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Introduction.

An attempt was made’, by the present writer, to examine theoretically the
diffraction patterns -associated with the symmetrical optical system, as modified
by the presence of the geometrical aberrations of the system, and the investiga-
tion was carried out as far as the first order aberrations were concérned, and
for the region in the neighbourhood of the axis of the system. But, in order
to consider the effects in the outer parts of the field it appeared necessary, as
a preliminary measure, to examine the bhigher order geometrical aberrations them-
selves, and this? accordingly, has been undertaken in several papers. The five
first order aberrations, commonly known as the 'five aberrations of von SEIDEL
— although these had all been discussed fully by Hamivron, by Arry, and by
Covpingron long before the time of von SmivEL — are spherical aberration, coma,
curvature of the field and astigmatism, and distortion. And, in a detailed examina-
tion of these it becomes evident that one of them stands altogether apart from
the others, and this in several respects: this aberration is curvature of the field
and astigmatism. The condition for the absence of curvature of the field, the
condition, that is to say, that a flat field should, in the absence of astigmatism,
be reproduced as flat, is found to be independent of the positions of the object-
image planes and of the positions of the pupil-planes, and also of the separa-
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tions of the several refracting surfaces of the optical system. Moreover, the
condition has a peculiarly simple form, especially when compared with the con-
ditions for the freedom from the other geometrical aberrations of the optical
system. The condition referred to is, of course, the vanishing of the well-
known and so called »Petzval-sum»: that is, @ = Sx/uy’ =0, » being the power
of the surface separating media of optical indices x and u', and the summation
extending throughout the optical system.

It will be noticed that the condition involved in the expression given above
is in form very simple, especially when compared with the conditions for freedom
from even the other first order aberrations; and the aberrations of higher orders
lead, for the most part, to increasingly complicated expressions. The very sim-
plicity of this condition suggests that it has a meaning more extended than that
commonly assigned to it; just as the well-known ’sine-condition’, and also 'Her-
schel’s condition’, have definite geometrical meanings not only, as they are com-
monly presented, with regard to the first order aberrations alone, but also with
regard to certain aberrations of all orders: and, indeed, they are themselves but
special cases of the recently discovered and very general 'oi)tical cosine-law’.

Accordingly, in the present paper the clue afforded by the 'Petzval-condition’
is followed up, and the extent and the meaning of this condition are investigated
more fully: and, in particular, a complete generalisation of the 'Petzval-condition’
is obtained, for the higher order aberrations. And this is found to raise another
and a more general problem, namely, that of the separation, into three types, of
the geometrical aberrations of the general symmetrical optical system, of all
orders, according as these aberrations possess properties which we have named
‘Invariant’, or ’‘semi-invariant’, or else are completely unrestricted. The condi-
tions attaching to the aberrations of the first two types, and, more especially,
to those of the first type, are of a peculiarly simple nature, ~— and this for
aberrations of all orders. And a corresponding simplicity of geometrical meaning
is found. It is hoped, then, that the results obtained, themselves of theoretical
interest and importance, may be of use in the design of optical systems.

The investigation falls naturally into three parts, namely:

Part I: in which is undertaken a qualitative investigation of the geometrical
aberrations of the general symmetrical optical system. Here each
several aberration is shewn to fall under one or other of three cate-
gories; the properties of each category are examined, and the total
number of aberrations falling under each is found.
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Part II: in which is undertaken a quantitative investigation of the various con-
ditions obtained qualitatively in Part I. These various conditions are
found, explicitly, for the general symmetrical optical system.

Part I1I: in which is undertaken an investigation of the geometrical meanings
and implications associated with the conditions obtained qualitatively
and guantitatively in Parts T and [1.

The only papers known to me and bearing in any manner upon the subjects
of this paper are the following, namely,

The Changes wn Aberrations when Object and Stop are Moved: T. SmirH,
Trans. Opt. Soe. (Lond.) (1921-—22), No. 3.

The Additon of Aberrations: T. Smira, Trans. Opt. Soc. (Lond.) (1923—24),
No. 4.

Part 1.

1. The method underlying the present investigation is based upon a modi-
fication of the Characteristic Function introduced by Haminron?, known more
commonly as the Fikonal of Bruns. It is not without interest to notice that,
although the name 'Eikonal’ is due to Brunms, the function itself appeared at a
much earlier date, in Hamilton's original series of Papers. The detailed deve-
lopment of these functions, and their application to the theory of the symme-
trical optical system, have been given elsewhere by the present writer? so that
an outline only, in briefest possible form, is necessary in this first paragraph.

! The surprising extent to which Sir WILLIAM HAMILTON had applied his very general
theory to the actual consideration of particular optical systems, whether symmetrical or quite un-
symmetrical, is only revealed by a careful perusal of his celebrated Papers on The Theory of Sys-
tems of Rays. These have recently been published in the Edition of his Collected Works, Vo-
lume 1, Geometrical Optics, by the Cambridge University Press, under the very able and joint Edi-
torship of Professors Conway and Synge: here certain papers are published for the first time. And
in. them the general functions introduced by Hamilton are applied to the symmetrical optical
system, a project which frequently he mentioned in his published works, but to which, in them,
he never seems to have addressed himself. But even in the papers published, for example, in
1833—34 there is given an investigation of the aberration known afterwards as coma, and this
for a system quite unsymmetrical; and the discovery of this aberration has commonly heen attri-
buted to KIRCHHOFF, at & much later date, who himself was working with functions akin to those
introduced by Hamilton. For additional information concerning these matters, and other matters
connected with them, reference may be made to a paper, by the present writer, On the Optical
Writings of Sir William Rowan Hawmilton, Mathematical Gazette, July 1932, Vol. XVI, No. 219,
pp. 179—I9I.

® The Symmetrical Optical System: Camb. Tracts in Mathematics and Mathematical Phy-
sies, No. 25.
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A

wn

We consider a symmetrical optical system of which 4 4’ is the axis, P and
P’ two conjugate points upon A A’, and F; and F, the principal foci. P» and
P'n' are the perpendiculars from P and P’ upon the incident and emergent
portions of a ray of light, the direction cosines of which, referred to convenient
and parallel axes, the one set in the ’object-space’ and the other set in the
'image-space’, are respectively L, M, N, and L', M, N'. Then the Eikonal I,
with base points P and P’, is defined as being equal to the optical path from

n to »’', measured along the ray; that is,

n'
I = f,u ds,
"

where p is the optical index of the medium in which the element of length ds
is measured. A function of great theoretical and practical importance is the
'focal-eikonal’, defined by means of the base points I, and F,, the principal
foei of the optical system; that is,

ngy
E,= f wds,
7y

where #, and n, are the feet of the perpendiculars upon the ray from the points
F,; and F,. Further, if we denote by e and e, respectively the values of these
functions when the ray coincides with the axis A A" of the system, we have

Fy

P
e=f,uds, and ¢, = [uds,
I :

Fy

in each case the path of integration being the axis of the optical system; and
it is convenient to absorb the constants e and ¢, in the more general eikonal-

functions. We write then,
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J(E—e)=u— @, and J(E,—e)=U,
where o is the 'modified power’ of the optical system, and is given by the relation
wu'J=K,

K being the power as commonly defined, and p and u’ the optical indices of the
end media. The form « — @ is explained subsequently.

In general a ray of light, as presented above, has four degrees of freedom,
but, owing to the axial symmetry of the optical system, three variables only are
needed, and each of the preceding functions, namely, F, and F, v — @ and U,
may be regarded as depending upon three variables alone. The choice of these
variables is of considerable importance. We may choose, for example, a, b, and
¢, given by the relations

a=M*4+N* b=MM + NN, and c= M + N'*

Another - choice, the explanation of which is indicated later, is the following,
namely, «, 8, and y, where

ad®*=a—~2sb+ ste, a=mra—2smB + sy,
Bd®=a—(s+m)b + smc,]' that is, 1 b=me — (s + m)pB + 57,

yd®=a—2mb+ me, c=a—28+y;

here d is a certain convenient constant which may be taken to be d =& — m,
where m and s are respectively the paraxial, or Gaussian, (reduced) magnifications
associated with the conjugate points P and P, and with the pupil-planes of the
system. Thus d iz equal to the (reduced and modified) distance between the
exit-pupil and the paraxial image plane.

The conjugate and normal planes through P and P’ will not, in general,
be free from aberration; incident rays, that is to say, passing through a point
upon one plane will not, in general, pass through any corresponding point upon
the other plane. But we may shew that if it were indeed possible for these two
normal planes to be free from geometrical aberration, that is, if there could be
a one-to-one correspondence in points between them, then the eikonal-function
E—~¢, and also the function u«— @, would depend only upon the variable y;
and conversely. This property gives the suggestion for the form of the variable

28—36122. Acta mathematica. 67. Tmprimé le 28 septembre 1936.
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y, and then the forms of the variables ¢ and 8 follow from comsiderations of

syminetry.
The eikonal for an actual optical system -— one subject to geometrical
aberrations — will contain terms involving also the variables ¢ and B, so that,

if we write u == f(y), the form of this function f being at present undetermined
(and it may be determined subsequently so as to satisfy other conditions), then
in the expression #— @ we may regard the function @ as containing all the
terms involving ¢ and 8, and so as summing up in itself the departure of the
system from ’‘ideal’ imagery, for the particular pair of conjugate planes chosen.
We may, therefore, appropriately name @ the aberrationfunction, and we observe
that it gives completely the aberrations of the optical system for the conjugate
planes through P and P’, at paraxial magnification m: and that it depends upon
these aberrations alone. In other words, we have separated the Gaussian per-
formance of the system from the departures from this performance.
Actually, the aberrations are given by the relations
@ 7%

1744 r‘_‘__q . il
-y and / m/-0 ,{-m(?N,

r? r__ q)
1 m ) = ; 4+ m i

00 .0
M 7,

where Y and Z are the co-ordinates of the point of intersection of the ineident
ray with the normal plane through P, and Y’ and Z’ are the co-ordinates of
the point of intersection of the emergent ray with the normal plane through
the conjugate point P’.

Now, we may write

@ (e, B, 7)=(D;(a, B y)+ @yle, B p) + -+ Dule, B y) +

where @, (e, 8, y) is a homogeneous function, of degree », in the three variables
a, 3, and y: @, and @, are omitted, since the aberrations depend essentially
upon the terms of the second and higher orders in e, 8, and y. The coefficients
appearing in the various functions @, (e, 8, 7) give completely the aberrations of
the optical system of the several orders, and we name them therefore 'aberration-
coefficients’. For example, if we write

8D, =g, a® —40,af + 20,0y + 40,87 — 40587 + 07,

the o-coefficients give completely the five first order geometrical aberrations, for
the term in ¢, depends only upon the variable y, and so is annihilated by each
of the operators
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0 m --Q—»a and o + Mg
oM ' oM N oN

In particular, the coefficients ¢; and o, together give the astigmatism and
the curvature of the field, each of the first order. So we have outlined a method
of investigating the qualitative nature of the geometrical aberrations, and we
have now to consider their gquantitative aspect. But, in passing, it will be noticed
that we have separated these aberrations into various 'orders’, depending succes-
sively upon the functions @, (e, 8, 7); thus, ®@,{«, 8, y) gives the aberrations of the
first order, @,(a, B, ) those of the second order, and, more generally @y y1(a, 8, )
gives the aberrations of the #'th order. And this is the manner in which the
aberrations of a symmetrical optical system are commonly presented.

Tt is clear that the focal-eikonal U, introduced in the preceding scheme, is
a constant of the optical system; that is, U is independent both of the positions
of the conjugate axial points P and P, and also of the positions of the pupil-
planes of the system. In other words, 7 does not depend either upon m or
upon s. We may regard U as a function of the three variables @, b, and ¢
alone, and . the coefficients of the various terms in the expansion of this function
are the quantities which we calculate in the computation of the optical system.

Moreover, the functions u— @ and U differ only by reason of their dif-
fering base points, and there is therefore a purely geometrical relation between
them, namely, the following relation,

u—@=U+ (1 — L)m + (1 — L)m.

If, then, we know the function U we can calculate immediately the aberration
coefficients, and so the aberrations themselves, for any symmetrical ovtical system,
for any conjugate planes and for any pupil-planes.

It is convenient to calculate the function U step by step, and we make
here, for the first time, the assumption that the surfaces of the system are
spherical: and we may shew that the focal-eikonal for a single spherical surface,
separating media of optical indices x and u', is given, without any approxima-
tion, by the relation,

U=V +vy)+ oL+ L —2)—1,
where
v=pu/(p —p?, and y+ 2(LL +b-—1)=0.

1 The Symmetrical Optical System, Camb. Tracts in Mathematics and Mathematieal Physics,
No. 25, Ch. V.
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The radius of curvature does not appear explicitly, since the eikonal is
supposed to have been multiplied by the 'modified’ power of the system. The
expression is clearly a function of the variables a, b, and ¢, since L®==1 — @,
and L'*=1—¢; and the general focal-eikonal, for any number of co-axial
spherical surfaces, is similarly a function of the variables ¢, b, and ¢, — where

now, however, these variables refer to the system as a whole.

2. The essential relation, upon which we concentrate, is the purely geo-

metrical equation of paragraph 1, namely,
w—@=1U +(1—L)/m+ (1 —L)m. (1)

Here the expression upon the left-hand side of the equation is a function of the
variables «, 8, and y, while the expression upon the right-hand side is a function
of the variables «, b, and ¢; and between these two sets of variables there exist
linear relations given in paragraph 1: moreover neither s nor m appears in the
function /. We expect, therefore, various invariant relations between the coef-
ficients appearing upon the two sides of the equation, and these we proceed to
investigate.
From the relations of the preceding paragraph we have,

J E——_ .{) + 7 (! 4 ,0 d‘-’;(?, — d -+ () -+ .U_
v "aa T 00 T 06 “oa T oa T 0p " 0y
0 7] 17 7 J 7] 17
— R —u- = g + PR
(),3 =28m + (s m)db 5o and d 05 = 2% 04 + (s + m)éﬂ 2 m{)?’
9 _ g +- 0 + 9 @l el ol + m? i
(')?7__(S oa " Sob " 06 de~ ¥ da op ’

that is, we have relations between the operations of differentiation with respect
to the several variables. We define new operators IT, P, 2 and O, by the following,

_ 02 02 y ()2 02
=4, 5.7 T=4%c0a 01
(7 0 (7 a .
=ttt =
= da ﬂ ay 0 da

and from the above relations we have immediately,
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O=d*P, and 2=d0.

The operators II and f£2 are commutative, as also are the operators P and O.

It follows that
QP IT9 = q2(p+a Op Pa,

where p and ¢ are any positive integers.

Let us now apply these operators, the one to the left-hand side and the
other to the right-hand side of the relation (1), considering only the terms of
degree p + zq in the variables ¢, 8, and y, or the variables a, b, and ¢; terms
of lower degree will, of course, be annihilated, while terms of higher degree we
omit for the present. On the left-hand side we shall obtain a linear expression
involving the aberration coefficients appearing in that part of the aberration-
funetion @ which we have written @,1.,, that is, a linear relation between the
aberration-coefficients of order p + 2¢— 1. Let this expression be written g.
On the right-hand side we have a function.of the coefficients appearing in U, that
is, a function of certain constants of the optical system — independent, that is
to say, of the quantities s and m; and we have, in addition, a multiplying factor
e+ or (s — m)2W+9  so that, if we write the resulting function f, we have

the relation
P = dq2 (v+q)f’
or
@ = (s —m)p+a f.

We have assumed that g £ o, for then the terms (1 — L)/m + (1 — L) m,
appearing in (1) are annihilated; otherwise, if g =0, we have always in ¢ terms
involving m.

It follows that if, for any particular optical system, f= o, then also will
¢ = 0, and this latter result will be true for all values of s and m: that is, we
have a relation between the aberration coefficients of order p + 2¢ — 1, which
is independent of s and of m. While, if f7£ o, the function ¢ will depend upon
s and upon m, but only through the factor (s —m). Now, ¢ denotes an aberra-
tion of order p + 2¢-— 1, more strictly, a linear relation between the various
aberration-coefficients of this order, as we defined them above. We have obtained,
then, an aberration which we may name an ’invariant aberration’, in the seunse
that if this aberration vanish for any particular single pair of positions of the
conjugate planes and of the pupil-planes of the optical system then the aberra-
tion will vanish for all pairs of positions of these planes. On the other hand,
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if @ # o, then the magnitude of this aberration will depend upon the positions
of these planes through the factor (s — m) alone; that is, it will depend only
upon the relatzve positions of these planes.

As the simplest example in illustration of the preceding general theory, we
may write p =0 and ¢ =1, that is, we consider simply the operator IT alone;
and we know that

II=d*P.
Appl)‘?ing the operator II to the left-hand side of (1) we have, taking only the
second order terms, which are written out at length in paragraph 1,

II(u — @)= — I @, = g, — q,,

and the operator P, applied to the second order terms in U, will give some
constant quantity, a constant of the optical system, which we may write &; we

have then
PU=w.
Thus
(‘75 - 04)/(3 —m) = w;

the quantity @ is in fact the 'Petzval-sum’, and, subsequently, we shall prove that
o= Sx/uy

in the usual notation. If @ = o, then, from the preceding relation, g,— o, = o,
for all values of s and m: that is, a flat field is, in the absence of astigmatism,
reproduced as flat, — as far as the first order aberrations are concerned.

3. Again it is seen, from the relations of paragraph 2, that the operator
)
~(,;-d involves only the quantity m, and not the quantity s, since

P PR
— — 2— — —_
e "aa T "o T 50

Also, we have, from these same relations,
o\ a o o\
orre|—\) = q2p+a) Op pe 2 2 — =
QH((M) d OP(m0a+mﬁb+0c)

If we apply the operator Q117 (;—a) to the left-hand side of the equation in

paragraph 1, retaining therein only the terms of degree p+ 2¢ + r in the
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variables ¢, 3, and 7, we obtain a linear funclion of the aberration coefficients
of order p + 29 + r — 1. Let this function be written . Applying now, to the
other side of the equation, the equivalent operator, retaining therein only the
terms of degree p + 2¢ + » in the variables @, b, and ¢, and assuming that ¢ # o,
we have a function of the optical constants of the optical system, containing the
quantity m but not the quantity s; let this function be written f(m). Then, by
reason of the above relation between the operators employed, we have

W= (s —m)2 (P9 f(m).

If, therefore, f(m)=o0 the function ¢ will vanish for all values of s; otherwise
the value of 1 will depend upon s and upon m through the factor (s — m), and
also directly through the value of m, but not directly through the value of s.
We have here, then, an aberration 9 which we may name a 'semi-invariant’
aberrat.ion.> Clearly, in the same manner, we may define 'semi-invariant’ aberra-
tions the vanishing of which depends only upon s, and not upon m. And, finally,
we have entirely unrestricted aberrations, the vanishing of which depends both
upon § and upon m.

We may sum up the results of the two preceding paragraphs as follows.
There exist linear relations between the aberration coefficients, of every 'order’,
of each of the three following types, namely:

1. the envariant type: the vanishing of which is independent of the conjugate
planes chosen, and also of the pupil-planes (and, as we find subsequently,
in the case of the most important sub-class of the invariant type, independent
also of the separations of the component surfaces of the optical system).

2. the semi-invariant type: the vanishing of which depends either upon the
positions of the conjugate planes, or upon the positions of the pupil-planes,
but not upon both of these, and

3. the general, or unrestricted, type: the vanishing of which depends both upon
the positions of the conjugate planes, and also upon the positions of the
pupil-planes of the optical system.

It will be seen that the preceding classification of the aberrations of the
symmetrical optical system cuts altogether across the usuval division of these
aberrations into ’orders’,, — based, as this division is, upon the idea of the
'orders’ of small guantities. But the new classification corresponds, in the first
place, to certain physical properties of the optical system, and, in the second
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place, to a certain striking simplicity of calculation; for we shall find, in the
sequel, that the aberrations of the various types have certain geometrical pecun-
liarities, and also that the conditions attaching to the invariant type are of an

exceedingly simple form.

4. We proceed now to enquire how the geometrical aberrations of any
particular ’order’ are distributed amongst the three general types to which we
have been led, namely, the invariant type, the semi-invariant type, and the un-
restricted type. And we consider, in the first place, the function @, (e, 8, y)
homogeneous and of degree 2% in the variables ¢, 8, and y; this function gives
then completely the aberrations of 'order’ 2#n — 1.

Now, from the preceding paragraphs, the operators

2 n—2 ¢
Q2n—2a 0,

where ¢ takes successively the values 1, 2, 3, ... #n, when applied to the function
@, (a, B, y) lead to invariant aberrations. We have therefore # invariant aberra-
tions of order 2% — 1. If we wish to consider the aberrations of order 22 we
must use the function ®i.+1{e, 8, 7), homogevneous and of degree 2% + 1 in the
variables «, 8, and y. In this case the appropriate operators are the following,

namel
y, Q‘211—2<)+1 IT?
= )

where ¢ takes successively the values 1,2,3,...% And again we have n in-
variant aberrations of order .

We consider next the semi-invariant aberrations, which will follow from

N L, 0 . .
applications of the operators £ and II, together with Du for the s-invariants, or

0
- for the m-invariants. We take then the general operator

ady
AN {0 t
v IT9 | — .
e (0«1) (07)’

where p +2¢+ r+ t=2n, and apply this to the function @, (e, 8, ). This
will lead immediately to some linear function of the aberration coefficients, of
order 27 — 1; an m-invariant if =0, or an s-invariant if ¢{= 0: while, of
course, if r=o0 and s=o0 we obtain invariant aberrations of the first type,
already investigated.
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We consider, in the first place, the s-invariants, for which ¢ = o: then, since
p+2q+r=2n, there are 2n —2¢q + 1 sets of values of p and » satlsfymg this
condition, for every value of ¢; so that the total number of invariants obtained
in this way is

n

Dfzn—z2q+ 1)=1n"

¢=1

since q takes successively the values 1,2, 3,...7n But of these there will be
one, for each value of ¢, for which r = 0, and which therefore is an invariant
of the first type; the total number of s-invariants is therefore »* — n. There is
an equal number of m-invariants, so that, finally, we have, as the total number
of semi-invariants of order zu — 1, the expression 27 (n — 1). The total number
of aberration coefficients, appearing in the homogeneous function @ (e, g, ),
is (2n + 1)(2n + 2)/2. Remembering now that there is always one term, namely
that ome in the variable y alone, which is annihilated by the operators, we see
that the number of unrestricted aberrations, of the third type, is 4n.

The preceding paragraph deals with the distribution of the aberrations of
an odd order, namely, of order 2% — 1. For the aberrations of an even order,
for example of order zu, we consider the function @, +1(e, 8, 7), to which we
apply operators of the same general form. Then, repeating the argument, for a
given value of ¢ we have p + » +t=2% + 1 — 2¢, and therefore, if t = 0, there
are 2n + 2 — 2q sets of values of p and r satisfying this condition, so that the
total number of s-invariants, obtained in this manner, is given by

n n
2(212—-2{1—!-2:— Zn—q+1 ni{n + 1);

g=1

but, of these, » are invariants of the first type, for which » = 0 and ¢ = o. Thus
the number of s-invariants is n(n + 1) — n, or »®: and the total number of in-
variants, of both kinds, is 2#% In this case the number of unrestricted aberra-
tions is
(2n+2)2n+3)2—n—2n—1,
that is, 4n + 2.
Finally, we may summarise our results concerning the distribution of the

aberrations, of all orders, amongst the three types, as follows, namely,
20—36122. Acta mathematica. 67. Imprimé le 28 septembre 1936.
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number of number of semi- number of .
al(;):;'i;;ti% . invariant invariant unrestricted toz:zlfeﬁzrtr;l;% .Of
’ aberrations: aberrations: aberrations.: )
2n—1. ... .70. ... .2¢0Mm=—1) . . . 4% . . .. n(zn+3).
27 .. .. oM. ... o20t L L s4n+2 .. L (2a+1)(n+2).

In particular, for the aberrations of the first few orders, we have the following
scheme, namely,

I. . .. .1 o] 4. 5.
2. .1 2 . 6. 9.
3.0 .. .2 4 . 8. . 14.
4. .2 ... . .8, .. . 10, .. . .20

5. We may give here a simple illustration of the preceding investigation;
thus we may write the function @,(e, B, ) in the form

8 Dy(e, B,7) =0, — 40,08 + 2050y + 40,8° — 40,87 + 057°
=0,a*—40,a8+2(q, "*‘20'4)(7“+2/?2)/3_40557""0'672+4(0':;_04)(7“—193)/3-

The numerical coefficients appearing in the first line of the right-hand side of
this equation are those arising from the expansion of (¢ — 2 b + ¢)%, a function
of importance in connection with the focal-eikonal. Hence,

II(DE!(“’ 5, 7):05_G4a

and for a system of co-axial spherical surfaces, the end media having optical
indices unity, we have,

(03 — 0/d® = © = 2 3 (rafpua ),

where K is the power of the whole system, and x; is the power of the surface
separating media of optical indices -1, wi: and, of course, @ is the usual
"Petzval-sum’.

Or, again, we may write, for the aberrations of the second order,

Oyle, B, 7)= - 3(m+av)ye+48)e/s—4(375+27)(3ya+26°) /5
+3 (T +47) (yat48)y/s+{12(0;—7) e—24(z5—7;) 8
+12(r—75) 7} (ye—E) s+ -

Here the expressions z3—7,, 75~—1%,, 7,—17s are semi-invariants, while the expression
13—7,—2 (75— ;) + 74— 73 is an invariant of the first type.

! This invariant relation, the simplest of its type, is, of course, the "Petzval:sum’.
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Part 11.

1. Our next step must be the calculation, for the general symmetrical
optical system, of the 'invariant’ and of the 'semi-invariant’ functions which have
emerged from the purely qualitative investigation of Part I; and this is readily
effected by the use of the operators introduced there. We regard such an optical
system as composed of co-axial spherical surfaces, and we observe, in passing,
that we have not hitherto supposed the component surfaces to be spherical, but
only that they are surfaces of revolution about the axis of the system. In pro-
ceeding, however, to evaluate the various functions which we have obtained we
limit ourselves here to the consideration of spherical surfaces since, in practice,
these are most commonly used. We have to evaluate the expressions for a single
spherical surface, and then to investigate the ’addition’ of these expressions
corresponding to the ’addition’ of the various single surfaces, which together
form the composite optical system. It will be convenient to address ourselves
immediately to the second investigation.

2. Let there be two symmetrical optical systems, having the same axis of
symmetry, and let F, and I, F, and I, respectively, be their principal foci:

let F and F’ be the principal foci of the combined system. Let L, M, N;
L', M’', N'; and L"”, M"”, N”, be the direction cosines of the three portions of
a ray of light, incident, intermediate, and emergent respectively, where the axis
of the system is taken as the common () axis of reference, and the remaining
axes are parallel in threes, and rectangular. Let the modified powers of the
component systems be J; and J,, and that of the combined system be J; and
let the modified and reduced eikonals be U, and U,, and U respectively.
Then we have the following relations, namely,

F,F/ = —JlJ,J,, F'Fy = +J/J,J, and F, F = + J/JJ;

in each case these distances are 'reduced’, are multiplied, that is to say, by the
optical indices of the media in which severally they are measured. Further, we have,
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l]l _ (MM/ + NN«'), (Ig — (M’ Mn + N/ NN), and U: _ (MZV[N + NNH)-

These are the first terms in the expansions of the focal-eikonal functions, and
are correct therefore to the second order in the quantities 2, N, M', N', M",
and N”.

The partial differential coefficient of an eikonal gives a co-ordinate of the
point of intersection of the ray with the normal plane through the corresponding
base point; and we have, then,

0

a 0
oM

U/J)=0—M(U1/J,) + M. I I,
the second term being the correction needed on account of the different base

points associated with the functions U7 and U,. Thus,

—M"1J=—M'/J, + MJy/JJ,,
or,
IM' =J,M + J,M",
and similarly,

JN' = J,N + J,N".

We write now,

a=M?*+ N?, a, = M*+ N3 ag=M"*+ N}
b=MM"+ NN", b,=MM + NN/, by=MM" + N'N" (1)
c = MI/2 + Nllz, cl - M’g + N’2’ 02 — leg + Nlle.

Then from relations (1), on multiplication by the appropriate factors, we have,

a = a Jia,=dJ a+ 2J,J, b6 + J} e,
Jb, = Jya + Jb, Jb, = Jyb+ J, e,
Jie, =dia+ 2J,J,6 + Jic, €y = c.

These relations give the values of our fundamental variables @, b, and ¢
for the two component systems, in terms of the similar variables for the combined

system.

3. Now we may regard the first system as composed of 1 — 1 sub-systems,
1,2,3,...4—1; and the second system as comprising a single system 2,
together with a block of % — 4 sub-systems, 4 + 1, ... %n. These systems are not,



On Invariant and Semi-Invariant Aberrations of the Symmetrical Optical System. 229

of necessity, single spherical surfaces, but may themselves be general symmetrieal
systems. The combined system is then composed of # sub-systems.
It follows at once, from the preceding paragraph, that

Jgal"‘:J;.,na +2J2,nJI,Z—1b+JiZ——-IG)
J2 C; ‘:J%-{—l,na"*' 2Jl+17nJl,lb + Jilc;

where, for example, a; is the a-variable associated with the sub-system 4, and
J1.n denotes the modified power of the system comprising sub-systems A to n
inelusive.

In the notation of the preceding paragraph we have,

Ja2 = J2b1 + J1 bz,
and, if we apply this to the second block of sub-systems, we have

J%,ncl’tJl—H,nJZ,nbl + J}.Jl,nbi+1,n.

Whence, substituting for b;+1 ., and remembering that, on account of the con-
tinued fraction definition of the modified power J,

Jidin + Jyi—1diz,e =dJ,adha,
we have the following expression for b;, namely,
Jrbi=dJnditina + (11 Jis,n + Juadan) b + J1 a1 d1ac.
We may collect these results as follows,

J2a,1:e73.,na + ZJZ,nJI,/i—lb + Jie,
szl = Jl,n=]7.+1,na + (Jl,nJl,Z + Jl+1»"‘f]vl‘l)b +.J1’;,_1J1’].C,
JPeo=dJdiiine + 2die,nd1ab + Jiae.

These then are the generalisations of paragraph 2, and they tell of the
state of the ray at any intermediate stage of its progress through the combined
optical system. It will be noticed that J has been written in place of J4, ., the
modified power of the composite system.

Further we have,
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0. () 17 0
J dd J} n I'JZnJ/—H nab +J/+l n);’

17} ad 0 0
J25*5=—2J1n=71 A—la‘_‘“_l'(eri wd1, 2+ Jre1,nd1, 1) 7—b—+2J/+1 ey, La,l,

7] 0 7]
JP =i a1+ Ji i 2.—— +J1
dc d

0 a; db/ C')

the operators being applied in each case to the variables indicated.

4. Our fundamental operators, involving the variables a, b, and ¢, are the

following, namely,
i 0 d .
P=40—c—%—d—b‘2) and O=(~)—;la

these for the ’invariant’ functions: and for the 'semi-invariant’ functions, we

have the operators

7] 7] 0 1/
07 =" a1 ot " a5’
and
0 17
P = m? da + mal—)

Here s and m are reduced magnifications associated respectively with the pupil-
planes and the object-image planes. We may use a suffix notation to indicate
operations upon the variables associated with the sub-system 2, and then we
bhave immediately, from the relations of the preceding paragraph,

JEP=(J®P),
and

TH0=Thus 4 Tindisn gy + Thrine

Ob de;

These are the ’addition operators’ for the 'addition’ of the sub-systems, as far
as the ’invariant’ relations are concerned. The similar operators, for the addi-
tion of the ’'semi-invariant’ relations, are

17 17} ad
Jg(%E (Jl’z—l—{_sz’")zo"’_a; + (Jy, a1 + mya) (1,1 + mJHl’")ﬁ_bg +

7]
+ (Jl,l + mJl+1,n)2a_cl;

and a similar expression involving s in place of m, to give J 2;-
7
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5. Since we wish to find the 'invariant’ and the 'semi-invariant’ relations
in terms of the optical constants of the system as a whole, we concentrate upon
the focal-eikonals, Ul(a, b, ¢) for the whole system, and Uj(as, bs, ¢;) for the
several sub-systems. Now, between these quantities there is a relation

(U1} = 2 (Ul (r)

where the terms omitted arise from the adjustment of the various base-points,
and depend, therefore, each separate term, upon one only of the variables a,,
and ¢;, and not upon the variable &; at all. These terms then are each
annihilated by the operator P, or P;, which appears, in every case, at least once.
In our application of the operators then we may omit these terms, as playing
the part of ’constants’. Moreover, we have divided the U-funetions by the
modified power J, or J;, since these functions have previously been 'modified’,
that is, multiplied by the quantity J, or J;. And therefore (1) reduces to a direct
geometrical relationship.

In the previous paragraph we have found relations between operators applied
to the system as a whole and corresponding operators involving, in each case,
only the variables associated with a particular sub-system. Accordingly, we apply
these operators, the one set to the left-hand side of (1), and the other set to
the right-hand side of (1). As perhaps the simplest example we have

n

(T2 Py (U/]) = Z‘ (T2 P (U/T),,

where the operator P has been applied » times. We proceed to other examples later.

6. Hitherto, the sub-system A has been any optical system whatever. We
proceed now to take, as our unit sub-system, the single spherical surface separating
media of optical indices u and u’. And, for the simplest class of 'invariants’,
we have merely to apply the operator P;, repeatedly, to U,, the focal-eikonal
for this single spherical surface. Moreover, the base-points may be moved, if
necessary, in any manner along the axis of the surface, for the terms introduced
thereby contain, each one of them, only one of the variables a; and ¢;, and the
variable b, not at all; and so these terms are annihilated by P,.
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Now, we have,
U= +vygft/v + L+ L — 1/v— 2,

where v=puu'/('—p)?, and y + 2(LL + b— 1) =o0. Effectively, we may write,
omitting the suffix 2,
pU=60+ ...,

the remaining terms being annihilated by the operator P, where
0= 1 + vy.

Now, U is a function of a, b, and ¢; but, if we write e = LL', we may
use the variables ¢ and 8, and then we have, by direct differentiation,

Actually, the result of a few applications of this operator to the function U/
may be found by direct methods. Thus we have,

PU=—1/¢6

PrU = —(1/e*0 — v/e* 0°),

P3U = — 3*(1/e°0 — v/e* 6® + v*/e36°),
PrU=—325%(1/e"0 — v/ 6° + 607%/5 6°0° — v%/e2 67),

And, since we need only the coefficients of the appropriate terms of U, we
write in these expressions a = b= ¢ =0, that is, we write ¢ =1, and f = 1; and

then we have,

PU=—1,
PU=—(1—7)),
P3U = — 32(1 — v + v¥),

PU=—3%5%(1 — v + 60¥5 — v,

The corresponding conditions are found by writing » = 1, 2, 3, ... in the formula

of paragraph 5; and we have,

' @/v is in fact the modified and reduced eikonal for a single spherical surface, separating
media "of optical indices u and g’, the base-points being coincident at the centre of curvature of
the surface.
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for r =1, S(J*P) (U/J)=3 JPU = —3J=—I(xlup)= —w,,
for r=12, S(PPRU/J)=Z2J*PPU = — Z(x/ut)®(1 — v) = — w,,
for r=3, S PU/J)=SJ°PU = ~ S(x/up)? (1 —v + v¥) = — @,
ete.

It will be remembered that v = up'/(u’ — u)?, and it is seen that these
conditions are precisely analogous to the 'Petzval-condition’, and that, indeed, @,
is the 'Petzval-sum’.

7. But it is of interest to examine the general case. To this end we

notice that
P(1/6107) == ¢%/e9+207 + (1 — 2q) pv/e?* 16772,

and so we assume, as covering the general case,
Pl = Ap /2™ 10 + Ap, /2™ 20 + -+ Ap om—a/e™mPmT,

and then, by an application of the operator P to each side of this relation, we
have, for the A-coefficients, the partial difference equation

Ams1,2p—1 = (2m — PP Am,ap—1 + (2p — 4m — 1) (2p — 3) v A, 2p—s.

Let us write further
Ams1,2p—1 = P (m, p) P~ Apy1

and then the partial difference equation for the function ¥ (m,p) is
(2m — 1)2w(m,p)=(m—pPyYm—1,p) + (2p —4m—1)(2p—3)Ym—1,p—1).

Now clearly we have
Wwim,1)=1, and YP(m,2)= —1,

and the appropriate solution of the difference equation in 1 (m, p), subject to

these conditions, is

(— 1) I'am —p + 2) I'imj  (zp—1)
2 T'(z2m) I'im—p-+2) [I(p)

W(m, p) =

o

expressed in terms of Gamma-functions.
30—36122. Acta mathematica. 67. Imprimé le 30 septembre 1936,
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If now, in the expression for P™(/, we write ¢ =1, 6 = 1, we have

PrU = Apx Sln —1,p) 07— = A3 O 1), say,

p=1
and the corresponding 'invariant’ condition is,
/ey Pt O () = Tam—1 = 0.

We have here then a complete generalisation of the 'Petzval-condition’:
indeed, writing m =1, @, is the usual 'Petzval-sum’. We have written the
generalised expression @am—1 to indicate that the condition applies to aberrations
of order 2m — 1; that is, we have a generalised 'Petzval-sum’ for each set of
aberrations of odd order. And it will be noticed that each of these conditions
depends upon the powers of the optical surfaces and upon the indices of the
media separated by these surfaces, and upon no other quantity at all: and that
the conditions are very simple in form, and easy of application.

8. On the invariant relations of the second class. We have considered, in
the preceding paragraph, only those invariant relations which involve the operator
P alone; but invariant relations are obtainable also from the joint application
of the operators () and P, where,

d 7]

.0 J
0= —, 20=J} "y n n 77 i na "
)= o and J*O0=J] 94, + Ji w4, 5%, + Ji, 6

These operators have to be applied to functions of ¢ and 6; and we have

0 _de(o_ma) L(ud o)

da, Oda\de 0 00] 2L, 1\ 90  0e
9 _ _
b, 0 08’

0 08 (0 va 0\ Lia ”_xo__ﬁ)
de;, Oc\de 0 868) 2L, \6 96 o)’

where L; denotes the direction cosine of the ray after incidence upon the surface 4.
It follows then that

7 | S . . 0
ﬁ(L/ﬁJ}%,n + L,Z——IJZ—J-I,n)—'

20— Y (1 F L T2
J O 280(LA Il,n L/.—lJA—rl,n) 00 2& e
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Now, for a single application of the operator O, we have

P N
JEO= %‘(J/:.n "J1+1,n)20ﬁ6 — é (Jin+ Ji.+1,11)5;'
And therefore,

JEOJP(U/)= EIJA[W(J/, 6:7;,) ~(J 7Jz) 2J;t,nJ).+1,n]/2

n d "
:ZJ;[( )(J), a{;l) ZJZ‘nJ},-‘-l,n]/Z.
f=1

This then is an ’invariant’ relation, the only one of the second order: and others

follow immediately in the same manner.

9. On the semi-envariant relations. The m-invariants arise from an application
0 r
» pry—
or (07)

to the general eikonal, where p, ¢, and r, are any integers such that ¢ < 1; and

of the operator

et o_,0 9 . a0
O=ga =45 ™ 5= a1 a5’

these variables and operators refer to the system as a whole. The s-invariants

arise similarly by replacing g- by 0? » where

0 _ a0 00
9a =" 4 ab " dec
We have also
JEP={(J*P),
and
Jz‘a—:(Jl -1+ s n)zj)** + (Wi s+ s n)i +
72 R s Sy,
0
+ (Jl,l + 3J2.+1,n)2 o

d e
and, as previously, we apply these operators to the relation

Ul = 2 (U/T)+

i=1
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As an example, we may consider the special case obtained by writing p = o,
g=1, and 7 =1; that is to say, we deal with aberrations of the second order.

Since, in our usual notation, we have
PU= —1/e0

for a single spherical surface, we have, by a direct application of the preceding

7 .
operator oy’ the expression

1 < fod1,, 03 o, . " N
2 EIJ;_ [v,z ITJ: —S*;jj;—l Ji— {(Jl,z—l + SJA,II) + (Jl,). + «SJ/.+1,n) }]
the summation extending throughout the optical system. The vanishing of this
expression then is an example of a ’'semi-invariant’ relation; since s alone is
involved, and mnot m. Other relations may be found readily in the same way.
As another special case let us write p =0, ¢ and » being unrestricted, save
only that ¢« 1: further, let us assume that s = 1, and that the optical system
is thin, so that
’/[L, > = Z J).-
p

—
Then

g d ! P

o7 = v T ob T g % W)
and

(J2 Py ((;77) (U19) = 3\ (7* PYy 63 (/).

A=1

The operators P and J are commutative, and we may shew that, if ¢ = 1, the
right-hand side of this relation is

S0 T=f) S,
A= i=1

where f(r) is a certain function of ». The vanishing of this then for any value
of » leads to the 'Petzval-condition’, namely,

Z J;,EZ w/up’ =o.
=1
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The more general case, in which ¢ # 1, leads to
n
2 )
=1

where here v=pu'/(u’ — u)?, and the vanishing of this leads to a generalisation,
of a quite different kind, of the 'Petzval-condition’.

Appendices to Part II.

1. We have to evaluate the operator P?¢", applied to the eikonal for a
single spherical surface. The operators P and J, involving the variables a, b,
and ¢, are commutative; and we know that P?, operating upon the eikonal for
a single spherical surface, leads to a series of terms such as §~*6~, where

v and @ are positive integers, and
e=LL, *=1 +wvy, and gy + 2(LL +b—1)=0.
Since ¢ is a linear operator, with constant coefficients, we have
e =00+ 0,007 e 4+ -
Now, with our usual notation,

L*=1—a=1 (say), and L®=1—c=10 (say);

so that

8,0 0 0.0 0

S=ut o T T
and

=V, t=1— 2001 +b—1).
Also, if ¢ > 1,

(gl + dﬁ’[,)t Vil = o,
where we write [ =1, after differentiation.

Now, after performing the various operations indicated above, we have, as
usual, to write ¢ =b = ¢ =0, that is, ¢ =1, and 8= 1. Then, denoting this by
the suffix zero, we have,

(de)y=—1, (0"e)y=0 for n>1,

and
(078),= o, for m > o.
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Further, we have,
(@ )y=v@+ 1) (¥+r—1)
(07— =o0
and
(@& "0 )y=9v@+ 1) w+r—1);
and these are the results used in paragraph 9.

2. A certain ambiguity is apt to arise from the use of the phrase »the
geometrical aberrations of order %», in connection with the symmetrical optical
system, whenever » is greater than unity. Either of two meanings may be
assigned to this phrase.

(a) We write the aberration-function @ (e, 3,7) in the form

D0, 8,7) = 3, O (&, 8, 7),
n=1
where the function @,(«, 8, y) is homogeneous, and of degree %, in the variables
e, 8, and 7. Now, we may concentrate attention upon the function @, (e, 3,7);
corresponding to the appearance of this function alowe there is a displacement
from the Gaussian focus, upon the paraxial image plane, which we may denote
by ., and which comprises a finsfe series of terms, homogeneous and of degree
2n + 1 in o (the radius of the exit-pupil) and Y, (the distance of the Gaussian
focus from the axis of the optical system). Then we may speak of this dis-
placement, either as a single group, or else with regard to its several terms, as
»the aberration, or aberrations, of order #», and this is the method which we
have followed in the text.
(b) We may take the general, and complete, aberration-function

@ (a, 8, 7) [= 2 D1 (e, 8, 7)] ,

and operate upon this in the manner indicated in the text. Corresponding to the
appearance of this complete function, consisting of an infinite series of groups of
terms, there is a displacement from the Gaussian focus, upon the paraxial image

plane, which we may write Y #,. Here each 4, comprises a finite series of
n=1

terms, homogeneous and of degree 2% + 1 in ¢ and Y,. And we may speak of

the group 5 as »the aberrations of order ».
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The group of terms ./, will not differ qualitatively, either by excess or
defect, from the group of terms ,; the aberration curves derived from «, and
4, are of the same type and number of types. But there is a quantitative
difference; for the coefficients of corresponding terms, and groups of terms, will
not be the same. The reason is, of course, that the expression 4, allows for
the effect, upon »the aberrations of order n», of the presence of the aberrations
of lower orders: hence, indeed, the possibility of the balancing of the aberrations
amongst the various orders.

These counsiderations do not affect the analysis of Part I of this paper;
but in Part IT we have wused certain first approximations. For example, we
derived the result

Jraz=Jina+ 2Jndy1 b+ Ji1e.

Here a closer approximation would exhibit a; as a series of terms containing
powers of a, b, and ¢, involving also the aberrations of the system. But if we
consider aberrations of any given order, in the absence of those of lower orders,
then we may legitimately use the first approximations: and accordingly we have
adopted, in Part II, the alternative (a) above.

Part III.

I. We proceed now to seek the geometrical implications of the 'invariant’
and of the 'semi-invariant’ relations which have emerged from the investigation
undertaken in Part I, and which have been evaluated quantitatively, for the
general symmetrical system, in Part II, — for a system, that is to say, the media,
surfaces and separations of which are supposed given. And, in the first place,
we change our variables slightly; we write

for these have been used in a detailed examination of the geometrical aberra-
tions of the symmetrical optical system, to which it is convenient here to make
reference." In this notation our ’invariant’ operators, save for an irrelevant
multiplying factor, are

9? 0* 0 0

— d Q= +2 +~0~'
owol  agp:’ MY TT 00T %ap T oy’

1T =

! The Aberrations of a Symmetrical Optical System: Trans. Camb. Phil. Soe. XXIII.. No IX.
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while the ’'semi-invariant’ operators are

7 lij
56 4 Gy

In the paper indicated the aberrations are grouped in 'orders’, depending
successively upon orders of small quantities; and their geometrical meanings, and
corresponding aberration curves, are fully investigated there. It is shewn that
each ’'aberration’, of each order, falls into one or other of two categories: for
each aberration belongs either to the S-(spherical)-type, or else to the C-(coma)-
type. Here then we have a quite different grouping of the aberrations, and
the two types are sharply differentiated by their possession of various properties.
For our present purpose we may mention only one such property: namely, that
for members of the C-type change of focus, from the paraxial image plane, is
of no advantage, — indeed, the aberration displacements are the same upon planes
equidistant from the paraxial, or Gaussian, image plane. The C-type may be
named then, in this sense, the 'symmetrical’ type. But with aberrations of the
S-type the matter stands quite otherwise, for, with them, change of focus is of
advantage, and they may therefore be said to belong to the 'unsymmetrical’
type. A smaller aberration curve, that is to say, may be obtained by change of
focus. Indeed, in the absence of astigmatism, and for a given annulus of the
exit-pupil, a point image may be obtained by a suitable change in the position
of the receiving plane: but, for varying annuli of the exit-pupil, these images
are distributed along a ’'central line', joining the centre of the exit-pupil to the
Gaussian, or non-aberration, image point. We have then for these higher order
aberrations, of the S-type, something in some ways akin to the astigmatism
and curvature of the field of the first order — already well-known.

If, now, we use the Characteristic-function, in place of the Eikonal, we
have a corresponding Aberration-function, depending upon the variables 6, ¢,
and 1: and any general term of this function may be written

Ay, g 0P @y, (1)
while the corresponding aberration displacement, upon the paraxial image plane,
is given by*

AY =214, 4 (Y /)P (o/d)?+27 1 cos? @, (27 cos® @, + q),
AZ=2"4p ¢, (Y /d)P*+7(o/d)2+2" 1 2y cos? @, sin @,,

' Trans. Camb. Phil. Soe. XXIII. No. IX. § 3.
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where the origin of coordinates is the paraxial image point, at distance Y, from
the axis of the system, and g, ¢, are the polar coordinates of the point of inter-
section of the ray with the exit-pupil.

The A-coefficient here is an aberration coefficient of order praqg+r—i,
and it is to a series of terms such as (1) that we apply our operators.

We consider, in the first place, successive applications of the operator IT.
We notice that this operator alone is to be applied only to aberration terms
of an odd order, for which then p + ¢ -+ » is equal to an even integer: and ‘it
follows that all terms for which ¢ is odd are annihilated by the operator IT.
Now, even values of ¢ indicate that we are dealing with aberrations of the
S-type, for which therefore change of focus is beneficial. Those of our invariant
relations then which arise from applications of the operator I7 alone — dnd do
not involve the operator £ — deal with the S-type aberrations. And these
appear, in the sequel, to be the simpler ones.

2. Let S be the centre of the exit-pupil, of radius ¢, and ¢ the point of
insersection of the image plane with the axis S¢ of the optical system: let P,

be the Gaussian image, of coordinates Y, Z, in the plane QP,, referred to ¢
ag origin; so that QP, is equal to Y,, where we have assumed Z; = 0; and this
is secured by a proper choice of axes. Let a ray intersect the pupil-plane in a
point at distance ¢ from S, the angular coordinate of this point in the pupil-
plane being ¢,, referred to the radius of the exit-pupil parallel to QP;: and let
this ray intersect the image plane in a point of coordinates 4 Y, 4 Z, referred
to P, as origin. Then, if we assume the presence of the S-type of aberration
alone, we have
31—36122. Acta mathematica. 67. Imprimé le 27 novembre 1936,
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4Y =k, cos ¢,
A 7 =k, sin g,.

Here k; and %, depend upon powers of ¢, of Y, and of cos® ¢, and also upon
the aberration coefficients; but, if we confine ourselves to suitable groups of
terms, %, and %, will be homogeneous in g, and also in Y;.

Two rays for which ¢, = o0, or =, which therefore are axial rays, intersect
in a point upon the central line SP;: and also two rays for which ¢, = * n/2
intersect in a (different) point upon this central line. Other rays do not, in
general, intersect this central line at all, and we have then something akin to
the usual and well-known first order astigmatism. But if %, = ky =% then all
rays from a given annulus of the exit-pupil interseet in a point upon this central
line; but the position of this point depends upon the value of o. We have then,
corresponding to the whole of the exit-pupil, a series of such points distributed
along the central line SP,, something after the nature of the elementary spherical
aberration. Indeed the distance x, from the plane @ P,, of the point corresponding
to a given value of ¢ is z = kd/p, where d is equal to the (reduced, and modified)
distance S¢@. If, in addition, £ =0, all such points coincide with P,, and we
have a flat field, as far as this group of terms is concerned.

3. Let us, in the first place, consider the first order aberrations. We deal
then with a homogeneous quadratic function of the variables 6, ¢, and v, and
a single application of our operator IT annihilates all terms except

ot agpl + a @ + -
and, for these, gives the expression
a;, — 2a.
The corresponding aberration displacements are

APaY=2Y30(a, + 4a,) cos g,

A*AZ=2Y?0(a,) sin ¢,
or,
APA4Y =2Y%0(a;—2a, + 6a,) cos g,,

d*4Z=2Y!¢(ay— 2a, + 2a,) sin ¢,.

Astigmatism, of this order, is absent if a, = 0, and then we have
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d*A4Y =2Y3pa, cos ¢,,
P4 Z=12Y}pa,sin @,.

‘All rays therefore pass through a point at distance x from the Gaussian image

plane, where
€r = 2“3(Yl/d)2‘

The aggregate of all such points, for varying object points, gives a surface of
revolution about the axis of the system, that is to say, a curved field. Moreover,
the condition for the flatness of this field is a; = 0, or, since astigmatism is
assumed absent, a;—2a,=0. That is, from paragraph 6, Part II, the condition is

o, = Zu/up’ = o,

in the usual notation. This is the usual 'Petzval-condition’, and is well-known:
we give it here because a single infinity of exactly analogus results follow in
precisely the same manner.

4. We proceed now to seek a double application of the operator I7, and
we deal therefore with terms of the fourth order in our variables 8, @, and y:
that is, we deal with the third order aberrations. The appropriate terms of the
aberration-function are the following, namely,

ot a0y ety et +

02 02

2
An application of the operator (W - '0?3) to this expression leads to

€. cg + 6 ¢y,

apart from an irrelevant multiplying factor. This then is our particular 'invariant’
function, of the aberration coefficients, of the third order.
Now, the corresponding displacement upon the Gaussian image! plane is
given by
A"AY = 4¢* Y {(20c5 + 80¢,) cos® ¢, + 2¢5 + ¢;} cos ¢,
A" A4 Z = 40* Y} {25 cos® @, + ¢;} sin ¢@,.

If the astigmatic effects, for this group of terms, be absent we must have ¢; = 0,
and ¢, = 0; and then,

! Trans, Camb. Phil. Soc. XXIIT. No. IX. § 17.
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A"4Y = 4% Y} ¢; cos gy,
d"47Z =4¢*Y ¢ sin ¢,.

Rays therefore, from a given annulus of the exit-pupil, meet in a point at
distance x from the (Gtaussian image plane, given by

zd =40"Yc;.

This relation gives the position of the point P, upon the ’'centralline’, and it
will be. noticed that the position of P depends upon the annulus of the exit-
pupil chosen. Corresponding, then, to the complete exit-pupil we have a series
of points distributed along the 'central-line’, that is to say, we have a spherical
aberration effect. And these points will all coincide with the Gaussian image P,
giving a flat field for this order and group of terms, only if ¢, = o; that is, in
the absence of astigmatism, if

¢; — ¢y + 6¢y=0.

But this, arising from a double application of the operator IT, is from
paragraph 6, Part II, the condition @, = 0: namely, we have

@y =3I (x/up)* (1 —v)=o,

where v = uu'/(’ — )}, in the usual notation.

5. It is evident now that we have a series of conditions @,, @, @;,
.. Wi, ..., corresponding to aberrations of orders 1,3,5,... (2n—1),...,
given by
@ = Z(/up’)=o,
wy = 3 (n/uu’)*{1 —v)=o,

@y =3 (u/pu)’(1 — v + v*) =0,

Tan~—1 =3 (x/up )21 Q,(v)=o,

where v=pu'/(u’ — p)?, and 2,(v) is the function of paragraph 7, Part II.
These conditions are in every way analogous to the 'Petzval-condition’, and,
indeed, the 'Petzval-condition’ is the first and simplest of them. They form, then,
in the aggregate, a complete generalisation of this well-known 'Petzval-condition’.
And the geometrical implication of any one of them is that its satisfaction, in
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the absence of astigmatism (of a generalised type), involves »flatness of field» for
the particular order of aberration indicated. Moreover, as with the 'Petzval-
condition’, these conditions are,

1. independent of the positions of the object and of the image planes;

2. similarly independent of the positions of the pupil-planes of the optical system;

3. independent of the separations of the component surfaces of the optical
system;

4. particularly simple in form;

5. dependent only upon the powers of the separate surfaces, and upon the
indices of the media between these surfaces.

They form then the complete class of optical conditions to which the
'Petzval-sum’ belongs; of which, indeed, this sum is the simplest member and
the only one hitherto known.

6. We proceed to consider the ’invariant’ relations of the second class,
those, namely, which arise from joint applications of the two operators IT and
Q: and we know that there are many more of these than of the simpler type
arising from applications of IT alone. Moreover, since

+20 0
006 (7x)

+'6-w,

the resulting relations between the aberration-coefficients involve coefficients both
of the C(-{coma)type, and also those of the S-(sphericalltype: and, in conse-
quence, the aberration displacements, # Y and 4 Z, upon the Gaussian image
plane, are homogeneous, for -any given order of aberration, in Y, and ¢
together, instead of being homogeneous in Y, and ¢ separately — as with the
relations. arising from applications of the operator IT alone. We deal here, then,
with aberrations which do not naturally fall together into a group, in the ordi-
nary investigations. Further, the resulting expressions, or conditions for freedom
from these aberrations, while being independent of the positions of the pupil'-
planes.aﬁd of the object-image planes, yet involve the separations of the optical
surfaces, in addition to the powers of these surfaces, and the indices of the
media between them. We derive optical conditions, then, which are not so simple
in form as those of the preceding paragraph, while yet being very simple when
compared with the usual conditions.
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As the simplest example we consider the single 'invariant’ relation associated
with the aberrations of the second order, which arises from an application of
the operator QII. That is to say, we apply these operators to the relevant
terms of the homogeneous cubic in 6, ¢, and 1, which appears in the aberration-
function. These terms are

ot by Py A 5,09 + b0+ byt + b * + bty + -

and the operafor is

7] 7] /] o® 0®
(Fo 25"+ o) (swas—ag)
leading to
2(bs—b,) + 2(bs—6b;) + 2 (bg— by).
The first and last brackets involve aberrations of the S-type and the second

bracket an aberration of the C-type.
The resulting displacements upon the paraxial image plane is given by!

A*AY = 40° Y} (2bgcos® @, + 2By + bg)cosp, + 20° Y3 {bs(2cos® g, + 1) +
+12b,co8’ g} +20 Y (b + 4b)cosg,,

A*dZ =40 Y;(2bgcos® o, + b,)sinp, + 40° Y bscosg, sing, + 20 Y} by sing,.

For a given annulus of the exit-pupil a point image is obtained only if
by=0b;=>b;,=bg=o0. And then this image is at distance x from the paraxial
image plane, given by

zd=2(by Y] + 2b40") Y3,

that is to say, we have for varying annuli of the exit-pupil, a point image
moving along the central-line. If now we apply our condition, which is

b3 + bG =0,
or,

2111{(”_1)(%7’%) ""‘ZJZ,nJ).+1,n}"‘: 0,

the average range of the foci is

! Trans. Camb. Phil. Soc. XXIII. No IX. §§8 7, §, 9.
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0
ﬁlngz(bg Yi+2b0°) Yi2mode=12(b Y] + bs0") ¥} =20 (Y; —0) Y73;

1]

and this appears to be the best that can be done with this aberration, as regards
flatness of field.

7. On the semi-invariant relations. The semi-invariant aberration groups

arise from applicalions of the operators IT and £, together with ecther 010’ or

a—ﬁ@; of which, as usual, the operator IT must be applied at least once. The
m-invariants, independent of the positions of the object-image planes, arise from

509. It is evident therefore that there is here a wide field for investigation; we
deal here however only with a few simple cases.
As perhaps the simplest and most immediately interesting example we

a n—1
n(5y)

to the general aberration-function for aberrations of order »; namely, to terms

apply the operator

such as
Apqr P @?yr,

where, ag iy clear, we must suppose that p + ¢ +r=n + 1.

If n=1 we are led to the invariant relation of the first order, the usual
'Petzval-sum’, concerned therefore with field curvature, in the absence of astig-
matism. In the general case, in which » > 1, we have a semi-invariant relation,
the geometrical implications of which, however, are similar to those of the
simpler case.

In general, the displacement upon the Gaussian image plane is given by?!

ar"tigZ =2 0 Y%n(An, o1+ 4A1l—1,2,0) CoS @y,
A"V AZ =20 Y3 Anyo,18in @5.

It is evident then that we are dealing with something precisely similar to the
curvature of the field and astigmatism of the first order, — as in paragraph 3, —

! Trans, Camb. Phil. Soe. XXIII. No IX. § 27.
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depending however upon Y?" instead of upon Y;. If 4,y 0= 0 all rays, from
all annuli of the exit-pupil, pass through a point upon the 'central-line’, and we
have then, for the aggregate of all such points, a curved field, depending upon
the coefficient Ay o 1, which becomes flat if 4n01=0. All this is exactly simi-
lar to the well-known first order case. If » =1, and in the absence of astig-
matism, Ay o : is the usual 'Petzval-sum’, w; while, if » > 1, this coefficient depends
upon the positions of the pupil planes alone, and not upon the positions of the
object-image planes. The aberrations of higher orders, then, which resemble
exactly the curvature of the field of the first order, differ from this latter in that
they depend, as regards their vanishing, upon the position of the pupil planes.

If n=2, we are dealing with pure curvature of the field of the second
order, and the condition for the absence of this, in the absence of astigmatism,
the condition, that is to say, that in the absence of pure astigmatism of the
second order a flat field should be reproduced as flat, as far as these second
order terms are considered, is the condition of paragraph 9, Part II: namely,
the vanishing of the expression

[0Jva _ 0Tunl® £ [ ‘ \
Z J; [m l A —TE‘ Ji— .l,(Jl'lﬁl +sdia)® + (Ju,i + 3Jz+1,n)2j ,

where v, = wi pi—1/(us — pa—1).

But a particular case of some importance arises. Let us write s = 1, that
i, let us assume the pupil planes of the system to have associated with them
the magnification + 1: further, let us assume the optical system to be thin.
Then, as shewn in paragraph g, Part 11, all the semi-invariant conditions, for

aberrations of all orders, reduce to the usual 'Petzval-condition’ w, = Sx/uu’ = o.

8. Conclusion. Bach geometrical aberration of the symmetrical optical
system, of whatever 'order’, is found to fall into one or other of three categories,
and the classification here is altogether different from that commonly adopted,
depending, as this latter does, upon the idea of small quantities of successive
orders. There is first the 'invariant’ category. The conditions for the vanishing
of the aberrations belonging to this category are entirely independent of the
positions of the object-image planes, and of the pupil-planes chosen; and, for
the first sub-class of the category, independent also of the separations of the
optical surfaces composing the system. This sub-class resembles exactly the well-
known 'Petzval-sum’. The second sub-class forms a new type of condition. The
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second category is that of the 'semi-invariant’ aberrations. Here the conditions
for the freedom from the aberrations involve either the positions of the object-
image planes, or the positions of the pupil-planes of the system; but not both
of these quantities. And finally, there is the third category, to which belong
entirely unrestricted aberrations — the vanishing of which depends upon all the
quantities mentioned above.

The number of the aberrations, of each order, falling in each of these
categories is found; and the precise conditions associated with each, for any
given general symmetrical optical system, are investigated. Thus, the general
condition for freedom from aberrations of the first sub-class of the 'invariant’
category is

n

W= [/ p’ 1 2, () =0,

i=1

where » is the power of the optical surface separating media of indices u and
@', and v=p u'/( — u)®: the summation is taken throughout the system. £, (v)
is a function the general form of which is found. In particular, the first few
values are given by

@ = Z(lpu), @y =3 (t/pp' )} (1 ~v),
wy=3(w/up P (1 — v+ 0%

Thus w; is the usual form of the 'Petzval-condition’. And, in the aggre-
gate, these conditions form a complete generalisation of the 'Petzval-condition’.
It will be seen that there is just one condition associated with every set of
aberrations of odd order.

The precise forms of the conditions associated with the second sub-class of
the ’invariant’ category are found, and also those associated with the ’semi-
invariant’ category; and this for the general symmetrical optical system.

The satisfaction of the well-known 'Petzval-condition’ is associated with a
certain geometrical simplicity; for there is thereby ensured that, in the absence
of astigmatism, the optical system shall reproduce a flat field. But this applies
only to aberrations of the first 'order’, as commonly presented. In this paper,
the satisfaction of the conditions associated with the first sub-class of the
'invariant’ category is shewn to have a similar implication with regard to the
aberrations of higher ’orders’; for the satisfaction of each of these implies

32—36122. dcta mathematica. 67. Imprimé le 27 novembre 1936.



250 G. C. Steward.

flatness of field, in the absence of (generalised) astigmatism, for the particular
‘order’ contemplated. This sub-class of the ’invariant’ relations is, then, a
complete generdlisation of the 'Petzval-condition’, alike with regard to the form
of the condition, and with regard to the geometrical implications of the
condition.

The geometrical meanings associated with the second sub-class of the
'invariant’ category, and with the 'semi-invariant’ category, are also investigated.
And, in particular, it appears that for thin systems, the pupil-planes of which
are at magnification + 1, the usual form of the 'Petzval-condition’ emerges.



