HARMONIC ESTIMATION IN CERTAIN SLIT REGIONS
AND A THEOREM OF BEURLING AND MALLIAVIN

BY

PAUL KOOSIS

University of California
Los Angeles, Calif., U.S.A.

Introduction

Suppose we form a domain D consisting of the union of the upper and lower half
planes and a finite number of bounded open intervals from the real axis. The remainder,
I', of the real axis is the boundary of D. If u(z) is subharmonic in D, behaves reasonably
well near I', and is dominated by a|Im z| for |z| large, and if, on T', the boundary
values u(x+¢0) are known to be less than some given majorant M (z), the possible size of
at any point of D is governed by two factors:

(i) The allowed rate of growth (or required rate of decrease, as the case may be) of
u(z) at oo.
(ii) The magnitude of the majorant M(z).

The interplay between these two factors is studied in Part I of the present paper. It is
remarkable that in many cases their effects are comparable, and depend on the domain
D solely through a quantity, called here the Selberg number, having a quite simple func-
tion-theoretic definition.

The results obtained in Part I are specific enough to yield a fairly straightforward
duality proof of a theorem of Beurling and Malliavin [2] on the existence of certain kinds
of multipliers for entire functions of exponential type. This application is given in Part II.

Part III contains an elementary derivation of another multiplier theorem of Beurling
and Malliavin from the one proved in Part II. It can be read independently of the rest of
the paper.

Work on the material presented here took several years, and was completed at the
end of 1977 while I was staying at the Mittag-Leffler Institute in Sweden. I am very
grateful to Professor L. Carleson of that institute for having let me discuss the ideas of
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my investigation with him, and especially for encouraging me to not abandom them when
it seemed hopelessly bogged down. I also thank him for advice and criticism which helped
me to improve the written presentation.

I. Harmonic Estimation in Slit Regions

We are interested in obtaining bounds for subharmonic functions defined in regions
D like the one in Fig. 1, obtained by cutting out a finite number of bounded open intervals
from the real axis R. Such regions include the open upper and lower half planes. We will
denote RN D by O and the boundary R~ of D by I'. It will always be assumed that
0€0.

Each segment of I' is of course assumed to have two sides. If z is on such a segment
and not an endpoint of it, and if U(z) is defined for 2€ D, we generally have to distinguish
between the two boundary values

U@+40)= lim U(x+idy), U(x—1i0)= lim U(x—1y),

y->0+ =0+

assuming that the limits exist. If they are equal, we denote their common value by U(x).

1.
In order to take account of the behaviour, for large values of |z[, of functions sub-

harmonic in ), we require a Phragmén-Lindel6f function Y,(z) with the following
properties:

(i) Yp(2) is harmonic and positive in D
(il) Yp(2) is continuous up to I' and vanishes there
(iii) Yp(z) =|Im z]| +0(1).

Clearly, there can be only one such function.

The first problem we take up is that of finding Y p(z). Our solution is in terms of
the Green’s function Gy(z, w) for D. Recall that for fixed w€D, Gp(z, w) is positive and
harmonic in 2 for € D, save near w where it equals log (1/|z—w|) plus a harmonic function
of z. For fixed w€ D, @p(z, w) is continuous up to the boundary of D where it vanishes—for
our domains D we can thus assume without further ado that Gy(x, w) is defined for all real
z, and zero if x ¢ 0. We have the symmetry Gy(z, w) = Gp(w, 2) (see [18], p. 17) and, for our
domains D, the obvious relation GQy(z, w)=Gy(Z, w).

Now we have

1—§|+G,,(z,t)] ds. (1.1)
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Indeed, by contour integration, limg.e 2z log |1l —(2/t)| dt =z |Im z|, so that (1.1) can be

rewritten
1
Yp(z) =|Imz| + f Gplz, t)dt. (1.2)
o
From this, properties (ii) and (iii) of Yp(2) are manifest, and so is (i) except for the har-

monicity of Yp(z) at points of Q. To verify that, take a large A with Q= (-4, 4), put
T',=Tn[—A4, 4], and rewrite (1.1) thus:

dt+lJ’ log
T T,

The harmonicity of this expression at points of O is clear.

2
t

Yolz)= 1 " 1=as+ L [ o n+1 |z—t]+1 Il
o(2) e og : 7, o(2, t) +log Ogltl .

A

From (1.2) we have, in particular,

Yy(x)= 71; fo Go(x, t)dt, xz€0.

The integral [, Gy, t)dt = [Ty, Gplx, t)dt plays an important role in the present study. We
call it the Selberg number for D at x and denote it by Ap(x). Thus, Yp{x)=n"1Ap(x).

H. Selberg first studied f, Gy(z, t)dt and obtained a precise upper bound for it in [16].
See also [18], p. 24.

2.
We now study harmonic measure on the boundary I' of D. If w € D and # runs along I',

we denote by dwp(x, w) the differential element of harmonic measure for D, as seen from w.
Because I has two sides, we specify that wy([x, z + Ax], w) is to mean the combined harmonic
measure of both sides of T along the segment [z, x+ Ax] lying thereon. It is also convenient
to make dwy(z, w) a differential on all of R by taking it to be identically zero when
goes through O.

It is possible to give a remarkable upper bound for wy((— oo, ~x]U [z, o), 0), de-
pending on the domain D solely through the Selberg number Ap(0).

In what follows, we frequently drop the subscript D to simplify the notation,
writing Y(z) for Y,(z), G(z, w) for Gp(z, w), and so forth. For real ¢, G(t, 0) is continuous
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save near 0 where it behaves like log (1/|¢]), and isidentically zero outside the bounded set O.
We can therefore talk about its Hilbert transform. All the material we use about Hilbert
transforms is in Chapter 5 of [17]. The symbol p.v. [ denotes a Cauchy principal value of
the integral.

LEMMmA,

1 D, J“’ G(t, 0) dt={ zw([z, o), 0) ifx>0 (2.1)

7 cw X—t —mw((— o, ),0) if z<0.

Proof. For Im z>0, consider the analytic function

F(z)= u f ” w; (2.2)

) o 2—1

since @(z, 0) is harmonic for Im z >0 and tends to 0 as z— oo in that half plane, we have by

Poisson’s formuls
F(z) =G(z,0)+iV(z), Imz>0, (2.3)

where, at points x on the real axis V(z) has a non-tangential boundary value V(x) equal
to the left hand side of (2.1) (see [17], Chapter 5).

At each non-zero € 0, V'(x) exists and equals zero. Indeed, such an z lies in a little
interval I< O having a neighborhood in which @(z, 0) is harmonic, so that F(z) can be
analytically continued into all of that neighborhood. This makes V(z) infinitely differenti-
able on I, and by the Cauchy-Riemann equations, V'(x)= — G,(x, 0) which is zero since
G(z, 0)=G(3, 0).

If €T is not an endpoint of one of its components,

. dow(z, 0)

Vix)=— ot

(2.4)
For, by the well-known relation between the normal derivative of Green’s function and
harmonic measure ([18], p. 20),

do(z,0) _ 1 0.0V — @ (2 — 0.0Vl = L -
Ta om [G,(x+10,0) — G (= z0,0)]—n (z + 140, 0),

taking the two sides of I' and the relation G(Z, 0)=G(z, 0) into account. But G{(t, 0)
vanishes outside O, so (2.2) can be differentiated at z=x here to yield

f‘” G(t, 0)dt

oo (®—1)%"

1
V'(x) = - 7_t
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Since G(xz, 0)=0, (2.3) and (2.2) show that this last expression equals — G (x+10, 0) on
taking the limit of a difference quotient. We thus have (2.4).

Near 0, G(t, 0)=log (1/|¢|) plus an infinitely differentiable function of ¢. Thence, by
direct calculation, V(x) has a simple jump discontinuity at 0, increasing by 7 there. Finally,
V(z)—>0 as x—> + oo, for GQ(t, 0) has compact support.

The information about V(x) and V’(x) already obtained implies that V(x) equals the
right side of (2.1), provided that it is continuous at the endpoints of the components of Q.
But it is, for G{¢, 0) is easily seen to be Lip } at the endpoints and infinitely differentiable
elsewhere, save at 0. So V(x) is also Lip % at those endpoints ([17], pp. 145-146), and we are

done.
Notation. For >0,
Qp(x) = Q(z) = wp((— o, —2]V [%, ©°), 0). (2.5)

In terms of this notation, (2.1) reads:

CoroLLARY. For 2>0,

2

Q@)= = p.v.f i 2 Golt, 0) ds. (2.6)

=]

Since G(t, 0) has compact support,

More is true.

THEOREM. For >0,
Ap(0
Ql2) < % (2.7)
Proof. Given any z,>0, let I'y=T"U(— o0, —x,]U [%,, ), Og=R~Ty, and let D, be
the complement of I'y in the complex plane C (see Fig. 2, top of next page).
Let G4z, w) be the Green’s function for Dy, and, for z>0, let £,(x) be the harmonic

measure of ['yN [(—o°, —x]U [, o)} for D,, as seen from 0. Since D,= D,

Q) < Qo). (2.8)
For the same reason, Gy(z, 0)<@(z, 0), so, if og>1, by (2.6) applied to Q, and G,
_2 [ 0xyGy(t,0) 20 %o 20A(0)
Qq(ox,) nz f—z« sz% 2 dt< nz(gz —1)zg ), Q(t,0)di< e '2(92 =) "’-o’ (2.9)

for Gy(t, 0) vanishes outside 0y< (— x4, %o)-
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The idea now is to show that Qg(ow,)/Q4{x,) has a positive lower bound depending
only on the parameter g >1. For this purpose, take a third domain
E=Cr~((—o0, ~2]V [z, 0))
we have D,= £ and we put
y=I'N (-2 2), then Dy=E~y.

Let dwy(x, 0) be the differential element of harmonic measure on I'y for D,, as seen
from 0, and take the function W,(z) bounded and harmonic in &, determined by the
boundary conditions

Wox+1i0) =0, x,<|z|< g,
Wolz£i0) =1, gz <|x| <oo.

Then, by Poisson’s formula for D,,

Qlere) = Wel0)~ | Wela)dont, O (2.10)
Qolxg) =1— j doy(z, 0). (2.11)
Y
However,
W) S W,0) for —zy <z <z, (2.12)

To see this, let ¢ be a conformal mapping of {|w|< 1} onto £ which takes the diameter
(—1,1) onto (—wxy, 2,), with ¢(0)=0. W,(p(w)) is then the combined harmonic measure of
the arcs o={e'%; a<8<m—a} and G= —o, for the unit disk, as seen from w therein.
Here «, 0 <a<n/2, is a certain number depending only on g. If —1 <w <1, W (p(w)) is by
symmetry equal to twice the harmonic measure of the upper arc, o. The level lines for this
harmonic measure are, however, just the circles through the endpoints of ¢. It is now
obvious from Fig. 3 that, for —1<w<1, W (p(w)) is at its maximum when w=0, and
{2.12) is proved.
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From (2.12), (2.11) and (2.10) we have Qy(ox,) = W ,(0) Q,(x,), with W,(0) depending
on g alone by homogeneity. Substitution of this last relation into (2.9) followed by use of
(2.8) yields

20 A(0)
W We(0) (e —1) =z

To obtain (2.7) from this, note that W,(0)=2n"'(3n—«), which works out to

(2/7) arcsin (1/p) by explicit computation with ¢(w). Put this value into the previous relation

Q(xy) <

and make g o0; one gets (2.7) with z, instead of 2. Q.E.D.

3.
As substitute for a regularity in (x) which is lacking here ('(x) = — o whenever x

or —x is an endpoint of a component of O, and these components may be very numerous),

we derive a quadratic inequality involving d{(2Q(z}).
LEMMaA. For x40,
1 [ z+t
G(z,0)+G(—=x, 0)=- log |—— | (tQ(8)). (3.1
xJo x—t

Proof. G(x, 0)€EL2, so, continuing, as in the proof of the lemma, § 2, to denote the left
side of (2.1) by V(x), we have ([17], Chapter 5)

o]
Gz, 0)= —:—t p.v.f UL

o X—1t
By (2.1) and (2.5), V() — V(—¢)=nQ(t) for >0 which, with the preceding, gives

Xz, 0)+F(—=,0)= _p‘v‘f 2t§22(t)¢2;lt.
o *°—1

(3.2)

The Cauchy principal value on the right is evaluated by integrating by parts, first from
0 to |x| —¢ and from |z| +& to oo, s0 as to obtain some integrated terms together with a
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new integral involving d(#€)(t)). The fact, following from (2.5), that Q(f) is Lip 4 makes the
sum of the integrated terms go to zero as £é-0, and we end up with (3.1).

From 2.6 and the fact that G(t, 0) vanishes outside O bounded, we get the convergent
expansion
2A(O) c o

Q)= rx 2 o

valid for large x. The function Q(x) decreases from 1 to 0 on [0, o) and has the constant

value 1 near 0. Using these facts we easily verify that

[7 [ 1022

28 v deae)

converges absolutely.

TEEOREM. We have

e

Proof. By (3.1), [&log (|z+t]/|z~¢))d(Qt))>0 for >0, while d(zQ(x)) <Q(z)dx
there since Q(x) is decreasing. So by (3.1), the left side of (3.3) is

2
] Q1)) d(2Q(x)) < LA S’)]. (3.3)

< f " 2[G(x, 0) + G( -z, 0)] Q(z) dx,
0

which in turn is<n-1A(0) [§[G(z, 0) + G(—=z, 0)]dz by (2.7). This last equals [A(0)]*/~
by definition of the Selberg number (§ 1).

4.
We apply the results of §§1-3 in order to obtain estimates for certain functions
subharmonie in .

LemMma. Let v(z), subharmonic in D, have the following properties:

(i) At each €Y not an endpoint of one of its components, v has boundary values satis-
fying v(z+i0)<0,
(ii) There is an o<} such that v(z) <O(|2—c|~=) near any endpoint ¢ of any component
of T,
(iii) v(z)<a|Imz| +O(1) for 2€D with |2| large.

Then v{z) <aYyp(z) for 2€D. In particular, for x€0, v(x) <alAy{z)/n.
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Proof. Suppose first that we know how to construct a Phragmén-Lindelsf function
p(z) behaving thus: p(z) is harmonic and positive in D and tends to oo like |z—c|~7 when
z tends to any endpoint ¢ of any component of I'; here, ¢ is a number between o and }.
Granted this, the lemma follows easily. Indeed, using the properties of Yyp(z) established
in § 1, we see by the principle of maximum that v(z) —a Y,(2) —ep(2) <0 in D for each ¢ >0.

Here is a construction of p(z). Let the infinite components of I' be (— oo, a,] and
[y, =), and the finite ones (if there are any) be [a,, b,], ..., [@;, b,]. Then

per=ref (B (2 o 3 {(22) (3

does the job.

CoROLLARY. Let M(t) be positive and coniinuous on I, save perhaps af the endpoints of

its components, and suppose that

f M(t) dwy(t, 0) < . (4.1)
r

Let u(z) be subharmonic in D and have, at each x€I" not an endpoint of one of its
components, boundary values satisfying w(x+10)<M(x). Let u(z) also have properties (ii)
and (iii) required of v(2) in the above lemma.

Then, for z€D,

u(z) KaYp(z)+ f M(t)dwy(t, 2). (4.2)
r

Proof. Since M(t)>0, (4.1) implies by Harnack’s theorem that fr M(t)dwy(t, 2)< o
for every z€D. The corellary thence follows on applying the above lemma to

v(2) = u(z) — fr M(t)dwy(t, 2).

Remark 1. M(t) is allowed to become infinite at the endpoints of the components of
I' (and at o), but as long as (4.1) holds, (4.2) furnishes a useable bound for u(z).

Remark 2. Relation (4.2) still holds (and we shall in Part II, have occasion to use it)
in certain situations where M(t) is not >0 on I'. Suppose, for instance, that M(t)=
M, (t)+ My(t), where M,(t) =0 satisfies (4.1) and M,(t), of variable sign, is such that

fr | My(t)|devy(t, 0) < o0
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If the harmonic function
Uy(2) = fr My(t) doop(t, 2)
18
(i) =—0(|z—c|~*) near any endpoint ¢ of any component of I', with an «<};
(ii) bounded below for all z in D of sufficiently large modulus;

then (4.2) holds for subharmonic functions u(z) fulfilling the other conditions of the corollary.

This extension is immediate. Simply write wu,(z)=u(2)—uy(z), then the corollary
applies as it stands with u,(z) in place of u(z) and M,(¢) in place of M(f). Add u,(z) to
both sides of the inequality corresponding to (4.2).

If M(t)>0, we would like to use the theorem of § 2 so as to estimate the integral on
the right side of (4.2) in terms of {r(M(x)/2?)dz. This, however, is not possible in general,
because dw(t, 0)/dt is infinite at the endpoints of the components of I', and there is no
limitation on the number of these components. In order to be able to make such a com-
parison, we must impose a cerfain smoothness, of a nature determined by the results in § 3,

on the majorant M(f).

Definition. Let M(x) be even. We call M(x)/x a Green potential on (0, o) if

M [ o2
0 g x—1

- do(t) for z+0 (4.3)

with a real signed measure ¢ making the integral absolutely convergent for all z€R.

Definition. If M(x)/x is a Green potential on (0, o) and if

(o] 00
f f log
0 Jo

with g the real signed measure from (4.3), we call

M v o] o0
E<—¥>= fo fo logli—:-i—:ldg(t)dg(x) (4.4)

ﬂlldg(t)nd@mlw

x—1

the energy of M(x)/x.

This energy appears in the work of Beurling and Malliavin [2]. I think one of the
reasons for its appearance there is that it is a natural measure for the kind of smoothness
M(t) must have.
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THEOREM. If M(x) is positive and even, M(x)/x a Green potential on (0, 0), and the
tntegral in (4.4) absolutely convergent,

f M{z)dwp{z, 0) < n(O) [
0
Proof. Since M(x) is even, by (2.5),

J M(z)dw(z, 0)= —JmM(x)dQ(x)= me(x) M)alac—Jm'ZLI(—ac)d(acQ(ac)). (4.6)
T 0 0 x 0 x

]/ B{ /M (”)>] (4.5)

Because M(z) >0, the first integral on the right is <(A(0)/7) [T (M(2)/2?)dx by (2.7). Ac-
cording to the hypothesis, we can use (4.3) in the second integral on the right hand side of
(4.6), obtaining

x—t’dg(t)d(xQ(x)). (4.7)

J""’J’w z+t
log
1] 0 -

Now, as long as the double integral in (4.4) and a corresponding one involving da converge

absolutely, the real bilinear form
——t(dea) dofa)

FFI" z+t
0 Jo gz“

in dg and do is positive definite. (See [13], p. 92 and pp. 215-219; log (|z+®|/|z2—w)) is

the Green’s function for the right half plane. A more elementary discussion is given in [9],
pp. 255-256.) Therefore Schwarz’ inequality holds for 4t. This, applied to the expression in
(4.7), shows that the latter is in modulus <z~ *2A(0) (E{M(x)/x>)''?, by (4.4) and the theorem
of § 3. Substituting this estimate back into (4.6), we get (4.5), Q.E.D.

Remark. If u(z) is subharmonic in D and satisfies the hypothesis of the above
corollary with an M(¢) fulfilling the conditions of the theorem, the relation z¥Y(0)=A(0)
yields, with (4.2) and (4.5),

(0)<A”(O)[ f 1) dt-l-V E< (t)>] (4.8)

Thus, at the cost of making rather special assumptions about the majorant M(x) for u(x+10)
on I', we have obtained an estimate for u(0) which depends on D only through the Selberg
number Ay(0).

19 — 782905 Acta mathematica 142, Imprimé le 11 Mai 1979
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5.

The theorem at the end of the preceding § applies to certain positive majorants
M (x) of the form (4.3) for which the double integral in (4.4) is nof absolutely convergent.
Indeed, positive definiteness of the real bilinear form used in the proof of that theorem
makes VE( > a Hilbert space norm on the collection of Green potentials (4.3) with
absolutely convergent integrals (4.4), and it is manifest that (4.5) and (4.8) continue to
hold, with E(M(t)/t) defined by continuity, as long as M(x)/x is in the closure of that
collection under the norm VE’( >.

Under this head falls the important case when M{z) is the logarithm of an entire func-
tion of exponential type. Then the second term on the right in (4.5) can be expressed in terms
of the first. In dealing with such majorants, one can reduce the situation (see §§1 and
3 of Part IT) to one where

M(x) =log T(x), (5.1)
with 7'(z) an entire function of exponential type 2B say, such that
TO)=1, T(x)=T(—x) =1 forz€R, (5.2)
and
o0
f lgg__ﬂzﬁ)dx< oo, (6.3)
0 X

By a well-known extension of a factorization theorem due to Riesz ([3], p. 125), condi-
tion (5.3) is enough ([3], p. 86) to guarantee the existence of an entire function G(z) of
exponential type B, having all its zeros in Im 2 <0, such that T(x)=|G(x)|? for real . In
the present case, (5.2) implies 7'(—2z)=T(z), so, since also T(2)=Fz), the zeros of T'(z)
lying in Im z<0 can be enumerated thus:

{A, Ay n=1,2,3,..},
with Re 4, >0. Under the circumstances, the construction on page 125 of [3] shows that

we can take(l)

6@ =11 (1—1) (1+1) (5.4)
Il N i) .
Now, for Im A<0 and Im z>0, by Poisson’s formula,
z z 1 [ Zl{Imad ImAi
= V=2 B ¥ Wl Wil 5.5
log (1 1) (1+7[) ﬂfo log(1-35 (ll—t|’+|1+t|2)dt' (5.5)

Taking the logarithm of the modulus on each side of (5.4), substituting (5.5), and
changing the order of integration and summation, we get

<] 2
log |G(z)|= fo log {1 —;5 dv(t) for Imz>0, (5.6)

(1) The right side of (5.4) perhaps also contains single factors of the form (1 + 2% ug) with py> 0.
The right side of (5.7) must then be modified actordingly.
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where

d(t) 12| I
v(t) =%§(I m| | mlnl) (5.7)

Tt T (v e)

The change in order of integration and summation is surely justified when /4 <arg z < 3= /4,
for then log |1 —22/#2| >0 for ¢t €R. This means in particular that the right hand integral in
(5.6) converges whenever z=1y, y >0. But it is then easy to see that the integral converges
uniformly on compact subsets of Im z>0, clearly yielding a function harmonic in Im z 0.
Since the left side of (5.8) is also harmonic there, the two sides agree for Im 2=0.

For z=x real, the right side of (5.6) may be integrated by parts twice, the second
partial integration resembling the one applied to (3.2). Taking »(0) =0, one finds ([11],
pp. 136-137),

””Hl (@) for z€R. (5.8)

Thus, log T(x)[x=2 log |G(x)| [z is a Green potential on (0, ) according to the defini-
tion of § 4.

Now, under conditions (5.2) and (5.3), E (log T(x)/x) has meaning and is finite. This
was first seen by Beurling and Malliavin [2]. Quantitatively,

log |G(x)|= —xf log

log 7'(2)\
E<l ,)S2eJU+B) (5.9)

with J = ¢ (log T(x)/«?)dz, and we have the

THEOREM. If T(x) ¢8 entire of exponential type 2 B with T(x)=T(—z) =1 and T(0)=1,
then

A,,(O)

f log T'(x) dwo(x, 0) < =2 [J + V2med (J + B)],
r

where

0
[
Proof. Firstly, in the special situation where

Jo L osl22 ) o2

the theorem follows directly from (4.5) and (5.9). In order to obtain (5.9), we may here apply
(4.4) directly to (5.8), getting

E<log T(av)>= _ 4f°° log IG(x)Id<M) < 2f°° va) log T(@) .
x 0 ?

0 z z x z°

x+t

< oo, (5.10)
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since log T'(x) =2 log|Q(x)| >0 and +'(x) 20 by (5.7). Formula (5.9) will follow as soon as
we show that

’i(;—)<e(B+J). (5.11)

To this end, observe that, by direct calculation with (5.6), we have the Jensen formula

fr 1i(t—)dt=bi Jm log | G(re®®)|d6. (5.12)

o ¢ 2710

On the other hand, for Im z>0, log |G(z)] is continuous and >log |G(Re z)| >0 by (5.4),
since Im A, <0. The Poisson representation for positive harmonic functions here yields
0
log |G(z)| = B Tm z+ lf I—“Lz-li—glf(’)-'dt for Im2>0, (5.13)
) o |zt
G(z) being of exponential type B.
Substitute (5.13) into (5.12) and perform an integration on the variable r (idea of
B. Nyman, [15], pp. 14-16). We find

R T o0 R
f(f z?dt)ﬂ=£‘§+_:l_2f (f lo: %_tﬂ)lo_g_lﬂt)_ldt_ (5_14)
o \Jo r 7w 2n° J_o\Jo r—t| r t
Now
® 1oz |1 e O] 7 B
0 0 r—t| r = 2 Itl

and, since »(t) is increasing, the left side of (5.14) is >»(R/e?)). Puiting x = R/e?, we obtain
a better inequality than (5.11). Thus (5.9), and the theorem, hold under the condition
(5.10).

Suppose that (5.10) is not fulfilled. According to the remarks at the beginning of this §,
(4.5) will stsll hold—by an evident weak convergence argument applied in the appropriate

Hilbert space—if we can construct a sequence of Green potentials

Qul@)= —ﬁ log y}z d(—”—"?) (5.15)

with
R R
EQ,(x)> < const., (5.17)

and

J ® l_o_gl_f_(ﬂl do(z) = lim fw Q,(x) do() (5.18)
n—>0040

0
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for every signed measure ¢ with [§|do(x)| <oo. (Note that do(z)=d(xQ(x)) has this

property.)
We take

rx), O0<z<n
n(x)={
r(n), z>n.

Using (5.15) and applying (5.6), (5.8) to »,, we get

2
1-2 lawe), (5.19)

2Q,(x) = f " log

0

from which we see that Q,(z)>0 for #>V2n since dy(t)>0. For the same reason, if
0<2<V2n, by (5.8), 2Q,(x) =log |G(x)| — §7 log |1 — (22/12)|dw(t) >1og | G(x) |, whichis >0
by (5.2). We thus have

Qn(z) 20 for xz=0. {5.20)

Also, @,(x) < (1/x) [ log (1 + (x2/82))dw(t) <A, a constant independent of n, when x>0, since
v(t) is O(t) on [0, o). Because (5.19) and (5.6) clearly imply @, (x) - log| Q(x)|/z pointwise
on R as n— co, (5.18) now follows from the bounded convergence theorem.

To prove (5.17) we use (5.15), (4.4), the fact that dv,(x)>0 and (5.20) to deduce

¥y ()

x2

0
E{Q,(2)> < J; o(x) dx. (6.21)
Write, for the moment, g(f) =»,(t)/t; we have o(t) =v(n)/t for ¢>n, also o(0)=2»'(0) is finite
by (5.7). Substituting (5.15) into the right side of (5.21) and changing the order of integration
in the resulting double integral, we obtain

Q(x) _ ) ti‘_t Q(_x) ©
f f das do(t) = Q(t)f log\t_x =)
+f0 (%L log't_—x 7dx) o(t)dt
- (2 [* 10g|L |2
_C[Q(O)]z"l-fo (dtfo log 1= 5 E df) (t)dt
L+é

= [y’ (0)2 + fw (F log |1
0 1}

= op - [0 2y,

Ak '(t€) df) o(t) dt
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e0
c=f log
0

all the steps being easily justified. We see that the right side of (5.21) equals 3c[+'(0)]%, and
(6.17) holds.

The verification of (5.9) remains. Using weak convergence and applying (5.18) with
do(x) =d(v,(z)/x), we see that

og|G@)\_ .. [ f m(z))] _ (log|G(=)| (M
E<l - /—hm lim | @, () ( '}‘13010 = d - )

Since log | G(x)] >0,

_f°° loglG(w)ld(v_m(_x))gf”zm_(_@ loglG(w)ldKf‘”mc_)loglG(x)ldx
° x o Z ’

0 z x x? a

where

—-¢

?

| S

1+£'

and

,Nog T(z)\ . Nlog|G(z)| * v(z) log | G(z)|
E<1 - /—4E<1 . ><4L - de

x

From here, the computation runs as it did at the beginning.
The theorem is completely proved.

II. The Theorem of Beurling and Malliavin
10
Suppose that F(z) is an entire function of exponential type, say of type 4. The

theorem of Beurling and Malliavin [2] says that if

© log* | F(x)]
fo T+ ©®<%

then, for every >0 there is a non-zero entire function f(z) of exponential type 25 with
both |f(z)| and |f(z)F(x)| bounded on the real axis.

We wish to prove this theorem using the results of Part I. It is enough to show
the existence of a non-zero f(z) of arbitrary exponential type 2#>0 such that
|f()|2(1 + | F(z) |2+ | F(—=)[?) is bounded on R. In other words, we want such an f with
T(x)|f(x)|? bounded on R, T'(z) being the entire function of exponential type 2A given by

T(2) = 1 + F(z) F*(z) + F{—2) F*(—2). (1.1)
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{Here, and in all that follows, we use systematically the notation F*(z)=F(Z) for entire
functions F(z).) The advantage of introducing 7'(2) is that now T'(x)=T(—=z)>1 forreal z,

while we still have

® log T'(x
f_w 1g+;2)dx<oo. (1.2)

As in Part I, § 5, this condition enables us to apply a generalization of Riesz’ factorization
theorem ([3], pp. 125 and 86), getting an entire function G(z) of exponential type A having
all its zeros in Im z2<0 with

T(2) = G(z) G*(z). (1.3)
Evidently, |G(—=z)| =|G(=)|.

A Phragmén-Lindelof theorem ([3], p. 82) says that |f(x)@(x})| is bounded for real x
if and only if |f(x + 3¢)G(x +34)| is. We can obtain a non-zero entire / of exponential type
27, making the latter expression bounded, provided that there is a non-zero g of exponential
type n with

—dr<oo,

f ® |g(x) G+ 3i)|
—® 1+42°

For then the f given by f(z+3¢) =2-2g(2) sin? (n2/2) will work ([3], p. 82).
The reason for using G{x+ 3¢) instead of G(z) is that its behaviour has a certain
regularity. Henceforth, we work with the entire function

O(z) = e 34Q(z + 31). (1.4)
LeMmaA. For real z, |C(z)| =|C(—2x)] =1, and

> log|0@)|, _
f_w T+ dr<oo,

If x and x' are both real,
|C(2)| < |Ca) |t ~=m, (1.5)

Proof. As we saw in proving the theorem of Part I, § 5, log | 3(z)| has a Poisson repre-
sentation in Im 2>0, which, for z2=2 43¢ can here be written

1 {* 3log|@G

Since |G(t)] =|G(—1)| =1, the first statement of the lemma is immediate, and (1.8) yields

dlog|C
21810 4 rog o)

on differentiation. This last relation gives us (1.5).
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In the rest of Part 11, L* means L¥— oo, o) and the HP spaces involved always refer to
the upper half plane. Property (1.5) of C(x) plays no role in the following result.

TrEOREM. Let ’)7>0 If the cone
{ ( ) e2mz‘ f( ) f 2 >0 d 2}
K= z)+ i — f(z N €H , PV an €L

s not dense in L2, there is a non-zero entire function g(2) of exponential type y with

f ® |C(x) g(=)]

g de<e (1.7)

Proof. Non-density of K implies the existence of a non-zero Q €L?* with
Re (% Q(z)k(z)dz>0 for all kEK.
From this we see immediately that

ReQ(x)>0 a.e.,z€R (1.8)

and that e"@(x) € H2, where p(x) =Q(z)/| C(x)|2. (See [5], p. 195. Note that ¢ € L? because
|C(@)| >1.)
By (1.8) there is a function y(z), —x/2 <p(x)<n/2, with

p(x)e™@ >0 a.e., 2€R. (1.9)

Take now the harmonic conjugate function

"( —-1 ® _1_+__t_) t)dt‘
@)= pv- | Aot Ey ) v

the bounds on ¢ ensure that (x+14)-%*” exp (P(zx) —p()) is in H? for every p <1. (See, for
instance, [8], p. 70 together with [7], p. 130.) Using this statement with p=2/3, the fact
that g €L? and Holder’s inequality with exponents 4 and 4/3, one sees that

(2 +14)~* ¥ () VO VO € H12 (1.10)

There is thus a function H(z) regular in Im 2>0, having almost everywhere on R a non-
tangential boundary value H(z) equal to p(z)e*®~%®, By (1.9), H(z) >0 a.e., and (1.10)
implies that H(z) is locally in H"? near R. A simple extension ([10], p. 1203) of a theorem due
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independently to Helson and Sarason ([6], pp. 10-11) and to Neuwirth and Newman ([14])
now says that the Schwarz reflection

H(z)=H(@) (L.11)

furnishes an analytic continuation of H(z) across R.

H(z) is thus entire, and for Im 2>0, (z41)”*e*"° H(z) € H'2. This, together with (1.11),
implies that H(z) is of exponential type 27 by a straightforward argument ({10}, pp.
1203-1204).

We have H(x) >0 and (%, VH(2)/(1 +2?)dx < oo. The extension of Riesz’ factorization
theorem already used ([3], p. 125) thus applies ([3], p. 86), and we have H(z)=g(2)g*(z)
for some evidently non-zero entire function g(z) of exponential type #.

We have, on the real axis, |C(z)|2H(x) = | C(x)|? ](p(x)le‘;"“ =|Q(=)| ¢"® where Q€L
Repeating the Holder-inequality argument used to prove (1.10) with @(x) in place of ¢(z),

we geb
® |C(2)| VH (=)
fﬂo it dx< oo,
which is the same as (1.7). Q.E.D.

2.
To prove the theorem of Beurling and Malliavin it is enough, by the discussion and

theorem in the preceding §, to show that for arbitrary » >0 the cone

2inz
K={P(x)+(i—;%)(‘fz’); fE€H®, pEL? and p>0}

is not dense in L%, Our procedure in what follows is to assume that K is dense and thereby
derive a contradiction.

We begin by carrying out a construction under this assumption, described in steps (a)
and (b) below.

() If K is dense in L?, for each N the function @u(x) equal to — |C(x)|? for || <N
and to zero elsewhere belongs to the closure of K, so we can certainly find Py(x) >
—Qu(x)|C(x)|2 >0 and fy€H? such that
Py(#) — ™ py(w)|| _1

lC(x) lz 2 2

Since |C(x)] =|C(—=x)|, this is clearly satisfied with 4[Py(x)+Py(—z)] instead of
Py(x) and 3[fy(x)+fy(—2x)] instead of fy(x); in other words, we can and do assume in
what follows that

@.1)

—

Pylz)=Py(~x), [n(2)=fu(—2).

We may clearly also assume that Py(x) is of compact support.
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We now fix a quantity L equal to max (24x/n, 4) and put
1 L
By(x)= 3L f_LPN(x +&)dt,
1 L
o= o5 [ i na
L

W(z)= if [Cz+ 8 CHe+ 1) dt.

(2.2)

(2.3)

Then R,(x) is >0 and of compact support, gy belongs to 4 (the space of functions analytic

in Im z> 0, continuous on Im 2z >0, and going to zero as z— o), and W(z) is entire of exponen-
tial type 4A, with W(z)>1 on the real axis. We also have: By(—x)=REy(x), gy(—2)=

pn(®), W(—2)=W(x).

LeEMMA. If N>2L, there is a bounded open set Oy on R such that

(i) Oy=—0y, (-N+L, N—L)< Oy, and each component of Oy has length >L;

(ii) For z€QOy, Re [e¥7gy(z)] >0,
(iii) For real x40y, |@y(z)|? <IW(2)]*"~
Also:
(iv) For —N+L<x<N-—L, Re [e¥py(x)] = } W ().

Proof. First of all, by Schwarz’ inequality and (2.1),

z+L
Ru(o)— ()= o7 f | (Pyle) =€ fy(s)) ds

is in modulus

< L ]/i—r |Clx + )[4 dt

2V a1}, ’

i.e., since 2L>1,
| By(z) - pu(z)| < } VW (@).
Suppose z,€R and

Ry(xg) > 2[W (o)™ 2.
Since Py=0, by (2.2),

RN(Q?) > [W(xo)](exp L)/2

(2.4)

(2.5)

(2.8)

throughout at least one of the intervals (x, — L, 2y], [y, %, +L). Take one on which (2.5) holds

and call it I,



HARMONIC ESTIMATION IN CERTAIN SLIT REGIONS 295

By (2.3) and (1.5), with help of the mean value theorem, W(x)<[W(xe)]"** for
|z —24| <L so, from (2.5) and (2.8),

Ry(x) >V W(x), =z€l, (2.7)

From (2.4) and (2.7), Re[*™gy(@)]>0 on I, so, since gy€4 is continuous,
Re (¥ gy(x)] >0 on some larger open interval I(xy)> I, with x4 € I{x,). I(x,) has length > L.

For each x,>0 satisfying (2.5) choose such an I(z,), and let ), be the union of all of
them. Q, is bounded because the set of x,>0 satisfying (2.5) is bounded, R, being of
compact support. Take Oy to be (~N+L, N-L)U, U (—2,) together with any one-
point components of the complement of that set in R.

We now have (i) by construction of Oy, and (ii) holds because @y() =m. I
x¢Oy, (2.5) fails for z,=xz by evenness of Ry, 8o (2.4) yields |@y(x)| <3 W(2)]* " gince
W(z)>1. This is stronger than (iii). Finally, (iv) follows from (2.2), (2.3), (2.4), and the
fact that Py(x) > —Qu(x)|C(x)|? which equals |C(z)|* for ~N<z<N.

(b} We now drop the subscript N and write O instead of Oy and ¢ instead of ¢y.
We henceforth denote the component of O containing 0 by (—1, I); we saw in the lemma
of step (a) that I >N —L. We think of | as a parameter which we can take as large as we like;
it 18 not to be confounded with the fixed quantity L=max (24n/y, }).

We use the notation of Part I, writing I for R~ O and taking D=C~T.

By the lemma of step (a) there is a function y(z) defined on O with —#/2 <y{z) <n/2
there and

&M p(z)e P 20, 2€0. (2.8)

——

We take yp(x) to be zero on I'=R~ 0. Since ¢(—2)=¢(z) and 0= -0,

() = —yp(—2). (2.9
‘Write
1 Z w(t)dt
Pa(x)=_ p.v. Lw_; i T (2.10)

The Hilbert transform is an isometry in L?® ([17], Chapter 5), whence |*; ((x))*dz < a2,
s0 by (2.9), which implies §,(—x)=i,(x), we can find a b, 0<b<1, with §,(b)> —3.
We now fix such a b€[0, 1] and write

¢

1 1
Py(z) = ;i p.v. f (th + m) w(t)dt. (2.11)

l¢j>2

By (2.9), s —x) =pPy(x) so in particular §,(b)=0.
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The function P(x)=P;(x) +Ps{x) will be taken as the harmonic conjugate of . Although
this definition of ¢ is different from the one used in proving the theorem of § 1, we still have,
for each p<1

(2 +4)=27 exp [p(e) — ip(x)] € P, (2.12)

as is easily verified. Note that by the choice of b,

P(b) = Py (b) > — 3. (2.13)
Let us now put
D(z) = e2fﬂrtp(x)e§'(z)—w<z>‘ (2.14)

Since p €A, (x+1)-27®(z)EH® for each p<1 by (2.12). When Im 2>0, the analogue of
(2.14) with z instead of x gives the analytic function @(z) having boundary data @(x) on R,
provided that the evident suitable definition of §(z)—4yp(z) is used. From (2.8) we have
®(x) >0 for x€ O; therefore an argument like the one used in proving the theorem of § 1
shows that ®(z) has an analytic continuation across O into all of D obtained by putting

D(z) = D(2). (2.15)
Because y has compact support, (2.10), (2.11) and (2.14) make
|®(2)] < Const. ¢~2nim =l (2.16)

for Im 2>0 and |z| large; we see from (2.15) that (2.16) continues to hold in Im z <0 for
large |z].

Now in fact, (¢} vanishes outside (. Therefore @(z) is, in Im 2z >0, continuous up to
I'=R~ O except, perhaps, at the endpoints of the components of Q. By (2.15), the same is
true in Im 2 <0, and we see from (2.14) and the lemma in step (a) that, if x€D is not such
an endpoint,

[ @ +40)| < 3[W (x) ] Di2e¥ea), (2.17)

Concerning the behaviour of ®(z) near the endpoints of the components of 0, we now
have the

LemMma. If ¢ i3 an endpoint of a component of O and z€D is close to c,
| ®(2)| < O(]z—c|~?). (2.18)

Proof. Without loss of generality, let ¢ be a left endpoint of such a component.
Ii —n/6<arg (z—c)<m/6 and z is sufficiently close to ¢, |®|¥/4 is subharmonic in the
circle of radius §[c—z| about z and there satisfies |®(()|¥4<const. |Im {|~? by (2.15)
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and the fact that (r+:)*®(x)€H"2. Integration around this circle yields |®(z)|1¢<
const. |z—c| V2.
If €D satisfies /6 <arg (z—c) <11z/6, use the facts that y vanishes outside O and

that @€ 4 together with (2.11), (2.14) and (2.15) to obtain

1
log |®(2)| < } log r=c| +0(1)

for z close enough to c.
We thus have (2.18), or better, in both sectors.

3.
The function @(z) obtained in § 2 has one more property. By the lemma in step (a)

of the construction in § 2 together with the fact that W(x)=1 and (2.13), (2.14):
|D@®)| = e2. (3.1)

Of course, b€ since 0<b<1 and ! is large. Our idea now ts to use the results of
Part I to show that (2.18) and (2.17) coniradict (3.1). log |®(z)] is subharmonic in D and
by (2.16), (2.17) and (2.18), fulfills the conditions required by the corollary in Part I,
§ 4 with a= —27 and

M(x) =log 3 +4e” log W(x)+§(x). (3.2)

We would like to use the corollary to conclude that

log |®@®)|< —29Y(b)+ f M(x)dw(zx, b) (3.3)
r

in the notation of Part I.

The majorant M(x) given by (3.2) is not necessarily >0 on I'; we are therefore
obliged to fall back on Remark 2 to the corollary of Part I §4. Writing M,(x)=
tellog W(x)+log 3, My(x)=5(x), we have M (x) >0, and must examine the behaviour
of Uy(z)= [r ¢(t)dw(t, 2).

Since y is of compact support, |§(f)| is bounded for large |¢|, hence |U,(z)| is
bounded for large |z|. Suppose z tends to an endpoint, c—without loss of generality, a
left endpoint—of a component of (0. Put z2=c+{? with Re (>0, then U,(z) may be
estimated by using Poisson’s integral for the right {-plane. For t€I" just to the left of ¢
we have |{(t)| <O (log1/|t—c]|), from which we easily find |U,(z)| <O (log1/|{]) =
0 (log 1/|z—¢|).
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The behaviour of U,(z) is, by Remark 2 to the corollary in question, more than
sufficient for the justification of (3.3). Using the definition of the Selberg number
Ap(b)=A(d) given in Part I, §1, (3.2) and (3.3) yield

log |®()|< - ?3_:] A+ f P(x) do(z, b) + %e"f log W(z)dw(z,b)+1og3. (3.4)
r r
We shall estimate each of the integrals on the right in (3.4) as multiples of A(b).
(a) Hstimate of f P(z) dw(z, b).
r

Since I, the half-width of the component of O containing 0, is large, we have, say,
|#1(z)| <1 onT so fr;(x)dw(z, b) <1, and the main problem is to estimate 1 (%) dw(z, b).
By (2.9) and (2.11),

1 [ 2t 2t
fp 1;52(&7) da)(x, b) = ;E fp J; (;2——-#_2 + tL—ZE) ‘l/J(t) dt dw(x, b). (35)

As in Part I, let us denote the Green’s function for D by Gy(z, w) or just G(z, w). A
well-known formula (the derivation given in [18], p. 87 holds for the kind of infinite

domains considered here) says that
G(t, b)=log “—_ITI + J; log |t — x| dw(z, b). (3.6)

For the time being, write
G(t) =G, by+G(—t, b). (3.7)

Since |y(t)| vanishes outside O=R~T" and is bounded, it is easy to verify absolute con-
vergence of the double integral on the right in (3.5). After changing the order of integration
therein, we find, with the help of (3.6),

[ pimrdoe ==L [T oon 38)
r 2

For positive t€0, by (3.6) and (3.7),

df daw 1 [ 2=*—b
dt [d log (t’—b“_)] B fr F—ap @b <0, @9

since 0<b<1 and [ is large.
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Let (a, B), with I<a<p, be a component of (. Note that G(t) vanishes on I' since
O=— 0. It is also easy to see that @ (x+)=00, G'(f—)= —oc. From (3.9) we see that
@'(t) has precisely one zero in («, B), say at m, a<m <p. Since G(x)=G(f)=0, G(m)>0,
and |y(t)| <#/2, we find

8
- 7}% f () &' (t) dt < G(m). (3.10)
According to the lemma in step (a) of the construction in § 2, § — > L. So one of the
differences m — a, §—m is >L/[2; without loss of generality, say it is the first one. By
(3.9), G(t) is a concave function of log (£2—b2%) for m—L/2<t<m. Since G(m—L/2)>0,

this concavity yields
G(t) = 4G(m) form—Ljd<t<m (3.11)

provided that m[L is large. From (3.10) and (3.11), by positivity of G(#),
-1 f ’ )G () dt< 12 fﬂ G(t) dt (3.12)
n). ¥ S L), ’ '

which certainly holds whenever !/L is large enough, since m>1.
In like manner, provided that I/L is sufficiently large,

1 f ltp(t)G(t)dt<1 f G(t) dt. (3.13)

Use (3.12) and (3.13) to sum the right-hand integral in (3.8) over the separate
components of 0N (2, o). We get

f Pa(@) doo(z, b)<g f wG(t)dt.
r L),

Since {1 ,(z)dw(x, b) <1 we have, by (3.7) and the definition of Ay(b) given in Part I §1,

12A,,(b) 5.14)

f P(x)dow(z,b) <1+ ———
valid whenever I/L is large.

(b) Estimate of f log W () dw(x, b).
r
The circle |z| <l lies in D and 0<b<1. So, since log W(x) >0, by Harnack’s theorem,

f log W(x)dw(x,b) < §+—1
r _

J' log W(z)dw(x,0). (3.15)
L)r
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The function W(z), given by (2.3), is entire, of exponential type 4A, and satisfies
W(x)=W(—=2)>1, z€R. By the regularity of |C(z)| established in the lemma of §1
together with (2.3),

*® log W(x)
f_w 152 dx < oo, (3.16)
Put
2
Wi(z) =1+ (;‘) W(z). (3.17)
For z€T, |z]| =1, so
f log W(z)dw(x, 0) < f log W (z) dw(z, 0). (3.18)
r r

According to the theorem of Part I § 5, the integral on the right in (3.18) may be

estimated in terms of
o0
J,= f log Wi(@) 5, (3.19)

0 x
alone, because W, (0)=1, W (x)=W (—=z)>1 for z€R, and W,(z) is entire, of exponential
type 4A. Using that theorem we find
A(0)

f log W(z) deo(z, 0) < =~ [/ + Vemed (J, + 24)]. (3.20)
r
By Part I § 1, for 2€ 0, A(x)=nY(x) with Y(z) positive and harmonic in D. Another

application of Harnack’s theorem thus yields

AD)< i—“:—i A®). (3.21)
Now (3.16), (3.17) and Lebesgue’s dominated convergence theorem applied to (3.19)
show that J,—0 for I—co. So (3.15), (3.18), (3.20) and (3.21) together yield

f log W(z)de(z, b) < (1) Ap(h), (3.22)
r

with an expression §(!), depending only on W(z) and the parameter /, which tends to zero

as |- oo,

4‘
Now we can finish the proof of the theorem of Beurling and Malliavin by showing

that (3.1) cannot hold if the parameter I {the half-width of the component of O containing
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0) is very large. Recall that in step (a) of the construction in §2 we took L equal to
max (24n/n, 4). Substitution of (3.14) and (3.22) into (3.4) thus yields, for large !,

loglcb(b)l<AD(b){—%7+é%+%e%(l)}+log3+ 1, (4.1)

where §(I)->0 as I->oo. Another application of (3.21) gives us

log |®()| < —z%t@+log3+l, (4.2)

valid for all sufficiently large 1.
Let now D;=C~ {(—o0, —IJU[I, o)}, and call G,(z, w) the Green’s function for D,.
We have D,= D so Gi(t, 0)<Gp(t, 0) for tER, whence (Part I §1),

00

Ap(0) = f " G, O)dt>f Gy(t, 0) dt. (4.3)

The second integral on the right in (4.3) is, from homogeneity considerations alone, seen to be
a purely numerical multiple of 1. (In fact, it is equal to zl.) Therefore (4.2) contradicts
(3.1) for large enough I, and our proof of the theorem of Beurling and Malliavin is
complete.

Remark. Examination of the details in the preceding line of argument would permit
us to obtain quantitative information about the function g(z) satisfying (1.7) which is
shown to exist by the theorem of § 1. Such information would be expressed in terms of 7,
4, and the behaviour of J, (formula (3.19)) for large l—thus, ultimately, in terms of the
behaviour of |C(z)].

HI. Addendum
In [2], Beurling and Malliavin also proved that if log W(x) is positive and uniformly
continuous on R and if

J’“’ log W(a:)dx< - )

o 1+2° !

then, for each >0 there is a non-zero entire function f(z) of exponential type 25 with
f(x) W(z) bounded on R. As we now show, this result is in fact a simple consequence of the
corresponding one proved in Part II for the case where W(x) is an entire function of expo-
nential type. The following discussion is elementary, and does not use material from
Parts I or II.

191 ~ 782905 Acta mathematica 142. Imprimé le 11 Mai 1979
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By working with W, () instead of W(x), with
log W u(x) =sup {w(z); 0<ow(t)<log W() and |o'(t)| <k, tER},

k being a suitable constant, we easily reduce the situation to one where uniform continuity
is replaced by the property of being uniformly Lip 1 on R. Supposing henceforth this
reduction made, we assume, without loss of generality, that

|log W(z)—log W(2'}| <|x—='| on R. (2)

If we can find an entire function 7'(z) of exponential type 2 with

HW@)]? < T(x), =ER, 3)
© log 7'
J_w 01g+ a(c? dz< oo, (4)

we will be done by the result established in Part II.
Take
Q(z) =n(a?+ 1) [W(x)]? (5)

and write

© f(2)g(x) VP
<f’g>ﬂ=f f( )g( )d.’l?, “f“ﬂ= <f1f>ﬂ'
—w Q)
For z€C, let M(z) be sup |f(z)| for f ranging over the entire functions of exponential
type <1, bounded on the real axis, with ||f|lo<1.
First of all, for real z,

M(z) > W (x)]". (6)

Indeed, if z,€R, take the test function

fol2) = cos ¥ (z — x,)* —~ } (log W(z,))*. ()

The idea of using such test functions is on p. 252 of L. de Brange’s book [4]; the particular

form (7) was once suggested to me by a paper of H. Widom [19]. Since cos w is even, fy(2)

is entire; it is clearly of exponential type 1 and bounded on R. Since log W(z) >0 we see,

with the help of (2) and a simple diagram, that |fy(z)| <M(z) on R, whence, by (5),

[ifolla<1. Therefore M(z,) = |fo(,)| =cosh (272 log W(x,)), proving (6) with z=ax,.
Observe that M(z)>1 since W(z)>1. Let us show that

© log M
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If f(2) is entire of exponential type <1 and bounded on the real axis, we have, e.g. from
p- 93 of [3],
1 [ |y|log|f()|dt
<lyl+= | P
gl )| <o+ ; | PG ©
By the inequality between geometric and arithmetic means, for |y| =1 the right side of

(9) is easily seen to be

L[ |yl Q)
<lol+g; [ tos || detog ],

and this yields
. 1 log (Q(t)/x)
<1+— | S g
log M{x+1)<1+ 27!.[._00 @— 0 +1 dt (10)
The analogue of (9) holds with f(z+4) in place of f(z). If ||f||q<1 we have by definition
|f(x+13)| <M(x+1), so, using (10) together with Fubini’s theorem,

® log [QX(t)/7] dt

1

v -

and finally, by (5),

1 [ log ((¢*+1) [W(®)I")
< fal
M(x) 2+7tf_m @0+ 4 dt (11)
for z€R, from which (8) follows by (1).
Let {p,(z)} be any sequence of entire functions of exponential type <1 bounded on
the real axis, complete and orthonormal with respect to the inner product {,>q. In view of
the completeness, a straightforward computation with Schwarz’ inequality shows

2 |pa(@) [ = [M(2)]®, x€R. 12)

For each N, put Ty(z) =2 ,<y Pn(2)Dn(z) Where pyi(z) =p,(Z); each Ty(z) is entire, of
exponential type 2, and bounded on the real axis; in addition, for z€R,

0 < Ty(2) < (M(2))?, (13)

by (12). We see from (13) and (8), together with the inequality from p. 93 of [3] used
earlier, that the T'y(z) form a normal family in the complex plane. By (12), Ty(x) — y (M(x))?
on R, so the T'y(z) tend to an entire function T'(z) with T'(x)=(M(z))? on the real axis. An
argument of Akhiezer ([1], pp. 285-287; his reasoning is reproduced in [12], pp. 629-631)
shows that 7'(z) is in fact of exponential type 2. By (6) and (8), T'(x) satisfies (3) and (4),

and we have finished.
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