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In  this  paper  we define and examine a new method  of summat ion  which 

x This  assigns a general  l imit  Lim x,~ to cer ta in  bounded sequences x - ~  xx~j. 

method  is analogous to the  mean values which are used in the theory of a lmost  

periodic funct ions,  f u r t he rmo re  i t  is narrowly connected with the  limits of S. 

BANXCH. a The sequences which are summable by this  method  F we shall call 

almost  convergent .  In  spite of the  fac t  t ha t  our  method  contains cer ta in  classes 

of mat r ix  methods (for bounded sequences) it  is not  s t rong  (w 3). I ts  most  remark- 

able proper ty  is t ha t  most  of the commonly used mat r ix  methods  conta in  the me- 

thod  F (w 5). I n  spite of this  T' is equivalent  to none of the ma t r ix  methods  (w 7). 

In  w 6 we shall examine a cer ta in  class of matr ix  methods  and compare  them 

with the method F.  ~ 

w I. Different Definitions of the Method F. 

Let  M be the ent i ty  of all bounded  sequences of real  numbers  x = (x,) .  

3 [  is a Banach  space, if we there  define the l inear  operat ions in a na tura l  

manner  and the norm of all e lement  x = {x,} by 

II x II = sup Ix,, I. 
n 

Then  evidently the set C of all convergent  sequences is a l inear  subspace of 311. 

S. Banaeh proved the exis tence of cer ta in  funct ions  of the e lement  x----(x,,} in 

1 Some prel iminary results  have been publ ished in Zapiski Univ. Leningrad, Math. Ser. 
12, 3o--4I  (1941). 

C[. BANA(!H, ThGorie des operations linGaires, Warszawa 1932, p. 33--34- 
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M -  the B a n a c h  l i m i t s  - -  which we shall designate by L ( x ) = L ( x , , ) .  These 

funct ions have the fol lowing propert ies:  

I. L (a x,, + b y~) -~ a L (x,) + b L (y~) (a, b real), 

2. L(xn)>=o, if x , , ~ o ,  n = o ,  I , z , . . .  

3. L(xn+x) = L(x , ) ,  

4. L ( , ) =  , .  

One can immediately see tha t  for every x e M we have inf x~ ~ L (x,) ~ sup x~. 

Taking into account  tha t  L(x,,) is independent  of the first terms of the sequence 

{x~} i .e .  independent  of XE for  k ~/Co, we obtain a little more precisely 

(I) lira Xn ~ L (xn) ~ lim x~. 

We introduce in M the funct ions  

P 

(2) q(x) = q(xn) -~ inf lira I_ 
hi, n2 . . . .  , ~p k~oo ~) i ~ l X n i + k  

and 
P 

(3) q ' ( x ) = q ' ( x n ) = - - q ( - - x , ) =  sup lira -I ~__jxn,+~.. 
nt, n~, . . . , 'np  ~ p  i=1  

Here  the infimum and supremum are taken with respect  to all possible natura l  

numbers  p ;  n~, n 2 , . . . ,  n~. I t  is easy to prove that  1 

t q ( a x ) = a q ( x )  for a_-->o, lq(x) l=<llxll, 
(4) t q (x + y) ~ q (x) + q (y). 

From (4) it follows for y~ = - - x ~  tha t  

q' (x~) ~ q (x~). 

I f  now {Xn} e 31, {y,} E C then 

P 

p (x,~ + yn) ---- inf lim I ~,  (x,,i+ k + y,~,+~.) 
n ~ , . . . , n p  k~oo ]9 i= l  

(5) 
= i n f { l i m y n + l i m  I 12 } - x , ,~+k = lira yn + q ( x ) .  

P 

i Cf. BA.~,'ACH, op. cir.  p. 32. 
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aid of q(x~), q'(x~) the evaluat ion (I) can be rendered more accurate. 

- x.~+k ~ L x.i+k = L(xn), 

and similarly for lim. Therefore we have 

(6) q' (x.) ~ L (x~) ~ q (x~). 

I t  is  now na tura l  to ask for which of the sequences x---- {x.} all l imits L(x,,) 

coincide. This is the case for the convergent sequences (according to (I)). But  

also for x = {I, o, I, o, . . .} the value L ( x , ) - -  I /2  is the same for every Banach 

limit, as easily follows from 3., I., and 4. We are thus  led to the fol lowing 

Definit ion: The bounded sequence {Xn} is called almost convergent and the 

number s-~ Lira x ,  is called its F-limit ~f L(x~)---s holds for every limit L. 

W e  shall now give an internal  characteristic of an almost  convergent 

sequence. 

The sequence x-----{Xn} is then and only then  almost convergent,  when the 

condit ion 

(7) q' = q 

is fulfilled. From (6) i t  follows at  once t ha t  this condi t ion  is sufficient. Con- 

versely let q'(xn)< q(Xn) for a certain x =  {x,}. We  then  construct  L in the 

following manner :  1 Let  L ( y , ) - ~ l i m y ~  for y e C .  For the cont inuat ion of L 

into the space of the elements y +  ax ,  y e C ,  a real, the value of L(x,)  can be 

chosen arbitrari ly 1 in the interval  

sup { - - q ( - - x n - - y . ) - - l i m  y~} ~ L(x.) ~ i n f  {q(x,~ + y . ) - - l i m  y . } .  
yEC yEc 

But  according to (5) this inequali ty is equivalent  to 

q' (Xn) <---- L (Xn) __--< q (X~). 

Thus our proposition follows, as L can then be continued into the whole space M. 

W e  shall now prove a theorem which brings the property (7) into a simpler 

We here make use of the known construction which leads to the proof of the theorem 
about the continuation of a linear functional, cf. BANACH op. cit. p. 27. 
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form.  We shall  thus  obta in  an ana logy  to the  usual  definit ion of the  mean  

value of an a lmost  periodic funct ion.  

Theorem 1. ~n order that the I ;  l imi t  Lim x,, ~ s exist~ f o r  the sequence {x,,}, 

i t  is necessary and sufficient that 

(8) lim xn + x ~ , + l  + " + X , + p - 1  = s 

holds un i formly  in n. 

Proof: If  (8) 
all n we have  

is fulfilled, there  is for  e > o  a P such t h a t  for  p > P  and 

I 
S --- ~ < (Xn q- Xn+l ~, "'" -}- X,,+p--1)  < 8 -}- ~. 

P 

There fore  accord ing  to (2) and  (3) 

s -- ~ ~ q' (x,~) ~ q (x,~) ~ s + 

and  as ~ > o was a rb i t ra ry ,  q'(xn) = q(x,,) = s. There fore  L im x,, exists  and  is 

equal  to s. 

Conversely let  L im xn = s. Then  for  every ~ > o there  are na tu ra l  numbers  

P ; ~h = < ' "  < n~, such t ha t  
P 

lim I ~_a - Xni+k ~ 3 "+" ~. 
k ~  P i=1  

For  sufficiently la rge  k say k > ko i t  follows t h a t  

P 
I 

(9) - ~ ,  X,,i+k < s + 
P 1 

and if  we replace ni by ni + k  o and k by k - - k  o then  (9) is even fulfilled f o r  all 

na tu ra l  k. 

W e  now have for  all na tu ra l  n 

E 1 K  ~ I ~ ni+lC K+nl K-1 
Xni + k + n = -  Z Xj+n= Z Xj+n ~- 0 ( [ )  = ~ X j + n  4- O(1), 

k=l P ;=1 P i=1 j=ni+l j=np+l j=O 

where the  las t  te rm is un i formly  bounded in ~. 

sufficiently large and all n 
K--1 

I 
- -  " 5 ' . x . + ,  < s + 2 ~ .  
K~=o 3 

Then  f rom (9) follows for  K 
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Similar ly we may show, t h a t  the  sum is > s - - 2 ~  so t h a t  we have  real ly  

proved (8). 1 

Le t  F* be the subset  of M consis t ing of all a lmos t  conve rgen t  sequences.  

W e  sall sum up a few e lementa ry  proper t ies  of F* .  F* is l inear,  no t  separable  

(for F* conta ins  a set  of sequences {x~} of the  power  of c o n t i n u u m  hav ing  the  

d is tance  I f rom each other .  Such a set for  ins tance  is fo rmed  by the  sequences 

x~----o for  ~ ] c  ~ and  x , ~ o  or ~ I  for  n----k 2, k : o ,  I , . . . ) .  F* is nowhere  

dense in 21I, dense in i tself  and  closed - -  the re fore  pe r fec t  (for the  func t ions  

q(x) ,q '(x)  are cont inuous  in M, as follows f rom (4)). 

w 2. The Method F and General Mean Values .  

According  to (8) the  me thod  F seems to be re la ted  to the  m e t h o d  C~ of 

the  a r i thmet ic  means.  I n  fac t  the  me thod  C~ can be replaced in this  definit ion 

by any o ther  r egu la r  ma t r ix  me thod  A at  least  when A fulfills cer ta in  s imple 

condit ions.  A regu la r  ma t r ix  me thod  A is defined by 

( I 0 )  l im ~ar~,nX,l--- S 

where a,n,, -* o and ~,  a,~, 4 1  when m -+ oo, and  f u r t h e r m o r e  ~_~]am,,] r emains  
71, n 

bounded.  

Fo r  such a me thod  A we shall  call the  bounded  sequence {x,~} 1 ~  summable  

to the value s if  

ym k = ~ amn Xn+k 
~ 0  

un i fo rmly  in k----o, I , . . .  tends  to s as m - ~  c~. W e  then  have  

T h e o r e m  2. A n  FA summable sequence x : {x~} is also F sum,2able, i f  the 

method A is regular. 

Proof :  Wi th  x----{xn} the e lements  x (k)-- {xn+k}n=0,1 . . . .  (k----o, I . . . .  ) a l s o  

belong to the space M and evident ly  [[x (~')[[~t[x[I. Le t  y~k~--s  + a~k, where  s 

is the  FA l imi t  of {x~,}. Then  for  every ~ > o an m 0 can be found  such tha t  

1 It  is no use to try to generalize by aid of (8) the notion of almost convergence also for un- 
bounded sequences. In fact it easily follows from (8) that the sequence (xn} is bounded. 
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] a~ .  I<<~ for  m ~ m o ,  k ~ o ,  I , . . . .  We  examine the series whose terms are 

elements of the space M: 

y(m) ~ ~ arnnX(n). 
n ~ 0  

This series converges according to the norm (as ~, la~nl l [x(~)l l  convergences) 

and represents  an element  y(~) of M whose k-th coordinate  is jus t  ymk. Accord- 

ing to the above we therefore  have 

y ( ' ~ ) ~ - s e + a ( m ) ;  e ~ - { I ,  x , . . . , x  . . . .  }, Ila(m) l l ~ e .  

F rom both  sides of the last equat ion we take a Banach l imit  L. As L is con- 

t inuous and addit ive and as fu r the rmore  L ( x  ('')) ~ L ( x ) ,  we have 

L ( x ) =  (s + a) / ~ 
n ~ 0  

Since ~ > o and m are arbi t rary ,  it  follows tha t  

L (x) = s 
i .e .  Lira Xn ~ s. 

For  special methods  even more is t rue :  

Theorem 3. I f  the regu lar  m a t r i x  method  A has  the p r o p e r t y  (16) o f  w 5 

then the methods  F a n d  FA  are equivalent .  

This theorem will follow at  once f rom t h e  considera t ions  of w 5. 

w 3. Examples of Almost Convergent Sequences. 

z. For  a complex z on the per iphery  of the uni t  circle Lim z n ~  o holds 

everywhere  except  for  z--~ + I. 1 For  f rom 

I_ (z" + z "+1 ~ . . . .  + z "+p-I) -= z" I - -  zP 
p p ( i - z )  

the  proposi t ion follows immediate ly .  

I t  is shown just  as easily t h a t  the geometr ical  series ~ z  n for  [z] ---- I, z ~ + I 

is a lmost  convergent  to I / ( I  - - z )  (i. e. for  its par t ia l  sums s~ we have sn-~ I / ( I - -z)) .  

Hence  it  follows tha t  the Tay lor  series of a funct ion  f ( z ) ,  which for  I z [ <  x is 

i For a complex sequence z n ~ x n .~ iYn we define Lira z n by the aid of (8) or put Lim z n 
Lira x n -F i Lira Yn" 
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regular  and on J z l =  I has only simple poles, is almost  convergent at  every 

regular point  of the periphery I z ] ~  I with the sum f(z). 
By separat ing real and imaginary parts in Lim z " =  o we have 

Lim cos ~ ~0 -= o, Lim sin n q~ ~ o (~0 ~ o mod 2 lr). 
? l ~  oo ? l ~  Oo 

Fur thermore  

�89 + 1;'~ ~ c o s  n 9  = o  
1 

(9 ~ ~  mod 2~r) 

holds, as this series represents the real part  of the geometrical  series �89 + 2~ei~e. 

2. A periodic sequence x = {x~} for which numbers N and p (the period) 

exist such tha t  x~+p = x~ holds for n ~ N is almost  convergent  to the value 

I 
Lira x~-~ -(x~- + x~v+l + -"  + x~+p-1). 

P 

3. In  analogy to the not ion of an almost  periodic funct ion we call a 

sequence {x,,} a l m o s t  p e r i o d i c  if for every , > o  there are two na tura l  

numbers 2/ and l, such tha t  in every interval  (k, k + l), k ~ o at  least one 

,>,-period* p exists. More precisely Ixn+p--x~l<e for  n ~ N  must  hold for 

this p.1 We have then:  Every almost periodic sequence is almost conve~yent. 
The proof of this s ta tement  can be  given in the same manner  as t ha t  for 

the similar fact of the existence of the mean value 

(ii) 
c + T  

c 

(uniformly for all c) 

of an almost  periodic funct ion f(t). ~ This proof can therefore be omit ted here. 

But  na tura l ly  there are almost convergent  sequences which are not  almost  

periodic. For  there is only a denumerable set of almost  periodic sequences, whose 

terms take the values o and I only (namely the periodic ones only)whereas  the 

set of almost convergent  sequences of this  kind has the power of cont inuum 

(cf. the last  section of w I). 

1 A s imi l a r  def in i t ion,  where  xn is defined for all  --  c~ < n < + oo is g iven  by  A. W A L T H E R ,  

Fas tpe r iod i sehe  Fo lgen  u n d  P o t e n z r e i h e n  m i t  f a s tpe r iod i schen  Koeff iz ienien,  H a m b u r g e r  Abh. ,  6 

(I928), p. 217- -234 .  
2 Cf. for e x a m p l e  H. BoltR, Fas tpe r iod i sehe  F u n k t i o n e n ,  Ergebn .  der Math . ,  Ber l in  1932, p. 

34--38- 
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4. F o r  the  m e t h o d  wi th  the  m a t r i x  

a o a 1 a 2 � 9  an � 9  

(12) A ~ -  o a o a l  . . . a n - I  �9 �9 �9 

0 0 a 0 . . �9 an-~ . . �9 
�9 . �9 ~ , . . . .  

where  ~ a n = I  a nd  2 ~ [ a ~ [ <  + co is supposed ,  one  immed ia t e ly  sees t h a t  t he  

m e t h o d  T'A m e a n s  the  same  as A itself.  T h e r e f o r e  f r o m  t h e o r e m  2 fo l lows :  

T h e o r e m  4. E v e r y  b o u n d e d  s e q u e n c e  w h i c h  i s  s u m m a b l e  to t h e  v a l u e  s b y  a 

m e t h o d  (12) i s  al,vo a l m o s t  c o n v e r g e n t  to s .  

W i t h  ~est r ic t ion to  m a t r i c e s  w i th  finite l ines  o f  t he  f o r m  (12) H.  BUNTE- 

~ANN1 has  i n t r o d u c e d  a m e t h o d  H ,  a c c o r d i n g  to  w h i c h  t he  sequence  x =  {x~} 

is s u m m a b l e  to  t he  n u m b e r  s by def in i t ion ,  if  i t  is A s u m m a b l e  to  s f o r  some 

A of  t he  f o r m  (I2). (The n u m b e r  s is i n d e p e n d e n t  of  A). F r o m  the  above  i t  

fo l lows a t  once  t h a t  H is c o n t a i n e d  in F f o r  b o u n d e d  sequences .  The re  are, 

however ,  sequences ,  w h i c h  are  F bu t  n o t  H s u m m a b l e  as  s h o w n  by t he  example  

o f  t he  sequence  : xn ~ I f o r  ~ ---- k ~, xn ----- 0 f o r  n # k 2 (k = o, I, 2 . . . .  ). 

w 4 .  T a u b e r i a n  T h e o r e m s  o f  t i l e  M e t h o d  F .  

W e  shal l  now look  f o r  T a u b e r i a n  t h e o r e m s  fo r  ou r  m e t h o d  F .  A s  usua l  we 
n 

sha l l  s t a r t  f r o m  a series ~ a n  w i t h  t he  par t ia l  sums  x,, = ~ ,  a~. W h a t  cond i t i on  
o 

on t he  t e rms  of  an  a lmos t  c o n v e r g e n t  series ~ a n  ensures  the  o r d i n a r y  c o n v e r g e n c e  

of  t he  se r i es?  W e  call  such  a cond i t i on  a T a u b e r i a n  c o n d i t i o n .  S u c h  a 

T a u b e r i a n  cond i t ion  f o r  example  w o u l d  be a , , - +  o or  even 

+ o, a+ Max (a~, o) (13) a,, --, ,, = 

or  f inally t he  g a p  cond i t i on  

(I4) a,,----o f o r  n # m ,  v =  1 ,2  . . . .  , 

where  {m} is a l a c u n a r y  s e q u e n c e ,  i .e .  a m o n o t o n o u s l y  i n c r e a s i n g  sequence  

o f  n a t u r a l  n u m b e r s  w i th  m + l -  m - ~  + co. I n s t e a d  o f  these  cond i t i ons  we con- 

s ider  the  m o r e  gene ra l  cond i t ions  an ~ O(c.) and  an ~ O(c~), whe re  cn m a y  have  

all  va lues  o ~ cn =< + co. 

Deutsche Mathematik, 3 (1938), 390--402. 
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The  above propos i t ions  are special  cases of 

theorems  : ~ 

Theorem 5. a , , =  O(cn) is then and then only 

almost convergent series ~an i f  

(A) 

175 

the  fo l lowing more  genera l  

a Tauberian condition for  

$ For every ~ > o a lacunary sequence {m} exists with 

with a cons tan t  ~I. 

P roo f :  a) Le t  (A) be fulfilled and  for  an a lmos t  convergen t  series let  I a ,  ] _--< Me~ 

For  a given , > o we choose p so large,  t h a t  for  all n 

holds, where the  x,, des igna tes  the par t ia l  sum of the  series 2~ an and  s = L i m  xn. 

Le t  {n,} be  the  sequence which  belongs to '1 = 2 , / ( p  - -  I) accord ing  to (A). 

I f  v is defined by n~ =< n < m + l  then  for  sufficiently large n e i ther  n + p - -  I < n,+l 

or  n - - p +  I > m .  in  the  first case we have  c e < e  I for  n < Q _ - - < n + p - - I  

and  the re fore  

I I x n - s l  =< + + + 

< M*t(I -~ 2 + - - . +  ( p - -  I ) ) + , - ~ ( M +  I)e. 
P 

This  inequal i ty  Mso holds in the  second case. The re fo re  Xn ~ s. 

b) I f  the  numbers  en do no t  sa t i s fy  the  condi t ion (A) then an  e > o and a 

sequence {n~} of na tu ra l  numbers  increas ing  mono tonous ly  to infini ty exist  such 

t h a t  On, >__--e, n 2 ~ + l - - n 2 ~ - - >  + c o  and  t h a t  n 2 , - - n ~ , - 1  is bounded.  I f  we now let  

a n 2 ~ _ l  ~ e ,  a n 2 ~  ~ - -  8,  V ~ I ,  2 ,  . . . ,  a n  ~ 0 fo r  the  r e m a i n i n g  n, 

then  the  sequence of the  par t ia l  sums xn is d ivergent ,  while ev ident ly  Lira xn = o. 

The  one-sided condi t ion of convergence  can be t r ea t ed  jus t  as easily. 

T h e o r e m  6. an <= 0 (cn) is then and then only a Tauberian condition for  almost 

convergent series :~ an ~f 

(B) c~ ~ o holds. 

1 The  a u t h o r  gave  s imi l a r  T a u b e r i a n  t h e o r e m s  for t he  m e t h o d s  of Ceshro and  Abel  in  a 

paper  >>Tauberian t h e o r e m s  and  T a u b e r i a n  conditions,~ w h i c h  is to  appea r  in t he  T r a n s a c t i o n s  

Americ.  Math.  Soc. 
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P roof :  a) Let  these condit ions be fulfilled and for an r > o a number  p be 

chosen so large tha t  (I5) holds. For  n _--> N, say, we then have a, < r~ = 2 r / ( p  - -  I) 

and therefore  for n ~ N + p 

X n  < - ( X n - p + l  ~ - ' ' "  -~ Xn) -[- ( I  A- 2 -~- " ' "  -t- ( p  - -  I)) < S ~- 2 $. 
P 

The inequali ty xn > s ~ 2 e is proved in a similar manner .  

b) I f  (B) is not  fulfilled, a lacunary  sequence {~,} with cn,_--r > o exists. 

Then the series .San with an,----r, a . ,+ l  = - - r ,  an = o for the remain ing  n is al- 

most  convergent  and at  the same t ime divergent,  a l though an <= 0 (Ca) is fulfilled. 

This proves the theorem. 

w 5. Strongly Regular Methods. 

In  spite of the fac t  tha t  the method F contains certain regular  matr ix  

methods (with restr ict ion to sequences contained in M) it is fairly weak. We 

shall show tha t  it is conta ined in every ,)reasonable* matr ix  me thod .  Almos t  

convergence is a general isat ion of ordinary convergence.  F rom this point  of 

view the method  2 '  seems to be ra ther  akin to the ordinary  convergence than  

to commonly used matr ix  methods.  We shall therefore  designate methods  which 

sum all a lmost  convergent  sequences as s t r o n g l y  r e g u l a r .  

Theorem 7: In  order that the regular matr ix  method A = [la,,,,[[ sums all al- 

most convergent sequences, i t  is necessary and sufficient that 

(I6) lira 2 I amn-a'n,n+l[=O" 

I f  this condition is fulfilled, then A-lim xn = Lim xn for  every almost convergent 

sequence {xn}. 1 

We shall not t~eat the similar problem of the regularity of a method with respect to all 
almost periodic sequences. A regular method for functions f(t) which has the form 

+r162 

lira f K(x, t) f(t)dt = s 
X~ O0 "o 

sums every almost periodic function f(t) of a real argument --co < t <: + oo to its mean value (! I) 
exactly if the condition of ,asymptotic orthogonality~, 
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P r o o f :  W e  a s s u m e  first  of  a l l  t h a t  (I6) is  fu l f i l led .  L e t  {x,,} be  a l m o s t  con-  

v e r g e n t  a n d  L i m  x ,  = s. F o r  a n y  a r b i t r a r y  ~ > o we c a n  t h e n  f ind a n a t u r a l  

n u m b e r  p such  t h a t  

I 
(x .  + x . + l  + . - .  + x . . _ l )  = ~ + . , , ,  I-. I < ~ (,, = o, ~, ~ , . . . ) .  

M u l t i p l y i n g  by a. .~ a n d  a d d i n g  we h a v e  

(i7) PI n=0Z amn (Xn q" X n + l  + " '"  + Xn+p-1) = 8 Am + n=0 a~. a .  

w h e r e  A ~ = ~ _ j a m , , ~  I. A s  a ~ .  t e n d s  to  zero  f o r  m - ~ o o  we h a v e  on  t h e  o t h e r  
n 

h a n d :  
oo 

I y ,  a m .  (x,, + x, ,+l  + ""  + x . + p - 1 )  
.P n~O 

OO 
(18) 0 ( I ) - ~ -  Z xn I " = (am,~-p+l + " "  q- amn) 

n=p-1 P 

n=p--1 [ P  

H e r e  ym d e s i g n a t e s  t h e  A t r a n s f o r m a t i o n  ( Io)  o f  t h e  s e q u e n c e  {x.} a n d  t h e  l a s t  

t e r m  is i n f i n i t e l y  s m a l l  f o r  m -~ c~ a n d  t h e  c h o s e n  /9. N o w  t h e  a b s o l u t e  v a l u e  

o f  t h e  s u m  on t h e  r i g h t  h a n d  s ide  of  (18) is  n o t  l a r g e r  t h a n  

. ,~  I ( a . , , . - , , + i  + ' "  + , , . ~ . ) - / g a , . . I . I l x l l  
19 n=p-1 

p--1 ~,. 

=< ~ l l x ! l Y ,  , l a ~ , . - e - - a ~ , , I  
P q=O n=p-1 

~-oo 
f COS lira K(x,t) s i n A t d t = o  Q. real ~ o )  
0 

is fulfilled. This is certainly the case, if the kernel K(x, t) is equally distributed in the sense that 

lim f K(x , t )d t  = 6(E) 

holds for every measurable set E ~  (o, -F co), for which the density in the interval (o, -t-co), viz. 

$(E) = lira I 
- meas {E.(o,  n)} has a sense. 

n~oO n 

12 
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p - - 1  co 

xll ~ e ~ [ a,.,, -- am,,,+1] 
q~O n = O  

co 

- - P  - ~11 ~11 Y', lao,~ - ,,,~,,+, I. 
2 n = 0  

From (I7) and (I8) we now have 

y,,, = s A m  + ~am.,~,, + o(I). 
n = O  

Now 

sA,~=s+o(,), I~a,~,a,l<=Mt with M=sup.~lam,I. 
r 

Thus for sufficiently large m we certainly have l y r e - - s [  ~ (M + l)e. Therefore  

lira ym ~ s. This means tha t  condi t ion (I6) is sufficient. 

W e  now assume tha t  (16) does not  hold. We  shall cons t ruc t  a sequence 

{x~} for  which Lira x ,  ~ o but  which is not  summable by the  matr ix  A. According 

to our  hypotheses  an t > o exists, such tha t  for  an infinity of m 

~ l a ~ . - -  a~,,,+ll > St. 
~'1~0 

For  every such m we ei ther have 

co 

I = 0  

o r  

/ = 0  

By recurrence we now cons t ruc t  three increasing sequences of natura l  numbers  

{mk}, {pk} and {qk} where q-1 = o < p~ < ql < P~ < "'" shall hold. We first choose 

ml, p ,  ql such tha t  

q, -- p, - 1 
2 

/ = 0  

]r l - -  t ~ m ~ , l h + 2 / + l  I ~ "  2 ~, 

lama "1 <--~" 
' 2 n=q t4 - 1  
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I f  the number s  m,, ~v,, q,, ~ : x, 2, . . . ,  k - -  I are a l ready known,  mk, pk, qk (where 

qk-1 < p k  < qk and  one of the  numbers  pk, q~ even, the  other ,  odd) are chosen 

such t h a t  

qk--1 

qk--Pk--1 
2 

Z [amk, P k + 2 l - - a m k ,  Pk+2l+l l  :> 2 5 ,  
l=o 

lam ,nl < �9 
2 n=qk+l 

W e  now define the  sequence {Xn}. Let  

Xpk+2~= (-- I) k sign (a~k, pk+2t-- amk, pk+2~ +l ) 

Xpk+21+ 1 : - -  XPk+2 l 

x n = o  for  q k - l < n < p k  If 
= I ,  2 ,  . . . 

= O, I ,  ., 

Under  these condi t ions we have  for  our  sequence 

qk - -  pk  - -  I 

and 

oo 

n ~ O  

qk--Pk-- 1 

> ~, [a,,k,,,k+~z--a,~k,,k+2~--~l 
l=O 

sign Ymk = ( - -  I)~. 

e ~ e ~ -e  
2 2 

Hence  it  follows, t h a t  the sequence ym diverges.  I t  is f u r t h e r  easy to see, t h a t  

Lira x n = o .  This  r e m a r k  comple tes  t h e  proof.  W e  shall  inves t iga te  a few 

examples .  

I .  The  Cess m e t hod  Ca of the  order  a > 0 is defined by 

n 

I , ~ A a _ l x  
Yn--  - .~__ 0 A ~  n - ,  ,, 

A ~ = (  n + a  ) ( g  -{- I ) ( a  + 2 )  " " " ( a  + ~ ) t x :  n a 
n n = n! --F(a + I ) "  

I f  f u r t he r  we pu t  A"_-~ 1 =  o, then  the  sum (16) is equal  to 
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n 

' ~=o IA"-'-A"-I I = ~ ( I  A: -1 ,) An = n- ,  n-~,-1 ] - -  I -I- -> O, 

as the numbers A, ~-1 are monotonous. Thus every almost convergent sequence 

is C, summable for a > o to its F limit. 

II .  We examine the Euler method of summation /i:~(a > o) which is given 

by the transformation 

I ~ ] ( : )  ,=~0C'I)( I ) ' (  I ~ n-~' Y " =  2-~,=9 (2a-- I )n- - '= '=  "Y ~ I - - ~ ' ~ J  X,. 

We put I /2"  = t and use the notation 

p.(t)--~p...(t)=(n)t'(i--t) n-', v----o, I }  I I 1, ~ I ;  p.+L.(t)=o. 

Then the sum (I6) becomes 

- - n §  I I ~ , l p , ( t ) - - p , + , ( t ) l =  ' ~. ~ + ' t p,(t). 
�9 =0 1 - - t , = ~ v  + I In + I 

We split this sum into two parts, let ~ be the sum for those v, for  which 

I : - ' L  ,e, : .  re a,n er. ,or .va, ua,,o. 
m 

s u m s  w e  
I I 

use the following known inequality, in which A signifies an absolute constant: 

A p,(t) < -~. 
O _ ~ 6 n  I~ I> _�89 ~-t ~=n 

With the aid of this inequality we obtain 

O~_,<n(V + I + 1 = 

. 4 ( . +  i) 

For  the terms of the sum ~ we have 

and therefore  

I - - <  
t - - 2 n - {  

n 
2 ,~ .  2 

1 5 , 1 < u  ~ p.(t) = ~ . - ~ .  

2 

< 7 '  
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Here also (I6) is fulfilled, i .e.  every almost  convergent  sequence {x.} is E :  

summable to Lim x,, for  a > o. 

We  now re turn  to the proof of theorem 3 in w 2. For  this purpose we 

replace x,~ by xn+k and y,~ by ymk = ~a,,~x,+~: in the first par t  of the above proof  

for theorem 7. Jus t  as before one recognizes tha t  f rom Lira x , , =  s under  the 

supposit ion (t6) the _F~t summabil i ty of the sequence {x,} to the value s follows. 

That  is, the method F is conta ined in / '~. This and theorem 2 imply theorem 3- 

w 6. The Class ~ of  Matrix Methods. 

We have already seen tha t  many matr ix  methods sum all almost  convergent  

sequences. We  shall now specify an even more comprehensive class of methods  

which have the proper ty  tha t  they also sum certain bounded sequences, which 

are not  almost convergent .  

This class ~ is the ent i ty  of regular  methods A = II a,~,, [[ for which 

(I9) lim {Mux la,,,~ I} ---- o 

is fulf i l led) We shall show thas the methods  of this class can be character ized 

by the fol lowing >>direct>> theorem:  

Theorem 8. In order that a regular matrix method A sums every bounded 

sequence which has the property 

( 2 0 )  x , ,  = o,  , ,  ~ . , ,  . ~  . . . .  

and for which n~ increases sufficie, tly rapidly, it  is necessary a~d sufficient that 

A belongs to 2. Then A-lira x ,  = o. 

~n, increases sufficiently rapidly>> means more precisely: for all sequences 

{n,} for  which n , _  > _ N,  holds, where {N,} signifies a given sequence of real 

numbers.  

P roof :  a) I f  for the .  method  A the condi t ion ([9) is not  fulfilled there is 

an e 0 > o, a monotonously  increasing sequence m, ~ + c~ with 

Max lain,,, l ~ ~o 

t It may be remarked here that the methods of class 9[ have been investigated by D. MEN- 
CHOFF, Boll. Acad. Sci. URSS, Moscou, ser. math., 1977, 203--229. D. Menchoff proves an 
interesting theorem about the summability of orthogonal series by methods of class 2. Cf. also 
R. P. AGNEW, Bull. Americ. Math. Soc. 52, I28--I32 (]946), where a special case of our theorem 
8 is proved. 
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and  finally a sequence {n,} such t h a t  

As the  sequence {n,} canno t  be bounded,  we can assume t h a t  ~, tends to infinity 

and  t h a t  n, increases  as rapidly  as we please. 

We  examine  the  m a t r i x  Ou account of (2 )and 

according  to a t heo rem of I.  SCHUR ~ a bounded  sequence {~,} exists  which is 

not  A '  summable .  Le t  

z fo r  n - - - - r , ,  v - ~ I , 2 , . . .  

xn ~ for  all  o the r  n. 

is evident ly  no t  A summable ,  t hough  n, can increase as This  sequence {xn} 

rapidly  as we please. 

b). Suppose  now the  condi t ion (I9) to be fulfilled. L e t  

~,n ~-- Max  [a,~nl. 
n 

I t  is possible to find two mono tonous ly  increas ing  sequences 

na tu ra l  numbers ,  such t ha t  the  fo l lowing condi t ions  are fulfi l led:  

Then  a th i rd  

the  inequal i ty  Nn ~ qm is fulfilled fo r  a t  mos t  p~  of the numbers  iV,. 

such a sequence {N,} we choose m t <  m~ < . . . ,  such t h a t  

I < pro, < Pro, < "'" and  there fore  pro, 

and  put  
N ~ = q ~ , ,  N 2 = q "  . . . . .  , N , - - - - q , , , , . . . .  

{p'},  {qm} of 

.Pro ~ t:~ pm ~ ' p m + l ,  pm•m ~ O, 

] a m n [ =  ~m "-> 0, q,~ < q,~+l. 
n=qm+l 

sequence of na tu ra l  number s  {N,} exists,  such t ha t  for  every m 

To obtain  

> v  

The  n u m b e r  1 of the  N ,  for  which the  inequal i ty  N ,  ~ qm is fulfilled, is deter- 

mined  by ms ~ m < mt+l. Fo r  th is  l we the re fo re  have  

l < p,n~ < p m  

which prowes the  exis tence of the  sequence {N,}. 

I I. SCHUR, Journ. fiir reine und angew. Math. I57 (I921) , 79--III  Theorem III. According 
P P to  t h i s  t h e o r e m  a regular method .4' ~ [[ a u .  [] w i t h  e l e m e n t s  a/~ v c o n v e r g i v g  to  z e r o  for  /~ ~ c~  

sums all bounded sequences exactly when lira v I ~ o holds. 
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Now this sequence has the p roper ty  s ta ted in the theorem.  For  suppose 

tha t  for  a sequence {n,} of na tu ra l  numbers  n, ~ N ,  fo r  ~ ---- I, 2, . . .. Then  the  

n, also have the  p roper ty  tha t  ~, ~ q,~ holds fo r  at  most  p~ of the numbers  m. 

I f  {x~} is a bounded sequence with I x~l ~ M and xn = o for  n ~ n, then  

qm 

n = 0  n~O n=qm + l 

<= ~ p~ M + V,,, M --* o. 

This proves the theorem.  

W e  shall add some remarks  to this theorem.  For  this purpose we in t roduce  

the not ion  of the d e n s i t y  of a finite or infinite sequence n~ < n ~ <  ..- of 

na tura l  numbers :  T h a t  is a numerica l  monotonous  not  decreasing funct ion oJ(n) 

defined for  all real  n ~ o such tha t  for  every n there  are exactly o~ (n) numbers  

n, sa t is fying the inequal i ty  n,  _--__ n. Evident ly  oJ = oJ(n) is defined by 

I f  for  two sequences {n,} and {n:} the  inequal i ty  n,  _--< ~', holds for  every ~, 

then  for  the i r  densit ies we have eo'(n) ~ co (n). And conversely : f rom co'(n) ~ co (n) 

follows n, ~ n:. I f  co(n) is the densi ty  of {n,} then  }n2,} has a densi ty  _--< w(n)/2. 

W e  can now state theorem 8 in the  fol lowing manner :  

Theorem 8*. The condition (I9) is necessary as weU as sufficient for the 

existence of a function ~(n) (which has i ,  tegral values only) increasi,g monotonously 

towards + o% such that every bounded seque,ce x ~  {xn} for which the indices 

n, with xn, ~ o have a density <= ~(u) is certainly A summable (to zero). 

For  if the sequence {N,.} of theorem 8 exists, we designate  its density by 

~(n).  I f  then  x----{xn} is a bounded sequence for  which xn----o for  n~= m, 

= x, 2 . . . .  and if {m.} has a density oJ(n) ~ ~ ( , )  we have n, ~ N,  and there fore  

according to theorem 8 cer ta inly  A-lira xn-~ o. Conversely, if a func t ion  ~(n)  

of the  kind required in theorem 8* exists, i t  may be assumed t h a t  ~(n)  only 

has  jumps of the magn i tude  I for  in tegra l  values of n. Then  ~(n)  is the densi ty 

of some sequence { / , }  and for  this sequence theorem 8 holds. 

W e  shall call a func t ion  of the type t rea ted  in theorem 8* a s u m m a -  

b i l i t y  f u n c t i o n  of the me thod  A. Thus  for  example  i t  can be seen a t  

once t ha t  for  the  me thod  C~ of the ar i thmet ic  means  all funct ions  ~ ( n ) ~  o(n) 
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and only these are summability functions. As the methods C~ (a > o) and the Abel 

method A are equivalent to Ca for bounded sequences, they also have the same 

summability functions. The methods of class 92 are characterized by the fact 

that  they do at all possess summability functions. I f  a method A is stronger 

than a method B in the space M of the bounded sequences then every summa- 

bility function of B is at the same time a summability function of A. The 

magnitude of ~(n) is in a certain sense a measure for the strengh of the method 

in the space M. 

We shall now describe ways for the determination of the summability 

functions of a given method. They are provided by the following two theorems. 

Theorem 9. A function ~(n) with integral values only, increasing monotonously 

to + co is a summability function for a regular matrix n~ethod A exactly when 

for every sequence {n~} whose density is <--__ $2(n) 

oo 

(z2) lim ~,]am..,[----- o 

holds. 

The proof follows immediately from the theorem of I. Schur mentioned 

in footnote p. 182 if one applies it to the methods with the matrices []a~,~][. 

In order to obtain a more convenient form of the above criterion we in- 

troduce the numbers A;~ where $2= .Q(n) is a function with integral values, 

increasing monotonously to + co. A;~ is defined as the upper bound of all sums 

~ [ a m ~ ]  in which {n~} goes through all sequences of a density _--< $2(n). (It is 

enough only to admit finite sequences {n,,}). 

Theorem 10. A function ~2(n) is a summabibity function era matrix method A 

i f  and only if" 

(23)  l i m  A.", = o .  

Proof: (22) evidently follows from (23) so that  it only remains to be shown 

that  (23) follows from (22). Let (22) be satisfied but let (23) be wrong. Then an 

:> o exists such that  for an infinity of m the inequality A p" > 3~ holds. On 
m 

account of (I9) one can, by taking the sequence {n2,} or {n2~-1} instead of {m} 

and only keeping a suitable segment of this sequence, deduce the following: 
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For  every N >  o there is a finite set of numbers he: 

185 

whose density is ~ ~2(n)/2 such tha t  for an infinity of m 

k 

(:a4) ~ I,~,,,.,, I _-> ,~. 

these m we now choose a part ial  ~equence {m~} increasing monotonously 

if ~ ,  n~, ~" signify the respective no, the inequalities 

F r o m  

to + oo such that ,  

n ~ - 1  < ~ a n d  
k~_ 1 ~1 

hold. 

o I ' - 1  ~ ~.Q (71~) ...ca(,,~) + ~ ( z )  + + ~(",,,,_,) 

Then the sequence 

2, �9 � 9  T/ka, �9 �9 �9 

for which we also write {~e} has a density ~ ~(n). For  the number  of the "e 

with ~e ~ n is 

_-< �89 ~(-~,) + �89 ~ ( ~ )  + . . .  + �89 ~(%_~) + �89 

< �89 ~(.~) + �89 ~(.)  __< ~(.),  

v being defined by n~ =< n < ~+1. 

For  this sequence {'e}, however, (22) would not  be fulfilled, as according to (24) 

~=1 

This contradict ion proves the assertion. 

Usually the coefficients amn are ~ o and monotonous.  They increase up to 

~-Nm and then decrease to zero for n-+  r In  this case i t  is easy to evaluate 

the numbers  A~. Let  _N~ be chosen such tha t  the sum ~ a ~ ,  for n varying in the 

interval / V ~ -  h~ < n ~ N* becomes as large as possible. (This will be the case 

in the neighbourhood of N~). The set of these n has a density w ( n ) ~  ~(n). 1 

Therefore according to the definition of A ~ 

i W e  a s s u m e  t h a t  .Q(n) does  n o t  a l t e r  m o r e  t h a n  b y  I i n  e v e r y  i n t e r v a l  of t h e  l e n g t h  I; a 

n a t u r a l  c o n d i t i o n  as  a d e n s i t y  co(n) a l w a y s  h a s  t h i s  p r o p e r t y .  
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(25) A',,, _>- ~ am,. 
$ - . *  

One obtains the evaluation of A ~ from the other side by choosing N** so 

large, tha t  ~ am~ =< ~. Then every sum ~ ,  a,~,, splits up into two parts of which 

*$$ $ 0  p one, with n > NT~, is ~ e, while the other  contains at  most .Q (N,~) = hm terms 

and is therefore smaller than  5am~ for N~ -- h~ < n < Nm + h'~. Hence 

(26) A'~ = < ,  + ~ ~m,~. 
t 

As an example we consider the Euler  method E~, 

n t" (I  t) ~ - "  x , ,  < t 2 ~ yn~- ~ 0 "----~. I. 

The Newton probabili ty 

becomes the larger as v is the closer to nt ,  and approximately equally large on 

both sides of n t. We  make use of ~he known fact  tha t  for every t there are 

positive numbers C~, C~, D~, D~, ~ independent  of ~, v such tha t  

(27) C1 e-~, - ('--t~' C~ -D~.  (~-t)' Iv ] ~ ; - - < a ~ , < - -  for - - - t  < o  ~. 
V ~  - = V ~ e ~ = 

Then according to (26) we have by put t ing  N~**----n, ~u = n t and ~ ~ o 

A,~ <= C~ Z e--D~n(n--t)'-- 

= C, ~, e-D'Z~Jl,, 
I z, I ~- .e in)In 

I 

V~ 

1 _ _ \  

where fur ther  l , = V n ( n - - t  ). For  ~(n) - - - - -o( I /n ) the  last  sum tends to zero 

for n ~ oo: I t  is the Riemann sum of the integral  

C~ f e -D.'' du 
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for  an in terval  a round the point  o whose length  tends  to zero. Similarly if  in 

(25) we pu t  N~ = nt ,  we see tha t  li-mA~ > o if Y2(n) ~ o(Yn).  

There fore  all functions ~2(n)= o(]/-~) and only these functions are summability 

functions for the methods E ,  (a > o). 

w 7. Impossibility of the Representation of the Method F by Matrix Methods. 

The  method  F cannot  be expressed in the form of a mat r ix  method.  Every  

such me thod  con ta in ing  F ,  i .e .  fulfilling (I6) also sums cer ta in  bounded and no t  

a lmost  convergen t  sequences. As we s ta ted above this even holds for  all methods  

of the  class ?/. But  we want  to prove a little more and there fore  in t roduce  the 

fol lowing definitions : 

Le t  Ak, k -~ :, 2, . . .  be a sequence of regular  mat r ix  methods.  By the p r o -  

d u c t  A -~ I IAk  we unders tand  the method A which is defined by the proper ty  t h a t  

i t  sums a sequence {xn} to the  value s exactly when this sequence is summed 

by all methods  Ak to this  value s. The  s u m  A ~ ~Ak is defined as a method  

which sums a sequence {x,} then  and then  only to the  value s, if i t  is summed 

to s by at least one of the  methods  Ak. (Here  it  must  f u r t h e r  be assumed tha t  

the methods Ak are consis tent  with each other.)  

Now the me thod  F is ne i ther  equivalent  to a product  of regular  mat r ix  

methods  nor  to a sum. (For the  mat r ix  methods  we only consider bounded 

sequences.) The first of these proposi t ions follows f rom 

Theorem 11. For every sequence {At:} of methods of the class ~I there is 

a bounded sequence x = {xn} which is not almost convergent but is summable to the 

value zero by every one of the methods Ae. 

Proof :  According to theorem 8* a summabil i ty  func t ion  ~2k (n) exists fo r  

every me thod  Ak. I t  is then  possible to define a monotonous  no t  decreas ing 

funct ion  O(n) for  which ~2(n) ~ + co for  n -+ co and which satisfies the inequal i ty  

Y2(n) < ~2k(n) for  every k f rom a cer ta in  n onwards.  Clearly ~2(n) is a summabi l i ty  

func t ion  for  all methods  AI:. Now it  is easy to specify a sequence {xn},xn-----o 

or = I, which contains segments  of a rb i t ra ry  length  consist ing of o's only or 

of I'S only and for which the sequence of the n with x~ ,=  I has a densi ty  

< g2(n). This sequence is not  almost  convergent  and according to theorem 8* 

we have Ak-lim x n = o  for  k =  ~, 2 , . . . ,  which proves the theorem, 

Theorem 11 states tha t  almost  convergence cannot  be a t ta ined  ,ffrom above* 
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by products of matr ix methods. We shall now show tha t  it  is also impossible 

to get  almost  convergence from below by means of sums. 

Theorem 12. I f  for  every regular matrix  method Ak (k --- I, 2, . . .) an almost 

convergent sequence e.vists which is not Ak summable, then an almost convergent 

sequence exists which is not summable by any method Ak. 

Let  A* signify the ent i ty  of the bounded and Ak summable sequences. We 

have to prove tha t  f rom F * - -  A~. ~ o, k = I, 2, . . . it  follows tha t  T'* --  ~A~. ~ 0 

(cf. w I, last  section). Now F* is a linear closed subspace of M and therefore 

of the second category in itself. F* At. is a l inear closed subset of F* different 

from F*  and therefore nowhere dense in F*. Therefore F*~A~.  is of the first 

category F*  and cannot  coincide with it. ~ 

w 8. Strongly Regular Hausdorff Methods. 

A Hausdorff  method H has the form 

(28) y~ = an,x,~ = d ~ - "  ~ ,  x , ,  

where {/z,} is a fixed real sequence and jk /~ ,  signifies the differenee 

Jk/~, : ~, -- (k)  ~,+,  + .-. + (-- X)k~,+k. 

According to" Hausdorff  ~ the method  (28) is exactly then regular  when there 

is a funct ion g(t) of bounded variat ion in [o, 1] which solves the moment  problem 

1 

(29) t*.-= f t ~ d g ( t ) ,  n = o ,  I, 2 , . . .  
o 

(we assume g(t) to be normed by g(o) -----o), satisfies the condit ion g(I) -~- I and is 

continuous in t = o. 

Theorem I2 evidently follows also from the known theorem about the condensation of 
singularities. Cf. KACZMARZ und STEIlqHAUS, Theorie der Orthogonalreihen, Warschau, I935 p. 
24. The proof given above is nothing but a >>geometrical* proof of this theorem. 

2 F. HAUSDORFF, Summationsmethoden und Momentenfolgeu, Math. Zeitschrift 9 (I921}, 

74- - Io  9. 
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The k-th difference of t" is t ' ( i -  t) I:. On account of (29) we obtain for the 

coefficients an, of the t ransformat ion  (28) 

1 ! 

....= f (:),-(, _,, .... ,,,,,= f,.(,,,,,,, 
o 0 

using the notat ion of w 5 example I1. 

Theorem 13. A HausdoTff method H is stro~gly regular i f  it  belongs 

class ~[. For this the necessary and su/ficient condition is 

to 

(3 o) a,,,, =/~n --" o 

or the continuity of  the fimction g(t) for t = I. 

Proof:  Let  V(t) be the total  variat ion of g(t) in the interval  [o, t]. I f  g(t) 

is continuous in t----- I then also V(t) is continuous.  For  an arbi t rary e > o we 

choose 6 > o  so small, t ha t  V( I ) - -  V ( t - - d ) < e .  We then have 

1 - - $  1 

[~,,[_<--_[ft"dg(t)[ + [ f l - - < ( I - - d ) n V ( l )  + e < 2 ,  
o 1 - - d  

for n sufficiently large, i .e .  /~, converges to zero. 

I f  on t h e  other hand g(t) has a jump a----- g(I) -- g(I  - -  o) ~ o in t---- I, then  

we designate by h(t) the funct ion h ( t ) = o  for t <  x, h(1)-=a. Then g l ( t ) =  

----- g(t) --  h(t) is continuous and 

1 1 

j f i t , ,=  t ' ~ d h +  t n d g l - a + o ( 1 ) ~ a ~ o .  
o o 

.Hence the condit ion (3 o) is equivalent to the cont inui ty  of g(t) in t----I. 

From He? [  (30) evidently follows. I t  therefore suffices to show tha t  the 

condit ion 

2 2 (3,) l a , ~ , - a  ..... +*l= l f (g,( t ) --p, .~- , ( t ) )dg(t) l -~ o 
~ ' = 0  ~ ' = 0  0 

for a regular Hausdorff  method H follows from the cont inui ty  of g(t) in 

t - -  I .  The sum (31 ) is obviously not  greater  than  

j y~lv,,(t) .-v,+,(t)ld V(tl. 
0 ~ 0  
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V(t) is cont inuous  in t-----o and t--=- I and the sum under  the  in tegral  sign is 

_--< 2 for  all t. I t  therefore  suffices to show tha t  for  every $ > o 

1 - - J  n 

f ~lp,(tl--p,+~(t)ldV(t) 
d ~,=0 

tends to zero for  n ~ co. But  in the in terval  (r I -  $) the sum 2flp,--p,+l I 
converges uni formly  to zero as shown by the  evaluat ions of w S example I I .  

F rom this the proposi t ion follows. Examples  I and I I  are only special cases of 

this theorem.  


