n a l  s y s t e m s  o f  s u r f a c e s  

I n  order to apply  the not ions  and  results of Chapter  I to systems ( =  sets) of sur- 

faces, in part icular  curves, in R n, we take X = R n, ~ = ~ ,  m = m n  and  hence m = m~. 

(1) According to this definition, a connected 1-dimensional Lipschitz surface means a simple con- 
tinuous curve, either "closed" and rectifiable, or "open" and locally rectifiable. The restriction to 
simple curves is, however, not necessary ; the results of the present paper are likewise valid for systems 
of parametrically given continuous curves (with or without multiple points), provided they are locally 
rectifiable in the sense that every arc corresponding to a compact sub-interval, is rectifiable. More- 
over, no point of a curve should correspond to an interval of parameter values. 
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We denote by  S k the system of all k-dimensional Lipsehitz surfaces in R n. For any 

system E c S ~ we define its module Mp (E) as the module Mp of the system of meas- 

ures /~s, S E E ,  these measures being extended in such a way to ~ = ~ ( R  n) tha t  

/~s ( R n -  S) = 0. Thus, for any  p such tha t  0 < p < oo, 

l^  E Rn 

where f A E means tha t  f is a non-negative Baire function such tha t  

f / d a _ ~ l  for every S E E .  
S 

The results of Chapter I may be carried over. In  particular (Theorem 2), a system 

E of k-dimensional sl~rfaces is exceptional of order p, i.e. M r ( E ) = 0 ,  if and only if 

there exists a Baire function ~_>0 such tha t  f E L  ~ and yet  S f d a =  §  for every 
S 

S E E .  (Instead of a Baire function, one might equally well consider a lower semi- 

continuous function; cf. the note on p. 173.) 

For systems of surfaces, the only values of p which are of interest are the values 

p ~ l .  I f  0 < p < l ,  any system o/ surfaces is p-exc. For the sake of simplicity, we 

restrict ourselves, by  the proof, to systems of regular Cl-manifolds rather  than general 

Lipschitz surfaces. In  view of Theorem 3 (b), it suffices to prove that ,  when 0 < p < 1, 

the system of all k-dim, surfaces which intersect the cube Qa = {x E R" : [ x,[ < a for 

v = l  . . . . .  n} is p-exc for any  a. Choose a Baire function ~ ( t ) ~ 0  in the interval 

Ia = {t : - a < t < a} so tha t  ~ E L r, and yet  S ~ (t) d t -- § ~ for every in te rva l  I c I a. 
I 

Define 

f ( x ) =  ~ ( x ~ )  for xEQ~; f ( x ) = 0  for x~Q~. 
~=1 

Then / E L ~, ] >_ 0, and f f d a = + co for every k-dimensional regular Cl-manifold S 
s 

which intersects Qa. In  fact, let x*E S N Q~, and let t--~x(t) be a Cl-homeomorphism 

of an open set T c R  k onto an open neighbourhood X of x* in S, with the property 

that  the rank of the matr ix  {Ox~/~tj} equals b. I f  t* denotes the point which is 

mapped into x*, there exist numbers ~1 . . . . .  ~k such tha t  

* 0 at  t*. 
( t  I . . . . .  tk)  
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Since this Jacobian qe is continuous, the mapping t-->x'= (xe . . . . . .  x~k) is a 6%homeo- 

morphism of some open neighhourhood N of t* onto some open set N '  c / ~ .  Hence 

5 X X T 

>_ f f + oo 
N N" 

Throughout the rest of the present paper, only values p>_ 1 will be considered. 

THE O REX 4. By  a Lipschitz transformation of an open set X c R  y onto an open 

set Y c R n, any p-exc system of ]c-dim. Lipschitz surfaces contained in X is transformed 

into a p-exc system of It.dim. Lipschitz surfaces in Y. 

Proof. Denote by c the constant introduced in the preceding section, now as- 

sociated with the Lipschitz transformation x-->y =q~ (x) of X onto Y. I t  was mentioned 

that  the Jacobian 

a (Yl . . . . .  Y,) J 
a (xl . . . . .  x,) 

exists a.e. in X ;  its absolute value I J I  represents the volume ratio d y / d x ,  and it 

was shown that  c-"<_]J]<_c '~ a.e. in X. If  g denotes a non-negative Baire function 

in Y and if g E LV(Y), then the corresponding function f defined in X by f ( x ) = g ( ~  (x)) 

is a Baire function in Lv(X).  Moreover, 

c-" f f(x)"dx< f g(y)"dy<_c"f f(x)"dx. 
x Y x 

I t  is easily shown that  r maps any k-dim. Lipschitz surface S, c X onto a surface 

Sy c Y of the same kind. The ratio of k-dim, surface area ~ (x)= d ay/dax is subjected 

a.e. on Sx to the inequalities c-k_< ~ (x)_< c ~. This may be shown in a manner similar 

to the procedure by the proof of (5), w Hence, 

If  Ex denotes a system of ]c-dim. Lipschitz surfaces in X and E v the corresponding 

system in Y, then it follows easily that  

c -~ ' -~ M~ (E~) < ~ (Ep < c ~'§ M, (Ex). 

This implies, in particular, the statement of the theorem. 
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A Lipschitz /amily o/ k-dimensional sur/aces will be defined in the  following way.  

Le t  T denote a non-void open set in R n with points  t = (t 1 . . . . .  tn). Wri t ing t' = (tk+l . . . . .  t~), 

we consider the or thogonal  projection of T onto the ( n -  k)-dimensional t '-plane. This 

projection T '  is an open set in the  t '-plane. For  every t 'E T', the set of points t E T 

whose projection is t', is a k-dim, plane Lipschitz surface Tt,. By  a Lipsehitz trans-  

format ion  t-->x=cf(t) of T onto  some (open) set X c R  ~, the  family E of these plane 

surfaces" Tt. is t ransformed into a family F of Lipschitz surfaces St, =~(Tt . ) .  Such 

a family will be called a Lipschitz family of k-dim, surfaces in R n. Restr ict ing the 

parameter  point  t ' =  (tg+l . . . . .  Q) to  some set E ' c  T', we obtain  a system of k-dim. 

Lipschitz surfaces St.. Let  p>_ 1. In  order that this restricted system be p.exc, it is 

su//icient and, provided p=  1 or m~(X)< co, necessary that ~hn_k(E')=0. By vir tue of 

Theorem 4 we may,  in fact,  just  as well consider the  system of plane surfaces Tt., 

t 'EE ' ,  instead of the surfaces St,. I f  ~hn_k(E')=O, choose a Borel set A' so t h a t  

E ' c A ' c T '  and  m~_k(A')=O. Write  ](t)= + ~ if t ' E A '  and  [(t)=O otherwise. Then  

f E Z  ~ for a ny  p, and  f f d a=  + co for any  t' E E ' .  Conversely, let p =  1, or let 
T t, 

m n ( X ) <  ~ and  hence m n ( T ) <  ~ ;  and assume tha t  the sys tem of plane surfaces Tt,, 

t' C E', is p-exc. If  / has the properties s ta ted in Theorem 2, then so has the  funct ion 

g defined by  g (t) = ] (t) for t E T, g (t) = 0 otherwise. I t  follows tha t  g E L 1 (Rn). I n  view 

of Fubini ' s  theorem, g is integrable over Tt, for a.e. t 'E  T ' .  

A Lipschitz family of surfaces is a very  special system of surfaces. I n  the following 

sections more interesting systems of surfaces will be considered. I t  will appear  t h a t  

the no t ion :  a p-exc system of k-dim. Lipsehitz surfaces, depends effectively on the 

value of p > 1. 

3. The system of  all surfaces intersecting a given point set 

We denote by  Sk(E) the sys tem of all k-dimensional Lipsehitz surfaces(i) which 

intersect a given non-void set E c R n. According to a previous remark,  S k (E) is p-exc 

for a ny  p <  1, irrespective of the choice of E. For  p ~  1, the problem whether Sk(E) 

is p-exc depends, besides on E,  largely on the  number  k p, as shown by  Theorem 8. 

We begin by  showing tha t  Sk(E) is not p-exc when k p > n .  This is implied by  the 

following theorem. 

(1) The results of the present section (Theorems 5-8) would remain valid even if only very regular 
k-dim, surfaces were considered (e.g. connected analytic manifolds). In fact, by the proofs of the 
necessity parts (of Theorems 5 and 6) only k-dim, circular disks are considered. For a comment in 
the opposite direction concerning the case k= 1, see tile note on p. 186. 
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T ~ E 0 R E M 5. The system of all k-dimensional Lipschitz sur/aces which pass through 

a given point o/ R", is exceptional o/ order p i[, and only if, k p <_ n. 

Proo[. Let  the given point  be the origin 0, and write Ix I= r. I f  k p < n, define 
1 

[ ( x ) = r  -k for r < l ,  [ ( x ) = 0  for r_>l .  I t  follows tha t  [ e L  Y since f r - k ~ r ~ - l d r <  oo 
0 

when k p < n. I f  a k-dim. Lipschitz surface S passes th rough  0, then so does a Lip- 

sehitz image X c S of some open set T c R k. Using the notat ions introduced in w 1, 

we m a y  assume tha t  x = 0  corresponds to  t = 0 .  Then I xl_<e I t], and  hence, i n  view 

of (5), w 1, 
f ] d a =  f / ( x ( t ) )q ( t )d t>_c-~  f l t l - kd t=  +co.  

X T T 

Next,  if k p = n ,  take [ ( x )=r -k ( log (2 / r ) )  -~ for r < l ,  and [(x)=O for r_>l .  I f  

k / n  < a <_ 1, then [ e L p, and f ] d a = + ~ for any  Lipschitz surface S passing th rough  0. 
s 

Finally,  in the case k p > n, we m a y  exhibit  a system of plane k-dim, surfaces th rough  

0 which is not p-exc. We shall use the following integral formula for the mean value 

of the integrals of a Baire funct ion [(x) over all k-dim, planes L passing th rough  

the  origin 0 in R~: 

f (f [(x)da(x))d~(L)=: f [xi~-"[(x)dx. (1) 
L k L R n 

Here L k denotes the system of all k-dim, linear subspaces (= "planes"  th rough  0) in 

R n, and # is a certain measure defined on a a-field of subsystems of L k and  invariant  

under  or thogonal  t ransformat ions  of the space R n (with 0 as a fixed point).  The 

formula holds in the sense that ,  if one side of (1) is defined, then so is the other, 

and  they  are equal. This is the  case, in particular, if [_> 0. The measure # is well 

known in an explicit form from integral geometry  (eft Herglotz [17] and Blasehke [4]), 

and a proof of (1) m a y  be based upon this explicit expression. An al ternative pro- 

cedure is employed in a note  [15], based on the theory  of invariant  integrat ion in 

compact  topological groups. Returning  to the case k p > n of Theorem 5, we consider 

for any  plane L E L  k the intersection S = L N B  1 with the uni t  ball B 1 in R n. The 

system of all these special k-dim. Lipschitz surfaces S is no t  exceptional of order p 

when k p > n .  In  fact, if g is a non-negat ive Baire funct ion in L ~, we m a y  apply (1) 

to the funct ion [ defined by  [ ( x ) =  g(x) for x e B 1, [ ( x ) =  0 otherwise:  

f ( f g(x)da(x))d/~(L)=~ flxl~-"g(x)dx. (2) 
L k L N Bx B~ 
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The integral on the right is finite in view of HSlder's inequality since g E L=(B1), 

and IxIk-"eL~'l(~'-1)(B1) when k p > n ;  in fact, 

1 1 

f r(~_n) ~_~_lrn_ldr [. k~-~_~ �9 = jr -I d r < o o .  

0 0 

I t  follows that  f g(x) d a ( x ) < ~  for #-a.e. L e L  k. 
Lf lB1  

For an arbitrary (non-void) set E c R '~, the question whether or not S g (E) is 

p-exe is connected with potential theory, as shown by the following theorem. 

THEOREM 6. Let p>_l and kp<_n. I n  order that the system S~(E) of all k-di- 

mensional Lipschitz surfaces which intersect a given set E c R "  be exceptional of order p, 

it is necessary and, when p > l ,  su/ficient that there exist a /unction /EL~(R~), />_0, 

whose potential of order lc 
flx-yl -Oi(y) y 

R n  

equals + co /or every x E E, without being identically infinite. For p = 1, the stated condi- 

tion is su]]icient under the additional assumption that ] E Z, i.e., 

f ] (x) log + ] (x) dx  < co. 
Rn 

Remark. Let  />_0 be locally integrable in R ~ (i.e., integrable over bounded sets). 

In  order tha t  the potential U~ of order a, 0 < a < n, of f be not identically infinite, 

it is necessary and sufficient that  

f (l f(x)dx< 
R n 

or, equivalently, that  f I Yl ~- ~ / ( x -  y) d y < ~ for some, and hence for any, pair (a, x) 
B a" 

where 0 < a < oo and x E R". When one of these equivalent conditions is fulfilled, 

U~ is locally integrable, in particular U~ (x)< oo a.e. in R". An application of HS1- 

der's inequality shows that  the above condition is fulfilled if f E L p provided p>_ 1 

and a p < u .  Hence, in the formulation of Theorem 6, the words "without  being 

identically infinite" could be dispensed with, except in the case ]cp ~n .  

Proof of Theorem 6. The proof of the necessity of the stated condition is again 

based on the integral formula (2). For an arbitrary fixed x E R',  write g (y)= f ( x -  y), 

and apply (2): 
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f (  f /(x-y)da(y))d~(L)=~ ~ I y , k - n / ( x - - y ) d y .  
L k Lf~Bl BL 

Now, if S~(E) is p-exc, there exists a Baire function / E L  Y, I>_0, such tha t  

for every ~t E S k (E), in particular for every/c-dim. "circle" S = L N Bx, L E L k, and hence 

f / ( x - y ) d ( r ( y ) = + o o  when L E L  k, x E E .  
LNBI  

Combining these two formulae, we infer tha t  f [ y  I k n / (x - y) d y = + c~ for every x E E.  
B~ 

I f  k p < n, the function / has the properties stated in the theorem. In  fact, / E / F ,  

and U~(x)=  + ~  when x E E  since 

Bt 

and, finally, U~ ~e c~ as it was mentioned at  the end of the above remark.  If  k p = n, 

the function / may  be replaced by  

/ l ( x ) = ( l + [ x D - ~ / ( x )  ( a >  0). 

Again, / I E L  p, and U~(x)=-pc~ for every x E E  since / l ( x - y ) > _ ( 2 + l x i ) - ~ / ( x - - y )  

when y E B 1 ; and, finally, U~ ~e oo since 

R n R n 

in view of H61der's inequality. 

The proof of the 8u/]icieney is based on the theory of singular integrals (Hilbert 

transforms) in R" as developed by Calderon and Zygmund [6]. We begin with a 

simple lemma concerning the convolution ~0~+] of two functions. By  loea[ mean con. 

vergenee is understood mean convergence over every bounded subset;  in particular 

the functions in question must  be locally integrable. 

LEMMA 2. Let p_>l.  (a) I[ q~EL t and / E L  ~, then 9 ~ / E L  ~, and 

II -x-llb-< I1 o11, II111,. 
(b) I /  q~-->qJ in the mean o/ order 1, and il I E L ~, then ~ ~ 1-->~o ~ l in the mean 

ol order p. 



EXTREMAL LENGTH AND FUNCTIONAL COMPLETION 193 

(e) I] qD~--~o locally in the mean o/ order 1, and i/ ] E 12 and f vanishes outside 

some bounded set, then ~-)e ]--->~-)e ~ locally in the mean o] order p. 

Proo]. I t  follows from HSlder 's  inequal i ty  t ha t  

I (]~e~) (x)l" -< (f ] ] ( x - y )  I �9 ] ~ (y)l~'~ ] ~ (y) I '-1'~ dyf '  

-< f II(~-y)l" I~ (y)l dy. (f I ~ (y)I dY) ~-~ 

Hence  f It~vl ~ d~<_ ff II(~-y)l" I v (y)I d~dy-(f IV(y)l dy) "-~ 

This proves s ta tement  (a). S ta tements  (b) and (e) are easily derived. 

Consider now the  kernel  ~p(x)=lx[ k-n and, as an approximation,  the  funct ion 

~(~) (x) = (] x 12 + e2)-~-; x e R ' ,  e real .  (3) 

The  funct ion ~0(')(x) has continuous part ial  derivat ives of all orders with respect  to  

the  variables x 1 . . . . .  xn, e except  a t  the  point  (x, e ) =  (0, 0). By  an a rb i t ra ry  deriva- 

t ion D~ with respect  to  x l , . . . ,  xn one obtains 

D~ ~(~) (x) - Ha (x, e) (I x 13 + e2) ~2 - -  I~$, (4) 

where tt~(x, e) is a homogeneous polynomial  in x 1 . . . . .  Xn, e of degree [a I. Hence 

there  is a number  C 1 independent  of (x, e) such t ha t  

JaJ 
[~(~ ,  e) l_< o,([xl2 + ~2) Y, (~) 

k-lal--n 
a n d  [Do:w(e)(x)[~Cl(IXl2+e 2) 2 ~(~llXl,~-ia] -n. (6) 

The  cont inui ty  of D ~  (~) implies, in part icular,  t ha t  

D~q~(~)(x)~D~q~(x) as e-->0, (7) 

pointwise for x * 0 .  If  l al  < k, the same limit relat ion (7) holds in the sense of local 

mean convergence of order  1. This follows easily f rom the  theorem of Lebesgue on 

the  interchange of integrat ion and passage to  a limit when an integrable majoran t  

exists. In  fact,  the  majoran t  CllX[ k-Ial-n obtained in (6) is locally integrable when 
I~l<k. 

Now, let ] >_ 0, ] e L ~, where p >__ 1, and assume tha t  ] (x) = 0 outside some bounded 

set. Consider the  convolutions 
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u(x)= ] qp(x-y)/(y)dy=Ut (x); u(~)(x)  = f q~(~)(x-y)/(y)dy. (8)  
R n R n 

For  e *  0, say e > 0, u (~) E C ~ (Rn), and  Da u (~) = (D~ ~0(~))~e/ for any  ~. Moreover 

lim u (~) (x) = u (x) (9) 
e-~D 

pointwise everywhere in R n since the integrat ion and the monotx)ne limit process 

m a y  be interchanged.  I n  view of the above remarks  and  L e m m a  2 (c), 

D~ u(~)--->(Do~ cf )-)e / (10) 

locally in the mean of order p, as e-+0, provided I~[ < k. 

I n  the case ] ~ l =  k, the above crude method  cannot  be applied since D~0  fails 

to  be locally integrable. Nevertheless, it m a y  be proved that ,  even in this case, 

D a u  (~) converges (even "global ly")  in the mean of order p, as e-->0, provided p >  1. 

The corresponding s ta tement  for p = 1 does no t  hold in general. However,  under  the 

addit ional assumption / E  Z ,  D~,u (~) does converge in the mean  of order 1 over every 

set of finite measure, in part icular  over every bounded set, i.e., locally. These state- 

ments  are formulated as a separate lemma (Lemma 3) given below. 

The sufficiency of the  condition s ta ted in Theorem 6 m a y  now be proved as 

follows. Since any  subset of R" m a y  be covered by  a countable family of bounded 

sets, we m a y  assume, in view of Theorem 3 (b), t h a t  the  given set E is bounded.  

Now, let /1 6 L ~, /1 >- 0, U~ = + ~ in E,  and U t' ~ oo. (If p = 1, it is assumed, in addi- 

tion, tha t  [ 1 E Z . )  Choose a radius a so tha t  E c B  a and pu t  / ( x ) = / l ( x  ) for x 6 B a ,  

/(x) = 0 for x E B ' .  Then  / has, likewise, the properties s ta ted in the sufficiency par t  

of Theorem 6. I n  particular,(1) 

u = U t = ~v~-/= + oo everywhere in E.  (11) 

Wi th  this funct ion / we form, besides the potent ial  u, the "approx imate  potent ials"  

u(')=cf(~)-)e/ as in (8). According to  the above discussion, any  derivative D ~ u  (') of 

order  l a I _  < k converges locally in the  mean  of order p as e-->0. Wri t ing g~)(x)= D ~ u  (e) (x) 

for x E B~, g(~')(x)= 0 for x E B'a, we infer t h a t  the functions g~) converge in the mean 

(') I t  suffices to prove that U~ -f  (x) < r when I x I < a. Clearly, Ba-Ix  I c B a (x) and BPa_ l a: I ~ Ba (x). 
H e n c e  

= I lyl nl,( -y)dy -< f 
Bh(x) Bh-lz I 

because Ufk I ~ oo. (Cf. the remark following the formulation of Theorem 6.) 
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of order p over R" as e-~0. In  view of Theorem 3, (b) and (f), there is a sequence 

(e~} tending to 0 such tha t  each derivative D~u (e~), 0<_1o: I <_ k, converges in the mean 

of order 1 over S N Ba for p-a.e, k-dim. Lipschitz surface S. We conclude tha t  the 

system S~(E) is p-exc, because the derivatives D~u (~) do not all converge in the mean 

of order 1 over S N Ba if S E S  ~(E), tha t  is, if S intersects E. In  fact, let x* E8  NE 

and choose a k-dim. Lipschitz image X (of an open s e t ) s o  tha t  x* E X c S  N Ba. 

(Recall tha t  E ~ B a .  ) I f  each of the sequences (D~u (~)) were mean-convergent over 

S N Ba, and hence over X, it would follow from Lemma 1, w 1, tha t  the numerical sequence 

(u(~)(x*)} would be bounded, which is impossible since x* E E and hence, in view of 

(9) and (11), 
lira u (~) (x*) = u (x*) = + oo. 

Except  for Lemma 3, the proof of Theorem 6 is now completed. 

L EMMA 3. Let k be a positive integer. Denote by 

K (~) = D~ ~(~) ~ q~(~) 
a xa, ... a xak 

an arbitrary derivative o/ order ]:r = k o/ the /unction 

k - v t  

~(~)(x)=(]x[2+e2) -V, xER'. 

Consider, /or e > O, the convolution integral 

g(~) (x) = S K(~) (x - y) / (y) d y. 
R n 

(a) I /  / E L ~, 1 < p < ~ ,  then g(*) converges in the mean o/ order p over R n as e-->O. 

(b) I /  / E Z ,  i.e., / is measurable and S]/(x)  l l ~ 1 6 2 1 7 6  and i/ moreover 
R n 

/ (x)  = 0 outside some bounded set, then g(~) converges in the mean o/ order 1 over 

every subset o/ R n o/ /inite measure as e---->O. 

This lemma may  be derived from the theory of singular integrals in R" as de- 

veloped by  Calderon and Zygmund [6]. The kernel 

H~ (z, 0) 
g ( x ) = D ~ q ~ ( x ) :  jxln+k (12) 

fulfills the requirements listed on p. 89 of [6]. The "smoothness" condition is satisfied 

with o~ (t)= t since [x lnK  (x) has continuous partial  derivatives for x 4  0. The decisive 

condition 
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( M  = ) f K (x) d to (x) = f H~ (~, 0) d to (x) = 0 (13) 

is likewise satisfied b y  the  kernel  (12). The  following simple considerat ion m a y  easily 

be tu rned  into a formal  proof  of this fact .  Denote  b y  G the  compac t  group of all  

or thogonal  subst i tut ions in R n (with 0 as a fixed point) .  I n  a new coordinate  sys t em 

in R ~, the t rans i t ion to  which is given by  an or thogonal  subs t i tu t ion  g E G, the  dif- 

ferential  opera to r  D~ is t r ans fo rmed  into some linear homogeneous  differential  opera to r  

Pa(D) of the  same order [ ~ [ = k .  (Here Pa(D) is ob ta ined  f rom a polynomial  

Pg (~) = Pg (~1 . . . . .  ~ )  by  the  subst i tu t ions  ~ = ~/~x~, v = 1 . . . . .  n.) Since q (x) = [x[ ~-n 

depends on Ix[ only, i.e., q~(gx)=q~(x), i t  follows t h a t  

fP~(D)9(x)do~(x)=M for every  gEG. (14) 
f~ 

Now consider the  differential opera to r  P(D) whose corresponding polynomial  P (~)  is 

the  mean  value fP~(()dg, where dg refers to  the  H a a r  measure  on a .  I t  follows 
G 

f rom (14) t h a t  

f P (D) ~ (x) d eo (x) = M.  (15) 

Being invar ian t  under  G, the  polynomial  P ( ( )  depends only on Ir ... + 

P ( ~ I  . . . . .  ~n) = P ( [ ~ ] ,  0 . . . . .  0). 

As P(~)  is homogeneous  of degree [ a l = k ,  we infer t h a t  P(r  if k is odd,  whereas  

P (~)  equals a cons tant  t imes (~12+ ... + ~)k/e if k is even. I n  view of (15), the  desired 

result  M = 0 is now obvious for  odd k, and  for  even k it  follows f rom the  wel l -known 

ident i ty  

appl ied to m = k/2. 

For  a n y  e > 0 write(1) 

T~(x)= f K ( x - y ) / ( y ) d y .  (16) 
B e" (x) 

I n  view of [6], Theorem 7, p. 108, [~ converges in the mean  of order  p as e-+0, 

provided / satisfies the  assumpt ions  s ta ted  in our  L e m m a  3. ( In  the  case (b), the  

mean  convergence applies to sets of finite measure  only.) I t  m a y  be no ted  tha t ,  

(1) In CALDEROI~ and ZYGMUI~D [6] our ]~ is denoted by ]a with A = 1/e. Moreover, our B8 (x) 
and B~ (x) are called !~ (x) and F~ (x), respectively. 
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according to Theorems 1 and 2, p. 116 and p. 118 in [6], the limit [ of [, likewise 

exists pointwise a.e. in R ~, and thus [(x) equals the Hflbert transform of ] given a.e. 

by  the singular integral 

[(x) = f K ( x -  y) ] (y) dy, 
R n 

interpreted as the Cauchy principal value. 

To complete the proof of Lemma 3, it remains to be shown t h a t  g(~)-~ con- 

verges in the mean of order p over R n when ] E L ~, 1 _< p < c~. This may be done in 

the manner described for the case /c= 1, n =  2 on p. 125 of [6]: 

an ~;  (z) Rn 

where 
/ K(1) ( x ) -  K (x) for [ x I_> 1, 

N (x) = (K(I) (x) for [ x[ < 1. 

If  Ixi=r>_ 1, it follows from (4) and (12) tha t  

n+k n+k ( + 1-Vr 
(1 +r~) -- f  N(x)=H~(x,  1 ) -  1 r2 ] H~(x, O) 

n+Ir 
1 --f- 

(17) 

Now, ~(-~) (x) = ~(~) (x), and hence Ha (x, - e) = H~ (x, e), so that  only even powers of 

occur in the homogeneous polynomial Ha(x, e). Thus the degree of the polynomial 

H~(x, 1)-Ha(x,O) is ~ l a ] - 2 = k - 2 ,  and there is a constant C2 such tha t  

I Ha (x, 1) - Ha (x, 0) [ _< C, r k-2 for r _> 1. 

n+k 

( Moreover, 1 r~ ] 1 _< Car -2 for r>_l,  

C a denoting a suitable constant. Finally, it follows from (5) tha t  I Ha (x, 0) ] _< Ca r ~. 

In view of these three inequalities, we infer from (17) tha t  

n+k 

r"+~lN(x)l<_(l +r~)~-IN (x)L<_(C2+Cl c~) rk-~, 

i.e., I N ( x ) ] ~ C 4  r - 2 - n  f o r  r>_l. 

On the other hand, it follows from (4) and (5) tha t  

(18) 
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n + k  n 

IN(x) l=lH=(x ,  1 ) l . ( l + r  2) 2 _<C~(1+r2)-~ for r < 1. (19) 

Defining C 5 = max (Ca, 2 -n/2 C1) , and 
71 

(r)= Cs ~ for r < l  

Csr -2-~ for r>_l, 

we obtain from (18) and (19) the inequality 

IN(x)[<_V(lx[) for x E R  ~. 

Since v2(r ) is a decreasing function of r, and S v / ( l x l )dx< ~ ,  it follows from Lemma 
R" 

2, p. 113 in [6], that  

g(') (x) - [.  (x) = ~ 

R n 

in the mean of order p over R" as e-->0. Here A =  f N ( y ) d y  is a constant (depending 
R n 

on n, k, and ~).(1) I t  may be noted that  (20) holds likewise in the sense of pointwise 

convergence a.e. in R' i  This follows from Lemma 1, p. 111 in [6]. 

This completes the proof of Lemma 3 and hence of Theorem 6. In  order to 

obtain a further characterization of the sets E such that  S ~ (E) is p-exc, one may 

apply the following theorem from potential theory. 

THEOREM A. Let p >_ l and O < a p <_ n. In order that there exist a /unction 

/>_0, / E L  r(Rn), such that U~(x)= +oo /or every x E E ,  but U ~ o o ,  it is 

that I capap E = 0, provided 1 <_ p <_ 2. (a) necessary ! c a p ~ _ ~ E = 0  /or every e > 0 ,  provided p > 2 ;  

that t capa~ E = 0, provided p >_ 2. (b) su//icieut ( cap~+~ E = 0 /or some e > O, provided 1 <_ p < 2. 

Remark. When a p < n ,  the requirement that  U ~  ~ is always fulfilled for 

/E L ~, as pointed out in the remark following Theorem 6. The capacity of order 

in R n refers to the kernel IxI ~-~ when 0 < a < n ,  and to the kernel log (1/[xl) when 

= n. By capacity is meant exterior capacity. Note that  the conditions (a) and (b) 

are identical in the case p = 2 .  

(x) I t  fo l lows  f r o m  (13) t h a t  A = l ira rj K (1) (x) d x. 
a-..->oo Ba 
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Par t  (a) was established for the ease n = l ,  ~ p < n ,  by  Littlewood and du Pies- 

sis [26], who also showed that  the e cannot be dispensed with when p >  2. Using 

their method, J .  Deny [9] treated part  (a) for general n in the case ~--1 ,  1 <_ p<_ 2, 

~ p < n .  Par t  (b) is related to a result of H. Cartan [8], Th~or~me 3 bis, p. 96. A 

complete t reatment  of both parts (a) and (b) of Theorem A will appear in [16]. 

Combining Theorem 6 and Theorem A, we obtain 

THEOREM 7. Let p>_l and kp<_n. In  order that the system 8~(E) o[ all k-di- 

mensional Lipschitz sur[aces which intersect a given set E c R ~ be exceptional of order p, 

it is 
t capep E = 0, prov/ded 1 _< p _< 2 ,  

(a) necessary that ~ caper_, E = 0 for every e > 0, provided p > 2 ; 

that [ eapk~ E = 0, prov/ded p >_ 2, (b) suf f ic ient  
I capkp+~E=0 for some e > 0 ,  provided l _ < p < 2 .  

Thu~, in the case p =  2, the condition cap2~ E ~ 0  is both necessary and sufficient. 

In  view of Theorem 7, it  is convenient to make use of the concept of capacitary 

dimension as introduced by PSlya and Szeg5 [30]. Corresponding to an arbitrary set 

E c R", there is exactly one real number ~, 0_< a _  < n, such tha t  

(a) cap ,_~_~E=0 for every e > 0 ,  and 

(b) capn_~§ for every e > 0 .  

(When ~ = 0 ,  only part  (a) applies, and when o~=n, only part  (b) applies.) This 

number ~ is called the capacitary dimension of E. In  view of certain relations be- 

tween capacities and Hausdorff measures established for closed sets by Myrberg [27] 

and Frostman [14], and for arbitrary sets by  Kametani  [22, 23] and Carleson [7], 

the capacitary dimension is identical with the Hausdofff dimension. We denote it by 

"dim" and write co-dim E = n - d i m  E. From Theorem 7 together with Theorem 5 is 

thus obtained the following weaker result, in which it is merely assumed that  p ~ 1. 

THEOI~E!~ 8. I f  k p < c o - d i m  E, then Sk(E) is exceptional of order p. I f  k p >  

co-dim E, then S k (E) is not exceptional of order p unless E,  and hence S k (E), is void. 

4. The case p = 2  

The extremal length as introduced by Beurling refers to the most important  

case in which the order p equals 2. This is also the only case in which Theorem 7 

gives a condition at  the same time necessary and sufficient in order that  S ~ (E) be 

1 3 -  573805. Acta mathematica. 98. Imprim6 le 10 d6cembre 1957. 
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p-exc,  the  condi t ion  be ing :  c a p s k E = 0 .  F o r  sys tems  of curves  ( k = l ) ,  the  c a p a c i t y  in  

ques t ion is t hen  of o rder  2, and  this  is t he  classical  ha rmonic  c a p a c i t y :  logar i thmic  

capac i ty  in the  plane,  N e w t o n  capac i ty  in R 3, a n d  capac i ty  wi th  respec t  to  the  ke rne l  

[xl s-n for general  n_>3. As po in ted  ou t  in [1], the  ex t r ema l  l eng th  ~t 2 for  a sys t em 

of p lane  curves  is a conformal  invar ian t .  

I t  is k n o w n  t h a t  there  is in t he  ease p =  2 an  even closer connec t ion  be tween  

ex t r ema l  l eng th  a n d  capac i ty  t h a n  expressed  in Theorem 7. Since no comple te  proof  

seems to  have  been published(I) ,  we shall  give a de ta i l ed  t r e a t m e n t  of a t yp i c a l  case. 

T H E O R E M  9. Let K be an arbitrary compact subset o] R n, n_>3, and G the un- 

bounded component o/ R n -  K. Denote by C = C ( ~ ,  K) the system o[ all curves C c G 

connecting the point at in[inity o[ R n with K,  and by H = H  (oo, K) the system of all 

closed hypersur]aces H c G which separate the point at infinity from K.  Then 

1 
M~ (C) = ) [ ' H  ----~Mp. = an cap2 K .  

Here  a n = (n - 2) con is t he  e l emen ta ry  f lux in R ~, i.e. the  cons t an t  in Poisson 's  fo rmula  

a n d  in Gauss '  t h e o r e m ;  in pa r t i cu la r  a 3 = 4~z. A curve C is sa id  to  connect  t h e  po in t  

(or sphere) a t  inf in i ty  wi th  K if the  curve has  a pa rame t r i c  r ep resen ta t ion  t--->~(t), 

a < t < b ,  such t h a t  Ix(t)]-->oo as t-->a and  x(t)--->K as t-->b (in the  sense t h a t  the  

d i s tance  be tween  x (t) a n d  K approaches  0 when t->b).  The  curves  considered in t he  

theorem should  be loca l ly  rect i f iable ,  b u t  the  t heo rem would  subs is t  even  if on ly  

ana ly t i c  curves  were admi t t ed .  B y  a closed hypersur/ace is m e a n t  a c ompa c t  ( n - 1 ) -  

d imens iona l  Lipschi tz  surface, no t  necessar i ly  connected.  The  t he o re m would  r e m a i n  

va l id  if on ly  ana ly t i c  mani fo lds  were considered.  I f  H I . . . . .  H~  denote  t he  connec ted  

componen t s  of a closed hypersur face  H,  and  if I 1 . . . . .  IN are  t he  in ter ior  (bounded)  

regions de t e rmined  b y  H 1 . . . . .  HN, t hen  H is sa id  to  s epa ra t e  the  po in t  a t  in f in i ty  
N 

f rom K if 11 . . . . .  IN are  m u t u a l l y  d i s jo in t  and  K c U Ik. 
kffil 

B y  the  proof  we shall  use cer ta in  wel l -known resul ts  f rom po ten t i a l  t h e o r y  (see e.g. 

(1) The proof of Theorem 9 and related theorems is simple in the special case where there are no 
critical points for the vector field grad u defined presently, and where, in addition, K is sufficiently 
regular (so that the classical Dirichlet problem may be solved in the unbounded component G of 
R n - K ) .  HERSCH [19] treats the case where K is homeomorphic to a solid sphere in R s. Contrary to 
the situation in the corresponding two-dimensional problem, critical points can, however, occur even in 
this simple case, e.g. if K is obtained by removing a thin "slice" from a solid toms; el. a similar 
example due to J. J. GERGEN, Amer. J. Math., 52 (1930), 198-200. For n > 3, there are no critical points 
if K is convex (WALSH [35])~ 
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Frostman [14]), or, equivalently, results concerning the Dirichlet problem. Corresponding 

to an arbitrary compact set K c R ~ of positive capacity (of order 2) there is a (unique) 

measure # >_ 0, supported by K (in fact, by the boundary of the unbounded com- 

ponent G of R ~ -  K), with the following properties: 

(a) The potential u = U ~  ~ of order 2 of ~u is _<1 everywhere in R n. 

(b) u = 1 everywhere in R n -  G except at  the irregular points (if any) of the bound- 

ary of G. 

This measure /~ is called the equilibrium distribution on K. I ts  total mass # (K) 

equals cap`, K. The equilibrium potential u = U~ is superharmonic and positive every- 

where in R n, bounded away from 0 in any bounded part of R n, and harmonic and 

< 1  in G. Moreover, u is regular at infinity; in particular lim [x]n-2u(x)=cap`,K. 

Finally,(~) 

flgradu[`,dx=f Ou ~e da =an/x (K) =an cap2 K (1) 
G H 

when H E I t  ( ~ ,  K), and e and d a denote the inward unit normal and the surface element 

on H. I t  is convenient to define grad u = 0 in R " -  G. 

Corresponding to an arbitrary compact set K c R  n and a number e > 0  there 

exists a compact set K* without irregular points, such that  K* ~ K and 0 < cap`, K* < 

cap`, K + e. One may, for example, choose K* as the set of all points within a suitably 

small distance from K. 

Proo/ o/ Theorem 9. 1% M ,̀ (II)< (a~ cap`, K) -1. We may assume that  cap2 K >  0. 

If  u =  U~ denotes the equilibrium potential associated with K, then 

]grad u I/(an cap,, K) A H 

since, for every surface H E H, 

au  f [gradu[da> f Ueda=a. cap2K. 
H H 

Hence M~ (H) _< (a~ cap~ K) -2 f ] grad u Ì , d x = (an cap2 K) -x. 

2 ~ M`,(C)<an cap`, K. Choose a compact set K* without irregular points so that  

K* ~ K and 0 < cap`, K* < cap~ K + e. Denote by u* the equilibrium potential associated 

with K*. Then ]gradu*] A i3 since, for every curve C fi C, 

(1) The validity of the Gauss-Green integral formula for a region bounded by a closed Lipschitz 
hypersurface follows from the results of SCHAUDER [33], Chapter I I I ,  by which only "one-sided" 
Lipscbitz conditions are assumed. (Cf. Theorem XIX, p. 47, for the case of a connected boundary.) 
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f Igrad u* I ds_> f grad u*.dx= f du*= 1.(x) 
C C C 

Hence M 2 (C) < f I grad u* I z dx  = an caps K*, 

from which the desired inequality follows when e-+0. 

3 ~ Mz (C) _> a ,  capz K. We may  assume tha t  capz K > 0. Let  u denote the equi- 

librium potential associated with K,  and ~] the (positive) minimum of the lower semi- 

continuous function u on K. A point x E G is called critical if grad u vanishes a t  x. 

The set of all critical points will be denoted by  X, and the set of all critical values 

7=u(x), xEX ,  will be called F. Since u is regular at  infinity, the set X is bounded, 

and the critical values are therefore bounded away from O. We denote by  Ea the 

equipotential set (x ~ R n : u (x) = ~}. 

LE~MA 4. For every ~ r  0 < ~ < ~ ,  the equipotential set E~ is a compact analytic 

(n--1)-dimensional mini/old (not necessarily connected) separating the point at in/inity 

/rom K. In particular, E~ E H. 

Proo/. Clearly E~ is a bounded subset of G since u-->0 as I x l - - > ~ ,  and u >  ~] 

in R n - G. From the lower semi-continnity of u follows tha t  the set (x E R n : u (x) _< a} 

is closed, and it is a subset of G, in which u is continuous. Hence E~ is closed. 

From a classical theorem on implicit functions follows tha t  Ea is an analytic manifold 

because grad u ~ 0 on E, .  Denote by  Hk an arbi trary connected component of E~ and 

by  I~ and J~ the corresponding interior and exterior regions. The boundary of each 

of these regions is Hk. From the superharmonicity of u follows tha t  u > ~ everywhere 

in Ik; the alternative u - - ~  in Ik would imply u - - ~  in G since G contains points 

of I~. Any two of the interior regions are disjoint. In  fact, if x~ I~, then I j c Ik  

since otherwise the region I t would contain some boundary point ~ E Hk of Ik, and 

this is impossible because u - - ~  on Hz whereas u > ~  in I j .  Similarly I kc l j ,  and 

hence Ij=Ik. I t  remains to be shown tha t  every point of K (or, more generally, of 

(xERn:u(x)>~}) belongs to some Ik.  Denoting as above by  e the unit  normal on 

Hk pointing into Ik, we have ~ u/~ e = grad u- e > 0. (Clearly, ~ u/a e >_ 0 since u > cr 

in Ik, and the sign of equality cannot occur since l au/Oe I = I grad u I *  0 on E~ be- 

cause cr ~ F.) I t  follows tha t  u <  ~ in Jk everywhere sufficiently close to Hk. Now, let 

u(x ~ > ~, and consider a half-line L connecting x ~ with the point at  infinity. Since 

(1) T h r o u g h o u t  t h e  r e s t  of t h e  a r t i c l e ,  w e  r e s e r v e  t h e  d o t  . . . . .  t o  s c a l a r  m u l t i p l i c a t i o n  of 

v e c t o r s .  I n  t h i s  m a n n e r ,  t h e  " d x "  i n  l i n e  i n t e g r a l s  w i l l  n o t  be  m i s u n d e r s t o o d  a s  a v o l u m e  e l e m e n t .  
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u (x)->0 as ]x I-> c~, the closed set {x E L : u (x) <_ a} is not void, and hence it  contains 

a point ~ closest to x ~ Since u (~) _< ~ < ~?, ~ must  belong to G, where u is continuous. 

Thus u ( ~ ) = a ,  and ~ e H ~  for some k. The segment on /~ between x ~ and ~, the 

lat ter  point being excluded, must  belong to Ik or to Jk since u >  ~ on the segment. 

But  the segment cannot belong to Jk since it was shown above tha t  u <  a in J~ 

everywhere sufficiently close to Hk. Thus it has been proved tha t  the interior regions 

I~ constitute the total i ty  of connected components of the open set {x fi R ' : u ( x ) >  ~}. 

(Hence (x e R n : u (x) < ~} = f'l J~.) 
k 

I f  we interpret  the vector field v = grad u as a s tat ionary velocity field in G, 

the orthogonal trajectories of the sets E~ are the lines of flow. For any  given point 

E G, the initial value problem 

dx  
d-[=v(x);  x = ~  for t = 0 ,  (2) 

has a unique solution x =  x (~, t ) =  Tt~ in G. This solution may  be continued within 

G in some maximal  open interval 3 - ( ~ ) <  t < T  + (~), and x(~, t )depends  analytically on 

(~,t). I f  ~ e X ,  then x ( ~ , t ) = ~  for - ~ < t < + o o .  For fixed ~ E G - X ,  the equation 

x =  x (~, t) determines an analytic curve F~, called a line of flow, as t ranges over the 

interval ~ - ( ~ ) <  t <  ~+ (~). Such a line of flow never passes through a critical point 

because of the uniqueness of the solution of (2). The potential u increases with t 

along a line of flow since 

du  dx  
d--t- = grad u .  ~-~ = Iv I ~ > 0. (3) 

In  particular, a line of flow has no multiple points. Moreover, the limits 

u + (~) = l i m  u ( z  (~, t));  u -  (~) = l i m  u (x (~, t)) 
t -~r-  (D 

exist. 

LEMMA 5. /1 T + (~)< + c~, them x (~, t)->K as t->z + (~). 

Proo/. Since u increases along F$, x (~, t) belongs to the bounded set 

{x e G : u (x) > u (~)} 

when t >  0, and thus there exists a t  least one limit point for x (~, t ) a s  t ->z + (~). The 

function [g radu  I is bounded in any set Go c G  at  positive distance from K, and 

hence the total  are length described within G o by  x (~, t) for 0 <  t <  3 + (~) ( <  + ~ ) ,  

is finite. A limit point x ~ e G for x (~, t) as t ->z + (~) must  therefore be the only limit 
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point  in R n. The finiteness of v + (~) implies, in view of the  uniqueness of solutions 

of (2), t ha t  no critical point  can be the  limit of x (~, t). l~either can a point  x ~ E G -  X 

be a limit point  for x (~, t) since then  u(x  ~ = u + (~), and the  lines of flow would form, 

in some neighbourhood of x ~ a regular family of curves orthogonal  to  Eu+(~) and  

depending on n - 1  parameters ;  and  thus  the line of flow F~ could be cont inued 

across Eu+(~), in contradict ion with the  definition of u + (~). I t  follows that ,  actually,  

x (~, t)-->K as t ->v + (~). 

After  these preparations,  the proof of the inequal i ty  Ms(C ) >-an cap2 K m a y  be 

completed as follows. Choose a positive number  ~ < ~ smaller t han  any  critical value 

of u. According to  L e m m a  4, the equipotential  set E~ is a compact  analyt ic  ( n - 1 ) -  

dimensional manifold separating the point  a t  infinity f rom K.  (Incidentally,  E~ is 

connected and  homeomorphic  to  the  sphere S n-l,  bu t  we shall no t  use this fact.) 

Since there are no critical points in the exterior region {x E R n : u ( x ) <  cr it follows 

by  the a rgument  employed in the  proof of L e m m a  5 (in the  case x ~ E G - X )  t h a t  

Ix(~,t)[ -~oo as t -~v-(~)  (4) 

for every ~ e E~. (Actually, v - ( ~ ) = -  cr bu t  this will no t  be needed.) The trans-  

format ion  F:(~,t)-->x(~,t)  between E~• x and G, is analyt ic  and one-to-one, and  

hence its domain  A c E ~ •  1 and range D = F ( A  ) are open. The set A consists of 

all pairs (~, t) with ~ E E~, v - ( ~ ) <  t <  ~+ (~), and D consists of all points x e G which 

m a y  be reached in a finite t ime by  lines of flow passing th rough  E~. I n  the open 

set D one m a y  use (~, t) as "Gaussian coordinates".  The volume element d x  at  a 

point  x = x ( ~ ,  $) of D is given by  

a u  
d x =  (v.e) da  dt =~e d~d$,  

where the inward uni t  normal  e and the surface element d ~ at  x refer to  the  surface 

TtE~ passing th rough  x. Since div v = A u= 0 in G, it follows f rom Gauss '  theorem 

(applied to a " t u b e "  formed by  lines of flow) t h a t  the  infinitesimal flux (v. e )da  is 

constant  along the tube  and hence equal to  the corresponding infinitesimal flux th rough  

the  surface element d ~  on E~ a t  the point  ~. Here the normal  e has the direction 

given by  grad u =  v(~), and hence(1) 

(1) An alternative, more formal proof of (5) depends on the properties of the Jacobian 

n n 
J =  0 (x 1 . . . . .  xn) _ ~,  ~xf ~,  

~ ( t  I . . . . .  i n - l ,  t) I-/--"1 pl 0-~ = |=/-~1 p|~I (X($, t)),  

where t' = (t 1 . . . . .  i n - l )  is a set of local parameters for the analytic hypersurfaee E~r and Pl . . . .  , ~n 
are certain minors. This Jacobian is independent of t because the transformation x-+ Tt z is volume 
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dx= l v ($) I d(r~ (~) dr. (5) 

I f  A + denotes the set of all pairs (~, t) with ~ E E~ and 0 < t < 3 + (~), then D + = ~ (A +) 

is contained in the bounded set I~ = {x E R" : u (x) > u ($)}. The volume of D + is finite 

and equals 

m~ (D +) = f 1~ (~)l : (~) d ~ (~). 
E~ 

I t  follows tha t  3 + (~)< ~ almost everywhere on E~. According to Lemma 5 and the 

limit relation (4), the line o/ ~low Fr connects the point at infinity with K /or almost 
every ~ E Ea. The system F of all lines of flow connecting the point a t  infinity with K,  

is a sub-system of C. I f  /A F, in particular if /A C, then 

f f ( x (~ , t ) ) [v (x (~ , t ) ) ld t= f /ds>l  for a.e. ~EE~ 

since F~ E F for a.e. ~ E E~. Applying Schwarz' inequality, we obtain 

~ ( D  3 + (~) 

f l(x(~,t))sdt f Iv(x($,t)) lsdt>l 
3- (D 3- (D 

for a.e. ~ fi Ea. 

The second integral equals u + ( ~ ) -  u-(~)_< 1. A fortiori, 

3 + (D 

f / ( x ( ~ , t ) ) S d t > ~ l  f o r  a . e .  ~ E E ~ .  

Multiplying by  [v (~)lda~(~) and integrating over E~, we conclude that ,  according to 

(5) and (1), 
3 + (D 

l~a D Eex z-(t) 

>- f Iv (~)lda~ (0 = a n  caps K. 
E a  

Note tha t  it has been proved tha t  M s (C)= Ms(F ) = an caps K,  and tha t  the infimum 

in the definition of M s is an actual minimum at ta ined by  the function / =  l grad u[. 

p r e s e r v i n g  a s  a c o n s e q u e n c e  o f  t h e  e q u a t i o n  d i v  v = 0. ( L i o u v i l l e ' s  t h e o r e m ,  see ,  e . g . ,  KELLOGG [24 ]  

p .  35. )  A n d  f o r  t = 0,  t h e  m i n o r s  p~ s e r v e  t o  d e f i n e  t h e  u n i t  n o r m a l  e a n d  t h e  s u r f a c e  e l e m e n t  d (~a o n  

E a  a t  $ = ~  (t 1 . . . . .  tn-1) a s  f o l l o w s :  

et d a a  ~ Pt d t ' ,  

w h e r e  d t '  = d t 1 , . .  d t n -  1. H e n c e  J = ( e .  v) d a a  ] d f ,  a n d  

d x = J  dt" dt=(e .v) dGagt=Iv($) [ d(~adt. 
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4 ~ M2(H ) _> (a~ capz K) -1. We first assume tha t  cap2 K > 0  and tha t  K contains 

no irregular points. The equilibrium potential  u then equals 1 everywhere in K,  and 

hence ~? = 1. I t  follows from a result of Kellogg [24], p. 276, tha t  the set F of critical 

values of u is denumerable, and tha t  the critical values may  be arranged as an in- 

creasing sequence, finite or infinite, 

( 0 < )  7 x < 7 2 < . . .  (<1) ,  

where llm 7~ = 1 if F is infinite. In  fact, the theorem of Kellogg implies that ,  when 
t 

0 < ~ < ~ < 1, all critical points of the "bounded closed region" {x E G : cr u (x) <__/~} 

lie on a finite union of equipotential sets Er .  From Lemma 4 follows tha t  E~ E H 

when r162 0 < c r  

The critical equipotential sets Er~ divide the rest of G into open sets G 0, G 1 . . . .  

containing no critical points. In  each of these open sets, say in 

Gt = {x E R n : ~t < u (x) < 7t+x}, 

we introduce Gaussian coordinates. We shall again use the lines of flow as parameter  

curves (corresponding to n - 1  parameters), but  the remaining Gaussian coordinate 

will now be the value of the potential  u, 7~< u<~'~+l, instead of the time t. From (3) 

we obtain, along any line of flow, 

du= I,l dt= 1,1 Idol  = I lds, 

where s is the arc length on the line of flow. Hence the volume element is 

dud~ru. dx=dsdau= iv I 

The system of all equipotential surfaces Eu, u ~ F, will be denoted by  E. I f  ] A E, 

in particular if ] A H, then f ] d Cru -> 1 for ~, < u < r,+l" Moreover, f Iv ] d au = an cap s g 
E~ E u 

in view of (1). Inserting these results in Schwarz' inequality 

f Ivld, . f f/do.) 
Eu Eu Eu 

we obtain, after having multiplied by  du  and integrated over the interval 7 ,<  u <  ~/,+1, 

Y i + l  

ri+l f du 

ff~dx= f duff2lv]-ldcru>_ancap, K" 
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A similar inequality holds for each of the remaining open sets G~ (whether F is finite 

or infinite), and consequently 
1 

[ l ( x ) sdx>  ~.. [ l (x)Sdx.> o = .  1 . J J i -ancapsK a , , c a p s K  

Note tha t  it has been proved (under the present restrictions on K) tha t  M 2 ( I t )=  

M 2 (E)= (a~ cap2 K) -1, and tha t  the infimum in the definition of M~ is an actual mini- 

mum, at tained by the function [grad u[/(a~ caps g ) .  

In  the general case where K is an arbi t rary compact  set we choose a compact  

set K* without irregular points so tha t  K* ~ K and 0 < caps K* < cap2 K § e. Since 

H (oo, K) ~ H (co, K*), it follows from Theorem 1 (a) tha t  

M s (H ( ~ ,  K)) >_ M 2 (H (co, K*)) = (a~ cap~ K*) -1, 

from which the desired inequality follows for e-->0. This completes the proof of 

Theorem 9. 

There are many  theorems of the same type as Theorem 9, expressing capacities 

or conductivities, etc., in terms of the extremal length, or module, of appropriate 

systems of curves or hypersurfaces. (See, e.g., Hersch [19].) Thus one may  replace 

the point or sphere a t  infinity in Theorem 9 by  a finite external boundary of G 

and a t  the same t ime replace the capacity of K by  the capacity of the condensor 

formed by  the external and internal boundary of G. This more general version of 

Theorem 9 is valid even in the plane (when we define a s = 2 ~). 

CHAPTER III  

Applications to Funct ional  Completion 

1. Irrotational vector fields 

I f  X is a region ( =  non-void connected open s e t ) i n  R ~, we denote by N (X) 

the system of all closed curves(1) contained in X and homolog zero in X. A con- 

Sinuous vector ]ie/d ~ = / ( x )  = (~1 . . . . .  /n) is called irrotational in X if the circulation 

(i) As to the type of curves considered, cf. the note on p. 186. 
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equals 0 along every curve C EN (X). According to a classical theorem, a f i e l d / w h o s e  

components belong to C 1 (X) is irrotational if, and only if, 

Of~ ~ / J = O  everywhere in X; i , ~ = l  . . . . .  n. 
axj axt 

The class of bounded continuous vector fields and the subclass of bounded continuous 

irrotational vector fields are complete in the topology corresponding to uniform con- 

vergence in X. I t  is, however, often desirable to admit  other topologies, in particular 

the topology corresponding to mean convergence in X. We shall, therefore, consider 

the class L v (X) of all vector fields / =  (/1 . . . . .  /n) whose components belong to L v (X), 

where p is given, 1 < p <  + c~. The corresponding limit concept is mean convergence 

of order p for each component. This class of fields L v (X) is complete in view of the 

Riesz-Fischer theorem, and the subclass of continuous fields belonging to L v (X) is 

dense in L v (X). (In fact, the class of fields /E  Co(X ) is dense in L v (X).) The con- 

tinuous irrotational fields belonging to L v (X) form a linear subclass F (X) of L v (X). 

This subclass is not closed in L v (X). The fields which belong to the closure I ~ (X) 

within L v (X) will now be called irrotational /ields in L v (X). Thus a field /E  L v (X) 

is irrotational if, and only if, there exists a sequence {/(~)) of continuous irrotational 

fields /(~)EL v (X) converging to / in the sence tha t  ][/(~)-/[[v-->0 as v->oo. No mat te r  

how such a field is chosen within its equivalence class, the circulation need not exist 

(as a Lebesgue integral) along every closed curve (even if only very "regular" curves 

are admitted).  For  p < n ,  this appears from the example on p. 212. Examples  of a 

different nature exist for arbi t rary values of p. However, in view of Theorem 3, 

(b) and (e), each component  /t of an arbi t rary  f i e l d /E  L v (X) is  integrable over p-a.e. 

curve in X. 

T H E O R r, M 10. In  order that a vector /ield / E L v (X) be irrotational, it is necessary 

and su//icient that the circulation o/ / vanish along almost every (o/order T)closed curve 

homolog zero in X.  

Proo/. As to the necessity of the stated condition, let /(v)_>/ in Lv(X),  and 

assume tha t  each /(~) belongs to I v (X). According to Theorem 3, (b) and (f), there 

is a subsequence {vq} such tha t  /(vq)-->] in the mean of order 1 on p-a.e, curve in X. 

Hence, along p-a.e, curve from N(X), the circulation of / equals the limit of the 

circulations ( =  0) of /(vq). 

The sufficiency par t  will be proved by  approximating an arbi t rary field / sa t i s -  

fying the stated condition by  fields g(~)EF(X) such tha t  [[g(~)-/]]v-->O as ~-~0. Each 
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of the fields g(o will be defined as a mean value of fields g (x, t), where the para- 

meter  t ranges over the ball B ~  R n. And each of these fields g (x, t ) i s  derived from 

the given field I by  a deformation x--->y=cft(x)  of the underlying region X.  We 

begin by  defining such a deformation for every vector t E R n of l e n ~ h  It] < 1. I t  is 

not  difficult to construct a function ~ = ~  (x)E C 1 (X) with the properties 

(a) 0 < Q < I ;  (b) [ g r a d ~ [ < � 8 9  (c) ~ (x)< �89  

where ~(x) is the distance between x and the boundary of X. (If X = R  '~, put  

(x)-~ + c~.) For any  vector t EBb, the deformation 

x ~ y  = q~t (x) = x + ~ (x) t 

is a one-to-one mapping (continuously differentiable) of X into X. (By the method 

of successive approximations it m a y  be easily shown tha t  ~t maps X onto X ;  but  we 

shall make no use of this fact.) In  view of property (b), 

and henoe �89 Jy'-y"l_<2 

so tha t  ~t is a Lipsehitz transformation, and ] ~ y / ~ x j l  <_ 2, j ~ - 1  . . . . .  n. The volume 

ratio is 
J = det (a y~/~ xj} = 1 + t .  grad e; 

in particular, �89 _< J_< 2. I f  • E L" (X), and /* (x) = / (~t (x)), then /* likewise belongs to 

L ~ (X), and 
II 1" I1,, -< 21'' II 111,, -<2 I1111,. (~) 

I f  C E N (X), then Ct = ~t (C) likewise belongs to N (X). 

Let  E denote a p-exc system of curves in X. Corresponding to an arbi t rary 

closed curve C o  X we consider the set T of vectors t E B 1 for which the deformed 

curve C~ = ~ t  (G) belongs to E. We show tha t  mn ( T ) = 0 .  In  view of Theorem 2, there 

is a Baire function h E L  p (X), h ~ 0, such tha t  the integral of h over any  curve from 

I~ equals + c~. For an arbi trary vector t E BI, we have 

f h(y)ds~= f h(x+e(x)t)~ds~<2 f h(x+e(x)t)ds~. 
Ct c e 

Now, f f f ds. f h(x+e(x)t)dt< 
~ a a B~ 

since the inner integral on the right is a continuous function of x E X. (In fact, 
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f h(x+o(x ) t )d t=  1 f h(z)dz, 
e (x)" 

B~ ~o (~) (~) 

and the integral of h over Bq(~)(x) is continuous since h E L ~ (X) is locally integrable 

in X, and Bq(x) (x) varies continuously with x E X.) Consequently, f h (y) ds u < co for 

a.e. t E B  1. Vt 

The given field ] E L ~ (X) is integrable over C, and the circulation of /vanishes  

along C, for p-a.e. C E N (X), i.e., for every curve C E N(X) which does not belong 

to some p-exc system E of curves in X. For any t E B 1, consider the deformed field 

g(%, t) defined in X by  

gj(x, t)= =Z 1" (x) = /* (x) + t .  /* (x) ~ 1 7 6  , (2) 
= ~xj 

where /* (x) = / (~0t (x)) = ] (x § Q (x) t). For  an arbitrary curve C E N (X), the field / is 

integrable over Ct=q)t(C), and the circulation of ] vanishes along Ct, for a.e. tEBz: 

f / (y) .dy=O for a.e. fEB  1. 
ct 

I t  follows from the inequalities 

=~/, (y)~ -< I/(y)l I dsx<_2dsy 

tha t  the deformed field g (-)e, t) is integrable over C provided [ is integrable over Ct; 
and then 

Oy~ 

o c v t 

Consequently, f g ( x , t ) . dx=O for a.e. SEB 1. (3) 
o 

For any 2, 0 < e < l ,  define a field g(~) in X by 

gS'~ (~) gj (x, t) dt  /7 (x) + t.  /*  (~) ~.~.. , i t .  

B8 B 6 

As above, it  is easily verified that  g(e) is a continuous field in X. Moreover, it follows 

from (3) by application of Fubini's theorem that  
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f gc.~(x), x = m~(B,) f at fg(~,O "a~=o 
1 

d 
e, B 8 (~ 

for every curve C EN(X).  Thus g (~) is a continuous irrotational field. A standard 

argument  shows tha t  g " e L v ( X )  and IId"-r as e-+0. In  fact, i t  follows from 

HSlder's inequality and Fubini 's  theorem that ,  for every j =  1 . . . . .  n, 

x x B e 

<_ f d ~ . )  f lg,(.,t)-/,(x)l'at 
X .B 6 

__ l m .  (B.)  f f I,, (,) 
B, x 

According to (2) and property (b) of ~, we have 

la, (~, t ) -  h (~)I ~ I /t  , ~ ) - / ,  (~) I + �89 Itl I I* (~)1. (5) 
Since the class C0(X ) is dense in Lv(X), there corresponds to any given number  

> 0  a field [E C O (X) for which 

IIr (6) 

From (1) we obtain, writing [*(x)=[(cpt(x)), 

IIt*ll,<211/ll,; II1"- 1"11,_< 2 l i t - i l l ,<  2~. (7) 

Since the continuous field [ vanishes outside some compact  set E c X, T is uniformly 

continuous, and hence there is a number  0 = 0 (7) < 1 such tha t  I/(Y) - [(x)12' mn (E) < rf' 
provided l y - x l  <_ O. In  view of property a) of ~, this condition is fulfilled when 

y = ~0 t (x) = x + ~ (x) t, and I t l < 0. Hence, 

IIT*-[II,_<, when Itl-<0. (8) 

Applying Minkowski's inequality to (5), we obtain in view of (6), (7), and (8) 

II a, (~-, t)-/,11,_< l i l t -f i l l ,+ Ilft-hll,+ l i b -  hll, + �89 Itl II1" II, 
< 2,7+,7+,7+ { Itl (2 Ill l lP 

=4,1+ Itl IIII1,,, 
provided [ t [ _< 0. Consequently, 

I1r when t<"r(r/), 
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where T(B)=min(0(~/) ,  r//[[/l[~,). Inserting this on t.he right of (4), we conclude tha t  

][g~)-/r when e<T(~/). This completes the proof of Theorem 10. 

Remark. I t  is not necessary to verify the condition of Theorem 10 for general closed 

curves from N (X). I t  suffices to consider boundaries of rectangles R c X whose sides are 

parallel to two of the coordinate axes. Take, for simplicity, the case n = 2. Such a 

rectangle is given by  its vertices (al, a2), (al, b2), (b 1, b2), and (bl, a~). I t  can be proved 

tha t  a field /E  L v (X) is irrotational if (and only if) the circulation of ] vanishes 

along the boundary of almost every such rectangle R, i.e., for almost every choice 

of the four numbers al, a2, bl, and b~. 

Example. Let  p < n, and choose ~ so tha t  0 < z(< ( n -  p)/p.  Write ] x] = r and 

u = r  -~. The vector field ] defined (a.e.) in the unit ball B x by  

X 
/ = grad u = - x ~ - ~ ,  x = (x I . . . . .  x.) * O, 

belongs to L v (B0, but  the circulation is not defined along any  curve passing through 

0 since u(x)--->oo as x-->0. (No mat te r  how / is changed on a set of measure 0, the 

circulation will be undefined on "most  of" these curves, e.g. on a.e. straight segment 

through 0.) Nevertheless, the field is irrotational in view of Theorem 5 and Theorem 10 

since the circulation of ] is 0 along any  closed curve not passing through 0. I f  p = n ,  

choose ~ so tha t  0 < a < 1 - n -1, and write u = (log (2/r)) ~. The field / = grad u will 

then have the same properties as the above field. For p > n, the circulation of an 

arbi trary field in L v (X) is, according to Theorem 3 (e) and Theorem 5, always de- 

fined along "most  of" the curves passing through an arbi t rary given point of X. 

A set E c R ~ will be] called exceptional of order p if there exists a function 

hELV(Rn), h > 0 ,  such that  U ~ =  + o o  everywhere in E, but  Uln~Oo. The class of 

all exceptional sets of order p in R = is denoted by  ~ .  In  view of the remark 

following Theorem 6, the condition Uln~ co is always satisfied when p < n (and 

h fi L v (R~)). When p > n, the class ~v contains only the void set. Obviously, any  

subset of a set from ~P belongs to @P, and it is easily verified tha t  the union of any  

sequence of sets from ~P belongs to ~v. An exceptional set has Lebesgue measure 0. 

From Theorem A follows, in particular, tha t  E E ~  p implies capv E = 0 provided 

1 < p < 2, whereas the converse is true when 2 < p <__ n. A set E is exceptional o/order 2 

i/, and only i], cap2 E = 0. (The capacity of order 2 is the classical harmonic capacity:  

logarithmic capacity in the plane, Newton capacity in R a, etc.) For the phrase "except 

in some set E E@ v' ' ,  we shall write briefly: (exc ~v). From Theorem 10 and the suffi- 
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ciency par t  of Theorem 6 we obtain the following corollary: Consider a vector field 

f E L ~ (X), p> l .  I f  there is a set E e~" such that the circulation o/ [ exists and equals 

0 along every closed curve C e N (X) which does not intersect E, then [ is irrotational. 

This corollary does not admit  a direct conversion. However, the following statement  

is a simple consequence of Theorem 10 and the necessity part  of Theorem 6. Let  

E c X  and E r ~P, p>_ 1. Corresponding to an arbi trary irrotational vector f i e l d / E L  v (X) 

there exist closed curves intersecting E along which the circulation of [ is defined 

and equal to 0. 

2. Beppo Levi functions 

In  classical vector analysis a function u is called a primitive of a differential form 

~ (x) dx~ (where [t . . . . .  [n are continuous functions in a region X c R n) if du = ~ [~ dxt, 
i i 

i.e., g r a d u = [ ;  or, equivalently, if 
b n 

u ( b ) - u ( a ) =  f ~ f, dx, 

whenever a and b are points of X, and the integration refers to an arbi trary curve 

in X leading from a to b. (If X is multiply connected, the various "homology classes" 

of curves leading from a to b give, in general, different values of the line integral, 

and u must  then be allowed to become multivalued.) In  order tha t  there exist, cor- 

responding to a given differential form of the above type, a primitive in X, it is 

necessary and sufficient tha t  the field / =  (/1 . . . . .  1~) be irrotational in X. A primitive 

is determined uniquely in X up to an arbi t rary additive constant. 

We shall now consider the corresponding problem concerning fields 

[ = ([~ . . . . .  /~) e L ~ (X). 

For simplicity, we shall assume tha t  the given region X is simply connected. A single- 

valued function u is called a primitive of a differential form ~ f t ( x ) d x t  (where 
t 

/t . . . . .  f , ,EL~(X)) if, along p-a.e, curve C c X ,  

b n 

u ( b ) - u ( a ) =  f E /,dx*, (I) 
a i l l  

a and b being arbi trary points of C. 

T H E 0 RE M 11. In  order that there exist, correspondln~ to a given diHerential/arm 

~ f i d x i ,  f~EL~(X), a primitive in X,  it is necessary and suf/icient that the field 

[ = ([1 . . . . .  [,) be irrotatlonal in X.  
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Proof .  If  u is a primitive of the given differential form, it follows, by applica- 

tion of (1) to closed curves and coinciding points a = b ,  tha t  the field f is irrota- 

tional. Conversely, assume that  f E L p (X) is irrotational in X. Denote by h a non- 

negative Baire function in L ~ ( R  n) with the properties that  U ~ e ~ ,  and that  the 

circulation of / exists and equals 0 along every closed curve U c X such tha t  

f h d s < ~ . ( 1 )  The set E = { x E X : U ~ ( x ) = + o o }  is then exceptional of order p. If  
C 

x E X - E ,  it follows from the integral formula (1), p. 190, (or by a direct argument 

involving polar coordinates and Fubini's theorem) that  f h d s <  oo for almost every 
L 

straight line L through x. This implies that  a n y  two poin ts  of X - E  m a y  be connected 

by  a polygonal  l ine  L c X  such that f h d s <  oo. (Since X is connected and open, it 
L 

suffices to verify this in the case where the line segment a b determined by the two 

points a and b belongs to X. Consider the hyperplane H orthogonal to a b and passing 

through the midpoint c. Since a b has a positive distance from the boundary of X, 

the point c has a neighbourhood F in H such that,  for every v E F, the segments 

a v  and v b  belong to X. Since a E X - E ,  f h d s <  c~ for a.e. vE V (where "a.e." refers 

to ran-1 in  H) ,  and similarly fhds< ~ for a.e. v E V .  I t  follows that  h is integrable 

over the polygonal line a vtJ for a.e. v E V.) Now, choose arbitrarily a point x ~ E X - E  

and keep it fixed. For any x E X - E  define 

z 

u(x)=r, l.dx, 
x e  

where the line integral refers to a n  arbitrary curve C ~  X leading from x ~ to x and 

for which f h d s <  co. I t  was shown above that  such curves exist, and it follows from 
C 

the definition of h that  the line integral is independent of the choice of C. In  this 

way a function u has been defined everywhere in X - E ,  and the equation (1 ) i s  

(1) A Baire function h 1 E L ~ (Rn), h I _> 0 possessing this latter property, exists according to Theo- 
rems l0 and 2. If p < n, take h= h~ ; if p >_n, take h (x) = (l + lx l ) -a  hl (x), where a> l - n  ] p. I t  follows 
then from HSlder's inequality that 

J (' + I -  I) '-" * { - ) d . :  "j + I . I )  T M  h, 
R n R n 

and hence Ulh~ oo in view of the remark following the formulation of Theorem 6. Clearly, 

f h da< oo implies f h t d s<  oo since G is bounded. 
C C 
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easily verified for any curve C c X such tha t  f h d s < oo. When p > n, U~ is finite 
c 

and continuous everywhere, and it may  be shown tha t  the primitive u constructed 

above is defined and continuous everywhere in X. 

T H E O R E ~  12. I /  U iS a primitive /unction o/ a di//erential /orm ~ /~ dx~, f~eL ~ (X), 
i 

then the partial derivatives o/ order 1 o/ u exist almost everywhere in X,  and the equa- 

tion grad u=[ ,  that is, 
Ou 
~--xl=/,(x), i = l  . . . . .  n, 

holds almost everywhere in X.  

Proo/. Consider a straight line L = L  (x~ . . . . .  x.) parallel to the xl-axis, given by  

the constant values of x~ . . . . .  xn. I t  follows easily from Theorem 2 and Fubini 's  

theorem tha t  (1) holds along X N L(x~ . . . . .  x~) for almost every choice of (x 2 . . . . .  xn) 

in the projection of X on the hyperplane given by  Xl=O. Hence u is absolutely 

continuous, as a function of xl, on X N L, with the derivative ~ u / a x l =  /l (x ) for 

almost every value of x 1 in the projection of X fi L on the xl-axis. In  particular, 

~ u / a x l =  ]1 (x) a.e. in X, and similarly for the other coordinates. 

THEOREM 13. Let u be a primitive/unction o /a  di//erential /orm /.  dx,  ]E L  Y (X). 

(a) In  order that u be likewise a primitive o/ g .dx ,  g E L s ( X ) ,  it is necessary and 

su//icient that / ( x ) = g  (x) almost everywhere in X .  

(b) In  order that v be, likewise, a primitive o/ / .  d x, it is necessary and, provided 

p > 1, suHieient that u (x) - v (x) be constant  (exe ~ ) .  

Proo/. (a) I f  / (x) = i/(x) a.e. in X, it follows from Theorem 3, (d), tha t  / (x) = g (x) 
b b 

almost everywhere on p-a.e, curve C c X ,  and hence f / . d x = f g . d x  along p-a.e. 
a a 

curve C c X, a and b denoting arbi trary points of C. This implies the sufficiency of 

the condition. The necessity is contained in Theorem 12, which states tha t  / is de- 

termined uniquely a.e. in X by  the equation / =  grad u. (bl The general case may  

be easily reduced to the case u = [ = 0 .  I f  v is a primitive of 0 . d x ,  then v ( x ) =  

constant in X (exe ~P). In  fact, v is constant along p-a.e, curve C c X .  Choose a 

Baire function h E L p (Rn), h ~ 0, so tha t  U~ ~ + oo, and v is constant along every curve 

C c X  for which f h d s <  ~ .  (Cf. the proof of Theorem 11.) The set 
c 

1 4 -  573805.  Acta mathematica. 98. I m p r i m $  le 12 d ~ c e m b r e  1957. 



2 1 6  B E N T  F U G L E D E  

belongs to ~P, and  a ny  two points a and x of X - E  m a y  be joined by  a polygonal  

line L c X such tha t  f h d s  < oo. Consequently v (x) = v (a) for every  x E X -  E.  Con- 
L 

versely, let v (x )=  c (a constant)  for every x E X - E ,  E being exceptional of order p. 

When  p > l ,  it follows f rom Theorem 6 tha t  p-a.e, curve C o X  is contained in X - E  

and  hence v = e  on the  curve. Thus  v i~u a primitive of O.dx .  

Let  1 _< p < ~ .  A n y  function u which is a primitive of some differential form 

/ . d x , / E L P ( X ) ,  is called a Beppo Levi /unction (of order p) and we write 

grad u = / .  

The class of all Beppo Levi functions of order p in X will be denoted by  B L  ~ (X). 

The intersection S p (X) = B L  ~ (X) N C 1 (X) consists of all functions u E C x (X) for which 

grad u E L p (X). 

T ~ E O R E M  14. Let u(~) E B LV ( X),  v = l ,  2 . . . . .  and assume that grad u (~ converges 

in the mean o/ order p over X .  Then there exist a /unction u E B  LV(X),  a subsequence 

(vq}, and a corresponding sequence o/ constants ca, such that 

u(Vq)-cq--~u pointwise in X (exc ~ ) ,  

and grad u(~)-->grad u in the mean o/ order p over X .  

Proo/. Since the class of i rrotat ional  fields in L p (X) is, by  definition, closed in 

L~(X) ,  the limit in mean / of the sequence of irrotat ional  fields / ( ~ ) = g r a d u  (') is 

irrotational and  hence of the form / = g r a d u ,  u E B L ~ ( X ) ,  by  Theorem 11. I n  view 

of Theorem 3, (b) and (f), there exist a subsequence (vq} and  a Baire funct ion h E L  ~ (Ra), 

h>_0, such tha t  Ul~m ~ (cf. the proof of Theorem 11) and  the  following two state- 

ments  hold for any  bounded  curve C c X  for which S h d s <  c~: 
C 

7 (i) u(') (x) - u(') (a) = l ( ' ) . dx ;  u ( x ) - u ( a ) =  f / . d x ,  

the integrat ion being performed along C, on which a and x are arb i t rary  points. 

(ii) /(~q)--->[ in the mean of order 1 on C. 

The set E = {x E R n : U~ (x) = + co } belongs to ~ ' .  Select a point  a E X - E . . ,~1  arbi- 

t r a ry  point  x E X -  E m a y  be connected with a by  a polygonal  line L c X for which 

f h d s <  ~ (cf. the proof of Theorem 11). Wri t ing ee=uC~q)(a)-u(a) ,  we obta in  f rom 
Z 

(i) and (ii) 

u('~ ) (x) - c ,-+ u (x) as q ->  ~o, x E X - E.  
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The  class B L ~ ( X )  is a comple t ion  of the  above  class S p ( X ) o f  " s m o o t h "  Beppo  

Lev i  funct ions,  in t he  sense descr ibed  in t he  following theorem,  which is a conse- 

quence of Theorems 10 and  14. 

THEOI~EM 15. I f  u E B L P ( X ) ,  there exists a sequence o/ /unctions u( ' )ECI(X) 

such that grad  u(~)EL p (X), and grad  u(~ u in the mean o/ order p over X ,  while 

u(~  pointwise in X (exc ~ ' ) .  

Now,  le t  p >  1. I n  the  t e rmino logy  of Aronsza jn  [2], Theorems  13, 14, and  15 

above  i m p l y  t h a t  the  class B L p (X) is the  pseudo/unctional completion of t he  class 

SP(X) re la t ive  to  the  class ~"  of excep t iona l  sets.  (Since the  L ' - n o r m  I l g r a d u l l ,  is 

an  imprope r  no rm of u, one m u s t  f irst  c o n v e r t  i t  in to  a p roper  no rm in a well- 

k n o w n  m a n n e r  b y  add ing  a su i tab le  e x p r e s s i o n  which does no t  van i sh  when u is 

equal  (exc ~P) to  a c o n s t a n t * 0 . )  This  comple t ion  is per/ect because  the re  corresponds  

to  a n y  given set E E ~ ' ,  E c X,  a f ami ly  of funct ions  u (~) E S ~ (X) such t h a t  {u (~)} is 

a Cauchy  sequence (with respect  to  t he  above -men t ioned  p rope r  norm)  as  e,-->0, a n d  

y e t  l im u (~) (x) = + c~ for  eve ry  x E E.(1) 

I n  t he  pa r t i cu la r  case p = 2 i t  is k n o w n  t h a t  th is  perfect  pseudofunc t iona l  com- 

ple t ion of S p (X) is ident ica l  w i th  t he  class of " fonc t ions  (BL) pr6cis6es" in t he  sense 

of D e n y  a n d  Lions  [10]; see also Aronsza jn  a n d  S m i t h  [3]. These  funct ions  are  

charac te r ized  b y  the  fol lowing p roper t i e s :  

(a) g r ad  u E L~(X), i n t e rp re t ed  in the  sense of the  t heo ry  of d i s t r ibu t ions ,  

(b) to  eve ry  s > 0 there  is an  open set G wi th  caps G < e such t h a t  the  res t r i c t ion  

of u to  X - G  is con t inuous ;  

or, equ iva len t ly ,  b y  the  fol lowing s t ruc tu re  p rope r t i e s :  

(al) u is abso lu t e ly  cont inuous  a long a lmos t  eve ry  line para l le l  to  one of the  coor- 

d ina t e  axes,  

(a2) the  pa r t i a l  de r iva t ives  of u of order  1, which  hence ex is t  a lmos t  everywhere  

in X,  belong to  L ~ (X), 

(b) as above.  

(1) I t  is easy to reduce the proof of this statement to the case whero E is bounded. Thou a 
function ]EL~(Rn), />_0, may be so chosen that u= U{ = +oo everywhere in E, and ] vanishes 
outside some bounded set. Following the procedure described in the proof of Theorem 6 (in the case 
I ~r I = k = 1), we define 

1--rt 

U(e) (X) = j (ix_yl2+~) 2 ](y)dy. 
Rn 

This family of functions has the desired properties. 
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The former characterization (a), (b) shows tha t  this class is independent of the choice 

of the coordinate system (it is even invariant  under arbi trary Lipschitz transforma- 

tions of the underlying region X). The structure of the functions in the class appear 

perhaps more clearly from the properties (al) , (as) , and (b). 

The functions studied originally by B. Levi [25] were more special; in particular 

only continuous functions were admitted.  The class of functions determined by  the re- 

quirements (al) , (a2) alone was investigated by Nikodym [29], who introduced the name 

Beppo Levi functions. This wider class forms, likewise, a pseudofunctional completion 

of the class S ~ (X) (with larger exceptional sets than above). This completion is, 

however, not perfect. I t  depends, moreover, effectively on the choice of the coordi- 

nate sys tem. - -From the results of the present section follows, for any  p >  1, tha t  the 

perfect pseudofunctional completion of S p (X), being identical with the class which 

we have denoted by B L ' ( X ) ,  is characterized by  the following structure properties: 

(A1) u is absolutely continuous along p-a.e, curve in X, 

(As) the partial  derivatives of u of order 1, which hence exist almost everywhere 

in X, belong to the class L ~ (X). 

(The associated class ~ of exceptional sets was defined on p. 212. ) - - In  this manner,  

the continuity assumption (b) has become superfluous, and a t  the same t ime the 

dependence of (al) on the coordinate system has disappeared. Furthermore,  these 

properties (A1), (A2) exhibit clearly (cf. Theorem 4) the invariance of the class BL~(X)  

under Lipschitz transformations of the region X. 
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