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Introduction

The so-called “Cauchy Problem” has a very long and classical story, from J. Hadamard
[71, I. G. Petrovski [22], J. Leray [20], L. Garding [6], ... to, for example, the last results
of Ivrii and Pietkov [13] or L. Hérmander [12], but we will not review here.

The difficulty treated by the last authors lies in the fact that the principal symbol
of the operator is not of simple characteristic, and the lower order symbols have an
essential role (Levi conditions). However, we know by [4] that with the use of hyper-
functions the situation is simple: ‘“hyperbolicity” is given by the principal symbol. This
fact allows us to treat the case of (overdetermined) systems. In this paper, we treat the
initial value problem and the problem of propagation for hyperfunction or microfunction
solutions of (micro-)hyperbolic systems. The hyperbolicity is just a geometrical property
of the complex characteristic variety of the system.
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2 M. KASHIWARA AND P. SCHAPIRA

Let M be a real analytic manifold, X a complexification of M, and T X the conormal
bundle of M in the cotangent vector bundle T*X of X. Let us denote by C,, the sheaf of
microfunctions on Ty X, and by £y the sheaf of microdifferential operators on 7*X
(cf. [24]). Let M be a coherent £x-module and SS(N) its characteristic variety (in 7™ X).
We say (cf. [17]) that a covector 6 € T*(T*X) is micro-hyperbolic for M if H(6) does not
belong to the normal cone to SS(M) along Ty X. We denote this cone by C(SS(M); T3 X).
Here H is the identification of T(T*M) and T*(T*M) by the symplectic structure. Recall
that O(SS(M); TyX),< T, (T*X) is the set of limits of sequences (in some local chart)
a, (%, —y,), with a,€R, ,€SS(M), y. €Ty X, x,—>, y,—> = (cf. §1).

When the system reduces to a single equation, that is when M=E;/ExP for a
microdifferential operator P, the system is micro-hyperbolic in the codirection 6 at
(g, t1o) ET1e X if, in some local chart we have: a(P)((z, in) +eH(0))==0 for (z,in) in a
neighbourhood of (z,, i7,) in T35 X and 0<e<1. o(P) denotes the principal symbol of P.
Thus in the case of differential operators we get the usual definition of weak hyperbolicity.

We prove the following prolongation theorem: if Z is a conic closed set of 7 X, and
if the exterior conormals to Z at x€0Z are micro-hyperbolic for M then, for any 4,
Extl, (M, T2(Cu)): =0.

Meanwhile we prove the following: let NV be an analytic submanifold of M, and assume
that all conormals to N in M are micro-hyperbolic for M. Let ¥ be the complexification
of Nin X,® and g the natural maps from T*X x;Y to T*X and T*Y and My the
system induced by M on Y. We write Hom (¥, G) for the sheaf of homomorphisms of
the sheaf F in the sheaf @, and Ext/ for the jth derived functor of Hom. Then for any j
we have a natural isomorphism:

9*5)—1 EXtéx (mr CM) =~ EXt‘éy(mh CN)

that is, the Cauchy problem is well posed (for microfunctions) on N. If we assume that
M is a module on the ring Dy of differential operators and that N is a submanifold of M,
replacing the sheaf C by the sheaf B of hyperfunctions, we get the isomorphisms
Exthy (M, By)| N ~ Ext} (My, By)
In the case of a single equation M =1Dy;/DxP, where P is of order m, My is a free
Dy-module of rank m, and we obtain:
Hom,,, (M, B,y)| N = Ker (BM? B,)| N ~By

EXt%x(m, BM)IN = (BM/PBM)lN =0

which is equivalent to the fact that the usual Cauchy Problem is well posed. When the
system 7 reduces to a single equation, these theorems were proved, in the differential case,
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by J. M. Bony and P. Schapira [4], then in the microdifferential case by M. Kashiwara
and T. Kawai [17].

To prove these theorems, we represent the sheaf C, by a sheaf of boundary values
of holomorphic functions on a strictly pseudo-convex domain of €*, and we prove a pro-
longation theorem for the holomorphic solutions of the system. For this, first we must
define the action of microdifferential operators: if V,< V, << D are open subsets of C",
T" is a real convex proper cone of C* and if (V,+1I')—(Vy+T')=V,—V,, then we define
the ring E(I'; D) of microdifferential operators defined near D xI' which acts on
O(V,)/O(V,) (O(V) denotes the space of holomorphic functions on V).

The geometry of the prolongation theorem being invariant by a change of real
coordinates, we are lead to a geometrical problem quite simple in its nature.

We will give three applications:

1. We give a new proof for our previous result of [19]. Let ¥ be a complex submanifold
of X, x€T*X x,Y, and let N and } be two coherent &£,-modules defined near z.
Assume that Y is non microcharacteristic for (M, M), i.e., the conormals to ¥ in X do not
belong to C(SS(M); SS(MN)). Let U® be the module generated by # over the ring £8§ of
complex microlocal operators. Then for all j, Ext}, (M, N*), ~Ext}, (My, N¥)ew, that is,
the Cauchy problem is well posed for (M, M®) on Y.

This theorem improves the results of [8], [9] and moreover gives a generalization for
systems. At the same time we prove the prolongation theorem which we could not get by
the complex method in [19].

2. We extend a theorem of J. M. Bony and P. Schapira [5] on the propagation of
singularities to a more general setting where one has systems of equations. Again we
emphasize that this gives stronger result for the case of a single equation.

Let A be a conic involutive submanifold of 73X, A€ the complexification of A in
T™X, and A the union of bicharacteristic leaves of A€ issued from A. Let 7 be a coherent
Ex-module such that any non zero vector of T'5(T%X) does not belong to C(SS(M); 11).
Then, the support of a section of Homg, (M, Cy|A) is a union of bicharacteristic leaves of
A (in fact we give a theorem which treats all the group Extl, (M, Cy|A)).

3. We extend a result of M. Kashiwara [15] to the microdifferential case, and prove
that if M is a holonomic £z-module, the sheaves Ext} (7, Cy) are locally constant along
strata of a stratification of SS(M)N Th%X which satisfies the Whitney conditions.

We shall now give the plan of this paper.

In § 1, we review microdifferential operators, microfunctions, ete.

In §2 we give the notion of micro-hyperbolicity and announce the main theorems
on the initial value problem and on the prolongation.
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In §3, we define the ring E(G; D) of ‘““micro-differential operators defined near
D x(—@%” and give the operation of this ring on the relative cohomology group with
holomorphic functions as coefficients. Also, we investigate the geometry of conormal cones
and @Q-flat sets.

In §4, we give the theorem of prolongation in the complex domain.

§5 is a preliminary but important part of the proof of the main theorems and uses
results from § 4. We finish the proof in §7.

In § 6, we give the proof of the division theorem for sheaves of microfunctions with
holomorphic parameters, which is necessary for the proof of the initial value theorem for
micro-hyperbolic systems.

§8, §9, and § 10 are for the applications of micro-hyperbolic systems.

§ 1. Preliminaries
1.1. Let W be a manifold of class Ct, TW the tangent vector bundle to W, and let V
and 8 be two subsets of W.

Definition 1.1.1. The normal cone C,(S; V) of 8§ along V at z is the subset of 7, W
defined by:
Cy(S; V)={vE€T(W); there are sequences {z,} in S, {y,} in V and {a,} in R, such
that {x,} and {y,} converge to x and that a,(x,—¥,) converge to v}.
We denote by C(8; V) the union of C(S; V) (x€ W). The definition is free from the choice
of local coordinate systems.
Note that:
C(V; 8) is a closed cone in TW.
C(S; V)= —C(V; 8).
If V is smooth, C,(S; V) is a closed cone of T, W, invariant by 7', V. We sometimes
identify it with its image in 7'y W, and denote it by Cy(8). C(y(S)=0(S; {z}) will
be denoted by C.(S).
If we identify W with the diagonal of W x W and TW with T',(W x W) the normal to
A by the first component, we have (cf. [19]):

O(8; V) = Ca(S x V).

If W is open in some vector space, v € T',(W) does not belong to C,(S; V) if and only
if there exists an open cone I' with v€T" such that

UnV)+HnUnsS =0

for some neighborhood U of z.
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1.2. We review in this section and the following ones some constructions of [24].

Let W be a C?manifold and V a C%*submanifold of W. We denote by T™*W the
cotangent vector bundle to W, and by 75 W the conormal bundle to V in W. We endow
(W—V)1] TvW with the topology of the comonoidal transform (cf. [24, chapter 1, § 2]
where this topology is only defined on W [[ ST W, S} W being the spherical cotangent
bundle, but that of (W — V)] T% W is the inverse image of the preceding by the mapping
which identifies two points of 7' W on the same orbit of the action of R+).

Let 7 denote the projection of (W—V)[[TvW on W, and let F be a sheaf on W.
We have for (z, £)€TTW:

(Mspwl F))s e, = lim HY(U, F)
UG

where U runs on the family of neighborhoods of z in W and @ on the family of closed sets
of W such that the normal cone Cy(G), to G along V at z is contained in the set
{0}V {v€T, W; (v, £) >0}. The sheaf Wty w(n~LF) is regarded as a sheaf on T*W supported
by TV W. It is locally constant on the orbits of the action of R+. If we identify W with
the zero section Ty, W of T*W we have

b wl™F) | T W = H5(P).

We denote by a the antipodal map on T*W:
a: (z, §) > (x, —§).

We denote by wyy the sheaf of relative orientation of V in W.

1.3. Now let X be a complex analytic manifold of dimension #, X the complex
cotangent vector bundle to X and @ the canonical 1-form on 7*X. For local coordinates
(245 +os Zn3 £y, oo &) o0 T* X, we have

w= i Lidz,.

=1
The isomorphism H of T*(T*X) on T(7T*X) associated to  is defined by:

<6, v> = {dw, v A H(0))
for veT(T*X), 6T T*X).

We denote by Oy the sheaf on X of holomorphic functions. If ¥ is a complex sub-
manifold of codimension d, the sheaf C}x on T7X is defined, with the preceding nota-
tions, by:

C¥|x = ﬂ%;x(n'l Oz



6 M. KASHIWARA AND P. SCHAPIRA

Let ¢ be the projection on the complex projective cotangent bundle:
y: T*X ~ T3 X > P*X.

The sheaf C%ix on TyX is defined by:

Cox|T* X —T3X =y "7.Chx
CPx|T%X = Chix| Tx X (= H{Oy)).

If we take local coordinates, it is possible to associate a symbol of infinite order with any
section of C%x (cf. [24, chapter 2, §1]). The sheaf Cy; is then defined as the subsheaf
of C¥%)x of sections of finite order.
The sheaf £% of microlocal operators on T*X is given by:
E¥=Chixx ® Q2%
Oxxx

where Q. denotes the sheaf of holomorphic forms of type (0, n) on X x X. The sheaf
ER owns a natural structure of (unitary, non commutative) ring (cf. § 3) and

YMTxX=D%

where DY is the sheaf on X of differential operators of infinite order.

We construct in the same way the sheaf £% (resp. Ex) of microdifferential operators
of infinite order (resp. finite order) with Cx.x (resp. Cx x«x) instead of C¥x.x. Then,
we have

EF|X=D%

E X I X= D X
where Dy is the sheaf (of rings) of differential operators of finite order on X.
A system of microdifferential equations is, by definition, a coherent £x-module M,

defined on an open subset U of T™X. ‘The characteristic variety of the system, denoted
by SS(M), is nothing but the support of M in U.

Example. Let (P) be an N x N matrix of microdifferential operators on U< T™X.
We associate M= E%/EX(P). Then there exists ([23]) a holomorphic function on U,
homogeneous in {, denoted by det (P), such that:

88(M) = {(z, {) € U; det (P)(z, {) = 0}.

If N=1, det (P) coincides with the. principal symbol o(P) of P.
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1.4. Let Y be a complex analytic manifold, and ¢ a holomorphic map from Y to X.
We denote by @ and ¢ the natural mappings:

(1.4.1) & T*X X Y>T*X
X
o:T*X xY->T*Y.
X
If we identify Y with the graph of ¢ in ¥ xX and Ty Y x X) with T*X xy Y, the
(01 EY, @1 ER)-bimodule €%, on T*X x, Y is defined by:

R R dim X
Elx=Clrx ® Q™ P,
Oox

and the (@1€%, -1 EY)-bimodule €%,y is defined by
ERev=Chrx® Q™ D,
oy
The sheaves £%.x, €y-»x,..- are constructed in the same way, with CHy.«x or Cryxx

instead of C¥jy«x. If (2, ...,2,) is a system of coordinates on X and Y is given by
%, =...=2,=0, there are (non canonical) isomorphisms of £xz-modules:

Exer > Ex/Exty+.. + Exzy
Evox = Exf2 Ex+... +2,Ex.

If M is a coherent £y-module, the inverse image of M by ¢ is by definition

my= 9*(8Y—>XE® m.

The map @ is non characteristic if g is proper (hence finite) on @-288(). In this case My
is a coherent £y-module with the support g(@-1SS(M)).

1.6. Let now M be a real analytic manifold of dimension », and X a complexification
of M. The sheaf C, of microfunctions is the sheaf on Ty X given by:

Car=Hig x(n7 02 @ W

This sheaf is naturally endowed with a structure of left £%-module, and a fortiori, o
£€%- and E€z-module. Moreover:

CM|M=BM

where B, denotes the sheaf of hyperfunctions on M.
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1.6. To end this paragraph, let us remark that in [24] the sheaves Cyix, Cy, ... are
constructed on the projective or spherical cotangent bundles, but it seems more con-
venient to get all these sheaves on the same space, T*X. Although the letters Cyx; Cy,
do not denote exactly the same objects as in [24] we keep these notations. At the
contrary we denote by £x and EF the sheaves denoted by D% and Dy (on P*X) in [24],
and we call the sections microdifferential operators instead of pseudo-differential operators.

§ 2. Statement of main theorems

2.1, Let M be a real analytic manifold and X a complexification of M. Let 7 be a
coherent £xz-module on an open set U of T*X, V a closed set in U, x a point of U and
6 a vector of TH(T™*X).

Definition 2.1.1. (a) We say that 0 is non microcharacteristic for (M, V) if:
H(0) ¢C.(88(M); V),

(b) if V is the characteristic variety of a coherent £x-module }, we say in this case 6
is non microcharacteristic for (M, N).
(¢) If V=T}XnU, we say that 0 is microhyperbolic for M.

Definition 2.1.1 (a) has been introduced when M is reduced to a single equation and
V is a complex submanifold of T*X, in a different but equivalent way by J. M. Bony [2].

Definition 2.1.1 (b) has been introduced and studied in detail in our previous paper
[19].

Definition 2.1.1 (c¢) has been introduced (under the name of “partial microhyper-
bolicity”’) by M. Kashiwara and T. Kawai [17].

Let now ¢ denote a holomorphic map from Y to X. We denote, as in the preceding
section (1.4.1), by & and g the natural mappings associated to ¢.

Definition 2.1.2. (a) We say that @ is non microcharacteristic for (M, V) at xz if, for
any nonzero covector 6€ T, X with ¢*(0)=0, the covector n*() is non microcharac-
teristic for (M, V).

(b) If V is the characteristic variety of a coherent £x-module H, one may say that
@ is non microcharacteristic for (M, N) at .

(c) If @ is the complexification of a real analytic map from N to M, and if V=TxX,
we say that @ is microhyperbolic for M at x when any non zero covector § of M with
@*(0) =0 is non microcharacteristic for (M, V).



MICRO-HYPERBOLIC SYSTEMS 9

(d) In the preceding situation, if 2 belongs to M =M x,TxX (in this case M is a
coherent Dy-module) we just say that ¢ is hyperbolic for M at .

(e) If N is a submanifold of M and if ¢ is the injection of NV in M, we also say that N
is (micro-)hyperbolic for M.

It is clear that if x belongs to V, and if ¢ is non microcharacteristic for (M, V) at x,
@ is non microcharacteristic for (M, {x}) at z, and this last condition implies that ¢ is

non characteristic at z (the converse is false).

Example 1. Assume that M is reduced to a single equation, that is, M=~ E4/Ex. P,
for a microdifferential operator P. Let V be a complex analytic submanifold of 7*X and let r
be the smallest integer such that ¢(P) vanishes with all its derivatives of order <ron V.
Let 6 belong to T¥(T*X), z€EV. We can prove [19] that 8 is non microcharacteristic for
(M, V) if and only if

o(P)(x+eH(0)) = o(e).
Hence, in this case, the definition is that introduced by J. M. Bony [2].

Example 2. Assume M= EX/EY- P where P is an N x N matrix of microdifferential
operators on U< T™*X. Let (2y, ..., 2,; {1, .., {n) be & system of local coordinates on 7™X,
in a neighborhood of (2?; i7°®) € Ty X, where z=x +1y, { =& + . It is easy to prove, with the
help of the local Bochner tube theorem [24] that M is micro-hyperbolic in the dz,-
codirection at (2% #°) if and only if we have:

(det P) (x; in+€0) 0

for 0<e<l, z real, 7 real, |[z—2°| <1, [p—-%°| <1, for 6=(1,0, ... 0). Hence we find
at least in the case of one operator, the classical definition of (weak) hyperbolicity [22].

2.2. To formulate, and mainly to prove, our theorems, we use systematically the
language of derived category, as in [24]. In particular, R Hom, RI', Rf,, ... stand for the
right derived functors of Hom, I, f,, ... and @ for the left derived functor of ®.

Let Z be a subset of 7% X, and p a point in. T3 X. A conormal 0 to Z is, by definition,
a covector § at p satisfying <0, v> >0 for any v¢C(TyX —Z, Z). If Z is defined by an
equation ¢ >0 with dp=0, the conormal to Z at p €Z-int Z is cdp(p) with ¢>0. Note that,
for p4Z —int Z, no covector is a conormal of Z at p. We shall show that T(TxX)—
C(TyX —Z,Z) is an open convex cone in § 3.
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THEOREM 2.2.1. Let M be a left coherent Ey-module defined in a neighborhood of
2€TyX. Let Z be a closed subset of TyX such that x is not in the interior of Z. If, for any
conormal 0 of Z at x, —8 is micro-hyperbolic for M, then:

R Hom,, (M, RI'z(Cy)). = 0.

If = belongs to Ty M we obtain:

CoROLLARY 2.2.2. Let N be a left coherent Dx-module defined in a neighborhood of &
point x in M, and let Z be o closed set in M such that x does not belong to the interior of Z.
We assume that any conormal of Z at x is hyperbolic for M. Then, we have

R Homy,, (M; T'z(By)), = 0.

Theorem 2.1.1 is of local type. However, once we obtained a theorem of local type,
it is not difficult to get a theorem of global type, using only geometric arguments.

Let @ be an open convex cone in TU. An open set Q in U is called Q-flat if
CU-Q,QnQ=92.

THEOREM 2.2.3. Let M be o left coherent &x-module defined on an open set U of
TuX, Q an open convex cone of TU. Assume that
(i) any codirection 8 such that {8, Q> >0 is microhyperbolic for M,
(ii) there is a C'-function g on U such that U,cv{ve€T,U; (v, dg(p))>0}=>0Q.
Then, for any couple of Q-flat open sets £2,>Q, in U such that Q, —Q,=< U, we have
EXtéx (Qy; m, CM):;EXt:’sx (Qg; M, Ch)-

2.3. Let N and M be two real analytic manifolds, and let @ be a real analytic map from
N to M, which extends to a holomorphic map from Y to X. Here Y and X are complexi-
fications of N and M. We denote, as usual, by & and g the natural map from T*X x , ¥
to T*X and T™Y associated to ¢.

TurorREM 2.3.1. Let M be a left coherent Ex-module on an open set UcT*X. We
assume that @ is micro-hyperbolic for M on U and we make the extra assumption:
2.3.1) &Y U)N @ YSS(M)) N oY T% Y)< oY Th X).
Then the natural homomorphism

0+® R Hom,, (M, Cy)—>R Hom,, (My, Cy)
18 an isomorphism.
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Let us make the following remark. Since ¢ is microhyperbolic, we can always let the
condition (2.3.1) be satisfied by shrinking U without changing UN T3 X. Thus this
condition just means that we must not include points of SS(M) outside 73 X in the calcu-
lation of My. If U contains T3 M we obtain:

CoROLLARY 2.3.2. Let M be a left coherent Dx-module. Let ¢ be an analytic map from
N to M, hyperbolic for ™ on M. Then the natural homomorphism:

@~ (R Homp, (M, By))—> R Hom,, (My, By)

18 an isomorphism.

It is well known [24] that on a complex manifold of complex dimension n, a coherent

Ex-module admits, locally, projective resolutions of length <n. Thus we get:

CoROLLARY 2.3.3. Let N be a submanifold of M of dimension m, and assume N
micro-hyperbolic for M at €T3 X xy N. Then,

EXt‘éx(my CM)I = 0’ i > m.

If M is reduced to a single equation, the induced system on a non characteristic
hypersurface is a free module of finite rank, and we get by Theorem 2.3.1 Ext, (M, Cu) =0,
2>0 in this case. The same is true for Dy and B, instead of £, and C,,.

As already mentioned in the introduction, Theorems 2.2.1 and 2.3.1 have been
proved, for a single equation, by J. M. Bony and P. Schapira [4] for the differential case,
then by M. Kashiwara and T. Kawai [17] for the microdifferential case.

2.4. To prove Theorem 2.3.1 we will prove the vanishing theorem of cohomology
group in sheaves of microfunctions which are partly holomorphic in some variable
(sheaves Cy+ x), and these results can be useful in the study of boundary value problems,

§ 3. Action of microdifferential operators in the complex domain

3.1. Let X be a complex manifold of dimension n, and take a point p in the cotangent
bundle 7*X. The ring £X is defined as the inductive limit:

(3.1) €8 = lim HYQ x Q; 0°"),
z.Q

where Q runs on the set of neighborhoods of 7(p) and Z runs on the set of closed sets in
X x X satisfying

3.2) Ca(Z) < {v€ Ty X; Re (v, p) > 0} U {0}.
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Here, A means the diagonal set and O™ is the sheaf of n-forms with respect to the
second variable. We shall try to provide each cohomology group H%(Q x Q; 0™) with
the ring structure so that &} is obtained by the inductive limit. Recall first how the ring
structure on ER is defined: denote by p,, the projection from X x X x X onto X x X by
the ith and jth components (i.e. p,;(,, &, #3) ={(x,, z,)). Then, the multiplication is obtained

as the composition:
(3.3) lim HH(Q x Q; 0 ™) xlim HH(Q x Q; 0 ")
>l By gy (Q X Q2 X Q5 0°)
—»l'in> HHQ xQ; 0°™).
The first arrow is defined by the cup-product and the second arrow is induced from
Rp 0% ™™ > (0%™[—~n], where the subscript ! denotes the subsheaf of sections with
proper support.
Definition 3.1.1. A closed set Z in X x X is called proper ordering on X if Z satisfies
the following conditions:
(i) Z contains the diagonal set A.
(ii) If Z contains (z,y) and (y, 2), then Z contains (z, 2), i.e. pa(pi7Z N p2s Z)<Z.
(iii) The map piz Z N pzg Z 22, Z is a proper map.
Definition 3.1.2. We say that an open set Q in Z is Z-round, if {y; (z, y), (y, 2)€Z}

-1

is contained in Q for any x and z in Q; equivalently, p,(pi* QNP3 QN piZ ZN p3y Z)=Q
where p; are the projection from X x X x X onto X by the jth component.

Definition 3.1.3. We call an open set Q in X, Z-open if {y; (z, y) €Z} is contained in Q
for any z in Q; equivalently p,(Z N pi' Q)< Q where p, are the projection from X x X onto
X by the jth component.

First remark the following proposition:

ProPosIiTION 3.1.4. Let X and Y be locally compact topological spaces, f a continuous
map from X into Y, Z and @ locally closed subsets of X and Y respectively, and let F be a
sheaf on X. Suppose that

(a) f'GNZ—~G is a proper map,
(b)Y Zn f1G is an open subset of Z.
Then we can define naturally the following homomorphism:
RI;(X; F) > RI(X; RLF).
Here f,F is the subsheaf of f,F of the sections with proper supports on Y.
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Proof. Let Q (resp. Q') be an open set in X (resp. Y) containing Zn f-1¢ (resp. G) as
closed set such that f(QQ)<=€’. Then we obtain the homomorphism:

RIZ(X; ) >Rl zar-16(Q; F).
Since Z N f-1G—+Q’ is a proper map we obtain:
Rl z0r-16(Q; ) > RU(Q R F),

and the desired homomorphism is obtained as the composite. Q.E.D.

Definition 3.1.5. For a proper relation Z and a Z-round open set D, we set £(Z; D)=
HYD x D; 0“™).

THEOREM 3.1.6. Suppose that Z is a proper relation on X, D is a Z-round open set and
Q0,2 Q, two Z-open sets Such that Q, — Q< D and Q, —Q, is compact. Then we have

(a) E(Z; D) has a canonical ring structure with a unit.
(b) E(Z; D) operates on HY, _,(,; O) naturally.

Proof. We have the homomorphism

HYD % D; 0°") @ HHD X D; 0°) > Hy z055y oD X D  D; 0™
C

by the aid of cup-product. Since piRZNpzxrrZN DxDxD=pRZNp:aZN0 DxX x D,
Py P12 ZNpy ZN DxDxD—ZN DxD is a proper map. The preceding proposition can
be therefore applied to obtain the homomorphism:

2n

Hyy 2y 2D % D % D; 0*™) > HY/(D  D; Ry 0%"").

By applying Rp,0%™"—>0%"[—n], we obtain &(Z; D)® £(Z; D)~ E(Z; D). It is
easy to check this operation makes £(Z; D) a ring. Also, we can see that Hi(X x X; 0 ™)
contains a canonical element and its image by the homomorphism HZ(X x X; 0*™)—~
3D x D; 0®™) is the unit of £(Z; D). Let us show (b). Setting S=Q, —Q,, we have
the homomorphism
&(Z; D)® HY(Qy; O)~ Hzpps((D % D) 0 p3 ' @y 0™)

—*H’é(Ql; 0)

because the condition in Proposition 3.1.4 is satisfied to apply it.
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3.2. We consider the following special case. X is C" and Z is {(x, ¥)€X x X; y —x€G}
where @ is a closed proper convex cone containing 0. It is easy to see that Z is a proper
ordering on X. We shall call an open set G-open (resp. G-round) if it is Z-open (resp.
Z-round). Therefore, an open set  is G-open if and only if Q+G<Q and an open set D
is G-round if and ouly if (D+@)N(D+G*)=D. Here ®*={—x; 2€Q} and D+Q@=
{z+y; x€D, y€G}. For a G-round open set D, we denote E(G; D) for £(Z; D).

Theorem 3.1.6 is translated as follows:

THEOREM 3.2.1. Let D be a G-open set, and Q,>Q, two G-open sets such that

Q,— Q< D and that Q, —€, is compact.
(a) &(@Q; D) is a ring, and
(b) HE,_,(€,; O) is an E(G; D)-module.
(¢) We have the ring homomorphism

&(@; D)>T(D xG™, &)

where G%={{; Re ({,2)>0 for any 2€G—{0}}.

We define the new topology (which we shall call G-fopology) on X as follows: an
open set for the @-topology is, by definition, a G-open set. For a subset S of X, we
denote by S; the topological space S with the G-topology. Let ¢; be the continuous
map @z X~ X, defined by z+>2. If G, is a closed convex proper cone containing &, then
we denote by ¢, the map Xy—Xg, defined by x>z,

Lemma 3.22. (i) Ripea(Ox)=0 for k=0,
(il) Rf@g, cx(@ex O)=0 for k==0 and equals @g,+ O for k=0.

Proof. Since @g, =@q,.co¢¢ (ii) is an immediate consequence of (i). For any z€X,
R"qaa*(O),=lir£UH"(U, 0) where U is a G-neighborhood of . However a convex G-
neighborhood of 2 forms a fundamental neighborhood system of z (for example, take
V +G with a small open ball V containing z). Hence, we have H¥(U, O)=0 for k<0
for such U. Q.E.D.

LemMma 3.2.3. Let Q¢ be two G-open sets. Suppose that the following conditions are
satisfied.
(i) There is a pseudo-convex open set w such that Q—& is an open subset of Q —cw.
(i) For any z€Q, (x+G)No+FD.
Then R*Tq_a(@ex(0|qg)) =0 on Qg for k1.
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Proof. Since convex G-open sets U in € form a base of open sets in Q, it is enough
to show
HY_o(U; 9eaOla) =0 for k+1.

By the preceding lemma, this cohomology group equals Hj_;(U; 0O). Since U —@ is closed

and open in U —w we have
HY_o(U; 0)=H%_3(U; 0)® Hino-un(U; 0)

which is zero for k>2, and hence we obtain HY_;(U; 0)=0 for k=0, 1. Since U N @=+D
(when U=£@), HY(U; 0)~H%U n&; O) is injective, which implies H}_5(U; 0)=0.

THEOREM 3.2.4. Let Q> Q, be two G-open sets, and D a relatively compact G-round
open set containing Q —KY,. Suppose that there is a pseudo-convex open set w satisfying the

following conditions:

() oN (Q-Qy) =2,
(i) (w+6)NQN D<o,
(iil) w>Q,NaD.

Then Rlq_q,(pex O) is well-defined in the derived category of the abelian category of the
sheaves of E(Q; D)-modules defined on Q.

Proof. If G ={0}, then E(G; D) is nothing but the ring of the differential operators of
infinite order defined on D and Q,=(2. Since O is an £(G; D)-module, the theorem is evi-
dent. Suppose that G=:{0}. Since QN D=[(QND)+G]N D, we may assume that
QNDY+G=Q. Set ®=(QNDNw)+G=(QyN DNw)+G. It is obvious that @< Q,.

First we shall show that @U D>Q. Suppose £€Q — D. Then there is y€Qn D and
p€G such that x=y+y. Put t,=inf {t >0; y+ty ¢ D}. Then, 1>¢{,>0 and y+4¢,y is in 9D
and in Q, and hence by (iii), it belongs to w. Therefore, y+#y belongs to QN D Nw for
0 <t,—t<1, which implies # belongs to @®.

We have

(Q-a)ND=Q-a@.

In fact, we know already that (QQ —w)N D contains () —@. It is therefore sufficient to
prove &N DN Q<w, which is an immediate consequence of (ii).
We have also
x+AHNd+D for any z€Q.

In fact, if (zx4+@)ND=0, then 2+F<Q—@H< D=<C" which is a contradiction.
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Thus, we may apply Lemma 3.2.3. Set F=RT'g_;(pex O]a) =Rla_s(pex O|q) [11.
Then F is a sheaf of £(G; D)-modules by Theorem 3.2.1. Hence

Rl 0,(@ex Olo) =RTq_o,(H[—1]

is well-defined in the derived category of the sheaves of £(G; D)-modules. This is indepen-
dent of the choice of w. In fact, if there is another w’ which satisfies the same condition
as w, then 80 is w”"=wNw’. We define F' and F” in the same way as F by replacing w

with o’ and o”, vespectively. Then it is clear that

R o,(F) =Rlq_q,(F") =RIq_q,()-
QED.

COROLLARY 3.2.5. Let D be a @-round open set and x, a point in D. Then, there
exists a G-round open neighborhood U of x, such that, for any G-open sets £, > Q satisfying
Q,~Q,< U, we can define naturally RUq, o(pex Q) tn the derived category of the abelian
category of sheaves of E(Q; D)-modules defined on Q.

Proof. By Theorem 3.2.4, it is enough to show there exists a pseudo-convex open set
o such that @ is G-open and wnN U =0, and that w>£,NéD.

By replacing Q, and €, with Q,n (U+6G) and Q,n (U +@), respectively, we may
assume without loss of generality that Q,= U +@. Then it is evident, that if U is small
enough, there exists a convex G-open set @ such that wN U =0 and w>(U+F)NoD.

3.3. In this section, we shall study the properties of (-open sets. First, we shall prove
the following propositions, which say that the notion “G-open” is almost a local property.
G is a closed proper convex set containing {0} in this section.

Prorosition 3.3.1. Let Q,2Q, be two open sets and Z=K,— Q. Consider the
following conditions.
(i) Z ¢s G-locally closed (i.e. a difference of G-open subsets).
(i) for any point x in Z, x4+ G*<Z in a neighborhood of x.
(ili) for any point x€Z, (x+Q*\NZ =D in a neighborhood of .
(iv) Qg i3 G-open.
(v) Q, is G-open.

Then (1) implies (ii) and (iii). Under the condition of (iv) (resp. (v)), (i), (ii) and (v) (resp.
(i), (i), and (iv)) are equivalent.
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Proof. First let us show that (i) implies (ii) and (iii). We may assume that €, and
Q, are G-open.

(i) = (ii): If x€Z, then x ¢Q, and hence (x + G%) N Q, =3, which implies (x +G%) N Q; <Z.

(i) = (iii): If x¢Z, then z€Q, or z¢Q,. If x€Q,, then (x+GF)NZNQy=0D. If 2¢Q,,
then (z +GYNZ< (2 +G)NQ,=2.

Thus, it remains to prove that (iv) and (ii) implies (v) (resp. (v) and (iii) implies (iv)).

Let us prove first (iv)+ (ii)= (v). Let « be a point in Q, and y€G. We shall show
z+y€Q,. Suppose that z+y ¢, and we shall see the contradiction. Set ¢,=inf {t>0;
x4ty §Q,}>0. Then y=x+1t,y ¢Q,. Since y does not belong to Z, x+#y does not belong
to Z for 0 <f;—¢<<1. For such ¢, z+#y €Q,, and hence = +#y €Q,, which implies x -+ €Q,
because x+tyy €E(x+1ty)+G. Thus, x+1,y€Qy=Q;, which is a contradiction.

We shall prove (v)+ (iii) = (iv). Take x€€Q, and y€G. If z+y ¢€Q,, take t,=inf {{>0;
z+ty €€} >0. Then z+8yy¢€,. Since z+i,y€Q,, z+i,y belongs to Z. Therefore
x+1ty€Z for 0 <iy—t<<l. Since z+1ty €Q,, x+ty ¢£2y, which is a contradiction. Q.E.D.

LemMma 3.3.2. Let Q be a G-open set. Then, for any x€Q, x+int G Q.

Proof. Let y €int (. Then there is a neighborhood U of 0 such that U +y<@. Take y
in (x+U*NQ. Then, z+y is contained in y+G<Q.

LeMma 3.3.3. If Q is a G-open set and if int G==QD, then Q coincides with the interior of
the closure of Q.

This is an immediate consequence of the preceding lemma because x+int G con-

tains x.

LemMa 3.3.4. Let D be a G-round open set and Q an open subset of D. If, C,(Q) N G*< {0}
for any x€ D—Q, then DN{Q+G)=Q; t.e. Q is an open set of Dg.

Proof. Set Q=(Qn D)+@. Let =z be a point in Qn D. Then there are y€QN D and
y €G such that z=y +y. Set y,=y +1y. Since D is G-round, y; belongs to D for 0<i<1.
Now, we can apply the same argument as in Proposition 3.3.1 to prove that = belongs to £2.
Suppose that x ¢ and set f,=inf {t >0; y,¢Q}. Then, y,, ¢Q, >0 and y, belongs to Q
for t<ty, y =lim, »;, (¥, —¥:)/(to—t) belongs to C,(£2)?, which is a contradiction.

LeMMA 3.3.5. Let Z be a Q-locally closed set. If Z is open (in the usual topology), then Z
18 G-open.
Proof. Because Z=Z—, we can apply Proposition 3.3.1.

2 — 782904 Acta mathematica 142. Imprimé le 20 Février 1979
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3.4. In the preceding section, we investigated G-open sets. We introduce here a

notion similar to G-openness which is free of the change of coordinates.

Definition 3.4.1. Let M be a differentiable manifold of class C! and 8 a subset of M.
We denote TM —C(M —8; S) by N(S) and call it the strict normal cone of 8.

ProPOSITION 3.4.2. (i) N(S) s an open convex cone.

(i) When M =RY, N, (8) contains a vector v if and only if there are an open convex cone
I containing v, a neighborhood U of x and a neighborhood W of O such that (SN U)+(I'n W)< 8.

Proof. (ii) is evident by the definition. Let us prove (i). Let v, and v, be elements of
T.M —-C, (M ~8; 8). Then, there are open cones I'; and I'y, a neighborhood W of 0 and
a neighborhood U of x such that (UN8)+(I',n W)=8 and I';3¢,, (j=1,2). We may
assume that either T, +1; is a proper convex cone or I'y N I'§3=@. Then, there is a neigh-
borhood U’ of = and neighborhoods W’ and W” of 0 such that (I'; + )0 W= (') n W)+
(Tan W), U'+W'cU and W< W. Then

SnU)+ T +T)n W @nU)+(TN W)+ Tn WSS n U)+(Ty0 W) 8.
Thus v, +vy belongs to T, M —-C (M —8; 8). Q.E.D.

Definition 3.4.3. We call the dual cone {€T*M; ¢f, v) >0 for any vEN(S)}, the
conormal cone and denote it by N*(S).

Ezample. If Q={x; f(x)>0} for a C'-function f such that df+0, then N (Q)=
{v€T . M; (v, df(z)) >0} and N;(Q)=R+df(z) for z with f(z)=0.

Ezxample. If Z is a cone in R,

Ny(Z) =int {vER"; v+Z<Z}.
Remark. (I) N,(8)&=T,M if and only if z€S—int 8. (II) N(M —8)=N(S)>
Definition 3.4.4. Lot M be a differentiable manifold of class C* and @ an open convex

cone in TM. Set Q(z)=Q Nz (zx), where 7 iz the projection from TM onto M.

(i) An open set V is called locally Q-flat ot x if C.(M —V, V)NQ(z)=2, and called
Q-flat if V is locally @-flat at any point.

(i) A locally closed set Z is called Q-flat on an open set U, if there are two open sets
Q, and Q, which are locally @-flat at any point in U such that UN (Q,—Q)=UnZ.
If Z is Q-flat on X, we say Z is Q-flat.
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ProPOSITION 3.4.5. Let G be a proper closed convex cone in R¥, D a G-round open
set and Q an open set in D and Q an open convex cone in TRY,

(i) If Q is Q-flat on D and if @> D x (G —{0}), then L is an open set in Dy
(i) If Q is open in Dy and if D xG>QN1YD), then Q is Q-flat on D.

Proof. (ii) is evident. (i) is an immediate consequence of Lemma 3.3.4. Q.E.D.

PRrROPOSITION 3.4.6. An open set V is Q-flat ¢f and only if C(V)NQ(x)* =2 for any
zEM-V.

Proof. Since Cy(VY=C (M —V; V), one implication is clear. Let us prove that V
is Q-flat if C(V)NQx)*=D for any z€M —V. We may assume that M =R". Suppose
v€Q(x). Take a closed proper convex cone & in @Q(x)U {0} such that int G€v. Take a
G-round open neighborhood D of z such that @(y)>G@—{0} for y€D. Then, by Lemma
334, (DNV)+GAND=¥VND, which implies GNC RV, V)=0. Q.E.D.

ProPOSITION 3.4.7.1. 4 union of Q-flat open sets 1s also Q-flat.

Proof. Let {V,} be a family of @-flat open sets and set V=U V. For xt€ M <R" and
v€Q(x), take @ and D as in the proof of the preceding proposition. Then, all VN D are
open in Dg, and hence so is VN D. This implies immediately v ¢C (R"—V; ¥). Q.E.D.

PrRoOPOSITION 3.4.7.2. Let V, be Q-flat open sets and V the interior of the intersection
of Vys. Then V is also Q-flat.

Proof. For a point x€ M <R” and v€Q(z), we take D and & as in the proof of Proposi-
tion 3.4.6. Then, V,n D is open in Dg ie. [(V,N D)+@1n D<V,, which implies that
[(VnD)+GINn D<=V, which implies that [(VND)+Gn D<V. Thus we obtain
C.R"-V, V)do. Q.E.D.

PROPOSBITION 3.4.8. Let Z be a locally closed set. If Z is Q-flat, then

i) C2)INQy)* =D foryeM-Z
(i) C(M-Z)NQy)* =0 for y€Z.

Proof. Suppose that Z is Q-flat. Then Z=V,—V, in a neighborhood of z, where ¥,
and ¥V, are @-flat in a neighborhood of x. Therefore, for y€UNZ, Z=M—V, in a
neighborhood of y and hence C (M —Z)=Cy(V,)<Oy(Vy M—V,), which implies
C(M-Z)nQ(y)*=D. For yeU —Z, if yEV, then y€ V, and hence Z =@ in & neighborhood
of y and hence C(Z)=0. I y¢V,, then Cy(Z)<C,(V, M—V,), which implies
0,(21N Qly) = 2.
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CoRrROLLARY 3.4.9. Let Z be a closed set. If Z is Q-flat, then M —Z is Q-flas.

Proof. Set V=M —Z. Then we have C (V)N Qy)*=D for y€M —Z by Proposition
3.4.8, and hence we can apply Proposition 3.4.6 to show that V is @-flat. Q.E.D.

ProOPOSITION 3.4.10. Let V; and V be two open sets in M such that V,> V,. Suppose
that Vi~V is Q-flat on a neighborhood of x. Then, if one of V,is Q-flat in a neighborhood of z,
then so i3 the other.

Proof. Suppose that V, is @-flat. Then for y ¢V,, we have C, (V)<= C(V,— V) )U C (V).
Hence C,(V,) N Q(y)* =D, which implies that V, is @-flat. Conversely, suppose that V, is
Q-flat. For y¢V,, CVo)=OV,). For yeV,—V,, Cy(Vo)=C UM —(Vy— Vy)). Thus, we
have C (V) N Q(y)* =D for y ¢ V. Q.E.D.

Let @ be a proper closed cone in C* and @ an open cone in 70" =C" x (* containing
C" x (G@—0). Then the following proposition is an immediate consequence of Proposition
3.3.1, Lemma 3.3.2, Lemma 3.3.4, and Proposition 3.3.10.

ProrosiTiON 3.4.11. (i) A Q-flat open set is G-open.

(i) Let €, and Qg be two open sets such that Q,> €. If Q,—), is Q-flat and if one of
them is G-open, then so i3 the other.

(iii) For x, there i3 an open neighborhood U of x such that, for any open set L which is
Q-flat on U, Q contains [x+(G—{0PINTU if = is contained in Q.

§ 4. Prolongation theorem in the complex domain

4.1. Let @ be a closed convex proper cone in C* containing 0, D a relatively compact
G-round open set. Let M be a bounded complex of free &£(@; D)-modules of finite rank
(i.e. M*=0 for k>0 or k<0 and all M* are free £(@; D)-modules of finite rank). We
shall investigate sufficient conditions such that

Ext! (M'; RLg-0,(; ¢ex(0))) =0.

THEOREM 4.1.1. Let D, G and M be as above and let {Q;}o<i<; be a family of open sets
n X =C" We assume the following conditions.

(a) There is an open convex cone R in TD such that, for any x€ D, R(x) is non empty
and contains G—{0} and that either Qg or Q, is R-flat on D.

(b) Q,—-Q, s a compact set contained in D.
(c) There is a pseudo-convex open sel o satisfying



MICRO-HYPERBOLIC SYSTEMS 21

(e1) 0N (Q,—Qp)=D
(c2) (@+@HNQ<w
(c3) QyNdD<w

(d) Q= U<, Q, for any t; such that 0<t,<1 and Q, > Uy, Q, for any &, such that
0<ty<1.
(e) There s an open convex cone Q in T'C" satisfying the following conditions:

(e0) @(x) is not empty and contains G —{0} for x€D.

(6;) Q;—Q,, s Q-flat on a neighborhood of any point in Q,—Q, for any
0<t,<t; <1,
(03) ER@ec:ny M is exact for any p=(z, &) €T*D with (&, Q(z)) <O0.

Then all Q.0 D are open in Dg and we have

R Home;p) (M'; R'q,-0,(Q4; @ox 0)) =0
for 0<it<1.

The proof of this theorem is rather long and ends at §4.4.

Q0 D and Q,N D are open in D, by Proposition 3.4.11 and (a). Applying the same
proposition Q, is open in Dg by (e). Therefore, by replacing Q, with (Q,n D)+ @, we may
assume that (a’) Q, are G-open sets and (eo) Q= R. Condition (c) assures that R['g, - a,(pex O))
is well-defined by Theorem 3.2.4.

LeMMa 4.1.2. For any 0<t,<1, N,.,,Q, is contained in Q.

Proof. Take 2€ N Q,. Since Q,— D=Q, — D, z is contained in Q,, if »¢D. Suppose
that z € D. Take a proper closed convex cone G, such that G, < R(z)U {0} and that int G, +O.
There is a G)-round open neighborhood D, such that R(y)> G, —{0} for any y € D,. Then,
all Q,nD are open in D,y. Therefore, we have (z+int G,)N D,=Q, which implies

(z+int G;)n D,<=Q,,. Thus we obtain z€Q,. Q.E.D.
4-2. Set Ktn= n Qt_Qto fOr 0<t0<1.
>ty

LeMMa 4.2.1. For any point x in K, and any neighborhood U of z, U-Q, is a
neighborhood of x in (X —Q,)g.

Proof. Take G, and D, as in the proof of Lemma 4.1.2. Moreover, we assume that
int 3,2 G —{0}. Then, Q,, contains [D, N (x+int G;)] +G = W. It is evident that there is
an open neighborhood V of z such that (V+@&)— W< U. Then (V + @) —£,, is a neighbor-
hood of z in (X —Q, ), and is contained in U. Q.E.D.

This lemma immediately implies the following:
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LEMMA 4.2.2. (i) The topology on K,, induced from G-topology coincides with the usual
topology.

(il) K., ts relatively separated in (X —Q,)q (i.e. for x=ky in K,,, there are neighborhoods
U, Vof z, yin (X Q) such that UNV =0). In particular, for a sheaf L on (X —Q,)g,
HYK,; L)< lim, H¥U; ) where U runs on a neighborhood system of K, .

Let j; be the inclusion map

(€2~ Q) > (X Q)

Let T' be the functor Cr>lim,,,, ji, i 1€ from the category of the sheaves on (Q; —Q,)s
into the category of the sheaves on (X —£)q.

LeEMMA 4.2.3. For any complex L' of sheaves on (, —£,)s, we have

) lim H¥(Q, - Qy; L)% HK,; RT4(L))
t>1
(i) lim B*j,,(j: L), % B*T'x(L"),
t>tp

for any z€K,,.

Proof. First observe that any open set U in (X—Q,); containing K, contains
Q,—Q,, for some ¢{>f,. We may assume that £ is a complex of injective sheaves. Then
lim H4(Q,~ Q,,; £) ~lim BXD(Q,~ Q; C))
t>t t>to
~ B¥(im T(Q,— Qi £)
t>ty
~ H*(lim lim TNU n (Q,~Q,.); L))
U_D‘;f’ta t>—t:
~ H¥lim lim D(U;7,,57'C))
USK,, 6
~ H¥(lim T(K,,; j.,ji L))
t>to
& BHD(K ; lim 5., i)
>t
~ HYT'(K,,; TL)).
Thus (i) is proved.

(ii) is proved in the same way. Q.E.D.
ProrosiTioN 4.2.4. If we have

lim lim Ext!(M"; Rl'y-q,(U N Qi 96x 0)) =0
>t Us:
for any i, 0<ty<1 and 2€K,,, then the conclusion of Theorem 4.1.1 holds. Here, U runs on

a neighborhood system of z.
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Proof. Setting £ =R Hom (M'; Rl'g,—q,(pex O)), We have R"T(Rl"n‘_nb(ﬁ'))] x, =0
by the preceding lemma. The same lemms implies also Ii_m;»,,Hﬁ‘_n‘o(Qt; £)=0, or
equivalently the homomorphisms

lim H*Qy L)~ HQy £)
t>ty
are isomorphisms.

Note the following lemma.

LeMMA 4.2.5. Let X be a topological space {Q,}, ¢z an increasing sequence of open sets
in X such that X=UQ,, and J a complex of sheaves on X. Then

(i) @t HY(X; F)-lim HYQ,; F) are surjective for any k.

(ii) If {H*YQ,; F)}a satisfies the condition of Mittag-Leffler, then @, is bijective.

For the Mittag-Leffler condition and for the proof, see [15], [26].

Let us prove that H¥(Q,; L)~ H*¥Q,,; C’) are bijective for 0<¢,<¢,<1 by induction
on k. H*YQ,; L')—~H*1(Q,; L) are bijective for 0<¢t,<t;<1. Then {H*(Q; L£)}s<s,
satisfies the condition of Mittag-Leffler for 1>#,>0, and hence, by the preceding lemma.

Hk(gto; E'):lll_n Hk(Qt; E.).

t<ty

Thus, Proposition 4.2.4 is an immediate consequence of the following lemma.

Lemma 4.2.8. Let {Vi}ocicy be a family of abelian groups, g, a homomorphism from
Ve to V, for 12t 2t>0. Suppose that

(i) @1y 00 =01 for 124"2t' 2120,

(ii) Vto»l‘iﬂmo V, is bijective for 0<t,<1,

(idi) E!_I»lbto V.=V, ts8 bijective, for 0<t, <1,
Then all g,,, are bijective.

4.3, In order to show that the condition in Proposition 4.2.4 is verified, we investigate
the following special case.

Let @ be a closed convex proper cone with non empty interior, f{z} a linear form
(R-valued) such that f(z)>0 for z€Q—{0}. Let Q=int G and w={z€Q; f(x)>1}. Let D
be a G-round open set containing 2 —w and M" a bounded complex of free E(G; D)-
modules of finite rank. Set F =Hom (M"; Rl'g_o(pex 0)).

ProrositTioN 4.3.1. Suppose that EX@M" is exact for any p=(z, ) with x€D,
&, G<0, §50. Then
R Hom (M*; Rl'g_o(pes 0)) = 0.
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Proof. Since z +int G (x €Q) forms a base of open sets in g, it is enough to show that
RI(z+int G; F')=0. Replacing z+int @ with Q, the proposition is a consequence of the

following propositions.
ProrosiTioN 4.3.2. HYQ; ¥)=0 for any k.
Proof. We will need the lemmas 4.3.3-4.3.7.
First fix a point z, in Q such that f(z,)=1. For £¢>0, we set

U, = {(8,, 85) ER?; 8, <0}V {(sy, 8,) ER?; s, <e}

U {(8;, 85) ER% 0<sy <, 0<8,<2¢, (£—8)% + (2e —8,)2 >¢2}.

U, is an open set with C'-boundary and U,+{(sy, $2); 8, <0, 8,<0}=U,. Set é(z, &)=
min {|z—y|; y€G}. Then, we have

Oz, @) = 8(xy, BN +2(x — 221, %y —y) +0(]| 2 —2|)

with y€@G such that é(z, G)=|z; —y|. Therefore, é(z, G) is a continuous function on X
and (' on X-—G. Moreover di(z, G)EG*® for zé¢G. Set d,(z)=0dx—(1—t)xy, G)=
d(x, (L ~t)xy+G). Then, 8,(x) is continuous on (£, z) and we have §,(x) <d.(x) for t=>¢',
dy(x) <d,(x) for t>¢' and x¢(l —t')xy+@G. There is a constant ¢>0 such that

{z; 8)(xr) <2} <int @ for £>0 and t<1—ce.
Set
Q, = {z€int & (1 ~f(z), 6,2))EU,} =V {z; f(x) =1, (1 —f(x), ,(x)) €U}

for <1 —ce.

We have Q,<w for t< —ce.

LrMma 4.3.3. (i) Qto = Ut<¢o Qt and ﬁtnD n t>te Qt’
(i) Q, are G-open
(iii) Q,+Ax,=Q,. 5 for A>0.

Proof. First let us prove (ii). For y €@ —{0}
A —=f@+y), 6z +y)) = (L —f(x), 8y®)) + (=), Ol +p) —b,(x)).

Since —f(y), dx+y)—0dx) are non positive, (1—fx+y), d(x+y)) is in U, if so is
(1 —f(z), O4x)). (iii) is clear. The relation Q, = UL, is also clear. Let us prove that
Ny, Q, is contained in Q,. If z€NQ,, then z+(t—t,)x, is contained in Q, for any
t>t,. Thus « is contained in Q,,. Q.E.D.
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LemMa 4.34. Q,—Q, —Q, Q0 {; f(x) <1} for t,<t, <t3<1—e.
In fact, if € Q, —Q,, we have f(xr)<1 and hence Q, —Q,, is contained in {z; f(z) <1,

04,(x) <2e}. We have therefore

Q,—Q, < {z€G; f(x) <1, 8,() <2¢, (1 —f(x), 0,(2)) €U}
= {z€G; fx) <1, 0<d,() <2, (1 —f(x), 8,(x) €T}
U {z€(l—t)z,+G; fz)<1}.

Since §,,(z) <6, (x) for x such that d,(x)>0, and since §,(x)<2¢ implies z€int G,
—£,, is contained in Q, . Q.E.D.

Levma 435 K, =y Qi— Qt,, coincides with () ;sq, (2:—Q,). Moreover, K, is
contained in 9Q,, and 9Q, is a Cl-manifold in a neighborkood of K,,.

In fact, 0Q, N Q={x€Q; (1—f(x), é,;(x)) €U}, any positive linear combination of
d(1 —f(x)), and dé,(x) does not vanish for x ¢ (1l —¢,)x,-+G. Therefore, 6Q, NQ is a C'-
manifold.

LemMa 4.3.6. For x€QNaQ,,, we have

Ext! (M'; Rl'q_q, (ox 0)): =0

Proof. Note that 0£2,, is a C'-manifold at x whose conormal p =(z, &) is contained in

the antipodal of the polar of G. Consider the following spectral sequence
g = HP(Hom (M; ¥, (0),)) 3 H**(Hom (M-; RTq_q, (¢es O).))-

Since Hf-q,((0). is an ER.module and ER@M" is exact, E5'=0 for all p, ¢ and hence
H! (Hom (M'; RTg-q, (pex 0),)) =0. Q.E.D.

LeMMA 4.3.7. H(Q_. F)>H(w; F) are bijective.

Proof. The conditions in Theorem 4.1.1 are all satisfied, we can apply Proposition
4.24, and therefore it is enough to show that, for all z€K,,
lim lim Hy_q (U F) vanishes,
=h U ’
where U runs on a neighborhood system of z. Since x is contained in €, for ¢ >¢,, these

cohomology groups coincide with H’ (Hom (M'; R['q_q, (9o« O);)), which is zero by the
preceding lemma. Q.E.D.
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Thus, if we set
Q, = {x€Q; (1 —f(z), (2, G+cexy)€EU,},

we have an isomorphism
HQg )3 Hw; F).
Q=U,-e Q, and, for any ¢, & >0 there exists ¢>0 such that Q,>Q, UQ,,. Therefore

HIQ; 3')31;1_11_% H(Q. ¥) if {H-YQ,; F)} satisties the condition of Mittag-Leffler
{Lemma 4.2.5), which is obviously satisfied. Thus, we obtain

H(Q; 3)5 Hw; 7).
This completes the proof of Proposition 4.3.2 and hence the proof of Proposition 4.3.1.

44, Now, let us return to the proof of Theorem 4.1.1. We already observed in
Proposition 4.2.4 that it is enough to show

lim Ext*(M; RTy_q, (U 0 Q4; @gs 0) =0
U

for z,€ K, and ¢t >t,, where U runs on a system of neighborhoods of z,. Let U be a neighbor-
hood of z, By shrinking U, we may assume that ES@M" is exact for p=(z, §) with
2€U and £=0 such that (&, ;> <0 for some closed convex proper cone G, contained in
Q(z,) U {0}. Since Q,—Q, is Q-flat, for any y sufficiently near x,, U (y+intG))N
(Q,—Q,)c<U. Set V=y-+int G, and take f(x) such that {x€V; f(z)>f(x,)—1}<U.
Set w={x€V; f(x)<f(xo) —1}. Then, by Proposition 4.3.1, we have

R Hom (M"; R['y_u(@g,+ O]v)) =0.

In particular, we have
Hk(Qg nNV-e; R Hom (M'; RF(V—Q)—Q%(wo* O)) =0

for V=y+int Gy.
Note that, if y €x 4 (int G;)?, V is a neighborhood of z,. Thus, taking an inductive limit,
we obtain

lim Ext*(M*; RT v q-0,,(U N Qs 9ex 0)) =0.
U

This completes the proof of Theorem 4.1.1.
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4.6. We reformulate Theorem 4.1.1 in the following way, which we use in the later

sections.

THEOREM 4.5.1. Let @, D and M be as in § 4.1, and x, a point in D. Then, there is an
open neighborhood U of x, satisfying the following property: let Q, and Q4 be two open sels
satisfying the following conditions:

(a) Q,2Q, and Q, —Q,c<U.

(b) There is an open convex cone R in TU such that R> D x (G —{0}), the projection

R—>U is surjective and Q, and Q, are R-flat on U.
(¢) There are an open convex cone @ of TX and a C'-function g on U with
(ey) {v; (v, dg(x)>>0}>Q(x)>Q—{0} for any x€U.
(cs) Q,—Qy is Q-flat in a neighborhood of Q, — Q.
(c5) ERQ@M" is exact for p=(x, &) such that x€U and <&, Q(x)) <O0.

Then Q,—Q, s locally closed in Dy and we have
R Hom(g; p) (M ; Rl'q,_,(Pax 0)) =0.

Proof. We may assume that U is D-round and so small that Corollary 3.2.5 holds.
Thus, the conditions (a), (b), (¢) in Theorem 4.1.1 hold. Now, we may assume that
0<g()<1 on Q;, —Qq. Set Q,=Q,U {z€Q,n U; g(x) <t}. Then, it is evident that condi-
tions (d) and (e) in Theorem 4.1.1 are satisfied. Thus, we can apply Theorem 4.1.1 and we

obtain
R Homg g, p)(M"; Rlq,_q,(9ex 0)) = 0.

§ 5. Micro-Hyperbolic systems on the boundary of an open set
of a complex analytic manifold
b.1. Let X be a complex manifold of dimension », S a real hypersurface of class C*

and Q+ a pseudo-convex open set with S as its boundary. We define the sheaf Cson 75X
by
Cs =Rz (7 '05)*[1],

where, as usual, = denotes the projection of (X —S) ][] T¢ X onto X, the first space being
endowed with the topology of the comonoidal transformation. Suppose that Q+ is given by

Qt = {z€X; s(z) >0}
for a differentiable function s(x) of class C! with ds(x)3=0 on 8. We call the conormal of

Q+ at x€8, a covector of the form Ads(x) with A >0. We are just interested in the restriction
of the sheaf C to the negative part (TsX)~ of T5X (i.e. (TsX)~ ={ads(z); a <0, z€8})
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and we denote thig restriction by C5. As the sheaf Cs is locally constant on the orbit of
the action of R+, we can regard Cs as a sheaf on § and we have Cs =RI'y_q+(0jx)|s [1].
If we denote by j the inclusion of Q+ in X, Cs is the restriction of (j, 0)/O to S; that is,
the sheaf Cy is the sheaf of boundary values on S of holomorphic functions defined on Q+,
modulo functions which extend holomorphically across S. The sheaf C5 is naturally

endowed with a structure of £§-module.

Definition 5.1.1. Let N be a coherent £z-module defined on a neighborhood of a point
2€TEX. Let 0 be a covector on T*X at z. We say that 0 is microhyperbolic for 7 on 8, if
6 is not micro-characteristic for (M, Tt X).

Let @ be the canonical 1-form on the complex homogeneous symplectic manifold
T*X. We denote by (T*X)® the real homogeneous symplectic manifold 7*X endowed
with the 1-form w®=w-+@&. We denote by H and H® the isomorphisms between the
tangent and cotangent spaces of T*X and (T*X)R associated with w and w®. If f is a holo-
morphic function on X, we have

Re H,=HE,,.

THEOREM 5.1.2. Assume that S is of class O2. Let M be a coherent £x-module defined
in a neighborhood of x€(T5X)~ and let Z be a closed set defined by {z€S; ¢(x) >0} with a
differentiable function @ of class Ct. If —dp(x) ts micro-hyperbolic for M on S and if p(x)=0,
then we have

R Hom,, (M, R[";(C5)), =0

5.2. We prove Theorem 5.1.2 by using the theory developed in § 3 and §4. Repre-
senting M as a £(G; D)-module, we reduce this to the vanishing theorem of the relative
cohomology.

We may assume that X is an open set in C".

Let us take a free resolution of M in a neighborhood of :

0-M-ER« &« ...« EF«0
Since €%, is an inductive limit of the £(G; DY’s with a closed proper convex cone ¢ and a
G-round open set D such that D x (—@?) is a conical neighborhood of z, we can find some
G, D and a complex of free £(G; D)-modules of finite rank
M..0 <+ E@G DY « EGDM « ... « E(GD)Y <0
such that the complex
0« EF" « ... « X% < 0 is isomorphic to E§®pc:n, M.

on Dx(—~G°.

Therefore, £%.,®M. is exact for p€D x (—G°) ~Supp M.
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5.3. We take a real system of local coordinates of class ¢ which we denote by
Zy, ...y Zy (N =2n), such that

(5.3.1) € =(0; —duy), QF={x€X;xy>0}

and dp(z)=dz,.

Let us denote by (xy, ..., Zy; &, ..., &y) the coordinates on (I™*X)* with o® =X &,dz,.
We set: z=(2;, 2', zy) and £=(&;, &, &y). In these new coordinates, we may assume that
D x(—@°)<=T*X (in the old coordinates) contains the set defined by the conditions

(6.3.2) ~Ey>ho(|&] +|€]), zE€D

for some constant hy>0. .

The condition of micro-hyperbolicity is invariant by a change of coordinates of class
C. If we write the condition that 9/0§, = — H,, does not belong to Crzx(SS(M)), we find
some h, >h, such that any (z, £)€ T*X which satisfies the conditions

(5.3.8) &> hy(|ay| |Ex] +|§’|),.-§N>h1(|§1| +|&]) and |z|<1

does not belong to SS(M).
Fix h>2h;, 1 and we denote by @, (0>0), the antipodal of the dual cone of the cone
given by
&2 b(|zy| +0)|éx| +1|E],  —Env>hE+R|E

Therefore, @, has the form:
Q, ={(xy, &', zy; v, V', vy) ETX; —vy +hoy>hi (1 —h2(|2y] +0))|v'| and
oy —h(|on| +0)vs>h (1 —h¥(|zy| +0)) |v' |}V {(w; 0); 1 <K¥(|2n| +e)}-
Let us define the open convex cone @, by
(5.3.4) Q, ={(2y, @, xy; v, V', vy) ETX; —v +hoy>ht|v’'| and
vy—h(|zy| +0)v,>h2|v' |} U{(x, v); |2n| > h?/2—0}.

Then @, is contained in @,. Therefore, Q,-flat sets are Qo-flat. Let R be the antipodal of

the dual cone of
—&y > hmax (|&,], |&]).
R is given by

(6.3.5) hoy > |vy| +|v'].



30 M. KASHIWARA AND P. SCHAPIRA

Then, R contains D x (G—{0})=TX. If we take g(x)= —xy+2,/h, then the conditions
(c,) and (c5) in Theorem 4.5.1 are satisfied for |xy| <h-2/2—g. Therefore, we can apply
Theorem 4.5.1 and obtain the following lemma.

Lemma 5.3.1. There is an open neighborhood U of O such thet
R Homg, p) (M.; R'g,—q,(pex 0)) =0

for any open sets Q,> Q) satisfying the following properties:

(i) Q,—QyccU,={z€U; |ay] <h2[2—0},
(ii) Q, and Q, are R-flat on U,
(iii) Q, and Q4 are Q,-flat on a neighborhood of Q,-Q,

LeEMMA 5.3.2. We have
Qo(x)C{'v; qu“7’1>h'1"”'|} for h<g, h(lxNI +e)g<l.

Proof. Set e=|axy|+p. Since h%¢<}, the inequalities wvy—hev,>h~[v’'| and
hvy—v,>h1|'| hold on Q,(x). Therefore, we have

(1 —heg) (hvy — ) + (g —h) (vy—hevy) > (1 —heg+g—h) b= [v'| = A-2(1 —h2e)|v'|,
which implies (1 —h%¢) (quy—v,) >h-}(1 —h2e)|v’|. Since }>h%e, we have the desired result.

This lemma immediately implies the following

LeMma 5.3.3. {z; gzy—2,>p(|2'| —c)} is Q,-flat on {z; |2y| <(1/2¢h) -0} and R-flat
for g=h and B<h1.

LemMa 5.34. {x; zye ™" >c} is Q,-flat on {x; |xy| <h~2/2—p} for any ¢>0 and c.

Proof. Since the conormal of this set is (—hxy, 0, 1) and since —hzyv, +vy>0 on @,

we obtain the lemma.

LEeMMa 5.3.5. Let K be a compact subset of S. Let {U }1¢; be a family of open subsets of X
such that (a) UK, (b) {U,~Q+}, is a fundamental system of neighborhoods of K in
X -Q+,

Then, we have

RI(K, C5) =lim RUy,_w,na+(Us O) (1]
{

This lemma, is evident because we have Cs =RI'x_s(O)[1]]s.
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Lemwma 5.3.8. Set
K,(a,b) ={x€S8; 0<ay, |v'| +he,<a}
and
Ky(a, b) ={x€ K,(a, b); z, <b}.

Then, there exists ay>0 such that
RI(K,(a, b); R Hom, (M, C5)) 3 RI(K(a, b); R Hom,, (M, C5))
for 0<a<a, and 0<b,

Proof. We shall prove this by using the vanishing theorem given in Lemma 5.3.1.
We may assume that U contains {z; |z,| <2h71, |¢'| <a,, |#y| <h~%} exchanging h
with a bigger one. We may assume that hb<a. For 1/2>a,>a>0, h'a,>b,>b20,
a>max (2h, (3a,/b,) —h)) and >0, we set

Qy(a, ay, b)) ={z; axy >z, +hY|2'| ~ay), hay>z +hY|2'| —ay)}
Qyla, ay, b)) ={x€Q\(«, a,, by); 2hxy>z, —b,},
Qf (@, @y, by) = QN Qy(e, @y, B,)  (j=0,1)

fl,(at, ay, by, 8) ={x€Qy(a, a,, b,); hay+z,> —6}
and 5
Qf (o, ay, by, 8) ={z€Qf («, ay, b,); by +2,> —6}.

Note that Q, and O} are R-flat. Then we have

RT(K (a,b), C5)= lim Rrﬁ,(m,.b..a)—b}"(a.a..b,.o)(ﬁ;(aaavbpa)»‘Pat(o))[l],

ay N a, b\ b
N0, a—> +00

and hence we have
RT(K (@, b), R Hom (M, C5)) =lim R Hom (M.; RT'iye.0,,0,. 607 (e an.0.8(Pox O)[11.
Therefore, in order to prove Lemma 5.3.8, it is sufficient to show that
(5.3.6) R Hom (M3 RT 6, 00,00~ 0. 5., 0, By, 8); 9 0)) =0,
(63.7)  RHom (M RT6¥.000.0-8 w00 (& 01, By, 0); 964 0)) = 0.
Let us denote by Q,, Q,, etc. instead of Q,(«, ,, by, d), ....

LEMMaA 53.7. (i) @, —Q=0Q,—Q, and O — Q5 =G — 5.
(i) We have —1jah<zy<}h~2 for z€Q, —Q,.
(i) Q,—Qy<={z; |2'| <a,—hb,, |2,| <2h1}.
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Proof. In order to prove (i), it is enough to show that hxy+x, >0 for x€Q, —Q,. Since

oxy—x, > —h~ta; and x, —2hxy>b;, we have
(e —2R) (hxy +x,) = 3h{ay — ) + ( + h) (%, — 2hay) > —3a, + (o0 + k)b, >0,

Thus we obtain hxy+2,>0.

Let us prove (ii). Since, for x€Q, —Q,, z, —2hzy>b, and hxy—z,>hY|2'|-a,),
—hxy>by +h7Y(|2'| —ay). Thus xy<(1/h?)a,—(b;/h) <(1/2h%). Therefore, we obtain
zy<ih~? for =x€ m. For z€Q,—Q,, (x—2h)xy=/(axy—x;)+ (%, —2hxy)>b, +
h=Y(|«'| —a,) >b, —h~'a,. Therefore, we have xy> —((h~1a, —b,)/(x—2h)) > —1/ch.

Last we shall prove (iii). Since 2hxy >z, +h~Y(|2’| —a,) on Q,, we have b, <, —2hxy <
—h (|2’ —a;) on Q,—Q, and —2/a+b, <b,+2hxy<b <2hxy+hla;<h™'+hla,,

which shows the desired result. Q.E.D.

By this lemma, Q,—€, is contained in U. Let us prove Q,(«, a,, b;) are @,-flat on
V={x;, —a'h1<zy<2-1h-2} for 0<p<1l. By Lemma 5.3.3, Q, are Q,-flat on a neigh-
borhood of xy=0. Since {zy>0}nQ,={; zy>0, hay>x,+h1(|2'|—a,)} and since
{2y<0}NQ; ={z; 2y<0, azy>z, +h1(]|2'| ~a,)}, Q, is Q,flat on V. Since {z; 2hzy>
x;—by} is Q,flat on V, Q, is @-flat on V. Thus, the conditions in Lemma 5.3.3 are
satisfied and we obtain R Hom (M.; R['g,_q,(@ex 0))=0, which shows (5.3.6) together
with (i) is Lemma 5.3.7.

Now let us prove (5.3.7). Set Q,(¢) ={x €Q,; xye "*>¢}. Then Q. (e) —Qyle) is Q,-flat
in ¥V by Lemma 5.3.4. Thus, we can apply Lemma 5.3.1 and we get

R Hom (M.; BRI, que(@ex 0))=0,

for £¢>0. Thus, we have

R Hom (M .; RI'o} o (pex 0)) = liﬂ R Hom (M .; R, 5y e (Pox O)) = 0.

This shows (5.3.7). Q.E.D.
5.4. Now, we resume to prove Theorem 5.1.2. First let us remark that Lemma 5.3.6 is
also true if we replace K,(a, b) and Ky(a, b) with K,(a, b)+w, Ky(a, b) +w for a sufficient
small w in S.
Set G ={z€S; ha, +|2'| <0},
E,(a, b) ={x; hz, +|2'| <a, 2, >0}

and
Ky(a, b) ={z; hz, +|a’| <a, 0<z, <b}.
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Then we have
RI'(K (a, b); R Hom (M, Cs)) = lim RT(K,(a — 2¢, b— 2¢) + zwy; R Hom (M, C5))
for wy=(1,0, ..., 0). -

This shows immediately
(54.1) RI(K,(a, b); R Hom (M, Cs)) 5 RT(K,(a, b); R Hom (M, Cs))-

This is also true if we replace K s(@, b) with their translates.

We shall prove the theorem by using the argument employed in § 4.

Set Z,={x€S; z,> —¢} and let @, be the canonical map from Z, to (Z,), (i.e. the
topological space Z; with G-topology). Then, (5.4.1) shows immediately

R¢G* RFZa R Hom (m’ CE) =0

in a neighborhood U of 0. Thus, for any G-open set Q such that Q—-Z,= U we have
RIGnz(€; R Hom (M, C5))=0. Therefore RI'qn{Q; R Hom (M, C5))=0 because §—~Z
is G-open in a neighborhood of U. Taking the inductive limit on Q, we obtain the desired
result

RI';R Hom (M, C5). =0.
5.5. Let S, {3+ denote the same subsets of R¥ as in § 5.3; that is

S ={x; xy=0}, Qt={x; zy>0}.
Let U- be the open set

{z; 2y> 0, 2,20}V {z; 2y> —a}, 2, <0}
and X- be the boundary of U-:
3 ={=z; zy=0, z, >0} U {=; zy= —a?, z, <O}.
We define the sheaf Cz- on X~ by

Cz-=RTz-(Oxlp-) [11=RTx_p-(0x) [1]|z-.

ProPosITION 5.5.1. In this situation, we have:
R Hom,, (M, Cz3-)y=0.

LEMMa 5.6.2. U- is Q,flat on {x; —(1/2h) <z, < —[(2h—1), |ay| <h~2[2—p} and
R-flat on {x; z,> —1/2h}.

3 — 782904 Acta mathematica 142, Imprimé le 20 Février 1979
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Proof. The boundary of U- is zy= —a%. Therefore, the conormal at the boundary is
(224, 0, 1). For v€Q,(x), vy+2x:,v,>0 if |#,| +0 < —2hx, <1. The second statement is
also evident. Q.E.D.

Let us prove Proposition 5.5.1. Set

Qy(a, &) ={x; hay—2, >k (|2'| —a), Shay —x, >h7}(|2'| —a)}
N (U-U {x; $h(zy+£?) > e2(z, +¢)}).

Since the first set is @,-flat on |zy| <1/4h% and the second set is Q,-flat on |zy| <1/4h?
for 0<p<1, Q,(a, &) is Q,flat on |xy| <1/4h%. Set

Qq(@, &, 8) = ({x€U~; 2hay >z, +6} U {z; zye™"">06}) N Qy(a, ).

Then Qy(a, &, 8) is also Q,-flat on |zy| <1/4h2 for 0 <<<1. Set Qy(a, &) = Us>0L2(a, &, ) =
U- N Q,(a, £). Tt is easy to check that any neighborhood of 0 contains ,(a, &) —Q(a, ¢, 6)
for 0<a, ¢, 6<].

Therefore, we can apply Lemma 5.3.1 and we get

R Hom (M ; BT, 00—t 2. (1 (@, €), Pox 0)) = 0
for 0<a, ¢, 6<1.
Taking the projective limit with respect to §, we obtain

R Hom (M .; RTg,0. 01— Quca. (1 (@, €); Pan 0))=0.

Since CE—_O=!§a'3\0RPQ‘(a'3)_Q°(a_3)(Ql(a, €); pox 0)[1], we obtain the desired result.

§ 6. Division theorem for sheaves of microfunctions
with holomorphic parameters
6.1. We recall in this paragraph some results briefly announced in [16].
Let X be a complex analytic manifold of dimension », N a real analytic submanifold
of X. We say that N is of local type (p, g) if, at any point of N, there exists a system of local

holomorphic coordinates (2y, ..., 2,) such that:
N={€X;Imz=..=Imz,=0,2,,=..=2,_,=0}.
Definition 6.1.1. Let N be a real analytic submanifold of X of local type (p, ¢). We
define the sheaf Cy;x on TxX by

Cuix = Hi3 (771 0%)°* @ 0 x-
(cf. § 1 for the notations).
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To be consistent with the notations of [24] we write Clx instead of Cyx if p=0,
and Cy if p=n.
Examples:

(a) p=n, ¢=0. X is a complexification of N and we find the sheaf Cy of microfunc-
tions.

(b) p=0. N is a complex submanifold of X and we find the sheaf of “holomorphic
microfunctions” defined in [24, Chapter 2].

(¢) p<n, g=0: The sheaf Cyx is considered in [16] and plays an important part in [16].

(¢) p<n, p+g=n: We find a sheaf of microfunctions with holomorphic parameters.

This sheaf is used for example in [5] (cf. § 9).

The sheaves Cy,x are sheaves on T*X supported by T%X. They are locally constant
on the orbits of the action of R,, and are naturally endowed with & structure of £§-module.

THEOREM 6.1.2. Let N and L be two real analytic submanifolds of X of respective local
type (p, 0) and (p, q). Let Y, (resp. Y,) be the complex submanifold of X of dimension p
(resp. p+q) which contains N (resp. L).

(a) there exists, locally on TxX —Ty, X and TtX—T% X, a complex homogeneous
camonical transformation which exchanges TyX and TtX,

(b) ¢f @ is such a transformation, ¢ can be extended as an isomorphism of Ex-module of

Cuix to Cyx-
Proof. We choose two systems of local coordinates such that:
X=0xCxC
N =R? x {0} x {0}
Y, =0 x {0} x {0}

and
X=0"xCxC

L=Rrx{0} x (¢
Y, = €7 x {0} x <.
It is clear that a partial Legendre canonical transformation will exchange THX — T X,

with 77X —T% X. We set _ _
X=0xCx¢xCx

M=RxCxCTx0ex

¥ = 0" x {0} x {0} x {0} x {0}
¥, =07 x {0} x {0} x €* x T¢
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and we identify X with
A= x O x T xCx e

c c?
In other words, if we denote by (2, », w) the coordinates in X, we look at X as a real
manifold on v, w, and complexify it in these variables. We denote by (2, v, #, w, @) the
coordinates on X, and consider the £z-modules £, and L, given by the relations:
£ 9f=0, @f =0
Ly 0f=0, (9jew)f=0.
It is not difficult to prove the isomorphisms:
Cyix>RHomgy & (Lo, Cir)
Cux~RHomgy & (L, C).

In fact the case of equations of type 0/ow is treated in (24, chapter 3, Th. 2.2.5], but we
can get the general case with slight modifications. The modules £, and £, are equivalent
a8 Ex-modules, by a real quantized transformation which exchanges T3 X —T;"X with
T;‘-lX — T’}',‘X (cf. [24, chapter 3]). If @ is such a transformation, ¢ defines an isomorphism
of the End,; (C,)-module R Hom,; (Lo, Cir) with the End,; (C,)-module R Homg; (£, Cir),

and it remains to remark that:

End, % (Lo) = Endsg (Cy) ~ Ex.

6.2, In this section we denote by (¢, zs, ..., z,) =(¢, ) the coordinates in C", and we
define the submanifold N by the equations #y=... %, ,=Im x, ,.,=..=Imx,=0. Thus
N is of local type (p, 1), and ¢t is an holomorphic coordinate in N. Let P be a micro-
differential operator in a neighborhood of the point p=(0, 0; 0, ..., 1), with:

+0 j=m.
LemMma 6.2.1. In the preceding situation any w€(Cy x), con be written in a unique way
u=Pv+w
with v, w€(Cyyx)p and (@™/0t™)w=0.
Proof. By the division theorem we can write

1 1
3mi 51 = P(t,«, D,, D,)G(t, s, z, D,, D,, D)+ K(t, 8, 2, D,, D,, D,)
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with (ad D,;)"K =0. We may assume K and G defined bor |s| > |¢|. Then:

1 1
u(t, x) = Ea ﬁs—_—tu(s, t) ds

=P(¢, z, D, D,) f@(t, s,z,D,, Dy, D,)u(s, x)ds
+ fK(t, s,z,D,, D, D) u(s, x)ds
Here § is a contour integral around |s| =g > |t|. We set
V= § Gu(s, x)ds

w= §Ku(s, x)ds,
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then v and w belong to Cyx and D'w=¢ [(ad D,)"K]u(s, x)ds =0. We shall show the

uniqueness. We may assume P of Weierstrass type in #:

P(t,z,D,, D)= é} Az, D,, D,)¢
with ord 4,<0, 4,,=1. Assume
P(t, z, D,, D,)o(t, x) = w(t, z) =’:§:: tw,(x)
then:
1

1
D= P Dy Dyyuls,2)de

By the change of variables A=1/s, the operator P(s, =, D,, D,) becomes
Q(l, x, Dl, Dz) = 2 Al(x’ - Aan Dz) A
=0
and A™1QA is well defined and invertible at A=0. Thus

1 A
v(t,x)=§;i§m_w A=y N A w1/, ) da

and the term we integrate being holomorphic, we get v=0.

6.3. Let ¥ be an involutive submanifold of 7*X, of codimension p. Let x belong to V,
and let b(z) be the unique bicharacteristic leaf of dimension p of V passing through .

We say that V is non characteristic for a coherent £x-module M at z if:

b(z) N SS(M)<={x}
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is a neighborhood of z. Recall that V is said to be regular at z, if w |, is nonzero at z, where
is the canonical 1-form on T*X.

THEOREM 6.3.1. [16]. Let N be a real analytic submanifold of X of local type (p, q), Y,
the complex submanifold of dimension p+q containg N. Let TN be a left coherent £x-module
on an open set U= T*X, and let V be a complex involutive submanifold of U which contains
T%X. Let L be a left coherent £x-module on U such that:

(6.3.1) SS8(Ly=V
(6.3.2) L has simple characteristics on V.

We assume V non characteristic for M. Then the natural homomorphism:
L
R Hom,, (M, Cyix)«< R Hom,, (M, L) . 01® (C)R Hom,, (L, Cyix)
ndg

is an isomorphism outside Ty X n Ty, X.

Proof. The involutive manifold 7*X x; ¥,=V, is regular outside 7% X. We may
assume by a complex canonical transformation that ¥V and V, are given in some local
coordinates (zy, ..., z,; &y, ..., {n) of T*"X by:

V:iz=...=2,=0
Vozg=.=2,=..=2,=0
then TxX will be of the type:
ThX: {z;=..=2,=0,(z;)EA}

where 2" ={2,,4, ..., 2.}, £ =(Cys1s > Ln), and A’ is a real Lagrangean manifold whose
complexification is 7*(C""). Thus a complex canonical transformation in the (2’; {’) variables,
and Theorem 6.1.2 reduces the situation to IV of local type (p, 0), and V=T"X x; Y, for a
complex submanifold Y of X containing N. As all £;-modules which satisfy (6.3.1) and
(6.3.2) are locally isomorphic, we may assumed L= &y y. Now we use the method of [16]
to reduce the problem to the case where M is a single equation. Let x belong to V. By the
hypothesis that V is non characteristic, we may assume

SS(M) N g~o(x) = {a}
where p denotes, as usual, the projection 7™*X x y ¥ —T*Y. Then it is enough to prove
L
R Homéx (m: Cle)z ~R Homsx (m9 8X<-—Y)r 0_®l£ R HomEx (sxc-h CNIX):
¥

~R Homey (mY, CNIY)y [ - d]

where y=p(z), d=codimy ¥. By induction on d we may assume that Y is a hypersurface.
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Let uy, ..., u, be generators of M near z. We can find microdifferential operators
P, ..., P, near x, such that:
Piu‘ = 0
Y is non characteristic for each P, (¢=1,...,7).
Let M’ be the module ®].; Ex/Ex- P, and M" the module defined by the exact sequence
(6.3) 0« M~ M« M «0.
Then the sequence

is exact. We apply the functor Homg, (-, Cy)x), to (6.3) and Hom,, (-, Cyjy), to (6.4).
As M and M satisfy the same hypothesis, we see by induction on ¢, that it is enough to

prove that for any ¢ the natural homomorphisms
EXtéy (m'y, CNIY)v - Exté}l (m’: CNIX):

are isomorphisms, that is to prove the theorem when M= £/E- P for a microdifferential
operator P. By Theorem 6.1.2 we can take for N the submanifold of X described in
section 6.2 and for V the manifold of equation 7=0 in 7*X, where (¢, z; 7, £) are co-
ordinates in 7*X = T*(C x C*-1). Let m be the order of the zero of o(P)|o~o(x)) at .
Then My~ €%, and it remains to apply Lemma 6.2.1.

Remark 6.3.2. The isomorphism of Theorem 6.3.1 remains valid all over 7% X when
N is a complex submanifold of X; this is clear by the proof.

§ 7. Proofs of the main theorems

7.1. Let M be a real analytic manifold of dimension » and X a complexification of M.
Let U+ be a strictly pseudo-convex open set in X with real analytic boundary S. It is well
known that we can find locally in T X —T%X and T§ X — T3 X, a complex homogeneous
canonical transformation ¢ which exchanges 7% X and T X. Moreover it can be proved,
with the results of [16], that p can be extended as an isomorphism of €x-modules of Cy,
and Cg (with the notations of §5). For example, if X =C" with coordinates (z,, ..., z,),

where z=z +1y, and

M ={zy=0}
n-1
S={z;x,,= > xf}
1=1

we can define ¢ by: (2, {)—> (iz +dpp(C), —iC) where (L) =(LF+... +L5_1)/(—4Ly).
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7.2. Now we prove Theorem 2.2.1. If Z is conic in 7% X, and x does not belong to Ty M,
the image by ¢ of Z in T§ X will arise from a closed set of S. Thus in this cage the theorem
follows from Theorem 5.1.2 by using the same argument as in § 4.4 whose details are left
to the reader (replace Lemma 4.3.6 by Theorem 5.1.2). The general case results of the
preceding one by the following trick. We define Z’ in Ty, g(M % 0) by

Z' ={(x, t; i, T)); (,1E/v)€EZ, v>0}.
Let ; be the Ec-module

0, = Ec/&c.t.
Then we have the isomorphism:

R Homex (m, CM) ~R Hom‘sXxC (m ®6t7 CMxR) t-g

and if x=(x?, 1£%), y=(2° 0; 10, ¢) the conormals to Z’ at y are micro-hyperbolic for
M&$,, which completes the proof of Theorem 2.2.1.

7.3. We begin the proof of Theorem 2.3.1. Setting Z=Y x X we decompose ¢ into
Y 1> Z-2+ X (cf. [24], Chapter 2) where j is the graph map, and p the second projection. It
is enough to prove the theorem for j and p, because j will be micro-hyperbolic for M, and

(mz)¥= mr-

7.4, Assume ¢ is smooth. Then @ is micro-hyperbolic for any coherent £y-module M.
As the theorem we want to prove is local, we may consider a resolution of M by free
Ex-modules of finite rank. It is then enough to prove the theorem when M= Ey, that
is to verify
04371 Cpr = R Homgy (Eypx, Cy)
which is clear.

7.5. We assume now that ¢ is a closed embedding, and identify Y with its image
in X. It is clear by induction on the codimension of ¥ in X that we may assume Y is
the complexification in X of a hypersurface N of M. We keep the notations of § 5, and
consider the hypersurfaces S and X of X =C"

n-1
S= {z; Zp= 2, x?}
i{=1

i~2

n-1
2={z;x,,= S x?}

Tt ={2€8; +2,<0} VU {z€Z; +2,>0}
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and the sheaves Cs, Cz, Cz+ and Cz- on (TEX)-, (T+X)-, (T5+X)~ and (T%:-X)~.
If ¢ is a canonical transformation which exchanges T3 X with T's X, the inverse image by ¢
of T5X n Tt X will be a regular hypersurface of 73 X. Thus by composing ¢ on the right
with a real canonical transformation on T3 X, we may assume that ¢ exchanges 7% X with
T:X and TyX with T¢X. It is not difficult to prove, by the same method as for
Cur, looking at Cy x as a sheaf of microfunctions with one holomorphic parameter, that ¢
extends to an isomorphism of €x-modules of Cy x with Cz. It would be tedious to prove
the compatibility of the isomorphisms of Cyjx and Cz with that of C, with Cy, and we
prefer, for the proof of Theorem 2.3.1, to ‘“‘translate” everything in terms of €,-modules.

Let V be the complexification (in 7*X) of TxX N T3 X, A the image of V by ¢.
If (z,{) are the coordinates in T™(C"), A is given by:

A: g, =0.
Lemwma 7.5.1. Let C be a coherent Ex-module such that:
(7.5.1) 88(L)=A
(7.5.2) L has simple characteristics on A.

Let M be a coherent €x-module such that A 1s non characteristic for M. Then the natural
homomorphism

L
R Hom,, (M, Cz) R Hom,, (M, C)E %D( ) R Hom,, (C, C3)
nd (g
8 an isomorphism.

Proof. As ¢ extends to an isomorphism of £x-modules of Cyx with Cg, Lemma 7.5.1
follows from Theorem 6.3.1.

LemMmA 7.5.2. Let  be a coherent €x-module which satisfies (7.5.1) and (7.5.2). Let M
be a coherent €x-module which 18 micro-hyperbolic on S at the codirections dx, and —dz,.
Then we have a natural isomorphism:

L
R Hom,, (M, C5)|snz ~RHom,, (M, L) ® )R Hom,, (L, Cs)[+1].

End(c.

Proof. The hypersurface SN of § defines two closed sets Z, and Z_ whose
boundaries are SN Z. Consider the following commutative diagram with exact rows:

0— Cilsnz—— Cz+lsnz® Cz-[sng —— C5 |snz = 0

0~ Lsnz(C5) > Iz, (C5) |snz @ Tz_(C5)sng = Cs lsnz = 0.
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The prolongation theorem implies

R Hom (M, T, (C5) lsng) =0

and
R Hom (m, Cii ISnZ) =0.

In this induced commutative diagram
o
R Hom (M, C§ |sng) —— R Hom (M, Cz|snx) [1]
fﬂz
o
R Hom (M, C5 [sns) —— R Hom (M, Tsax (C5)[snx) [11,

o, and oy, are isomorphisms and hence so is f,. Now, consider the following diagram:

L
R Homey (M, £) © RHomey (€, C3)lsnz —— RHom (M, Clsaz)
b 2
L
R Homg, (M, €)_© BHome (€, Tsqx(Cs) v R Hom (Tans(CF))

By Lemma 7.5.1, the homomorphism y, is an isomorphism.

The module £ being isomorphic to Ex/ExD,, we have R Hom,, (£, C5)|snx™
R Hom,, (£, I'snz(Cs)), and hence f, is an isomorphism. Since f§, is an isomorphism so is
¥s. Thus we obtain the lemma.

If we reformulate Lemma 7.5.2 by replacing C5 by Cy and £ by Eyy we get:

L
(1.5.3) @ 'RHom,, (M, Cyy) ~ R Hom,, (M, Exey) ® o' 1Cyl1]
Q'ey

where o’ denotes the projection
o TyX xN->T*Y.
M

The hypothesis (2.3.1) of Theorem 2.3.1 implies
0x(Erax ® M) = 04(Eprx @ M) =M,
Ex &x

Thus, it remains to take the direct image by ¢’ of isomorphism (7.5.3) to get the theorem.

§ 8. Application I: Cauchy problem for sheaves of coherent £,-modules

8.1. We show in this section how our theorems allow us to give new proofs to the
results of {19] and to complete them.
Let @ be a holomorohic map from Y to X, ¢ and & denoting, as usual, the mappings:

T X XY —>T*Y
X

o:T*X X Y—>T*X.
X
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If N is a coherent £x-module we write H* and U® for E$®,, N and Ef®,, N. Recall
that £%2 and £} are flat over £;. We have given in § 1 the definition of “¢ non microcha-
racteristic for (M, N)”. Let d =dimc X —dim¢ Y.

TuEOREM 8.1.1. [19, Theorem 3.1]. Let M and N be two coherent Ex-modules on an
open set U< T*X. Assume @ non microcharacteristic for (M, N). Then the natural homo-

morphism on &YU):

L
(I)‘IR Homéx (m, nR)—> R Homsx (m, £X<_y) e_@ ( l}_)x ? n) [d]

34
18 an isomorphism.
The result remains true if we replace HR and E%,x by N® and EFsx.

Proof. As for the proof of Theorem 2.3.1, it is easy to see that it is sufficient to con-
sider the case where Y is a submanifold of X. The theorem must be proved at each point

z€w~YU) and ¢ being non characteristic we may assume:

S8(M)n o lo(x) ={x}

S8(M) N e~e(x) ={2}.
Then we have to prove:

R Hom, (M, H*), 3 R Hom,, (My, ),

where y =p(x).
We identify 7*X with the diagonal of T"X xT*X by the first projection, and
T(T*X) with Tr.x(T*X x T*X). Let us denote by N* the adjoint system to N

* =R Hom,, (N, Ex) ® Q!
X

(where 2y is the sheaf of holomorphic n-forms on X). We have:

R Hom,, (M, #*)~R Hom,, , (MO N*, CRx.x)
and also:
R Hom,, My, MBY~R Homen v (my® (Ny)*, Cl}le Y)-

We first restrict the systems to ¥ x X, then to ¥ x Y. We have

RHom,, ,(My&N*, Chycx)RHom,,  (My&(N*)y, Chycy)(d]

by Remark 6.3.2, and (H*)y[d]=(Hy)*. The theorem will thus result of the following:
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Lemma 8.1.2. [19, Proposition 3.4]. Let Y and Z be complex submanifolds of X. We
assume Y and Z transversal. Let ‘M be a coherent &xz-module defined near x€T*X x5 Y.
We assume Y is mon microcharacteristic for M on T3X and

88(M) no~Y(o(z)) = {x}.

Then the natural homomorphism
R Hom,, (M, C§x),~ R Hom,, (My, C¥ny 7)o
is an tsomorphism.
Proof. We can assume that in some local coordinates:
X=0"xC?
Z ={0} x (¢
Y = (P x (4 x {0}.

Let X denote the complexification of X: X =X x X and we identify X with A =X xzX.
Let us denote by L the system on X defined by the equations:

c.{i.u=0 i=1,...,p

| @lez)u=0 j=p+1,...,p+q
We have:

(8.1.1) TEX N (T*X x S8(L) ~TEX

and an isomorphism (cf. § 6):

(812) C'z‘,x:RHomEX (C, Cx)

where Cy is, as usual, the sheaf of microfunctions on the real manifold X. Let ¥ be the
complexification of ¥ in X. We have:

(m®C)ir:my®Cy
and Ly is the system defined by the equations:
Zu=0, i=1,..,p

(@lezyu =0, j=p+1,.., p+g—d.

It is thus enough to prove:

(8.1.3) R Hom,, (ML, Cx), ~ R Hom,; (M & L)3, Cr)ecr
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because the first term of (8.1.3) is equal to
R Hom,, (M, R Hom,, (C, Cx)), ~ R Hom,, (M, C§x),
and the second term of (8.1.3) is equal to
R Home;r(my, R Hom,y (L7, Cy))ewy R Hom,y (My, Clanvdew

The isomorphism (8.1.3) will be a consequence of Theorem 2.3.1 if we show that Y is
microhyperbolic for & L. Let 6 belong to T'(T*X), with:

0¢C(SS(M); T2 X)
it is enough to show that
(6, 0) ¢ C(SS(M) x 88(C); T; X)

in T(T*X x T*X). Let us denote by (2, %) a point in T*X x T*X.
Let (z,, ®,) and (2, %,) be two sequences in T*(X x X), such that:

2, €88(M), @,€88(L), (2n,wn)ETA(X x X)

(%8s W) T (20, o) (z;n ’0,7);,) . (20, o)
and there exist ¢,€R_, with

Cn(2q — z;) T 0, Cp( Wy — 17);;) T 0.

We have @, =2,, W,=%, hence z, belongs to T2 X and c,(w, —z,) = 0 thus

Cn(2n — wy) . 0

as @, €S8(L), w,€TzX and 6€C(SS(M); T:X): this is a contradiction.

8.2. If we use Theorem 2.2.1 in place of Theorem 2.3.1 we get, by the same arguments,
the following result that we could not obtain directly by the complex method.

THEOREM 8.2.1. Let T and N be two coherent € x-modules on an open set U< T*X. Let Z
be a closed set of U and x a point outside the interior of Z. Assume that any conormal to Z
at x 18 non micro-characteristic for (M, N). Then

(RFZ R’ Homéx (m: nn))z = O'

The result remains true if we replace MR by N® and if we assume that Z is invariant by C*.
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We give many applications of Theorem 8.1.1 in [19] and show in particular how it
allows us to extend to (overdetermined) systems the results of Hamada and Hamada-
Leray-Wagschal (cf. [8], [9]). But even for a single equation our hypothesis is weaker than
those in [9] (““non microcharacteristic” instead of “‘constant multiplicities’).

Let us give another example. Let X =C% x{? with coordinates (z,t). Let @(f) be a
holomorphic function on X, which does not depend on x, ¢ £0, § the hypersurface of X
given by ¢ =0 (S may be singular). Let P be a differential operator whose principal part is
a polynomial (with holomorphic coefficients on X) in D, ..., D, @(f) Dy, ..., p(f) Dy,
We assume the hypersurface x, =0 non characteristic. We prove in [19] using Theorem
8.1.1 that the Cauchy problem is well posed on #, =0 with holomorphic data on X8
(in a neighborhood of x; =0). If we use Theorem 8.2.1 instead of Theorem 8.1.1 we get:
Let Q be a peeudo-convex open set with C'-boundary. Assume 0€8<Q, and (1,0..0)
is the conormal of Q at 0. Let f be a holomorphic function on Q—SNK, such that Pf
extends to X — 8 in a neighborhood of 0. Then the same is true for f. Moreover, if g is
holomorphic on Q—8N €2, there exists a solution f of the equation Pf=g which is holo-
morphic on (Q-8NQ)NU for a neighborhood U of 0.

§ 9. Application II: Propagation of singularities

9.1, In this section, we generalize the results of J. M. Bony and P. Schapira [5] (cf.
also [1], [11]) and extend them to systems of micro-differential equations. Let M be &
real analytic manifold of dimension », X a complexification of M, and N a real analytic
submanifold of X of local type (¢, n—¢) which contains M. We set:

A=TYXnTyX.
It is clear by the definitions that there exists a natural homomorphism:

Catxla = Canxla
and this homomorphism is injective (cf. [5, Theorem 6.2]), but we do not need this

fact here.

TurgoreEm 9.1.1. With the preceding notations let T be a coherent £x-module defined
on an open set U< T*X. We assume that for any 0€T pqy(TrX), 630, 6 is non micro-
characteristic for (TN, TxX). Then the natural homomorphism

R HomeX (m, melA) -R Homsx (ma CMlA)

18 an isomorphism.
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Proof. We may assume, with p=n—gq:

X=0"x(?
M =R xR?
N =0 xR
Let us define, as in § 6, the following:
X =07 xC° x (¢
M =C"xC"xR?
cP
A=0CPx P x (2
(o4

We identify X with its image A in X by the diagonal map. Let £ be the Egs-module
given by the equations:

s:a%u=o, j=1,...,p
We have seen (§ 6)
(9.1.1) THX ~T%X n (SS(C) x T*(CP X C).
(9.1.2) Cuix >R Hom,, (€, Ciy)

and it is thus enough to prove:
R Homéx (mr CM) |A ~R Homéj'( (c®m’ CI;!)IA

But (C®M)|x="M, and by Theorem 2.3.1, it is sufficient to show that X (identified
with A) is microhyperbolic for £& M.
The same argument as in Lemma 8.1.2 shows, by (9.1.1) that if 6 belongs to T'(7T*X),
and
0 ¢C(SS(M); T X)
then
(0,0) ¢ C(SS(LC) x 8S(M); T4 X)

which achieves the proof of the theorem.

9.2. We can now prove the theorem of “‘propagation of singularities”. Note that
our method, that is, using an intermediate sheaf of microfunctions with holomorphic

parameters, is the same as in [5].
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TaroREM 9.2.1. Let A be an involutive submanifold of Ty X, AC the complexification
of A in T*X, A the union of complex bicharacteristic leaves of AS issued from A. Let M
be a coherent €x-module on U< T*X. We assume that for any 0€ T A(T1X), 00, 6 is non
microcharacteristic for (M, A).

Let u be a section of Hom,, (M, Carlp). Then the support of u is a union of bicharac-

teristic leaves of A.
Proof. We use the same trick as in §7.2. The section »®0d, belongs to
Homs_,(xc(m@‘st, CMxRIA')

where A’'={(x, t; i(£,0)); (z, i£)EA} and if u®4J, is zero at some point (2°, 0; (&, 1)),
then u is zero at (22, i&,). As the hypothesis of the theorem are satistied for 0 ®4J, and A’,
we may assume from the beginning that A is regular,that is w40 where  is the
canonical 1-form on 73 X. Thus we are, by a real quantized canonical transformation, in
the situation of Theorem 9.1.1. It remains to apply Theorem 9.1.1 and to remark that
the support of a section of Cyjx in 74X is a union of complex bicharacteristic leaves,
by Theorem 2.2.9 of [24], Chapter 3.

Remark. Our condition is weaker than the condition of [5], which is equivalent to
gay that 6 is non microcharacteristic for (M, A°).

Let us take an example to see the difference.

Let M =R?xR% P be a micro-differential operator whose principal symbol P, is
written with the coordinates (z, t; i(£, 7)) on ¢T*M

P, (z, t; i&, 17) = Qu(z, 1; 1€, i1) + R, (8; €€, iT)

with:

Qnlx, & 4£, it) > c|£]?  for some ¢>0,

Qulx, t; 18,41y =0 for =0,
and
R, (t; 1€, it) 2 0.
There exists >0 such that
[£] > A[|At] + | AE] +|Az]), |y] <1

implies

P (z+y, t+1AL; 18+ AE, it + A1) 0.

If A denotes the manifold £=0 in T X, the conditions of Theorem 9.1.1 are satisfied

and we have propagation “in z.
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For example let us take on R*:
P=D}+Di + (i +8)Dj,

then the analytic singularities of the hyperfunctions solution of Pu=0 will propagate
along the line #; =¢,=0.

§ 10. Application III: Holonomic systems

10.1 Let M be a real analytic manifold, X a complexification of M, and 1 a holo-
nomic system of micro-differential equations defined on an open set U of T*X. We shall

show

TuEOREM 10.1.1. For any §, the group Ext? (M, Cy) are constructible sheaves; that is,
there is a stratification of U N Ty, X satisfying the condition of Whitney such that Extl, (M, Cy)
18 locally constant on each stratum.

In the case of system of differential equations, this is proved in [15].

10.2. Let X be an analytic manifold, ¥ a submanifold of X (over € or R), and
TyX the normal bundle of Y. Let 6 be a 1-form on X whose restriction on Y vanishes.
Then 6 defines a linear function on 7'y X, which we shall denote Iy(f).

Suppose Y is locally defined by f,=...=f,=0. Then 6 is written in the form
6=> a,df;+> fm; with 1-forms 7, and functions a,. Set v,=o(f,) the linear function
corresponding to f, or equivalently ly(df;). Therefore

p(0) =2 a,0(f,).
Definition 10.2.1. We define the 1-form oy(0) on T, X
oy(0) =2 a,do(fy) + 2 o(f)) n,.
ProrosiTioN 10.2.2. 0y(0) is well-defined.

Proof. First, we shall show that ¢y(f) does not depend on the choice of a, and 7,.
Suppose that § has two expressions:

0 =3 a,df,+f;m;=2 a; dfy + fym;.

Since Y (a,—a))df,=0mod (f,, ..., f;), we have aj=a,+> b,f, for some functions b,.
Therefore, we have

me;=§2k bucfudfy+ 2. fym).

4—182904 Acta mathematica 142. Imprimé le 20 Février 1979
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or equivalently

2 fmy— gbkidflc_n;) =0.
Therefore 7, — > b,df, ~1; =0 mod (f,, ..., f;). Thus we can write
n=mn- % bes 3y, + fy Mpmes

for some 1-forms 7. Then it is easy to see

2 a,do(f)) + a(fy)n;= 3 a; do(f;) + o(f) m;

beoause @]y —aily and 7}y =7y.
Now, we shall show that the definition of ¢(f) does not depend on the choice of f,.
Choose another {fi, ..., f;} so that Y is defined by f;=...=f;=0. Then we can write

fy=> cufr- Therefore, if 6=3 a,df,+> fm;, we have 8=2,, a,cpdfp+ Dk (>, aydey+
>s¢an,). Then we obtain

% a0y d(ofe) + 3 o(fe) (; @y dey, + ;% )
= ; a d(% ¢ 0 (fi) + ,Z(g s 9(fie)) 1y
= ’Ea; do(fy) + 2 o(f) s,
which shows the result. QE.D.

Note that oy(f)—dly(0) is zero modulo functions vanishing on the zero section of
T.X.

10.3. Let f be a map from X’ to X and let Y’, Y be submanifolds of X’ and X
respectively. Suppose that f(¥Y')< Y. If a 1-form @ on X vanishes on Y, then f*6 vanishes
on Y'. Let f be the canonical map 7'y X'~TyX. Then we have

(10.3.1) f*oy(8) = oy(f*6).

In fact, it is enough to check if for § =dg or 6 =gz where ¢ is & function on X vanishing on
Y and % is a l-form on X. We have

Frox(dg) = [*doylg) = d(oy(g)of) = doylgef) = ov(d(gef)),

and
Fravlgn) = Plorlg)n) = ovlgof) *n = ox(f*(gn)).

10.4. Let V be a subanalytic set of X.
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ProrosiTION 10.4.1. Let X be a real analytic manifold, Y a submanifold, 6 a 1-form
on X which vanishes on Y. If 0 vanishes on a subanalytic set V (i.e. 0, =0 at a non-singular
locus of V), then 04(0)|cyn =0 and Cy(V)={ly(0)=0}. (For subanalytic sets, we refer to
[101.)

Proof. Considering the blowing up of X with center ¥ and using the result in § 10.3,
we may assume without loss of generality that Y is a hypersurface of X. The question
being local, we assume X ={(t, z) ER™1} and Y={(t, x)€X; t=0}, and we may assume
that V is contained in ¢>0.

Let 7 be the projection from {v€ Ty X; o(t)(v) >0} onto ¥. Then Cy(V)=n-}V n Y).

Let us denote 0 =a(t, x)dt+in. It is then enough to show that
(104.1) (0, x) =0

on 7NnY and 9|yay=0. Since ¥ is a subanalytic set there is a proper map ¢: W—X such
that (W)=V. Let W, be the union of connected components where ¢ is identically
zero. Then ¢(W,)< Y, and hence ¢(W — W,) = V. Therefore, we may assume that ¢ is not
identically zero on each connected component of W.

Let us show that
(10.4.2) alp-svy =N lp-1ry = 0.

In order to show that it is enough to consider a generic point where ¢ has the form
g™ with dg==0. Then ¢*0=ad(g™)+g™=mg™ adg+gn)=0 and hence adg+gn=0. It
implies @ is a multiple of g, say a=bg. Then 5= —bdg. This shows (10.4.2). Since
@(@~1Y)=Vn Y, we have a|yny=7|yay=0 by (10.4.2). Q.E.D.

10.5. Let (X, w) be a homogeneous symplectic manifold of dimension 2z; i.e. w is a
1.-form on a manifold X such that @ and (dw)" does not vanish at any point.

Let A be a homogeneous Lagrangian manifold (i.e. a manifold of dimension n on
which @ vanishes). Then, 7, X and 7T"A are identified by the Hamilton map
H: T*X 5 TX.

Let w, be the fundamental 1-form on T4 X. Then we have

ProrosiTiON 10.5.1. wy +0op(w) =dls(w).

Proof. Take a local coordinate system (zy, ..., ,, &y, ..., &,) such that dw =73 d&; A dz,
and A={{=0}. If we identify 7' X with X by this linear structure, w,= —<§, dx).
We can write w =<§, dz) +dp. Since w|, =0, dp|, =0, and hence we may assume ¢|, =0.
Then lj(w)=0x(p) and o,(w)=<&, dx> +dos(p), which shows the result. Q.E.D.

THEOREM 10.5.2. Let V be a homogeneous Lagrangian subanalytic set. Then C,(V) is
an isotropic subanalytic set of (T*A, w,) and is contained in the zero of l,(w).
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This is an immediate consequence of Proposition 10.4.1 and the preceding proposi-

tion.
10.6. Let X be a real analytic manifold.

Definition 10.6.1. Let V be a conic subset of T*V. A locally closed set Y of X is called
flat at y€Y with respect to V if

C(V; YY), < {ve€TH(T*X); <v, w(p)y =0},
for any point p in 7z (y).
Lemma 10.6.2. If a submanifold Y is flat with respect to V, then a~Y(¥Y)N V<= T3 X.

Proof. Take a point p in VNzn~Y(Y). Then Criy) (V) contains T(n~(Y)). Hence
o(p)=0 on T,(n-'(Y)). This is equivalent to say that p belongs to T7X.

ProrositioN 10.6.3. Suppose that X is an open set in RY and that o subset Y is flat
with respect to a conic set V in T*X at a point 2. Then there is ¢ >0 such that (x; y —x) does not
belong to V for x€X, y€Y satisfying |x—2,|, |y—2o| <s, x=y.

Proof. We shall prove the proposition by contradiction.

If the proposition is false, then there are sequences z,€X and y,€Y which con-
verges to z, such that (,; ¥, —%,) is contained in V and z,=y,. Let ¢,>0 be a sequence
such that ¢,(y,—«,) tends to v==0. Then, (z,; c,{y, —=,)) is8 a sequence in ¥ which con-
verges to p=(xy; v) and (y,; c,(¥,—%,)) is & sequence in @#—'Y which converges to p.
Since ¢,((%y; Co{Z, —¥n)) — Un; Ca(®, —¥,))) converges to (—wv,0), (—v,0) belongs to
Cr1p)( V). Thus {(—v, 0), w(p)) = — v, v>, which is a contradiction. Q.E.D.

ProPpoOSITION 10.6.4. Let X =] [, X, be a stratification of Whitney. Then, V=[], Tx X
s a closed subset and each stratum X, 1s flat with respect to V.

Proof. Let (z,; &,) be a sequence in T}aX which converges to (z; £). We shall prove
that (x; &) belongs to T'% X for B such that X, contains . By the condition of Whitney,
if T,,X, converges to a plane 7< T', X, then v contains 7', X, Therefore, the orthogonal
(T%,X),, converges to v* which is contained in (T% 4X);- This implies (x; £)€Tx,X. Let
us show that Xy is flat with respect to T;GX . Let x be a point in Xp, p=(x, £) a point
in 7~Y(z) and g a point in C,(T% X;7 *X;s). Then there are a sequence (2,; &,) in Tk X, a
sequence (y,;7,) in -4 (X,) and a sequence ¢, >0 such that c,(x, —y,; &, —1,) converges
to ¢=(v; w) and that (z,;&,) and (y,,7,) converge to p. Suppose that T, X, converges
to a plane 7 in 7, X. Then, by the condition of Whitney, 7 contains » and 7', X,. Since
p is contained in T3, X, we have <g, w(p)) =<v, £ =0. Q.E.D.
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Remark. Conversely, if V is closed and if each X, is flat with respect to V then
X =[] X, is a stratification of Whitney.

ProPosiTION 10.6.5. Let V be a closed conic isotropic subanalytic set in T*X. Then
there exists a stratification of Whitney X =11 X, of X such that V is contained in 11T% X.

Proof. Let V=[]V, be a stratification of Whitney so that ¥V, —Y,=a(Y,) is smooth
and Y, is a submanifold (and subanalytic). Then ¥, is contained in T’}‘,aX . In fact, let us
choose a local coordinate (y, ..., z,) such that ¥, is defined by x,=...=2,=0. Then on
Ve O=00=> E,dx,=2}‘_,+1§,dé,. The forms dz, (I+1<j) are linearly independent on
Y, and hence on V, This implies &,,,=...=§,=0 on V,. Take a stratification of
Whitney X =] [Y}; which is a subdivision of U Y. Then this satisfies clearly the required
condition. Q.E.D.

10.7. Now let us prove Theorem 10.1.1. The method employed here is almost the
same as {15]. Let M be a real analytic manifold and X its complexification.

THEOREM 10.7.1. Let M be a system of micro-differential equations on X, A the
characteristic variety of M and V =Cps x(A)< T*(T% X). If a submanifold Y of Ty X is flat
with respect to V, then Extl, (M, Cy)|y 16 a locally constant sheaf for any j.

Proof. Let (t;, ..., ts,) be a local coordinate system on T3 X such that Y is linear,
and y, a point in Y. By Proposition 10.6.3, there is £>0 such that

(10.7.1) (x;y—x)¢V

for x€ T X, y€Y satisfying |x—y,|, |y ~uo| < 2¢, =y
Set U y)={=z; |x—y| <r}. In order to prove the theorem, it is enough to show that

(10.7.2) Ext! (U,(yo); M, Cu) X Ext! (Uyly); M, Cy)

for y€Y and ¢ >0 such that |y —y,| +¢ <e. In fact, then we have Ext/ (Uy,); M, Cy) 5
IEExt’ (Ugy); M, Car) ~Ext! (M, Cu), for any y€ Y n U(y,).
Set Q= Uy 1-n1o(t¥o+ (L —t)y). Then Q, = U (y,), Qo=U(y). It is easy to check that
{Q.}o<i<1 i8 an increasing sequence and that
Qtu = U Q¢ O < t< 1
t<to

and

ﬁto': n Qe for 1>t0>0.
t>ty
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Moreover, M is microhyperbolic by (10.7.1) with respect to 6Q, and hence
Exth, -0, (M, Cu); =0 for 2€0Q,,

which implies, by the same argument as in [15] or § 4, the desired result (10.7.2). Q.E.D.

Theorem 10.1.1 is immediately proved by this theorem, Theorem 10.5.2 and Proposi-
tion 10.6.5.

Remark. 1t has been proven by M. Kashiwara and T. Kawai [18] that for any
z€THXN U, any j, the vector spaces Ext}, (M, Cy), are finite dimensional over C.

10.8. If we use Theorem 8.2.1 instead of Theorem 2.2.1 we get, for a complex
manifold X:

TaeEoreM 10.8.1. Let M and N be two left coherent &x-modules on an open set U of
T*X. We assume that M and N are holomonic. Then there is a complex siratification of U
satisfying the conditions of Whitney such that for any i, the groups Ext}, (M, N*) and
Extl, (M, N®) are locally constant on each stratum.

Recall that we set in § 8.
M=o n
&x

n*=EX®N.
&x

Note added in proof
Theorem 2.2.1 is valid in a more general context: we may replace M with a complex
L', bounded to the left, of free modules of finite rank over £F or over £%, and replace the
characteristic variety of M with the union of the closures of the supports of the cohomology
groups of £, This is in fact what we have done in the proof. Let us only notice that the
isomorphism of the sheaves Cy, and Cy of chapter 7 is compatible with the corresponding
isomorphisms of the rings £ or £%.
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