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1. Introduct ion 

The main theme of this paper is the computation of rings of Siegel modular forms (of 

arbitrary level) and rings of Jacobi forms using an algebraic method. In the case of Siegel 

modular forms we get a generalization of results of Igusa. Our main tool is to introduce 

other theta functions, which are easier to handle and are more general than the classical 

one. As a geometric application we give a description of the Shioda surfaces and a 

compactification (even a projective variety) of the universal abelian variety. This leads 

to a result about Jacobi forms similar to Igusa's fundamental lemma for modular forms. 

The author would like to thank E. Freitag and R. Weissauer for stimulating discussions. 

2. Siegel modu l a r  forms of  higher  level 

Throughout the paper we will use the same notation as in [R1], [R2]. For general facts 

we refer to [Ig3], [Kr], [Wi]. So let 

Hg -- {r E Matgxg(C) 1 7- symmetric, Ira(r) > 0}, 

Pg = Sp(2g, Z), 

rg(rt) = Ker(rg --* Sp(2g, Z/n)).  

For a subgroup of finite index r c r g ,  we denote by A(F)=I~k[F, k] the ring of modular 

forms for r and by ,4g(r)=Proj(A(r)) the corresponding Satake compactification, which 

contains Hg/r as an open dense subset. The open part H J F  is the coarse moduli space 

for principally polarized abelian varieties with level-r structure. 

We recall the classical notation for theta functions, i.e. 

0 (r,z)= ~ exp27ri(�89189189 }) 
xE1.o 
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with r[x]=txrx and (x, y) the standard scalar product. To simplify notation, we write 

e(.)=exp21ri(Tt(.)) for matrices and numbers. The elements a and ~ are elements in 

Qg with m a E Z  g and m~EZ g for some fixed positive integer m. 

More generally we define for any positive integer m and aE(Z/2m) g the following 

theta functions (similar to Mumford [Mu D 

x~.Zg 

These functions will be our basic object of study. The functions 

I E I i  

are the corresponding theta constants. For m = l  we omit the m and call fa(r ,z)= 
f(1)(r,z) and fa=f(z)(v, 0). Let T ~(m) be the ring generated by the polynomials in 

�9 "g,(r) 

f(m) whose degree is divisible by r. We have the following equality: 

LEMMA 2.1. 

�9 "g,(r) = C It with ma, mfl ~ Z g @). 

Pro~ 

xEZg,pE(Z/2m)8 

] 
pc(z/ira), ,ez, 4m2 J / 4li I 

= 
pE(Z/im). ~ t 4m2 / J 2mp+m~" 

This can be written as 

eC-�88 = E 
p I E ( Z / i m ) l  

and proves one inclusion. The other inclusion follows from the fact that the matrix 

is invertible. [~ 

Hence the theta constants f~(') are a natural generalization of the "classical" thetas 

for arbitrary m as considered e.g. by Igusa. There are natural maps of Veronese type 

between the various rings "r~('~) for different m. For a (gxd)-matrix A=(al ,  ...,ad), - - "  ~g,(r) 
we set 

sl 17 s:<7 
i=l , . . . ,d 

and get the following: 
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LEMMA 2.2. Let TEMatd• be a matri.z with TTt=n and let A=(a l , . . . , ad )  be 
a (g x d)-matriz with integer entries. Then 

f(a"0 = E ~(""0 J AT+2mC" 
C6Z~eT/nZ~.  

Proof. Because of ( (1 /n)T)T t = 1 we have Z dg C ((1/n)T) Z dg is a sublattice of index 

(V~)ag. Hence we get 

A t 
f(rn)= ~e(ra(:v ' l '~"~l 'r(:v ' t '2~))  

which proves the above formula. [] 

A special case is d = l ,  n a square. More interesting are the cases d=2  and n = 2  or 

a prime with n - 1  (4). Then we choose 

T = ( . _ l l  1 1 ) f o r n = 2  or T = (  a__ b ~) forn=a2+b 2. 

For d = 3  we get a special case for 

n = 9  and I 
-i 2 2 ) 

T =  2 - I  2 

2 2 - I  

which may be generalized for squares of primes n with n = 3  (4). The most important 

special case is the following. Any natural number may be written as n--a~+b2+c2+d 2, 
which may be used to construct 

b - a  d 
T -- with T T '  = n. 

c - d  - a  

d c - b  

12-950852 Acta Matbema~ca 175. Imprin~ le 21 dd~mbre 1995 
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COROLLARY 2.3. We have natural inclusions of rings T T I ~ )  cT7~,~1;) , a'~(rn) f" -- '  "g,(2) "- 
TTI .for n = 2  or n a prime with n=_l (4), --, "g,(4) . . . .  g,(4) 

Any of these inclusions produces a huge number of relations of Veronese type between 

the theta  constants f(m). Moreover we have the trivial relations 

f( 'n)(7,-z) = f(_.'~)(7, z) and f(m)= f(~). 

For m = l  we get the classical cases. Usually t h e  f(al)=fa are called theta  constants of 

the second kind and the f(2) are (linear combinations) of the theta  constants of the first 

kind (with half-integral characteristic). From our point of view one should reverse the 

classical names. 

The fafb and f(2)fb(2) are linearly independent ([R1]) Cone has to look carefully at the 

Fourier expansions). More generally, the f(a'n)f (rn) are linearly independent for small m. 

One may consider T ~4(m) '~g,(2) as a polynomial ring in the symbols f(m)f~,n) where a runs 

over (Z/2m)g/a,~ -a  divided by a certain ideal of theta relations. The Fourier expansion 

of f(m) is just 

f(~") = ~ a(T)qT 
T symmetric ,  pos. semi-def. 

4roT  even 

where qT=e(]vT) and 

a(T) = #{x  E Z g ] 2roT = (2mx+a)(2mx+a)t}. 

It is well known that  Fg is generated by matrices of the form 

(0 
where S runs over the symmetric g • g-matrices and 1EGI(g, Z), and the Fourier-trans- 

formation matrix 

;) 
The modular group acts on the rings a '~( 'n) ' '  "g,(r)  a8  f o l l o w s :  

For 

we have 

" ' ' "  
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For 

with det(U)=l ,  

U t 0 ) 
a= 0 U -1 

= 

The Fourier-transformation matrix a=J  acts as follows: Let 

\ . v i i i  \ \ 2m / ]a,be(Z/2m). 

a scalar multiple of a square matrix of size (2m) g in roots of unity. Then 

j(f(m)) 

bE(Z/2m)8 

for all aE(Z/2m) a. Here, as usual, we set 

(compare [Fr, 0.13]). This is a matrix equation, which is independent of the choice of 

the square root on the 2-ring, i.e. on the ring q'~4(m) --' ~g,(2)" 

Hence we get a homomorphism of groups 

~theta,m: rg (m) Aut (TT~g,(2)) . 

By definition ~theta,m is a unitary representation. We call it the theta representation of 

index m. The next problem is to describe the kernel of ~theta,rn. 

We use the computations of Igusa in [Igl] as a general reference. Because of the 

above formulas we get a lot of elements in the kernel. Then it follows from a well-known 

result of Mennicke ([Me, Satz 10, p. 128]), that the kernel contains rg(4m). The group 

Fg(2m)/rg(4m) is a F2-vector space of dimension g(2g+ 1) with the obvious generators. 

Compare [Igl, pp. 222-223] for analogous statements. Adapting Igusa's method we get 

rg(2m, 4m)/Fg( 4m) = (Bi~, Cij, Ai~, Ai) 

with the following elements: For i r  and i,j<<.g we replace the (i,j)-coefficient in lg 

with 2m and call the matrix a. Then 

(oo) 
Aij= 0 (a-l) t " 



170 B. RUNGE 

For i~j  and i,j<~g we replace the (i,j)- and (j,i)-coefficient in 0g with 2m, and call 
that z. Then 

The definition of the Ai is more special. Take some fixed matrix 

A = ( :  ~ )  E SI(2, Z), 

which is congruent to (1o2  
Then Ai for i = 1, ..., g -  1 is given by 

IL) mod 4m. 

0 

with 

and Ag is given by 

~ =  
(10b 0) 1~-1 0 0 

0 d 0 ' 

0 0 lg-~-I 

lg-1 0 Og-1 
0 d 0 " 

Og-1 0 ls_l 

All elements are contained in rg(2m). By the explicit formulas we have the following 
elements in the kernel (let us denote by SA the diagonal of a matrix S): 

110 mS)l with SA----0 rood2, 

( 1 0) withS~-0m~ a n d m S  1 

(,0 o) U_ I with U = 1 mod 2m and det(U) -- I. 

We denote for odd m by rg(2m, 4m) the group generated by rg(4m) and the elements 

Bij, Cij, A~j and A~ for i = 1, ..., g- 1 and (- 1)g+ i. By definition r; (2m, 4rn) is a subgroup 

of (• 4m). 
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THEOREM 2.4.  

F;(2m, 4m) 
ker(~0theta,m) = Fg(2m, 4m) 

(• 

The kernel of L0theta,m ~8 equal to 

]or m odd, 

]or m even, g odd, 

]or m even, g even. 

Proof. The F2-vector space Fg(2m,4m)/Fg(4m) has dimension 292-g. All con- 

structed elements above are in the kernel with the only possible exception of the ele- 

ment Ag. Indeed we will show that Ag is in the kernel if and only if m is even. But first we 

show that the kernel cannot be bigger than F~(2rn, 4m) for odd genus or (• 4m) 

for even genus. For that we regard indices. It is well known that 

[rg(2m): rg(2mp)] = [rg(2m, 4m) : r~(2mp, 4rap)] ,  

[rg(2m) : rg(2m, 4m)] = [rg(2mp): rg(2mp, 4mp)] = 2 2g. 

Moreover, 

{ F~ (2~+1) if p [ m, 

rg(2m)/rg(2mp)= Sp(2g, Fp) else, 

is a Fp-vector space in the first case with the obvious generators or a nearly simple group 

in the second case (after dividing by the centre • one gets a simple group with some 

exceptions for genus 1 and p=2,  3). By using the Veronese map and induction one easily 

proves that the kernel cannot be bigger than r~(2m, 4m). 

For even m we have to show that the kernel is equal to (-1)g+lrg(2m, 4m). By the 

above choice of generators we have reduced the question already to the genus g = l  case. 

Hence we have to show that 

(' 1+ 2m 2m 2 ) 
A1 = \ 4m l - 2 m + 4 m  2 

a'~(ra) One easily computes that is acting trivially o n .  , "g,(2)" 

4m 1 - 2 m + 4 m  2 = J  0 1 / \ 0  1 / \ 0  1 /  \ 0  1 " 

We choose a 2ruth root of unity z=e(1/2m) and get the following explicit formulas: 

(10 2'~(f('n)~=za'f('n)l),.,a, .,a and (lxu lm) ('f('n))=/a''f('n)" 

Hence all together for the action of A1 we have 

Al (f(am)) = ( ~'~ ) 2 ~ xb'-b(a+c)-d'-d(c't'e)(i)a'-c" f(em) 
b,c,d,eEZ/2m 
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a'qz(m) We have for arbitrary a, for the action on --, ~g,(~). 

(o. . 

c even  c o d d  k=O,...,m-1 k = O , . . . , m - - 1  
c E Z / 2 m  cEZ/2m 

k = O , . . . , m - 1  

{ re(l-i), ~=o, 
= m(l+i ) ,  or=m, 

O, else. 

Hence we get 

( ~ )~b,~,d,~Z/~,,S-~C~247176176176176 
(~) e ~'-~~ (")l = ~ ~ x S- ~ (i-i) 

b,eeZ/2m t (1+i) 

= ~ia'(( I _i)+(_l)m+,~(1.~i))f(a m) = f(m) 

if - b - d - O  (2m), 

if - b - d - m  (2m) 

and therefore the result in the even case. 

For odd m one has that 

C l+2m 
A1 = \ 4m 

6m 2-I-2m '~ 
l - 2 m + 1 2 m  ~ ] 

q-~Cm) One easily computes that is acting with (-i) on --, ,g,(2). 

( l + 2 m  6m2+2m ~ - 2 " ~ j ( 1 - m  j ( 1  3m 

We choose a 2ruth root of unity x=e(i/2m) and get the following explicit formula: 

1 1 ~ ~, (-,)  Z; A, ( / ( , , , ) )=  ~ ~ e-~,c.+o)-,e-,~o,+,,) �9 ~ c.,-,) 

b,u,d,eEZl2m 

= (_i)a'  E ,e [ ( 1 + i )  if -b-d~-m (2m) 
b,eEZ/2m 

= ~(- i)"2 ( ( 1 - i ) + ( - 1 ) m + " ( l + i ) ) f  (m) - -  ( - i ) f ( a m )  

and hence the result. [] 



THETA FUNCTIONS AND SIEGEL-JACOBI FORMS 173 

Remark 2.5. For the ring a'~4(m) the above proof shows that  the kernel of the -- '  ~g,(4) 
corresponding theta representation is always (-4-)rg(2m, 4m). That corresponds to the 
ring of Siegel modular forms of even weight. 

Remark 2.6. For index computations with subgroups of r s  compare [ST], [GN1], 
[GN2]. 

As a corollary we get a generalized version of Igusa's fundamental lemma in Jig2, 
Theorem 5]. 

THEOREM 2.7. The ring of modular -forms of even weight 

A(rg(2m, 4m))(2) = ~ [ rg (2m,  4m), k] = (~r'~'~,~4)))N 
2[k 

where N denotes the normalization of a ring in its field of fractions. 

For the full ring of modular forms we get a partial result: 

THEOREM 2.8. The ring of modular -forms -for odd genus g and odd m, which con- 

tains any prime p=3 (4) with an even power, is 

A(r;(2m, 4m))= (B[r;(2m, 4m), k] = (~r'~,~)) N 
k 

for even m, which contains any prime p--3 (4) with an even power, and arbitrary g we 

get 

A(rg(2m, 4m)) -- (B[rg(2m, 4m), k] = (~,~2))) N 
k 

where N denotes the normalization of a ring in its field o-f fractions. 

Proo-f o-f the theorems. We may just copy the proof of Igusa in [Ig2] using the results 
in [R1]. First of all the ring T~(m) is clearly contained in the corresponding ring of ~" "g,(r) 

modular forms. Moreover for any vEHg there are theta constants f(m) which do not 
vanish at v (compare with Lemma 6 in Jig2]). This may be done easily by regarding the 
Fourier expansion. The kernel of ~theta,rn, which keep T ~(rn) element-wise invariant, 

" "g,(r) 
is computed in Theorem 2.4. In JR1] it is proved that for odd genus, A(F;(2,4))-- 

(T7~1,~2)) N and A(rg(2, 4))(2)= (T7~1,~4)) ;v. Igusa's .fundamental lemma in [Igl] is just 

A(Fs(4,8))=(,r~4(2 ) ~N If we apply Galois theory and Corollary 2.3 to this situation ~--' ~g,(2)/ �9 
we get the result. O 

Let us denote by K(F) the quotient field of A(F). The field of quotients of degree 
zero is usually called field of modular functions (of level r) .  
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COROLLARY 2.9. Let r be a subgroup of finite index in r a. Choose some 

rg(2m, 4m) C r 

such that m is even with the property to contain any prime p=3 (4) with an even power. 

Then 

K ( r )  = C( /~ '~ ) (r ) /or  a e (Z/2m)a)a ,  

A(r)  = (C[ /~ '~) (r) /or  a �9 (Z/2m)a]~))  N 

where G=r/ra(2m, 4m). 

Remark 2.10. In genus one we have r~(2m, 4m)=Fx(4m) by computing the index. 

(The group r ; (2m,  4m) was only defined for odd m.) 

3. Jacobi  forms 

Instead of considering the theta nuUwerte one may consider the theta functions f(m)(r, z). 

On H a • C a we have an action of Z 2a ~ I'~ by the following definition: 

M =  D acts by M ( r , z ) = ( M ( ~ ' ) , t ( C ' r + D ) - I Z )  

and 

Z 2a acts by (z, y)(v, z) = (~', z + v x + y ) .  

It is easy to see that one gets a group action of the semi direct product 

r J~ = Z 2a x r 

on H 9 • C g. This group is called the Jacobi group (Berndt denoted it by G~ in the 

case of the main congruence subgroup F(N) [Bell). After dividing out the action of Z 29 

one gets the universal family of principally polarized abelian varieties together with a 

map to Hg. If one divides the action of r J~ for some r c F g ( n )  for some n~3,  one gets 

the universal abelian variety of level r (an abelian scheme). 

If one divides by the action of rg(2) Jac, one gets the universal Kummer variety. 

The theta functions fO)(r,  z) give a map to the Heisenberg quotient P ( g ) = P 2 " - I / N  a 

(see [R4], [R6]). The image of (v, 0) in P(g) is the modull point of the Kummer variety. 

More generally, for any ~ with - l E t  one gets with H a • Cg/I "Jac the universal Kummer 

variety of level r .  
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We start by recalling the action of the modular group and of Z 2g on theta functions. 

The f(am)(r, z) are holomorphic functions on Hg • C u with 

(1 ~ , 

bE(Z/2m)a 

(We remark that -1  is acting trivial on Hg, but not on CL) We want to restate this 

action and introduce the Petersson notation: For a holomorphic function r Hg x C g--,C 

one defines as for modular forms a group action of the Jacobi group by 

~lk,m ( A BD) =det(Cr+D)_ke(_(Cr_t_D)_IC[z]) m 

x r -1,*(Cr+D)-lz), 

,/'1~,,,,.,(~, ~) = ~('r[x] +2(z,  ~))",/,('r, z+~'~+y) .  

Then 

.f~(")l~/2,,,,J= ~ (Tg).,d~ ~) 
be(Z/2m)9 

if one as before explains ~ = e ( l )  9 4 d e t ( - r ) .  However, on the 2-ring the above 

formulas are independent of the choice of the square root. 

The essential point for our further considerations is that the group action is given 

by the same formulas for theta functions and theta constants. Hence the results of w 

apply to theta functions, especially Theorem 2.4. 

Let us denote by TT"Is ) the ring generated by the polynomials in f(n)(r,z) and 
f(n)(r) for n<.m of degree divisible by r. We get a bigraded ring with 

index(f(n)(r, z)) -- n, 

index(f(n)(r)) = 0, 

weight(f(n)(r, z)) = ],  

ight(fa( ) ( ) )  1 we n v = 5 "  

Moreover we get a theta representation respecting the bigraduation 

~,~.,.,~: r9 - ~  A u t  ( T I ~ / s  �9 
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We recall the definition of Jacobi forms. Jacobi forms of weight k, index m and of 

level F (for a subgroup of finite index F c Fa) are holomorphic functions on H a x C a which 

transform "like theta functions" of index m and weight k. More precisely, a holomorphic 

function r H a xCg--*C is a Jacobi form of weight k, index m and level F if and only if 

r for M e t  and for (x ,y)eZ 2g. 

(In genus one one has to add, as usual, a condition for the Fourier expansion. In the case 

of the full modular group we set q=e(T) and p=e(z). Then the Fourier expansion has 

the form 

i,j 

and one demands c(i,j)=O for 4im<j 2. For the case of genus 1 we refer to [EZ]. For 

higher genus the analogue of this condition is automatically fillfined by the Koecher 

principle, see [Koe], [Zi].) 

On H a x C a one has the theta map 

Th('~): Hg • C g --+ p(2ra)o-1 

given by the f('~)(r, z). As a projective action the action of the Jacobi group is the same 

as the natural action given before. Hence the theta representation may be considered as 

a homomorphism to PGl((2ra) g, C). 
.r~v.r(<~,n) 

By definition for any FCF~(2m,4m) the ring *'~"*g,(a) is contained in the ring of 

Jacobi forms ~k,m J~,m(F). In classical terminology, the last condition for Jacobi forms 

dpJk,m(x,y)=dp (the functional equation) is equivalent to "theta function of order 2m 

for the characteristic [o~ " (see [Wi]). It is well known that there is a �89 
dimensional vector space of even theta functions of that type and a ~((2m)g-2g)- 

dimensional vector space of odd theta functions of that type. Explicitly a basis is given 

by 
f (m)( r , z )+f (~) ( r , z )  (even functions), 

f(m)(r, z ) -  f(_~)(r, z) (odd functions). 

Theta functions are uniquely determined by their functional equation. Let us denote by 

~)a('r,Z)-~f(2)(T,z),f(_22(r,Z), for aG (Z/4) g, 

the odd theta functions of order 4 (index 2, weight �89 Then Ca(r,z)=-r 
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-r and the action of the modular group is given by 

~ ) (r ~11 -- r ~1 = e(~s[~l)r z), 

1 

• (e(�88188 
be(Z/4)~ 

where in the last formula some cancellation occurs, e.g. r z)=0. 

Remark 3.1. If - l = j 2 E r  the invariance condition for a Jacobi form implies that 

r162  Hence for such r we have Jk , l ( r )=0  for odd k. (Compare with 

Theorem 2.2 in [EZ] for the genus one case.) We call a Jacobi form even or odd if and 

only if it is even or odd as a function in z. Hence if - l = j 2 E r  then even weight implies 

evenness as a function. The above consideration implies that 

dimK(r) (J,e,vmen (r)  |  --- 2a-1 (ma + 1), 

dimK(r) (j,o,dd (r) | K(r ) )  = 2g-i (m g -  1). 

It seems to be that one needs infinitely many theta functions f(ra)(r, z) for a fixed 

genus and varying index and weight. However, this is not the case. 

We start with the following consequence of the theta addition formula. 

LEMMA 3.2. 

qEF~ 

Proof. The left-hand side is given by 

We choose the following "Ansatz" ([Wi, p. 9]): x+y=2p+q,  x - y = 2 r - q  for p, r eZg  and 

qEF~={0, 1}a. Then the sum becomes 

p,rEZ s 
qEF~ 

and hence the result. [] 

The case of the theta nullwerte is just a special case of Lemma 2.2. An essential 

point for our reduction process is the following: 
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COROLLARY 3.3. For any dEF~ we have 

E 1 (m) (m) e(~ (c, d) ) f~+mc(r, z) f;_mc(r, z) 
cEF~ 

1 (2m) (2m) 

qEF~ pEF~ 

Proof. Choose a and b in Lemma 3.2 as a+rac and b-rac, multiply the equation by 

e(�89 <c, d)). Summation over cEF~ gives 

Z e(�89 
cEF~ 

= d)) f~a+b+2mq(7", z)f~a_b§ O) 
c,qEF~ 

Z I (2,~) I (2,~) = e(~(q,d))f~+b+~mq(r,z)e(~(q+c,d))f~a_b+2ra(q+c)(r,O), 
c,qEF~ 

and hence the result. 

Remark 3.4. This formula is given e.g. in [Mu, Vol. I, pp. 222-2t3]. 

We observe that the matrix 

[] 

e( l (q, d) )q,d~F[ 

in Corollary 3.3 is invertible. We want to show that a function like f(2m)(r,z) may 

be written as a linear combination of f(m)(r, z)f~m)(r, z) with coefficients in the field 

K( r )  (of some level), e.g. in the field C(f(2m)(r)). For 2-power-index we have to decide 

whether or not it is possible to invert 

Z 1 e(~(p, (2=) d} ) f~-b+ 2mp("l') 
pEF~ 

in the quotient field of modular forms. We may further reduce to the case a-bE{0,  1)g. 

Hence it remains to show that for arbitrary c, dE{0, 1} g, 

e(~ ~p, d)) f~+2mpC'r ) ~t O. 
pfiF~ 

However, theta constants are linearly independent with the only relation f(m)(r)= 
f(_~)(r). Hence cancellation can only occur for c+2mp=-c rood 4m, hence for m = l .  
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And indeed, for the final step m = 2  to m = l  the argument must break down, because 

there are no odd Jacobi functions which may be written as polynomials in .fO)(r,z) 
which are even functions. If we denote by K(A) the quotient field of a ring A, we have 

proved so far that 

K (TT"l,f,T~(~)) = K(TT"I<rn))K(TT"I,~T <~<~))<2). 

But we can do better. Our main result is the following: 

THEOREM 3.5. The ring of even Jacobi forms is given for odd genus by 

$ aE~n(r) = ((g(rnr;(2,4))[f(~l)(r,z) for a e F2])(2) ) g  P Hol, 
k,rn 

where the index Hol indicates taking the subring of holomorphic functions (with an ad- 
ditional cusp condition in genus g= 1). 

COROLLARY 3.6. In the case of the full modular group we get for odd genus 

= H~ 
k,rn 

where H e is the finite group constructed in JR1], a central extension of rg/r;(2, 4). 

As in the case of modular forms we get the following result for the full ring and 

arbitrary genus. 

THEOREM 3.7. We have 

&,=( r )  = ( ( g ( r n r g ( 4 ,  8))[l,(r,  Z), Cb(r, Z) nr ~Ho~, 
k,rtl J J(2)]  

where Hol as before denotes the subring of holomorphie functions (with an additional 
cusp condition in genus 9=1). 

Proof o.f the theorems. We start with the observation that for index m we can find 

other generators for the vector space of theta functions than f(~'n)(r, z)+f(_m~)(r, z) for 

the even functions and f(m)(v,z)-f(_m)(r,z) for the odd functions. We start with the 

elliptic case, i.e. with genus 1. It is easy to check that the m + l  even functions 

Io(r,z)~II(r,z) "~-~, for i=0, . . . ,m, 

and the m - 1  odd functions 

r =-i-2, for i=0 , . . . ,m-2 ,  
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are linearly independent, hence a basis of this vector space. Hence for even functions in 
genus one we are already done by the following argument: If 

P= ~ P~(~)/0(~,z)~/l(~,z) m-~ 
i=O,...,*'n 

is given and P is a Jacobi form of level F, the Pi can be chosen in K(FnF~(2,4)). For 

odd functions this argument is easily modified. To generalize this type of argument, we 
observe that  for higher genus one easily finds polynomials of index (degree) m in fa and 
~a (of index 2!), such that the restriction to the diagonal 

,=(; o). 
decomposes into a product of elliptic theta functions in rl,l,...,rg,g as above. More 

precisely, we have for a=(al, ..., ag) t, ((?i 0 :)(::)) 
f! m~ "" , II :-<7~(',, z0 �9 

0 rg 

We may write the special basis for the elliptic case as above as polynomials in f(2)(ri, z~) 
and f(1)(ri, zi). Hence, using the just mentioned rule we find a vector subspace of di- 

mension (2m) g in polynomials of f(2)(r, z) and f(1)(~., z) for such special r. Any such 
function is even or odd if it contains an even or odd number of odd factors. Hence there 
are 

i=O,...,g/2 
even and 

( ~ g 1)2i+1 
i--O ..... (g-l)/2 \2i+ 1, (m+l)g-2i-l(m- 

odd functions among them. Hence for generic r (which can aiways be assumed), a 

Jacohi form is a polynomial in f(2)(~-,z) and f(1)(r,z) with coefiicients in the field 

K(rnrg(4,8)). 
The final step for even functions to come from polynomials in index-2 functions to 

polynomials in index-l-theta functions works with the help of Lemma 3.2 and Corol- 
lary 3.3 because of the counting identity 

dim ({even thetas of order 4 for [00] ) )  : 1(4' +2 ' )  

= 2 ' - 1 ( 2 ' + 1 ) = ( 2 g :  1) 

= dim({mixed products in fa(1)}). [] 
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Remark 3.8. For any even k > g + 2  and arbitrary index there exist Jacobi-Eisenstein 

series [Zi]. Hence in the same way as in [EZ, Theorem 8.5, p. 99], one proves that the ring 

of Jacobi forms is not a finitely generated ring. Nevertheless it is possible to approximate 

the ring with finitely generated rings of theta functions. 

Remark 3.9. The theorems indicate that for higher level (e.g. FCFg(4, 8)) the struc- 

ture of the ring of Jacobi forms becomes easier. Up to some denominator from A(F) 

Jacobi forms are polynomials with coefficients in A(F) in some fixed theta functions and 

the zeros of the denominator has to be a zero of the numerator. 

4. Jacobi forms in genus one 

We want to indicate the connection with the results of [EZ]. For the even part we fix the 

notation 

~2 
A = S 0 ( y ) =  ~ q , 

zEZ 

B=/o(,,zl=~q% ~, 
m6Z 

C=fl(T) __ql/4 ~ qZ(Z+l), 
xEZ 

D = f l ( r ,  Z) = ql/4 ~ q Z ( ~ + l ) p ~ + l .  

xEZ 

Then from Theorem 3.5 we get 

Because of the identity 

J~,'~n(rl(4)) = C(A, C)[B, D]~~ ]. 

for the dimension of the space of even theta function of index m and the dimension of 

the space of polynomials of degree m in (B, D), there cannot be any algebraic relation 

between B and D. Hence the coefficients of a Jacobi form in the field C(A, C) cannot 

have a common pole on HI. Hence any common denominator has to be a power of the 

elliptic unit 

A =  1 3  3 2 (i~) (E~-E~) = ~(AC(Aa-C4))  4 

= (2 , i ) - l ~ (g~ -  27g~) = ~ ~(n)q" = q -  24q ~ + 252q 3 ... 
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(the normalized discriminant). Clearly we have 

R(2) = C[A, B, C, D](2) C (~) even J?~,,~ (r1(4)). 
k,rn 

The finite group G=Ht is given by its generators 

M__ l ( l + i )  ( l  1 1 1 ~ )  II 
It is a group generated by (pseudo-)reflections of order 96, if one regards G as subgroup of 
Gl(2, C). Let us denote by x(g)=det(g) the determinant regarded as a GI(2, C)-matrix. 
We may consider X as a character on F1 with values in the fourth roots of unity given by 

X ( J ) = - i  and X 1 

We refer to [R1] for further information on computations of invariant rings under the 
action of a finite group. Let us denote: 

(i) = Ai+C ~, 

(i, j) = A'C~ +C'AJ 

(i, i) = A'C', 

E4 = (8)+14(4, 4), 

E6 -- (12)-33(8, 4). 

for i ~ j ,  

Then AI(rl)=C[A, C] a =C[E4, Es]. 

Remark 4.1. To get examples of modular forms one usually writes down Eisenstein 
series. It is easy to express them as symmetric polynomials in A and C, for example: 

Es = (16)+28(12, 4)+198(8, 8), 

El0 -- (20)- 19(16, 4)-494(12, 8), 

2022. . 516381. - 1792148(12,12), 
El2 = (24) + 6-~i- (20' 4) + ' - ~ "  (16' 8)+ 691 

.E l  4 ~- (28)- 5(24, 4 ) -  759(20, 8 ) -  7429(16,12), 

13448 2108060. " 50891848(20, 12)4 
E1a=(32)-  3-~-(28 ,4)+ ~ (24,8)4 3617 

199197. 2 1434387628 854608020 
E1s=(36) ~ ( 3  ,4) ~ ( , 8 )  43867 

131063558 
3617 (16,16), 

4880628198. 
(24,12) ~ (20,16). 
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This computation is done just by using the Hecke eigenform property. This property has 

to be checked only for one Hecke operator, e.g. for T(2) [Elf. Hence Eisenstein series are 

uniquely determined by the "Ansatz" 

En= E ai(2n-i , i  ) 
41i 

with a0=l ,  M(En)=En and the Fourier condition En=l+blq+(l+2n-1)blq 2 rood q3, 

an easy condition in the truncated power series ring C[q]/q 3 ( A ~ l + 2 q  and C4-16q is 

the only necessary information). 

The finite group G acts on the polynomial ring R--C[A, B, C, D] by 

  010) 0 0 
1 0 1 and E = 1 0 

M = � 8 9  0 - 1  0 0 i " 

1 0 - 1  0 0 

We have proved 

THEOREM 4.2. The ring of even Jacobi forms is given by 

k,~n 

= E c(i, j)q'pJ such that f �9 R c[A-11 and c(i, j )  = 0 for 4ira < j2}. 
i , j  

Remark 4.3. One may interpret the considerations in [EZ, p. 109] as follows: For 

any even Jacobi form CeJ. , . (F1)  we have 

min{l I Azr �9 R c} ~< index(C) 

where the bound seems to be not very precise. Hence for any index and weight one gets an 

easy algorithm to compute the vector space of Jacobi forms. The ring of invariants R v = 

C[A, B, C, D] a C ~k,,n J~k,m (F1) consists of Jacobi forms with 2.weight(f) t> index(f). 

Nevertheless for small index we have equality for dimension reasons as we will see next. 

One easily computes the Poincard series of the invariant ring R G as a bigraded ring. 

�9 ~ G  - k  m ere (A, Iz) = E dime nk,,n,~ # 
k,m~>O 
1 1 

= 9--6 ~ det(1-At/2a)  det(1-At/2#a)  

13-950852 Acta Mathematica 175. lmprim~ le 21 dl~embre 1995 
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= [~16#16 
.4_ ~14(#11 .~_ #12 .+.#13 _}. #14 "4- #15 _}_#16 _~_#17) 

.~_ AI2 (#6 .}.#7 .~_#S +2#9 .i_2#10.4_2#11 +3#12.4_2#13 +2#14 

-4-2#15+#16+#17+# 18 ) 

+ A10(#5 -1- #6 -4- 2#7-4- 2#8 + 2#9-4-3#10-4- 2#11 + 2#12-1- 2#13 +#14-4-#15 ) 

+AS(#2 +#3 +#4 +2#5 +2#6 +2#7 +3#S +2#9 +2# 1~ 

+2#11 +#12 +#13 +#14) 

+ A6(#+#2 +2#3 +2#4 +2#S +2#6 +2#7 +2#S+2#9+#10+# 11 ) 

+ ~4(#+#2 +#3 ~- 2#4 ~-#5 +#6 +#7) 

+ 1]/(A 4 - 1)(A 6 - 1) (A4# 8 - 1)(A6# 12 - 1). 

The denominator corresponds to the algebraically independent generators 

(~4,0 ---- E4 = ASTcS+ 14A4C4, 
(~6,0 ---- E6 : A 12 + C  12 -33A4C4(A4"}-C4), 
r = B 8 + D 8 + 14BAD 4, 

r = B12 + D12-33B4D4(B4  + D4) �9 

As an algebra over the ring generated by these four polynomials, the invaxiant ring R c 
is a finite module and the numerator indicates in which weight and index one finds the 

other generators, e.g. 

r = ATB+CTD+7(ASBC4+C3DA4), 

d~6,1 = All B +Cll  D -  22(A~ BC 4 +C7 DA 4) - ll(ASCa D+CSAaB) �9 

(These Jacobi forms are denoted by E4,1 and E6,1 in [EZ].) 

For odd Jacobi forms we have to start from level F1(4,8). We fix the notation 

r = f~2)(r,Z)-- f~2)(T,z)=ql/S ~ q2=a+=P4=+l-q2=2-=P 4=-I, 
zqz 

=ql/S q2:+z, 
xEZ 

mEZ zEZ 
Z =  f(2)(T)+ f(2)(~.) = Z q2Z'+ql/2 Z q2X'+2=. 

zEZ xEZ 
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We have the relations 

X 2 

y2 

Z s 

B D  

B s _ D  2 

B2 + D 2 

from Lemma 3.2 and Corollary 3.3. 

g2)(~,z)s= 

So(2)(,, ~1 s = 

= �89 (1) 

= A s - C s ,  ( 2 )  

= A 2 + C 2, (3) 

= x(s~s)(~, z)+S~2)(~, ~)), (4) 
= Y(f(S)(T, z ) -  f(2)(% z)), (5) 

= Z(f(s)(% z)+f(2)(% z)) (6) 

x 2 =/2) (~ ,  0)/2)(~, 0)+/2)(~,  0)/2)(~, 0), 
So (2) (~, 0)/~ (s) (r, o) = 212 ) (~, 0) s. 

From (8) and (9) we get 

gs)(~, z)S + So(S)(~, ~) 2 = (S2) (~, z) + S2)(~, ~))(S2) (~) + S2) (r)), 

hence with (7), 

However, we need furthermore the following relations: 

S~ 4~(~, z)S2 ~(~, 0)+S2 ~(~, ~)S~ ~(~, 0), (~) 
S2)(~, z)d~)(~, o)+d4)(r, ~)f2)(~, 0), (s) 

So(4)(~, z)So(4)(~, o)+s2)(~, z)S2)(r, 0), (9) 
(10) 
(11) 

Hence we get finally 

= (/~2)(~, z) +/~2)(~, z))s_ 4S~s)(~, ~)ds)(~, z ) 
BSD 2 C s [ (B2+D2)  2 (B2-D2)2 ~ 

= �89 A C \  " ~ s ~  + A s _ C  s / 

1 C 2 ( ( B  s+D2)  2 (B 2-/:)2) 2 
f ~ s ) ( v , z ) f ( 2 ) ( % z ) = - ~ - ~ ,  ~ t A 2 _ C  2 ] .  

Multiplying numerator and denominator with r and using (11) and (10) yields J2 

1 r162 ~ 
/~2)(..zlS~2)(~.zl=(S~2)(..z)2+So~2)(..zlS)~J2 , . o  , ,  

X s 

which, using (5), (6), (1), (2) and (3), gives: 
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and after a short calculation 

2 1 4 r ~AC(A - C  4) = ( B C §  

For the action of the modular group one computes 

J(r162 J(X)--e(~). �89 J (Y)=2e(1)X ,  J (Z)=e(~)Z ,  

and 

acts with 

o(; 1) 

D(r162 D(X)=e(~)X ,  D ( Y ) = Z ,  D(Z)--Y.  

We have to study the action of F(4)/F(4, 8)=F~, an abelian group generated by 

41) (14 ~ 
But we only know the theta representation on the 2-ring, hence we have furthermore to 

study the action of M 4 on C[X, Y, Z], which acts by -1.  Hence we have actually a group 

generated by reflections of order 8, isomorphic to F2 3, which induces on the 2-ring the 

action above. The action of F2 3 on r is just by the determinant. For a group generated 

by reflections the canonical module is just the module over the invariant ring, generated 

by an element belonging to the character det -1, in our case the element X Y Z  (see [$2, 

Theorem 7.1]). Hence one gets with 

r = r  

the following theorem. 

THEOREM 4.4. The ring o.f Jacobi .forms of level F1(4) is given by 

D o/, A - l ]  Hol Jk,m(rl(4))=C[A,S,C, ,~., J(2) 
k,m 

with a condition about the Fourier expansion for the cusps. The group G is acting with 

X on r The function r is an odd function (regarded as a function in z) of weight 2 and 

index 2. It holds 

r = (BC+ A D ) ( B C - A D ) ( A B + C D ) ( C D - A B ) .  
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Remark 4.5. It would be quite natural to define Jacobi forms of character X by 
r162 for MEF Jar and for an arbitrary character X. 

We recall R=C[A, B, C, D]. As in the even case one easily computes the Poincar6 
series of the invariant ring R[r G as a bigraded ring. We observe that 

fr162 G r f ERxG-1 and gER G. 

Hence we get 

Cn[r (A, #) = Z dimc R[r k#m 
k,m>~O 

= l a~G det(1-- A1/2a)let(1- A1/2#a ) 

1 
+A2#2~6 ae~a det(1-A1/2a) det(1- )~l/2#a)(x(~r) -1) 

= [~x7#17 

+~16#1s 

_1_ AI5 (#12 +#13 +/Z14 +#15 _{_#16 _]_ #17 + #18) 

_1_)~14 (~II .~. ~12 _1_ #13 _~_ #14 _~_ ~I 5 {.. #16 q_ ~I 7) 

.~_ ~13(~7 .~_/.$8 jc#9 .}_2#10 _i_2#11 q_2#12 _i_3#13 +2#14 .{.2#15 _i_2#16 

-~-#17 Jr #18-~#19 ) 

-1- )~I 2 (#S -1- #7 -1- #8 + 2#9 -}- 2~I0 + 2# 11 +3#12 -I- 2#13-{- 2#14 q- 2#1S 

_~16 ~.. #17_{..#18) 

jc/~ 11 (#2 %/.$3 %/24 .~_#5 _t_2#6 +2#7 +3#8 _t_3#9 _1_3#10 _1_4#11 _t_3#12 

+3#13 +3#14 +2#15 + 2#1S +#17 +#18 q-#19 +/Z20 ) 

q-)~lO (#5 + #6 q- 2#7 q- 2#8 -I- 2#9 -1- 3#10 -t- 2#11 q- 2#12 -}- 2#13 -}- #14 -I-/zl 5 ) 

h- A9(#3-t-#4-t- #s q- 2#6 q- 2#7-}- 2#8 q- 3#9 + 2#1~ q- 2#11+ 2#12 q- #13 

+#14+#15) 

q_)8 (#2 q_ #3_i_ #4_I_ 2# 5 q- 2 #  6 -I- 2 #  7 -Jr 3#  8 q- 2#  0 -I- 2 #  10 q- 2 #  11 _1_ #12 

+#13-I-#14 ) 

-1- )~7 (]~4 -~- #5 --~- #6 q- #7 -Jr #8 -l- #9 q- #I~ ) 

q- )~6 (#-{- #2 -{- 2/~3 q- 2#4 -1- 2/~5 -1- 2#6 q- 2#7 -t- 2#S + 2#9 -1- #10 q- # 11 ) 

+As# s 
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..[_ ~4 (~_[_/.t2 ..[_ ~3 T2~4 TjU5 ..t_/~6 _}_/.t 7) 

-[- i]/()~ 4 -- I)(A 6 - 1) (A4]~ 8 - I) (A6]~ 12 - I). 

As in the even case the denominator corresponds to the four algebraically indepen- 

dent generators r r r r As an algebra over the ring generated by these four 

polynomials the invariant ring R[r G is a finite module and the numerator indicates in 

which weight and index one finds the other generators, e.g. 

r = r 3, 

r = r  4 - C4)) 3. 

THEOREM 4.6�9 

(~ Jk,.~(rl) 
k , m  

The ring of Jacobi forms is given by 

.{ f = E c(i, j)qipj such that f E (R[r [A-1] and c(i, j) = 0 .for 4im < j2 }. 

Guided by the dimension formula it is easy to find all the other generators of 

(R[r a. Let us denote M(m)={fe(R[r a, index(f  )=m},  a free A(F1)-submodule 

of (~)k Jk,m(F1). As an application of the dimension formula we give the following table 

for the generators of M(m). 

index even weight of generators odd weight of generators 

as A(F1)-module as A(rl)-module 

1 4, 6 

2 4, 6, 8 11 

3 4, 6, 6 ,8  9,11 

4 4, 4, 6, 6, 8 7, 9, 11 

5 4, 6, 6, 8, 8, 10 5, 7, 9, 11 

6 4, 6, 6, 8, 8, 10, 12 7, 9, 9, 11, 11 

7 4, 6, 6, 8, 8, 10, 10, 12 7, 9, 9, 11, 11, 13 

8 4, 6, 6, 8, 8, 8, 10, 10, 12 7, 9, 9, 11, 11, 11, 13 

Let us denote furthermore 

j (k ,m)= 

�9 k + 2 m  m 2 dxm( ,=k [rl,l])-Ev=0[v/4m] 
di / ~ k + 2 m - 3  rl-~ m-1 2 4 m[~:1:~l=k+ 1 [I l , / ] ) - - E v = l  IV / Tn l 

~-~ vm__o max(dim([F1,2v + 2]) - [v2/4m], O) 

0 

dim([F1, k]) 

for k even, k t> 4, 

for k odd, k/> 3, 

for k = 2 ,  

for k = l ,  

for m = O .  
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Then we may collect [EZ, Theorem 9.1] and the discussion on p. 121 by dim(Jk,m(F1))~ 

j(k, m) and equality for kr  

COROLLARY 4.7. For a Jacobi form r with index(r we have 

r e (R[r G. 

Proof. A brute force calculation shows dim(M(m)k) =j(k, m). Hence we get equality 

of M(m) and ~kJk,m(F1). [] 

The above dimension formula generalizes the table in [EZ, p. 109] for odd Jacobi 

forms. The left part of the first two lines (even Jacobi forms of index one and two) 

corresponds to Theorems 3.5 and 8.2 in [EZ]. 

Remark 4.8. Some classical functions (Weierstra~ p-function and its derivative) are 

given by 

~ ( r ,  Z) = 1 (27ri) 2 B 6 ( 6 4  - 5 A 4 ) - A D ( A 4  -564)  
B C - A D  

p'(r, z) = �89 (2~ri)ar AC(A4-C4) 
(BC-AD) 2' 

and if we fix the notation 

P(r, z) = BC(C4 -5A4) -AD(A4-5C4)  AC(A4 - 6 4 )  
B C - A D  and Q(v,z)=r (BC_AD)2 

we get the Weierstrafl equation 

4 .27Q~ = p s _ 3 E 4 P + 2 E s  

as an identity in the ring Z[[q]]((p)) with the (q-p)-expansion map. All the polynomials 

r BC-AD,  AC(A4-C4), BC(C4-5A4)-AD(A4-5C 4) 

are Jacobi forms of character X. If one weakens the Fourier condition to c(i,j)=-O for 

i<0, one gets a weak Jacobi form in the notation of Eichler and Zagier. The generators 

of the ring of weak Jacobi forms as an A(F1)-algebra (see [EZ, Theorem 9.4]) are up to 

some constant given by 

r 
~b-l,2(r, z) = AC(A 4_64) , 

BC-AD 
~--2,1(Y, Z) ---- AC(A 4_C4), 

~bo, l (r, z) = B6(64-5A4)-AD(A4-564) 
AC(A 4 - C  4) 
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5. Jacobi forms and geometry  

Rings of Jacobi forms are not finitely generated, hence there is no easy connection to 

geometry. The rings 

Bg(F) ~--- (~/-~'~(gm)[fa(T , Z), ~b(T, Z)])~2)) N, 

however, have a geometric interpretation. (As before F is a subgroup of finite index in Fg 

and one chooses some Fg(2m, 4m)CF such that m is even with the property to contain 

any prime p_=3 (4) with an even power and set G=F/Fg(2m, 4m).) We regard Bg(F) as 

a bigraded ring with the natural grading given by weight and index. We assume that 

FCFg(n) for some n~>3 to exclude elliptic fixpoints. 

We define (quite analogous to the Proj of a graded ring, see [Ha, II.2]) for a bigraded 

ring B.,. the scheme X=BiProj(B., . ) .  (We do not assume that B.,. is generated by 

elements of a fixed bidegree.) As a set we take the bihomogeneous prime ideals, which 

do not contain all of B+,+. The open subset D+(f)={pEX such that f~p} is equipped 

with the structure Spec(B(y)), where B(I) is the subring of elements of bidegree (0, 0) in 

the localized ring By. 

Let us denote Bg (F)= BiProj (Bg (F)) together with the natural morphism 7r: Bg (F)---, 

Ag(F) to the Satake--Baily-Borel compactification and the zero section ~: .Ag(F)~--~Bg(F) 

induced by the ~-operator. (We call the map ~b(r, z)~-~(~-,0) the ~-operator. If one 

considers Siegel modular forms of genus g + l  and its Fourier-Jacobi expansion, one gets 

the Siegel ~-operator.) By definition Bg(F) is a projective variety, hence compact as a 

complex space. We call Bg(F) the theta compaetifieation of the universal abelian variety 

Hg x c g / r  Jar of level FCFg(4). The fibre over rEHg is isomorphic to the abelian variety 

A~ = cg/~-Z g +Z g ~- BiProj(Bg(F)) x ~t,(r)Spec(C) -~ Proj(C[fa(r, z), ~bb(~', z)]) 

(one looses one grading). This holds, because the theta functions f(2)(r, z) define an em- 

bedding in a projective space (Lefschetz) and C[fa(r, z), ~bb(r, z)] is just a homogeneous 

coordinate ring under this embedding. 

In the elliptic case (for FcFI(4))  we get an elliptic normal surface BiProj(BI(F)), 

which contains the universal elliptic curve of level F as an open smooth subset and 

singularities at most in the fibres over the cusps in .AI(F). The morphism ~r is fiat ([Ha, 

III.9.7]), hence the dimension and arithmetic genus of the fibres are constant 1 ([Ha, 

I11.9.10]). 

In the case F=FI(4) we have BiProj(BI(FI(4)))=BiProj(C[A, B, C, D, ~b]/(~b 2 . . . .  ) 

together with the morphism B1 (F1 (4))--~.A1 (4)~P 1 given by the inclusion of the graded 

ring C[A, C] in the bigraded ring C[A, B, C, D, ~b]/(~b 2 . . . .  ). The zero section is given by 
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r162 and ~(C)=r and r162 The fibre of the morphism over 

T6H1/Fl(4)CPl~-,41(4) is just the elliptic curve E~=C/(Z+Zr) embedded in the 

weighted p2 as a quartic. (This is nonsingular! Indeed, if we compute the discrimi- 

nant of 

(BC+ AD)(BC-AD)(AB+CD)(CD-AB) = B2D2(C4 + Aa) -A2C2(B4 + D 4) 

regarded as an homogeneous polynomial in B, D over C(A, C), we get A2C2A. Hence 

the affine part is non-singular. But we are not in a p2 with weights (1, 1, 1). We have 

index(C)=2, so we may regard the curve (V/~)4=B2D2(C4+A4)-A2C2(B4+D 4) as 

a non-singular curve of genus 3 in a p2 with usual weights (1, 1, 1) which is a cyclic 

covering of the fibre E~.) Hence we get a very concrete nearly non-singular model, which 

after desingularization in the fibres over the cusps leads to the Shioda surface B(4), a 

K3-surface with Picard number 20, pa=pa=dim([Fl(4), 310)=1 (there is the cusp form 

AC(A4-C4)). The fibre over the cusp over infinity is given by 

SiProj (C[A, B, C, D, r • Proj(C[A,C])Spec(C) = Proj(C[r B, 0 ] / ( r  2 -B202)). 

For more details we refer to Shioda [Sh]. This may easily be generalized to BI(F), where 

the equation (r has to be interpreted after 

a certain Veronese map (Lemma 2.3). We get a tower of theta compactifications of 

the universal elliptic curve of level F together with morphisms to ,41 (F). For another 

description of the field of meromorphic functions we refer to [B2]. 

Let us denote by 
1 w(F) = det(f~H~ • cg/rJ-o IHg/r) 

the Hodge line bundle on H a • Ca/F  Jac and consider the diagonal morphism 

A: H a • c g / F  Jac --* H a X Ca/F Jac XHg/FH a X Ca/F Jac. 

Take the Poincar4 bundle Pg on Hg• Jac and set s 
Then one obtains in a canonical way an invertible sheaf on H a x c g / F  Jac giving twice 

the principal polarization. We extend w|174163 | as a line bundle to Bg(F) (take the 

projective closure of the corresponding divisor) and denote this line bundle by Ox(a, b). 
Then for Y = H  a x C9/F Jac C X= BiProj(B(F)) we have 

.~ = O x ( a ,  b) lY = w | | f_| 

A geometric reformulation (for g>/2) of the definition of Jacobi forms is the following: 

Jk,m(r) = H~ X c g / r  Jac, 02 | ~ |  
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(in terms of automorphy factors #- corresponds to e(v[x] +2(z, x)) when restricted to the 

fibres of lr in the definition of Jacobi forms). A geometric way to get back Siegel modular 

forms from .Ag(F) is 

A(r) = (9 H~ ~*w(r)| 
k 

This equality holds for g~>2 because the codimension of the boundary in the Satake 

compactification is/>2. Hence any section of e*w(F) | over Hg/F extends to a section 

over .Aa(F). This is a geometric analogue of the Koecher principle. But also the case 

g = l  is included, because the Fourier condition is nothing but to demand the property 

of extension. 

THEOREM 5.1. For g>~2 and X=Bg(F) we have 

Jk,m(F) = H~ Ox(k, m) ). 

In other words, any section extends to the boundary. 

Proof. The proof uses the structure of the boundary of the Satake compactifica- 

tion (compare [Ch, Appendix III] and Jig4]). It turns out that the scheme structure 

is complicated but with the reduced structure the boundary is not too bad. We may 

argue analytically because Bg(F) is a projective variety, hence a compact analytic space. 

There is a stratifcation (for F=Fg(2m,4m)) by sets isomorphic to Ag_I(F)'--*.Aa(F), 

and the inclusion is induced by the Siegel cI,-operator (for different cusps we have differ- 

ent ~I,-operators, which are related by conjugation under the finite group FJFg(2m,  4m) 

similar to the case m=l in [R4]). Using the same argument as above for the Satake case, 

it remains to show that the dimension of the fibre of r cannot go up for points in the 

Satake boundary. Hence inductively it remains to show the following property of the 

Siegel ~I,-operator. Let CeJ~,m(F). Then 

depends only on ~- and z. This property is known for Siegel modular forms. Hence using 

Theorem 3.7 it remains to show this property for f(rn)(v, z), which is easy. Hence the 

transcendence degree of the fibre is g, which implies that all fibres have dimension g. [] 

Remark 5.2. For k,m>O the bundle w|174 | is ample on HgxCg/F  Jar (see 

[K1, Theorem 2.12]). 

Remark 5.3. From the geometric point of view the cusp condition in genus g = l  

should be chosen such that the equality Jk,m(F)=H~ O(k, m)) remains true. We 
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have not touched this problem. We refer to [K2] for further information how to extend 

Jacobi cusp forms to the desingularization of BI(F), i.e. the Shioda surfaces. 

We continue to describe natural properties of the construction X=BiProj(B.,.). 
Recall Y = Hg x Cg/F Jac C X = BiProj (B (F)) and denote for fixed a, b > 0 the sheaf ~ '=  

Ox(a, b) l r=w | ~s174 and 

R(Y, .T) = (~ H~ .T u) = ~ H~ Oy(ai, hi)) 
~>~o i>>.o 

(considered as an H~ Oy)-module). Using the same proof as in [Ha, II.5.14] we have 

the isomorphism 

R(Y, Y)(f) ~ ~'(D+ (f) NY) 

for any global section fEH~ We can cover Y with sets of type D+(f)NY, where 

f runs over a set of generators of B(F). Because of the ampleness f may as we]] run over 

a set of generators of R(Y, .~). The sheaf of rings l~i~> 0 ~'/is a sheaf of integrally closed 

domains (because X is normal). Let us denote (recall G=F/Fg(2m, 4m)) 

s= s '= e) K(S). 
2k~rn 

We will show that  S' is integral over S (hence both rings are equal). 

Let s'ES' be bihomogeneous of bidegree (k, m). Let f~ be a set of generators of S. 

Then S ~ is a ring, containing S, and contained in the intersection N SI~ of the localizations 

of S at the elements fi. 

(To give a section teH~ Oy(a,b)) is the same as giving, for each i, sections 

t~ �9 O r  (a, b) (D+ (fi)) which agree on the intersections D+ (fi f j  ). Now ti is just a bihomo- 

geneous element of bidegree (a, b) in the localization SI, , and its restriction to D+ (fifj) 
is just the image of that  element in SI, fj. Summing over all multiples of ( a, b), we see 

that  R(Y,Y:) can be identified with the set of tuples (ti), where for each i the t~�9 
and for each i,j,  the images of t~ and tj in S I j  ~ are the same. Now the f~ axe not zero 

divisors in S, so the localization maps S-,SI~ and SI~ ~S l ,  fj are all injective, and these 

rings are all subrings of K(S).) 
Since s'�9 for each i, we can find an integer n such that  f~s l �9  Choose one n 

that  works for all i. Since the fi generate S, the monomials in the f~ generate Sk,m for 

any bidegree. So by taking a large bidegree b, we may assume that  for Y�9 Sd. 
Hence ys ' �9  S>~b. Take some f �9 S. Now it follows inductively that  for any integer x>~ 1 

we have (s') = �9  It follows by a well-known criterion for integral dependence that  

s' is integral over S. 

We summarize the above by 
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THEOREM 5.4. For g>~2 we have that 

J~'~n(r)= B(r)even 
2k>~m 

is a finitely generated ring. 

To generalize this result, we introduce the following definitions. For a subgroup F 

of finite index in F# containing some Fg(2r, 4r) with the property: r is even and contains 

any prime p - 3  (4) with an even power, we define 

G~ = r / r g ( 2 r ,  4r), 

B <-r ( r ) =  

B<~(F) = BiProj(B~<~(r)), 

index(f) 
relative i n d e x ( f ) =  2 weight(f)" 

For rl ~< r2 and r l  D F2 we have B ~<~1 ( r l ) c  B ~<~2 (r2) and B(F) C B ~<~ iF). These canonical 

inclusions induce morphisms 

and 

where the second one is birational ( an isomorphism when restricted to Y = H g  x Cg/FJaC). 

With the method of proof as above we get the following result for the ring 

~.kr~>,,~ Jk,m(F) of Jacobi forms of relative index ~<r and level F quite analogous to 

Igusa's fundamental lemma. 

THEOREM 5.5. For g>>.2 the ring of Jacobi forms of relative index <<.r and level F 
is equal to B~<r(r), and hence finitely generated. 

The theorem enables us to investigate the "unknown" ring ~2kr>~m Jk,m(F) as a 

normalisation of a ring of invariants of a finite group acting on . . . . .  g,(2)" Now it is 

true that  q'~4~'q'(~<~) . . . . .  g,(2) is not a "known" ring. However it is constructed explicitly and the 

problem is now of an algebraic nature. We propose the following problem: 
_ A _ ( ~ < ~ )  

Investigate whether the bigraded ring T'/-t$'lg,(2) is integrally closed or not for vary- 

ing genus g i> 2 and relative index r. 
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