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Introduction 

Suppose we form a domain / )  consisting of the union of the upper and lower half 

planes and a finite number of bounded open intervals from the real axis. The remainder, 

F, of the real axis is the boundary of 9 .  If u(z) is subharmonic in 9 ,  behaves reasonably 

well near F, and is dominated by a IIm z I for I zl large, and if, on r ,  the boundary 

values u(x+_iO) are known to be less than some given majorant M(x), the possible size of u 

at any point of ~ is governed by two factors: 

(i) The allowed rate of growth (or required rate of decrease, as the case may be) of 

u(z) at oo. 

(ii) The magnitude of the majorant M(x). 

The interplay between these two factors is studied in Par t  I of the present paper. I t  is 

remarkable that  in many cases their effects are comparable, and depend on the domain 

solely through a quantity, called here the Selberg number, having a quite simple func- 

tion-theoretic definition. 

The results obtained in Par t  I are specific enough to yield a fairly straightforward 

duality proof of a theorem of Beurling and Malliavin [2] on the existence of certain kinds 

of multipliers for entire functions of exponential type. This application is given in Par t  II .  

Par t  I I I  contains an elementary derivation of another multiplier theorem of Beurling 

and Malllavin from the one proved in Par t  II.  I t  can be read independently of the rest of 

the paper. 

Work on the material presented here took several years, and was completed at the 

end of 1977 while I was staying at the Mittag-Leffler Insti tute in Sweden. I am very 

grateful to Professor L. Carleson of tha t  institute for having let me discuss the ideas of 
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my investigation with him, and especially for encouraging me to not abandom them when 

it seemed hopelessly bogged down. I also thank him for advice and criticism which helped 

me to improve the written presentation. 

I. Harmonic Estimation in Slit Regions 

We are interested in obtaining bounds for subharmonie functions defined in regions 

7) like the one in Fig. 1, obtained by  cutting out a finite number  of bounded open intervals 

from the real axis R. Such regions include the open upper and lower half planes. We will 

denote R N ]0 by  O and the boundary R ~ O of ]0 by F. I t  will always be assumed tha t  

0CO. 

Each segment of F is of course assumed to have two sides. I f  x is on such a segment 

and not an endpoint of it, and if U(z) is defined for z E ~ ,  we generally have to distinguish 

between the two boundary values 

U(x + iO) -- lim U(x + iy), U ( x -  iO) ~ lim U ( x -  iy), 
y. .-~ + y ~ O  + 

assuming tha t  the limits exist. I f  they are equal, we denote their common value by U(x). 

1. 
In  order to take account of the behaviour, for large values of I zl, of functions sub- 

harmonic in ]0, we require a Phragmdn-Lindel6f function Yo(z) with the following 

properties: 

(i) Yo(z) is harmonic and positive in ]0 

(if) Yo(z) is continuous up to F and vanishes there 

(iii) Yo(z) = I Im z[ +O(1). 

Clearly, there can be only one such function. 

The first problem we take up is tha t  of finding Yo(z). Our solution is in terms of 

the Green's function Go(z, w) for ~0. Recall tha t  for fixed w E~O, G,(z, w) is positive and 

harmonic in z for z e ~ ,  save near w where it equals log (1 / I z - w ] ) plus a harmonic function 

of z. For fixed w E l), Go(z, w) is continuous up to the boundary of ~) where it vanishes for 

our d o m a i n s / )  we can thus assume without further ado tha t  Go(x, w) is defined for all real 

x, and zero if xr  We have the symmet ry  Go(z, w)=Go(w, z) (see [18], p. 17) and, for our 

domains ~0, the obvious relation Go(z, w)=Go(g, ~v). 

Now we have 
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Indeed, by contour integration, lim~_.~ ~n-n log l l -  (z/t)[dt = ~ I Im z I, so that  (1.1)can be 

rewritten 

Y~(z) = I Ira zl + 1 [ O~(~, t)dr. (1.2) 
7~ Jo 

From this, properties (ii) and (iii) of Yo(z) are manifest, and so is (i) except for the har- 

monicity of Y~(z) at points of O. To verify that,  take a large A with O -  ( - A ,  A), put 

FA=FN [ - A ,  A], and rewrite (1.1) thus: 

l logll- dt+ -frAlog]l- dt+ fo[o,,( ,t'+loglz-tl+log ]dt. 
The harmonicity of this expression at points of O is clear. 

From (1.2) we have, in particular, 

1 foGv(x,t)dt, x60. Y~(x) = 

The integral ~o G~)(x, t)dt = ~oo Gv(x, t)dt plays an important role in the present study. We 

call it the Selberg number/or ~) at x and denote it by A~(x). Thus, Y~(x)=~-I AD(x ). 

H. Selberg first studied ;o G~(x, t)dt and obtained a precise upper bound for it in [16]. 

See also [18], p. 24. 

We now study harmonic measure on the boundary F of O. If w E O and x runs along F, 

we denote by deo~(x, w) the differential element of harmonic measure for ~0, as seen from w. 

Because F has two sides, we specify that  ~oD([x, x + Ax], w) is to mean the combined harmonic 

measure o] both sides o / F  along the segment [x, x + Ax] lying thereon. I t  is also convenient 

to make deo~(x, w) a differential on all of R by taking it to be identically zero when x 

goes through O- 

I t  is possible to give a remarkable upper bound for coD((- ~ ,  -x]O[x ,  oo), 0), de- 

pending on the domain ~ solely through the Selberg number Ae(0). 

In what follows, we frequently drop the subscript ~ to simplify the notation, 

writing Y(z) for Y,(z), G(z, w) for O,(z, w), and so forth. For real t, G(t, 0) is continuous 
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save near 0 where it behaves like log (1 / ] t I ), and is identically zero outside the bounded set O. 

We can therefore talk about its Hflbert transform. All the material we use about Hilbert 

transforms is in Chapter 5 of [17]. The symbol p.v. j" denotes a Cauchy principal value of 

the integral. 

LEMMA. 

1- p.v. foe a(t, o) at = I ~o([~, co), o) 
J-~o x - t  [ - :~co( ( -  oo,z],O) 

i f x > O  
if x < O. (2.1) 

Proo/. For Im z >0,  consider the analytic function 

i f~ G(t, o) dr, 
F(z)=~ j_~ z - t  " (2.2) 

since G(z, 0) is harmonic for Im z > 0  and tends to 0 as z-~oo in that  half plane, we have by 

Poisson's formula 

F(z) = G(z, O) + iV(z), Im z>O, (2.3) 

where, at points x on the real axis V(z) has a non-tangential boundary value V(x) equal 

to the left hand side of (2.1) (see [17], Chapter 5). 

At each non-zero xEO, V'(x) exists and equals zero. Indeed, such an x lies in a little 

interval I___ O having a neighborhood in which G(z, 0) is harmonic, so that  F(z) can be 

analytically continued into all of that  neighborhood. This makes V(x) infinitely differenti- 

able on I,  and by the Cauehy-Riemann equations, V'(x)= -G~(x, 0) which is zero since 

O(z, o)= o(~, o). 
If x El" is not an endpoint of one of its components, 

din(x, O) (2.4) V'(x) ffi - ~  d ~ "  

For, by the well-known relation between the normal derivative of Green's function and 

harmonic measure ([18], p. 20), 

do~(x, O) 1 1 
d:c 2~[a~(x+io, o ) -a~(x - io ,  o)]= G~(x+ io, o), 

taking the two sides of F and the relation G(~, 0)=G(z, 0) into account. But  G(t, O) 

vanishes outside O, so (2.2) can be differentiated at z--x here to yield 

v'(x)= 1 ['~176 
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Since G(x, 0)=0,  (2.3) and (2.2) show that this last expression equals -G~(x+iO, 0) on 

taking the limit of a difference quotient. We thus have (2.4). 

Near 0, G(t, O)=log (1/Itl) plus an infinitely differentiable function of t. Thence, by 

direct calculation, V(x) has a simple jump discontinuity at 0, increasing by  vr there. Finally, 

V(x)oO as x-~ • 0% for G(t, O) has compact support. 

The information about V(x) and V'(x) already obtained implies that  V(x) equals the 

right side of (2.1), provided that it is continuous at the endpoints of the components of O. 

But it is, for G(t, 0) is easily seen to be Lip �89 at the endpoints and infinitely differentiable 

elsewhere, save at 0. So V(x) is also Lip } at those endpoints ([17], pp. 145-146), and we are 

done. 

Notation. For x > 0, 

~v(X) = ~(x)  = O~v((- o~, - z ]  u Ix, ~ ) ,  o). 

In terms of this notation, (2.1) reads: 

(2.5) 

COROLLARY.  For x>O, 

2 /'~176 
~v(X) = ~ p.v. J_~ x~ - t~ av(t, 0) dr. 

Since G(t, 0) has compact support, 

~(x) 2A(0) for x-~oo 
~2-"'-~ 

More is true. 

(2.6) 

T H E O R E M . . F o r  X > 0 ,  

~v(x)< Av(O) (2.7) 

Proof. Given any x 0 > 0, let r 0 = F U ( - 0% _ x0 ] U [x0, oo), O0 = R ~ Fo, and let ~00 be 

the complement of F o in the complex plane C (see Fig. 2, top of next page). 

Let Go(z , w) be the Green's function for ~)0, and, for x>0 ,  let ~o(X) be the harmonic 

measure of r0f~ [ ( - o o ,  -x ] •  Ix, oo)] for ~0, as seen from 0. Since ~0c_~), 

~(xo) < ~o(Zo). C2.S) 

For the same reason, adz, 0)<aCz, 0), so, if Q>I, by (2.6) applied to Go and Go, 

f:_' f ~  2~A(0) (2.9) s176176176 x. ~xo2-t ~ dt<z~2(~ x. 

for Go(t, 0) vanishes outside O0___ (-Xo, Xo). 
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boundary conditions 

wo(~ +_ io) = o, 

W~(x + io) = 1, 

Then, by Poisson's formula for 90, 

The idea now is to show that  Qo(~xo)]~o(xo) has a positive lower bound depending 

only on the parameter O > 1. For this purpose, take a third domain 

g = C~ (( - 0% _ % ]  u [x0, oo)) 

we have 9 o ~  E and we put  

~ = rf~ (-Xo, Xo), then 9 o =  ~N~. 

Let dooo(x , O) be the differential element of harmonic measure on Fo for 9o, as seen 

from O, and take the function Wo(z) bounded and harmonic in ~, determined by the 

< < 

eXo < < 

However, 

~)o(exo) = WQ(O) - fv Wq(x) do~o(x, O) (2.10) 

~o(Xo) -- 1 - ~vdooo(X, 0). (2.11) 

Wq(x) <-< Wq(O) for -xo  < x < x  o. (2.12) 

To see this, let ~ be a conformal mapping of { ]w[< 1} onto ~ which takes the diameter 

( - 1 ,  1) onto ( -x0 ,  x0), with ~(0)=0.  WQ(~(w)) is then the combined harmonic measure o/ 
the arcs a={e~a; a < 0 < ~ - a }  and 5 = - a ,  for the unit disk, as seen from w therein. 

Here a, 0 < a <~/2, is a certain number depending only on ~. If - 1 <w < 1, Wq(qp(w)) is by 

symmetry equal to twice the harmonic measure of the upper arc, a. The level lines for this 

harmonic measure are, however, just the circles through the endpoints of a. I t  is now 

obvious from Fig. 3 that, for - 1  ~ w < l ,  Wq(q~(w)) is at  its maximum when w=0,  and 

(2.12) is proved. 
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Fig. 3. 

From (2.12), (2.11) and (2.10) we have ~0(~x0)>~ WQ(0)~0(x0), with WQ(0) depending 

on ~ alone by homogeneity. Substitution M this last relation into (2.9) followed by use of 

(2.8) yields 
2q A(O) 

fl(x0) < ~2 WQ(0) (~2 _ l)  z0 

To obta in  (2.7) f rom this, note t h a t  WQ(0)=2g-I ( �89  which works out  to 

(2/g) arcsin (1/~) by  explicit computa t ion  with r P u t  this value into the  previous relat ion 

and make  ~ - ~ ;  one gets (2.7) with x 0 instead of x. Q.E.D.  

3. 
As subst i tu te  for a regular i ty  in ~(x)  which is lacking here (gl'(x) = - ~ whenever  x 

or - x  is an endpoint  of a componen t  of O, and  these  components  m a y  be ve ry  numerous) ,  

we derive a quadrat ic  inequal i ty  involving d(x~(x)). 

LV.MMA. For x:4=O, 

Proo/. O(x, 0) EL 2, so, continuing, as in the  proof  of the  lemma,  w 2, to  denote  the  left 

side of (2.1) by  V(x), we have  ([17], Chapter  5) 

O(x, O) 1 ~oo V(t) dt 
= 

B y  (2.1) and  (2.5), V(t)-V(- t )=zt~( t )  for t > O  which, wi th  the  preceding, gives 

f :  2t~(t) dt G(x, 0) + G( - x, O) = - p.v.  x2 _ t~ . (3.2) 

The  Cauchy principal  value on the  r ight  is eva lua ted  b y  in tegra t ing  b y  par ts ,  f irst  f rom 

O to  Ix [ - e  and  f rom Ix I + e to  ~ ,  so as to  obta in  some in tegra ted  t e rms  toge ther  wi th  a 
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new integral involving d(t~(t)). The fact, following from (2.5), that ~(t) is Lip �89 makes the 

sum of the integrated terms go to zero as s-+0, and we end up with (3.1). 

From 2.6 and the fact that G(t, 0) vanishes outside O bounded, we get the convergent 

expansion 

~(x)= 2A(0)+_C +~+C' 
7~-x x8 ..., 

valid for large x. The function ~(x) decreases from 1 to 0 on [0, c~) and has the constant 

value 1 near 0. Using these facts we easily verify that 

converges absolutely. 

THEOREM. We have 

fof 
Proo/. By (3.1), S~log ( Ix+t l /Jx- t l )d( t~( t ) )~O for x>0,  while d(x~(x))<~(x)dx 

there since ~(x) is decreasing. So by (3.1), the left side of (3.3) is 

< f~ =[e(=, 0) + G( - =, 0)] ~(=) d=, 
jo 

which in turn is<n-lA(0) S~[G(x, 0 ) + O ( - x ,  0)]dx by (2.7). This last equals [A(0)]*[~ 

by definition of the Selberg number (w 1). 

1 

We apply the results of w167 1-3 in order to obtain estimates for certain functions 

suhharmonic in /). 

L~.MMA. Let v(z), subharmonic in 9 ,  have the following propertie,: 

(i) At each x s F not an endpoint o] one o] its components, v ha8 boundary values 8atis. 

/ying v( x +_ i O ) ~<0, 

(ii) There is an o~ < �89 such that v(z) <~ O( Iz - c [ -a) near any endpoint c o /any  component 

o/F, 
(ffi) v(z)<.aJlmz] +0(1) /or zEl)  with Izl large. 

Then v(z)<aYv(z) for ~E~). In  particular, for xEO, v(x) <.aAv(x)/~. 
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Proof. Suppose first tha t  we know how to construct a Phragm4n-LindelSf function 

p(z) behaving thus: p(z) is harmonic and positive in ~ and tends to ~ like I z - c l - v  when 

z tends to any endpoint c of any component of F; here, ~ is a number between a and �89 

Granted this, the lemma follows easily. Indeed, using the properties of Yv(z) established 

in w l, we see by the principle of maximum that  v(z) -aYv(z)  -ep(z) <0 in ~ for each e >0. 

Here is a construction of p(z). Let the infinite components of F be ( - c ~ ,  a0] and 

[b0, c~), and the finite ones (if there are any) be [al, bl], ..., [an, bn]. Then 

l \Z-ao/  \bo-  z] J k-l ( \ z - a ~ /  l~z-bJ J 

does the job. 

COROLLARY. Let M(t) be positive and continuous on F, save perhaps at the endpoints of 

its components, and suppose that 

fr M(t) de%(t, O) < ~ .  (4.1) 

Let u(z) be subharmonic in D and have, at each xEF not an endpoint of one of its 

components, boundary values satisfying u(x• Let u(z) also have properties (ii) 

and (iii) required of v(z) in the above lemma. 

Then,/or z fi D, 

u(z) < a Yv(z) + f M(t)da~v(t , z). (4.2) 
J r  

Proof. Since M(t)~>0, (4.1) implies by Hamack's  theorem that  Sr M(t)do~v(t, z)< oo 

for every z E ~). The corollary thence follows on applying the above lemma to 

v(z) = u(z) - f r  M(t) dory(t, z). 

Remark 1. M(t) is allowed to become infinite at the endpoints of the components of 

F (and at oo), but as long as (4.1) holds, (4.2) furnishes a useable bound for u(z). 

Remark 2. Relation (4.2) still holds (and we shall in Part  II ,  have occasion to use it) 

in certain situations where M(t) is not >10 on F. Supl~ose, for instance, that M(t)= 

Ml(t)+ M2(t ), where Ml(t)>~O satis/ies (4.1) and M2(t), of variable sign, is such that 

y O) < oo .  
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I/the harmonic/unction 

is 

u2(z)=frM~(t)dc%(t,z) 

(i) ~> - O ( [ z - c [  -a) near any endpoint col any component o/F, with an ~ < �89 
(ii) bounded below ]or all z in ~) o] su]]iciently large modulus; 

then (4.2) holds ]or subharmonic ]unctions u(z) /ul/illing the other conditions o/the corollary. 
This extension is immediate. Simply write Ul(Z)=U(Z)-U2(Z), then the corollary 

applies as it stands with ua(z ) in place of u(z) and Ma(t ) in place of M(t). Add u2(z ) to 

both sides of the inequality corresponding to (4.2). 

I f  M(t) >i O, we would like to use the theorem of w 2 so as to estimate the integral on 

the right side of (4.2) in terms of Sr(M(x)/x2)dx. This, however, is not possible in general, 

because dco(t, O)/dt is infinite at  the endpoints of the components of F, and there is no 

limitation on the number  of these components. In  order to be able to make such a com- 

parison, we must  impose a certain smoothness, of a nature determined by the results in w 3, 

on the majorant  M(t). 

De/inition. Let M(x) be even. We call M(x)/x a Green potential on (0, oo) if 

f :  x+t  do t M(X)x = log x-~--t ~() f o r x ~ 0  (4.3} 

with a real signed measure Q making the integral absolutely convergent for all x ER. 

Delinition. I f  M(x)/x is a Green potential on (0, c~) and if 

j'o~ j[ ~ Ix+tl , x - - ~ ,  log I ~ l  Ida(t)I la0( )l < oo 

with ~ the real signed measure from (4.3), we call 

the energy of M(x)/x. 
This energy appears in the work of Beurling and Malliavin [2]. I think one of the 

reasons for its appearance there is tha t  it is a natural  measure for the kind of smoothness 

M(t) must  have. 
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THEOREM. I/  M(x) is positive and even, M(x)tx a Green potential on (0, ~), and the 

integral in (4.4) absolutely convergent, 

j .,,-~ r M(x) de%(x, 0) ~< - -~- -  LJo x (4.5) 

Proo/. Since M(x) is even, by (2.5), 

~ M ( x )  frM(x)do (x,O)=- fl M(X) dx- (4.6) 

Because M(x)>~0, the first integral on the right is ~< (A(0)/~) S~ ~ (M(x)/x~)dx by (2.7). Ac- 

cording to the hypothesis, we can use (4.3) in the second integral on the right hand side of 

(4.6), obtaining 

Now, as long as the double integral in (4.4) and a corresponding one involving da converge 

absolutely, the real bilinear form 

in d~ and da is positive de/inite. (See [13], p. 92 and pp. 215-219; log ( [ z§  is 

the Green's function for the right half plane. A more elementary discussion is given in [9], 

pp. 255-256.) There]ore Schwarz' inequality holds/or it. This, applied to the expression in 

(4.7), shows that the latter is in modulus 4g-tt~A(0) (E(M(x)]x)) li~, by (4.4) and the theorem 

of w 3. Substituting this estimate back into (4.6), we get (4.5), Q.E.D. 

Remark. If u(z) is subharmonic in ~) and satisfies the hypothesis of the above 

corollary with an M(t) fulfilling the conditions of the theorem, the relation gY(0)=A(0)  

yields, with (4.2) and (4.5), 

u(0)-< A~(0----)-~ ~ [ a +  jof~176 (2t~)dt+ V g E ( ~ ) ) ]  " (4.s) 

Thus, at the cost o/making rather special assumptions about the ma]orant M(x) /or u(x• 

on F, we have obtained an estimate /or u(O) which depends on ~ only through the Selberg 

number Av(0). 

1 9 -  782905 Acta mathematica 142. Imprim6 1r 11 Mai 1979 
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o 

The theorem at the end of the preceding w applies to certain positive majorants 

M(x) of the form (4.3) for which the double integral in (4.4) is not absolutely convergent. 

Indeed, positive definiteness of the real bilinear form used in the proof of that  theorem 

makes V-E-< > a Hilbert space norm on the collection of Green potentials (4.3) with 

absolutely convergent integrals (4.4), and it is manifest that  (4.5) and (4.8) continue to 

hold, with E<M(t)/t> defined by continuity, as long as M(x)/x is in the closure of that  

collection under the norm ~/E-< >. 

Under this head falls the important case when M(x) is the logarithm o/an entire/unc. 

tion o/exponential type. Then the second term on the right in (4.5) can be expressed in terms 

o/the first. In dealing with such majorants, one can reduce the situation (see w167 1 and 

3 of Part  II) to one where 
M(x) = log T(x), (5.1) 

with T(z) an entire function of exponential type 2B say, such that  

T ( 0 ) = l , T ( x ) f f i T ( - x ) > / 1  fo rx6R,  
and 

(5.2) 

f: log T(X)dx< ~,.  (5.3) 
X 2 

By a well-known extension of a factorization theorem due to Riesz ([3], p. 125), condi- 

tion (5.3) is enough ([3], p. 86) to guarantee the existence of an entire function G(z) of 

exponential type B, having all its zeros in Im z < 0, xach that T(x) = ] O(x) ] ~ /or real x. In 

the present case, (5.2) implies T ( - z ) = T ( z ) ,  so, since also T(~)= T(z), the zeros of T(z) 

lying in Im z <0 can be enumerated thus: 

{~, - ~ ;  n = 1, 2, 3 .... }, 

with Re 1.1>0. Under the circumstances, the construction on page 125 of [3] shows that  

we can take(1) 

Ol~ '~ ~ ( ~ -  ; . )  (~ ~ ; . )  �9 (5.4' 

Now, for Ira I < 0  and Im z>~0, by Poisson's formula, 

z 2 [ I m l  I m l  ~dt 

Taking the logarithm of the modulus on each side of (5.4), substituting (5.5), and 

changing the order of integration and summation, we get 
Z 2 

logIG(z)I=f: logl l - -[ i ld~,( t )  for Imz  ~> O, (5.6) 

(*) The right side of (5.4) perhaps also contains smgle factors of the form (1 +z/ip~)with pk>0. 
The right side of (5.7) must then be modified aebordingly. 
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where 

d,,(t!___ ,__ {l m ;-,,I + I_ Im ;t,,l~ (5.7) 
dt ~ tl' 

The change in order of integration and summation is surely justified when ~/4 ~ arg z ~< 3~/4, 

for then log I1 -z2/ta I >1 0 for t 6 R. This means in particular that  the right hand integral in 

(5.6) converges whenever z--iy, y > 0. But it is then easy to see that  the integral converges 

uniformly on compact subsets of Im z > 0, clearly yielding a function harmonic in Im z ~> 0. 

Since the left side of (5.6) is als0 harmonic there, the two sides agree for Im z~>0. 

For z = x  real, the right side of (5.6) may be integrated by parts twice, the second 

partial integration resembling the one applied to (3.2). Taking ~(0)=0, one finds ([11], 

pp. 136-137), 
oo x + t: v ( t )  

l o g l G ( x ) [ = - x f l  l o g l ~ _ t l d ( - ~ )  fo rxER.  (5.8) 

Thus, log T(x) /x=2 log ]G(x)[/x is a Green potential on (0, oo) accordin# to the defini- 

tion ol w 4. 

Now, under conditions (5.2) and (5.3), E <log T(x)/x> has meaning and is finite. This 

was first seen by Beurling and Malliavin [2]. Quantitatively, 

E ~ ~  xT~(z}> ~< 2eJ (J+  B) (5.9) 

with J = ~0 (log T(x)/x~)dz, and we have the 

THEOREM. 1! T(z) is entire o/exponential type 2 B with T(x) = T ( - x )  >I 1 and T(0) = 1, 

then 

~r Av(0) log T(x) dx%(x, 0) ~< ~ [J + I/2=eJCJ + BI], 

where 
foo log T(z) 

J=Jo V 

Proo I. Firstly, in the special situation where 

the theorem follows directly from (4.5) and (5.9). In  order to obtain (5.9), we may here apply 

(4.4) directly to (5.8), getting 

�9 x \ z / x -~ az, 
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since log T(x)=2 loglG(x)l ~>0 and v'(x)~>0 by (5.7). Formula (5.9) will follow as soon as 

we show that  

~(_x) <~ e(B + J). (5.11) 
x 

To this end, observe that, by direct calculation with (5.6), we have the Jensen formula 

t 2z J0 l~176 (5.12) 

On the other hand, for Im z~>0, log laIz/I is continuous and ~>log Ia(Re z) I >/0 by (5.4/, 

since Im 2~ <0. The Poisson representation for positive harmonic functions here yields 

log IO(z) l = B Im z + 1_ f~ Im z log IO(t) ld t z~ J_~ [ z ~ i ~  for I m z > 0 ,  (5.13) 

G(z) being of exponential type B. 

Substitute (5.13) into (5.12) and perform an integration on the variable r (idea of 

B. Nyman, [15], pp. 14--16). We find 

f:  (fro ~dt) drr=__~ -BR+ I~ ~ (f: log r-tr+t ~) log,O(t),dt (5.14) 

Now 

r+t d d~l<<~R 

and, since ~(t) is increasing, the left side of (5.14) is >~,(R/e2)). Putting x = R/e ~, we obtain 

a better inequality than (5.11). Thus (5.9), and the theorem, hold under the condition 

(5.10). 

Suppose that  (5.10) is not fulfilled. According to the remarks at the beginning of this w 

(4.5) will still ho ld~by  an evident weak convergence argument applied in the appropriate 

Hilbert space---~ we can construct a sequence of Green potentials 

/'~ Ix+t l  

with 
x + t  

and 

E(Qn(x)) <. const., (5.17) 

f0 ~ log [ G(x)l da(x)= lira f~Q,(x)da(x) (5.18) 
X n - . ~ d O  
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for every signed measure a with S~[da(x)[ <oo. (Note that  da(x)=d(x~(x)) has this 

property.) 

We take 

r(x), O < x < n  

r,(z)= v(n), x> n. 

Using (5.15) and applying (5.6), (5.8) to rn, we get 

X 2 

xQn(x) = f [  log l l - - ~ dr(t), (5.19) 

from which we see that  Qn(x) >~0 for x ~> ]/2 n since dr(t) >t O. For the same reason, if 

0 ~< x ~< ~/2 n, by (5.6), xQn(x) -~log ] G(x) l - S~ log I 1 - (x~]t2) ldv(t) >1log I G(x) l, which is >/0 

by (5.2). We thus have 

Qn(x) >t0 for x>~0. {5.20) 

Also, Qn(x) < (1 Ix) S~ log (1 + (x2/t2))dr(t) ~< A, a constant independent of n, when x I> 0, since 

v(t) is O(t) on [0, oo). Because (5.19) and (5.6) clearly imply Qn(x) -+ log I G(x)l/x pointwise 

on R as n-+ Go, (5.18) now follows from the bounded convergence theorem. 

To prove (5.17) we use (5.15), (4.4), the fact tha t  dv~(x)>~O and (5.20) to deduce 

- ~ -  (&(x) dx. 
Jo 

(5.21) 

Write, for the moment, ~(t)=rn(t)/t; we have ~(t)=r(n)/t for t>~n, also ~(0)=v'(0) is finite 

by (5.7). Substituting (5.15) into the right side of (5.21) and changing the order of integration 

in the resulting double integral, we obtain 

foo roe ix+t l~)dxd~( t )  ~oo it+xiQ(X)dxO~ 
- l o g  - -  = - Jo Jo  (,Ijo o 

o~ d ~ t + x  ~(x) 

Q(t) dt 

-.I ) 
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where 
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0 =  log 

all the steps being easily justified. We see that  the right side of (5.21) equals �89 s, and 

(5.17) holds. 

The verification of (5.9) remains. Using weak convergence and applying (5.18) with 

d~(x) =d(vm(x)/x), we see that  

~ _ ~ d  x \ x / 

Since log I G(x) [ >1 O, 

s v'(x) l~ dx<- f ~  v(x) l~ dx, - i ~  < 

x \ x /  x z x 2 

and 

From here, the computation runs as it did at the beginning. 

The theorem is completely proved. 

II. The Theorem of Beurling and MaUiavin 
1. 

Suppose that  F(z) is an entire function of exponential type, say of type A. The 

theorem of Beurling and MaUiavin [2] says that  if 

f; l~ ] F(z)] dz < oo 
l+z~  

then, for every ~ >0 there is a non-zero entire function/(z) of exponential type 2~ with 

both If(z)[ and If(x) F(z) l bounded on the real axis. 

We wish to prove this theorem using the results of Part  I. I t  is enough to show 

the existence of a non-zero f(z) of arbitrary exponential type 2~>0 such that  

If(z)] 2 (1 + [ F(z)12 + [ F( - x)12) is bounded on R. In other words, we want such an f with 

T(x) [f(z) i2 bounded on R, T(z) being the entire function of exponential type 2A given by 

f(z) = I + ~'(z) F*(z) + F( - z) F*( - z). (i. I) 
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(Here, and in all that  follows, we use systematically the notation F*(z)= F(~) for entire 

functions F(z).) The advantage of introducing T(z) is that now T(x) = T ( - x )  >I 1 for real x, 

while we still have 

oo log y_~)dx< oo (1.2) 
~o l + x  

As in Part  I, w 5, this condition enables us to apply a generalization of Riesz' factorization 

theorem ([3], pp. 125 and 86), getting an entire function G(z) of exponential type A having 

all its zeros in Im z <0  with 

T(z) = G(z) (?*(z). (1.3) 
Evidently, 1(7(- x)[ = [ G(x)[. 

A Phragmdn-Lindel6f theorem ([3], p. 82) says that  [/(z)G(z)l is bounded for real z 

if and only if [/(x + 3i) G(x + 3i) I is. We can obtain a non-zero entire / of exponential type 

27, making the latter expression bounded, provided that there is a non.zero g o/exponential 

type ~ with 

f ~ [g(x)G(x+ ai)l dx < 

For then the / given by l (z+3i)=z-Zg(z)sin 2 (r/z/2) will work ([3], p. 82). 

The reason for using (~(z + 3i) instead of G(x) is that  its behaviour has a certain 

regularity. Henee/orth, we work with the entire/unction 

C(z )  = e -8~ G(z  + 3i). (1.4) 

LEMMA. For real x, IV(x)] = [C( -x ) ]  >/1, and 

f_| l~ < oo. 
| i 

I f  z and x' are both real, 

I I (1.5) 
Proof. As we saw in proving the theorem of Par t  I, w 5, log ] G(z) I has a Poisson repre- 

sentation in Im z>0,  which, for z = x + 3 i  can here be written 

ffi l_ [| 3 log lalt)l_dt (1.6) 
logiC(x)[ ~ J _ ~  ( x - t )  1 + 9  " 

Since [G(t)[ -~ [G(- t ) [  i> I, the first statement of the ]emma is immediate, and (1.6) yields 

a log I c( )l 
~< �89 log I o( )l 

on differentiation. This last relation gives us (1.5). 
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In  the rest o] Part I I ,  L ~ means L~( - oo, ~ )  and the H ~ spaces involved always re/er to 

the upper hal/plane. Property (1.5) of C(x) plays no role in the following result. 

THEOREM. Let ~>0 .  I[ the cone 

[ ee~ p E L 2} g = ~ p ( x ) + ~ / ( x ) ;  /EH~,p>-O and 

is not dense in Z 2, there is a non-zero entire/unction g(z) o/exponential type ~ with 

f ;  It(x) < g(x) I dx 
1 + x  ~ 

(1.7) 

Proo/. Non-density of K implies the existence of a non-zero Q EL ~ with 

Re j'-~oo Q(x)k(x)dx>~O for all kEK.  

From this we see immediately that  

ReQ(x) >10 a.e., xER (1.8) 

and that  e2t'xq~(x) EH 2, where ~(x) =Q(x)/[ C(x) [ ~. (See [5], p. 195. Note that  ~ EL ~ because 

IC(x)l 
By (1.8) there is a function v/(x), - a / 2  <v/(x ) <7e/2, with 

~(x)e -I~(x) >/0 a.e., xER. (1.9) 

Take now the harmonic conjugate function 

oo 1 

the bounds on ~v ensure that  (x+i )  -2zr exp (~v(x)-i~p(x)) is in H p for every p < 1. (See, for 

instance, [8], p. 70 together with [7], p. 130.) Using this statement with p =2/3, the fact 

tha t  9EL 2 and HSlder's inequality with exponents 4 and 4/3, one sees that  

( x + i)-4 e2~,X ~( x ) e~r ~v(~) E 1-1 lls (1.10) 

There is thus a function H(z) regular in Im z > 0, having almost everywhere on R a non- 

tangential boundary value H(x) equal to q~(x)e ~(x)-~vr By (1.9), H(x)>10 a.e., and (1.10) 

implies that  H(z) is locally in H 1/2 near R. A simple extension ([10], p. 1203) of a theorem due 
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independently to Helson and Sarason ([6], pp. 10-11) and to Neuwirth and Newman ([14]) 

now says that  the Schwarz reflection 

H(z) = H(z) (1.11) 

furnishes an analytic continuation of H(z) across R. 

H(z) is thus entire, and for Im z>O, (z+i)-de2~'~H(z)eH 11~. This, together with (1.11), 

implies that  H(z) is of exponential type 2~) by a straightforward argument ([10], pp. 

1203-1204). 

We have H(x) >~0 and ~Too ~/H~/(1 +x2)dx < c~. The extension of Riesz' factorization 

theorem already used ([3], p. 125) thus applies ([3], p. 86), and we have H(z)=g(z)g*(z) 

for some evidently non-zero entire function g(z) of exponential type ~. 

We have, on the real axis, I C(x) 12H(x) = I C(x) 12 ]~(x) ler ~- I Q(x)] e~(~) where Q eL ~. 

Repeating the HSlder-inequality argument used to prove (1.10) with Q(x) in place of ~0(x), 

we get 

f~ Ic(~)] d~< 
1+x~ 

Q.E.D. which is the same as (1.7). 

2. 
To prove the theorem of Beurling and Malliavin it is enough, by the discussion and 

theorem in the preceding w to show that  for arbitrary ~ >0 the cone 

K= 1ell  2, peL' and p> 0 

is not dense in L 2. Our procedure in what follows is to assume that K is dense and thereby 

derive a contradiction. 

We begin by carrying out a construction under this assumption, described in steps (a) 

and (b) below. 

(a) If K is dense in L 2, for each N the function QN(~) equal to - I C(x) 12 for I xl ~ N 

and to zero elsewhere belongs to the closure of K, so we can certainly find PN(x)>/ 

-QN(x)IC(~)I 2 >~ 0 and ]Ns ~ such that  

1 
C(x) ~ 2< ~. (2.1) 

Since ]C(x)[ = [C( -x ) [ ,  this is clearly satisfied with �89 instead of 

Ply(x) and �89 instead of /N(x); in other words, we can and do assume in 

what follows that  
P ~ x )  = P~( - x), ] . (x)  = h,( - x). 

We may clearly also assume that  PN(x) is of compact support. 
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We n o w / i x  a quantity L equal to max (24z/~/, �89 and put 

1 f~" 
RN(x) = ~ J_ P~(~ + t) dr, 

1 F 
CfN(X) = 2-L J -I. e2t~t /N(z "4" t) dr, (2.2) 

1 f L 
W(z) = ~ J-|L [C(z + t) C*(z + t)] s dr. (2.3) 

Then RN(x ) is ~> 0 and of compact support, ~N belongs to .,4 (the space of functions analytic 

in Im z > 0, continuous on Im z >t 0, and going to zero as z-~ ~) ,  and W(z) is entire of exponen- 

tial type 4A, with W(x)~>l on the real axis. We also have: RN(--x)=RN(x), qN(--X) = 

~N(z), W( -x )=  W(x). 

LEMMA. I /  N > 2 L ,  there is a bounded open set ON on R such that 

(i) O r = - O N ,  ( - N  +L, N - L ) c _ O m  and each component of Or has length >L; 

(ii) For x fi Or, Re [e2~'z~py(x)] >i 0, 

(iii) For real x$Om [q~N(x)[ 2 <9[W(x)] earl`. 

Also: 

(iv) For - N  + L  <~x<~N-L, Re [eS~N(x)] >I �89 

is in modulus 

i.e., since 2L~> 1, 

Suppose x o G R and 

Since PN>~0, by (2.2), 

Proo[. First of all, by Schwarz' inequality and (2.1), 

_ 1 f~+L Rs(x) - en"7~ q~N(x) - ~ j ~_~. ( PN(s) -- eS~" /N(s) ) ds 

 lc(x+ol' , 

�9 RN(~o) > 2[ W(~o)] (e~ I`)1~. 

R,,(x) > [W(xo)] ('~L)/~ 

(2.4) 

(2.5) 

(2.6) 

throughout at least one of the intervals (x o - L ,  xo], [xo, x o +L). Take one on which (2.5) holds 

and call it /o. 
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By (2.3) and (1.5), with help of the mean value theorem, W(x)~[W(%)] e~L for 

IX-Xol ~<L so, from (2.5) and (2.6), 

RN(x ) > WV~W-~, xEI  o. (2.7) 

From (2.4) and (2.7), Re[e~tr:~N(x)]>0 on Io, so, since +n~A is continuous, 

Re [eel~N(x)] > 0 on some larger open interval I(xo) ~ ]o with x o E Y(xo). I(xo) has length >L. 

For each xo>0 satisfying (2.5) choose such an I(xo), and let ~+ be the union of all of 

them. /~+ is bounded because the set of x 0 >0 sat'relying (2.5) is bounded, R~ being of 

compact support. Take O~ to be ( - N + L ,  N - L ) U  ~+U ( - ~ + )  together with any one- 

point components of the complement of that set in R. 

We now have (i) by construction of ON, and (ii) holds because ~ { x ) = ~ ( - x ) .  

x+O~, (2.5) tails for % = x  by evenness of Rn, so (2.4) yields ]~(x)] ~<~[W(x)] ( ~ > ~  since 

W(x) ~> 1. This is stronger than (iii). Finally, {iv) follows from (2.2), (2.3), (2.4), and the 

fact that p~(~c)~> -Q~(~:)[C(:c)] ~ which equals ]C(x)[* for -2V~<0c~<IV. 

(b) We now drop the subscript h r and write O instead of Ozr and ~ instead of ~0~. 

We henceforth denote the component of O containing 0 by ( - l ,  l); we saw in the lemma 

of step (a) that I>~zV-L. We think o/1 as a parameter which we can take as large as we like; 

it is not to be con/ounded with the fixed quantity L = m a x  (24.~]~, �89 

We use the notation of Part I, writing 1P for R ~  O and taking ~ =  C~ F. 

By the lemma of step (a) there is a function ~p(x) defined on O with - z / 2  <p(x) <0~]2 

there and 

e~t'xq~(x)e -tv(x) >I O, x e  O. (2.8) 

We take ~o(x) to be zero on F---R,,, O. Since q0(-x)~-~(x) and O - - -  O, 

~p(x) - - ~ ' ( - x ) .  (2.9) 

Write 

p.v.  v,(t) dt. (2.1o) 
2 x - t  

The Hilbert transform is an isometry in L z ([17], Chapter 5), whence S~1 (~l(x))~dx~<~ ~, 

so by (2.9), which implies ~l(-x)--~l(x),  we can find a b, 0~<b~l, with ~ l (b )> -3 .  

We now fix such a 56[0, 1] and write 

1 t 
~,(x) ~ ~ p.v. f l , , , , (x_t t_b)~v(t)dt . --+~ (2.11) 

By (2.9), ~ ( - x ) - - ~ ( x )  so in particular ~(b)=0.  
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The/unc t ion  ~(x) =~l(x) +~2(x) will be taken as the harmonic conjugate o /v  2. Although 

this definition of ~0 is different from the one used in proving the theorem of w I, we still have, 

for each p < 1 

(x +i) -2/~ exp [~(x) - i~(x)] EH ~, (2.12) 

as is easily verified. Note that  by the choice of b, 

9(b)  = 9~(b) > - 3. (2 .13)  

Let us now put 

r ( x ) = e2t~x q~( x ) e ~(z)-~x~). (2.14) 

Since ~0E~4, (x+i)-~/~OP(x)EH ~ for each p < l  by (2.12). When Im z>0,  the analogue of 

(2.14) with z instead of x gives the analytic function (I)(z) having boundary data (I)(x) on R, 

provided that  the evident suitable definition of (p(z)-i~o(z) is used. From (2.8) we have 

q)(x) >t0 for xE O; therefore an argument like the one used in proving the theorem of w 1 

shows that  q)(z) has an analytic continuation across O into all of ~ obtained by putting 

r  = r (2 .15)  

Because v 2 has compact support, (2.10), (2.11) and (2.14) make 

I(I)(z)] < Const. e -2'lI~t (2.16) 

for Im z>0  and [z[ large; we see from (2.15) that  (2.16) continues to hold in Im z < 0  for 

large I z}. 

Now in fact, ~0(t) vanishes outside O. Therefore (I)(z) is, in Im z >t0, continuous up to 

I ~ = R ~  0 except, perhaps, at the endpoint, o] the components o/ O. By (2.15), the same is 

true in Im z~<0, and we see from (2.14) and the lemma in step (a) that,  if xEP is not such 

an endpoint, 

[ (I)(x • i0)[ < 3[ W(x)] (.r~ L)/~ e6m. (2.17) 

Concerning the behaviour of (I)(z) near the endpoints of the components of O, we now 

have the 

L EM~A. 1] C is an endpoint o] a component o] 0 and z E t )  is close to c, 

Ir < O(Iz-c]-~ ). (2A8) 

Proo[. Without loss of generality, let c be a le/t endpoint of such a component. 

If - g / 6  <arg ( z - c )<~ /6  and z is sufficiently close to c, 1r is subharmonic in the 

circle of radius ~ l c - z [  about z and there satisfies I(I)(~)lx/4<const. Jim ff[-~/e by (2.15) 
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and the fact that  (x + i)-4~P(x) EH 1/2. Integration around this circle yields [ (I)(z) [ 1/4 ~< 

eonst. Iz-cl- ,2 
If z E • satisfies z/6 < arg (z - c) < 117~/6, use the facts that  ~ vanishes outside 0 and 

that  ~EA together with (2.11), (2.14) and (2.15) to obtain 

1 
log Ir < �89 log i z-~c~ + 0(1) 

for z close enough to c. 

We thus have (2.18), or better, in both sectors. 

3,  

The function r obtained in w 2 has one more property. By the lemma in step (a) 

of the construction in w 2 together with the fact that  W(x)>I1 and (2.13), (2.14): 

I(I)(b)] ~> �89 -a. (3.1) 

Of course, bEO since O~<b~<l and 1 is large. Our idea now is to use the results o/ 

Part I to show that (2.16) and (2.17) contradict (3.1). log [qb(z)] is subharmonie in ~3 and 

by {2.16), (2.17) and (2.18), fulfills the conditions required by the corollary in Part I, 

w 4 with a = - 2  7 and 

M(x) = log 3 + �89 L log W(x) +(o(x). (3.2) 

We would like to use the corollary to conclude that  

log Ir l <~ 27 Y(b) + Jr  M(x)dw(x,  b) (3.3) I 

in the notation of Part I. 

The majorant M(x) given by (3.2) is not necessarily >10 on F; we are therefore 

obliged to fall back on Remark 2 to the corollary of Part  I w 4. Writing Mr(x)= 

�89 W(x)+log 3, M2(x)=~(x), we have Mt(x)~>0 , and must examine the behaviour 

of Us(z) = Sr ~(t)dm(t, z). 

Since v 2 is of compact support, [v~(t)[ is bounded for large [tl, hence [Us(z)[ is 

bounded for large ]z]. Suppose z tends to an endpoint, o--without loss of generality, a 

/eft endpoint--of a component of O. Put  z = c + ~  2 with R e ~ > 0 ,  then Us(z) may be 

estimated by using Poisson's integral for the right ~-plane. For t E F just to the /eft of c 

we have ]~(t)] ~< 0 (log 1~[t-c]), from which we easily find ]Us(z)[ ~< 0 (log 1/[~[) = 

o (log lll -c l). 
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The behaviour of U2(z) is, by Remark 2 to the corollary in question, more than 

sufficient for the justification of (3.3). Using the definition of the Selberg number 

Av(b) =A(b) given in Part  I, w 1, (3.2) and (3.3) yield 

log lr l <<. - 2--~ A(b) + fr~(X) dw(x, b) + �89 f r  log W(x) dw(x, b) + log 3. (3.4) 

We shall estimate each o/the integrals on the right in (3.4) as multiples o/A(b). 

(a) E~timate o/ f r  (p(x) do~(x, b). 

Since l, the half-width of the component of 0 containing 0, is large, we have, say, 

[~(x) [ ~< 1 on P so Sr~/l(X)da~(x, b) <~ 1, and the main problem is to estimate Sr ~z(x)doJ(x, b). 
By (2.9) and (2.11), 

fr~,(x)do~(x,b)=~f r r~/ 2t J2 ~-----~ + t~-~b2) yJ(t)dtd~ b)" (3.5) 

As in Part  I, let us denote the Green's function for D by Gv(z, w) or just G(z, w). A 
weU-known formula (the derivation given in [18], p. 87 holds for the kind of infinite 

domains considered here) says that  

O(t' b) ffi log + fr  l~176 (3.6) 

For the time being, write 

Off) = O(t, b)+G(-t ,  b). (3.7) 

Since I~(t)[ vanishes outside O = R ~ F  and is bounded, it is easy to verify absolute con- 

vergence of the double integral on the right in (3.5). After changing the order of integration 

therein, we find, with the help of (3.6), 

fr r deo(x, b) = - 1 f :  W(t) G'(0 d$ (3.8) 
7r 

For positive tEO, by (3.6) and (3.7), 

[dlo -b )J = -)1- <0, (3.9) 

since 0 ~< b < 1 and 1 is large. 
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Let (~,fl), with l < ~ < f l ,  be a component of O. Note that  G(t) vanishes on F since 

O - - -  O. I t  is also easy to see that G'(~ + ) =  c~, G ' ( f l - ) = -  ~ .  From (3.9) we see that  

G'(t) has precisely one zero in (~, fl), say at m, ~ <m <ft. Since G(~)=G(~)=0,  G(m)>0, 
and I~p(t)[ ~<~t/2, we find 1; - ~  ~o(t)O'(Odt<-<. O(ml. (3.10) 

According to the lemma in step (a) of the construction in w 2, fi - ~ >L. So one of the 

differences m - ~ ,  f i - m  is >L/2; without loss of generality, say it is the first one. By 

(3.9), G(t) is a concave function of log (t~-b 2) for m-L/2<~t<~m. Since G(m-L/2)>O, 
this concavity yields 

G(t) >~ ~G(m) for m-L/4  < t < m (3.11) 

provided that m/L is large. From (3.10) and (3.11), by positivity of G(t), 

12Lj~f~O(t)dt, (3.12) 

which certainly holds whenever 1/L is large enough, since m > 1. 

In like manner, provided that 1/L is sufficiently large, 

~(t) G'(t) (3.13) 

Use (3.12) and (3.13) to sum the right-hand integral in (3.8) over the separate 

components of ON (2, oo). We get 

.< 12 
frfo,(x)do~(x,b)~-~f?G(t)dt. 

Since Sr ~l(x)d~ z, b) ~< 1 we have, by (3.7) and the definition of Av(b) given in Part  I w 1, 

~r  12Av(b) (3.14) ~v(x) dco(x, b) <~ l q L ' 

valid whenever l/L is large. 

(b) Estimate o / f r  log W(x) &o(x, b). 

The circle I zl < 1 lies in O and 0 ~< b ~< 1. So, since log W(x) >1 0, by Harnack's theorem, 

f r log  W(x)&o(x,b)<~l+ l ~r log W(x)din(x, 0). (3.15) 
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The function W(z), given by (2.3), is entire, of exponential type 4A, and satisfies 

W(x)= W(-x)>11, x ER. By the regularity of ]C(x)] established in the lemma of w 1 

together with (2.3), 

Put 

For xEF, Ixl ~l, so 

Wt(z)= l + (~)~W(z). (3.17) 

fr log W(x)dco(x, O) <. f r  log W~(x)dco(x, 0). (3.18) 

According to the theorem of Part I w 5, the integral on the right in (3.18) may be 

estimated in terms of 

J ,=  foo log Wl(X)dx (3.19) 
.Io x 

alone, because Wl(0)= 1, Wz(x ) = Wt(-x)~> 1 for xER, and Wz(z ) is entire, of exponential 

type 4A. Using that theorem we find 

f r l o g  A(O)[Jl + V ~  eJl(Jz + 2A)]. (3.20) Wz(x) do~(x, O) 

By Part I w 1, for xE O, A(x)=z~Y(x) with Y(z) positive and harmonic in D. Another 

application of Harnack's theorem thus yields 

l + l  
A(0) ~< ~ A(b). (3.21) 

Now (3.16), (3.17) and Lebesgue's dominated convergence theorem applied to (3.19) 

show that Jz-~0 for 1-+ cr So (3.15), (3.18), (3.20) and (3.21) together yield 

f r l o g  < 6(1) Av(b), (3.22) W(x) doJ( x, b) 

with an expression ~(1), depending only on W(z) and the parameter l, which tends to zero 
as l -~  oo. 

Q 

Now we can finish the proof of the theorem of Beurling and Malliavin by showing 

that (3.1) cannot hold i/the parameter 1 (the half-width of the component of O containing 
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O) is very large. Recall that  in step (a) of the construction in w 2 we took L equal to 

max (24g]~, �89 Substitution of (3.14) and (3.22) into (3.4) thus yields, for large l, 

(4.1) 

where ~(1)-~0 as l-~ ~ .  Another application of (3.21) gives us 

log Ir l < ~A~(0) ~ log 3 + 1, (4.2) 
2z 

valid for all sufficiently large 1. 

Let now ~0z=C~-{(-~,  - l ]  U [l, ~)}, and call G~(z, w) the Green's function for •l. 

We have ]0~_~0 so Gz(t,O)<.Gv(t,O) for teR,  whence (Part I w 1), 

A,(0) = 0) t G,(t, 0)dr. (4.3) 

The second integral on the right in (4.3) is,/rein homogeneity considerations alone, seen to be 

a purely numerical multiple of 1. (In fact, it  is equal to gl.) Therefore (4.2) contradicts 

(3.1) for large enough l, and our proof of the theorem of Beurling and Malliavin is 

complete. 

Remark. Examination of the details in the preceding line of argument would permit 

us to obtain quantitative information about the function g(z) satisfying (1.7) which is 

shown to exist by the theorem of w 1. Such information would be expressed in terms of ~/, 

A, and the behaviour of Jz (formula (3.19)) for large/---thus, ultimately, in terms of the 

behaviour of IC(x) l" 

HI.  A d d e n d u m  

In [2], Beurling and Malliavin also proved that  ff log W(x) is positive and uniformly 
continuous on R and ff 

~ log W(x) < 
~ x  2 dx oo, (1) 

then, for each ~ > 0 there is a non-zero entire function/(z) of exponential type 27 with 

f(x) W(x) bounded on R. As we now show, this result is in fact a simple consequence of the 

corresponding one proved in Part I I  for the case where W(x) is an entire function of expo. 

nential type. The following discussion is elementary, and does not use material from 

Parts I or II.  

19t -  782905 Acta mathemattca 142. Imprim6 le l I  Mai 1979 
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By working with W.(x) instead of W(x), with 

log W.(x)=sup {co(x); 0<co(t)< log W(t) and [co'(t)[ ,.<k, te t t} ,  

k being a suitable constant, we easily reduce the situation to one where uni/orm continuity 

is replaced by the property of being uni/ormly Lip 1 on R. Supposing henceforth this 

reduction made, we assume, without loss of generality, that  

Ilog W(x)-log W(x') I < Ix- 'l on R. 

If  we can find an entire function T(z) of exponential type 2 with 

t[W(x)] v~< T(x), xea, 

f ~ log T(x)dx< 
r l + x  

(2) 

(3) 

(4) 

we will be done by the result established in Par t  II .  

Take 

D(x) =~t(x ~ + 1) [W(x)] * 

and write 

l(x)a(X)dx, IIllln= <1' g>~= J_~ ~(x) 

(5) 

For zfiC, let M(z) be sup [/(z)l /or / ranging over the entire /unctions o~ exponential 

type < 1, bounded on the real axis, with II/ll--< 1. 

First of all, for real x, 

M(x) ~ �89 x~v~. (6) 

Indeed, if xoER, take the test function 

[o(Z) = cos V(z - $o) * - �89 (log W(xo)) ~. (7) 

The idea of using such test functions is on p. 252 of L. de Brange's book [4]; the particular 

form (7) was once suggested to me by a paper of H. Widom [19]. Since cos w is even,/o(z) 

is entire; it is clearly of exponential type 1 and bounded on R. Since log W(x) >~0 we see, 

with the help of (2) and a simple diagram, that  I/0(x)[ <M(x) on R, whence, by (5), 

II/0]]n < 1. Therefore M(xo) >~ If0(x0) l = cosh (2 -x'2 log W(xo) ), proving (6) with x = x o. 

Observe that  M(x)>~ 1 since W(x)>~ 1. Let  us show that  

f f  log M(x) . < ax (s) 
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If /(z)  is entire of exponential type < 1 and bounded on the real axis, we have, e.g. from 

p. 93 of [3], 

log l/(z)I ~< tYl + 1 ffo~ 
lyl log I/(t) l dt 

I~-t? " (9) 

By the inequality between geometric and arithmetic means, for l Yl ~> 1 the right side of 

(9) is easily seen to be 

1 ~o <lyl+ f_. ~ lul iz_ tl~ log [-q~-)] a, + log II/11~, 
and this yields 

g--s_l foo l?(_?4t)/_~l)dt" (10) log M(x + i) <<. 14,~,~J_oo ( - ) + 

The analogue of (9) holds with l(z+i) in place of l(z). If II/ll.<t we have by definition 

I/(x + i) I <~ M(x + i), so, using (10) together with Fubini's theorem, 

and finally, by (5), 

1 (~ log[~(t)/~z]dt 
II(x)l'< ~" + 7~ L.o (-~- i~-~-~ 

M(~)<2 + ~ f~ l~ ((t~ + l) [W(O] ~) ( x _ t ) ~ T - ~  dt (11) 

for xER, from which (8) follows by  (1). 

Let {pn(z)} be any sequence of entire functions of exponential type ~< 1 bounded on 

the real axis, complete and orthonormal with respect to the inner product ( , )~.  In view of 

the completeness, a straightforward computation with Schwarz' inequality shows 

Ip.(x)l '= [M(x)]', xeR. (12) 
n 

For each N, put TN(z)=~n~npn(z)p*(z) where p*(z)=pn(~); each TN(z ) is entire, of 

exponential type 2, and bounded on the real axis; in addition, for xER, 

0 < Tn(x) <~ (M(x)) 2, (13) 

by  (12). We see from (13) and (8), together with the inequality from p. 93 of [3] used 

earlier, that  the T~c(z) form a normal ]amily in the complex plane. By (12), TN(x) ~ H (M(x)) s 

on R, so the Tn(z) tend to an entire ]unction T(z) with T(x)= (M(x)) ~ on the real axis. An 

argument of Akhiezer ([1], pp. 285-287; his reasoning is reproduced in [12], pp. 629-631) 

shows that T(z) is in fact of exponential type 2. By  (6) and (8), T(x) satisfies (3) and (4), 

and we have finished. 
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