SOME PROPERTIES OF TRIGONOMETRIC SERIES
WHOSE TERMS HAVE RANDOM SIGNS

Dedicated to Professor Hugo Steinhaus for his 65th Birthday
BY
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Trigonometric series of the type

-}

(0.1) > o (t) (ay cos nz+ b, sin nz),
1

where {g. (t)} denotes the system of Rademacher functions, have been extensively
studied in order to discover properties which belong to ‘“almost all” series, that is
to say which are true for almost all values of t.! We propose here to add some new

contributions to the theory.

CHAPTER I

Weighted Means of Ortho-normal Functions

1. Let ¢, @3 --) @n, ... be a system of functions of z, ortho-normal in an
interval (a, b), and let y,, 5, ..., ¥s,... be a sequence of non-negative constants
such that

Su=y1tyet - +yn

increases indefinitely as n tends to + oo. Under what conditions does the mean

R, (z)= V1@L(x) +Ya@a(2)+ -+ yn@n ()
Yityat et yn

tend to zero almost everywhere? as n— oco?

! Cf, in particular, PaLey and ZyeMUND, Proc. Cambridge Phil. Soc., 26 (1930), pp. 337-357
and 458-474, and 28 (1932), pp. 190-205.
2 We write briefly R, (x)—>0 p.p. (“presque partout’’).
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It has been proved' that, if ¢,—¢€", then R,(x)~>0 p.p., provided y,=0(1).
The proof is applicable without change to any ortho-normal uniformly bounded
system. As it was observed in the paper, some condition on the y, is indispensable,

since, e.g.

n
2~nz2k eilcl
1

does not tend to zero almost everywhere as n— oo.

More recently, Hill and Kakutani have raised the question whether R, () —0 p.p.
if {p.} is the Rademacher system, the sequence v, is monotonically increasing and
‘ya=0(8,). The answer has been proved by several authors to be negative.?

Here we propose to give a sufficient condition in order that R, ()0 p.p., when
{g.} is any uniformly bounded ortho-normal system in (a, b) and to prove, by the
consideration of the trigonometric system, that this condition is the best possible one.

Let us observe first of all that the condition y,=0(S,) is trivially necessary in
b
order that R,(x)—~0 p.p. For y,,/Snz fR,, p.dz, and the uniform boundedness of

the @, implies that R, @,—>0 p.p., boundedly, whence y,/S,—0.
As we shall see, the condition y,=0(S;) is, in general, not sufficient. Let us

inrx

note, however, that in the case y,=¢€"", if the sequence {y,,} is monotonic and
Yn=0(S;), then R, (x)~>0 everywhere, except for x==0. This follows from an appli-

cation of summation by parts to the numerator of R,.

2, (1.2.1) Theorem. Let {@.} be an ortho-normal and uniformly bounded system
in (a, b), and let |@.| <M. Let w(u) be a monotonically increasing function of w such
that u/w (u) increases to + oo and such that T l/kw (k)< oo. Then R, (x)—0 p.p., pro-
vided yn=0{Sq]w (Sn)}.

Proof. Let us recall first that, if we set

yn=Max y, (1Sm<n),

then also ¥ =0{8,/w (S.)}. For we have ¥, =7y,, where p=p (n) <= is non-decreasing.
Let Q,= S,,/w {S.). Then

1 Cf. R. SALEM, The absolute convergence of trigonometric series, Duke Math. Journal, 8 (1941),
p. 333.

? See Tamorsu TSUCHIKURA, Proc. of the Japan Academy, 27 (1951), pp. 141-145, and the re-
sults quoted there, especially MARUYAMA’S result.
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Vo _ Vo 9o _ ¥

Qn Qp Q"— Qp’
and our assertion follows.
Consequently one also has
N
7 1
(1.2.2) 5 :O{w(SN)}.

Let us fix a number §>1 and let N, be the first integer such that
OiSSNI.<6’“.

N; always exists for j large enough. For otherwise there would exist arbitrarily large
integers j such that for a suitable m we would have 6/ <8, < ‘! and simultaneously
Sm 1< ' This would imply
-0 0-1

a0 - Ym =2,

14 6 6 ’ Sm 61»\ 62
contradicting the assumption y,=o0(S,).

Now, by (1.2.2),

1

;flm,l*dh ‘?‘O{w’('(ﬁ}

< oo
J
by the hypothesis ¥ 1/kw (k)< oo. Hence Ey,~>0 p.p.
Let now N;<m< N;,;. One has
Nj m
2VnPn 2 VP
1 Ni+l

R, = ;
Sn | Sn

The first ratio tends to zero almost everywhere since S,,.ESNj; the second one has

absolute value less than

Z Yn
N S T By gy

— 2 _
Sy ” g =M (6 -1).

It follows that
lim sup |Rn|< M (6°-1)

almost everywhere. Since 6 can be taken arbitrarily close to 1, the theorem follows.
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3. We shall now show that the preceding theorem no longer holds if we allow
Z1/kw (k) to diverge. This will follow from the following

(1.3.1) Theorem. Given any function w (t) increasing to + oo with t and such that

o

dt . N . .
f;w—“)= oo, and assuming for the sake of simplicity that w(t)/log t s monotonic, there

exists a sequence yn such that y,=0{S,/w (S»)} and that
,yletz+ +,yneinr

lim sup =
Vit ya

almost everywhere.

We shall first prove two lemmas.

(1.3.2) Lemma. Let {m,} be an increasing sequence of inlegers such that mg/q is

monotonic and E1/mg=co. Then

. 1
lim sup o
q

sin ¢ mg x

- =1
sin gz

almost everywhere.
Proof. By a well-known theorem of Khintchine, the conditions imposed on the
sequence {m,} imply that for almost every z there exist infinitely many integers p

and ¢ such that

Hence, fixing an z having this property, one has

lgz— 27 p|=eq/mq

lqqu"27tpma|=sa

for infinitely many p, ¢, with ;0. Hence also, for infinitely many values of ¢,

1 singmgz 1  sing

mg singxr  mg sin (g,/mg)
and the lemma follows.
sin ¢*x
gsingx

=1 p.p.

As a simple special case we get that lim sup

sin gmg x

: =0 p.p. This follows immediately
mq 8in gz

Remark. If ¥ 1/m,< oo, one has lim
from the fact that
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2n
. 2 l
1 (ﬂyyﬁz)dxzo(_y
mg sin gx mg
0

(1.3.3) Lemma. Let {m,} be an increasing sequence of integers such that mg/q is

monotonic and that X 1/mg=oco. Let us set, for each positive integer g,

h=h(q)=qme+1, k=k(q)=(q+1)m,
and
Fy(z) = b7 4 DOE g grais,
Then
lim sup | Fy (2)|/me =1

almost everywhere.

Proof. One has

”euc hibaiz

Fo=e" " — ey

sin }(k—h+1)gx
sin }qx

sin }gmgx

| Fo| = sin } qx

’

and it is enough to apply the preceding lemma.

Proof of Theorem (1.3.1). It will be sufficient to consider the stronger case in
which o (t)/log ¢ increases to oo. We write w (¢)=log ¢ A(log t) where 1 (u) increases
to oo with w. Observe that

oo oC

f du Hf dt _f at _
ul(uy J tlogtd(logt) Jtw(t)

Hence we can find an increasing sequence of integers m, such that mg/q4(q) in-

creases to oo and that X 1/mg=oc.
By ¢ (g) we shall denote a function of ¢ increasing to oo as slowly as we wish
and which we shall determine later on.

Let us now set, for each integer ¢, as in Lemma (1.3.3),

h=h(g)=gqmq+1, k=k(q)=(g+1)m,
and let

eaqﬂa)

Y= =¢q for n=vq (h<v=<k)

mq

Yn=0 for n+vqg (hg<n<kgq).
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We note that, F, being defined as in Lemma (1.3.3), there is no overlapping of terms
of Fy and Fg,,, since gk(q)<(g+1)h(g+1).
Let us now write

BT Fyt e Fy
€ My +Cy Mg+ +++ + Cq My

Qa

This ratio is equal to R, (x) for n=qk(q).
One has

(L Fy+ -+ cq1Fyg1)e PP+ F,lm,
0q= - . s
=¢ (cymy+ o+ cqg1mgr)e PP+ 1
and since

q-1
[y Fy+ o tcg 1Fg 1| Sepmy+ - +cg1mg 1= 2 e PP =0 (e299),
1

one has

lim sup |g,| = lim sup | Fy|/m,=1.

On the other hand, if ¢"'* occurs in F,,

@) ¢ 1
Yn= ——" and S, > Z kot 5 @ De@ D
mq 1

Hence

7"/Sn < mql [eﬂw(ﬂ) @ e '1)]'

Since mq/q4(q) increases to oo, we can choose @ (g) increasing slowly enough in order
to have

o ™M ae@ @ De@ b
99 (9) Alge(9)] ’
Therefore,
Yn _K,,l___ .
Sa " qe(g)Alge (9]
But

Q
8, < S ek PW) ~ gl9@.
1

It follows that

ool 1 l_ol 1
Sa =0 [log Sa A (log Sn)] =0 [OJ (Sn)] ’

which proves the theorem.
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4. As we have mentioned above, the case of Rademacher functions has been
completely investigated by Maruyvama and Tsuchikura. We give here different proofs

of their two results.

(1.4.1) Theorem. Let ¢, @y, ..., @n, ... be the system of Rademacker functions.
Then y,=o0{8S./log log 8.} is a sufficient condition in order that R,~>0 p.p.

We have, as in Section 2,

N

2
?‘}/nzo( 1 )“A_é;N__~
S% log log Sy) ~ log log Sy’

where ¢y—0. Since for the Rademacher functions one has

(1.4.2) f(gy"%)“dmk"(g y?.)k (k=1,2,..))
1 1
(1}

it follows that, 4 being a positive constant,

1 . N . K
k (Z'}’H) 2 K
(AR dz<a® S0 ") (,A,ﬂw ) .
SN 10g l()g SN

0
Let us define k=k (N) to be the integral part of (eA%ex) ! log log Sy. We get

1 log log SN

[ (ARy)*dz < (z)

_— - -1
e Atgy

iet us now take 0>1 and define, as in Section 2, a sequence {N;} such that
9’SSN1<0’”. Let k;=k(N;). One has, for j large enough,

1
e—zzs—Nj > 2,
Hence
1
J (AR dz=0(
0
so that

S(ARy)* <o pp.
K
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It follows that lim sup Ry, <4 ! p-p., and so also that lim Ry, =0 p.p., since 4 can

be taken arbitrarily large. From here we proceed, without change, as in Section 2.

Remark 1. An alternate proof could be given using an extension of the Law
of the Iterated Logarithm pertaining to the case of Rademacher functions, but the

proof given above is simpler and more direct.

Remark 2. The theorem can obviously be extended to other orthogonal systems
for which the inequality of the type (1.4.2) holds, e.g. to certain types of independent

functions, and also lacunary trigonometric functions, such as cos 2" z.

5. (1.5.1) Theorem. Theorem (1.4.1) becomes false if we replace in the assumption

the order “‘0” by “O”. More precisely, there exists a sequence {y.} such that
yn =0 (8./log log S,),
and such that lim sup E,> o p.p., a being any fixed constant less than 1.

(1.5.2) Lemma. Let @, ¢,, ... be the system of Rademacher functions and let {m,}

be an increasing sequence of integers such that

lo
Ap=m,—~my = lo—ig .
Then, writing
Mp
F = E P

my 1
one has
lim sup F,/A,=1 p.p.

The set in which F,=A, has measure 2 %r., Hence the set where F,= A, is
of measure 1—272r; and the set E, where F,, F,,,, ... are all different from A,,

Ap i1, ..., respectively, is of measure
o0
IT1-2"29=0
q=p

by the hypothesis on A,. If, for a given =, lim sup F,/A, <1, then, clearly, = belongs
to some E,. Since the sets E, are all of measure zero, the lemma follows.
We are now able to prove Theorem (1.5.1). Preserving the notation of the lemma,

we take a sequence of integers m, satisfying the conditions

$log p<my,—my_ 1<} logp
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so that the condition A,<log p/log 2 is satisfied. Let us now take, with 4>1,
ya=A"|Ap=cy, for my_1 <n<my,

and consider the ratio
g Fite Fytite Fy
& A teg Mgt ey Ay

which is equal to R, (x) for n=m,. One has

_ (e Fyt -ty Fy )AP+F, Ayt
&= T A ey Ay ) AP+

Now,

p-1
| A2, Fy+ o 4y 1 Fp i) |[SA P (e, A+ +ep1 Ay 1) =47 DA%,

1

Hence, if A4 is large enough, using the lemma,
lim sup g, > « p.p.
On the other hand, if ¢, occurs in F,, then
yn=A" A;' <3.47log p,
Sm,_, <82 <8m,,
so that log log S,~ 2 log p, and y, =0 {S,/log log S,}.

6. To theorems about the partial sums of divergent series often correspond theo-
rems about the remainders of convergent series, and the results of this chapter admit
of such extensions. We shall be satisfied with stating here the following analogue
of Theorem (1.2.1), in which the functions w (u) and ¢, have the same meaning

as there.

(1.6.1) Theorem. If y,+v,+ -+ y.+ -+ i8 @ convergent series with positive terms,
and if S, denotes the remainder y,+yni1+ -+, then

ER. (x) = Y@t Vi1 @Pri+
Yt Parrt o

tends to 0 p.p., provided y,=0{8,/w (1/8,)}.
The proof is identical with that of Theorem (1.2.1).
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CuarrER 11
The Law of the Iterated Logarithm
1. As proved by Kolmogoroff, the law can be stated as follows. Let
2y, gy ey Zmy -

be independent random variables with vanishing mean values and with dispersions

by, by, ..., by, ..., Tespectively. Let

N N
SN= sz, B%,:Zbk‘
1 1

Under the assumptions

[

B |

2 (%) < = P A S
By~ oo, Jzv|=my 0{log log By

one has, with probability 1,
Sy

2.1. i - =1,
(2.1.1) lim sup 2 B log log By)}

The result lim sup<1 has been extended by the authors to the case in which

the series of random variables is replaced by a lacunary trigonometric series
2 (ay cos ng 2+ by sin n, x),

with mg,,/ne>q>11 Here we propose to give a theorem equivalent to Kolmogoroff’s,

valid for almost all trigonometric series of the type (0.1).

(2.1.2) Theorem. Let us consider the series
(2.1.3) S @n () (an cos nx+ b, sin nx)= 2 @, (t) 4, (x),
1 1
where {@na ()} is the system of Rademacher functions. Let
N
ci=al+b}, By=131>c}
1
N
Sy= 21:% () Ak (z),

and let w (p) be a function of p increasing to + oo with p, such that p/w (p) increases
and that T1/pw (p)<oo. Then, under the assumptions

1 See Bulletin des Sciences Mathématiques, 74 (1950).
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BZ
2 2
(214) BN”>OO, CN—O{ (Bz)}

one has, for almost every value of ¢,

Sy

lim sup (2B%loglog By)t

almost everywhere in x, that is to say the law of the iterated logarithm is true for almost
all series (2.1.3).
The proof will be based on Theorem (1.2.1).

2. For a given z, the law of the iterated logarithm applied to the series (2.1.3)

in which ¢ is the variable, gives

ZA (*) @n (1)
(2.2.1) lim sup — =1

{2 %A‘i () log log z;Ai (x)}

P-p. in ¢, provided

N

N Z A3 (%)
(22.2) ZA% (x)—) oo, A‘i (x) =0{ —- 1 e
! log log ZA (x)
One has

A, {r)=a, cos nx+b, sin nx=1¢c, cos (nx—a,),
A% (@)=} A {l+cos 2nx—2a,)}.

Hence, by Theorem (1.2.1) and on account of the condition ¢} = O {B}/w (B%)}, one has
N

(2.2.3) B2y A% (x)—~1 p.p. in z.
1

On the other hand, condition (2.2.2) is satisfied p.p. in z, because % l/pw (p) < oo
and o (p) increasing imply log p/w (p)—>0. Hence
2
dmof B
log log By|’
which together with (2.2.3) implies (2.2.2).
Finally, (2.2.1) and (2.2.3) give

Sy B
(2 B% log log By)t

lim sup

pP-p- in ¢ and z, and so also the theorem as stated.
17— 533807. Acta Mathematica. 91. Imprimé le 30 octobre 1954.
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3. Additional remarks. a) We do not know whether the condition
B2
2 02N _
=04

with £1/pw (p) < oo, can be improved or not (this condition is certainly satisfied if
¢a=0(1)). But the argument used here would break down if Z1/pw (p) were di-
vergent. This follows from Theorem (1.3.1).

In the rest of this chapter the function w (u) will be supposed to have the prop-
erties assumed in Theorem (2.1.2).

b) The following is an analogue of Theorem (2.1.2) for power series
(2.3.1) Sen(t)ca e,
1

for which we set

N N
(2.3.2) C% = %Icﬂ, Sy= Y gu(t)cxe®*.
1

(2.3.3) Theorem. For almost every t we have

[Sul  _
(Ciloglog Cy)}

(2.3.4) lim sup 1

almost everywhere in x, provided

2
2 2 _ 0l SN 1.
Ghren, =0 Tt
We note that the factor 2 is missing in the denominator in (2.3.4).
Let us set Sy=Uy+¢Vy. From Theorem (2.1.2) it follows that for almost every

point (z, t) and every rational « we have

Uy cos am+ Vy sin azm _
(C% log log Cy)t ’

lim sup

and from this we easily deduce that (2.3.4) holds for almost every point (z, ?)

(compare a similar argument used in Salem and Zygmund, loc. cit.).

¢) Kolmogoroff’s result quoted at the beginning of this chapter has an analogue
for the case in which the series X b, converges. Writing Ry=zy+2y, 1+, fy=
=by+bys1+ -, one has, with probability 1,

lim sup Ry/(2 B% log log 1/Bx)t =1

provided |zx|<o{f%/log log (1/8x)}.
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Combining this result with the proof of Theorem (1.2.1), and using Thecrem
(1.6.1) we get the following

(2.3.5) Theorem. Let us suppose that the sum X (af+ b?) corresponding to the series
(2.1.3) is finite, so that the series (2.1.3) converges al almost every point (x,t), and let

us set
2=a2+b2, =343, Ry=D¢a(t) 4, (2).
N N

Then, for almost every t, we have

Ry »
(2 % loglog 1/B8.)} B

lim sup

almost everywhere in x, provided

(2.3.6) & = O{ﬁ%} .

An obvious analogue holds for power series (2.3.1), with X |c;|® finite.

CeapTER III
The Central Limit Theorem
1. In this Section, w (u), ¢y, By, Sy have the same meaning as in Theorem (2.1.2).
(3.1.1) Theorem. Under the same conditions as in Theorem (2.1.2), namely

BY },

By co, °§=0{m

the distribution function of Sy/By tends, for almost every t, to the Gaussian distribution
with mean value zero and dispersion 1.
It is easily seen that the assumptions imply also
BZ
2 _ ol =N L,
11?1:8‘5)5\10" O{w (B‘ﬁ;)}
We shall suppose, for the sake of brevity, that the series X g, (t) 4x (x) is a purely
cosine series (our proof is immediately adaptable to the general case by writing
a, cos nx+b, sin nx=c, cos (nx—a,)), and it will be convenient to replace the var-

iable by 2a, so that the series becomes X g (t) ax cos 2 k2.

1 See PALEY and ZyaMUND, loc. cit., or Zygmund, Trigonometrical Series, p. 125.
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For a given ¢, let Ey(y) be the set of points z of the interval (0, 1) at which
Sy/By<y, and let Fy(y) be the measure of Ey(y). Then Fy (y) is the distribution
function of Sy/By. In order to prove our theorem it will be enough to prove that
over every finite range of A the characteristic function of Fy (y) approaches uniformly
that of the Gaussian distribution, for almost every f. This characteristic function is

1

(3‘1.2) J’ei}.de ?/) J‘eilsN/BNdx

and we have to prove that for almost all ¢ the last integral tends to exp (— 4} 4%)
uniformly over any finite range of 1.

Let us now fix 2. Since

z +- O (1219

e€=(1+z)e? as z2—0,

one has

N o
(3.1.3) €*5W/EN=]] (1+il—ak<pk () cos 27zkx) exp{( 512 2k cos? 2nkx)+o(l)},
k=1 By T By

where the term o (1) tends to 0, uniformly in z, as N— oo, since A=0 (1) and

2
max az:O{aTBI;VT)} =0 (B%).
v

1-k<N
Observe now that

N PR A Y
<11 (1+5—Zf) <e¥,
ih B

N .lak
II (1+@§—¢k (t) cos 2nkx)
k=1 I

and that, writing

N2 al
$~,cos 2nkx—1+z 2cos4:rzlc:x:—1+!,~‘N(:c)
By QB

the measure of the set of points at which |&y(z)|=d>0 is not greater than
1
82 ¢hdz=306"(al+ - +ak) By,
0

and that the last guantity tends to 0 as N-—>oo.
Hence, with an error tending to zero (uniformly in A=0 (1)) as N— oo, the
integral (3.1.2) is

1
N
e_$’1'fn(l +i%(pk (t) cos 2nkx)dx,
1 N
0

1 Since the exponential function iz continuous, the uniformity of convergence is (as ia very
well known) not indispensable here.
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and in order to prove our theorem we have to show that, p.p. in ¢,
1

N
(3.1.4) lim | J[T(1+%ex gk (t) cos 2nka)dz=1,

Nooo 1
where we write &, =g (N)=2a;/By.
2. Let us set

1

N

Iy ()= fn(l+isk¢k (t) cos 2mka)ydx—1

1

0

1

= f{ﬁ(l-f-iek(pk (t) cos 2nkx)—l}dx.
1

0

N
Writing [] () =[] (1 + i ex @i (t) cos 2 k), one has
1

[ Tv @ = [ [{TT@) -1} {1 () -1} dady

and
1 11 1 _
[Wn@Pde= [ [dzdy [{T] (=) -1} {1 ~1}de
0 00 Q
Now
1 1
[TT@dt= [TI dt=1
1} 0
and
1 1 N
fn(x)ﬁ(y)dt= fn{l+ei cos 2mkxcos 2mky
1
0 0
+iex(cos 2k —cos 2aky) gi (t)}dl
N
=JT(1+¢&f cos 2nkx cos 2n ky).
1
Hence

1

1 1
N
f]JN(t)th:ffdxdy{n(l+£§ cos 2 kz cos 2mky)—1}
0 0 0 !
11
N
fn(l+£§ cos 2nkxcos 2nky)dxdy—1
)
1 1
_N
J.{exp'ZeE cos 2 kx cos 27zky} dxdy—1.
1
Q

0
<
0
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Using the fact that e*=1-+u+4}u?e’™, 0<n<1, with

N

u= > ¢p cos 2nkx cos 2mky,
1

11
N
and observing that |u|< 3 ef=24% one has, since J‘ [udxdy=0,
1

o

00

1 11
. ¥ 2
J | J x (t)|2dtS%e2"ff(Z£E cos 2 kx cos 27tlcy) dxdy
1
i o D

N
4
N Zak
_ 22 1 q 22 1
_%e Zek_%}* € B4 ’
1 N
and since
2
2 _ By
max a;=0{———1,
1<k<N w (B%)
one has

- 1
J|J~(¢)|2d5=0{a7(“§%’—)}'

Let us now fix a number 6>1, and let N, be the first integer such that
¢/<B} <®''. In Chapter I, in connection with the proof of Theorem (1.2.1), we

showed that such an integer always exists for j large enough. Thus

1 . 1
(flJNI (t)' dt:o{&)_(ﬂ—’j:-

Since £1/pw (p)< oo, we have T 1/w (§’) < oo, and thus Jn, tends to zero for
almost every t. We have therefore shown that

1
12Sy /By i
fe M et ,

6
p.p. in ¢, and uniformly over any finite range of A.

3. Let us now consider an integer m such that

N,Sm<N,H
and let

1 1
A= J’etzsm/amdx_ J-euij/BN/dx_
0 ]
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One has

— 2
|A|2<12f év-"-‘~-5q—-+SN.(i—i)] dx
= B, '\ B, By,

2
21 J(SN,H SN,)zdx—FZlZ N’” Nj) fS2 dzx

=212§%]L”—_1§17_+212(BN1 BNj)
BY, B,

B: _32 ire__ g
S zz%i—412(62 1).

Hence

1 1
1ASy./B
je“sm/amdaz: fe MTNidx+ A,
ry 0

where

sy,

1
[Al<2[2][(6*— 1)t and lim [e P P L
0

Since 0 can be taken arbitrarily close to 1, this proves that
 iaSuB -ie .
fe mordz—>e 2 p.p. in ¢,
0

uniformly over any finite range of A, and this completes the proof of Theorem (3.1.1).
Whether the condition ¢} =0 {B%/w (B%)} is the best possible one, we are not
able to decide.

4. The result that follows is a generalization of Theorem (3.1.1).

(3.4.1) Theorem. The notation being the same and under the same conditions as
in Theorem (3.1.1), the distribution function of Sy/By on every fixed set G of positive
measure tends to the Gaussian distribution, for all values of t with the possible exception
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of a set of measure zero which is independent of the set . More precisely, Ey (y) being
the set of points x in (0, 1) such that Sy/By<vy, and

meas [E -G
Fuly, )= 22 L) G,

Fy(y, Q) tends to the Gaussian distribution with mean value zero and dispersion 1.

We have
J’ (’/MdeN(y, G)zlGI»vvlfei}.SN}BNdx’
e G

where |G| denotes the measure of G, and we have to prove that the last expression

tends to e ‘]z)‘z, uniformly over any finite range of 4, for all values of ¢ except in a
set. H; of measure zero, H, being independent of G.

Our theorem will be established if we prove it in the case when ¢ is an inter-
val with rational end points. For then it would be proved when ¢ is a sum of a
finite set of intervals J, whence we would get the result when ¢ is the most general
open sct in (0, 1). Since every measurable set is contained in an open set of measure
differing as little as we please, we would obtain the result in the general case.

Without loss of generality, we may assume that I is an interval of the form

(0, «), where o is rational, 0- «-71. Suppose now we can prove that for a given «,

k23
: 1
o ! {(i‘”l\’w”d.’r%e 2

0

(3.4.2)

A2

almost everywhere in f, that is to say with the exception of a set H, («) of measure
zero. Our result will then follow, since the set H,=> H, («), summation being ex-
tended over all rational numbers «, is also of measure azero.

Thus we have to prove that (3.4.2) is, for a given «, true p.p. in ¢. As in the
proof of Theorem (3.1.1), it is enough to show that

-3

N
Ky(t)= (H(lJriek(pk () cos 2mkz)dx—a
o 1
0

tends to zero p.p. in t, where &, =2Aay/By and N— oo,

The proof proceeds exactly in the same way as before until we get

N
! % EeicosanrcosZﬂkﬂ
f|KN(t)l2dt=fJ‘e1 dedy—o’.
0 (L]



TRIGONOMETRIC SERIES WHOSE TERMS HAVE RANDOM SIGNS 263
Writing now again e*==1+u-+4ue’, 0<n<1, we observe that

9 -
&% sin® ana/ei

Jfa% cos 2mkx cos 2akydady =
0 0

and thus
o 2 . 1
dy|<2-—5 =0 -
’J‘fudx Y= B l?kixNak {a) (B%,)}
o0
Noting also that
a a 11
ffuzdxdyﬁ ffuzdxdy,
0 0 ¢ 0

we get
flKNa)th:O{l/“’ (BM):

from which place the proof proceeds as before.

3. Theorems (3.1.1) and (3.4.1) have analogues for power series

(3.5.1) %ck e g (1),

whose partial sums we shall again denote by Sy (x).

(3.5.2) Theorem. If
N
Ch=13 el ch=0{Ch/w (),
1

then the two-dimensional distribution function of Sy (x)/Cy tends, for almost every t, to
the Qaussian distribution
1
2n

ékﬁrn

n
fe“%“’”‘”dz du.

It is enough to sketch the proof.! Let c¢.=|ck|e'*, and let Uy and Vy denote,
respectively, the real and imaginary parts of Sy. Let Fy (&, ) denote the measure of
the set of points #, 0<x <1, such that Uy (z)/Cy=<¢&, Vy(x)/Cn<n, simultaneously.

The characteristic function of Fy is

1 See also the authors’ notes “On lacunary trigonometric series” part I, Proc. Nat. Acad., 33
(1947), pp. 333-338, esp. p. 337, and part II, Ibid. 34 (1948), pp. 54-62.
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+00 +o0 1
J‘ J‘ e‘(““"’)dFN (€, 77)= J‘emuNw VWICN &
0

—00 o0

1 N
= }'exp i OF {Z[ckl[). cos 2mkx+oy)+pusin (2rkx+ o)l r (t)}dx
3 1

N
exp {z Cit (A2 +u®) S | ex| cos (2 kx+ k) pr (t)} dz,
1

I
e Y

where the a; now also depend on A and pu.
To the last integrand we apply a formula analogous to (3.1.3) and we find that
for A%+ u®=0(1) our integral is

1
N
e_%“u“)fl—[{l-%i[ck](22—1—#2)* C' @x () cos 2nkx+a,§)}dx,
1
0

with an error tending uniformly to zero. The second factor here tends to 1 p.p. in
t, since after an obvious change of notation it reduces to the integral in (3.1.4),
provided in the latter we replace cos 2akx by cos (2mkz+ ox), which does not affect

the validity of (3.1.4). Hence, p.p. in t, the characteristic function of Fy (& n) tends

to ¢ 2%*** which completes the proof of Theorem (3.5.1).

It is clear that the conclusion of the theorem holds if we consider the distri-
bution function of Sy (x)/Cy over any set of positive measure in the interval 0=z <1.

This result and Theorem (3.4.2) have analogues in the case when the series are
of the class L?, i.e. when the sum of the squares of the moduli of the coefficients
of the series is finite. Then, instead of the normalized partial sums we consider the
normalized remainders of the series and show that, under condition (2.3.6), the distri-
bution functions of these expressions tend, p.p. in ¢, to the Gaussian distribution.

The proofs remain unchanged.

6. So far we bave been considering only the partial sums or remainders of series.
One can easily extend the results to general methods of summability (see, for example,
the authors’ note cited in the preceding Section, where this is done for lacunary
series). We shall, however, confine our attention to the Abel-Poisson method, which

is interesting in view of its function-theoretic aspect.

(3.6.1) Theorem. Suppose that X (af +bi) = oo, and let
Ppo

cE=al+bi B*(r)=}Zcirt*, 0<r<l.
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Then, as r—1, the distribution function of
f: (x)=Z (ax cos 2mkx+ by sin 2w kx) @y (¢) 7"

tends, p.p. in t, to the Gaussian distribution with mean value zero and dispersion 1,

provided
max (ci7**)=0 {B*(r)/w (B® (1))},
1<k<oo
in particular, provided c;=0 (1).
The proof is the same as that of Theorem (3.1.1). Extensions to power series,

sets of positive measure and series of the class L? are straightforward.

CHAPTER IV

On the Maximum of Trigonometric Polynomials whose Coefficients

have Random Signs

1. In this chapter we shall consider series of the form

00

(4.1.1) > Tm @m (&) cos mz,
1

where {@n (t)} is the Rademacher system, and where we consider purely cosine series
only to simplify writing, there being no difficulty in extending the results to the
series of the form X r, @n (t) cos (mz—an).
Writing
n

Po=P,(x,t)= D 7mn@n(t) cos mz,
1

we consider

M,=M,(t)=max | P, (z, t)],
x

and our main problem will be to find, under fairly general conditions, the order of
magnitude of M, for almost every f; more exactly, to determine a function of =,
say, Q(n), such that

(4.1.2) ¢< lim inf _1;1]"(7(:)) < lim sup Z‘sl)(:))

<

almost everywhere in ¢, ¢>0 and C being constants.

Analogous results will be given for power series of the form

{(4.1.3) Sy o (MEF2AA)
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where the phases a, are variable. The Rademacher functions are replaced here by
the Steinhaus functions e27'®m, which are functions of a single variable t, 0 <t<1,
and are obtained from mapping this interval onto the unit cube 0<u«, <1 of in-
finitely many dimensions (see Steinhaus, Studia Math., 2 (1930), pp. 21-40).

Part 1. Rademacher Functions

2. We begin by proving a number of lemmas which we shall need later on.

(4.2.1) Lemma. Let fo= > cp@m(t), where {@n} is the Rademacher system and the
1

n n
cm are real constants. Let Cn= > ¢, Dn= > cm and let A be any real number. Then
1 1

1
1 150
e?“cn‘ M DnS fezfndtseél Cn'
0

Proof. The ¢, being independent functions,

1 1

n n _Ac Ac
felf,,dtznfelcmfrmdt: I‘Iez"+f,_ "
0 ! 0 ! 2

. 22_9%" _ }.4(::1, -+ )

Since (2p)!=2” p!, one has

1
n =] 2p 2p n o
1 2 1
feu"dtﬁ H (z ?-__Cm) =He212cm:€212€n.

3 m-1 \p=0 2”1"

In the opposite direction,
1

n 22
je“"dtz H(1+ -’—1—23")-
0

1

. -1
Using the fact that for «>0 one has 1+u>e" 2"2, one gets

1

To1322 Luct  luc o up
Andt>[ez" ‘m 84 m> g2t Cm A Om
1

’

0

which completes the proof.!

! Later on we shall need the lemma in the case when n= 000 and 2 c%,,< oo, 1t is clear that
the inequalities of the lemma hold in this case, since X ¢y, ¢m converges almost everywhere.
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The lemma which follows is well known but we state it in order to avoid
constant repetitions. It is stated for functions of a single variable but it clearly holds

for functions of several variables.

(4.2.2) Lemma. Let g(x), a<x=<b, be a bounded real function. Suppose that

lg (@) <4, (b—a)[g@)dz=B.

a
Then, for any positive number pu,

b
(b—a)? fe"‘”” dz<1+uVB+ ZB;e’“‘.
a
b
In the case when f g(x)dx=0, this inequality can be replaced by
a

b
(b—a)‘lfe’”’dx£1+ ~B7,e’“‘.
A-
Proof. One has

P P

ne 1 ryg L9
e + e o 4
Now
b b
— . B
(b—a) 1f|g|dx§VB, (b—a) 1f|g|"deA” "Bzz—zA”.
a a
Hence

b

. o0 P p -
(b—a)'lfe""dxél+/1VB+BA"2ZL?—SI+MVB+BA Zeld,
2 P

a

The second inequality, if g () has mean value zero, is obvious.

(4.2.3) Lemma. Let x be real and P (x)= > (ot cO8 mz+ B, sin mz) be a trigo-
0

nometric polynomial of order n, with real or imaginary coefficients. Let M denote the
maximum of |P| and let 0 be a positive number less than 1. There exists then an
interval of length not less than (1—6)/n in which |P|=6 M.

Proof. Let z, be a point at which |P|=M, and let &, be the first point to the
right of w, at which |P|=6M (if such a point does not exist there is nothing to
prove). One has
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M (1~ 0)=|P ()|~ |P(z)]
<| P (x) = P ()| < (2, — %,). Max | P'|.

But, by Bernstein’s theorem, max |P'|<n M. Hence

z,— 23> (1 6)/n,

as stated.

(4.2.4) Lemma. Let ¢ (2)=0, and suppose that
1 1
[pda=4>0, J(pzdeB
) 0

(clearly, A*<B). Let § be a positive number less than 1 and let | E| denote the measure

2
of the set E in which ¢ =3 A. Then |E’|2(1~6)2%-

If CE denotes the set complementary to E, then f pdr<Jd A and
CE

1
f(pdx= f(pdx— J'tpdeA(l—é).
E 0 CE

But
: 4
f(pdeIEI* (f(pzdx) <|E|t Bt
E 0
A(1-8)<|E| B},
so that

AZ
—8rt.
|E|=(1-9) B

k
(4.2.5) Lemma. Let fy= D Cn@m (t), where {pn} is the Rademacher system and the
1
¢m are real constants. Let n(t) be a measurable function taking only positive integral

n

values and suppose that 1 <n (t)<n. Write Crn= 2 c% and denote by A a positive num-
1

ber. Then

1

Je“’un“”dtﬁlﬁe #en,
[}

The proof of this well.known result is included for the convenience of the

reader.
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Proof. Let & be an integer, 1<k<n. Then, if (x, §) is any dyadic interval of
length 2 ¥ (xa=p2%, B=(p+1)27% p an integer), one has

B
fe®=B—a) [ fn(w) du, a<t<p.

o

Thus, for all ¢,

3 ]
| fx (t)|§(l3—a)"1f|fn(u)|du3 sup ﬁfwn(u)ldu 0<6<1).

Denoting the last member of the inequality by fn (), we see that
[fney (O] < fn (D).

By the well known inequality of Hardy and Littlewood,

f[/n(t)]°dt<2( )flfna)l"dt >1)
Hence, if ¢=2,

1 1
,“fn(h (t)|a‘“58“/n )| dt.
s o

Now,
1

1
fe“f"“)(mdt\‘ f{e“n(z)(‘)+e “n(t)“)}dt
0

32 lho 0"
T
S 1A0)
<16 2p)! dt

1

=8fe“n(”dt+ Sfe" Mn® dy

0 0

<16

by an application of Lemma (4.2.1).
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3. We now pass to the proof of our first theorem.
(4.3.1) Theorem. Consider the series (4.1.1), denote by P,= P, (x, t) the polynomial
?nr,,, ®m (t) cos ma, and write My= M, (t)= max | P, (2, t)|, R,= %nri. There exists an
z
absolute constant A such that
M (2)

lim sup e < A,
n=oop VR, log n

almost everywhere in .

Proof. One has, by Lemma (4.2.1)%,

n
1‘ %222'3. cos®mz 10 n
Je”"dtSe 1 <2t T
0
so that
1 1
1y0p
Je“"n'dts f(e“’n+e Payde<2et n,
o
[\] 0
Hence

1 2n
fdtfellp”'dxs4ne%lzﬂ".
° °

By Lemma (4.2.1), denoting by 0 a fixed positive number less than 1, one has

2n

0
APl de> — = f4Mn
n

Hence
1

4dnn L 4n 2
0AMp ) gy o 227 ARy _ TN %A Rp+ logn.
fe <1-5° - 6°¢
1]
Take A= (B R,'log n)t, B being a positive constant to be determined later on.
We get
1
(eOAMn(t)dt< 4 e(%ﬂn)losn.
. 1-6
)
Since, at present, we are not concerned with improving the value of the constant 4,

we shall now use rather crude estimates. We have

! In what follows 4 is always positive.



TRIGONOMETRIC SERIES WHOSE TERMS HAVE RANDOM SIGNS 271

1
0iM,~ (1812490 log n 47 ~(l+m) log n
J'e = (2 dt < —— e 077 )

0

n being a positive number. Hence

Z eam, - (] )
Ze n—(§ﬁ+2+r/ Iogn<oo

1
for almost all ¢. Hence, for n=ny=mn,(¢),
OAM, <(3B+2+n) logn

and, replacing A by its value,

Mn<0’1/3ué(§,b’+2+77) (R. log n)t.
This means that, for almost all ¢,

. M, (¢) 1p+2+9
lim sup (&, log )? < 0p

Since 0 is arbitrarily close to 1, and 5 as small as we please,

.  M.)  _pr 2
lim sup (&, logn)*sé Bt

Taking now f=4,

i R L0
(4.3.2) lim sup (B» log n)} <2,

which proves the theorem and shows that the best value of A is <2. We shall
show later on (see Theorem (4.6.1) below) that under certain conditions the best

value of 4 is <1.

Remarks on Theorem (4.3.1). As we shall see later, the order of magnitude ob-
tained for M, in Theorem (4.3.1) is not always the best possible one, and addi-
tional hypotheses will be required to prove the first inequality (4.1.2) with

Q (n) = (R, log n)}.
An almost immediate corollary of (4.3.2) is a known result (see Paley and Zyg-
mund, loc. cit.). If Zry is finite, then for almost all t the partial sums

n
8n= 0 TmPm(f) cos mzx
1

18 — 533807. Acta Mathematica. 91. Imprimé le 1 novembre 1954.
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of the series (4.1.1) are o (log »)}, wuniformly in x. That these partial sums are
0O (log n)* is obvious. By dropping the first few terms of the series (4.1.1) so as to
make the R, uniformly small, we improve the ‘O’ to ‘o’.

We shall see later on (Section 8) that more precise information can be obtained

about the order of s, for some particular series with X 7% < oo,

4. In order to get further results we must now prove another lemma.

(4.4.1) Lemma. Let us again consider the series (4.1.1) and keep the notation of
Theorem (4.3.1). Let {n;} be un increasing sequence of positive integers and let W] =M (1)

be the maximum, with respect to n, when n; <n<mn;., of
H, (t)= max | P, (, t) — P (x, t)].
x

Then, for almost all t,
W (@)

lim su - < 2.
Sup {(Br;,,— Bn) log my 1}t ™

Proof. Let n (t) be any measurable function of ¢ taking integral values only and
such that #n;-2n (¢)<n; ,. By Lemma (4.2.5),
1

AP Py Ligr R
Je Tt gy <16 62t Brpy B

0

Hence
1 2

XP P
fd‘[ Pntr Prl g0 < 39 bW Bnyyy B

b 0
By Lemma (4.2.3), we have, with 020 <1,

2n

Jellf’n(n"’nlldx> 1_ oeo“"n(t)(‘)z I—OeGAH,l(“(t).
n (t) (ORI
0
Hence
1
1 122 R
BELINOY TPRCALIE P Lo LT n
1—-6
0
and so

1
[ M g, - 327 32n 21 Ry~ Bp)blogn;q

0
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A log N1 ¥
Les us take, as in the proof of Theorem (4.2.1), 122(1%”7"”.%1? and let
Tl Ty
1n>0. Then

1
*
feOZ‘l‘?j(t) (“n)lognjildt_g 32756.,(1”7”03 n549

0

and so, exactly as in the proof of Theorem (4.2.1),

lim su im; (t) < 4_4‘,7
PP By, By gy 20

and the lemma follows by taking #» arbitrarily small and 6 arbitrarily close to 1.

5. We proceed now to prove, under certain conditions, the first part of in-

equality (4.1.2), with Q (n)= (R, log n)}.
(4.5.1) Theorem. Let us consider again the series (4.1.1), the expressions Pn, M,,
n
R, having the sume meaning as in Theorem (4.2.1). Let T, = er,,
1

We make the following assumptions:

a) Tw/Ri=0 (") for some positive v (clearly, y <1), this assumption obviously
tmplying that X ri = oo,

b) R, /Ra.—>1 if n; and n, increase indefinitely in such a way that n,/n,—~1.

Under these assumptions, one has, almost everywhere in t,

.. M, ()
e >
hm"mf (R» log n)} c{y),

¢ (y) being a positive constant depending on y only.

2n

1
Proof. Let us set I, (t)= ﬂj e*fndz, so that, by Lemma (4.2.1),

1 1 2n 1 1 2nl % 2002 e
132 r st mz- At
fI,,(t)dt=——fde.e”"dtZ—— e "da
2n 2n
0 b 8 0

2 122‘ 2
lap, » Tnifeﬂ Trmcoszmrdx.

2n
H
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Now, since

n
%A’Z r?ncoshnr 1 n
e 1 >1+lezr?,,cos2mx,
1

the mean value of the exponential exceeds 1, so that

1

12 R, -2 T,
4.5.2) f L (t)dt>et
[}
1

We proceed now to obtain an inequality in the opposite direction for fl?, (&) dt,
0

which, together with (4.5.2), will enable us to apply the result of Lemma (4.2.4).
We have

2a 2n

1
I (t)=mf fe“”n“-‘)”’n(”"”dxdy,
0

1 2n 2nm 1
flﬁ(t)dts‘t—i;ij fdxdyfe“”n“-‘“"n‘”"”dt.
0 0 0 0

Thus, by Lemma (4.2.1),

1 l 2n 2n 13
2 - 2 2
fI,,(t)dt_ 4n2f fe
0 o o

cos mx+cosmy)i=1+%cos2mzr+ 4 cos 2my+2 cos mx cos m
y y y

so that

"fn (cos m T +cos my)?

dxzdy.

~P=

Writing

one has, putting
Sn=8,(x,y)= > {}r% cos 2ma+ }ry, cos 2my+ 275 cos mx cos my},
1

the inequality
2n 2n

1
R, jas,
fl‘f,(t)dtSe% i ——1—2f fe" dzdy.
4n
° o 9

We now use Lemma (4.2.2) for the function S,(r,y) of two variables. We
2r 2m
observe that f J' S,dxdy=0 and that the system of 3% functions cos 2mz, cos 2my,
0 0

cos mx cos my (m=1, 2,..., n) is orthogonal over the square of integration. Therefore,
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2n 2n
1 , 11 5
B n =173 T,,“—‘— ne
‘47!2‘[ fS dxdy (8+8+1) 4T
1} 0

Since |S,|<3R., an application of the second inequality of Lemma (4.2.2) gives

2n 2n

1
47
(1]

1a2s, 5 T, 32r,
fez dxdy51+§- E—%ez
0
so that, by the hypothesis a) of the theorem, we have finally, ¢ denoting a positive

constant,

xR, ( 3R,
(4.5.3) f]ﬁ(t)dtﬁez * (1+1e2 * )

Using the inequalities (4.5.2) and (4.5.3), let us apply Lemma (4.2.4) to determine

a lower bound for the measure |E,| of the set E, of points ¢ such that

(4.5.4) Ii(t)y=n e i HTn
where the number #>0 is to be determined later and the factor »~7 plays role of
the 6 of Lemma (4.2.4). The lemma gives immediately

;A” EYI—'ZA. Tfl.
&

132R 2R\
¢ "(1+£e% ")

nY

| B |2 (12

that is to say,
812 R
|E,.|Z(l—2n"’)-e'“‘T"-(1—%(42 ")-
n

Let us now fix a number 0, 0<f<1, and let A=0 (gylognn)*, go that
egv R,-ylogn @ Dylog
One has
22t T,.=0‘§y2k’—§é—” r, <28,
b denoting a positive constant, so that
2 Tas ] _blog? n

n
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and

Choosing now 7=y (1 —6?%), we have

. B
| Ea] = (1 - ,71—:62;) ’
B denoting a constant.

In the set K, one has, by (4.5.4),

1R2R, -2 Ty -nlogn

A MO > T, (8) > et ,
so that -
2 7 Vy 1
M,()>" R, — 2T, logn=0-" ~ (R, log n)t = AT, — ] log n.
(£ 4 A 7 log n 021/6( og n) 5 log
Now
3
log n)‘-’ \ T, |
3 — o T ] - Lon 3
AT, 0{(}2” 7,1] OlognR.i(R,,logn)}
= () {l_o%n (R, log n)*} =0 (R, log n)}
and

7 y (1= 0% V—3 _e 0 l/f
Togn=""=-—V - (R, log n)t =6(07*- 1) =" (R, log n)}
Pk 0 2y & 2V6 &
so that, writing £ =6(0"2—1) and fixing 0 close enough to 1 to have g, say, less

than 4, we have for te k,,

M, <t>>g{g(1 ~ &9~ 0(1)) (Ry log m)*.

Let us now take an integer s such that
sy (1--0%)>1.
Then the series X*n 179 extended only over the integers n=m’ (m=1, 2,...) is
convergent. Hence, by the lower bound found for |E,|,
D (1| Epsl) < oo,
m=1
and thus, for almost all ¢,

-
(4.5.5) lim inf 2@ - 8Vy

- > (1 — g).
M it log )~ 276
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We must now, in order to complete the proof of the theorem, extend this
inequality to the case when n tends to oo through all integral values. For this pur-
pose we shall use Lemma (4.4.1) and assumption b) of our theorem.

Denoting by M, (f) the maximum with respect to n, for m*<n<(m+1)°, of
max | Py (z,t) — Pps(, t) |
x

we have, by Lemma (4.4.1),
My, (1) ;
Bni1pp— Bms) log (m+ 1)}

lim s 2
1mm up "

so that, since R, ,;#/Rnx*—>1 by assumption b),

: Mo ()
(456) llmmsup iR—m?Wé =Vu.

Now, since for m’ <n<(m+1)° we have

M, (8) = M s ()~ m (8),

it follows that for almost all ¢,

. . - Mn (t) 1 . Mﬂ (‘) e
llmnmf (R, log n)t = hm"mf (B log m)?
.. M0 (t) ) i (8)
> it S = e
= lim inf (Rpw log ')} lim sup (Bs Tog m)}
0Vy
Z -_— 1 - £g).
aye' "%

It remains now to observe that the last inequality being true for all§, 0 <6 <1,
we can take @ arbitrarily close to 1 and &, arbitrarily small, so that

o M. Wy
lim inf — =
n (Ralog n)t "2V
for almost all #, which proves our theorem.

Remarks on Theorem (4.5.1). Let us observe that the preceding argument shows
that, with assumption a) alone, one has

tim sup 228 Yy,
n

(Rx log n)t ~ 2/
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so that, comparing this with Theorem (4.2.1) we have at least the true order of
magnitude for the superior limit.
We may also add that we do not use in the proof the full force of assumption

b), which is needed only when =, and n, are of the form m' and (m+1)°.

6. The case y=1 deserves special attention. We have then T,/R%=0(1/n)
and this condition is certainly satisfied if the r, are bounded both above and below
(i.e. away from zero). In this case assumption b) of Theorem (4.5.1) is automatically
true, if n, and n, are m’ and (m-+1)° respectively. We shall show that in this case

the value of the constant 4 in Theorem (4.2.1) may be reduced from 2 to 1.

(4.6.1) Theorem. Let us consider the series (4.1.1) and let P,, M,, R,, T» have
the same meaning as before. Then, under the sole assumption T,,/R‘i:O(l/n) we have,

almost everywhere in t,

(4.6.2) L < lim int wi[:’—’—r(—t)ft <lim sup -, M0 <1.

:‘2V6 VR, log n R,, log n
This 1is true, tn purticular, for the series 2 @, (1) cos mzx.
Proof. From the remark just made it follows that the first inequality (4.6.2)
will be proved if we show that, for any integer s, Rimyyf/Rm—1. Now,
[Rom 1yt = Bt < [(m 4 1) = m] T 18,
by Schwarz’s inequality, so that

[Rm Jr Rmfr At V= m T ar_ {.(m T } ~o(l),
Bin oy R 1ye (m+1)
as stated.
We now prove the part of the theorem concerning lim sup. We begin as in

the proof of Theorem (4.3.1),

1 r
APy, J By costmz
etlfnldt<2e 1 ,
b
but write
n n
Srhcos? mx=}R,+} D 1 cos 2ma,
1 1
so that

9

1 2n 2n 132
122R, 1
fdtfe“”"'dx<2e‘ fe
0 0

0

- M=

2
rmcos2mz

dzx.
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Applying now Lemma (4.2.2), we have

2"12\7L 2 2
1 41Hrmcos~mz T, %Aan
A A de <1+3=Le
2n Rn
0
122R
a n
<l+-e"
n

a being a positive constant, so that

1 2n
1a2R, a 1i*R,
fdtfe“”n!dx<4ne4 (1+~—e" .
n
0 0

Taking 1=2(R;" log n)} we get

1 2n

J'dtfe“P"'dx<4n(l+a)el°‘”.
0 0

279

By Lemma (4.2.3), taking a positive number 0 less than 1, we get as in the proof

of Theorem (4.3.1),
1

47
fe“”ﬂdt< —nt—n(lfi a) '8 " =

2 4n(l+a)
1-0

1-0

21 n
e” %,

0

Fixing an >0 we have
1
fe““n""l"’““"dt\‘inl(l%a)'n ",

0
Let s be an integer such that snp>1. Then X m *"< co so that

oo
S fAMp-inlosn o

n=mé

for almost all ¢, with A=2,=2(R;" log ). From this we deduce, as in the proof of

Theorem (4.3.1), that

M. (t 1
BTk <0 (1 )

lim sup
n=mb-»00

for almost all ¢, and since  may be taken arbitrarily close to 1,

M. ()

. . <
lim sup (B log )} = 1+49.

n=m—>o0
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To pass to all values of n, we use Lemma (4.4.1), just as in the proof of
Theorem (4.5.1). We have, with the same notation, M, < M s+ M, for m* <n < (m+1)°,

and it follows immediately that

for almost all £. And since # is arbitrarily small, our result follows.

Remarks to Theorem (4.6.1). It is not excluded that for series having coefficients
of sufficiently regular behavior, in particular for the series X @ (¢) cos mz, the ex-
pression M,/(R, log »)t (for the particular series, M,/(n log n)}) tends to a limit,
p.p. in ¢, as n—>oo. We have not, however, been able to prove a result of this kind,
or even to narrow the gap between the constants of Theorem (4.6.1).

We shall see that the gap between the constants is reduced if we replace Rade-

macher’s functions by Steinhaus’.

7. We now proceed to generalize the preceding result.

(4.7.1) Theorem. Let (a, ) be a fized interval contained in (0, 27) and let M, (a, f)
denote the maximum of |P.| for a<x<B. Then, under the same assumptions as in
Theorem (4.5.1), and almost everywhere in i,

o Mala, )

| f- =0 >

im in (R, log n)t c(y),
c(y) being a positive constant depending on 7y, which is ut least equal to the value
Vy/2V6 found for the constant of Theorem (4.5.1).

Proof. The proof follows the pattern of the proof of Theorem (4.5.1), and we
only sketch it briefly to indicate the differences. Writing

8
Jn=Jn (a,ﬂ,t)=ﬁ1a fenndx,

one has

s

1

n = ﬁ—d

f ilzzr‘fncos‘JMI
e 1 dzx.

R

1}
Now,
1 5. 2 1 . \ aT
{ﬂT&J |¥rﬁ. cos 2mz|dx} Sﬂ—af (;7‘3" cos 27'”9]‘ dxsﬂ_;’

-3
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and since
%AZZr%ncos‘.’mz no
e ! >1+442> ry cos 2mu,
1
one has
1 g .(li}.zzrmcos2m.r 1 T\ ,1277#
e 1 dzZl——X( n) 0
p—o 4 \p-u, (Bt
so that
1
1R, -a T, /U 3
4.7.2 fJ dt=ét (1—* n )
@72 J (6=

8
We now find an upper bound for J'Jidt by using, as in the proof of Theorem
(4.5.1), a double integral and find, with the notation of that theorem,

1 g B

1azn, 1 la2s,
fJ?,dtSe2 —— [Jez dxdy.
J B-ar,

[« 2 4

As in Theorem (4.5.1), we have |S,|<3R,. Also

2n 2n

g B
___L. J2 - .7 U S Tl‘
6~ a)’f!‘sﬁd”y“ f fb dedy= 1 (s T

so that an application of the first inequality of the Lemma (4.2.2) gives

B

8

1 1ns, aV5VT, 52T, 3%R.
. d < 2 L Z

(/3—~a)2JJe xdy< 1+ l ﬂ " 79(13 )ZR‘

al? VT"+ aT, %"Rn

[*4

Boa (B-afRS

<1+

a being a positive absolute constant. Hence

1

11212" alz Vi— aT ;)‘zhn
1. 2dt<e [ 2 e ]
(4.7.3) fJ dt<e 1+ F—a +(ﬂ—a)2Rﬁe

0

From here the proof proceeds as in the case of Theorem (4.5.1), using the
inequalities (4.7.2) and (4.7.3) instead of (4.5.2) and (4.5.3), and taking into account
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the hypothesis 7',/R% =0 (n"?). One has only to observe that, since A=0 (R, log n)},
one has
R2Tt=0 {%ﬁ T}l} =0{n"*7 log n).

Once the theorem has been established for a sequence of integers n=m® one proves
it for all » by using again Lemma (4.4.1). The constant ¢(y) can be taken equal
to V;/2 Ve.

The comments on Theorems (4.5.1) and (4.6.1) are applicable here without change.

By taking the end points «, f rational, one sees immediately that if we exclude

a certain set of values of ¢t of measure zero then

n  (Ralogn)t 2ye
for any fixed interval («, f).

It is also easily seen that the theorem holds for the intervals («., f.) whose
length and position vary with »n, provided that £, —a«,>n"7, where ¢ is a sufficiently
small number which can be determined if y is given. One finds o<}y, but the
constant of the theorem depends then on ¢. The details are left to the reader.
Finally, Theorem (4.7.1) holds if the interval («, 8) is replaced by a set E of positive

measure; it is enough to replace in the proof §—a by |E|.

8. Some results for the case in which > r% is slowly divergent or is convergent.
If the series > %, diverges slowly, or is convergent, the assumption a) of Theorem
(4.5.1) is not satisfied. In order to show what the situation is in that case, we

shall consider examples of series with regularly decreasing coefficients.
(i) The series

o0
>m~4— g, (t) cos mz
1

presents no difficulty since here T,/R: is O(n™*%) if e<}, is O(n"'logn) if e=}
and is O(n™') if £>}, so that condition a) of Theorem (4.5.1) is satisfied. Since
condition b) of that theorem is also satisfied, the exact order of M, (t) is

(Bn log n)t ~ n® (log n)t.

(ii)) The series

2 m~ g, (t) cos ma
1

does not satisfy condition a) of Theorem (4.5.1). By Theorem (4.3.1) we have
M,{t)=0(log n), p.p. in ¢, and we are going to show that this is the exact order.
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We consider the sequence of polynomials

Qu=P,—P,= 3 m} p,() cos ma,
P+l
where p=p(n) is a function of n. We take p=[n”], where y is a positive number
less than 1, to be determined later. We write M (p, n)=M {p,n,t)=Max |Q,], the
other notations remaining the same as in Theorem (4.5.1).

We observe that for the polynomials @, we have

T,-T, [ p"l—n"l

— — -y _..2
&, — B,y |{log n—1log p)z] Otn 7 log™m)

so that condition a) of Theorem (4.5.1) holds; it is easily seen that in the proof of
the inequality (4.5.5) of Theorem (4.5.1) the fact that the polynomials are partial

sums of the form > is irrelevant, so that the proof of the inequality (4.5.5) applies
1

to the sequence (), since condition a) is satisfied [condition b) is not required for
the proof of that inequality]. We have to replace T, by T, —T,, R, by B, — R,, M,

by M (p,n). Hence, for sy(1—6%>1 and for almost all ¢,

- M (p, n) GVy
fm inf R, R,) logn)t 2 Y6

(1 &),

# and g having the same meaning as in Theorem (4.5.1). Hence

lim in fM(”’”) GV”

—¢& Vl—
n=ms 0 n 2V °

Now, by Theorem (4.3.1) we have, for almost all ¢,

M
lim sup —; <2, ie. llmsup1 L<2

(By 10g og p)t = og p
where, as usual, M,=max IP,,|. In other words,
lim sup M,/log n<2y,
»
so that, if M,=max |P,|,
z

Mp,n) | 0Vy

. 0VY 1 VTS
minf = im pon 2Vs (1-—e)V1-y-2y

n=mé g n

which is a positive quantity if  is small enough.
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We now pass to the sequence of all n, like in Theorem (4.5.1), by using
Lemma (4.4.1) which can be applied to the proof since plainly for the series
S m~? @, (t) cos mz one has R, /R, —1 whenever n,/n,—1.

Hence, combining our results and observing that 0 is as close to 1 as we wish,
we have, for almost all ¢
2%) Vy(1—y) 2y <lim inf M,/log n<lim sup M,/log n<2,
where we can take, e.g., y=1/100.

The argument could be applied to show that the exact order of magnitude of
M, {t) for almost all ¢ is again (R, log n)t for r,=m~¥(log m)"*, if 0<a<4%, but it
breaks down in the case =1} which we are now going to consider.

(iii). The series T (m log m)~} @n (t) cos mz. In this case the function (R, log n)t ~
~ (log n-log log n)! does not give the right order of magnitude for M,, for we are
going to show that in the present case we have M ,.=0(l/l£)‘g_~ n) p.p. in t.

In fact, setting

n n
go= 2 (mlog m) e, (t) cos mz, P,=>m te,(t) cosmz
23 ¢ 2 (p

we have, by Abel’s transformation,

n 1 1

Gy = Z{ Y l’ '}I)m+""~~l—»-~Pm

: Wogm ¥ log (m+1) Viog n
and since max | P,|=0 (log m) p.p. in t we have, again p.p. in ¢,

n 1 ’ 1

max |g,]< 3 0 Loy log m} + 0 (log n)t = 0 (log n)}.
z 2 m(log m)?
It can also be seen that M,=max |6,| is o(log n)t for almost no ¢t. For sup-

pose that M, =o (log n)! for ¢ belonging to a set E of positive measure. Then
n-1 o e
P,= 3 (Viog m—Viog (m+1)) o, + (log n)t g,
2
and so, in E, we would have

max |P,| < ’é {O (;&T/lt)ﬁ) o (Viog m)} + o (log n) =0 (log n),

which we know not to be true.

The same argument can be applied to the more general series

> m™} (log m) * @m () cos mz
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if 1<a<l1, to show that M,=0(log n)'"* but not o(log »)'"% p.p. in ¢ (see also,
the end of Chapter V, Section 5).

Part II. Steinhaus Functions

f(mz+2na,,) (

9. The problem of the series D ry, e rm = 0) 'is not essentially different
1

from the problem treated in Part I, and we shall only indicate the relevant modi-
fications of the argument. They lead to better values for the constants. As mentioned
in Section 1, we map the hypercube 0<a, <1 (m=1, 2,...) onto the interval 0<t<1
using the classical method.

The following result is an analogue of Lemma (4.2.]).

n
(4.9.1) Lemma. Let f,= cp, €*™'*m, where the ¢, are complex constants. Then, A
1

betng a real mumber, one has
1
n
(4.9.2) fle"nldt= [TJeGGA]cnl),
1
0

where J, in the Bessel function of order zero:

1
. . 2/ 2 cos 2nu
(49.3) JO (@ Z) = ? _(k ')3 = J' e 2 du,

n n
and writing Cp= 2 |cm|?, Dn= 3 |cm|', one has
1 1

latcy-2D
e

1
122¢
(4.9.4) "f|e“n|dtsa "
]

Proof. One has, if ¢ =|cn| ™ ¥m,
1 1
hia 2at (A, +@m,)
f|e‘”n|d¢= Il]fle“%*" Tmtom jdam
o °

1
n
— H ellcmlcosZn(a,,,erm)dam
1
[

1
= Elfe"°M'°°“2"“du= I;IJO(MIc,,. -
0
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Now, if z is real,

J 3 1 22 k iz:
12)< D> — |} =e
0(12) o k!(4)

and
. 1 122 28
Jy(iz)=1 +;zzze‘

Hence
1ate

<[lJeGien)<e ",
1

12, -1y

which proves (4.9.4).

(4.9.5) Lemma. Thke nolation being the same as in Lemma (4.9.1), one has

1

(4.9.6) fe“’"'dtgeiuc"“”"’

0

where £,—>0 if Cp-—>oo.

Proof. If k is a positive integer,

i
; k! 2 ek 2
f""'”‘“‘f J""‘”"“l o= 3 ) Ikl
0

the summation being extended over all combinations such that k; >0, £k =%. Thus

1
; k! ]
[impraesres, (2 laes ot pes
0

Hence
1 1 1 1
mas [ v [ovmare S 2 [inptarsa S o i
- @it ) e g k)
0 0 0

By Stirling’s formula, asymptotically,

k! Vak
k)~ 4k

so that the general term of the series is

k! 23 )0
2R~ T & Yk,
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asymptotically, and it follows that

1
1220 (liey)
n n
fe“f"'dtSe“

0

where ¢, can be taken as small as we please if ', is large enough.

Let now

n n n
Po= 3 rpe®™=i2®m M, ~Max |P,|, Ruo= X1k, Th= 3 rh.
1 k4 1 1

Theorem (4.3.1) is now replaced by a corresponding theorem for the series

L rp ™33 where the constant 2 can be replaced by V2, on account of the
inequality (4.9.6).
For the proof of the result corresponding to Theorem (4.5.1) we use the integral

2n
H,l(t)=2—l; fle“"]dx,
0

so that Lemma (4.9.1) leads immediately to

1 2n 1
1R, T,
(4.9.7) fH,,(t)dt=%tfdxfle“’nldtze‘ ,
[H] 0 0

by inequality (4.9.4).
On the other hand, as in the proof of Theorem (4.5.1),

2n 2n

1 1
1
fHﬁ(t)dt=mf {dxdy f|e“P"""“P"“’"”Idt.
0 0 o °

Since
n
P, (x, t)+P,,(y, )= Zrm (e’m1+e'mﬂ)e2niam
1
and
Ietmz+eimy|2=|1+eim(z y)|2=2(l+cosm(x—y)),

one has, by (4.9.4),

1 n
S 12R,+ ).’Erz cos m(x -y)
J |61[P"(1,t)+Pn(y,t)]ldt=e- n+} ~m

0

Thus
19 - 533807. Acta Mathematica. 91. Imprimé le 1 novembre 1954.
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1 i %12}2" 1 2n 2=m %l'ir?ncosm(zuy)
an(t)dtSe mf fe 1 dxdy
0 o 0
122r, 1 ré %lzgr?"cosmz
= '—fe 1 dzx
2n
(4]
so that, by Lemma (4.2.2),
: 1
lir, T, 1lr»r
(4.9.8) fHﬁ(t)dt§e2 [1+2R2 P "]
. n

[}

The inequalities (4.9.7) and (4.9.8) now lead to the proof of the analogue of
Theorem (4.5.1) and, due to the disappearance of the factor 3 in the exponential
in the brackets of (4.9.8), the constant c¢(y) can be taken equal to V;/ 2)/2.

The analogue of Theorem (4.6.1) is as follows.

o0
(4.9.9) Theorem. Considering the series > *n e ™*"27%m) the expressions Pn, M,,
1

R., T, being the same as above, under the sole assumption Tn/R%=0 (1/n), we have,

for almost all series,
2% <lim int M,/(R, log n)t <lim sup M,/(R, log n)t <1.

i(mzx 02nam)

This applies, in particular, to the series T e

Remarks. In the proofs of the analogues of Theorems (4.5.1) and (4.6.1) we
need, of course, an analogue, for Steinhaus’ functions, of Lemma (4.2.5). The proof
of the latter, though a little troublesome, follows the same pattern and we sketch
it briefly here, the notation being the same as that of Lemma (4.9.1).

Let k& be an integer, nzkél, and let (x,B) be a dyadic interval, a=p2 9,
B=(p+1)279 where g=3k(k+1). Then it is known (see e.g. Kaczmarz and Stein-
haus, Orthogonalreihen, pp. 137-138) that

# B
[fewdu= [fu(u)du,

and, if both « and t are in the interior of (a, ), then

that @)~ fe@]<2n (6| 27+ 27*7P 4o +]ec] 277)
80 a
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<aCl<act

|ﬂ fnuMu—nm

and , .
1
| 5 (8) SﬂTlm flfn(u)ldquaC’iSSt;p i f]/n(u)|du+a03,
-3 t
I ®]<fr@®)+aCl,

faey(t) and fa(t) having the same meaning as in Lemma (4.2.5), and a being an
absolute constant.
For ¢>=2,

fae @17 <2 {|f2 0] +a° C}%)

flf”<t>(‘)|°dt<2q 1 2( ) flf,, (1] de+27 Tt O
=20 (Ifn(‘)‘th—+2°”a“f|fn(t)i“dtSA"f|/n|°dt,
5 , .

where 4 is an absolute constant. Hence, by the same sequence of inequalities which
led to Lemma (4.2.5),

[t gr =g e,
0

The introduction of the constant A4 in the exponent will lead to the replacement
of 2 by 24 in the inequality of Lemma (4.4.1), but clearly will have no effect upon
the inequality analogous to (4.5.6).

CHAPTER V

Continuity of Trigonometric Series whose Terms have Random Signs

1. Given a trigonometric series 2 7, @m(t) o8 (mz —a,), where {@, ()} is the
1

Rademacher system and X r% < co, we shall say, briefly, that the series is ‘‘randomly
continuous” if it represents a continuous function for almost every value of t. We
propose to give here some new contributions to the theory of such series (which

have already been studied).! Without impairing generality we shall simplify writing

! See PALEY and ZYGMUND, loc. cit., and R. SALEM, Comptes Rendus, 197 (1933), pp. 113-115
and Essais sur les séries trigonométriques, Paris (Hermann), 1940.
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by considering purely cosine series
(5.1.1) > Tm@a(t) cos mz.
1

In what follows, 4 will denote an absolute constant, not necessarily the same

at every occurrence.

(6.1.2) Lemma. Let Q=Q(t, x) denote the polynomial > 7m @m (t) cos m x, and let
p+l

1
n
M=M(@)= max |Q(t,x)|. Let R= 3 r%. Then fMdtSA(R log n)}.
z p+1
V]

Proof. By the argument of Theorem (4.3.1),

1

1,2 i
fe"“"dtsft_i&e?2 T 0<h <),

o]

Hence
1

o4 [ ma
ll’R‘loanos'ﬂ’
e ¥ <& I,

Taking A= (2R ! log n)}, we get

1
) H
o

2 log n
47 1
—p-! b LN N
6" (2R log n) [I+log (1 —0) 3 log n]
< A (R log n)},
which proves the theorem. We see that we could take A as close to 2 as we wish

if n is large enough, but this is irrelevant for our purposes.

We could also, by writing
coS mx = cos px cos8 (m — p)x —sin px sin (m —p)x

prove easily that

1
[Mdt<A{Rlog (n—p)}t,
0

but we shall not make use of this slightly stronger inequality.
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(6.1.3) Lemma. Let

n
Q.= er,,,(pm () cos mz, anm?x lQn,’
P+

and let, for fixed m,
M*(t)=max M,() when p+l<n<m.

m
Then, with R= > ri, we have
p+l

1
(5.1.4) [ M*dt< A (R log m)t.
1]

Proef. By the argument of Lemma (4.4.1) we have

1

. 132R 41

oM dtsgle2 Qog", 0<0<1,
1-6

0

which leads, exactly as in the proof of the preceding lemma, to (5.1.4).

o0
(5.1.5) Theorem. Let R, denote! the remainder D r% of the convergent series > r%,.
nil

It S n '(log n)~! VR, < oo, the series (5.1.1) is randomly continuous. Moreover, for almost

every t that series converges uniformly in x.

Proof. Let us divide the series into blocks @, @,,... such that

TR
Qc= 2 mpn(t) cos mz  (ny=0, e — 2249,
nkcl

Let M, =max |@;|. By lemma (5.1.2),
1
[ M dt<A4@* Ryt
0

By Cauchy’s theorem, the convergence of X n !(log n)~t VR, implies that of
1

T k~% VR, which, in turn, implies the convergence of (2 Ry2*)t. Hence Eka dt < oc,
0

which shows that X M, converges for almost every ¢, i.e. for almost every ¢ the
series X ), converges uniformly in z and the first part of the theorem has been
established.

1 Attention of the reader is called to the fact thet R,, and later on 7',, has not the same mean-
ing here as in the preceding chapter.
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To prove the second part of the theorem it is enough to observe that, writing

m
Mi@t)= max {max| 2> 7,@.(t) cos nz|}
nptl<msng g g+l

one has, by Lemma (5.1.3),

My dt< A (2" Ryk)t,

Oty

so that, for almost all ¢, ¥ M} <oo, and so also M;->0,

2. Remarks on Theorem (5.1.5). a) The condition X n !(log n)~! VR, < oo 1s
merely sufficient, but not necessary, for the random continuity of the series (5.1.1).
It is enough to consider the series X p 2 @,2° (£) cos 22px.

b) On the other hand, the condition X n ! (log n)~# VR, < oo is the best possible
of its kind. In other words, there exist series (5.1.1) which represent a continuous

function for no value of ¢ and such that

} VR,
—— <
n (log n)t w (n)

oo,

o (n) being a given function, increasing to oo with n, as slowly as we please.
1
To see this, let us consider the series Z;)—(p)(pzp (t) cos 2°x, where y (p) in-
Y

creases to oo with p but X 1/py(p)=oco. The series being lacunary, it cannot re-
present a continuous function for any value of ¢. But
< 1 1
R,r= e <
e Ky (k) py’ (p)
80 that

) ezt

k] Qk) kyk)Q k)

Now, no matter how slowly Q(k) increases, we can find y(k) such that
X1/kyk)=co, Z1/kypk)Q (k)<oo.

and this proves the statement, if we set w(2°)=Q (k) and apply Cauchy’s theorem.
c) A necessary condition for random continuity of the series (5.1.1) is known
(see Paley and Zygmund, loc. cit.). Let us divide the series into blocks
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2k+1
(56.2.1) P,= > ry @m () cos mx,
2k
and let
ok +1
(5.2.2) A= > rk.
2k 11

The condition X VA_k < oo is necessary, for random continuity.

But the condition is not sufficient, as seen on the following example.

imzr

It will be slightly simpler to deal with a series of exponentials X r, g, (t)e
We shall construct a series of this type which for no value of ¢ does represent a

continuous function, although the series £ A} will be convergent.

We shall make use of the familiar fact, namely, that if y,, y,,..., yy are any

distinct Rademacher functions, then

N
max | > y)k(t)eizkIIEAN,
z 1

no matter what value we give to t. Let us now determine the coefficients r, in
each polynomial P, as follows (compare (5.2.1) and (5.2.2)):
Tm=k1 for m=2+2° (s=1,2,..., k)

Tm=0 for other values of m.
Then, by the remark just made, we have for all ¢,

max |Py|>Ak-k~1= Akt
while
Ae=k-k =g,

so that A}=k~!. Let us now consider an increasing sequence of integers n, such

that L n t<oo (e.g. ng=¢°) and construct the series
Py 4 Pyt 4 Py e

with the polynomials just defined. The series, having infinitely many Hadamard
gaps, must, if it represents a bounded function, have its partial sums of order cor-
responding to the beginning or end of the gaps uniformly bounded.! In particular,

P,, must be uniformly bounded. Since max Ianl > An:, this is impossible, no matter

what value we give to t. And yet, for this series, = A,t=2nq‘*< 0.

! See ZyomunDp, Trigonomelrical Series, p. 251.
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We shall return to the problem of necessary and sufficient conditions for random

continuity at the end of this chapter.

3. (5.3.1) Theorem. Suppose that the sertes (5.1.1.) is randomly continuous. Denote

by {ne} any lacunary sequence of positive integers (i.e. such that ng,1/ng=>A>1).
n

Write Su= 2 rm@m(t) cos ma. Then, for almost every t, the partial sums Sn,, of order
1

ng, converge uniformly in x.

Proof. Observe first that, #, being a fixed number—not a dyadic rational—the

series
(5.3.2) 2 7m @m () Pm (t) cO8 mx

is randomly continuous, if (5.1.1) is. For let E be the set of measure 1 such that,

when { € E, (5.1.1) represents a continuous function. Let ¢t € E and define ¢’ by

P (') P (L) = Pm (t).

It is easy to see (e.g. by the consideration of dyadic intervals) that the set of ¢

corresponding to the t€ £ is also of measure 1.

fg:l
Let us now divide the series (5.1.1) into blocks Pg= 2 rn @m(t) cos mz and
ngil
consider the two series

Py4- P+ Pyt Pyt oo
Py—P,+P,— P+ .-

It follows from our remarks that the series Py+ P, + P+ - and P+ Py + P 4 ---
are both randomly continuous. But both series are series with Hadamards gaps, so

that the partial sums Sn, of order n, of the series (5.1.1) converge uniformly in z, for

almost every ¢.

Remark on Theorem (5.3.1). Let us consider alongside (5.1.1) the series (5.3.2),
where now @ (t,) =1 for m=ng (g=1, 2,...) and @n (t) = — 1 for m +=ny (ng,1/ng = 4> 1).
An application of the preceding argument leads to the conlusion that the random
continuity of (5.1.1) implies the random continuity of X Tng Pn, (8) cOS ng . The sequence
{n,} being lacunary this implics that X |r,,q|<oo. In other words, ¢f (5.1.1) s
randomly continuous, the moduli of any lacunary subsequence of its coefficients have a
finite sum. This is of course a consequence of the necessary condition discussed in

Section 2, ¢), but the proof given here is much simpler.
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4. (5.4.1) Theorem. Suppose that the series (5.1.1) is randomly continuous. Then,

writing
© , © .
Rn:Zrm; Tnzzrm
n+1 n+l

we necessarily have R, log T',—>0 as n-» oo.

Proof. Let us observe first that the series (5.1.1) converges almost everywhere
in z for almost every t (see e.g. Zygmund, Trigonometricul Series, p. 125). Let
Qn= 2 Tn@n(t) cos mz. By lemma (4.2.1),

n+l

N

1 2n
AX gty cos ma 1128
f feﬂﬂ dtdr<2me” "
Q 1}

ndx=1,() exists for

S—

so that, by the theorems of Fatou and Fubini, (2=)'

almost all ¢ and is integrable.

The argument used in the proof of Theorem (4.5.1) can then be applied without
change, though . is not a polynomial here but an infinite series (see foornote to
Lemma (4.2.1)), and we get

1

vLitp a7
4 n n
fl,.dtze ,

0
1

o LaR, T, 2R,
Jlfldtﬁez [l}Ak‘ie :l
(1]
Taking 4={§ R, log (R>/T,)}}, we have
1

0

f Eodi=+aye

0

so that, by Lemma (4.2.4), if we denote by E, the set of points ¢ such that
132R &t
I,.Z%e‘l Ry 4 T,,’

we have
|En|=[4(4A+1)] e 2% Tn,
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Now,

211 T,,=SR;2T" log® (R%/T,) <u ' log® u,

where u=R%/T,>1, so that 24* T, < B, B being an absolute constant, and
|Bn|2[4(4+1)e®] ' =3,
0 being a positive absolute constant.
Now, writing M,=M,(t)=max |Q.(t,x)| for a given ¢ for which I, (t) exists
(M, can be + oo) one has, if teIf;n,

102R, -2 Ty ~1og 2
EMn>1,(t)> e ,

that is to say,

A 3 log 2

M,,ZZR,,—A T,—- I

Now,
A 1
5.4.2 ZR,=—={R, log (R:/T)}}
(5.4.2) 4 2V6{ g (B:/Tx)}
. 2

(5.4.3) BT, <T, R,,g log% (Rﬁ/.’l’,,)=l£g72(£/"7/&-) {R, log (R%/T.)}}
and

R" log (Rﬁ/Tﬂ)}}
4. 1] =1 D RE log= Y (RE/T,)= ()} Q.L, e\ nl o,
(5.44) 1 'log 2=log 2- () RY log=t (R7/Tw) = (! - log log (E%/Ts)
Suppose now that R, log R%2/T, does not tend to zero. Since R,—>0, we see
that R?/T, is unbounded. Hence we can find a sequence {n,} of integers with the

following properties:
a) RB; /T, increases to -+ oo

b) R, (log R: /Ta)=c¢>0
c) nq+1/n022 for all q.
It follows then from (5.4.2), (5.4.3), (5.4.4) that M, ()>Vc/10 in a set B, of

measure >§. But this is impossible if (5.1.1) is randomly continuous. In fact, {n.}
being lacunary, @, must tend then to zero for almost every ¢ uniformly in z,
by the preceding theorem. Now, consider the set £ of points ¢ for which @, —0
uniformly in z. Every ¢€& must belong to all the complementary sets C'E,, after
a certain rank. Hence

E=TI CE, + 11 CEn + -
1 2

If we denote the products on the right by F,, F,, -, respectively, then
FicFyc.--cFec--, |F|S|CE,|<1-0.
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Thus |€|<1-4, so that, since obviously € must be of measure 0 or 1, we have
|E|=0. In other words, if R, log R%/T, is not o(1), almost no series (5.1.1) represents
a continuous function.

The proof of the theorem is completed by observing that R,—0 implies
R, log R,->0 so that the condition R, log (R%/T,)->0 is equivalent to R, log 7',—0.

Corollary. If {r.} is a decreasing sequence, the condition ¥ 7% < oo implies
mry—>0 so that, for n large enough,
To<n+1)2+n+2) %+ <1/n,
and so R, log n—>0 is a necessary condition for random continuity.! This is of course

o0
true, more generally, if > 75 =0 (n"¢) for some &> 0.
n+1

5. We shall now indicate a case of ‘“regularity”” in which the convergence of

Y n !(log n)~! VR, is both necessary and sufficient for the random continuity of (5.11.1).

(6.5.1) Theorem. If the sequence {rm} ts decreasing and if there exists a p>1 such
that R, (log m)® is increasing, then the convergence of ¥ n ' (log n)~t VR, is both necessary
and sufficient for the random continuity of (5.1.1).

In view of Theorem (5.1.5) it is sufficient to prove the necessity of the condition.

The hypothesis is better understood if we observe that the boundedness of
R, (log n)® for some p>1 implies S n ' (log n)~t VR, < co. Thus we have to assume
that R, (log n)’ is unbounded; our “regularity” condition consists in assuming the

monotonicity of the latter expression for some p:- 1.

(56.5.2) Lemma. If (5.5.1) 3 randomly continuous and if two following conditions

are satisfred
Ryr — Byr;.
R,k

1
1-=0(-,—c), k Ry = 0 (1),
then Zn!(log n)~t VR, < co.
Proof of the Lemma. Using the notation of Section 3,

Ax =Ry — Ryt

we know (by the result of Paley and Zygmund quoted there) that if (5.1.1) is rau-

domly continuous, then X Af,<00. Now

! In particular, the series, = m % (log m) l(p,,. (t) cos mx, for which R, log n is bounded but
does not tend to zero, is not randomly continuous.
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Skt By— njlo (k) [VRyk — VRyke1] + O (n Ryn)?

1

n-1 A

~S'o (# _")+0 % Ryn)}
? 0 ( VRzk ( 2 )
n—-1

= 20@h+o(,
1

Proof of Theorem (5.5.1). The sequence {r,} being decreasing, the random
continuity of (5.1.1) implies R, log n—~0 (see the Corollary of Theorem (5.4.1)). In
particular, k R,x—0.

Moreover, since R, (log n)” increases,
Ror k° < Byrs1 (k4 1)°
R,k 1 /Ry > (lg—l)p >1 —%-
Hence 1 — (Ryx:1/Ryc) < A/k, and the theorem follows from the lemma.
6. It is clear that the results of this chapter hold when the Rademacher func-
tions are replaced by those of Steinhaus, viz. for the series of the type 2 T e TR,

In particalar if r,>0 is decreasing, R, log m=o0(l) is necessary for random con-

tinuity. It might be interesting to recall in this connection that, if the sequence

{1 /r,,.} is monotone and concave, no matter how slow is the convergence of X rZ,, there
00

always exists a particular sequence {a.} such that the series > r, ¢'"*'27*m converges
1

uniformly (see Salem, Comptes Rendus, 201 (1935), p. 470, and Essais sur les séries

trigonométriques, Paris (Hermann), 1940), although the series need not be randomly

continuous, e.g. if R, log n=o0(1).

The problem whether an analogous result holds for the series of the type

~bi8

Tm COS MX @ (1), where {pn} is the sequence of Rademacher functions, is open.

CuarteEr VI

The Case of Power Polynomials

o0
1. Let us consider a power series > ayz* of radius of convergence 1 and let
[

o0
us also consider the power series D ay @i (t)2* and its partial sums
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i k
P,= ; ok @i () 2,

where @, @, ,,... is the sequence of Rademacher functions. We may oconsider the
problem of the order of magnitude, for almost all ¢, of
M, ()= max |P,|,
-1<r<+1
assuming, for the sake of simplicity, that the coefficients o, are real.

From Theorem (4.3.1), using the principle of maximum, we see at once that

M, (t)=0(R, log n)t

n
almost everywhere in ¢, with B,= > a%. We shall see, however, that better estimates
0

than that can be found and that the problem has some curious features distinguishing

it from the corresponding problem for trigonometric polynomials.

(6.1.1) Theorem. If R,— o and
ok =0 {Ry/log log R}
then
(6.1.2) lim sup M, (¢)/{2 R, log log R,}} =1

for almost every t. On the other hand,
(6.1.3) lim inf M, (t)/Rt=0(1),

almost everywhere in t.
Thus, unlike in the theorems of Chapter IV, even in the simplest cases (e.g. for

og=0a,; =--+=1) the maximum M, (t) has no definite order of magnitude p.p. in ¢.

Proof. The inequality (6.1.2) is a rather simple consequence of the Law of the
Iterated Logarithm.

For let M, (t) and M, (¢) denote the maximum of | P,| on the intervals 0<z <1
and —1=<x<0 respectively. It is enough to prove (6.1.2) with M, (f) replaced by
M. (). For then the inequality will follow for M7 (¢) (since it reduces to the pre-
ceding case if we replace ay by (— 1)* «;), and so also for M, (t) = max { M~ (t), M, (1)},

Let us set "

Sm(t)= > ok pi(t), Si(t)= max]|S,(t)]|
3 1<m<n
Since
P,= é ok @ (8) 2 = n%_:ISk @ —"*) +a" 8,
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we immediately obtain

(6.1.4) M, (1)< 8% (t).
On the other hand,

Sh(t)=|Sn(t)] for some m=m (n)<n,
so that

lim sup M, (t)/(2 R, log log R,)} <lim sup | S, (t)|/(2 R, loglog R,)} <1

by the Law of the Iterated Logarithm, and this gives (6.1.2) with ‘=" replaced by ‘<’.
The opposite inequality follows from the fact that M, (t)>}|8,(t)| and that
lim sup | S, (t)|/(2 R~ log log R,)¥ =1 p.p. in ¢.
As regards (6.1.3), it is enough to prove it with M, replaced by 87, on account
of (6.1.4). By Lemma (4.2.5),

1
J.e“’:ldtﬁ 16 ¢ # Ry
o
Let us consider any function w(n) increasing to -+ oo with n. In the inequality
1
I,= J’ezs; W) gt < 16 ed P Ra- oM
0

we set A= R7Y wt(n). Then I,<exp {4} w(n)}. Thus, if {n;} increases fast enough,
we have X I, < co so that, for almost all ¢ and for n=mn; large enough, we shall

have 15% < (n), that is

(6.1.5) lim inf S% (t)/{R.w(n)}} <1, p.p. in &

From this it is easy to deduce the validity of (6.1.3), with M, replaced by S;,
for almost every t. For suppose that (6.1.3) does not hold in a set E of positive
measure. Then S;(t)/R! tends to infinity in E. Using the theorem of Egoroff, we
may assume that this convergence to oo is uniform in E. We can then find a func-
tion (n) monotonically increasing to oo and such that S;(¢)/{R.® (n)}}! still tends
to co in E, and with this function w{n) the inequality (6.1.5) is certainly false.
This completes the proof of the theorem.

The argument leading to (6.1.3) is obviously crude and there is no reason to
expect that it gives the best possible result. It is included here only to show that
under very general conditions the maximum M, () has no definite order of magnitude
for almost every {. Under more restrictive conditions, involving third moments, Chung

has shown (see his paper in the Transactions of the American Mathematical Soc.,
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64 (1948), pp. 205-232)1 that

R LI

im i * ) ==

(6.1.6) ll:I_l);nf Su () /(log log Rn) Vs
almost everywhere. (This equality holds, in particular for o, =a,=-.-=1.) Owing to

(6.1.4) this leads, under Chung’s conditions, to

R, LI
1. im inf M, ] <=,
(6.1.7) lim inf M (t)/ (log fog Rn) Vs

an inequality stronger than (6.1.3). Unfortunately, we know nothing about the inequality

opposite to (6.1.7)%.

1 We are grateful to Dr. Ernos for calling our attention to Cuuxg’s paper. It may be added

that (6.1.6) generalizes an earlier result of ErRp6s who showed that in the case a; =ay=--*=1 the
left side of (6.1.6) is almost everywhere contained between two positive absolute constants.
2 (Added in proof.) Dr. ERp6s has communicated us that in the case a;=a;=--+=1 he can
prove that, for every £>0,
Mn(t
lim inf 228 5 g
1-e
n2

almost everywhere, and even a somewhat stronger result.



