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1. Statement  of  results 

This paper studies elliptic k• k systems of partial differential operators in R n which may 

be written in the form 

A=A| (I.1) 

where A| is an elliptic system of constant coefficient operators and Q is a variable 

coefficient perturbation with certain decay properties at Ixl = ~. 

For the case k= I such operators were studied in [6], [7] and [8] under the 

conditions 

A| is an elliptic constant coefficient 

operator which is homogeneous of degree m (1.2) 

and the coefficients of 

satisfy qa E Ct(R n) and 

Q= E q~ (x)O~ 
lal ~ m 

1 ~  1( x )"-Ial+tal~aq.(x) I = Ca, a < 
kl --, | 

(1.3) 

for all ~[~<l E N. (Here and throughout this paper we let Z denote the integers, N denote 

the nonnegative integers, (x) =(1 +lxle)  l/e, p' =p/~p- 1), and use standard conventions 

for multi-indices a=(al . . . . .  a,,) E N" and Oa=(O/OXOa~... (O/Oxn)an.) 

(~) Research partially supported by NSF Grant MCS-80-02995 
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Such operators are bounded on certain weighted Sobolev space defined as follows: 

for l < p < ~ ,  IEN, and 6 ER let W~t,6 denote the closure of Co(R n) in the norm 

Ilull ,-- I1( x )  +l~176 
lal ~ 1 

(We should mention that these spaces were denoted M~t,~ in [2], [3], [7], and [8], and 

H~t,~ in [4] and [6].) Clearly (1.2) and (1.3) imply that 

A , , :  W~/+m,~ "-"> W~/,~+m ( t ) ~  

A : W~/+m ' fi "--} ~ fi+m ( t )  

are bounded operators. In fact, if we let Poly (6) denote the space of polynomials in 

x~ .. . . .  x,, of degree --<6 and de(6) its dimension (note that Poly (6)= {0) if 6<0) then the 

following theorems were proved in [6] and [8]: 

THEOREM 1. If(1.2) holds then (t)| is Fredholm if and only if 

- 6 - n ~ N  i f 6 ~ < -  n 
P P 

d + m - ~ , , ~ N  if d >  --n--n . p  

(1.4) 

Furthermore, the nullspace and cokernel of  (f)| consist of  polynomials, and are of  

dimension 

d e ( - 6 - n ~ - d e ( - 6 - m - n ~  (1.5) 
\ P~ \ P /  

d e ( 6 + m - n ~ - d e ( 6 - n ~  (1.6) 
\ P~  \ P /  

respectively. 

THEOREM 2. /f(1.2) and (1.3) hold with C~=O for all lal<~m and ~31<~1, then (t) is 

Fredholm if and only if(1.4) holds, and the Fredholm index of(t)  agrees with that of  

( t ) |  

We should note that the formulae (I .5) and (1.6) do not appear explicitly in [6] or [8] but 

follow from an easy analysis similar to that of Section 3 of this paper. We also note that 

in both [6] and [8] it was assumed that qaEC| when [al=m, but this may be 

weakened by perturbation theory as in the proof of Theorem 4 below. For lal<m the 
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hypothesis  qa E C t may be weakened slightly to assume only bounded derivatives of  

order l satisfying (1.3), but  we retain the above formulation for convenience.  (More 

general coefficients are used in [4], but only for the special case p--2,  m<n, and 

-n/p<O<-m+n/p'.) 
Now suppose that (1.1) is a system A=(A U) so Au has components  

k 

(Au)i = Z au uj. 
j = l  

We shall use the generalized notion of  ellipticity provided by Douglis & Nirenberg [5]: 

Definition 1. Two k-tuples, t = ( h  . . . . .  tk) and s=(s l  . . . . .  sk) of  nonnegative integers 

form a system of orders for A if for each l~<i, j<.k we have order (Au)<.tFsi. (If 

tj-st<O then A~/=0.) The (t, s)-principal part of  A is obtained by replacing each A U by 

its terms which are exactly of  order t f s i ,  and the (t, s)-principal symbol of A is 

obtained by replacing each a in the (t, s)-principal part by the vector ~ E S n-I.  We say 

A is elliptic with respect to (t, s) if the (t, s)-principal symbol  of  A has determinant 

bounded away from zero for x E R n and ~ E S n- i. 

We now must replace (1.2) with the condition 

A| is elliptic with respect  to (t, s) and each operator  

(A| e is either zero or constant coefficient 

and homogeneous of  degree tTsi. 
(1.7) 

Similarly we must replace (1.3) with b~ E C~'(R n) and 

lim I < x > ~q0a(x) I = C ~  < oo 
M--,| 

(1.8) 

for all LBl~<si where 

Qu = E q~ (x)Oa. 
lal ~ 5-si 

With these conditions we then have 

A:  W~,,~_,---* W~l,~_ , 

(tt)| 

(tt) 
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are bounded operators where we have defined 

j = l  

and W~,,~_ s similarly. The purpose of this paper is to prove the following generalizations 

of Theorems 1 and 2: 

THEOREM 3. If(1.7) holds then (tt)| is Fredholm i f  and only i f 6  satisfies 

- 6 + t j - n  f~N if 6-tj<~ - n  
p p (1.9) 

6 - s j -  ~ ,  CN if 6 - t j >  P n 

for  every j = l  . . . . .  k. In fact,  (it)| is injective i f  6 - b > - n / p  for all j ,  and has dense 

range i f  6 -s j<n/p '  for  all j .  In general, the nullspace and cokernel of(tt)| consist o f  

polynomials and are o f  dimension 

, , ,1O  

k 

j=l \ P ~  \ P ~  

respectively. 

THEOREM 4. / f  (1.7) and (1.8) hold with CU~=O for all lal<~6-s,, ~[~Si, and i, 

j = l  . . . . .  k, then ( t t )  is Fredholm i f  and only if (1.9) holds, and the Fredholm index o f  

(tt) then agrees with that of(it)| 

As an immediate corollary we obtain the following generalization of the results in 

[9] on the nullspaces of systems which are "classically elliptic" ( t j - l+m,  si=l). 

COROLLARY 5. Under the hypotheses o f  Theorem 4, the nullspace o f  

a : l~t ---> l-l~, 

is finite dimensional, where/~t  =l-l~=!/-/tt~, Htt~ denoting the classical LP-Sobolev space o f  

order tj in R n. 
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2. Lemmas on convolution operators 

We consider functions Era(x) of the form 

Eo(x) = • ( x ) I x l  - ~  

E,,(x) = Fo(X)+Fl(x) log Ix[, m/> 1 

129 

(2.1) 

where f~, Fo, and F1 are all in C=(R ' \ {0} ) ;  g2 is homogeneous of degree 0 and has 

mean value 0 on the unit sphere; Fo is homogeneous of degree m-n;  and Ft is a 

homogeneous polynomial of degree m - n  if n is even and m-n>-O, otherwise F l =0. Let 

T be the convolution operator defined by 

TU=Em.u 

The following lemma is a special case of Theorem 2.11 in [6]. (We should note here 

that there is a gap in the proof of that theorem; namely, it does not include the case 

f l>-n/p and f l+m-n/p  E Z \ N .  However, this gap can be filled with an easy applica- 

tion of standard interpolation theorems, and so the theorem is true as stated.) 

LEMMA 2.1. I f  lEN and 6ER  satisfies m-n/p<6<n/p' ,  then 

T'- W~l, t ~ ~ W~l + m,  6 _ m 

is bounded. 

We shall also require the following generalization. 

LEMMA 2.2. For aEN",  IEN, and 7ER let r=m-]a] and suppose (i) [al>0, 

(ii) l+r>~O, and (iii) r-n/p<7<n/p'.  Then 

is bounded. 

Proof. If r~>0 then aaTu=E'r*U where E'=OaEm is of the form (2.1), so Lemma 

2.1 may be applied. If r<0 write OaT=O~'OaTO ~2 where ri E N" satisfy Irll+lr2l = - r  and 

-n/p<y+lrzi<n/p'. Then Ifli=m and by the r=0 case, OaT: W~t_l~21,y+l~21~W~'t_l,21,y+l~21 is 

bounded, so obviously aqOaTO~2: W~t,r~W~t+,,y_ r is bounded. 

9 - 8 3 8 2 8 2  A c t a  M a t h e m a t i c a  150. Imprim6 le 30 Juin 1983 
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3. Proof of Theorem 3. 

Let m=E~= t tj-sj and A| det (A| which is an elliptic constant coefficient differential 

operator, homogenous of  degree m. Let C0A~ be the matrix formed by the cofactors of 

A| so that 

C~174 A** = A| C~ | = ,4 | I 

where I is the identity matrix. Note that (C~174 is either zero or homogeneous of 

order m-tj+ sj. 
Now if u=(ul ..... Uk) is in the nullspace of (tt)| then A|176174174 so 

A| for each j. Since Wtj,~_t/-Ae' the space of "tempered distributions," the 

Schwartz theory of distributions implies that uj is a polynomial which must be of degree 

<-6+b-n /p  in order to be in W~tj,~_t. Hence the nullspace of (tt)| is contained in 

k 

j = l  

and so is finite dimensional. In particular, if 6 - b > - n / p  for al l j  then (tt)~ is injective. 

Similarly, the dual map to (tt)| is 

A*-: WV_'.,_6+.-* VCV_'t,_~+t ( t t )*  

where WP_',._o+. and l~_'t _~+ t denote the dual spaces of W~.,6_ , and W~t.~_ t respectively, 

and A* is a system of operators satisfying (1.7) for some system of orders (t*, s*). By 

duality, W'_',,._~+s,c~. Thus the argument above shows that if u=(ul ..... Uk) is in the 

nullspace of ( t t )*  then each uj is a polynomial of degree <t~-s~-n/p'. Hence the 

nullspace of ( t t )*  is contained in 

k 

j = !  

and so (tt)| has dense range if d-sj<nlp' for all j .  

Now to show (tt)| has closed range we may assume that the t i and st are arranged 

so that s~ . . . ~ sk  and tl~...~tk. Ellipticity of A| then implies tj~sj for every]. Hence 

we find that 

m+si>>- tj for allj.  (3,1) 
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We first control the range of (tt)| in the case of 

- 6 + s i + m -  n---~N if 6 -s i -m<~.-  n--- 
P P 

n 
6_si__~7~N if 6_s i_m > P n.  

By Theorem 1 

A| : W~,+,~.6_s,_ m -~ W~,.~_s, 

(3.2) 

(3.3) 

is Fredholm if and only if (3.2) holds, so let us fix 6 satisfying (3.2) for all i. Let Ti be a 

Fredholm inverse for (3.3), and T the diagonal matrix with entries T;. ThenA| r176174 T= 

,4ooI. T=I+P where P is a projection of W~,6_sonto a complement of the range of A| 

in W~,6_ s. Hence the range of (tt)oo is closed and we have proven 

LEMMA 3.1. I f 6  satisfies (3.2)for all i, then (tt)| is Fredholm. 

In comparing (3.2) with (1.9), note that if for some j we have 6-tj<<.-nlp and 
-6+t j -n lp  r then -6+t j -n lp  cannot be an integer so (3.2) will be satisfied for all i. 
Similarly, the first line of (3.2) holding for some i implies (1.9) for all j .  On the other 

hand, if 6 - s i - m > - n l p  and 6 - s i - n l p ' ~ N ,  then by (3.1) we have 6 - t i > - n l p  so we 

have proved 

LEMMA 3.2. I f 6  satisfies (3.2)for all i, then it satisfies (1.9)for all j. 

By the above remarks, 6 can satisfy (1.9) for a l l j  but not (3.2) only if for allj  

6--tj> P n and 6 - s j - ~ 7 ~ N  

and for some i 

6_s i_m <~ _ n and - ~ + s i - m -  n E N 
P P 

(3.4) 

(3.5) 

But (3.4) and (3.5) imply 6-sj-n/p' 6 Z \ N  and in particular 

< n  
(3.6) 
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for al l j .  By monotonici ty  of  the si we can find io such that (3.5) holds for all i>~io. In 

fact, together with (3.4) we find 

tj<si+m for all i>~i o and a l l j  

6 _ s i _ m  > _ __n for all i < i 0. 
P 

(3.7) 

Now let Tu=Em ~u where  Em is the fundamental  solution of,4| of  the form (2. I). 

The operator  C~ TI is then a fundamental solution for A o~. In fact, we claim that 

C~ TI is the inverse for (if) |  when ~ satisfies (3.4) and (3.5). We need only show 

that for every i and j 

(C~174 W~,,~_s--~ W~t~.~_t, (3.8) 

is bounded.  If  i<io then (3.6) and (3.7) imply m-n/p<6-si<n/p' ,  so by Lemma 2.1 

T: W~,.~_s--~W~s,+m,~_~_ m is bounded which obviously implies that (3.8) is bounded.  On 

the other hand if i>-io then [a[=m-t~+si, l=si, and y = 6 - s i  satisfy the hypotheses  of  

Lemma 2.2, so (3.8) is bounded.  Thus we have proved 

LEMMA 3.3. I f  tS satisfies (1.9)for all j but not (3.2)for some i, then (tt) |  is an 
isomorphism. 

We conclude, therefore,  that (1.9) is sufficient for (tt) |  to be Fredholm. 

Next  we suppose  6 satisfies (1.9) and compute  the nullity of  (~t)| Note  that 

k k 

-* Poly -6+s  i-  n . (3.9) 
j = l  i = l  

We claim that (3.9) is surjective. Indeed, if v = (v I . . . . .  v k) E IIk= I Poly ( -  6 + s i -  n/p ) then v 

is in the range of  (t t) |  if and only if Ei~ I Swividx=O for all w=(wl . . . . .  Wk) in the 

nullspace of  ( t t )* .  If  vi*O then 6-s i<-n/p ,  so Poly (6-si-n/p')={O} implying wi=O. 
Thus we can always solve A| for uE W~t,~_ ,. For a E N  n with each aj sufficiently 

large, (SaI)'A| so u is a polynomial. Thus u E IIk=t Poly ( -6+tFn/p)  prov- 

ing that (3.9) is surjective. Since we have already observed that the nullspace of  (t tLo 

is contained in II~= I Poly ( -6+tFn/p) this  proves (1.10). 

Similarly, we derive (1.11) from the surjectivity of  

k k 

A * : i - I P o l y ( 6 - s , - ~ ) - - ~ H P o l y ( 6 - t T ~  ). 
i=1 j = l  
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To show that (1.9) is necessary for (it)= to be Fredholm, suppose that for somej  

we have - 6 + t f n / p E N  or 6-s j -n/p 'EN.  Consider the one-parameter family of 

operators 

A| = <x>'a| <x )-': W~t,o_t---> VC~s,~_ s (3.10) 

defined for -e~<r~<e where 0<e<zl. Since u---~(x>~ is an isomorphism of 

W~t,~+o onto W~t,~ we conclude that (3.10) is Fredholm if and only if 

A| : W~t,~+~_ ' ---> W~s.~+r_ s (3.11) 

is Fredholm, and the index of (3.10) equals that of (3.11). We have seen that Aoo(r) is 

Fredholm for r4:0, and by (1.10) and (1.11) index [A| index [Ao~(-e)]. Hence 

A| cannot be Fredholm, as to be shown. 

4. Proof of Theorem 4. 

First note that (1.8) with C ~ = 0  implies 

X q~ W~5,~-tj--~ W~,,~_s, 
lal < 9-s~ 

is compact by Theorem 5.2 of [6] or Lemma 4.1 of [8]. Therefore we may assume 

Q.-- q (x)a ~ 
lal = tj-s~ 

Now let q0EC~o(R n) satisfy q0(x)--1 for [x[~<l and qg(x)--0 for [xJ~>2, and define 

cpR(x)=cp(x/R) for R>I .  From (1.8) with Cq,~=0 we can find R > I  such that for every i,j 

and ~3J<~si and [a[=tj-si 

whenever ]x]>R. Thus there is a constant C which depends only on 9, si, and n for 

which 

l< x < 

holds for all x E R", ~3]<<.si, ]a]=ty-si, and all i,j. Hence by choosing R sufficiently large, 

the norm of 

( I -gk )  Q= ( 1 - q ~ ) l . Q :  w~t,~_, ---~ W~s.~_ s 
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may be made arbitrarily small. Therefore,  if 6 satsifies (1.9) for all j ,  then we may 

choose Ro so that 

A"  = A |  Q:  W~t,~_t ---~ W~s.~_ ' 

is Fredholm whenever  R>~Ro. 
In terms of  ~t priori inequalities this means that 

lul, ~< C([A'ul,+l~ul,) (4.1) 

for u E ~ ~-t, where we have abbreviated the norms in ~ ~-t and W~, ~_, by 1. It and 1.1, 

respectively, and where ~ is a projection of  W~t,~_ t onto the kernel of  A "  and thus is 

compact.  We shall apply (4.1) to (1-q03R)u and use A ' = A  in the support of  (1-q03R) to 

conclude 

I(1 - q03R) uJt ~< C(IA(1 - q03R) ul,+ I~r(1 - ~0,a) ul,). (4.2) 

On the other  hand, since q03Ru has compact  support, standard elliptic estimates [1] 

imply 

Iq~3R ult <~ C(IA q~3R ul,+ 1~03R ulo). (4.3) 

Combining (4.2) and (4.3) yields 

lul, ~< c(Ia(1-93R) ul,+ IA~03Rul,+ I~(1 - ~03R) ul,+ 1~3~ulo) 

~< (7(l(1-~03R)aul,+l~3raul. 

+l[a,(1-q03R)] ul ,+l[a,  ~03R]ul, (4.4) 

+ I~r(1 -cp3R) ul,+ 1~03~ulo) 

where [ , ] denotes the commutator .  By ReUich's compactness theorem, 

[A,(I-q~3R) ], [a ,  q~3R]: W~t.~_t~W~,.6_ , and ~p3R:W~t,~_t~W~o,~ are all compact,  so the a 

priori inequality (4.4) shows that A:W~t,~_t----~W~s,~_ s has a finite dimensional nuUspace 

and closed range, hence is " semi-Fredholm" .  Furthermore,  we may find RI large so 

that A| Q is an elliptic system which is semi-Fredholm and 

index (A~. + r = index (A) (4.5) 

whenever R>~R~, although we do not as yet know that (4.5) is finite. 
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Now for R~> max (Ro, Rt) and 0~<z~< 1 let (q~e Q), be the matrix with entries 

q~(z'x) ~ qOa(z'x)a a. 
lal ffi t.j- si 

For each ~, A~=Aoo+(~oe Q)~ is an elliptic system of  the form (1.1) with coefficients 

satisfying (1.8) (since Ao has constant  coefficients and A~ for z>0 has coefficients 

constant for [xl~>2/z). Thus we have a one-parameter family of semi-Fredholm opera- 

tors, and so 

index (A0) = index (A i). (4.6) 

But Al=Aoo+geQ so (4.5) and (4.6) imply that index(A)=index(Ao). However, the 

index of  A0 is given by Theorem 3: index (Ao)=index (A| is finite. Hence A is indeed 

Fredholm. 

In other words, we have shown that if 6 satisfies (1.9) then ( t t )  is Fredholm and 

has the same index as (tt)o~. Conversely, we can show that ( t t )  is not Fredholm where 

its index changes (i.e., where (1.9) fails for some j) by the same method as used for 

(tt)| in Section 3. 
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