A CONTRIBUTION TO THE THEORY OF DIVERGENT
SEQUENCES.

By

G. G. LORENTZ

in TUBINGEN.

In this paper we define and examine a new method of summation which
assigns a general limit Lim x, to certain bounded sequences x = {x,}. This
method is analogous to the mean values which are used in the theory of almost
periodic functions, furthermore it is narrowly connected with the limits of S.
Banacu.? The sequences which are summable by this method F we shall call
almost convergent. In spite of the fact that our method contains certain classes
of matrix methods (for bounded sequences) it is not strong (§ 3). Its most remark-
able property is that most of the commonly used matrix methods contain the me-
thod F (§ 5). In spite of this ' is equivalent to none of the matrix methods (§ 7).

In § 6 we shall examine a certain class of matrix methods and compare them
with the method F.!

§ 1. Different Definitions of the Method F.

Let M be the entity of all bounded sequences of real numbers x == {x,)}.
M is a Banach space, if we there define the linear operations in a natural
manner and the norm of an element z = {x,} by

||l = sup | 2.].
n

Then evidently the set C of all convergent sequences is a linear subspace of M.
S. Banach proved the existence of certain functions of the element x = {z,} in

! Some preliminary results have been published in Zapiski Univ. Leningrad, Math. Ser.
12, 30—41 (1941).
* Cf. BANACH, Théorie des opérations linéaires, Warszawa 1932, p. 33—34.
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M — the Banach limits — which we shall designate by L(x) = L(x.). These
functions have the following properties:

I. w + byn) = aL(x,) + L (yy) (a, b real),

2. L{xs)=o, if z, =0, n=0, 1, 2,

Llax

L(

3. L(zn+1) = L(xn),
(1)=

™~

4.

One can immediately see that for every x € M we have inf z, < L (x,) < sup zn.
Taking into account that L{x,) is independent of the first terms of the sequence
{xn) i.e. independent of z; for k =< k,, we obtain a little more precisely

(1) l_ingxnéL(xn)_S_lﬁ Zn.

We introduce in M the functions

P

(2) q(@) = gq(x,) = inf lim ! D Tk
. . Ny, gy v oy p ks 2 i=1
and
p
’ ’ R 1
(3) (@) =q@)=—q(—z)= sup lim- Danw

Ryt oy Taeo P i1

Here the infimum and supremﬁm are taken with respect to all possible natural

numbers p; n,, n,, . . ., 7. It is easy to prove that'

(@) {q(ax)=aq(x) for azo, [q=)l=l=]
glx +y) = ql) + gy).

From (4) it follows for y, =— x, that

q' (#n) = q(n).
If now {x.} €M, {y.} € C then

o p
¥ (xn + yn) = inf lim ! 2 (xnl~+k + f’/nl-+k)

LCTRRU kw00 P ;T3
(5) ,
2

= inf {hm Yn + lim ;; Z’ni—i-k} = lim ya + ¢q(x).
1

' Cf. BANACH, op. cit. p. 32.
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With the aid of q(xa), ¢'(xn) the evaluation (1) can be rendered more accurate.
We have
= 1 % 1 <
Hm - M axp4r = L (Z_J Zx,,.i”) = L{xy),
1

ko P i3
and similarly for lim. Therefore we have
(6) ¢ (wn) = Liaa) = glxa).

It is now natural to ask for which of the sequences z = {x,} all limits L(x,)
coincide. This is the case for the convergent sequences (according to (1)). But
also for x=1{1,0, 1,0,...} the value L{x,)==1/2 is the same for every Banach
limit, as easily follows from 3., 1., and 4. We are thus led to the following

Definition: The bounded sequence {x,} is called almost convergent and the
number s = Lim z, is called its F-limit ¢f L(xn)=s holds for every limit L.

We shall now give an internal characteristic of an almost convergent
sequence.

The sequence x = {x,} is then and only then almost convergent, when the
condition

(7) ¢ (@n) = q(n)

is fulfilled. From (6) it follows at once that this condition is sufficient. Con-
versely let ¢'(xn) < ¢(xs) for a certain x = {x,}. We then construct L in the
following manner:' Let L(y.)=1lim y. for y€C. For the continuation of L
into the space of the elements y + ax, y€ C, a real, the value of L(xn) can be
chosen arbitrarily® in the interval

sup {— q(— 20 — yu) — lim yn} =< L(x,) < inf {g(xn + ya) — lim ya}.
v€C y€C

But according to (5) this inequality is equivalent to
q (@n) = Lixn) = q(an).

Thus our proposition follows, as L can then be continued into the whole space M.
We shall now prove a theorem which brings the property (7) into a simpler

! We here make use of the known construction which leads to the proof of the theorem
about the continuation of a linear functional, c¢f. BANACH op. cit. p. 27.
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form. We shall thus obtain an analogy to the usual definition of the mean
value of an almost periodic function.

Theorem 1. In order that the I’ limit Lim x, = s exists for the sequence {x.},
it ¥s necessary and sufficient that

® BT ST SR T,
poo r

holds unzformly in n.

Proof: If (8) is fulfilled, there is for ¢ >0 a P such that for p = P and
all » we have

s~-s<p(9c~. + Tn41 +-~~+xn,+p_1)<s+ £.

Therefore according to (2} and (3)

s—e=q () =qlan)=s+ e

and as &> o0 was arbitrary, q'(z.,) = ¢q(x.) =s. Therefore Lim x, exists and is
equal to s.
Conversely let Lim x, =s. Then for every & > o there are natural numbers

p; 1 =---= n, such that
P

I o
lim - anl+k<s+s
Irtoopz-:l

For sufficiently large % say % = k, it follows that
1 &

(9) D <s+e
b

and if we replace n; by »:; +#%, and k¥ by k — %, then (9) is even fulfilled for all
natural Z.

We now have for all natural »

K ny+ K K+n, 11 1

2 xni+k+n: Z 2 Ljyn = Z Zjtn + 0 ij-l’ﬂ + 0( )

1
p z*l J=n;+1 J—np-f—l J=0

J'ﬁ

where the last term is uniformly bounded in 2. Then from (9) follows for K
sufficiently large and all »

K-1
I \
EZ.’Ej+n<S+ 2¢.
j=0
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Similarly we may show, that the sum is >s-—2¢ so that we have really
proved (8).!

Let I™ be the subset of M consisting of all almost convergent sequences.
We sall sum up a few elementary properties of F”. I™ is linear, not separable
(for F* contains a set of sequences {x.} of the power of continuum having the
distance 1 from each other. Such a set for instance is formed by the sequences
Zn=0 for n#k® and zn=o0or =1 for n="F%% k=0, 1,...). F* is nowhere
dense in M, dense in itself and closed — therefore perfect (for the functions
q(x),q (x) are continuous in M, as follows from (g)).

§ 2. The Method F and General Mean Values.

According to (8) the method F seems to be related to the method C, of
the arithmetic means. In fact the method C, can be replaced in this definition
by any other regular matrix method A at least when A4 fulfills certain simple
conditions. A regular matrix method 4 is defined by

ce

(10) Lm D amaite = s

m— o0 n=90

O .
where dmn = 0 and X\ dms — 1 when m — 0o, and furthermore ,|dma| remains

bounded.

For such a method A we shall call the bounded sequence {x,} F4 summable

n n

to the value s if

o0
Ymr = Z Amn Ln+k
n=0

uniformly in £ =o0,1,... tends to s as m - oo, We then have
Theorem 2. An Iy summable sequence x = {xn} s also F summable, if the
method A s regular.

Proof: With x = {x,} the elements x® = {zni1}n=01,. . .(k=0,1,...) also
belong to the space M and evidently ||z¥]| < ||z|. Let yme =¢ + amr, where s
is the F4 limit of {x.}. Then for every ¢ >0 an m, can be found such that

! Tt is no use to try to generalize by aid of (8) the notion of almost convergence also for un-
bounded sequences. In fact it easily follows from (8) that the sequence {x,) is bounded.
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lami| <& for m=my k=o0,1,.... We examine the series whose terms are
elements of the space M:

o0
y(m) = Z amnx(")_
n=0

This series converges according to the norm (as \|amn|||#™ ]| convergences)

and represents an element y™ of M whose kth coordinate is just ymi Accord-
ing to the above we therefore have

ym =se+am™; e={1,1,...,1,...}, [|[e™]=e.

From both sides of the last equation we take a Banach limit L. As L is con-
tinuous and additive and as furthermore L (x™)= L(z), we have

L((L’):(SJ.' a)/zamn, Ialé&

n=0
Since ¢ > 0 and m are arbitrary, it follows that
L) =s
i.e. Lim x, =s.
For special methods even more is true:
Theorem 3. If the reqular matrix method A has the property (16) of § 5

then the methods F and F. are equivalent.
This theorem will follow at once from the considerations of § 5.

§ 3. Examples of Almost Convergent Sequences.

1. For a complex 2z on the periphery of the unit circle Lim 2" = 0 holds
everywhere except for z =+ 1. For from

1 — 2P

(Z” + Zn+1 4o+ zn+p—1) = "
p(1—2)

RS |-

the proposition follows immediately.

It is shown just as easily that the geometrical series 2" for [z]=1,2# + 1
is almost convergent to 1/(1 — 2) (i. e. for its partial sums s, we have s,~1/(1—2)).
Hence it follows that the Taylor series of a function f(¢), which for [z]| <1 is

! For a complex sequence z, = x, + iy, we define Lim z, by the aid of (8) or put Lim z, =
= Lim x, + ¢ Lim y,.
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regular and on [z|=1 has only simple poles, is almost convergent at every
regular point of the periphery |z|= 1 with the sum f{z).
By separating real and imaginary parts in Lim 2" = o0 we have
Lim cos np =0, Limsinng=o0  (p==o0mod 2m).
n—oo0 nt— 0

Furthermore

§+F—~Zcoan)=o (p = 0 mod 27)
1

holds, as this series represents the real part of the geometrical series 3 + I ¢e'™9.

2. A periodic sequence = {x,} for which numbers N and p (the period)
exist such that xnip, = . holds for » = N is almost convergent to the value

- .
Lim xn=1—)(x1v + xye1 + o+ Tnep-1).

3- In analogy to the notion of an almost periodic function we call a
sequence {x,} almost periodic if for every &> o0 there are two natural
numbers N and [, such that in every interval (k, & + 1), k= o at least one
»e-period» p exists. More precisely |wn+p — 2n] <& for = N must hold for
this p.! We have then: Every almost periodic seQuence ts almost convergent.

The proof of this statement can be given in the same manner as that for

the similar fact of the existence of the mean value

¢+ T

(11) lim % f f©)dt  (uoniformly for all ¢)
¢ ’ ‘

T— o0

? This proof can therefore be omitted here.

of an almost periodic function f(¢).

But naturally there are almost convergent sequences which are not almost
periodic. For there is only a denumerable set of almost periodic sequences, whose
terms take the values 0 and 1 only (namely the periodic ones only) whereas the
set of almost convergent sequences of this kind has the power of continuum

(cf. the last section of § 1).

! A similar definition, where x, is defined for all — oo << n < + oo is given by A. WALTHER,
Fastperiodische Folgen und Potenzreihen mit fastperiodischen Koeffizienten, Hamburger Abh., 6
(1928), p. 217—234.

* Cf. for example H. BoHR, Fastperiodische Funktionen, Ergebn. der Math., Berlin 1932, p.
34—38.
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4. For the method with the matrix

Ay Gy Ay . . . Gn
Oa, a4, ...0-1 ...

(12) A= ©@ @t
OO0 a...0u-3...

where San,=1 and 3|a.| < + oo is supposed, one immediately sees that the
method Fy means the same as A itself. Therefore from theorem 2 follows:

Theorem 4. Every bounded sequence which is summable to the value s by a
method (12) is also almost convergent to s.

With restriction to matrices with finite lines of the form (12) H. Hu~tE-
MaNN' has introduced a method H, according to which the sequence z = {z,}
is summable to the number s by definition, if it is 4 summable to s for some
4 of the form (12). (The number s is independent of 4). From the above it
follows at once that H is contained in F for bounded sequences. There are,
however, sequences, which are F but not H summable as shown by the example
of the sequence: xn =1 for n =42 x,=0 for n = %* (k=o0,1,2,...).

8 4. Tauberian Theorems of the Method F.

We shall now look for Tauberian theorems for our method Z. As usual we
shall start from a series S«, with the partial sums z, = Z“" What condition
]

on the terms of an almost convergent series X a, ensures the ordinary convergence
of the series? We call such a condition a Tauberian condition. Such a
Tauberian condition for example would be @, —~ 0 or even

(13) al - o, a} = Max (ax, 0)
or finally the gap condition

(14) a, =0 for n#n, v=1,2,...,

where {n,} is a lacunary sequence, i.e. a monotonously increasing sequence
of natural numbers with #,.1 — n, = + oo. Instead of these conditions we con-
sider the more general conditions a, = O(cs) and a» =< O{cs), where ¢, may have
all values 0 < ¢, < + 0.

! Deutsche Mathematik, 7 (1938), 390—402.
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The above propositions are special cases of the following more general
theorems: '

Theorem 5. a,= O(c,) ?s then and then only a Tauberian condition for
almost convergent series Zan if

(A) J'For every ¢ > 0 a lacunary sequence {n,} exists with

len<e for nsfm, v=1,2,...
Proof: a) Let (A) be fulfilled and for an almost convergent series let [a,| < Me¢,
with a constant M. For a given ¢ > 0 we choose p so large, that for all =

I
(15) ‘Z;(xn+xn+1+--~+xn+p_1)—s <

holds, where the x, designates the partial sum of the series 2 a, and s = Lim z,.

Let {n,} be the sequence which belongs to & = 2¢/(p — 1) according to (A).
If » is defined by n, = n < #,41 then for sufficiently large » either n + p—1 <n,41
or n—p-+1>n, In the first case we have ¢, <e¢ for n<o=n+p—1
and therefore

Ixn'_slélxrl_;(xn+"'+xn+p—l)l + &
<M:7‘(1 Y2+ +@—1)+te=(M+ 1)e

This inequality also holds in the second case. Therefore x, —s.
b) If the numbers ¢, do not satisfy the condition (A) then an ¢>o0 and a
sequence {n,} of natural numbers increasing monotonously to infinity exist such

that ¢,, = &, nay11 — 2y~ + o0 and that n2, — #2,-1 is bounded. If we now let
Qny,_ =& Qny, =—& ¥=1,2,... a,=0 for the remaining #,

then the sequence of the partial sums x, is divergent, while evidently Lim x, =o.
The one-sided condition of convergence can be treated just as easily.

Theorem 6. a, < O{(c,) ¢s then and then only a Tauberian condition for almost
convergent series = ay if

(B) Cpn—> O holds.

! The author gave similar Tauberian theorems for the methods of Cesiro and Abel in a
paper »Tauberian theorems and Tauberian' conditions» which is to appear in the Transactions
Amerie. Math. Soc.
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Proof: a) Let these conditions be fulfilled and for an ¢ > 0 a number p be
chosen so large that (15) holds. For » = N, say, we then have a, <& =2¢/(p — 1)
and therefore for n = N + p

xn<£(xn_p+1+~-+xn) +;7'(1 +2+-+(p—D)<s+z2e

The inequality xn >s— 2¢ is proved in a similar manner.

b) If (B) is not fulfilled, a lacunary sequence {n,} with ¢, = ¢ > 0 exists.
Then the series Sa, with an, = ¢, an,+1=—¢, an =0 for the remaining » is al-
most convergent and at the same time divergent, although a, = O(c,) is fulfilled.
This proves the theorem.

§ 5. Strongly Regular Methods.

In spite of the fact that the method ¥ contains certain regular matrix
methods (with restriction to sequences contained in M) it is fairly weak. We
shall show that it is contained in every »reasonable> matrix method. Almost
convergence is a generalisation of ordinary convergence. From this point of
view the method F seems to be rather akin to the ordinary convergence than
to commonly used matrix methods. We shall therefore designate methods which

sum all almost convergent sequences as strongly regular.

Theorem 7: In order that the regular matriz method A = | am.|| sums all al-

most convergent sequences, it is necessary and sufficient that

«®
(16) lim 2" |amn_am,n+llzo-

M=+ 0 g—0

If this condition is fulfilled, then A-lim x, = Lim x, for every almost convergent
sequence {xy}.} '

' We shall not treat the similar problem of the regularity of a method with respect to all
almost periodic sequences. A regular method for functions f (¢} which has the form

+ o0
lim fK(z, HfHdt=s
0

T 0

sums every almost periodic function f(f) of a real argument — oo < t < 4 oo to its mean value (11)
exactly if the condition of »asymptotic orthogonality»
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Proof: We assume first of all that (16) is fulfilled. Let {x.} be almost con-
vergent and Lim a,=s. For any arbitrary &> 0 we can then find a natural
number p such that

1
i)(xn + Znt1 o F pgpo) =8+ @, |an]<e n=o0,1,2,...).
Multiplying by aw. and adding we have

(-]
\ W\
amn(xn + Xppr + -+ xn-}-p-—l) =sdAn + Z‘ Amn Cn
0 n=0

(WE

(17)

RS i

n

Y
where 4, = Za’"" —> 1. AS ann tends to zero for m - oo we have on the other

n

hand:

8

uamn(mn + Zpy1 + 0+ xn+p—l)
0

LS

n

I R
(18) =0(1)+ xn"(am,n—p+1 + -+ Ama)
n -1 p

/:8

It
=

< 1
=Ym + 2’ xn{_ (am,n—p+l +---t dmn)— amn} + O(I).
n=p—1 b
Here y™ designates the A transformation (10) of the sequence {x,} and the last
term is infinitely small for m - co and the chosen p. Now the absolute value
of the sum on the right hand side of (18) is not larger than
I

-]
2 |(am, n-p+1 + -+ amn) —Pamn I : " x "
pn:p—l

1 p—-1 )
él_)"xllz Z |am,n—g'—amn|

¢=0 n=p-1

+00
lim fK(x, ) S;’;‘udt=o (A real o)
0

2> 00
is fulfilled. This is certainly the case, if the kernel K(z, f)is equally distributed in the sense that

lim fK(x, Hdt=é(E)
E

X0

holds for every measurable set £ < (o, + o), for which the density in the interval (o, 4+ oo), viz.

¢
§(E)=1lim - meas {E-{(o, n)} has a sense.
n—eoo N

12
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o0

1 p—‘l 3
é1;”3"‘” Z}QZ'amn"‘am,n+ll

=0 n=0
p—1 <
=7"1'“2Iamn — Qm,n+1 |
n=0

From (17) and (18) we now have

ym =SA.m + Zamn [+ %% + O(I).
n=0

Now
sAm =238+ 0(1), ]ZamnanléMe with M = sup | @mnl.

Thus for sufficiently large m we certainly have |ym —s| = (M + 1)e. Therefore
lim y» = s. This means that condition (16) is sufficient.

We now assume that (16) does not hold. We shall construct a sequence
{z.} for which Lim x, = 0 but which is not summable by the matrix 4. According
to our hypotheses an ¢ >> o exists, such that for an infinity of m

-]
Zlamn_am.n+ll > 8e.

n=0
For every such m we either have
o0
Zlam,2l—" am2i41| > 4 &

=0
or

Mg

|am,21+1 *am,21+2| > 46
1

I

0

By recurrence we now construct three increasing sequences of natural numbers
{mr}, {pr} and {g«} where g_1 =0 < p, < ¢, < p, < --- shall hold. We first choose
my, P;, ¢, such that

|[lmhol <—8‘1
2

wp=l
2

Al
Z | @m,pit21— @mpisais1] > 26,
i=0

. e
Z I amh"l <
n=q,+1 2
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If the numbers i, ps, §», ¥ =1, 2, . . ., k — 1 are already known, m, px, ¢x (Where

gi-1 < pr < qr and one of the numbers pi, gx even, the other, odd) are chosen
such that

k-1 .
Zl“mk:"|<;’

n=0
L
2

\
Z Iamk,pk+2l_‘ amk,pk+2l+1 > 2 £,
=0
oo

Z | amk! n | < i )
n=qk+1 2

We now define the sequence {x,}. Let

Tpp+21= (-— I)k sign (amk,pk+21_ amk,pk+2l+1) k=1,2,...

Lpp+214+1 =~ Lpp+2l

QG —pr— 1
{ =o, I, .. ,72———
zn=0 for qr-1<n <
Under these conditions we have for our sequence
-]
|?/mk| = lzamk,n-'l'n|
n=0
ap—pp—1
2 e &
= Z | Gmg, oy 20— @my, ppr2i-1| — - — = >
P 2 2

and

sign yYm, = (— 1)%.

Hence it follows, that the sequence ym diverges. It is further easy to see, that

Lim 2, = 0. This remark completes the proof. We shall investigate a few
examples.

I. The Cesaro method C, of the order a > o is defined by

n
I
—_—— a—1
Yn = Ae ZAn—-vx"”
n v=0

=n+a'=(a+1)(a+2)...(a+n)_ n®
")

~

n! I‘(a+l).'

If further we put A*! = o, then the sum (16) is equal to



180 G. G. Lorentz.

I < 1
1= 2ol -4t =L =457 + 1) o,
n

n v=0
as the numbers A%~! are monotonous. Thus every almost convergent sequence
is C, summable for ¢ > o0 to its F limit.

II. We examine the Euler method of summation E,(a > 0) which is given
by the transformation

L A N <N C AW (B SN SRS 3 Y
= 2 (1) b= orm= 20 () () =

We put 1/2=1¢ and use the notation

2o(t) =D nlt) = (’;)tv(x g =0, 1, 1 sl = o,

Then the sum (16) becomes

n

lev(t)—"pv+1(t)l= Il_tzn + 1

=0 reort Sl

Y + 1
n+ I

t|ps(2).

We split this sum into two parts, let 3, be the sum for those », for which

%—t < n~% and let 3, be the remainder. For the evaluation of the sums we

use the following known inequality, in which A4 signifies an absolute constant:

3 n<%
0=v=n
l %—t l’én“i

With the aid of this inequality we obtain

v+1__t} il_(n-i—l)
n+ I n

IA

2

3, ééMax nt1
n2

osvsn ¥ F 1

For the terms of the sum I, we have

y + 1
n + 1

n+1 1 2
A |

v 41 t—-2n_*<t

1
~t|<n**+;<2n‘*

and therefore
2 L~ 2
|‘21|< t" }va(t) t“ i

»=0
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Here also (16) is falfilled, i.e. every almost convergent sequence {x,} is -E.
summable to Lim x, for « > o.

We now return to the proof of theorem 3 in § 2. For this purpose we
replace x, by xn+r and yu by ymr = Zamn Xt in the first part of the above proof
for theorem 7. Just as before one recognizes that from Lim z, = s under the
supposition (16) the I, summability of the sequence {x,} to the value s follows.
That is, the method I is contained in F';. This and theorem 2 imply theorem 3.

§ 6. The Class A of Matrix Methods.

We have already seen that many matrix methods sum all almost convergent
sequences. We shall now specify an even more comprehensive class of methods
which have the property that they also sum certain bounded sequences, which
are not almost convergent.

This class A is the entity of regular methods A4 = | an. || for which
(19) lim {Max |ama|} =0

is fulfilled.! We shall show thas the methods of this class can be characterized
by the following »direct» theorem:

Theorem 8. In order that a regular matrix method A sums every bounded
sequence which has the property
(20) Ty =0, nFEn, N, ...

and for which n, tncreases sufficiently rapidly, it is necessary and sufficient that
A belongs to A. Then A-lim x, = o.

»n, increases sufficiently rapidly» means more precisely: for all sequences
{n,} for which n, = N, holds, where {N,} signifies a given sequence of real
numbers.

Proof: a) If for the.method A the condition (19) is not fulfilled there is
an ¢ > 0, a monotonously increasing sequence m, - + oo with

Max Iafm,,nl = &
n

! It may be remarked here that the methods of class 9 have been investigafed by D. MEXN-
CHOFF, Bull. Acad. Sci. URSS, Moscou, ser. math., 7937, 203—229. D. Menchoff proves an
interesting theorem ahout the summability of orthogonal series by methods of class . Cf. also
R. P. AGNEW, Bull. Americ. Math. Soc. 52, 128—132 (1946}, where a special case of our theorem
8 is proved.
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and finally a sequence {n,} such that
(21) Iam,,n,,l 2 &.

As the sequence {n,} cannot be bounded, we can assume that », tends to infinity
and that », increases as rapidly as we please.

We examine the matrix 4’ =|lau,||=|am,»,[. On account of (21) and
according to a theorem of I. ScHur' a bounded sequence {z,} exists which is
not A" summable. Let

2z, form=mn, v=1,2,...
Xp =
o for all other =.

This sequence {x.} is evidently not A summable, though », can increase‘as
rapidly as we please.
b). Suppose now the condition (19) to be fulfilled. Let

em = Max | amn|.
n

It is possible to find two monotonously increasing sequences {pm}, {qm} of
natural numbers, such that the following conditions are fulfilled:

Pm > O, P = Pm+l, Pmém —> O,

o0

2 |@na|=nm >0, gm < gm+1.
n=gpy+1
Then a third sequence of natural numbers {N,} exists, such that for every m
the inequality N, < qm is fulfilled for at most p, of the numbers N,. To obtain
such a sequence {N,} we choose m; < my < ---, such that
1= Py < Py < and therefore pn, = v

and put
leqmn N2=Qvn,a < vy N‘v=qmv, P

The number ! of the N, for which the inequality N, =< gn is fulfilled, is deter-

mined by n = m < my41. For this [ we therefore have
l é_pml = Pm

which prowes the existence of the sequence {N.}.

! 1. BcHUR, Journ. fiir reine und angew. Math. 757 (1921), 79—111 Theorem III. According
to this theorem a regular method A’ = || a, || with elements a,, converging to zero for u— oo
sums all bounded sequences exactly when lim Y, Ia,'u,l = 0 holds,
¥
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Now this sequence has the property stated in the theorem. For suppose
that for a sequence {n,} of natural numbers n, = N, for» =1, 2, . ... Then the

n, also have the property that 7, = ¢m holds for at most pm of the numbers »,.
If {x.} is a bounded sequence with |x,| =< M and z,=o0 for n # n, then

0 9m L
|?/m|=|zamnwn|§Zlam"xn|+ Z
n=90 n=0 n=g,+1

ZetnpanM+ mmM—o.

This proves the theorem.

We shall add some remarks to this theorem. For this purpose we introduce
the notion of the density of a finite or infinite sequence n, < n, < --- of
natural numbers: That is a numerical monotonous not decreasing function ()
defined for all real n = o such that for every n there are exactly w(n) numbers
n, satisfying the inequality #, < n. Evidently w = w(n) is defined by

Ny =N < Nep+l-

If for two sequences {n,} and {n,} the inequality n, < n, holds for every »,
then for their densities we have w’'(n) < w(n). And conversely: from w’ (n) < w(n)
follows n, < n,. If w(n) is the density of {n,} then }n,,} has a density = w(n)/2.

We can now state theorem 8 in the following manner:

Theorem 8*. The condition (19) is necessary as well as sufficient for the
existence of a function Q(n) (which has integral values only) tncreasing monotonously
towards + oo, such that every bounded sequence x = {x.} for which the indices
n, with xn, 7% 0 have a density = Q(n) is certainly A summable (to zero).

For if the sequence {N,} of theorem 8 exists, we designate its density by
Q(n). If then x = {x,} is a bounded sequence for which x, =0 for n 7= n,,
v=1, 2,... and if {n.} has a density w(n) < Q(n) we have n, = N, and therefore
according to theorem 8 certainly 4-lim x, = 0. Conversely, if a function Q(n)
of the kind required in theorem 8" exists, it may be assumed that 2(x) only
has jumps of the magnitude 1 for integral values of ». Then Q(n) is the density
of some sequence {N,} and for this sequence theorem 8 holds.

We shall call a function of the type treated in theorem 8" a summa-
bility function of the method 4. Thus for example it can be seen at
once that for the method €, of the arithmetic means all functions 2(n)= o(n)
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and only these are summability functions. As the methods C.(e > 0) and the Abel
method A are equivalent to C, for bounded sequences, they also have the same
summability functions. The methods of class 9 are characterized by the fact
that they do at all possess summability functions. If a method A is stronger
than a method B in the space M of the bounded sequences then every summa-
bility function of B is at the same time a summability function of A. The
magnitude of 2(r) is in a certain sense a measure for the strengh of the method
in the space M.

We shall now describe ways for the determination of the summability
functions of a given method. They are provided by the following two theorems.

Theorem 9. A function Q(n) with integral values only, increasing monotonously
to + oo 1s a summability function for a regular matrix method A exactly when
Jor every sequence {n,} whose density is = 0(n)

M+ 00,

oo
(22) lim X |amn,|=0
1

holds.
The proof follows immediately from the theorem of I. Schur mentioned
in footnote p. 182 if one applies it to the methods with the matrices || amn, ||
In order to obtain a more convenient form of the above criterion we in-
troduce the numbers 42 where Q= Q(n) is a function with integral values,

increasing monotonously to + oco. 42 is defined as the upper bound of all sums

Dlamn,| in which {n,} goes through all sequences of a density = 2(n). (It is

v

enough only to admit finite sequences {n,}).

Theorem 10. A function Q(n) is a summabibity function of a matriz method A
if and only if
(23) lim 42 =o.

Proof: (22) evidently follows from (23) so that it only remains to be shown
that (23) follows from (22). Let (22) be satisfied but let (23) be wrong. Then an
¢ >0 exists such that for an infinity of m the inequality 42 > 3¢ holds. On
account of (19) one can, by taking the sequence {n;,} or {n.,_1} instead of {n,}

and only keeping a suitable segment of this sequence, deduce the following:
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For every N > o there is a finite set of numbers #,:
N<n <ny<---<my

whose density is < 2(n)/2 such that for an infinity of m

k
(24) Zlamnel = e

e=1

From these m we now choose a partial sequence {m,} increasing monotonously
to + oo such that, if »}, nj, ..., n{,ﬂ signify the respective n,, the inequalities
ny. 1, <mj and

.Q(n}l) + Q@)+ + Ryt = Q(n})

ky—1

hold. Then the sequence

1 1 1 2
Ny, Nay o ooy BEyy Py, oo .

for which we also write {n,} has a density =< Q(n). For the number of the n,
with 7, < is

= 1 9 L) + é!)(n‘f,g) ++ éﬂ(n;;_ll) + 1 Q(n)

Qin
=300 + 3 2(n) = Q)

v being defined by n] = n < a}*L
For this sequence {n,}, however, (22) would not be fulfilled, as according to (24)

oo
2 ” amv "9 " g &.
o=1

This contradiction proves the assertion.

Usually the coefficients am» are & 0 and monotonous. They increase up to
n = N, and then decrease to zero for n ~ co. In this case it is easy to evaluate
the numbers A2. Let Ny be chosen such that the sum 2 an, for » varying in the
interval Ny — hm << # = Ny, becomes as large as possible. (This will be the case
in the neighbourhood of Np). The set of these » has a density w(n) =< 2(n).!
Therefore according to the definition of A2

! We assume that 2{n) does not alter more than by I in every interval of the length I, a
natural condition as a density w(n) always has this property.
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(25) A2 = >

"
7' — P e, N
Ny ~hm=<nzNp,

One obtains the evaluation of A2 from the other side by choosing Nz' so
large, that 2 amn = ¢. Then every sum 2, @mn, splits up into two parts of which
n>1\’;f v
one, with » > N;* is =< ¢ while the other contains at most 2(N:') = hy terms
and is therefore smaller than 3 amn for Num — hn < n < Ny + k. Hence
(26) A2 < ¢ + Z‘ Amn -

m
| Npyp—n I<h;n

As an example we consider the Euler method £,

n

yn=2(1:})t”(1——t)"‘”%, o<t=2%<1.

y=0

The Newton probability
po(t) = (Z) (1 — 0" = an,

becomes the larger as » is the closer to n¢, and approximately equally large on

both sides of n{. We make use of the known fact that for every ¢ there are
positive numbers C,, C,, D,, D,, d independent of », » such that

v 2 v ]

C, -nin (ﬁ—z) C, e-D.,n (;4)

(27) —Le 'Sane =%

== for
Van Va

- tl <4
n
Then according to (26) we have by putting Na* =n, N, =nt and e=o0

ag=c > e‘D”"(F")V—’

Bl

—=q 3 e,

|, | =2(n)n

where further I,=Vn (% — t). For 2(n)=o0(Vn) the last sum tends to zero

for n - oo: It is the Riemann sum of the integral

O,fe"’“"du
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for an interval around the point o whose length tends to zero. Similarly if in
(25) we put Ni=nt, we see that lim A2 >0 if Q(n) o(V n).

Therefore all functions 2(n) = o(V n) and only these functions are summability
Junctions for the methods E.(a > o). '

& 7. Impossibility of the Representation of the Method F by Matrix Methods.

The method F cannot be expressed in the form of a matrix method. Every
such method containing I, i.e. fulfilling (16) also sums certain bounded and not
almost convergent sequences. As we stated above this even holds for all methods
of the class U. But we want to prove a little more and therefore introduce the
following definitions:

Let A¢, k=1, 2, ... be a sequence of regular matrix methods. By the pro-
duct A =1IT Ay we understand the method A which is defined by the property that
it sums a sequence {z.} to the value s exactly when this sequence is summed
by all methods A to this value s. The sum A = 3 4; is deflned as a method
which sums a sequence {z,} then and then only to the value s, if it is summed
to s by at least one of the methods Aj;. (Here it must further be assumed that
the methods A4; are consistent with each other.)

Now the method F is neither equivalent to a product of regular matrix
methods nor to a sum. (For the matrix methods we only consider bounded
sequences.) The first of these propositions follows from

Theorem 11. For every sequence {A:} of methods of the class U there is
a bounded sequence x = {xn} which is not almost convergent but is summable to the
value zero by every one of the methods Ay.

Proof: According to theorem 8* a summability function 2:(n) exists for
every method 4;. It is then possible to define a monotonous not decreasing
function Q(n) for which 2(n) > + oo for » > oo and which satisfies the inequality
2(n) = Q(n) for every k from a certain » onwards. Clearly Q(») is a summability
function for all methods A:. Now it is easy to specify a sequence {xx},zn=0
or =1, which contains segments of arbitrary length consisting of o's only or
of 1I's only and for which the sequence of the » with x, =1 has a density
=< Q(n). This sequence is not almost convergent and according to theorem 8*
we have A;lim 2, =o0 for k=1, 2, ..., which proves the theorem.

Theorem 11 states that almost convergence cannot be attained »from above»
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by products of matrix methods. We shall now show that it is also impossible
to get almost convergence from below by means of sums.

Theorem 12. If for every regular matrix method Ax (k=1, 2,...) an almost
convergent sequence exists which is mnot Ap summable, then an almost convergent
sequence exists which is not summable by any method Ay

Let A% signify the entity of the bounded and A, summable sequences. We
have to prove that from F* — Af %0, k=1, 2, . . . it follows that F* — S 4; # o
(ef. § 1, last section). Now F* is a linear closed subspace of M and therefore
of the second category in itself. F* A is a linear closed subset of F™ different
from F* and therefore nowhere dense in F*. Therefore F* 3 Af is of the first

category F* and cannot coincide with it.!

§ 8. Strongly Regular Hausdorff Methods.

A Hausdorff method H has the form
(28) , po= Danzn= 3 (1) o
=9 =0
where {u,} is a fixed real sequence and #*pu, signifies the difference

' k .
Ay = py — (I)um +oo (= 1) s

According to Hausdorft? the method (28) is exactly then regular when there
is a function g(f) of bounded variation in [0, 1] which solves the moment problem

1
(29) un=ft”dg(t), n=o0,1,2,...
0

(we assume ¢(f) to be normed by g(0) =o0), satisfies the condition g(1)=1 and is
continuous in ¢ =o0.

! Theorem 12 evidently follows also from the known theorem about the condensation of
singularities. Cf. KAczZMARZ und STEINHAUS, Theorie der Orthogonalreihen, Warschau, 1935 p.
24. The proof given above is nothing but a »geometrical» proof of this theorem.

* F, HAUSDORFF, Summationsmethoden und Momentenfolgen, Math. Zeitschrift ¢ (1921),
74—100.
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The %-th difference of ¢ is ¢*(1 — t)*. On account of (29) we obtain for the
coefficients a,, of the transformation (28)

an,‘=(f)d""u«-=fl(’:)t”(1 ——t)"‘”dg(t)=flm(t)dg(t)

using the notation of § 5 example I1.

Theorem 13. A Hausdorff method H is strongly regular if it belongs fo
class A. For this the necessary and sufficient condition is

(30) Apn = Un > O
or the continuity of the function g(t} for t=1.

Proof: Let V(f) be the total variation of g(f) in the interval [o, {]. If g(¢)
is continuous in ¢{=1 then also V(f) is continuous. For an arbitrary ¢ >0 we
choose § > 0 so small, that V(1) — V(1 — d) <& We then have

1-4 1
lm| = | [t dg(d)] +|fd|-_<-(r~a)"V(x)+s<ze
0 1—

for n sufficiently large, i.e. u, converges to zero.

If on the other hand ¢(t) has a jJumpo=g(1) —g(1 —0)# 0 in t =1, then
we designate by A(f) the function h(tf)=o for t< 1, h(1)=0. Then g,(t)=
= g(f) — h(t) is continuous and

1 1
anf t"dh+ft"dg,=a+ o(1) > o #o.
0 0

Hence the condition (30) is equivalent to the continuity of ¢(f) in ¢=1.

From HEN (30) evidently follows. It therefore suffices to show that the
condition

n n 1
(31) 2 { Guy ~— Qu, v+1 l = Zlf(pr(t\ _‘})14-1(0) dg (t)l - 0
r=0 =0 0
for a regular Hausdorff method H follows from the continuity of g¢{¢) in
t=1. The sum (31) is obviously not greater than

1=

| S pet) = pess (] d V()

p=

<
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V(t) is continuous in t=o0 and ¢{=1 and the sum under the integral sign is
= 2 for all ¢. It therefore suffices to show that for every 6 > o

1—d n

[ 1o —pesa(]d V()

d =0
tends to zero for » — co. But in the interval (d, 1 — d) the sum Z|p, — poi1|
converges uniformly to zero as shown by the evaluations of § 5 example II.
From this the proposition follows. Examples I and II are only special cases of

this theorem.



