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1. Statement of results

This paper studies elliptic kX k systems of partial differential operators in R” which may
be written in the form

A=A_+Q (1.1)

where A. is an elliptic system of constant coefficient operators and Q is a variable
coefficient perturbation with certain decay properties at |x|=co.
For the case k=1 such operators were studied in [6], [7] and [8] under the
conditions
A is an elliptic constant coefficient
operator which is homogeneous of degree m (1.2)
and the coefficients of

0=, q0e
lajsm
satisfy ¢, € C'(R") and
1im | (x) ’”'|“|+|ﬂ'8ﬂqa(x)| =C,p<® (1.3)

|X|—>oo

for all |3|</EN. (Here and throughout this paper we let Z denote the integers, N denote
the nonnegative integers, (x)=(1+[x{)"2, p’=p/(p—1), and use standard conventions
for multi-indices a=(ay, ...,a,) EN" and 8°=(8/3x,)"' ... (8/8x,)™.)
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Such operators are bounded on certain weighted Sobolev space defined as follows:
for 1<p<w, IEN, and 6 ER let W ; denote the closure of Cj(R") in the norm

lall g, = 25 1<) ** 6%l

la] <1

(We should mention that these spaces were denoted Mj; in [2], [3], [7], and [8], and
H? , in [4] and [6].) Clearly (1.2) and (1.3) imply that

A, W‘;+m,d - Wlp’é‘*‘m ().
A: Wis = Wisim ()

are bounded operators. In fact, if we let Poly (6) denote the space of polynomials in
X1, ..., X, of degree <6 and dp(9) its dimension (note that Poly (6)={0} if 6<0) then the
following theorems were proved in [6] and [8]:

THEOREM 1. If (1.2) holds then (1) is Fredholm if and only if

-0—¢N ifo<-2
p

RS

(1.4)

Furthermore, the nullspace and cokernel of (1)« consist of polynomials, and are of
dimension

d,,(—é——;—)—d,,(—é-m—%) (1.5)

d (6+m——) d,.(d——) (1.6)
p p
respectively.

THEOREM 2. If (1.2) and (1.3) hold with C,g=0 for all |a|<m and |B|<l, then (%) is
Fredholm if and only if (1.4) holds, and the Fredholm index of (1) agrees with that of
New.

We should note that the formulae (1.5) and (1.6) do not appear explicitly in [6] or [8] but
follow from an easy analysis similar to that of Section 3 of this paper. We also note that
in both [6] and [8] it was assumed that q,€ C”(R,) when |a|=m, but this may be
weakened by perturbation theory as in the proof of Theorem 4 below. For |a|<m the
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hypothesis g, € C' may be weakened slightly to assume only bounded derivatives of
order [ satisfying (1.3), but we retain the above formulation for convenience. (More
general coefficients are used in [4], but only for the special case p=2, m<n, and
—n/p<déd<-—m+nip'.)

Now suppose that (1.1) is a system A=(A;) so Au has components

k
(Au)= 2, Agu;.

j=1

We shall use the generalized notion of ellipticity provided by Douglis & Nirenberg [5]:

Definition 1. Two k-tuples, t=(¢,, ..., ;) and s=(sy, ..., 5x) of nonnegative integers
form a system of orders for A if for each 1<i, j<k we have order (Ay<¢—s;. (If
t;—s5;<0 then A;=0.) The (t, s)-principal part of A is obtained by replacing each A; by
its terms which are exactly of order #—s;, and the (t,s)-principal symbol of A is
obtained by replacing each 8 in the (t,s)-principal part by the vector £€5"~!. We say
A is elliptic with respect to (t,s) if the (t,s)-principal symbol of A has determinant
bounded away from zero for x€ER" and £€S"~".

We now must replace (1.2) with the condition

A is elliptic with respect to (t, s) and each operator
(Ax)y is either zero or constant coefficient 1.7
and homogeneous of degree ¢;—s;.

Similarly we must replace (1.3) with bg € C'(R") and

klli—m | <x ) !j—S,»—|a|+lﬂ| aﬁqg(x)l = Cgﬂ < (1.8)

for all |8|<s; where

Q,= O, qixa.

jal = 1,5,

With these conditions we then have

Aw: Wf,d—t - 8,08 (TT),,
A: W’:’,o—: = W o-s (1
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are bounded operators where we have defined

Wf,a-t = l_[ Wz,o—x.

j=1 !
and W} ,__ similarly. The purpose of this paper is to prove the following generalizations

of Theorems 1 and 2:

THEOREM 3. If (1.7) holds then (11)s is Fredholm if and only if 0 satisfies

~6+t— 2 ¢N iféo-r<s—=2
‘p p (1.9

O—s— &N ifo—1,>—
p p

for every j=1,...,k. In fact, (1)« is injective if 6—t;>—nlp for all j, and has dense
range if 0—s;<nlp’ for all j. In general, the nullspace and cokernel of (11)« consist of
polynomials and are of dimension

k
2d,,<—6+tj—%)—d,,<—6+sj——n-) (1.10)
k

n n
Zd,,(a—s,— ;,—)—dp(d—tj— ;) (1.11)
respectively.

THEOREM 4. If (1.7) and (1.8) hold with C";p=0 for all |a|<t;—s;, |B|<s;, and i,

j=1, ..., k, then (t1) is Fredholm if and only if (1.9) holds, and the Fredholm index of
(11) then agrees with that of (T1)w.

As an immediate corollary we obtain the following generalization of the results in
[9] on the nullspaces of systems which are ‘‘classically elliptic’” (t;=l+m, s;=0).
COROLLARY 5. Under the hypotheses of Theorem 4, the nullspace of
AH->H

is finite dimensional, where H} =[I'.‘=l H?, H?, denoting the classical LP-Sobolev space of
J J

order t; in R".
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2. Lemmas on convolution operators

We consider functions E,,(x) of the form

Ey(x) = Qx)|x|™" o1

E, (x) =Ty x)+I(x) log |x], m=1

where Q, Iy, and I’y are all in C™(R™\({0}); Q is homogeneous of degree 0 and has
mean value 0 on the unit sphere; Iy is homogeneous of degree m—n; and T, is a
homogeneous polynomial of degree m—n if n is even and m—n=0, otherwise I';=0. Let
T be the convolution operator defined by

Tu=E, *u

The following lemma is a special case of Theorem 2.11 in [6]. (We should note here
that there is a gap in the proof of that theorem; namely, it does not include the case
B>—n/p and B+m—n/p EZ\N. However, this gap can be filled with an easy applica-
tion of standard interpolation theorems, and so the theorem is true as stated.)

LEMMA 2.1. If lEN and 6 €R satisfies m—n/p<d<n/p', then

T:vvﬁé - “ﬁ;m,d—m

is bounded.

We shall also require the following generalization.

LEMMA 2.2. For a€N", IEN, and yER let r=m—la| and suppose (i) |a|>0,
(ii) I4+r=0, and (iii) r—n/p<y<nlp'. Then

FT: W, — W,

ry-r

is bounded.

Proof. If r=0 then 3°Tu=E, % u where E;=3°E,, is of the form (2.1), so Lemma
2.1 may be applied. If r<0 write 3°T=38"3°T3" where 7;EN" satisfy |r)|+|r2|=—r and
—nlp<y+|t,|<nip’. Then |8|=m and by the r=0 case, FT:Wr_, . —>Wi . .. is

bounded, so obviously 8"8*T6™: W, —W,,, . _ is bounded.

ry—-r

9— 838282 Acta Mathematica 150. Imprimé le 30 Juin 1983
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3. Proof of Theorem 3.

Let m=Zj’.‘= 1t—s; and A= det (A,) which is an elliptic constant coefficient differential

operator, homogenous of degree m. Let °°A., be the matrix formed by the cofactors of
A, so that

“A A=A, CA =A_T

where I is the identity matrix. Note that (“°’A.); is either zero or homogeneous of
order m—t;+s;.

Now if u=(uy,...,u) is in the nullspace of (11)w then Aolu= A, ALu=0 so
Awu;=0 for each j. Since Wf;yd_,jcy' the space of ‘‘tempered distributions,’’ the

Schwartz theory of distributions implies that ; is a polynomial which must be of degree
<—0+t;—n/p in order to be in WZ,(,_,J .Hence the nullspace of (1) is contained in

k
H Poly (—6+tj— l)
=1 p

and so is finite dimensional. In particular, if 6—¢;>—n/p for all j then (1) is injective.
Similarly, the dual map to (1) is

AL WE’;,—&H - WE’(,—&H ()=

where W2, _,,, and W?, _,. denote the dual spaces of W?,  and W% ,_, respectively,

and A% is a system of operators satisfying (1.7) for some system of orders (t*, s*). By
duality, W’","_t, ch.?' . Thus the argument above shows that if u=(u;, ..., u;) is in the

nullspace of (1)% then each u; is a polynomial of degree <d—s;—n/p’. Hence the
nullspace of (t1)% is contained in

k
H Poly (d—s,.—— l,)
j=1 p

and so (11). has dense range if d—s;<n/p’ for all j.

Now to show (1) has closed range we may assume that the ¢; and s; are arranged
so that s,<...<s; and t,<...<t,. Ellipticity of A then implies ¢;=s; for every j. Hence
we find that

m+s; 21 for all j. @3.1)
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We first control the range of (11). in the case of

—0+s+m— 24N if6—s—m<—-L2
p p 3.2)
O—s——&N if 6—s;—m>—2.
p p
By Theorem 1
Aw : Wg,+m,6—s,-—m - Wg,,d—s,» (33)

is Fredholm if and only if (3.2) holds, so let us fix 6 satisfying (3.2) for all i. Let T; be a
Fredholm inverse for (3.3), and T the diagonal matrix with entries T;. ThenA,-“A,-T=

A.I-T=I+P where P is a projection of W? ,_ onto a complement of the range of Al

in W, ,_.. Hence the range of ()« is closed and we have proven

LEMMA 3.1. If d satisfies (3.2) for all i, then (1T) is Fredholm.

In comparing (3.2) with (1.9), note that if for some j we have 6—t;<—n/p and
~6+1;—n/p €N, then —é+1,—n/p cannot be an integer so (3.2) will be satisfied for all i.
Similarly, the first line of (3.2) holding for some i implies (1.9) for all j. On the other
hand, if 6—s;—m>—n/p and d—s;,—n/p’ €N, then by (3.1) we have 6—t;>—n/p so we
have proved

LEMMA 3.2. If 0 satisfies (3.2) for all i, then it satisfies (1.9) for all j.

By the above remarks, d can satisfy (1.9) for all j but not (3.2) only if for all j

6—1,>— = and 6—s;— — &N (3.4)
p p

and for some i

6—s—m<—-= and —6+s,~m—- €N (3.5)
p p

But (3.4) and (3.5) imply 6—s;—n/p’ €EZ\\N and in particular

<s-s,<;§‘7 (3.6)
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for all j. By monotonicity of the s; we can find iy such that (3.5) holds for all i=i,. In
fact, together with (3.4) we find
;<s;+m for all i=i, and all j

n 3.7
0—s5,—m>—— for all i<i,.
p

Now let Tu=E,, %u where E,, is the fundamental solution of A, of the form (2.1).
The operator “°A.. - TI is then a fundamental solution for A.. In fact, we claim that
A -TI is the inverse for (11). when J satisfies (3.4) and (3.5). We need only show
that for every i and j

AT W o Wy, 3.8)

is bounded. If i<iy then (3.6) and (3.7) imply m—n/p<d—s;<n/p’, so by Lemma 2.1
w, -5 is bounded which obviously implies that (3.8) is bounded. On
the other hand if i=iy then |a|=m—t;+s;, |=s;, and y=0—s; satisfy the hypotheses of
Lemma 2.2, so (3.8) is bounded. Thus we have proved

s+m, 0—s;—m

LEMMA 3.3. If 0 satisfies (1.9) for all j but not (3.2) for some i, then (1) is an
isomorphism.

We conclude, therefore, that (1.9) is sufficient for (7). to be Fredholm.
Next we suppose & satisfies (1.9) and compute the nullity of (11).. Note that

k k
Am:]_[Poly<—a+xj—%) —>]'[Poly(—a+s,.—l). 3.9)
j=1 i=1 p

We claim that (3.9) is surjective. Indeed, if v=(v,, ..., v)) ETI, Poly (— 6+s,—n/p)then v
is in the range of (f1). if and only if Ef.‘=,_[w,.v,-dx=0 for all w=(w,,...,wy) in the
nullspace of (11)%. If v;#0 then d—s;<—n/p, so Poly (6—s;—n/p')={0} implying w,;=0.
Thus we can always solve Au=v for u€ Wy ,_,. For a €EN" with each a; sufficiently
large, (3% Aou=(3*Dv=0 so u is a polynomial. Thus u€ H};l Poly (—é+t,—n/p) prov-
ing that (3.9) is surjective. Since we have already observed that the nullspace of (11)«
is contained in HJ’;, Poly (—d+1;—n/p) this proves (1.10).

Similarly, we derive (1.11) from the surjectivity of

k k
Ax: ][ Poly (a—s,.— -:—) — [ Poly (a—zj— pl)
i=1 Jj=1
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To show that (1.9) is necessary for (1) to be Fredholm, suppose that for some j
we have —0+t—n/pEN or 0—s;—n/p’ EN. Consider the one-parameter family of
operators

A= (x)A (X)W W, (3.10)

defined for —e<r<e¢ where 0<e<l. Since u—(x)°u is an isomorphism of
W} 5.0 onto W7, we conclude that (3.10) is Fredholm if and only if

Aoo : Wf,dﬂ:—t - Wf,6+r—s (311)

is Fredholm, and the index of (3.10) equals that of (3.11). We have seen that A.(z) is
Fredholm for 7+0, and by (1.10) and (1.11) index [A.(¢)]< index [A.(—¢)]. Hence
A(0) cannot be Fredholm, as to be shown.

4. Proof of Theorem 4.

First note that (1.8) with Cj;=0 implies

D AW W W,

la| < 68

is compact by Theorem 5.2 of [6} or Lemma 4.1 of [8]. Therefore we may assume

Q= 2 qg(x)a".

Jot} = t;—s,

Now let @€ CG(R") satisfy @(x)=1 for |x|<l and ¢@(x)=0 for |x|=2, and define
@er(x)=@(x/R) for R>1. From (1.8) with C’;ﬁ=0 we can find R>1 such that for every i,j
and |[B|<s; and |a|=¢—s;
| (x)waﬂqg(x)|<e
whenever |[x|>R. Thus there is a constant C which depends only on ¢, s;, and n for
which
l (x)PP( —%(x))qg(x))| <C-e

holds for all x ER”, ||<s;, |aj=t;—s;, and all i, j. Hence by choosing R sufficiently large,
the norm of

(I~g) 2=(1-g) - Q: W, > W,
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may be made arbitrarily small. Therefore, if ¢ satsifies (1.9) for all j, then we may
choose Ry so that

A=A+ (l-g) Q: Wi = Wi s,

is Fredholm whenever R=R,,.
In terms of a priori inequalities this means that

|ul, < C(|Asu|s+|mul,) 4.1)

for u€ W ;_,, where we have abbreviated the norms in W ;_, and W7 ,__ by |-, and ||
respectively, and where x is a projection of Wy ;_, onto the kernel of A% and thus is

compact. We shall apply (4.1) to (1—g@;z)u and use A=A in the support of (1—g3g) to
conclude

[(1—@3) ul, < CA( — @3g) Ul +|(1—@;g) uly). 4.2)
On the other hand, since @;gru has compact support, standard elliptic estimates [1]
imply
|@sg tly < C(|A@yp U, +|@sg uly). 4.3)
Combining (4.2) and (4.3) yields
|ul, < CUA(1—@sg) ul,+|A@;gul,+ (1= @yp) ul,+|@s5ulo)
< C([(1-@3g) Aul,+|p3p Aul,
+|[A,(1 _(pSR)] u|l+|[A’ ¢3R]u|l (4.4)
(1= @yp) ul,+|@3pul)

where [ , ] denotes the commutator. By Rellich’s compactness theorem,
[A, (1—@R)], [A, @r]): WS 5 WS 5, and @i WP ,_ . — W] , are all compact, so the a
priori inequality (4.4) shows that A:W} ,_,—»W:. , has a finite dimensional nullspace
and closed range, hence is ‘‘semi-Fredholm’’. Furthermore, we may find R, large so
that A.+@g Q is an elliptic system which is semi-Fredholm and

index {A.+@rQ) = index (A) 4.5)

whenever R=R,, although we do not as yet know that (4.5) is finite.
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Now for R= max (Ry, R;) and 0<st=<1 let (pr Q). be the matrix with entries

x(Tx) 2 q’(zx) 8°.

la| = #;—s;

For each 7, A,;=A~+(gpr Q). is an elliptic system of the form (1.1) with coefficients
satisfying (1.8) (since Ao has constant coefficients and A, for 7>0 has coefficients
constant for |x|=2/r). Thus we have a one-parameter family of semi-Fredholm opera-
tors, and so

index (Ag) = index (A)). (4.6)

But Aj=A.+@prQ so (4.5) and (4.6) imply that index (A)=index (A,). However, the
index of Aq is given by Theorem 3: index (Ag)=index (A.) is finite. Hence A is indeed
Fredholm.

In other words, we have shown that if é satisfies (1.9) then (1) is Fredholm and
has the same index as (t1)». Conversely, we can show that (1) is not Fredholm where
its index changes (i.e., where (1.9) fails for some j) by the same method as used for
(1) in Section 3.

References

[1] AGMON, S., DOUGLIS, A. & NIRENBERG, L., Estimates near the boundary for solutions of
elliptic differential equations satisfying general boundary conditions II. Comm. Pure
Appl. Math., 17 (1964), 35-92.

[2] CANTOR, M., Elliptic operators and the decomposition of vector fields. Bull. Amer. Math.
Soc., 5 (1981), 235-262.

[3] CANTOR, M., Spaces of functions with asymptotic conditions on R". Indiana J. Math., 24
(1975), 897-902.

[4] CHOQUET-BRUHAT, Y. & CHRISTODOULOU, D., Elliptic systems in H; s spaces on manifolds
which are euclidean at infinity. Acta Math., 146 (1981), 129-150.

[5] DouGLIs, A. & NIRENBERG, L., Interior estimates for elliptic systems of partial differential
equations. Comm. Pure Appl. Math., 8 (1955), 503-538.

(6] LoCKHART, R., Fredholm properties of a class of elliptic operators on non-compact mani-
folds. Duke Math. J., 48 (1981), 289-312.

[71 McOWEN, R., Behavior of the Laplacian on weighted Sobolev spaces. Comm. Pure Appl.
Math., 32 (1979), 783-795.

[8] MCOWEN, R., On elliptic operators in R". Comm. Partial Differential Equations, 5 (1980),
913-933.

{9] NIRENBERG, L. & WALKER, H., Nullspaces of elliptic partial differential operators in R". J.
Math. Anal. Appl., 42 (1973), 271-301.

Received December 22, 1981



