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1. Introduction

1.1. We shall consider domains D<R? which are of the form GxR' where G is a
domain in the plane R%. The main problem considered in this paper is: When is GXR!
quasiconformally equivalent to the round ball B*? It is well known that this is true if G
is the disk B. Indeed, the sharp lower bound gy=Ko(B*xR!) for the outer dilatation
Ko(f) for quasiconformal maps f: B°XR!—B is explicitly known:

a2
q0=%f (sing)"2dt=1.31102...;
0

see [GV, Theorem 8.1]. We shall show that there is a quasiconformal map f: GX R'-B*
if and only if G satisfies the internal chord-arc condition, which is recalled in Section 4
of this paper. It implies that the boundary of G is rectifiable.

We also show that if G is bounded then K,(f)=gq,, and the equality is possible only
if G is a round disk. For unbounded domains the corresponding lower bound is trivially
one, which is attained when G is a half plane.

It is of some interest to note that although the result deals solely with quasiconfor-
mality, its proof will involve two other classes of maps: the locally bilipschitz maps and
the quasisymmetric maps, the latter notion considered in a suitable metric of the
product space 8*GxR! where 8*G is the prime and end boundary of G.

The main result is proved in Section 5 and the dilatation estimate in Section 6.
Before that we give preliminary results on John domains, quasisymmetric maps, prime
ends and chord-arc conditions. The following auxiliary results may have independent
interest: Theorem 2.9 gives a useful condition for a weakly quasisymmetric map to be
quasisymmetric. Theorem 2.20 gives a sufficient condition for a quasiconformal map to
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be quasisymmetric in the internal metric. In Lemma 6.7 we give a dilatation estimate
for the boundary map of a quasiconformal map at a point of differentiability.

1.2. Notation. Our notation is fairly standard. Thus open balls and spheres in a
metric space are written as B(x, r) and S(x, r). In R” we may use superscripts as B"(x, r)
and $"!(x, 7). We abbreviate

B"(0,n)=B"(r)=B(n, B"0,1)=B5",

§7N0, ) =S =Sr, S7N0,1)=8""

We let H" denote the upper half space x,>0 of R".

A path in R" is a continuous map a: A—R”" of an interval AcR!. The locus of a is
laj=aA. If a is a path or an arc, its length is written as l(a). We let [a, b] denote the
closed line segment with end points a, b€ER”. If E is an arc and if a, b €E, Ela, b] will
denote the closed subarc of E between a and b. The diameter of a set A in a metric
space (X, d) is d(A), the distance between sets 4, BcX is d(A, B). All closures and
boundaries of sets in R” are taken in the extended space R"=R"U {=}. By a neighbor-
hood we mean an open neighborhood. The complement of a set A is [A.

2. John domains

2.1. Definition. John domains were first considered by John [Jo, p. 402]; the term is
due to Martio and Sarvas [MS]. There are plenty of different characterizations of John
domains; see [Vis, 2.17-2.22] and [NV]. We shall adopt the definition based on diame-
ter cigars.

Let EcR” be an arc with end points a, b. For x€ E we set

6(x) = min(d(Ela, x]), d(Elx, b])).
For ¢=1 the open set
cigE, ¢) = U{B(x, 6(x)/c): xEE}

is called a (diameter) c-cigar joining a and b. The terminology differs slightly from that
in [Vis]. In particular, no turning condition is given on the core E of the cigar.

We say that a domain D=R" is a c-John domain if each pair of points in D can be
joined by a c-cigar in D.
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2.2. The carrot property. It is more customary to base the definition of a John
domain on carrots than on cigars. We next discuss the relation between these concepts
and also give a relative version of the carrot property.

Let again E be an arc in R” with end points a, b, and let c=1. The set

carfE, c) = U{B(x, d(Ela; x})/c): xEE} 2.3)

is a (diameter) c-carrot with vertex a joining a to b. We also allow the possibility that E
is an arc in R" with b=o0; then the union in (2.3) is taken over all x€ EN\ {}.

Let DcR” be a domain. We say that a set AcD has the c-carrot property in D with
center x,€D if each x; €A can be joined to x, by a c-carrot in D. Observe that there are
two essentially different possibilities: either xo€D or xy=* €3D. In the first case,
excluding the trivial case D=R", D is bounded: DcB(x,, cd(xy, 3D)).

According to the customary definition, a domain D+R" is a c-John domain if it has
the c-carrot property in D with some center x,€ D. Such domains are always bounded.
Our definition 2.1 gives plenty of unbounded John domains. For example, a half space
is a 1-John domain. The following lemma summarizes the relations between the cigar
and carrot definitions of John domains:

2.4. LEmmA. (@) If D is a bounded c-John domain, then D has the c,-carrot
property in D with some center x, €D and with c,=c(c).

(b) If a domain DcR" has the c-carrot property in D with center xo€D, then D is a
c-John domain.

(c) If D is an unbounded c-John domain, then D has the 3c-carrot property with
center ©.

Proof. We can obtain (a) and (b) by an easy modification of the proof of the
corresponding statements for distance cigars and carrots [Vis, 2.21].

To prove (c), assume that D is an unbounded c-John domain, and let a € D. Choose
a sequence of points x; € D with |x;—a|=3j. Join a to x; by a c-cigar cig(E}, ¢) in D. Let b;
be the first point of E; in S(a,j) and set F;=Ej{a, b;]. Then

d(F)<2j<|b—x|<d(E[b; x]).
Hence

cariF;, ) = cigdE;, ¢) < D. @2.5)
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For k=1, ..., J, let by be the first point of F;in S(a, k). By the compactness of S(a, k)
and by the diagonal process, we find an infinite subset N, of the set N of positive
integers such that for each kEN, by—y€ S(a, k) as j—»* in Nin [k, ©). For every kKEN
we can then choose j(k)=k+1 such that for u,=byy, , and vi=by) ., We have

l,—y ] < V6, 0=yl <1/6c. 2.6)

Set Ay=Fj,[us, vl for k=2 and A,=Fjla, vil. Assuming D*R" it is easy to see that
the arcs Ay, [v,, 4,], Ay, [v,, 4], As, ... contain a path from a to «. Leaving out some
loops we obtain an arc E joining a to ©. We show that car(E, c)cD.

Let xEE and write 3(x)=d(E([a, x]). We must show that B(x, 6(x)/3c)=D.Let first
x €A, for some k. The case k=1 is clear. Assume that k=2 and set 8y(x)=d(F, wwola, x).
Then

O(x) < d(A,[u,, xP+2j(k) < 0,(x)+20,(x) = 30,(x).
By (2.5) this implies
B(x, 6(x)/3c) = B(x, 0,{x)/c) = D.

Next assume that x € [v,, u,,,]. Now 8(x)<2j(k)<2vy). Since (2.6) gives |x—uvyj<
[x~vi=<1/3c, we obtain

x—v|+8(x)3c < 1/3¢+20,(v)/3c <4, (v )c.
By (2.5) this yields
B(x, 6(x)/3¢) = B(vg, 0u(vi)/c) = D. a

2.7. Remark. A more thorough analysis on various cigar and carrot conditions will
be given in [NV], where we also consider domains containing the point at infinity.

2.8. Terminology. We recall the definition of quasisymmetry [TV]. Let X and Y be
metric spaces with distance written as Ja—b|, let 7: [0, ©)—[0, ) be a homeomorphism
and f: X—Y an embedding. If |a—x|<t|b—x| implies |f(a)—f(x)|<n(?)(f(b)—f(x)| for
all a,b,x€X and >0, f is #n-quasisymmetric or 7-QS. If H=1 and if
la—x|<|b—x| implies |f(a)—f(x)|<H|f(b)—f(x)|, f is weakly H-QS. An 7-QS map is
weakly H-QS with H=(1). The converse is true for certain space. We give in Theorem
2.9 a result in this direction which is related to but more useful than [TV, 2.15].

The main result of this section is Theorem 2.20. It states that under certain
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conditions, a QC map is QS in the internal metric. This result has also applications in
the theory of John disks [NV]. Therefore we give it in a form which is stronger than
what is actually needed in this paper.

As in [TV] we say that a metric space X is k-homogeneously totally bounded or -
HTB if k:[1/2, ®)—[1, ») is an increasing function and if, for each a=1/2, every closed
ball B(x, r) in X can be covered with sets A,, ..., A, such that s<k(a) and d(Ap<rla for
allj. If £>0 and if A is a bounded k-HTB set whose points have mutual distances at least
t, card A<k(d(A)/r).

2.9. THEOREM. Suppose that X and Y are k-HTB metric spaces and that X is
pathwise connected. Then every weakly H-QS map f: X—Y is n-QS with n depending
only on H and k.

Proof. Let a,b,x€X be distinct points with |a—x|=t1]b—x|. We must find an
estimate

|f(@)—~f)| < n@0)|f6)—f ()] (2.10)

where 7(f)—0 as r—0. We know that (2.10) is valid for t<1 with n(f)=H.

Suppose first that £>1. Set r=|b—x| and choose an arc y from x to a. Define
inductively successive points ay, ...,a, of ¥ so that ay=x, a;,, is the last point of y in
B(aj,r), and a, is the first of these points outside B(x,|x—af). Then |a;—aj=r for
0=<i<j<s. Since X is k-HTB, we have

s < k(x—al/r) = k().
Since fis weakly H-QS, we obtain
|fla)~f(x)| < H|f(b)~f(x),
and by induction
|fla;, ) —fa)| < H|f(a)—f(a;_ )| < H'|f(b)—f ()|
for 1<j<s—1. This implies
|fla)—fx)| < sH'| f(b)—=£(x)|.

Since |a—x|<|a,~x|, we obtain (2.10) with n()=sH**', s=k(1).
Next assume that t<1. Set r=|x—b| and choose points b;€ S(x,37r), j=0, with
by=b. Let s be the smallest integer with 37*r<|x—a|. Then
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In(1/
szanl3—’)-= 5. @.11)

If 0<i<j<s, we have 2|x—b,|<|b,—b,|, which implies that |a—b/|<|b,—b;|. Hence
If(@—f(b)| < HIf(b)~fb)|, |f)—f(b)l<H|f(b)—f(b)l,
and thus
|f@)—f)| < 2H|f(b)—f(by|.
On the other hand, |b,—x|<|b—x| implies that the points f(by), ...,f(b,_} lie in the ball
B(x, H|f(b)—f(x))). Since Y is k-HTB, we get
s SkQH|f(B)=f | f(@)~f()).

Since s¢(f)—> as t—0, this and (2.11) yield (2.10) with some #(f) converging to 0
together with ¢. O

2.12. The internal metrics. Let DcR” be a domain. For a, b €D we write
Opla, b) =infd(a), Aipla,b)=infl(a),

where the infima are taken over all arcs (equivalently paths) joining a and b in D. Then
Jp and Ap are metrics of D consistent with the usual topology. In this paper we prefer to
work with 6, whose boundary behavior and some other properties are simpler than
that of Ap. For this reason we also work with diameter cigars and carrots.

We let d denote the euclidean metric. Then d<dp<ip.

2.13. LEMMA. Let DcR” be a domain and let EcD be connected. Then the
diameters Op(E) and d(E) are equal.

Proof. Trivially d(E)<6p(E). Let £>0 and choose a domain Dq such that EcDgcD
and d(Dg)<d(E)+e¢. Let a, b€ E and choose an arc a joining a and b in D,. Then

Opla, by d(a) <d(Dy) < d(E)+e.
Hence d(E)<d(E)+¢. Since ¢ is arbitrary, the lemma follows. O

2.14. LEMMA. Suppose that D<R" is a domain, that AcD has the c-carrot
property in D and that e is a metric of A with dpse<d. Then (A, e) is k-HTB with
k=k, ,.



QUASICONFORMAL MAPS OF CYLINDRICAL DOMAINS 207

Proof. Consider a closed ball B,(x, r) in the metric e, where x €A and r>0. Suppose
that xi,...,x,€B.(x, ) with e(x, x;)=r/2 for i#j. It suffices to find an upper bound
s<s¢(c, n).

Choose carrots cargE;, c)=D joining x; to the center x,. Since Oy(x; xj)zr/2,
d(E)<r/4 for at most one j, and we may thus assume that d(E)=r/4 for all j. We can
then choose points y; € E; such that the subarcs F;/=E]x;, y;] satisfy d(F;)=r/8. Then the
balls B;/=B(y;, r/8c) are contained in D. We show that these balls are disjoint. If B; meets
B; for i=j, the set y=F;Uly;, y]JUF; joins x; and x; in D, and hence J,(x;, x)<d(y). Since
Oplx, xj)Br/Z and since '

d(y) <d(F)+d(F)+|yi—y)| <ri8+rl8+rldc<ri2,
this gives a contradiction. It follows that |y,—y|=r/4c for i#j. On the other hand,
yi—x| < y—x|+x—x| < d(F)+elx, x) < r/8+r=9r/8.

Since (R", d) is HTB, this gives s<sy(c, n) as desired. d

2.15. Terminology. Suppose that Cy and C, are disjoint continua in R”, that >0 and
that

d(Co, Cy) < t min(d(Cy), d(C1)).-

Then the family I'=A(C,, Cl;l'l”) of all paths joining Cy and C, in R" satisfies the
standard modulus estimate

M(@) = ¢o(t, n) >0, (2.16)

where the function r—¢(t, n) is a decreasing self homeomorphism of the positive real
line (0, »); see e.g. [GM, 2.6].

We say that a pair of disjoint continua Cy, C; in a domain DcR” is t-standard in
D, >0, if

8,(Cy, C) < tmin(d(Cy), d(C))).

Let ¢:(0, ©)—(0, ») be a decreasing homeomorphism. A domain DcR" is called -
broad if for each >0 and each t-standard pair (Cy, C;} in D, the path family
I'=A(C,, Cy; D) satisfies the inequality

M®D) = ¢(t). 2.17)

14—898283 Acta Mathematica 162. Imprimé le 25 mai 1989
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In this paper we need only the case where D is a half space, for which (2.17) is well
known to be true for ¢(f)=gq(t, n)/2. More generally, if D is a ¢-QED domain in the
sense of [GM], D is ¢-broad with ¢p=¢(?, n)/c. The domains B”XR""? are not broad for
1<p=n—1. The reader interested only in this paper can skip Lemma 2.18 and read the
proof of Theorem 2.20 assuming that the domain D is a half space, in which case dp=d.

2.18. LeMMA. Let DcR" be a ¢-broad domain and let e be a metric of D with
d<e<Op. Then (D, e) is k-HTB with k=ky, ,.

Proof. We consider again a closed ball B,(x, r) and points x;, .o, Xs EB,(x, r) with
be;—x,|=r/2 for i#j. We must show that s<so(¢, n).

Choose a positive number g=g(¢, n)<1/16 such that

an_l(ln 1-4q

. )Hs o(1), 2.19)
q

where w,,_, is the area of $"~. Join x; to x by an arc E;cD. Since E,;UE; joins x; and x; in
D, we have

r2<e(x, x) <0px;, x)< d(E)+d(E)

for i#j. Hence d(E)<r/4 for at most one i, and we may thus assume that d(E;)=r/4 for
all i. Choose subarcs a; and g; of E; such that x; is an end point of a; and

d(a) = d(B) = 6p(a, B)=gqr.

Since g<1/16, this is possible. Then (a;, 8) is a l-standard pair in D, and hence
M(T)=¢(1) for T';=A(a, B;; D). Setting B,/=B,(x;,r/4), a;=m(B;) and [} ={y €L [y|<Bi},
we have

M) <afgn)™

We next estimate M(I;\T'¥). If y €[, \I}, there is y €|y| with e(y, x;)=r/4. Since
a;Uly| joins x; and y; in D, we have

Op(y, x) < d(a)+d(|y)) = gr+d(ly)).

Since e<Jp, this yields d(|y|)=r/4—qr. Hence y meets {B(x; r/8—qr/2). On the other
hand, d(a;))=gr implies that a;cB(x;, qr). Hence y also meets B(x;, gr), and we obtain

— 1-n
M(ri\rr)sw,,_,(ln”—qu’-/l) < ()2
q
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by (2.19). Consequently,
o) S MT)<sMTH+MI\TH) <algr)"+¢(1)/2,

and hence a;=q"r"¢(1)/2.
Since e(x; x)=r/2, the balls B; are disjoint. They are contained in the ball
B.(x, Sr/4)cB(x, 2r), and hence

Q2= 4z sq"r (D12,

i=1
where 2, is the volume of B". This gives the desired bound

s<2™1Q Ig" (1) = 54(¢p, n). O

2.20. THEOREM. Suppose that f:D—D' is a K-QC map between domains
D,D’'cR", where D is ¢-broad. Suppose also that AcD is a pathwise connected set
and that fA has the ci-carrot property in D' with center y,€D. If yo+= and hence
YED’, we assume that d(A)Sczd(f"(yo), 3D). If yy=2, we assume that f extends to a
homeomorphism DU {o}—D’'U{®}.

Then f|A is n-QS in the metrics dp and dp with n depending only on the data
v=(cy,¢2, K, ¢, n).

Proof. For brevity we write =0p and é'=0p. From Lemmas 2.14 and 2.18 it
follows that there is k=k, such that (fA, 6') and (A, d) are k-HTB. By Theorem 2.9 it
suffices to show that f|A is weakly H-QS with H=H(v). Let a, b, x be distinct points in
A with d(a, x)<d(b, x)=r. Set

a =f@), b'=fk), ¥=fx), a=0@,x), B=0'®x).
We must find H such that a<Hf. We may assume that D+R"+D’. We set
t=d(x,8D), t'=d(x',oD’"),

and let M;=1, g;<1 denote positive constants depending only on v.

We shall consider 5 cases. The first two are auxiliary cases. The cases 3, 4, 5 cover
the whole situation. If y,=0o0, Case 3 is the general case.

Case 1. t=2r. Now a and b lie in the ball B=B(x,3r/2), and d(a, x)=|a—x|,
o(b, x)=|b—x|=r. By [Vis, 2.4] f|B is n-QS in the euclidean metric with =7 ,. By
[TV, 2.111 /B is of M;-bounded turning, M,=2#5(1). This implies
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%s%’)—',‘f_—x%'st(:z_j) <M, ().

Case 2. B(x',a)cD'. Now a=l|a’—x'|. We may assume that f<a and thus
B=|b'—x'|. Let R’ be the ring B(x', a)\B(x', B). The components of the complement of
R=f"'R’ are Cy=f"'B(x',B) and C;= [f'B(x’, a). The continium C; is bounded and
contains x and b while C, is unbounded and contains a and [D. If [x, b] meets iD,
then d(C,, C;)<|b—x|<d(Co). But this is also true if [x, bJ=D, because then

d(Cy, C) < la—x| < 8(a, x) < (b, x) = |b—x| < d(Cy).

Let I'z be the path family associated with the ring R. Then the Teichmiiller estimate
[Va,, 11.9] gives M(I'g)=q,. Hence

@, <KM(Tg)= Kw,,_l(ln %)H’
which gives the desired bound a<H;j with H=H(v).

Case 3. 8(x, x))=2r where x,=f"'(yy). If yo=2, then xo=, and this is the general
case. Join x' and b’ by an arc CocD’' with d(Cyp)<28. Join a’ to y, by a carrot
cardE, c)eD’. For y€EEN\{a',y,} set o(y)=d(Ela’,y]). Then B(y,o(y)/c)cD’'. We
consider two subcases.

Subcase 3a. There is y EE with [y—x'|<o(y)2c;. Now 7'>0(y)2c;. Let =6
[0, 1)—>[0, =) be the well-known distortion function for QC maps {Vi, 18.1], and set
t0=6"'(1/2). If |b' —x'|<ty7’, then |b—x|<7/2, which implies r<t/2, and we have Case 1.
Assume that |b'—x'|>17’. Now [x’,y]UE[y, a'] joins x’ and a’ in D’, and hence

a < ¥’ —y|+o(y) < a(y)2e1+o(y) <20(y).

Since
ﬂ =2 |b’-—x’| 21,1 > ty0(y) 2cy,

we obtain a/B<4c,/t,.
Subcase 3b. ly—x'|=a(y)2c, for all yEE. Now ConE=®. Consider the path
families T'=A(C,, E; D) and I'=f"'T". By Lemma 2.13 we obtain

d(f7'Cp=0(fT'Cp=dx,b)=r,
d(f'E) = 8(f 'E) = 8(xy, a) = 8(xo, x)—0(a, X) = 2r—r =7,

o(f'Cp, f'EYyséla,x)sr.
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Hence the pair ( f“CO, f'E) is l-standard in D. Since D is ¢-broad, we have
MD=ze¢).
We next show that the number

8,= inf{iql’]l: Ve r'}

d(Cy

is bounded by a constant M,. We may assume that d,>2. Then each y €I meets the
spheres S(x’, d(Cy)) and S(x’, 69 d(Cy)/2), which implies

) 1-n
M) Swn_l(ln-2—°> :
Since M(I'")=M(T)/K=¢(1)/K, this yields do<M,.
Since d(Cy)<28, there is yET"’, with d(jy)<2M,f. Let y€|y|nE. Then

0'()’)/26'1 = |y—x'| = d(|‘y|)+d(C0) < 2M2ﬂ+2ﬂ,
and hence

a<d(Co)+d(y)+0o(y) <2B+2M;B+4cy(My+1) B = M3 5.

This completes the proof of Case 3.

In Cases 4 and 5 we assume that y,3c. Then y,€ D', x, € D and d(A)<c; d(xo, 3D).
Using an auxiliary similarity we may assume that d(yy, dD')=1. For every y€fA there
is a carrot carg(E, c) joining y to y,. Then B(y,, d(E)/c)cD’, which implies d(E)/c;<1
and thus 6'(y, yo)<c,. Consequently, we have always

a<2c. (2.21)

Case 4. |x’'—yo|<1/2. As usual, we let L(x, f,r) and I(x, f, r) denote the supremum
and infimum of |f(z)—f(x)| over zES(x,r)ND. Writing ry=Ix",f"',1/2) we have
B(x, r))cD. If r<r,, then d(a, x)<r implies a€B(x, r;), and hence a' €B(x', 1/2)cD,
which yields a=|a’—x’|<1/2, and we are thus in Case 2. Choosing ao, b € S(x, ro) with
|[fay)—x'|=L(x,f, r,) and |f(by)—x'|=U(x,f,ro) we have Case 2 also for the triple
(x, ao, by). Hence

112 = L(x,f, r) < Hy l(x, f, ro)

with H1=H1(U). If r>ry, then
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Bzl f,n>Ux,f,r)=12H,,

and hence (2.21) gives a/f<4c,H,.

Case 5. (x, x0)<2r and |x’'—yo|=1/2. We may assume that $<1/8, since otherwise
(2.21) gives a/f=<16c,. Join x' and b’ by an arc CocD’ with d(Cy)<2B, and set
C,=l§(yo,1/4). We consider the path families I''=A(Cy, C;;D') and T'=f"'1". Since
Co,cB(x',2B) and d(x', C;)=1/4, we have

M) < w,,_,(ln #)1_". 2.22)

Since in view of Lemma 2.13,

d(f'C)=0(f'C)=db,x)=r,
d(f'C) = U3y, f', 1/4) = 67'(1/4) d(x,, 3D) = 67'(1/4) 6(A)/c,
=07'(1/14) 6(b, x)c,=rIM,,

O(f7'Cy, f71C) < O(x, xp) <2,

the pair (f7'C,,f"'C,) is 2M,-standard in D. Since D is ¢-broad, we obtain
M@)=z¢(2M,). Since M(I)<KM("), this and (2.22) yield f=q;. By (2.21) we have
alf<=2c/q;. O

2.23. Finite connectedness. We recall that a domain DcR" is finitely connected at
a boundary point b if b has arbitrarily small neighborhoods U such that UNnD has only a
finite number of components. Equivalently [Vi,, 17.7], each neighborhood U contains
a neighborhood V such that V meets only a finite number of components of UnD. If
this number of components is one, D is locally connected at b.

A somewhat stronger form of the following result will be proved in [NV, 2.18]:

2.24. LEMMA. A John domain DcR" is finitely connected on the boundary. An
unbounded John domain is locally connected at ».

3. Prime ends

3.1. Suppose that f: B"—D is a QC map. Then f can be extended to a homeomorphism
f*: B"—D* where D* is the prime end compactification of D, obtained by adding the set
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9*D of prime ends to D. This idea of Carathéodory has been extended from the plane to
higher dimensions by Zorich [Zo] and by Nikki [N4]. We present a simple self-
contained version, which is valid in the special case where D is finitely connected on
the boundary; see Section 2.23.

Suppose that the domain D<R" is finitely connected on the boundary. An endcut
of D is a path a:[a, b)—D such that a(t)—z€3D as t—b. We write z=h(a). A
subendcut of a is a restriction to a subinterval [a;, b]. If U is a neighborhood of #(a),
there is a unique component A(U, a) of UN D containing a subendcut of a. Two endcuts
a and B are equivalent, written a~8, if A(a)=h(B) and if A(U, a)=A(U, B) for every
neighborhood U of A(a). The equivalence class [a] of a is a prime end of D, and their
collection 8*D is the prime end boundary of D. We write D*=DUd*D. There is a
natural impression map ip: D*—D, defined by ip(fa])=h(a) for [a]€E3*D and by
ip|D=id. If D is locally connected at a point € 3D, i;,' (b) consists of a single point,
which is often identified with b. In particular, if 3D is homeomorphic to $"!, we can
identify 8*D=2aD.

Suppose that f: B"—D is QC. By [V4,, 17.10, 17.14] f has a continuous extension
f:B"—D. Every point-inverse f~!(y) is totally disconnected. Indeed, if Ecf~'(y) is a
nondegenerate continuum, the family of all endcuts a of B" with s(a) € E has infinite
modulus while its image is of modulus zero.

If o is an endcut of B", fa is an endcut of D. We show that A(a)=h(g) if and only if
fa~fB. If h(a)=h(B)=b and if U is a neighborhood of h(fa)=h(fB)=f(b), then there is
r>0 such that f{B"nNB"(b,r)] is contained in a component of UND and contains
subendcuts of both fa and fB. Hence fa~fB. Conversely, let fa~f8 and suppose that
h(@)+h(B). Then h(fa)=h(fB)=y. Since f~!(y) is totally disconnected, there is a
compact set FcB"\ f~!(y) separating h(a) and h(8) in B". We may assume that
lajnF=@=|B|n F. Choose a connected neighborhood U of y such that UNfF=@. Since
SfIFND] separates fa and fB in D, A(U, fa)+A(U, fB), a contradiction.

If B is an endcut of D, then 8B"n clf ~!|8| is a connected set in f~'(h(B)), hence a
point. Thus f~'8 is an endcut of B". It follows that f has a unique bijective extension
f*: B">D* satisfying f*([a])=[fa] and hence ipf*=f.

If a:la, b)—D is an endcut of D, we say that a joins a(a) and [a]=u€d*D.
Similarly, an open path a in D joins elements u, v € 3*D if o has subpaths representing u
and v. We can then extend the definition of the internal distance dp(a, b) (see Section
2.12)to all @, b in Q=D*\i;'(»). It is easy to see that d is a metric of Q. We show that
dp is consistent with the topology of @, that is, f* defines a homeomorphism f*!g—Q
in Op.
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Let u€Qn3*D, set b=f*"'(u), and let £>0. Since f is continuous, there is
U=B"NB"(b, r) such that fUcB"(ip(u), £/2). Then 8p( Ax), u)<e for all x € U. Hence f* is
continuous at b in 8p. Next let U be as above, and choose a compact set
FcB"™\ f~'(ip(u)) separating b and S(b,)NB" in B". Then d(fF,ip(u))=g>0. Since
Op(y, u)<q implies f*~'(y) €U, f* ! is continuous at « in p.

3.2. Cylindrical domains. Let G be a domain in R" and let D=GXR'!'cR"*!. We
assume that G is finitely connected on the boundary. Clearly D has also this property.
We shall derive a relation between the prime ends of G and D.

Suppose first that G is bounded. If a is an endcut of G and if tER!, then
als)=(a(s), ) defines an endcut a, in D with A(a)=(h(a),?). We obtain a natural
injective map j: G*xR!—-D* with jjlGXR'=id and j([a], f)=[a,]. Moreover, the image
imj is the set Q,=D*\ip'().

The metric ¢ of G* and the euclidean metric of R! define the product metric
o((x, D, (x’', 1)) = O5(x, x")+|t—1'| (3.3)
in G*XR!. We show that j satisfies the bilipschitz condition
0(z, 2)2 < 0,(j(2),j(z")) <20(z, 2') (3.4)

for all z=(x, £),z'=(x',¢') in G*XR'.

Let P;: DG and P,: D—R! be the natural projections. If a joins j(z) and j(z') in D,
then P;a joins x and x' in G, and hence d(x, x')<d(Py|al)<d(ja]), which implies
O¢(x, x")<0p(j(2),j(z')). Furthermore, [t—¢'|<d(Pjja))<d|al, and hence |t—¢'|<
0p(j(2),j(z')). The first inequality of (3.4) follows.

Next assume that 8 joins x and x’ in G. Then j(z) and j(z') can be joined by a path «
consisting of subpaths of 8, and 8, and of a vertical line segment of length |t—¢'|. We
have

0p(J(2),J(z") < d(|a]) < 2d(B])+[t—1'|,

which yields the second inequality of (3.4). The set D*\ Q,=i;'(«) clearly consists of
two elements, represented by endcuts a;,a;:[0,*)—D, defined by a,(f)=(xp,1?),
ax(f)=(xy, —t) where x4 € G is arbitrary. We set [a;]=+, [ap]=—. Then D* can be
identified with (G*XR')U {~, +x},

Next let G be unbounded. Write Qc=G*\i;'(x). As above, we obtain a natural
bilipschitz map j: QgXR'—sD*. Now D is locally connected at ®, and D*\imj consists
of the single point ®=i;!(). We can thus identify D*=(QcXR")U {}.
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4. Chord-arc conditions

4.1. The CA condition. We first recall the ordinary chord-arc condition. Let (X, d) be a
metric space, let X=X U {0} be its one-point extension, and let AcX be a Jordan curve
(topological circle). Suppose that A is locally rectifiable, that is, every compact subarc
of AN\ {}is rectifiable. If a, bEA\ {=}, we let a(a, b) denote the length of the shorter
component of AN\ {aq, b}. If c=1 and if

o(a, b) <cd(a, b)

for all finite a,b€EA, we say that A is a c-chord-arc curve, or briefly, A is c-CA.
Equivalently, A is CA if and only if A is a bilipschitz image of S' or R'.

4.2. The ICA condition. We next recall the internal chord-arc condition from
[Vé;]. Let D be a simply connected proper subdomain of R? and let D be finitely
connected on the boundary. Then the prime end boundary 8*D of D is Jordan curve. If
a is as subarc of 3*D, the impression ip|a is a path in R? and has a well-defined length
l(a), possibly infinite, called the length of a. Suppose that ip(u)=% for at most one
u€3*D, then also written as «, and that l(a)<x for every compact subarc of
3*D\\{}. Then 3*D is said to be locally rectifiable. If u, v €3*D\ {*}, we let ap(u, v)
denote the length of the shorter component of 3*D\ {u, v}. Let 8p(«, v) be the internal
distance as in Section 3.1. If c=1 and if

op(u, v) < cdp(u, v) 4.3)

for all u, v€3*D\ {=}, we say that D satisfies the internal c-chord-arc condition, or
briefly, D is ¢-ICA.

In [V&,] we used a slightly different definition where dp was replaced by the metric
Ap (see Section 2.8). Since dp<ip, (4.3) implies the c-ICA condition of [Vi,]. As noted
in [V4,, 2.6], the converse is also true, up to the constants. However, the converse is
not needed in this paper. The ICA condition has also been considered in [La] and in
[Po].

We next show that the ICA condition is a special case of the general CA condition:

4.4. LEMMA. Let D be a simply connected proper subdomain of R? and let D be
finitely connected on the boundary. Then D is c-ICA if and only if 3*D is c-CA in the
metric Op.

Proof. Suppose that ip(u)=c for at most one u€3*D, also written as «. It
suffices to show that if acd*D\ {®} is a compact arc, then its length [s(a) in the
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metric dp is equal to l(a). Let u, v €3*D\ {}. If a path 8 joins 4 and v in D, then
lip(w)—ip(v)|=<d(|B]). Hence |ip(u)—ip(v)|<dp(u, v). It follows that l(a)<ls(a).

Conversely, if y=8*D\ {«} is an arc with end points u, v and if £>0, then there is
a path f joining « and v in ipy+B"(g). Since

d(B) < dlipy)+2e < Uy)+2e,

we have dp(u, v)<I(y). If the points ug, ..., i divide a to subarcs ay, ..., a;, we obtain

k k
> Splu, u_)< D, Kap) = l(a),
j=1

j=1

and thus /;(a)<i(a). D

5. The main theorem

5.1. Terminology. A homeomorphism f: D—D’ between domains in R" is of L-bounded
length distortion, abbreviated L-BLD, if

la)/L<l(fa)=<Ll(a)

for every path a in D, or equivalently, each point in D has a neighborhood in which f'is
L-bilipschitz. More general discrete open BLD maps are considered in [MV]. An L-
BLD homeomorphism is K-QC with K=L""!. Compared with QC maps, the BLD maps
have a pleasant behavior in cartesian products; the product of two L-BLD maps is
again L-BLD.

Suppose that for each c=1 there are given conditions A(c) and B(c). We say that A
and B are equivalent up to constants if for each c=1 there is ¢;=1 such that A(c)=B(c;)
and B(c)=>A(c,). The parameter can also be written as K or L.

We next give the main result of this paper:

5.2. THEOREM. Let G be a simply connected proper subdomain of R*. Then the
Sfollowing conditions are equivalent up to constants:

(1) There is a K-QC map B*—>GxR'.

(2) G is finitely connected on the boundary and c-ICA.

(3) There is an L-BLD homeomorphism Gy—G where Gy is either a round disk or a
half plane.

(4) There is an L-BLD homeomorphism GoXR'>GXR!, where G, is as in (3).
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Proof. The implication (2)=-(3) was proved in [Vi5;, 3.4, 3.7, 3.8, 3.11]. In fact, it
was proved in the seemingly stronger form in which the ICA condition was given in the
metric Ap instead of 6. The unbounded case had been proved earlier by Latfullin {La),
which was unfortunately overlooked in [Vi5].

If f: Gy—G is the L-BLD homeomorphism given by (3), then fxid: GoXR'>GxR!
is L-BLD, and hence (4) is true. Since GoxR' is QC homeomorphic to B*, (4) clearly
implies (1). It remains to show that (1) implies (2).

Replacing B? by its Mobius image H® we assume that there is a K-QC map
fH*>GxR!'=D. We first show that G is a c;-John domain. Here and later, we let
€1, ¢y, ... and qy, g, ... denote constants depending only on K with ¢;=1 and 0<g;<l.
Let x,€R?, let r>0, and suppose that B*(xy, 7)\\G has two components E;, E; meeting
B%(x,,rlc). By [NV,4.5] it suffices to find an upper bound c<c,. Now E;x{0} and
E,x {0} are contained in different components of B*((xy,0),)\D. Thus [GV, Theorem
6.1] gives an estimate c<e™X where M is a universal constant. Hence G is a c,;-John
domain. From 2.24 it follows that G is finitely connected on the boundary. We divide
the rest of the proof into two cases:

Case 1. G is bounded. We extend f to a homeomorphism f*: H>—D*; see Section
3.1. We identify D*=(G*XR')U{—, + =} as in Section 3.2. Performing an auxiliary
Mobius transformation of R®> we may assume that f*(0)=—o and f*(®)=+c.

We may assume that G has the c;-carrot property in G with center x,€G; see
Lemma 2.4(a). We may normalize d(xy, dG)=1. Then

Oglx, x9) < ¢, (5.3)

for all x€G. For r>0 set S, (r)=H>n S%r). The projection of f5,(r) into the x;-axis is an
interval or a point. Let ro<r, be its end points. An easy modification of the proof of
[GV, Lemma 8.1] gives the estimate

r—ry< ¢y = (Km(G)lp(1)"? (5.4)

where (1) is the same universal constant as in [GV].

Choose positive numbers r<r' such that r;=0, ry=1. We may assume that r=1. We
want to apply Theorem 2.20 to the map f: H*—D with A=H>n(B(r')\B*(r)). Choose
20€ H*n 5% such that yo=f(zo) is of the form (xy, #); then ry<f,<0. We show that fA has
the cs;carrot property in D with center y, and with ¢;=1+c¢,+2c¢;. Assume that
yi=(x,, 1,) EfAcG X[ry, r1]. Join x; to xo by a 2-dimensional carrot car/Ey, c)=G. Set

E =EyXx{t,}, E,={xy}X[ty,t,], E=E,UE,.
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Then E is an arc joining y; to y,. We show that car(E, c))cD.
Let y€E and set 6(y)=d(E[y,,y]). We must verify that B*(y, 8(y)/c)cD. f yEE,,
we can write y=(x, t;) with B¥(x, 6(y)/c,)=G. Hence

By, 6(y)c)cB(y, 8(»)c,)cGXR' = D.
If yEE,, we write y=(xp, #). Then (5.4) implies

() <SOE)<OHE)+r—ry<o(E)+1+2c,.
Since d(x,, 8G) =1, we have 6(E;)<c,, and hence (y)=<c,. Thus

By, 0(y)lc)=B(y, 1)cB¥(x,, )XR'cD.

It follows that fA has the c¢s-carrot property in D.
We still need an upper bound for d(A)/d(z,, 3H?). Write s=d(z,, 9H>) and observe
that d(A)=2r'. We thus have to find an estimate

r'<css. (5.5
Let T be the family of paths joining S.(1) and S.(r') in A. Then
M) =2a(nr)2

Since B(xy, 1)cGcB(x, cy), [Vi,, 7.2] and (5.4) easily give the estimates

T
(1+2c,)

sM(fD) <acl.
Since fis K-QC, we obtain

I+q,<r' =g
Hence (5.5) reduces to

s=q,. (5.6)

We may assume that s<gq,. Let C, be the vertical segment of length s joining z, to SH’,
let C;=S.("), and let [';=A(Co, Cy; H?). Then

-2
MT) S4zz<ln%> . G.7)



QUASICONFORMAL MAPS OF CYLINDRICAL DOMAINS 219

Set r"=1—gq,. Arguing as above with path families we get the estimate r;>—c;. Then fC,
lies between the planes x;=—c; and x;=0. Moreover, fC, lies between the planes x;=1
and x;=ri<l+c;. Let Z be the cylinder B*(xg, 1)X(—c7, 1+c;)cD. Then there are
continua Cy=ZnfC, and CicZNnfC; with diameters at least 1/2. As a quasiball Z is
c-QED, and hence [GM, 2.6] gives an estimate

M(fT,) = M(A(C}, C}; 2)) = M(A(C}, C}; R")cy = gs,

Since M(fT)<KM(T'), this and (5.7) yield (5.6).

We have now verified all hypotheses of Theorem 2.20. Thus f|A is #,-QS with
respect to the euclidean metric of A and the metric ép of fA. Here and later, we let
71,72, ... denote homeomorphisms #;: [0, ©)—[0, ©) depending only on K. Let F be the
closure of fA in D*. Then f*~!|F is #,-QS in the metric Jp. By Section 3.2, the metric dp
is 2-bilipschitz equivalent to the product metric ¢ of G*xR!. Hence the restriction
f1:8*Gx[0, 11-R? of f*!is 3-QS in o. From [Vis, 5.6] and from (5.3) it follows that
the Jordan curve 8*G is ¢s-CA in d5. By Lemma 4.4 this means that G is ¢cg-ICA.

Case 2. G is unbounded. We again extend f to a homeomorphism f*: H*—D*. We
use the identification D*=(QsXR)U{%}, Q;=G*\iz'(), explained in Section 3.2.
Since G is a John domain, we can write i&‘(OO)=°° and thus Q=G*\{>}; see Lemma

2.24. We may assume that f*()=o, We want to apply Theorem 2.20 to the map
fH>>D with A=H>. Suppose that y=(x,f)ED. Since G is c-John, there is a 2-
dimensional carrot car,/E,2c;) joining x to % in G; see Lemma 2.4. Then
car{Ex{t},2c;) joins y to = in D. Hence D has the 2c,-carrot property in D. We can
thus apply Theorem 2.20 and conclude that fis #,-QS in 8p. As in Case 1, this implies
that f,=*"1(3*G\{=})XR! is #5-QS in the product metric o. From [V, 5.4] it
follows that 0*G is ¢;-CA in dp, and hence G is c;-ICA. 0

6. Dilatation estimates
6.1. Terminology. We recall that the outer dilatation Ko(f) of a homeomorphism
fiD—D' between domains in R" is the infimum of all k=1 such that
MI)<KM(fT)

for every path family T in D. The inner dilatation of f is K{f)=Ko(f H. If D is
homeomorphic to B", the outer coefficient of quasiconformality Ko(D) is the infimum
(in fact, minimum) of the numbers Ko(f) over all homeomorphisms f: D—B". Thus
Ko(D)<» if and only if D is QC equivalent to a ball.
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The exact value of Ky(D) is known for only very few domains D. One of these is
the round cylinder D=B?xR! for which

2 1
KO(D)=q0=%f (sint)-mdt=f (1-ty""dt=1.31102.... (6.2)
0 0

See [GV, Theorem 8.1] and observe that [GV] writes Ko(f)? for our Ko(f).

In this section we estimate K,(D) for domains of the form D=GXR', GcR2.
Trivially Kp(D)=1 for all D. If Ko(D)=1, D must be a Mobius image of B>. This
happens precisely when G is a half plane.

We next consider the case where G is bounded. If Ky(D)<%, Theorem 5.2 implies
that I(6*G)<. The number ‘

(e*GY

b(G)= 472m(G)

is called the isoperimetric constant of G. If I(3*G)=x or if I(3*G) is not defined, we set
b(G)==. By the isoperimetric inequality, we have always b(G)=1, and b(G)=1 if and
only if G is a round disk.

We shall prove the following generalization of the round case mentioned above:
6.3. THEOREM. For every bounded simply connected domain G=R* we have
K, (GXR") = qb(G)"™,

where qq is the constant in (6.2). Hence Ko(GXRY=qq for all bounded G, and
Ko(GxRY=qy if and only if G is a round disk.

Proof. We try to rewrite the proof of the round case [GV, Theorem 8.1] in the more
general setting. Set D=GxR!, and let f: H*—D be a QC map with Ko(f )=K{f)=K.
By Theorem 5.2, G is finitely connected on the boundary, I(8*G)<, and G is c-ICA
for some c=c(K). We must show that K=g,b(G)"*. Let again

f* B*— D* =(G*XR")U{—x, +x}

be the homeomorphic extension of f; see Section 3. We may assume that f*(0)=—o,
f*(o)=+0o. Let a<b be real numbers, let '’ be the family of all vertical segments
{y}Xx(a, b), yE3*G, and let [=f*"'T'’. We shall prove in Section 6.5 the inequality

1(3*G)

M) 1o =

6.4)
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We remark that if G has a smooth boundary, then (6.4) follows easily from [GV,
Theorem 4.3] which implies that the induced boundary map of H*\ {0} onto 8GXR' is
K-QC.

We show how the theorem follows from (6.4). For every positive number r let
again ry and r; denote the infimum and supremum of P;( f(x)) over x €S, (r)=S*r) N K.
Let 0<r<s<w, let Z be the positive x;-axis, and set

R=Bs)\Br), Ry=RnR?!, A=RnH’, E=RnZ.
Consider the path families
[, =A(E; Ry A), T,=A(SXr), S%s);Ry).

For a=ry, b=s,, each member of the family I" of (6.4) has a subpath in I';; hence

I(3*G)
M,T,)z———".

YT K(s,—ry)
Applying [Vi,, Theorem 3.4] as in [GV, Lemma 3.7] we obtain the estimate
P (sg—r,)
M(fT)z—-—.

I 2m(G)\2
Since M(fT)<KM(T,), these inequalities yield

2 1S h
K2M(T)) My(T,) = 7°b(G)"* ——.
S~

On the other hand, we have

T, S s\!
M(F1)=E—gln;, MZ(F2)=2n<ln—r-> 5

see [GV, Lemma 3.8]. Hence

K= g b(G) "2,

$y— T
As s—, this and (5.4) give K=qob(G)"™ as desired.

6.5. Proof of (6.4). We shall use an elaboration of the argument in [GV, p. 30]. Fix
Vo €3*G and write

D, =(3*G\{v,})X(a, b), D,=f*"'D,.
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For A=I(3*G) let ¢: 3*G\\ {vo} —(0, A) be a length-preserving map, that is, i(¢~'(0, 1))=t¢
for 0<t<A. Let D, be the rectangle (0,4)X(a, b)cR? and let g: D,—D; be the homeo-
morphism ¢ Xid.

Since G is ¢-ICA, ¢ is locally c-bilipschitz in ;. Hence g is locally 2¢-bilipschitz if
D, is considered with the product metric ¢ (see (3.2)) and D; with the euclidean metric.
Let fi: D;— D, be the homeomorphism defined by f*. The proof of Theorem 5.2 shows
that f; is #-QS in o with n=nx. Hence h=gf;: D;—Djs is locally #,-QS with 7,=4c%y,
and thus 4 is K;-QC with K;=4c*;(1). We shall show that 4 is, in fact, K-QC. This will
imply (6.4), since the family I'; of all vertical segments {¢} X(a, b), 0<t<A, has modulus
AM(b—a) and since T consists of #~'Ty and the single arc f; '[{vo} X(a, b)].

As before, we let ig: G*—G and ip: D*—D denote the impression maps. The path
Y=ic¢~':(0,A))—>R? is parametrized by the arc length, and thus [p'(®)|=1 a.e. It follows
that the derivative of the map ipg~'=yxid: D;—R® is a linear isometry A(z): R?—R? for
almost every z € D;.

Fix x,€ D, such that A is differentiable at x, with a nonzero jacobian and such that
A(zo) exists and is a linear isometry for zg=Ah(xo). Then the linear map T=A(zo) h'(xo) is
the derivative of the map fy=ipfi: D;—R> at x,. Observe that f; is a restriction of the
continuous extension f: H*—D of f. From Lemma 6.7 below it follows that |T|<KI(T).
Hence |h'(xo)|<KI(h'(xp)). Since this is true for almost every x,€ D, h is K-QC. O

6.6. Derivative at a boundary point. At the end of Section 6.5 we needed the
estimate |T|<KI(T), where T) is the minimum of |Tx| over x€S" % and T is the
derivative of the boundary map induced by the QC map f. We prove the corresponding
result for an arbitrary dimension, since it may be useful also elsewhere. Suppose that
2<sp=n and that T:R°*—R" is a linear map. Let J, T be the p-measure TB”. If J,T>0,
the inner and outer dilatations of T are

J T il 4
H=—2— gm=1IL
D KTy oD) J,T

If p=2, we have H(T)=H(T)=|T|/(T).
If fD—-D’ is a QC map, we have

K(f)= ess sup H(f'(&x), Kof)= ess sup Ho(f'(x)).

If f: H"—>H" is QC, it induces a boundary map g: R 'R, for which K, (9)< K(f),
K (@)<K,(f). This was proved in [GV, Lemma 4.6] for n=3 and in [Ge;, Corollary,
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p. 95] for all n=3. We generalize the result to the case where the image domain is
arbitrary:

6.7. LEMMA. Suppose that f: B"(r) N H" is a continuous map, that f|B"(r)n H" is QC
and that g=f|B""(r) is differentiable at the origin with J,-,g'(0)>0. Then H{(g'(0))
<K(f) and Ho(g'(0))<Ko(f).

Proof. We shall use normal families and the recent surprising local maximum
principle of Gehring to reduce the lemma to the case f: H"— H" mentioned above. We
may assume that r=1, that f(0)=0 and that f'(0) maps R""! onto itself. Write D=B"nH"
and T=f'(0). Consider the maps f:jD—R" defined by f{x)=if(x[j). For every
xERL=H"\{}, fix) is defined for large j. We show that the family (f) is equicontin-
uous in R} in the spherical metric.

Since each f]jD omits 0 and «, the equicontinuity in H" follows from the general
equicontinuity properties of QC maps [Vi,, 19.3]. Let x,€ER"™! be a boundary point.
Let 0<r<1 and let j>|xo|+2. Let afr) and by(r) denote the supremum of |f}(x)—fi(xo)|
over x€ H"NB(x,,r) and x ER"'nB(xy, 2r), respectively. By the local maximum princi-
ple of Gehring [Ge,, 2.1, 2.10], we have

afr)<cb(n (6.8)
where ¢ depends only on K(f) and n. Since T=g'(0), we can write
g(x) = Tx+|x|h(x), |h(x)|<e(lx))
for some homeomorphism &: [0, ©)—[0, »). If xER" ' nB(x,, 2r), we have
| 00 —£ (o] = | TOx—x6)+ x| (el — ol ROXg )

< 2| T |r+2(|xo] +2) e((xo| +2)/)

=2|T|r+6(j)
where d(j)—0 as j—. By (6.8) this yields

afr) < 2c|T|r+co()),

which implies the equicontinuity of (f) at x,.

By Ascoli’s theorem, (f) has a subsequence converging to a map F: R'l—»f{",
uniformly in the spherical metric in compact sets. Since each f}]jD has the same
dilatations as f, F|H" is either constant or a QC map with KAF)<K{(f), Ko(F)<K(f).
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On the other hand, FIR""! is the linear map T onto R*"'. It follows that F|H" is a QC
map onto H" or onto the lower half space. By the aforementioned result of {Ge,], we
have H{(T)=KA{T)<K(F)<K{f), and similarly for the outer dilatation. O

6.9. An upper bound. We next study the sharpness of the bound in Theorem 6.3.
For =1 let x(f) be the infimum of the numbers Ko(GXR') over all bounded domains
GcR? with b(G)=t. Then Theorem 6.3 gives the inequality

%(0) = qqt'. (6.10)

For t=1 this holds as an equality. For r>1 we presumably have a strict inequality, since
the estimate for M(fT)) in the proof of Theorem 6.3 is not necessarily sharp.

To get an upper bound for x(f) we construct an explicit example. For s=1 let
g2:R*SR? be the linear map g(x)=(sx;,x2,x3). Let G, be the ellipse gB’, and let
D,=G,xR!=g[B’xR']. Then K{g)=s and hence Ky(D)<sK,(B*xR')=g,s. Setting
B(s)=b(G,) we thus have

#(1) < gy B7'(®). ' 6.11)

For t=1 (6.10) and (6.11) give the equality »(1)=¢,. The estimate l(3G,)>4s gives the
inequality

2(t) < gy t/4. 6.12)

It seems reasonable to conjecture that x(z)/t tends to a finite limit as t—.
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