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1. I n t r o d u c t i o n  

Let M denote a compact, strictly pseudoconvex, 3-dimensional CR-manifold. Such a 

structure is induced on a strictly pseudoconvex, real hypersurface in a complex surface, 

or as the boundary of a 2-dimensional Stein space. In the latter case we say that the 

CR-manifold is tillable or embeddable. It is a fundamental fact that many 3-dimensional, 

strongly pseudoconvex CR-manifolds cannot be realized as the boundary of any compact 

complex space. The CR-structure on M can be described as a subbundle T~ of the 
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complexified tangent bundle, with fiber dimension 1. For each p E M  we require that  

o a  l o  T;;, MnT;  M = {0},  

1 0  O1 where Tp, M~T~'  M. There is a real two-plane field H C T h I  such that  

H| = T~174176 

The plane field H is a contact field if and only if the CR-structure defining it is 

strictly pseudoconvex. All of the CR-structures with a given underlying plane field are, 

up to orientation deformations of one another. A given 3-manifold has infinitely many 

inequivalent contact structures. Recent work of Eliashberg, Kronheimer and Mrowka 

supports the view that only finitely many of these contact structures support any em- 

beddable CR-structures, see JEll, [KM]. In this paper we assume that (M,T~ is an 

embeddable CR-manifold and restrict our attention to deformations of this CR-structure. 

It is now well known that the generic deformation of the CR-structure is not embed- 

dable. We would like to understand the subset of deformations defining embeddable 

CR-structures. Presently so little is known about this set that it would be useful to have 

answers to the following essentially topological questions: 

(I) Is the set of small embeddable deformations closed in the C~-topology? 

(2) Is the set of small embeddable deformations (locally) connected or path-con- 

nected? 

(3) Is the set of small embeddable deformations contained in an infinite-codimen- 

sional submanifold of the set of all deformations? 

For strictly pseudoconvex, compact hypersurfaces in C 2 results of Bland-Duchamp, 

Burns-Epstein and Lempert provide affirmative answers to questions (i) and (2), see 

[Bl], [BID], [RUE], [Lel], [Le2] and [Ep2]. Various of these results together with the 

techniques of [EHI] also provide an affirmative answer to question (3) for the case of 

strictly pseudoconvex hypersurfaces in C 2. 

Lempert introduced a method for studying these questions in [Lel]-[Le3]. The ba- 

sic idea is to compactify the problem by realizing an embeddable CR-manifold M as 

the boundary of a strictly pseudoconcave manifold X_, containing a smooth, compact 

curve Z. As the normal bundle of Z is positive we say that Z is positively embedded. 

If X+ denotes the normal Stein space bounded by 3//then X=X+ IIMX_ is a compact 

complex space. As follows from the remarks above, the problem of extending a defor- 

mation of the CR-strueture on /~I to an integrable complex structure on X+ is very 

delicate. On the other hand, as follows from a theorem of Kiremidjian, extension to the 

pseudoconcave side is much simpler, see [Ki]. The formal obstruction is the cohomol- 

ogy group H 2 (X ;O), which is always finite-dimensional. The obstruction to finding an 
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extension which preserves the dth formal neighborhood of Z is the cohomology group 

H 2 (X_; 0 | [- dZ]), which is again finite-dimensional, see [EH 1]. Lempert 's  strategy is to 

extend an embeddable deformation of M to X_ in such a way that  the divisor remains. 

Then one constructs elements of H~ [Z]) with respect to the deformed complex 

structure by extending sections of H~ Nz). Finally one proves that  H~ [Z]) is 

stable under this process. 

This approach has been applied successfully by Lempert and Li to the case that  

Z_~P 1. For example, Lempert  showed that  if M is a strictly pseudoconvex hypersurface 

in C 2 then the set of small embeddable deformations of the CR-structure on M is closed 

in the C~-topology. Indeed, in [Le2] it is shown that  strictly pseudoconvex hypersur- 

faces MC C 2 have a very strong stability property: any small, embeddable perturbation 

of the CR-structure can be realized as a small perturbation of the given embedding. 

In all previously known cases, the closedness of the set of embeddable deformations is 

established by constructing an embedding which is stable under such deformations. In 

these cases it can be shown that  the entire algebra of CR-functions is stable under small, 

embeddable deformations. It is known from examples, however, that  this is often not the 

case, see [CL], [Ep2]. 
This paper has three parts. In the first part we extend Lempert 's  methods to many 

cases where Z is not a rational curve. Lempert  has recently shown that  any embeddable, 

strictly pseudoconvex CR-structure on a 3-manifold can be realized as a separating hyper- 

surface in a projective variety with an ample divisor contained in the pseudoconcave piece, 

see [Le3 I. A similar result was announced in [Bog]. Under cohomological hypotheses on 

X_ which ensure that small deformations of the CR-structure on bX_ extend to X_, 

in such a way that  the divisor persists, we establish the closedness of the set of small 

embeddable deformations. This is accomplished without obtaining a stable embedding. 

In the second part we show that embeddable deformations of the CR-structure on M with 

extensions to X ,  vanishing to order 3 along Z, share many of the stability properties 

of hypersurfaces in C 2. We also consider the consequences of higher-order vanishing and 

the deformations of the defining equations. In the final part we consider examples. 

Assume that  X_ is a pseudoconcave surface which contains a positively embedded, 

smooth, compact curve Z. Let H~ [dZ]) denote the space of sections of the line 

bundle defined by the divisor dZ which are holomorphic in X_. Restricting an element 

of H~ [dZ]) to Z defines a holomorphic section of Nz  ~. A time-honored method for 

constructing sections of H~ [dZ]) is to reverse this process by extending elements 

of H~ Nza). The Riemann-Roch theorem implies that  

d 

~[dimH~ �89 ), (1.1) 
j = 0  
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where k=deg(Nz) and g is the genus of Z. In w we show that  if bX_ is embeddable 

then for large enough d we have the estimates 

d d 

Z [dim H~ Z; N}) - dim HI(Z;NJ z )] ~ H~ X_; [dZ]) ~< ~ dim H~ N~). 
j = 0  j = 0  

(1.2) 

Let {X_j} denote X_ with a sequence of complex structures, each one containing a 

smooth, positively embedded curve Zj. We suppose that  each bX_3 is embeddable and 

that  the sequence of pairs {(X_j, Zj)} converges in the C~-topology to (X_0, Z0). Using 

(1.1), (1.2) and standard semieontinuity results for dimensions of cohomology groups we 

obtain that the limiting structure satisfies 

dim H~ [dZo])/> �89 1)k + (1 -g)(d+ 1). 

Even if X_ is embeddable, the ring 

A(x_,  [z]) = U H~ [dZ]) 
d > 0  

may not contain sufficiently many sections to define an embedding. In light of this we 

have introduced two weakened notions of embeddability for pseudoconeave manifolds 

which contain a compact, positively embedded, smooth divisor: weak embeddability and 

almost embeddability. Essentially, the pair (X_, Z) is weakly embeddable if the lower 

bounds in (1.2) are satisfied. If ( X , [ Z ] )  is weakly embeddable then for sufficiently 

large d the sections in H~ define a holomorphic map of X_ into projective 

space which is an embedding of a neighborhood of Z. It seems difficult to show directly 

that these maps are embeddings on the complements of proper analytic subsets. This 

led us to introduce the subclass "almost embeddable concave structures", which enjoy 

this property. 

This is an important subclass, for if bX_ is embeddable then (X_, Z) is almost 

embeddable. One of our main results is that  the converse is also true: If (X_, Z) is 

almost embeddable then b X  is embeddable, see Theorem 5.1. This in turn implies 

that X_ is itself embeddable in projective space. We prove this without assuming that  

the ring A ( X ,  [Z]) separates points on X_, thus refining earlier work of Andreotti and 

Tomassini, see [AT]. In their work, the embeddability of a pseudoconcave surface X_ is 

proved under the assumption that  there exists a holomorphie line bundle F--+X_ such 

that  the ring A(X_ ;F)  separates points on X_ and defines local coordinates at every 

point. For the case of a pseudoconcave surface with F = [ Z ]  we obtain the embeddability 

of X_ under the weaker assumptions: 
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(1) A(X_,  [Z]) embeds some neighborhood of Z, and 

(2) there is a proper analytic subset G c X \ Z  such that  .A(X_, [Z]) separates the 

points of X_\G. 

Our second principal result is the fact that  almost embeddabil i ty is closed under 

convergence in the C~176 see Theorem 6.2. Using this fact in tandem with Kiremi- 

djian's extension theorem we are able to show tha t  the set of small, embeddable pertur-  

bations of the OR-structure on bX_ is closed in the C~176 for many new classes 

of CR-manifolds, see Theorem 6.1. Included among these are examples where the full 

algebra of CR-functions is not stable under small embeddable deformations. 

In 54 we apply the results in 5w 2 and 3 to study the problem of projective fillability 

for surface germs containing a smooth curve with positive normal bundle. This is a germ 

analogue of the problem of embedding OR-manifolds. In this context we obtain a weak 

version of a conjecture of Lempert :  even though the set of surface germs containing 

a given curve with a given positive normal bundle is infinite-dimensional, the set of 

projectively tillable germs is, in a reasonable sense, finite-dimensional. Each tillable germ 

has a representative as an open subset of a variety belonging to a finite-dimensional 

family of varieties. This generalizes a rigidity result for embeddings of p l  with normal 

bundle O(1) proved in [ M a l  I. 

In the second part  of the paper  we consider a compact,  2-dimensional subvariety of 

X C  p n  which contains a smooth, strictly pseudoconvex, separating hypersurface M ~-+ X. 

Let X:L denote the components of X\M. Now we assume tha t  ZcX_ is a smooth 

hyperplane section. As remarked above the obstruction to extending a small deformation 

of the CR-structure on M to an integrable almost complex structure on X vanishing 

to order d along Z is the finite-dimensional cohomology group HI(X; O |  We 

show that  embeddable deformations of M having extensions to X_ which vanish to order 

3 along Z share many  of the stability results of hypersurfaces in (32. We also consider 

the behavior of the defining equations for X under deformations of the OR-structure on 

M which extend to X_ vanishing to various orders along Z. A notable result in this part  

is Theorem 8.1: For any separating hypersurface M in a projective surface X there is a 

finite-codimensional space gD+2 of the deformations of the OR-structure on M, such that  

any embeddable deformation in CD+2 is '% wiggle". Our results on the deformations of 

the defining equations are especially useful if X is a cone. In this case we can show tha t  

the deformed OR-structure embeds as a hypersurface in a fiber of an analytic deformation 

space of X. 

In the final par t  the results in the paper  are applied to a variety of examples. If 

the curve "at infinity" is rational then it is possible to prove much more precise results. 

This case was considered by Lempert  and Li, see [Lel], [Le2], [Li]. In 59 we refine their 
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results. For the case of Hirzebruch surfaces we prove the natural analogue of Lempert 's  

stability theorem for hypersurfaces in C2: A small embeddable deformation of the CR- 

structure on a strictly pseudoconvex, separating hypersurface in a Hirzebruch surface 

can be embedded as a hypersurface in a fiber of the versal deformation of the Hirzebruch 

surface. As a consequence, the set of small embeddable deformations is path-connected. 

In the last section we analyze various examples where Z is a non-rational curve. 

The spirit of the methods used in this paper is essentially algebro-geometric. We do 

not know of any examples of surfaces with positive Kodaira dimension which satisfy the 

cohomological hypotheses used in this paper, (6.1) and (6.2). In a forthcoming paper we 

will present a more analytic approach to these issues. This involves a detailed analysis of 

the cS-operator on singular varieties and their (possibly singular) subdornains. We expect 

these methods to be more flexible allowing us to extend the range of our results. In 

particular, we hope that the analytic methods will allow us to treat certain surfaces of 

general type. 

Acknowledgments. The authors would like to thank L~zl6  Lempert  for explaining 

various aspects of his work and for his numerous suggestions which improved both the 

content and presentation of this paper. They would also like to thank Ching-Li Chai, Ted 

Chinberg, Ron Donagi and David Harbater  for help with questions in algebraic geometry, 

Jgnos Kollgr for his very timely instructions on the properties and uses of meromorphic 

maps, Blaine Lawson for his help with geometric measure theory and Richard Melrose 

for his help. They would finally like to thank the IHES and the University of Paris VI 

as their hospitality has greatly facilitated this collaboration. 

I. Closedness of  the set of  embeddable  deformations 

2. The dimension of  H ~  [dZ]) 

Let X denote a projective variety with Z a smooth holomorphic hypersurface embedded 

into X\ s ing (X) .  We say that  Z is positively embedded if Nz ,  the normal bundle of Z, 

is a positive line bundle over Z. Extending earlier work of Grauert,  Griffiths showed 

in [Gr] that  this implies that  Z has a basis of neighborhoods in X with smooth, strictly 

pseudoconcave boundaries. We use the notation [Z] to denote the holomorphic line 

bundle defined on X by the divisor Z. The bundle [Z] is ample if for sufficiently large d 

the holomorphic sections of [dZ] define an embedding of X in projective space. In order 

for [Z] to be ample it is necessary that  Z be positively embedded, though in general this 

is not sufficient. 

Frequently we also let [Z] denote the sheaf of germs of holomorphic sections of this 
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line bundle. In this section we study d imH~ [dZ]) for d>0.  If d i m X = 2  and Z is a 

curve of genus 9 with degNz=k then we show that  for d > l + ( 2 g  2)/k we have 

dim H~ [dZ])= ld(d+l)k+(1-g)(d+l)+mx,z(d)  (2.1) 

where mx,z(d) is a non-negative, non-increasing function of d. Define the function 

M(g, k, d) = �89 1)k+ ( 1 - g ) ( d + l ) .  (2.2) 

By the Riemann-Roch theorem, 

d 

M(g, k, d) = E [dim H~ N}) - dim Hi(Z; NJ)]. 
j = 0  

The main technical result needed for the proof of (2.1) is a slight elaboration of the 

Pardon-Stern extension of Kodaira's vanishing theorem. 

PROPOSITION 2.1 (Pardon-Stern). Let V be an n-dimensional normal, projective 

variety, and suppose that ZcV\s ing(V)  is an ample divisor (i.e. the line bundle [Z] is 
ample). Then the L2-cohomology groups satisfy 

H~q(V\singV;[-dZ])=O for q<n, d>O. 

Remark. The subscript D on the cohomology group indicates that  it is defined with 

respect to the Dirichlet boundary condition along sing V. These groups are defined 

in [PSI. The basic vanishing result, from which the Pardon-Stern theorem is derived, 

was proved by Grauert and Riemenschneider, see [GR]. The notation in this argument 

follows that  used in [PS]. For our applications, one could replace this result with an 

argument using a resolution of the singularities of V and the extension of Kodaira's 

vanishing theorem to seminegative bundles, found for example in [BPV] or [SS]. 

Proof. This result follows from Proposition 1.3 and Theorem C in [PS]: Because ZC 
V\sing(V) the arguments given in [PS] to study cohomology with respect to the structure 

sheaf apply mutatis mutandis to cohomology with coefficients in [dZ]. In particular, as 

the Hodge star operator defined on [dZ]-valued forms acts fiberwise, one easily establishes 

that  

7-/~j~-q(V \sing(V); [-dZ]) ~ (7-l~q(v\sing(V); [dZ]))'. (2.3) 

Hence the proposition follows from Theorem C. 
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In this section we make use of some well-known exact sequences of sheaves. Let Ox 
denote the structure sheaf of X, and Zz the ideal sheaf of Z. Then for each l~> 1 we have 

the exact sequences 

o -~ z w -~ O x -~ O x / Z ~z -~ o , 

T ~ / T l + i  ,~ , - r l+X Ox/ZlZ--+ O. 
O - +  -,-, Z / . ~  Z - ~  ~..~ X / . L  Z 

(2.4) 
(2.5) 

Since the sheaf of germs of sections of [Z] is locally free and Zz is isomorphic to the sheaf 

of germs of sections of [ -Z] ,  we can tensor (2.4) and (2.5) with [dZ] to obtain 

0--+ [(d-1)Z] -+ [dZ] -+ Ox /Z~| [dZ] --+ O, 

o-+ w~ -~ -~ o x  / z~  + ~ | [dZ] -~ Ox /Z~ | ~ O. 

(2.6) 
(2.7) 

We refer to sections of Ox/Ztz| as order-/sect ions of [dZ] along Z. 

Let {U1, ..., UM} denote a covering of a neighborhood of Z by coordinate neighbor- 

hoods, and Uo c c X \ Z  an open set with smooth strictly pseudoeonvex boundary which 

covers X\U1u...LJUM. Let O'o~EO(Ui), i>0,  vanish simply along Z. Set cr00=l. The 

1-cocyele 
(70i 

g i j  = - -  
aoj 

defines the line bundle [Z]. We denote by ao the holomorphic section of [Z] defined 

by {a0i}. A smooth section of [kZ] is a collection of functions LEC~ such that  

f i ] u i n u j  : g~ f jlu, ouj 

An element of H~174 is given by siC(9(Ui), i/>l, such that  

k (2.8) 

Because the sheaf associated to C~~ [kZ]) is a fine sheaf it is easy to show that there 

exist functions fi E C a (Ui) such that 

(a) S=(s i - f i )  defines a smooth section of [kZ], 

(c) OS=a~o/3 where/3 is a smooth [(k-l)Z]-valued (0, 1)-form with compact support 

in a small neighborhood of Z. 

We call S a smooth representative of (s~). 

Using the long exact sequence in cohomology and the Pardon-Stern vanishing the- 

orem we obtain 
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PROPOSITION 2.2. Let X be a noumal, compact complex space and Z c X \ s i n g X  

be a smooth, positively embedded divisor. Then for each d > 0  the natural map 

H~ [dZ]) --+ H~174 

is an isomorphism. 

Proof. We first suppose that  [Z] is an ample divisor and X is projective. The 

short exact sequence of sheaves in (2.6) with l = d + l  leads to the long exact sequence in 

cohomology 

0 --+ H~ [ - Z  D --~ H~ [dZ]) _L~ Ho(Ox/zd+l| _~+ H i ( X ;  [ -Z ] )  --~ . . . .  (2.9) 

As I -Z]  <0, the group H~ I -Z] )  vanishes. To complete the proof in this case we need 

to show that  r is surjective. Let sEH~ and let S be a smooth represen- 

tative with compact support in a neighborhood of Z disjoint from sing(X). Evidently 

0S 
07-- 

o.od+ i 

is a smooth, closed section of A~174  with compact support in X \ s ing (X) .  From 

Proposition 2.1 it follows that  there is an element f e C ~ ( X \ s i n g ( X ) ;  I -Z ] )  such that  

~ f ~ .  

As X is a normal variety the section s--ad+lf extends to define an element of H~ [dZ]) 

which satisfies 
= s .  

It is not necessary for Z c X  to be ample or for X to be projective. We use the 

following lemma to reduce to the previous case. 

LEMMA 2.1. Suppose that X is a normal, compact complex space and ZC X \s in g (X )  

is a positively embedded smooth divisor. There exists a normal, compact projective vari- 

ety V and a holomorphic map or: X-+ V. Let W=Tr(Z); it is an ample divisor and there 

is a neighborhood of Z which is biholomorphic to a neighborhood of W. 

Proof. As Nz is positive it follows from [Gr] that  there is a neighborhood U of 

Z and a smooth, strictly plurisubharmonic function p defined in U \ { Z }  such that  

liInx-~zp(x)=cc. For sufficiently large e E R  set Sr If e is a large regular 

value of p then So is a compact, strictly pseudoconvex hypersurfa,ce which bounds a 

neighborhood of Z. Such a hypersurface separates X into two connected components. 
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Let Dc denote the component of X\S~ not containing Z. This domain is a compact 

complex space with strictly pseudoconvex boundary. Arguing as in [Le2] we see that  

Grauert 's  theorem implies that  the compact varieties in Dc can be blown down. There- 

fore we obtain a normal, compact complex space and a holomorphic mapping 

zr:X ~ V. 

The complex space V has no exceptional varieties disjoint from It(Z). Set W=Tr(Z); 

the map 7r is a biholomorphism from a neighborhood of Z to a neighborhood of W. 

Applying Theorems 2.4 and 1.8 from [MR2] (both due to Grauert) we conclude that  [W] 

is an ample line bundle and V is algebraic. 

Let V, W be as in the lemma. The argument preceding it applies to show that  

H~ [dW]) --+ H~174 

is an isomorphism. As rr is biholomorphism from a neighborhood of Z to a neighborhood 

of W it is obvious that 

7r*: HO(Ov/~.d+I| [dW]) --4 H~174 

is an isomorphism. Since both X and V are normal, and [Z][x\z and [W]lv\w are 

trivial, it follows that 

7r*: H~ [dW]) --+ H~ [dZ]) 

is an isomorphism as well. 

We now restrict to the case dim X = 2 ;  set 

The cohomology groups Hi(Z; NJz) vanish for j>(2g-2)/k .  Using this observation and 

Proposition 2.2 we obtain the main result of this section: 

THEOREM 2.1. Let X be a normal, compact complex space of dimension 2, and 
ZcX\s ing(X)  be a smooth compact curve of genus g. Suppose further that its normal 

bundle Nz has degree k>0.  Then for d>lo we have that 

dim H~ [dZ])= �89 z(d). (2.10) 

The function mx, z(d) is a non-increasing function of d, satisfying the bounds 

/o--1 

0 <~ mx,z(d) <~ E dim Hi(Z; Nix). (2.11) 
/ = 0  



S T A B I L I T Y  O F  E M B E D D I N G S  F O R  P S E U D O C O N C A V E  S U R F A C E S  171 

Proof. For 0 <~ l ~< d - 1 ,  the short exact sequences of sheaves (2.7) lead to the following 

long exact sequences in cohomology: 

H~ N1z) -~ H~174 [dZ]) Z ~  Ho(O/Zd-Z| 
(2.12) 

-~f~ H i ( z ;  glz) ~ Hl(Ox/Zd-l+l| [dZ]) ---+ Hl(O/zd-l@ [dZ]) ---+ 0. 

As deg Nz = k > 0 ,  

HI(Z;N~)=O ifl/>10. 

Using the exact sequence (2.12), we obtain the recursion formula 

dim H~174 [dZ]) = dim H~174 [dZ])+ dim H~ Nlz) - dim range 5 d. 

(2.13) 
For d>lo we use (2.7) w i t h / = 1  to derive the formula 

dim H~ | [dZ]) = dim H~ N d) + dim H~ Nzd- ;). 

Using this formula along with (2.13) in a recursive argument we obtain 

d 

dim H~176174 [dZ]) = E dim H~ N~). 
1=1o 

Let A, (d )=d im Hi (Z ;  N})  - dim range 5 d so that  

0 ~< Al(d) ~< dim H i ( z ;  N~). (2.14) 

Note that A l (d )=0  for all l>~lo. For d>lo we have the formula 

d 

dimH~174 dimH~ (2.15) 
/ = 0  

where 
d 

mx, z(d) = E Al(d). 
/ = 0  

Formula (2.10) now follows from Proposition 2.2. 

The estimate (2.11) follows from (2.14). All that remains is to show that mx,z(d) 
is non-increasing. We use the long exact sequence in cohomology defined by the short 

exact sequence of sheaves (2.6) w i t h / = 1  to conclude that as lo<d we have the estimate 

dim H i ( x ;  [(d-1)Z])~> dim Hi(X; [dZ]), 

and therefore 

mx, z (d) -mx,z(d- 1) = dim Hi(X; [dZ]) -  dim H 1 (X; [ (d -  1)Z]) ~< 0. 



172 C.L .  E P S T E I N  AND G . M .  H E N K I N  

3. Weakened  not ions of embeddab i l i ty  for concave s t ruc tu res  

In this section we define two weakened notions of embeddability for a pseudoconcave sur- 

face X_ with a smooth, positively embedded, compact curve Z c X _ .  Let H~ [dZ]) 

denote the space of sections of [dZ] which are holomorphic on X .  Because bX_ is strictly 

pseudoconcave the estimates in w of [Le2] imply that every element of H~ ; [dZ]) has 

a smooth extension to X_. 

Definition. Suppose that X is a compact, complex surface with smooth, strongly 

pseudoconcave boundary. If X_ contains a compact, smooth, holomorphic curve Z of 

genus g with positive normal bundle of degree k then the pair ( X ,  Z) is a weakly ern- 
beddable, concave structure if 

dimH~ M(g,k,d) f o r d > ~ - 2 §  (3.1) 

The function M(g, k, d) is defined in (2.2). Note that Hi(Z; N})=0 for j>(2g-2)/k .  

We consider the relationship between embeddability of b X  and weak embeddability 

of (X_, Z): 

PROPOSITION 3.1. Suppose that X_ is a compact, smooth, complex surface with 
strictly pseudoconcave boundary which contains a smooth, positively embedded curve Z. 

If bX_ is embeddable then (X__, Z) is weakly embeddable. 

Proof. Let X+ denote the normal Stein space with boundary bX_. The compact 

complex space X=X+IIbx_ X contains a positively embedded, smooth curve. We can 

apply Theorem 2.1 to conclude that 

dim H~ [dZ])) �89 for d>  229---+1.  (3.2) 
deg Nz 

Definition. A weakly embeddable, concave structure (X_, Z) defines a set of positive 

integers, G(X_, Z). The positive integer dEC(X_, Z) if H~ [dZ]) is base-point-free 

and the holomorphic mapping ~a into projective space which it defines has the following 

properties: 

(3.3) the image of Z is the intersection of ~d(X_) with a hyperplane, 

(3.4) there is a neighborhood Ud of Z such that ~dlUd is an embedding, 

(3.5) the set pd(Ua) is disjoint from pd(X_\Ud). 

The following result is used many times in the sequel: 
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PROPOSITION 3.2. Suppose that (X , Z) is a weakly embeddable, concave structure. 

If g is the genus of Z and k is the degree of Nz then there is a positive integer C(g, k) 
such that the cardinality of N\G(X_,  Z) is at most C(g, k). 

Proof. As Nz is positive there is an integer m0 which depends only on g, k, such 
that N ~  is very ample for mo<~m. We tensor the exact sequence (2.4) with I=1 by [mZ] 
to obtain 

0--+ [(m-1)Z] X~o> [mZ] ~N~' -+0 .  

As before, ao denotes a holomorphic section of [Z] with divisor exactly Z. This gives 
the following long exact sequence in cohomology: 

0-+ H~ [(m-1)Z]) > H~ [mZ]) rm> Ho(Z; N~') 
(3.6) 

--+ HI(X_;[(m-1)Z]) Jm> Hl(X_;[mZ]) > H](Z;N'2)-+ .... 

Observe that (3.6) implies that 

dimH~176176 for l~<m. (3.7) 

This shows that 
d 

dim H ~  ; [dZ]) ~< 1+ E H~ N~).  (3.8) 
m ~ l  

It is an easy consequence of the Riemann-Roch theorem and the theory of divisors on a 
Riemann surface that 

dimH~ for l~> ~g-ff-~+l, 
(3.9) 

2g~ 2 
dimH~ for 0 ~ < l < - - + l .  

These inequalities imply that there is a function E(g, k) such that 

d 

E H~ N}) <~ M(g, k, d)+E(g, k), (3.10) 
j = 0  

and therefore 

H~ [dZ]) < M(g, k, d)+E(g, k). 

Since (X , Z) is weakly embeddable it follows that 

dim H~ ; [dZ]) ) M(g, k, d) for d >  ~ + 1 .  (3.11) 



174 C.L.  EPSTEIN AND G.M.  HENKIN 

LEMMA 3.1. Suppose that (X_, Z) is a weakly embeddable, concave structure with 

Z of genus g and Nz of degree k. The map rj in (3.6) fails to be surjective for at most 

E(g, k) values of j .  

Proof. From (3.6) we deduce that 

dim [H~ N3z)/rjH~ [jZ])] ~< dim H~ N ~ ) + d i m  H~ ; [ ( j -  1)Z]) 

- d i m  H~ ; [jZ]). 

If we sum this estimate from 0 to m we obtain 

m m 

dim [g~  gJz)/rjH~ ; [jZ])] ~< ~ dim H~ N~) - dim H~ ; [mZ]). 
j = 0  j = 0  

Applying (3.10) and (3.11) it follows that for any m > l + ( 2 g - 2 ) / k  we have 

~T-~ dim [H~ N~)/rjU~ ; [jZ])] ~< E(g, k). (3.12) 
j = 0  

This completes the proof of the lemma. 

Combining this result with the next lemma we complete the proof of the proposition. 

LEMMA 3.2. Suppose that for a j>mo the mappings rj, rj+l a r e  surjective. Then a 

basis of sections for H~ X_ ; [( j  + 1)Z]) defines a holomorphic map of X_ into projective 
space, satisfying conditions (3.3), (3.4) and (3.5). 

Proof. Suppose that  j>mo and rj, rj+] are surjective. As j is at least mo it follows 

that  H~ N~) and He(Z; N~ +1) define embeddings of Z into projective space. For l=j  

or j + l  let {ark} denote sections of [lZ] such that 

: k = 1 ,  . . . ,  

define bases of H~ N~). Here dz=dimH~ Nlz); let rn=dj+dj+l. As a0 vanishes 

exactly on Z we can define a map ~ :  X - - + P ' ~  in homogeneous coordinates by 

~ t :  p F-~ [O'~q-1 ( p ) :  O ' o 0 " j l ( P ) :  .,. : (YoO'jdj(p): O ' ( j + l ) l ( p ) :  ...  : O'(jT1)dj+l(p) ]. 

From the choice of j it is clear that ~llz is an embedding and d~(x) has rank 2 for all 

xEZ. It follows from the implicit function theorem and the compactness of Z that ~1 

defines an embedding of a neighborhood U0 of Z into pro. 
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If we augment the components of ~' to obtain a basis for H~ [ ( j + l ) Z ] )  then 

after relabeling we obtain that  

= [ O ' j + l  : ~1  : - . - :  (Pn] 

defines a holomorphic map of X_ into pn.  As the divisor of or0 equals Z, the image 

of Z under ~ is the intersection of the hyperplane H = { a 0 = 0 }  with ~(X_).  Since pr is 

the composition of p with a projection onto a linear subspace, Salu o is an embedding. 

The line bundle [Z] is trivial in X _ \ Z ,  and therefore we can take q 0 - 1  in X_\Uo. 

In terms of linear coordinates on the affine chart p n \ H ,  the other components of So, 

{~i/cr~+l(x) : i=1 ,  ...,n}, are then holomorphic functions on X_\Uo which are smooth 

and in particular remain bounded as x approaches bX . Hence the image of X_\Uo 

under ~ is contained in a relatively compact subset of P n \ H .  From this we conclude 

that  Z has a neighborhood U c  U0 such that  

I 

, ( u ) n , ( x _ \ u o )  = 

Since ~ is one-to-one on U0 this implies that  

\u)=o. 

PROPOSITION 3.3. Let (X_,Z)  be a weakly embeddable, concave structure with Z 

of genus g and Nz  of degree k. For dEG(X , Z) let ~ denote the map into projective 

space defined by H~ [dZ]). There is a 2-dimensional projective variety V such that 

~ (X  )C V. The degree of V is at most kd 2, and sing(V) is a finite set. 

Pro@ Let dim N~ [dZ])=n+l. We can find a basis for this cohomology group 

of the form {q0 d, ~1, ..., SOn } where each Sag vanishes to order at most d - 1  along Z. Let U 

denote the neighborhood of Z in (3.4)-(3.5). Since Z is positively embedded we can find 

a smooth, strictly pseudoconcave hypersurface MC U, bounding a domain D, such that  

Z c D c  U. Since DC U its image p(D)  is a strictly pseudoconcave submanifold of P~. As 

~(M)  C pn  \ H  the Harvey-Lawson theorem implies that  it bounds an irreducible analytic 

variety W, see [HvL]. This variety is of course contained in a compact subset of the affine 

chart P ~ \ H .  Observe that  V=sz(D)H~,(M)W is a compact subvariety of pn ,  

If f E Z v  then Sp*(f)ID=0, and thus ~*( f ) - -0  on X . Hence ~ (X ) is a subset of V. 

As W n H = o  the intersection (with multiplicity) of V with H equals ~ (D )N H .  From 

the form of p it is easy to see that  the order of contact between H and V is at most d, 

and therefore we have the estimate 

deg V <~ kd 2. (3.13) 
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As V is smooth in a neighborhood of VN H it follows from the maximum principle that  

sing(V) is a finite set. 

From Theorem 2.1, Proposition 3.2 and Proposition 3.3 it follows that  the notion of 

weak embeddability is equivalent to a simple geometric property. 

PROPOSITION 3.4. The pair ( X , Z )  is a weakly embeddable, concave structure 

if  and only if there exists a positive integer d and a neighborhood U D Z  such that 

H~ [dZ])lu defines an embedding of U into projective space. 

If b X  is embeddable then we can obtain more precise geometric information about 

the maps described above. 

COROLLARY 3.1. Let X be a compact manifold with strictly pseudoconcave bound- 

ary. Suppose that X_ contains a smooth, compact, positively embedded curve Z, and that 

bX is an embeddable CR-manifold. I f  dEC(X_,  Z)  and ~ is the holomorphic map de- 

fined by H ~  [dZ]), then X contains a proper analytic subset E such that E N Z = ~  

and ~]X_\E is an embedding. 

Remark. We call a holomorphic map p: X _ - + P  ~ which satisfies the conclusion of 

this proposition a generically one-to-one mapping of (X_, Z) into P~. 

Proof. Let X+ be the normal Stein space with M = b X + = - b X ,  and let X =  

X + I I M X  . Let p : X  -+P  n be the holomorphic map defined by H ~  ;[dZ]), and 

VC p n  the irreducible projective surface containing ~ ( X  ). The line bundle [Z] is trivial 

in X \ Z ,  and therefore the components of the map ~ can be represented by holomorphic 

functions on X \ Z  which have smooth extensions to bX . As X+ is normal it follows 

from the theorem of Kohn and Rossi that  the components of ~a have holomorphic ex- 

tensions to X+, see [KR]. Thus we have a holomorphic map ~: X--+P% As before, the 

permanence of functional relations implies that  the image of ~ is contained in V. 

Let H C pn  be the hyperplane with HA V =  ~(Z).  As ~(X+) is a relatively compact 

subset of P n \ H ,  it follows that  there is a neighborhood U of Z such that  ~Iu is an 

embedding and ~ ( U ) N ~ ( X \ U ) = O .  Thus there is an open neighborhood W c V  of V O H  

such that  ~ - I ( W ) = U  and each point in W has a unique preimage. Let [X], [V] denote 

the generators of H4(X; Z), H4(V; Z), respectively. As ~ is continuous it follows that  

IX] = q[V] 

for some integer q. As ~ is holomorphic it follows that  q>0. In fact q = l ,  for let 

X C C ~ ( W )  be a non-negative function with X(x)>0 at some point x E W ,  and let w be 

the K/ihler form for pn.  As s u p p x C W  we have that  

q fwX 2=(q[V], x 2)= (IX], = s =/wX  2. 
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Since fw Xw2>0 this proves the claim. 

Let F = {x E X:  rk ~.  (x) < 2} and S = ~ -  1 (sing V). These are analytic subsets of X. 

As both are disjoint from U they are proper analytic subsets disjoint from Z. We define 

the proper analytic subset 

Et= FUSUsing X. 

The map ~ is injective on X \ E q  Suppose not; then there exists a pair of distinct points 

Yl, Y2 C X \ E '  with ~(Yl) = ~(Y2). In light of the definition of E '  there exist disjoint open 

sets U1, U2 C X \ E '  such that  y~ E U~, ~lu, is a biholomorphism onto its image, and ~(U~) = 

~(U2) C V\s ing(V).  Repeating the above computation with a non-negative function XE 

C~(~(Ui)) we easily obtain a contradiction to the fact that  q = l .  As r k ~ . ( x ) = 2  for 

x C X \ E  ~, setting E = X N E  ~ completes the proof of the corollary. 

This corollary indicates that  there is an important  subclass of weakly embeddable, 

concave structures which includes those with an embeddable boundary: 

Definition. Let X be a smooth, strictly pseudoeoncave manifold containing a 

positively embedded, smooth, compact curve Z. If there exists a holomorphic map 

~: X_ _+pn which embeds a neighborhood of Z and is generically one-to-one then we say 

that  (X_, Z) is an almost embeddable, concave structure. 

We conclude this section with a result on the C~-closedness of the set of weakly 

embeddable, concave structures. Let X_ be a compact, complex manifold with pseudo- 

concave boundary. Let f~j, j>~l, denote a sequence of deformations of the complex 

structure on X ,  smooth up to the boundary, which converge in the C~-topology to 

a deformation f~0. For j~>0 we let X_j denote the complex manifold with complex 

structure induced by the deformation tensor ~2j. Suppose that  for each j~>0 there is a 

smooth, compact, holomorphic curve Zj c c X _ j  and that,  as j--+oe, Zj converges in the 

C~-topology on submanifolds to Z0 CC X_. 

PaOPOS~TION 3.5. If the pairs {(X_j,Zj):j>O} are weakly embeddable then the 

limit (X_o, Zo) is as well. 

Pro@ From the hypotheses it is clear that  the genus of Zj and the degree of its 

normal bundle are constant after some finite value of j .  Denote these common values 

by 9 and k respectively. Starting at this value of j ,  we can therefore find a sequence 

{~ j}cDi f f~(X ) converging to the identity in the C~-topology so that  r We 

let X~_j denote X with complex structure defined by a} = ~ ; ( a j ) .  The pairs (X~_j, Zo) 
are again weakly embeddable. The sequence {f~}} also converges to ft0 in the C ~ -  

topology. We let Lj denote the holomorphic line bundle defined by the divisor Z0 with 

respect to the complex structure defined by f~}. Let D}d denote the natural 0-operators 
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acting on sections of L d. We need to understand the behavior of the space of holomorphic 

sections of L ], i.e. ker D}d as j--+ec. As a C~-complex line bundle, each L ] is isomorphic 

to L0 d. By fixing a sequence of isomorphisms we are reduced to considering a single line 

bundle Lo d and a sequence of differential operators acting on its sections. 

In [Le2] it is shown that  in the present situation there exists a sequence of C~-bundle 

isomorphisms 

(I)j 1: Lo --+ Lj 

which converge to the identity in the C~-topology. These bundle isomorphisms in- 
d d duce isomorphisms ~jd:Lo--+L j for every integer d. In terms of this common (non- 

holomorphic) trivialization, the cS-operator on C~(X_;L d) is represented by Did=  
o ~' om-i A b | j = 0 ,  1, we define the qua- jd Ujd "~jd" Fixing L<structures  on C~(X_; o,j d 

dratic forms 

= ]x IDJdSl2dV Qjd(s) 

on C~ ;L0~). Using these quadratic forms and the Friedrichs extension we define 

unbounded, self-adjoint operators :Did acting on L 2 ( X  ; L g). Using the estimates in [Le2] 

it follows that  each operator :Did has a compact resolvent. In light of the definition of Did, 
it is clear that  for 0 ~ j  and 0 < d  we have the isomorphisms 

H~ ; L ]) ~- ker :Did. (3.14) 

For each d > 0  the sequence of operators {:Dyd : j > 0 }  converges in the strong resolvent 

sense to :Dog- From classical perturbation theory, see [Ka], we conclude that  

dim ker :Dog 7> lim sup dim ker :Djd. (3.15) 
j--+oc 

Since (X_j, Zj) is weakly embeddable it follows that  for sufficiently large j and each 

d>(2g-2) /k+l ,  we have the estimate 

dimker Did ~> ld (d+l)k+(1-g) (d+l) .  

The conclusion of the proposition is immediate from (3.14), these estimates and (3.15). 

Remarks. (1) Note that having 

dim H~ [dZ]) > cd 2 

does not imply embeddability. The Andreot t i -Grauert-Rossi  exampIe, see JR] or [AS], 

is a 1-parameter family of CR-structures on Sa: {eT~ eEC,  le l<l}.  The structure 
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~176 is tha t  induced on the unit sphere in C 2. If sTY0 then (S3,eT~ 3) is not 

embeddable. These structures extend to p2  \B1 in such a way tha t  Z, the line at infinity, 

remains holomorphic. For the s tandard structure, 

dim H~176  ; [dZ]) = �89 (d+ 1)(d+ 2). 

For a non-trivial deformation (sTY0) we have 

�88 2 ~< dim H~ [dZ]) ~< �88  2. 

For any d>0 ,  s r  the space of sections H~ [dZ]) gives local coordinates but fails 

to separate points on X_. 

(2) In w we show tha t  the boundary of an almost embeddable, concave structure 

is embeddable.  I t  is a question of principal interest whether a weakly embeddable, con- 

cave structure is almost embeddable. In general, we do not know the answer to this 

question. Corollary 3.1 shows that  if an embeddable CR-manifold bounds a pseudocon- 

cave domain X_, with smooth, positively embedded curve Z c c X _ ,  then the concave 

structure (X_, Z)  is almost embeddable. In w we show that ,  in a certain sense, almost 

embeddabil i ty is closed under convergence in the C~176 This allows us to show, 

for many new classes of 3-dimensional CR-manifolds, tha t  the set of small embeddable 

deformations of the CR-structure is closed in the g~-topology.  

4. F i n i t e n e s s  r e s u l t s  for  p r o j e c t i v e l y  t i l lable  g e r m s  

In the previous sections we have considered strictly pseudoconcave, complex surfaces 

which contain a positively embedded curve. Our principal motivation is to understand 

the behavior, under deformation, of the algebra of CR-functions on the boundary of 

the manifold. There are two reasonable "germ models" for this problem, a concave 

one and a convex one. The convex one is the study of deformations of isolated surface 

singularities, whereas the concave problem is the s tudy of projective fillability for surface 

germs containing a given curve with a given positive normal bundle. In this paper  we 

consider only the latter problem, which we now formulate more precisely. 

Let E denote a Riemann surface and L a line bundle over E. A surface germ 

containing (E, L) is a complex manifold Y of dimension 2, with a smooth, holomorphic 

embedding i: E--*Y such that  the normal bundle N r ~ i ( E )  induced by i is isomorphic 

to L. We let S(E,  L) denote the set of surface germs containing (E, L). Two such germs 

Y 1 , Y 2 c S ( E , L )  are equivalent if there is a germ of a biholomorphism �9 defined on a 

neighborhood of i l (E)  C I/1 such tha t  

gpoil = i2. 
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Let |  L) denote the set of equivalence classes in S(E,  L) under this equivalence rela- 

tion. We do not a t tempt  at this point to define a topology or analytic structure on this 

space. We say that  a surface germ Y is projectively tillable if it is equivalent to an open 

subset U c V ,  a projective variety. We denote this subset of |  L) by ~(E, L). 

For the case of interest to us, L>0 ,  it is known that @(E, L) is infinite-dimensional. 

Using results of Docquier and Grauert,  Morrow and Rossi gave a parametrization for the 

subset of @(E, L) consisting of structures which are holomorphic neighborhood retracts 

(HNRs) of E. This subset is shown to be infinite-dimensional. On the other hand, results 

in [Gr] show that  this subset is also of infinite codimension in @(E, L). 

The problem which we consider in this section is the "size" of ~(E, L). We show 

that  it injects into a subset of a finite-dimensional space. In [MR1] it is shown that  

~ ( p 1  (9(1)) consists of a single structure: the standard embedding of p1 as a linear 

subspace of p2. 

The following theorem is a consequence of the results in w and w 

THEOREM 4.1. Let g denote the genus of E, and 0 <k  the degree of L-+E. There 

are integers N(g, k) and D(g, k) such that each class of germs in ~(E, L) contains a 

representative which is an open subset of a projective surface S, embedded in pN  for an 

N <~N(g, k) of degree at most D(g, k). The curve E is realized as the intersection of S 

with a hyperplane. 

Remark. The sense in which ~(E, L) is finite-dimensional is given by this theorem. 

The proof is a refinement of the proof of the Nakai-Moishezon criterion for the ampleness 

of a divisor, see [Ht, Chapter V, w The extra bookkeeping is done in Theorem 2.1. 

Proof. Let Y be a representative of a class in ~(E, L). Without loss of generality 

we can consider Y to be an open subset in a smooth projective surface X. Let Z 

denote the embedded image of E with normal bundle N z  ~ L. As N z  is positive, a small 

neighborhood X_ of Z can be found with a smooth, strictly pseudoconcave boundary. 

From Theorem 2.1 it follows that  ( X ,  Z) is a weakly embeddable, concave structure. 

Proposition 3.2 implies that  there exists a dEG(X_, Z) such that  d<C(g, k ) + l .  The 

conclusions of the theorem now follow from (3.10) and Proposition 3.3. 

Remarks. (1) As shown in Proposition 3.3, the image of the map defined by 

H~ [dZ]) provides a representative of a tillable germ as an open set in a projective 

surface with at worst finitely many isolated singularities. 

(2) The theorem implies that every class in ~(E, L) has a representative with i(E) 

the intersection of a hyperplane in pn, n<~N(g, k), with a surface in p n  of degree at 

most D(g,k).  Let C(d,n) denote the surfaces in p n  of degree at most d. This is a 
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finite-dimensional space. We see that there is an injective map of if(E, L) into the tinite- 

dimensional space 

C(D(g, k), N(g, k)) x p.N(g,k). (4.1) 

We let e(g, k) denote the finite-dimensional image of this correspondence. This is a sense 

in which the set of projectively tillable surface germs containing (E,L) with 0 < L  is 

finite-dimensional. This is a weak version of Lempert 's  conjecture on the existence of a 

universally stable embedding: every tillable germ with the given data can be embedded 

into a finite-dimensional family of varieties. The set e(9, k) may be quite complicated, 

e.g. it may have infinitely many connected components. Note that the moduli space (4.1) 

only depends on the topological data (g, k). Hence if we allow the complex structures on 

E and L to vary then we obtain an injective map into the same space. 

(3) The results in this section have a direct bearing on question (3) of the introduc- 

tion. If H~ (X_ ; O | [ -  Z l) = 0 then we can extend a small deformation of the CR-structure 

on M to a complex structure on X_ so that  Z remains a positively embedded holomorphic 

curve. Indeed, using results in [EH1] we obtain an analytic map from small deforma- 

tions of the CR-structure on M to deformations of the complex structure on X which 

extend the deformation of the CR-structure and vanish on Z. Let Def(M, C~b) denote the 

small deformations of the CR-structure on M. Composing this extension map with the 

projection to | Nz) defines a map 

9: Def(M, &) --+ G(Z, Nz). 

If a small deformation w is embeddable then 9(w) is tillable. It would be quite interesting 

to know if the converse is also true.(1) We conclude from Theorem 4.1 that  the set 

of embeddable deformations is, at least formally contained in a subvariety of infinite 

codimension in the set of all deformations. To prove a theorem to this effect one would 

of course need to define appropriate topologies and analytic structures on | Nz) and 

Def(M, C~b) in which to analyze the properties of this map. We hope to return to this in 

a latter publication. A related result for the case of the 3-sphere appears in [B1D]. 

5. A l m o s t  e m b e d d a b i l i t y  impl ies  e m b e d d a b i l i t y  

Let X_ be a complex surface with smooth, strictly pseudoconcave boundary M. Assume 

that  there is a smooth holomorphic curve Z c c X _  of genus g, with positive normal 

bundle Nz of degree k. In w we showed that if M is embeddable then there are a 

projective variety V c P  n and a holomorphic mapping ~:X_-+V which enjoy several 

(1) Note added in proof. A recent result of Bruno de Oliveira shows that the converse is false. 
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special properties.  Notably,  ~ is an embedding in a ne ighborhood of  Z, and there is a 

proper  analyt ic  subset E c X _ \ Z  such tha t  ~Plx_\E is an embedding.  In  this section we 

show tha t  an almost  embeddable,  pseudoconcave surface is actual ly  embeddable.  

A section co E C a (M;  H o m ( T  ~ t M, T l '~  with I]ca II L ~176 < 1 defines a deformat ion of 

the  CR-s t ruc ture  with the same under lying contact  field. For each pEM we set 

~~176 = { Z + c o ( Z )  : ZE T~ 

Note  tha t  co does not have to satisfy an integrabili ty condition. If  

fi E C ~ (-~_ ; H o m ( T ~  TL~ 

satisfies ]]~]]LoO < 1 and the integrabil i ty condit ion 

then 

 a-l[a, al = o  

~T~ ={2+f t (Z):ZET~ }, z cX_  - x  - -  x - , 

defines an integrable almost  complex s t ructure  on X_.  If  

f i b  = • [ T  O` t l t t  -~- co  

then  we say tha t  ~2 is an extension of co to X_.  

We now establish tha t  if ( X ,  Z)  is an almost  embeddable,  concave s t ructure  then  

b X  is an embeddable  CR-manifold.  The  first observat ion is t ha t  we do not  need to 

actual ly  embed b X  itself, it suffices to embed a sequence of hypersurfaces tending 

to bX_. The proof  of  this s ta tement  uses the relative index in t roduced in [Ep2]. For 

the  convenience of the reader we recall the basic definitions. Let  (M, C~b) denote  an 

embeddable,  s tr ict ly pseudoconvex, 3-dimensional CR-manifold,  and S an or thogonal  

project ion onto kerc~b. If  co denotes an embeddable  deformation of the CR-s t ruc ture  

then  it is shown in [Ep2] tha t  

8 :  ker 0~ --+ ker  c~ b 

is a Fredholm operator ,  and the relative index Ind(CSb, @ )  is defined as the Fredholm 

index of this operator .  

Choose a non-negat ive function poEC ~ (X_) which vanishes on bX_ but  such tha t  

dpo is non-vanishing on this set. We can further  arrange tha t  P0 is str ict ly plurisubhar-  

monic  in a ne ighborhood Uo of bX_. For e > 0 we let 



STABILITY OF EMBEDDINGS FOR PSEUDOCONCAVE SURFACES 183 

LEMMA 5.1. Suppose that for a decreasing sequence {en} tending to zero the CR- 

manifolds {bX~}  are ernbeddable. Then bX is ernbeddable. 

Proof of Lernma 5.1. For each 0<v<<z0, we can find a smooth family of contact 

transformations 

~t: bXt --+ bX~, t E [0, r], 

with ~ ,  =Id .  Using these contact transformations we pull back the CR-structures T~ 

to obtain a smooth family of CR-structures on bX~-. Let ~t denote the deformation 

tensors. By selecting 7 sufficiently small we can ensure that 

1 for t E [0, W]. (5.1) 

Observe that for any 0 < s < r  the CR-manifold bX8 is embeddable: We choose an n so that 

en < s. As bX~.r~ is embeddable there is a pseudoconvex, complex manifold X~* with bX + = 

-bXE~. By gluing X~ + to the collar {x:e,~<<.p0(x)<~r} we obtain a complex manifold 

which contains bX8 as a hypersurface bounding a compact, pseudoconvex domain. Using 

this construction and Corollary 3.1 in [Ep2] it follows that for 0 < s < r  we have 

Ind(bX~, bX~) = O. 

As cJ0=lims-~0 w~ in the C~-topology it follows from (5.1) and Theorem E in [Ep2] that 

Ind(bX,,  bX_ ) >>. O. 

We can therefore apply Theorem A from [Ep2] to conclude that bX_ is embeddable. 

Remark. This gluing argument implies that 

Ind(bX_,bXs)=O for s<~-. 

For sufficiently small s we can therefore embed bXs as a small deformation of a given 

embedding of bX_. 

THEOREM 5.1. Suppose that (X  , Z)  is an almost embeddable, strongly pseudocon- 

cave structure. Then bX is embeddable. 

Proof of Theorem 5.1. Let ~: X_ __+pN be a generically one-to-one map of the con- 

cave structure ( X ,  Z) and let G denote the minimal, proper analytic subset such that 

r  is an embedding. If there is an exhaustion function P0 vanishing on bX_ and 

plurisubharmonic on X \ Z ,  then, as GNZ=O,  it follows that  dim G=0 .  In this circum- 

stance we can easily use the lemma to show that b X  is embeddable. Set Mt={Pol ( t ) } .  
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Since 0 is not a critical value for P0 there is an c > 0 such that  p0 has no critical values 

in [0, c]. The generically one-to-one map  ~ is an embedding on the complement of a 

discrete set. Thus we can find a decreasing sequence {t,~} such that  lim tn =0.  For each 

n we have: 

(I) in<C, and hence dp is non-vanishing on Mt~, 

(2) ~lM,n is an embedding. 

I n  this case the theorem follows from Lemma 5.1. 

Now we treat  the general case. Our proof makes extensive usage of monoidal trans- 

formations and the resolution of singularities. The da ta  we have is X_, a pseudoconcave 

manifold with a positively embedded smooth divisor Z. There is an irreducible projec- 

tive variety W c P  N such that  ~b(X_)c l/V. A priori we do not know tha t  W is a normal 

variety. I f  q: W--->W is the normalization of W then W and W are bimeromorphic and 

biholomorphic in the complement of a finite set. They are moreover biholomorphic in a 

neighborhood of Z. Let ~b' denote the composition q-lo~b. This is a meromorphic map 

which is therefore defined in the complement of a set I c  X _ \ Z  of codimension at least 2, 

see [Gu]. As W \ r  is an affine variety it follows that  we can find coordinates for 

W \ r  in which the components of ~b' are uniformly bounded in a neighborhood of I .  

By Riemann's  extension theorem, ~ '  has a holomorphic extension to X_. This shows 

that  there is no loss in generality in assuming that  ~b maps X_ into a normal subvariety 

W of P~.  

Let ~r: W-+  W be a resolution of the singularities of W. 

LEMMA 5.2. The mapping ~ factors through W on the complement of a discrete 

set. That is, there is a discrete set I C X_ and a holomorphic map ~: X \ I-+ W such 

that 
^ 

r  = ~-or 

Remark. We use the notat ion f :  A--+B for meromorphic maps. 

Proof of Lemma 5.2. The proof is essentially immediate: ~-1:  W - + W  is a mero- 

morphic map, and it is biholomorphic from W \ s i n g ( W )  to its image. We set ~=7~-1or  

this map is a biholomorphism from X \ G  to Tr-~(W\sing(W)) .  More important ly  it 

is a meromorphic mapping from X to W. This implies that  the map  extends to the 

complement of the indeterminacy locus I .  As I is a subvariety of codimension at least 2, 

it is a discrete set of points. 

Henceforth we let 7r: W ~ W  denote a resolution of the singularities of W, and 

the lift of r The map ~: X _ - - * W  is holomorphic on the complement of a discrete 

set and an embedding on the complement of a proper subvariety G. To complete our 
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A 

argument we need to show that  by finitely many blow-ups of W we can obtain a map 

which is defined on the complement of a discrete set and globally injeetive. To that  end 

we first treat  the local problem: Let (z, w) denote coordinates for C 2 and D, D r c  C 2 be 

neighborhoods of (0, 0). We call a holomorphie map f :  D--+D t a germ of a blow-down if 

(1) f(0,  w)=(0,  0), 

(2) f is injective on D \ { z = 0 } .  

THEOREM 5.2. Suppose that f: D-+D'  is a germ of a blow-down. Then there are 

local coordinates (4, ~) on a neighborhood of (0, O) such that in these coordinates the map 

is either 

f(~, ~) = (~, ~k~), k E N, (5.2) 

o r  

f(~,~)=(~J,~kt(Oq~-~k2(Oz2-b...--b~kP(O~p-b~)...))), ol icC,  k i E N ,  i =  l , . . . ,p .  (5.3) 

As a consequence of the theorem we obtain 

COROLLARY 5.1. If  f:  D--+D' is a germ of a blow-down, then there is a finite se- 

quence of point blow-ups 

D ' =  D;  + EL D i <~2 ... <~.~ D "  

and lifted maps fi: D ~ D ~  so that 

f = 7~ 1 . . . . .  7riofi 

and fro: D--+ D~  is a germ of a biholomorphism. 

These results are proved in [EH2]. Combining this corollary with Lemma 5.2 we 

obtain 

PROPOSITION 5.1. I f  ~: X --+ W is a generically one-to-one mapping of the concave 

structure (X_,  Z) ,  then there exists a desingularization ~r: W - + W  and a meromorphic 

map ~: X - - * W  which is a biholomorphism on the complement of a discrete set and 

such that 

r 

Proof of Proposition 5.1. We let 7r: W--+W and ~ be respectively the desingulariza- 

tion of W and the meromorphic lift of r obtained above. Let I denote the indeterminacy 

locus of ~, and E the union of 1-dimensional components of G. As W is smooth and 

is generically one-to-one it is clear that rk d~(x)< 2 for x E E \ I .  We show that  at smooth 

points of E \ I  the map ~ is a germ of a blow-down. This follows easily from the next 

proposition. 
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PROPOSITION 5.2. Let U. V c C  2 be neighborhoods of (0,0) and let f :U-+V be a 

holomorphic map. Suppose that the set K = {z : rk dr(z) < 2} is a smooth proper submani- 

fold passing through (0,0). If r k d ( f l K ) ( 0 , 0 ) = l  then f is a non-trivially ramified cover 

in a neighborhood of (0,0). 

Proof of Proposition 5.2. As rkdf  is generically 2 we can find local coordinates 

(zl,z2) near to 0, and (Wl,W2) near to ] (0) ,  so that K = { z 2 = 0 } ,  

f(zl,Z2)=(g(zl,z2),z~h(zl~z2)) 

with j > 1 and 
Og 
OZl (0, O) # O, It(O, O) # O. 

For each ~ sufficiently close to zero there is a unique Zl(~) close to 0 with 

We can so lver  or Zl(Z2;~) such that 

z l (0 ;~ )=z l (~ )  and g(zl(z2;~),z2)=~. 

On the other hand, for ~?#0 sufficiently close to zero the equation 

z h(zl(z2; z2) = 

has j > 1 distinct solutions. Thus f is a j-sheeted ramified covering map in a neighborhood 

of 0. 

Let {E1,. . . ,Em} be the irreducible components of E. As ~ is generically one-to- 

one, the proposition shows that  rk(d~]Ej)=0 for j = l , . . . , m .  Hence each component 

is mapped to a point by ~, and on each, the Jacobian determinant has a positive, 

generic order of vanishing. We use the following iterative procedure to desingularize the 

map ~: Begin with E1 and blow up the point r  obtaining a space  71-1:W1--+W 

and a lifted map ~1. As the indeterminacy locus of ~1 is discrete, the map r  is either 

locally biholomorphic in a neighborhood of E1 or ~1(E1) is a point. In the former 

case we turn our attention to ~l(E2),  in the latter case we simply blow up ~1(E1). 

Proceeding recursively in this fashion we obtain a sequence of monoidal transformations 

7q: W~-~Wi-1 and lifted meromorphic maps r X --* ~ which satisfy 

^ ^ 
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As the sum of the generic vanishing orders of the Jacobians of the ~i along the components 

of E is strictly decreasing, after finitely many such steps we obtain a space ~: W--+W 

and a lifted map ~ : X  - - * W  with ~ = # o ~ .  The map r is defined, holomorphic and 

has non-vanishing Jacobian on the complement of a discrete set I~. It is evident that  

~ l x  \I~ is a biholomorphism onto its range, which is an open subset of W. 

Since the set I~ is discrete, for almost all e we obtain an embedding 

r bX~ ~ S~ C W. 

By a finite sequence of monoidal transformations of Xe we can resolve the indeterminacy 

of ~ at the finite set of points I~NX~. Denote the blown-up space by 3~, and the 

lifted map by ~ .  For such generic e, the image ~ (~ '~ )  is a domain in l~  with smooth, 

pseudoconeave boundary S~. Therefore ~ / + ~ = W \ ~ ( 2 ~ )  is a compact domain with 

a smooth, strictly pseudoconvex boundary, CR-equivalent to bX~. This completes the 

proofs of Proposition 5.1 and Theorem 5.1. 

The following corollary is a simple consequence of Theorem 5.1 and classical results 

of Chow and Kodaira, see [CK] and [Kdl]. 

COROLLARY 5.2. If (X_, Z) is an almost embeddable concave structure, then X_ is 

embeddable in projective space. 

Proof. From Theorem 5.1 it follows that  -bX_ is the boundary of a strictly pseudo- 

convex, normal Stein space X+. Therefore X = X  IIbx X+ is a compact complex space 

with a positively embedded divisor ZcX\s ing(X) .  Let 32 be the minimal resolution 

of X. As X_ is smooth it follows that  X contains an open subset 2 ,  biholomorphic 

to X_. It therefore also contains a positively embedded holomorphie curve Z. As Z- Z >/1 

it follows from Theorem 3.3 in Part  I of [Kdl] that  ) (  is an algebraic surface and per 

force embeddable in projective space. Thus X_-~J~_ also embeds in projective space. 

Remark. Consider the following example: Let (V, p) be a compact, projective surface 

with a unique singular point at p. Let Z C V \ {p} denote a smooth hyperplane section and 

7c: V--+V a resolution of the singularity of V. Let E c V  be the exceptional divisor which, 

for simplicity, we suppose is a smooth, compact curve. Let {B1, ..., Bin} be pairwise 

disjoint disks contained in E. As E \ U B i  is a Stein space, Siu's theorem implies that  it 

has a Stein neighborhood basis {Ui}, see [Si]. For each i we can suppose that  -bUi is 

the smooth, strictly pseudoconcave boundary of a domain X i c V ,  and that ZNUi=2~. 

The domains X~ are almost embeddable: a basis ~ of sections of H~ [Z]) defines a 

generically one-to-one map. Evidently p (E)  is a single point. There does not exist a 

projective embedding of Xi such that  [dZ] is linearly equivalent to a hyperplane section 
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Z ' = H N X i .  If this were possible then a basis ~'  of sections for H~ [Z']) would extend 

to define a projective immersion of V where the compact curve E would be mapped 

non-trivially into an affine chart. This is because ENXi is a union of open disks and 

9J IEnX~ would be an embedding. This shows that  in order to embed bX_ it is sometimes 

necessary to enlarge the algebra of CR-functions beyond those which arise as restrictions 

of meromorphic functions with polar divisor Z. 

6. L imi t s  o f  e m b e d d a b l e  d e f o r m a t i o n s  

We now establish that  if certain cohomological conditions are Satisfied then the set of 

small embeddable perturbations of the CR-structure on the boundary of an embeddable, 

pseudoconcave surface is closed in the Ca-topology. 

THEOREM 6.1. Suppose that X_ is a complex surface with an embeddable, smooth, 

strictly pseudoconeave boundary such that there exists a smooth, positively embedded, 

holomorphie curve Z c c X _  of genus at least 1. I f  either of the hypotheses 

H2~(X_ ; 0 |  [ -Z] )  = 0 (6.1) 

o r  

H~(X_; O) = 0  and H I ( Z ; N z ) = O  (6.2) 

is satisfied, then the set of small embeddable deformations of the CR-strueture on bX 

is closed in the Ca-topology. 

Remark. If the genus of Z is zero then the complications encountered here do not 

arise. This case, which has already been treated in [Lel], [Le2] and [Li], is considered 

in w 

This theorem has the following corollary: 

COROLLARY 6.1. Suppose that X is a strictly pseudoconeave manifold with bound- 

ary which is embeddable in projective space and contains a positively embedded, smooth, 

compact curve Z.  I f  (6.1) holds, then the set of smaU defoTvuations of the complex struc- 

ture on X_  which are smooth up to bX , vanish on Z and embed into projective space 

is closed in the d~-topology. I f  (6.2) holds, then the set of small deformations of the 

complex structure on X which are smooth up to bX_ and embed into projective space is 

closed in the Ca-topology. 

Proof of Corollary 6.1. Suppose that  {flj} is a sequence of integrable, embeddable 

deformations of the complex structure on X_ which are smooth up to bX_ and satisfy 
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the hypotheses of the corollary. Assume that  this sequence converges in the g~- topology 

to fl0. Let {wj :j~>0} be the deformations of the CR-structure on bX_ induced by these 

deformations of the complex structure on X .  The sequence {wj : j  > 0} converges to w0 in 

the g~-topology. Using Andreotti 's  theorem (see [A]) and the resolution of singularities, 

it follows, for each j ~ 0, that  (bX_, ~ T ~  ) bounds a compact complex manifold. It 

follows from Kohn's theorem (see [Ko]) that  each is therefore embeddable. If the wj are 

sufficiently small then Theorem 6.1 implies tha t  (bX_, ~~176 bX_) is embeddable as well. 

Let X~ denote the normal Stein space with this boundary, and X ~_ the manifold X_ with 

the complex structure defined by fl0. If the deformations {flj } are sufficiently small, then 

under either hypothesis X ~ contains a positively embedded, compact curve (see Step 1 

below). Let X be the minimal resolution of the singularities of the compact complex 

space X~=X~+IIX~_. Since X ~_ is smooth, X contains an open subset biholomorphic 

to X~_. Hence .~ contains a positively embedded, compact curve, and so satisfies the 

hypotheses of Theorem 3.3 in Part  I of [Kdl]. It is therefore an algebraic surface which 

embeds into projective space. 

Proof of Theorem 6.1. The proof has two main steps: 

(1) Let {wj} be a sequence of small embeddable deformations of the CR-structure 

on b X  which converges in the g~- topology to wo. Using the cohomological hypotheses 

we show that  each deformation of the CR-structure wj can be extended to an integrable 

deformation ~tj of the complex structure on X_. Let X j denote X with the complex 

structure defined by t~j. We further establish that  ~tj can be chosen so that  there is a 

smooth, compact, holomorphic curve Zy C X y. Finally we show that  fly converges to fl0 

and Zj to Z0 in appropriate topologies. 

(2) After passing to a subsequence, we study the limits of the generically one-to- 

one maps and projective varieties ~j:X_j--+Vj. This allows us to show that  there is a 

generically one-to-one, holomorphic map ~: X_0--+P m, and therefore that  (X_0, Z0) is 

almost embeddable. From Theorem 5.1 this suffices to conclude that  bX_o is embeddable. 

Step 1. If (6.1) holds then we can apply the extended Kiremidjian theorem, see [Le2], 

[EH1], to obtain (Fly: j~>0}, integrable extensions of {wj: j>~0} which vanish along Z. 

That  is, 

flj = a0 ~y, 

where a 0 E H ~  ; [Z]) with divisor equal to Z, and the {F.j} are smooth tensors. We 

can also assume that  the sequence {t2y:j~>l} converges in the C~-topology to t20 as 

j - + o O .  

If (6.2) holds then we proceed a little differently. We apply Kiremidjian's theorem 

to obtain integrable extensions {~} :j~>0} of {wj :j~>0}, converging to ~ as j--+oo. If 
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the deformation tensor f~  is sufficiently small, then, as Hi(Z; N z ) = 0 ,  we can apply 

Kodaira's stability theorem (see [Zd2]) to locate an ~-ho lomorph ic  curve Z0, a small 

deformation of Z such that  

d e g / ~ o  = deg Nz. (6.3) 

As ft~ converges to ft~ in the C~176 we can, for sufficiently large j ,  locate ft~- 

holomorphic curves Z~ which are small deformations of Z0 and converge to it in the C ~ 

topology on submanifolds. We henceforth omit the finitely many terms of the sequence 

for which such a curve does not exist, and relabel the remaining terms beginning with 

j = l .  

Select diffeomorphisms {~bjCDiffr ) : j~>l} which reduce to the identity in a 

neighborhood of bX_ and carry Z~ onto Zo. The size of ~pj in the C~-topology on 

Diffr can be controlled by the C~-seminorms measuring the distance between Zj 

and Z0, and therefore by the C~-seminorms of w3-~0.  We let ftj  be the pullback of 

ft} via ~j.  This is again an integrable extension of wj, with Z0 a holomorphic curve. 

For j ~>0 we let X_j denote the manifold X_, with the complex structure defined by the 

deformation tensor ftj, and Zj=r  denote the smooth divisor with respect to this 

complex structure. 

Step 2. We now consider the behavior of the generically one-to-one maps 

~j: X_j --+ Vj 

obtained in Corollary 3.1. Our goal is to prove the following result: 

THEOREM 6.2. There exists a d > 0  such that H~ [dZ0]) is base-point-free and 

defines a generically one-to-one map of (X_o, Zo) into projective space. 

Remark. In a subsequent paper we will give an analytic proof of this statement. It 

follows from the estimates 

dim H~I (v j ,  [dZj]) = O(1), 

uniform in d and j .  This proof is also rather involved. 

Proof of Theorem 6.2. As the proof of this theorem is quite long we begin with a 

short outline. Because the manifolds { X j  } can be compactified we can use Corollary 3.1 

to obtain a generically one-to-one map of each (X_j, Zj) into a projective space such that  

the images are contained in irreducible subvarieties of uniformly bounded degrees. Using 

standard compactness results we show that  the bases of sections defining these maps 

have convergent subsequences. Two problems arise in the limit: 

(1) The limiting collection of sections might have base points, and so fail to give a 

globally defined map of X_o into projective space. In general, the limiting map is defined 

in the complement of a finite subset of Z0. 
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(2) It  is not evident tha t  the limiting map  is generically one-to-one. 

To handle these problems we consider the image varieties as defining holomorphic 

currents. As the degrees are uniformly bounded, this sequence of currents necessarily 

has convergent subsequences. This allows us to use the approximating maps to control 

the global properties of the limiting map, and thereby to prove the proposition. 

The hypotheses of the theorem imply that  for each j > 0  there is a normal Stein 

space X+j, with bX+j=-bX_j as CR-manifolds. Let Xj=X+jIIbx+jX_j. These are 

compact  complex spaces each with a positively embedded, smooth curve Zj. Of course, 

with our normalizations the Zj are all represented by the same "physical curve" Zo, 
though the complex structure in general depends on j .  Let H~ j >~0, be the 

holomorphic sections of the line bundle defined by the divisor [dZj]. Let g denote the 

genus of Z0 and k the degree of the normal bundle. From Proposition 3.5, (3.10) and 

(3.11) it follows that ,  for j~>0 and d>l+(2g-2) /k ,  we have the estimates 

M(g, k, d) <~ dim H~ X_j; [dZj]) <~ M(g, k, d)+ E(g, k ). (6.4) 

For each j > 0  the complex space X+j is normal. As the line bundles [dZj] are trivial in 

a neighborhood of X+j, it follows easily that  every element of H~ [dZj]) extends 

holomorphically to define an element of H~ [dZj]). 
Recall that  6(X_j ,Zj)  is the set of integers such that  g~ defines a 

holomorphic map of X j into a projective space which is an embedding of a neighborhood 

of Zj. From Proposition 3.1 we know tha t  

I N \ ~ ( X _ j ,  Zj) I <. C(g, k). (6.5) 

For j >0  it follows from the Corollary 3.1 that  these maps are generically one-to-one 

on X_j. The proof of this s ta tement  required an embedding of X_j as an open subset 

of a compact complex space. To obtain a generically one-to-one map for the limiting 

structure we need to choose d judiciously. First we state a lemma in algebraic geometry 

whose proof is deferred to the end of this section. 

LEMMA 6.1. Suppose that E is a Riemann surface of genus g, and L--+ E a holo- 
morphic line bundle of degree k>0 .  For each non-negative integer l there is an integer 
d(g,k,l) such that, if d>d(g,k, 1) and SCH~ d) is a linear subspace of codimen- 
sion l, then there is a finite subset {Xl,...,Xr}CP., containing the base points of S. 
Moreover, S defines an embedding of E \ { x l ,  ..., xr} into PS*.  

Existence of a limiting map. We need to consider more carefully the sequence of 

vector spaces {H~ We are in precisely the situation considered in the proof 

of Proposition 3.5. Let 

[dZo] [dZj] 
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denote, as before, bundle isomorphisms a n d  Djd the induced representation of the cS- 

operator  on sections of [dZj] as an operator on sections of [dZ0]. As before we have the 

identifications 

H~ = ~j,a ker Did for j ,  d )  0. (6.6) 

We now make use of the est imates given in w of [Le2]. Lempert  considers a complex 

manifold with boundary Y, such tha t  the Levi form of bY has at  least one negative 

eigenvalue at each point. Let L be a holomorphic line bundle on Y with vS-operator D, 

acting on Ca(Y; L). Lempert  shows tha t  there are constants Cs, CIs such tha t  for uE 

C~176 L) we have the estimates 

lul  + M0), 
< C;l 10 for u•176 

s = l , 2 , . . . ,  
(6.7) 

s=2,3,  .... 

Here {1' ]s:sE[0, oc)} is a family of seminorms defining the s tandard topology on 

C~ The constants {Cs} are geometric in nature, obtained by localizing to co- 

ordinate patches where the line bundle L is smoothly trivialized. Thus if we have a 

family of complex structures on Y and L with uniformly bounded geometries on Y, then 

we have uniform bounds on these constants. From this it follows that  for each pair (s, d) 

there is a c o n s t a n t  ds, d such that  each uEH~ [dZj]), j )O,  satisfies 

I j uls Cs,dl ls C .dCs,dI Io <--- d ,dl j ul0. (6,8) 

Let rj,d denote the restriction mappings 

rj.d: H~ [dZj]) --~ H~ Ndj). 

In Lemma 3.1 we showed that  there is an integer E(g, k) such that  rj, d may fail to be 

surjective for at most E(g, k) values of d. From this observation it follows tha t  we can 

find arbitrarily large values of d>d(g, k, E(g, k)), where d(g, k, l) is defined in Lemma 6.1, 

such that  

(6.9) the maps rO,d and r0,d+l are surjective, 

(6.10) there exists an infinite subsequence { j l ,  j2 ,  ... } such that  rjk,a and rjk,d+l are 

surjective for all k>0 .  

To see this let do be chosen so that  rO,d is surjective for d)do.  Suppose that  for 

a d)do there does not exist a subsequence satisfying (6.10). Then there is an inte- 

ger Jd such tha t  for j>Jd at least one of the maps rj,d, rj,d+l is not surjective. It  is 

clear that  this can happen at most 2E(g , k) times. Let dl be henceforth fixed so that  

d l ) m a x { d 0 ,  d(g, k, E(g, k))} and (6.10) holds. To simplify our notation we relabel this 

subsequence {X_I,  X_2, ... }. 
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Fix a volume form on X_ and a Hermitian metric on the fibers of [Z0], thereby 

obtaining metrics on [dZ0] for all d >0  as well as inner products on C~~ ; [dZ0]). For 

each j > 0  let aj0 denote a section of H~ [Zj]) with divisor equal to Zj. If we 

normalize so that  each o2~-ll(aj0) has norm 1 then it follows from the estimates (6.8) and 

the Rellich compactness theorem (see [Ka]) that  there is a subsequence converging to 

or00 in the C~176 Here a00 is a holomorphic section of [Z0] which vanishes simply 

along the divisor. We continue to denote this subsequence by {aj0}. 

For 0 < j we construct ordered bases for H ~ ( X j ;  [dZj]), 0 < d ~< dl + 1, in the following 

manner: Fix a basis for H~ [Zj]) of the form 

Inductively define 

e j l  = ( o j o ,  fjll , . . . ,  fjlnlj). 

ej.  = fj. l, .-., . . . .  j ) ,  

where {rj,m(fjmi) : i = 1,..., n,~j } is a basis for range rj,m. Finally for each pair j ,  d let ~j,g 

denote the result of applying the Gram Schmidt process to the ordered basis c~)(ejd). 
It follows from the pigeon hole principle and Lemma 3.1 that we can select a sub- 

sequence {ji} so that  Nd=dimH~ [dZj~]) is constant for 0<d~<dl+l .  Again using 

the estimates (6.8) and Rellieh compactness we can further assume that  the subsequence 

{qJj~,d} converges to ~0,d in the Ca-topology on X ,  for 0<d~<dl+l .  Here q%,d is a lin- 

early independent collection of holomorphic sections of [dZ0]; though of course it may fail 

to span H~ 0; [dZ0]). Let WdCH~ [dZ0]) denote the subspace spanned by O20,d, 
for 0<d<~dl+l .  As ~i~,d are orthonormal bases it follows easily that dim Wd=Nd for 

0<d~<d ,+ l .  Let N=N<+~. 
From our choices of subsequence and dl it is apparent that  rj~,dl and rj, dl+, are 

surjective for all i. Corollary 3.1 shows that  for i > 0  the maps into p N  defined by 

H ~  j~; [(d~+l)Z3~]), 

which we denote by q0j~,dl+l, are generically one-to-one and embed a neighborhood of Zj~. 
The image of ~j~,d,+a is contained in an irreducible projective variety Vi. From Proposi- 

tion 3.3 it follows that  deg Vi ~<D for some fixed integer D. There is a fixed hyperplane H 

such that  

Since the sections ajo, j>~O, vanish only along Z, the uniform convergence of the bases 

{~I/ji,dl+l} and the maximum principle imply that  there is a neighborhood R of Z and a 

neighborhood S of H so that  

~gji,dl+l(Xji\.[~ ) C P N \ s  for all i. (6.11) 
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Basic structure of the limiting map. We have not been able to show tha t  rO,d IWd are 

surjective for d=dl, d l + l -  It  follows easily from (3.12), however, tha t  for d=dl, d l + l  we 

have the estimates 

dim [H~ Ndo) /ro,a( Wa)] <<. E(g, k ). 

From our choice of dl and Lemma 6.1 it follows tha t  there is a finite set E o = { x l ,  . . . ,xr} 

containing the base points of rO,d(Wd) , d=dl and d l + l ,  such that  spaces of sections 

rO,dl(Wdl) and rO,dt+l(Wd~+l) define embeddings of Zo\Eo into projective spaces. As 

the first component of ff~0,dl+i is a constant multiple of v00-dl+l, it follows that  the base 

locus of the snbspace Wg~+I is contained in Zo, and therefore in the finite set E0. Thus 

q~O,dl +1 defines a holomorphic map ~0,d~+l: X_0\E0--+PN and a meromorphic map  from 

X_0 to pN. Note tha t  as Z0 is 1-dimensional the singularities of ~O,d~+l Izo are removable. 

The image of the extended map is simply the closure of ~O,d~+l(Zo\Eo). Since rO,dl(Wdl) 
is base-point-free on Zo\Eo, it follows tha t  the rank of d~)o,d~+l(X) equals 2 for every 

x E Z0\ E0. Fix a Riemannian metric on X and let B5 (x) denote the metric ball of radius 

centered at x, Ss(x)=bB~(x) and 

x : x_ \ 0 
i=1  

We can remove the indeterminacy of the meromorphic map 9%,d~+1 by blowing up, 

successively, a sequence of points to obtain a complex manifold 7r: X~_o--+ X_o and a glob- 

ally defined map qJ 0,d~+l : X20-+PN-  Let ExC 7r - l (Eo )  denote the exceptional divisor. 

Then we have that  

7r: X'_o\ E 1 -+ X_o 

is a biholomorphism onto its image, and 

~O,d~+l~ o\E~ = ~'O,a~+llX'_o\E~" 

Let ZD=~r-I(Zo\Eo); it is biholomorphic to Z0. 

The exceptional divisor E1 is a finite collection of P l ' s .  As the genus of Z~ is greater 

than 0 it follows from the Riemann-Hurwi tz  theorem tha t  

= ~ 0 , d i §  ~0,di-t-1 [, 0)  

is a finite set of points. Note that  as rkdP~o,d~+l(X)=2 on an open set, the set 

E ;  = {x: rkqJO,dl+l(X ) < 2} 

(6.12) 

is a proper subvariety of dimension at most 1. The analogous s ta tement  is therefore true 

for the meromorphie map ~0,d~+l. 
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Structure of the limiting variety. Consider the sequence of varieties {V/} as defining 

a sequence of positive currents {[Vr on pU. As degV~<D for all i, it follows that  the 

masses of the [Vi] are uniformly bounded, a result of Bishop implies that  {[Vi]} has a 

weakly convergent subsequence {[V~k]}, and that  the limiting current C is a holomorphic 

2-chain. In fact, 
m 

lira [Vik] = C = Z nj[Yj], (6.13) 
k- -+~  

j = l  

where the Yj are distinct, purely 2-dimensional, irreducible subvarieties of p g  and the 

nj are positive integers, see [Bi] and [Hv]. The image PO,dl+l(X-o\Eo) is contained 

in a single irreducible component of C. If it were not, then one could easily construct 

a non-trivial meromorphic function on X_0 which vanished on an open set. Call this 

component Y1. We again relabel so that  the subsequence {[Vik]} is simply {Vi} with 

corresponding relabeling of the bases, maps and pseudoconcave manifolds. 

We need to have a somewhat more precise picture of the convergence of the se- 

quence {[Vi]}. The exceptional divisor E a c X  ~_ is a union of P l ' s ,  and in particular it 

has real codimension 2. This implies that  for each c > 0  there exists an r ( e )>0  so that  if 

r < r ( e )  then the 3-dimensional Hausdorff measure of 

To,,. = +, (U  s,`(x,)) = ( U  s,.(x,)) 

satisfies 

~&(T0,~) < c. 

7-/3 denotes 3-dimensional Hausdorff measure. The (relabeled) bases {~ ,d}  converge in 

the C~-topology on X_ to ffg0,d. This easily implies that  the maps into projective space 

defined by these bases converge locally uniformly in the C~-topology on X_\Eo. From 

this we conclude that,  for a fixed r < r ( z )  and a sufficiently large j, we have the estimate 

7-/3(Tj,,`) < 2~ where Tj,,` = ~ j , d , + l ( U  S,`(Xl)). (6.14) 

This implies that we can choose a subsequence {ik} and a sequence rk-+O such that if 

we set 

, 

then 

and 

[Vik]--Vi++Vi; and d[Vi+J=-d[V~;]=Tk (6.15) 

lira ~ 3 ( T k )  = 0. 
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By choosing a further subsequence of { [If/k l} (which we continue to denote by { [17/k ]}) 

we can assume tha t  {[Vi~]} and converge weakly to currents C e and D re- 

spectively. Of course, 

dC + = - d C -  = D, C = C+ +C - (6.16) 

and C • are integer multiplicity currents with support  on the holomorphic varieties {Y/}. 

As 7-/3(D)=0 it follows from the support  theorem of Federer that  d[C+]=0.  It  now 

follows from the structure theorem of Harvey and Shiffman for closed, positive currents 

that  
m 

C+= E n~ [Y~]. (6.17) 
i = 1  

From (6.13) and (6.16) it follows that  {n~} are non-negative integers with 

n i = n  ++n~-, i = l , . . . , m ,  

see [Hv]. 

The limiting map is unramified. Let ~ r -1 (6.12). There weCPO,d,+l(Zo\Tr (Eo)) \ I ,  see 

is a unique point x ~Z o \Eo  with 

t X @O,dl~-l(X)'=~O,dlAcl( )=W. 

We claim that  the point x has a neighborhood UxCX~o\E1 such that  

l - - I  l 
(~0,d1+1) (~O,d,+,(Ux)) = Ux. (6.18) 

The rank of d~Jo.dl+l(x) is two, and therefore ~ is one-to-one in a neighborhood 
. 0~dl-[-1 

of x. If Ux did not exist then we could find sequences {p,,}, {qn} such that  

! ! ~)O,d~+l(Pn) = q00,d~ + l ( q n ) ,  l i r a  Pn = x, 
7%--~ o o  

/ but x is not a limit point of {qn}. As 990,d~+l(qn) converges to a point on H it follows 

tha t  the sequence {qn} remains in a compact  neighborhood of Z~UE1, and that  its 

limit points must lie on this set. Let q be a limit point of this sequence. Evidently 
/ / X - i ~O,dl+l(q):~O,dl+l( )=W. Smce ~oO,dl+llZo\Eo is an embedding, the point q must belong 

to El .  This would, however, imply tha t  wCI,  which is a contradiction. This shows that  

a neighborhood U~ satisfying (6.18) exists. 

Recalling the definition of the neighborhood R from (6.11), choose a point x E Z0\  Eo 

and let Ux C R be a neighborhood which satisfies (6.18). By shrinking Ux we can assume 

that  rkdqoo,dl+l(y)=2 for all yEU~, and that  r embeds U~. Now choose 

wc ~o,d,+I(Ux)\IUY2U...UYm. 



STABILITY OF EMBEDDINGS FOR PSEUDOCONCAVE SURFACES 197 

This is surely possible as  (PO,d14-1(gx) is an open subset of Y1, and YICIY/, i>  1, are proper 

analytic subvarieties. Let Q ~ c  ~O,dl+l(Ux) be a neighborhood of w such that  Q ~ A Y / = z  

for i>1,  and choose an open subset Q'~cS of pN (see (6.11)) such that  

! QwNYI=Qw and Q,~nYi=2~ f o r i > l .  (6.19) 

COC ! Now choose a non-negative function XE c (Q~) such that  X(w)=l .  Let r] denote 

the canonical Kghler form on pN. It follows from (6.13) and (6.19) that  

n l  [YI] (~"/] 2) : kli_+m [V/kl(xT]2) .  (6.20) 

Since ~)ik,dl+l is generically one-to-one it follows that  

z * 2 [G](~ 2) f ~,~,e~+~(x, )- 
J X i  k 

As U~ c R it follows that in fact 

[ Gl(x":) f~ * = 99ik,d~+l(X~/ ). (6.21) 
- - i  k 

For any sufficiently small 5>0 we have that  U~ccXS, and therefore 

c+(x ,  2) ,im [ * 2 ] i  ) - - - -  ~) /k ,d l~_l(X , ) = = [ Y I J ( X , 2 ) .  
k-~oo jx~  x_ 

(6.22) 

The last equality follows from (6.18). As [Y1](Xr~2)>0 equations (6.20), (6.21) and (6.22) 

imply that  

n~ = 1 and nl  = n 1 - 1 .  (6.23) 

Now suppose that  we could find disjoint open sets U1, U2 c X_\  Z0 such that  

~0,d~+l(Vl) = ~o,dl +1(u2). 

Since rkd990,dl+1=2 in the complement of a proper analytic subset we could choose 

disjoint open sets U1, U2 such that  

(1) 9~0,dl+l[U~, i=1,  2, are embeddings, 

(2) Q=~0,~l+X(Vl) =~0,~+1(u2), 
(3) for i>1,  Q n Y / = ~ .  
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Let Q ' c P  N be an open set such tha t  Q'NYI=Q and Q ' N Y ~ = o  for i>1 .  As before 

we select a non-negative function X E C ~ ( Q ' ) ,  with X(w)>0 for some wEQ. Choose a 

(~ > 0 small enough so that  UIU U2 CC X~. Then we have tha t  

X * 2 C -  2 lim )+ 
k o ~  ~ (6.24) 

2 [Y1] (Xr] 2) -~- ( n l  - 1)[Y1] (X~2)  - 

The last inequality follows from (6.23) and our choice of open sets U1, U2. As [Y1] (X~ 2) >0  

this contradiction proves tha t  such subsets do not exist. 

Construction of the generically one-to-one map. We now augment the basis ff%,d~+l 

to obtain a basis ffJ0,d~+~ for H~ [(dl+l)Z0]) .  In light of (6.9) this basis is base- 

point-free, and therefore defines a map  

~ :  X _ 0  ---> p M ,  

where M=dimH~ [ ( d l + l ) Z 0 ] ) - l .  I t  is clear from (6.9) and Lemma 3.2 that  r 

embeds a neighborhood of Z0. There is a linear projection p: pM__>pg such tha t  

~O,dl +1 = P ~ 1 6 2  

This implies that  there do not exist disjoint open subsets U~, U2 C X_ with r162  

Let W c P  M be the irreducible subvariety obtained in Proposit ion 3.3 such tha t  

r  and sing(W) is a finite set. To complete the proof of Theorem 6.2 we need 

to show that  ~b is generically one-to-one. 

Let E2 = {x E X_0 : rk de (x)  < 2}. This set is a proper subvariety, and therefore E2 = 

E~ 1 where E~ is the union of / -d imensional  components of E2. The subset E ~ is 

discrete. 

PROPOSITION 6.2. If E~ is the union of 1-dimensional components of E2 then 

r is a finite set of points. 

Proof of Proposition 6.2. First we show that  rkd(~lE~).(p)=O for pEE 1. Suppose 

tha t  this were not the case at some point in E~. As sing(W) is a finite set we could 

therefore find a smooth point xEE~ such tha t  r  is a smooth point of W and 

rk(d(O[E ~))(x) = 1. 

We apply Proposit ion 5.2 to conclude that  r is a non-trivially ramified cover in a 

neighborhood of x. This would imply tha t  there were disjoint open sets U1, U2 with 
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r Each connected component of E~ is therefore mapped to a single point 

by r and each connected component is a union of irreducible components of E~. There 

is a neighborhood U0 of bX_ in which a defining function P0 for bX is strictly plurisub- 

harmonic. The maximum principle implies that no irreducible component of E~ can 

be contained in U0. It is clear that s ing(E~)N{X\Uo} is a finite set, and therefore 

E~ N{X_\U0} has finitely many irreducible components. As every irreducible component 

of E~ intersects X_ \U0, this implies that E~ has finitely many irreducible components. 

This completes the proof of Proposition 6.2. 

LEMMA 6.3. There is a discrete set of points EaCX_ such that, if G=E2UEa, then 

 lx_\a is an embedding. 

Proof of Lemma 6.2. Suppose that there exist x Cy E X_ \ E2 with r = r From 

the definition of E2 it follows that rk tiC(x)=rk de(y)=2. The image point ~b(x)=r 

sing(W). Otherwise we could find disjoint open sets Ux, U.y with r162 If there 

exists xEX_\E2  and yEE2 such that r162 then again r If it were 

not, then there would again exist disjoint neighborhoods Ux, Uy of x, y, respectively, 

such that r162 has non-empty interior. In either case the germ (W, r must 

be reducible and the disjoint neighborhoods U~, Uy must have images iying in different 

components of the germ. As sing(W) is finite the different components must intersect in 

a point. This shows that for some set GcE2ur  the restriction ~lx_\a is 

an embedding. The lemma follows from the finiteness of the set sing(W). 

Thus the map ~b is generically one-to-one. To complete the proof of Theorem 6.2, 

and thereby the proof of Theorem 6.1, all that remains is the proof of Lemma 6.1. 

Proof of Lemma 6.1. To prove the lemma we use the following more precise state- 

ment: 

SUBLEMMA 6.1. Let E be a Riemann surface of genus 9, and L-+ E a holomorphic 

line bundle of degree k>0. Let N+ l=dimH~ La), let ~ be the canonical map 

F: E --~ PH~ La) * ~_ pN 

and : r :pN-~P N-z be a linear projection. There are at most 1 pairs of distinct points 

(ai, bi)EE such that :ro~(ai)=~rop(bi), provided 

dk -2( l+  l) >~ 2g-1. (6.25) 

Remark. We would like to thank Ron Donagi for the statement and proof of this 

sublemma. It is a classical general position argument which makes extensive usage of the 

language and notions of projective geometry, see [GH]. 
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Proof of the sublemma. We prove the sublemma by induction on 1. Recall how a 

linear projection 7r:PN--+P N-I is defined: given a subspace Q c P  N of dimension I - 1  

we obtain a holomorphic map 7rQ: pN\Q___~pN-Z by mapping a point p c p N \ Q  into the 

unique/-dimensional subspace of p g  spanned by p and Q. More concretely one can select 

an (N- / ) -d imens iona l  linear subspace R disjoint from Q. Then 7rQ (p) is the intersection 

of the linear subspace spanned by p and Q with R. 

Since L > 0  there is a divisor DL so that the line bundle [DL] is linearly equivalent 

to L. Let �9 be a fixed basis for H~ Ld)~-H~ [dDL]). We begin the induction with 

/=1.  Choose a point qEP N. First suppose that q=p(Cl)  for a c l cE .  There cannot exist 

two points al # bl E E \ p -  l(q) with 

7rqo~(a,) = :rqO p(bl). 

Let h c P  N* be a linear functional such that  

(6.26) 

h.~P(al ) = h.(P(bl ) = O. 

If (6.26) holds then q is collinear with p(a l )  and ~(bl), and therefore we would also have 

that  

h.q=h.~(cl) =0.  

This would imply that  

H~ [dDL\{al, bl }]) = H~ [dDL\{al, bl, cl}]). 

If kd-3>~2g-1 then (6.27) contradicts the Riemann-Roch theorem. 

there cannot exist two distinct pairs (a~, bi), i=1,  2, such that  

(6.27) 

If q p(E) then 

7rqo~(ai) =Trqo~(bi), i =  1,2. (6.28) 

As ~(al)  , ~(bx) and q are collinear, if hcP  N* is chosen so that  h.~(ax)=h.~(bl)=0 then 

h.q=O as well. As p(a2), ~a(b2) and q are again collinear, if h.O~(a2) also vanishes then 

h-~(b2)=0 as well. This would entail 

H~ [dDL \ {al, bl, a2}]) = H~ [dDL \ {ax, bl, a2, b2}]). 

If k d - 4 ) 2 g - 1  this again contradicts the Riemann Roch theorem. This completes the 

case l = 1. 

Suppose that  the result is proved for {1, 2, . . . , j} and that  dk -2 ( j+2) )2g -1 .  Let 

Q be a j-dimensional subspace of p N  and let 7rQ be the linear projection to p N - ( j + l )  
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it defines. For convenience we select an [N- ( j+ l ) ] -d imens iona l  subspace R disjoint 

from Q and v)(E) so that  7rQ: P N \ Q ~ R .  To shorten the exposition we only present the 

details of the induction step for the generic case Q A p ( E ) = ~ .  As in the case l=1,  the 

non-generic cases are even more restrictive. 

Suppose that  there are j + 2  distinct pairs {(ai, bi)} such that  

7CQo~(ai) = 7rQo~(bi) = ri E R, i = 1, ..., j +2. 

Let qi denote the intersection of the line through p(ai )  and ri with Q, and q~ the in- 

tersection of the line through ~(bi) and ri with Q. This collinearity entails the linear 

relations 

O~ilri~-/~il~9(ai)=qi, ozi2ri-t-/3i2qo(bi)=q~. 

Here and in the sequel we tacitly identify points in p N  with points on the lines in 

cN+Z\{0} which define them. For homogeneous relations of this type this practice should 

cause no confusion. As both Q N R  and QA~(E)  are empty, none of these coefficients can 

vanish. These relations imply that  

q~' = cti2 qi -C~il q~ = o~i2/3il cp( ai ) -c~il/3i2cp( bi ). (6.29) 

As the map ~ separates points it follows that  q~r  i = l , . . . , j + l .  We claim that  the 

points {q~, ..., q}~+l } are linearly independent. If not, we would have a linear relation 

j + l  

E ciq.:'=O, (6.30) 
i=1 

with some coefficient non-zero. We can relabel so that c1r  Combining (6.29) and 

(6.30) we would deduce that  

j + l  
Ci 

~176 = - E ~cYi2/3 i l~(ai ) -a i l /3 i2~(bi ) .  (6 .31)  
i=2 

This would imply that  

H~ [ d D L -  { al , a2, b2, . . . ,  aj+l, bj+ l }]) = H~ [ d D L -  { al , bl , a2, b2, . . . ,  a j +  l , bj+ l }]). 

As k d - 2 ( j + l ) > ~ 2 g - 1  this contradicts the Riemann-Roch theorem. Since dim Q = j  it 

follows that the points {q~/, ..., qj+l" } span the subspace. If h E P  N* is chosen so that  

h.q~(ai )=h.~5(bi )=O f o r i = l , . . . , j + l ,  (6.32) 
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then (6.29) implies that  h.q~'=O, i = l , . . . , j + l ,  and therefore, a s  {qf, '",qj!+l} span Q, 

we have that  

h .q=O for a l l q E Q .  

In particular, h.qj+2=h.q~+2=O. If h.dp(aj+2)=O as well, then h . r j+~=0 ,  and therefore 

as ~(by+2), q}+2 and rj+: are collinear we see that  h.(I)(bj+2)=0. This would imply tha t  

H~ [dDL - { a l ,  b,, ..., aj+ l , bj+ l, aj+2}]) 

= H~ [dDL - {al, bl, ..., aj+l, by+l, aj+2, bj+2 }1). 

As d k - 2 ( j + 2 ) ~ > 2 g - 1  this contradicts the Riemann-Roch theorem and completes the 

proof of the sublemma in the generic case. The non-generic cases are left to the reader. 

Using a similar argument one easily shows that  a subspace S c H ~  L d) of codi- 

mension l, where k d - 2 ( l + l ) ~ 2 g - 1  has a finite number of base points B = { s l ,  ..., sin}. 

Thus the subspace defines a map ~ :  E \ B - + P S * .  The lemma now follows immediately 

as the sublemma shows that  at most a finite number of points in ~ ' ( E \ B )  can have two 

or more preimages. As d~a I is not identically zero it vanishes at finitely many points. 

This completes the proof of the lemma. 

II. Stability results for deformations with 

extensions  vanishing to high order along Z 

7. Extending sections of  the normal b u n d l e  

In a previous paper, [EH1], we considered the problem of extending deformations of the 

CR-structure on bX_ as integrable, almost complex structures on X_. From Lemper t ' s  

work it is clear that  it is often useful to have an extension for which the deformation 

tensor vanishes to a given order on a smooth, compact  curve Z c X _ .  Suppose that  w 

is a deformation of the CR-structure on M, and ~ is an integrable deformation of the 

complex structure on X ,  that  satisfies 

(1) ~b----~]yO,~i=~, 
(2) = = a o d ~  has a smooth extension across Z, 

(3) 0 ~ -  �89 [~, ~] =0,  

then we say that  w has an integrable extension (to X_) vanishing to order d (along Z).  Let 

s X_,  Z)  denote the set of deformations of the CR-structure with such an extension. 

In [EH1] the folIowing theorem is proved: 
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THEOREM EH1. Let X_ be a smooth, strictly pseudoconcave surface containing a 

smooth, positively embedded holomorphic curve Z. We further suppose that the CR- 

structure induced on bX_ is embeddable. For any O <~d the set Sd( M, X_, Z) contains an 

analytic subvariety of the set of all deformations of the CR-structure of codimension at 

most 2 d i m H 2 ( X  ; O |  

Remarks. (1) Using a slight variant of the proof of Theorem EH1 one can improve 

the codimension estimate to the more natural bound 

codim gd(M, X_, Z)  ~< dim H~(X_; e |  

see [EH3]. For applications of the improved results see w 

(2) Kiremidjian proved a version of Theorem EH1 under the assumption that  the 

formal obstruction to extending the deformation tensor H2(X_; O) vanishes. Using the 

Nash-Moser theorem he obtains extensions in C~ (X_) which do not depend analytically 

on the boundary data. In [EH1] we obtain extensions of finite differentiability which 

depend analytically, in appropriately defined Hilbert spaces, on the boundary data. 

In Part  I we considered circumstances where small deformations of the CR-structure 

on bX_ could always be extended to X in such a way that  a smooth, positively embed- 

ded divisor Z also deforms in a controlled manner. Unless Z -~P  1, 2 is the minimal order 

of vanishing, which implies that  N2, the holomorphic normal bundle, remains fixed under 

the deformation of the ambient complex structure. We now consider the consequences of 

having extensions of deformations which vanish to order 3 or more along the divisor. It 

must be stressed that  we know of only one class of examples with 2 . Hc(X_,O| 

neighborhoods of p1 in p2. As follows from the extension result above, however, the 

codimension of g3(M, X_, Z)  is always finite, and one hopes that  the collection of em- 

beddable structures with such an extension is also of "finite codimension". In this and 

the following section we show that  embeddable structures in g3(M, X ,  Z) have stability 

properties analogous to those of hypersurfaces in C 2. 

Suppose that  w defines a deformation of the CR-structure on M which has an 

extension to an integrable, almost complex structure ~ on X_, vanishing to order d ~ 0  

along Z. We denote X with this complex structure by X I .  When confusion might arise 

we continue to denote objects connected with the deformed complex structure with a / ,  

e.g. c 5/. We denote the line bundle defined by the divisor Z with respect to the deformed 

complex structure by [ZI]. Suppose that  (M, WT~ is embeddable and hence the 

boundary of a compact Stein space X~. 

To proceed with our analysis it is useful to have a more explicit description of the 

complex structure on the line bundle [Zt]. To that  end we construct local (0~-holomorphic 
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defining functions for the hypersurface Z ~. Fix a cover of a neighborhood of Z c X _  by 

open balls {U1, ..., UQ} such that  in each Ui we have ch-holomorphic coordinates (z~, wi) 

with 

z n  u~ = {z, : o } .  

We further suppose that  each Ui contains the unit ball B~ in the (zi, w~)-coordinates, 

and that  these balls also define a cover of a neighborhood of Z. Let U0 denote an open 

set in X disjoint from Z such that  U0 along with the balls of radius 1 is a cover of X_. 

If we set { z~, l ~ i ~ Q ,  

ao i=  1, i = 0 ,  

then ao={a0i} is a holomorphic 0-cochain with (a0)= [Z]. 

The basic facts we need are contained in the following technical lemma. Here we let 

(z, wl, . . . ,  wn- ] )  denote linear coordinates on C n with H = { z = 0 } .  

LEMMA 7.1. Let ~tEC~ O| ~ define an integrable deformation of the com- 

plex structure on the unit ball B1 in C n, such that ~=zdS  for some d>0.  Here 

is smooth in H I of sufficiently small C"+2-norm. There exists a function z!EC~(B1), 

holomorphic with respect to the deformed complex structure, such that z!=hz where 

h= l+O(lzld-1). 

The map E - + A - 1  is continuous from C~C(B1; O | 1 7 6 1 7 4  to d ~ ( D t ) .  

This is an extension of Lemma 4.1 in [Le2]. The proof can be found in [O]. 

We apply the lemma to obtain local 0!-holomorphic defining functions for Z'. For 

each i > 0  let z~EO(B~) denote the function defined in Lemma 7.1, and set 

o-~,~18, = ~ z;, i > o, (7.1) 
1. 1, i = 0 .  

The c~!-holomorphic cochain cr~ satisfies 

(~5) = [z']. 

Transition functions for [Z] and [Z'] are given by 

! 
: - -  I Zi zi and gij = 

gij zj zj 

respectively. 
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We let 
! 

hi = --.zi (7.2) 
Zi 

The smooth 0-cochain h =  {hi} defines an isomorphism between the smooth line bundles 

[Z] and [Z']. If  s is a smooth section of [Z] we denote the corresponding section of [Z'] 

by h.s. From the lemma it follows tha t  1 - h i  is est imated on Bi by bounds on ~IB~, and 

moreover 

h i = l T O ( I z i l d - 1 ) ,  i>O. (7.3) 

Of course, h 0 = l .  

We now consider the extension of sections of N z  to sections of [Z~]. 

LEMMA 7.2. Let gt be an integrable deformation of the complex structure on X 

vanishing to order d > l  along Z.  I f  ~- is a section of H~ N z  ) which has a holomorphic 

extension as a section of [Z], then ~- has a smooth extension to X_ as a section ~ of 

[Zq which satisfies 

~'~ = ~ o ~ - ~ ,  (7.4)  

where a is a smooth [(2-d)Z]-valued 1-forvn. 

Proof. For s E H ~  ;[Z]) we let ~=h.s  be a smooth section of [Z']. If  f~ vanishes 

to order d > l  along Z then ~ t z= s l z ,  and it follows from (7.3) that  

0 ' ~  = (O-~)d--loz, 

where a is a smooth [ (2 -d)Z ' ] -va lued  1-form. 

Suppose that  X ~_ is a compact  domain in a projective surface W. We augment the 

set U0 by adding to it V ' \ X ~ .  The line bundle [Z'] is extended to all of V' by simply 

extending a~0 to be 1 on the expanded U0. We extend ~ as a smooth function across 

bX_ and cut it off smoothly to obtain something compactly supported in W\s ing(V/) .  

Denote by g this extension of ~- to W as a smooth section of [Z~]. 

In order to find a holomorphic extension we need to solve 

It  would suffice to solve 

{ ~'t  = ~'~,  

t l z  = 0 .  

c9~ 
o't0 = - -  (7.5)  
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and set s ' = g - a 6 t  o. In general, (7.5) is solvable only if H ~ l ( V ' \ s i n g V ' ) = O .  Unless 

Z ~ - P  1 our information about  this cohomology group is rather limited, so we instead 

consider the equation 

c5'tl - (7.6) 

Here we see the utility of working with perturbat ions of the complex structure on X 

tha t  vanish to order 3 along Z. 

In the proof of the following theorem we use the anisotropic Lemper t -Sobolev norms 

defined in w of [Le2]. We refer the reader to the cited work for their definitions and 

main properties, see also (6.7). As in w we denote these norms by I" I~. 

THEOREM 7.1. Let ~ be an integrable deformation of the complex structure on X_ 

which vanishes to order d>~3 along Z, such that X ~_ is a subdomain in a normal, projec- 

tive variety V ~. I f  ~----~:aod~-~ i8 sufficiently small and TEH~ N z )  has a holomorphic 

extension s as a section of [Z], then it has a 01-holomorphic extension s ~ as a section 

of [Z ~] which satisfies 

s i l - -h is i=Ofad- l~  0i J, i = I , . . . , Q .  

Additionally the Lempert Sobolev norms of the difference s~ -h . s  are estimated on X_  

by bounds on =. 

Proof. With ~ defined as above it follows that  

0i 

Here {8i} are smooth 1-forms which are est imated on X_ by bounds on ~. From the 

lemma it follows that  

is smooth and obviously c~-closed. As 1 -  hi is est imated on Bi by bounds on E it follows 

tha t  this ratio also satisfies such bounds on X .  

Thus we have a smooth, closed (0, 1)-form with values in [ ( 2 - d ) Z ' ]  and compact  

support  in W \ s i n g ( W ) .  As d>2 ,  Proposit ion 2.1 implies that  we can solve 

c5'~ 

By standard regularity results, u is smooth on V ' \ s ing (V ' ) .  Setting s '=g--(a~)d-~u we 

obtain a holomorphic section of [Z ~] which has the desired behavior in a neighborhood 

of Z. As V ~ is normal and the line bundle [Z ~] is trivial in a neighborhood of sing(W), 

this section has a holomorphic extension to all of W. 
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All that  remains is to establish the bounds on s ~ in X_. To tha t  end we use the 

estimates (6.7), originally from w of [Le2]. As noted before, the constants {Cs} are 

uniformly bounded under small deformations of Y and L. To complete the proof we 

need to show tha t  for a negative line bundle L the constants {C:} are also uniformly 

bounded under small deformations. For the case Y = X _ ,  L=[(2-d)Z],  it is clear that  

H~  L)=0 .  Indeed, we can find a strictly pseudoconcave neighborhood U of Z such 

tha t  L I u is strictly negative. If Y~, L t denote small enough deformations of the complex 

structures on Y, L, then U c Y  ~ is again strictly pseudoconcave, and L'lu is strictly neg- 

ative: This implies that  H~ L ' )  = 0 for sufficiently small deformations of the complex 

structure. This in turn implies that  the constants {C~} are uniformly bounded. 

If not, then we could find a sequence of deformations (Yn, Ln) converging to (Y, L) 

in the C~-topology, and an l>~2 for which there exists a sequence {Un} SO that  u~C 

C~(Y~; L~) and 

lu lt = 1, tu tz nlD u tt_l. (7.7) 

On the other hand, we have tha t  

lunlz G(IDnunll-l+lu lo) (7.8) 

with a constant independent of n. Let ~n denote C~-isomorphisms of the bundles 

Ln-+L, converging to the identity as n--+cc. From (7.7) and the Rellich compactness 

theorem we conclude that  {q>nu,,} has a subsequence converging to vCH~ L) in the 

( / -1 ) -no rm.  The second estimate, (7.8), implies tha t  IVlo>~C[ 1, and therefore v # 0 .  

This contradicts the fact that  H~ L ) = 0 .  

In the case at hand, Y=X'_ ,  L=(2-d)Z% we have solved the equation 

0'~ 
D u  : - -  

The right-hand side is est imated on X by bounds on .E. Observe that  s ' - h - s =  (O';)d--lU. 

As we can assume that  the constants {C's} in (6.7) are uniformly bounded, it follows tha t  
! u itself is also bounded on X_ by -~. This observation coupled with the bounds on cr 0 

given in Lemma 7.1 completes the proof of the theorem. 

Using Lemma 2.1 along with Theorem 7.1 we obtain the corollary. 

COROLLARY 7.1. If f~ is an integrable deformation on X which vanishes to order 

d>>.3 along Z such that ft induces an embeddable CR-structure on bX_, and ~rogft is 

sufficiently small, then every section 7 c H ~  Nz) which has a holomorphic extension 
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as a section of [Z] also has a holomorphic extension 0' as a section of [Z'] satisfying 

the estimate 

h o - -  o-' = 0 ( (o - ; )  

along Z. 

Let M be a separating, strictly pseudoconvex hypersurface in a projective surface X. 

Let X•  denote the components of X \ M .  Assume that X_ C X \s ing(X) and that Z C X_ 

is a smooth, positively embedded holomorphic curve. 

PROPOSITION 7.1. Suppose that H~ [Z])--+H~ Nz )  is surjective and w is a 

sufficiently small deformation of the CR-structure on M with an integrable extension to 

X_ vanishing to order d>~3 along Z. Let X~+ denote the normal Stein space bounded by 

(M,~~176 and set X'=X+ IIMX~. Then 

dim H~ [Z']) = dim H~ [Z]). 

Pro@ Let N = d i m H ~  from Corollary 7.1 it follows that there exist sec- 

tions {o~,..., o~} E H~ [Z']) such that {o i Ix,-.-, o~r Ix} is a basis for H~ Nz) ,  and 

therefore 

dimH~ [Z'])/> N + I  = dim H~ [Z]). 

It follows from (3.7) that 

dim g ~  [Z']) <~ dim H~ N z ) +  1 

as well, thus completing the proof of the proposition. 

From this point, Lempert 's argument establishing the stability of the embedding of 

M into C N, 

( o l  O N e ,  p--+ - -  ,..., 
or0 p o0 p} 

defined by a basis of sections {00, ..., aN} for H~ [Z]), is a consequence of (6.7). Using 

his argument one easily proves 

PROPOSITION 7.2. Suppose that H~ [Z])--+ H~ N z )  is surjective, and [Z]~  X 

is a very ample line bundle. Let co be a sufficiently small deformation of the CR-structure 

on M with an integrable extension to X_ vanishing to order d >>-3 along Z. Let X+ denote 

the normal Stein space bounded by (M,~T~ and set ~ X =X+ I IMXI .  Then for each 

l>O and c>O there exist a k>O and a (~>0 such that, if IIwllck(M)<d, then there are 

holomorphic sections {o-k, ..., C/N } of [Z'] which satisfy the estimates 
1 

0 i O" i 
- - -  <c for i = l , . . . , N .  

7o C'(M) 
With additional hypotheses we see that dim H~ [dZ])=dim H~ [dZ']) for all 

positive values of d. 
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COROLLARY 7.2. There exists an integer m(k,g) such that if the maps 

SymmH~ Nz) -+ H~ N~ ~) are surjective for 0 < m <<. re(k, 9) (7.9) 

then, under the hypotheses of Proposition 7.1, we have 

dim H~ [dZ]) = dim H~ [dZ']) for d > O. 

Proof. If k > 2g-2  then it follows from Castelnuovo's bound that the maps 

SymmH~ Nz) -+ H~ N~)  

are surjective for all m>0, see [GH]. If k < 2 g - 2  then let l=~(2g-2)/k~+2; by the same 

reasoning the maps 

SymmH~ N~) --+ H~ Nlz m) 

are surjective for all m>0. Let j>2l  and choose 0<n  so that 

(n+l ) l  < j  < (n+2)l. 

With this choice of n we can find two sections s l , s2EH~ -~l) without common 

zeros. Hence the following sequence of sheaves is exact: 

O-+ N / + N /  /--+ N z-+O 

where f (t 1, t2) = sl tl + s2 t2. The long exact sequence in cohomology implies that 

SlH~ N~l)+s2H~ N} t) : H~ N~). 

As j - n l < 2 1  this implies that there is an m(k,g) such that for any m>0  the group 

H~ N~)  is generated by monomials of weighted degree m in 

,~(k,g) 
(~ H~ N~). 
j = 0  

The hypotheses of the theorem therefore imply that the following sequences are 

exact: 

0 -+ H~ [(d- 1)Z]) --+ H~ [dZ]) Z+ HO(z; N d) __+ O, 1 <~ d, 

0 --+ H~ [(d- 1)Z']) --+ H~ [dZ']) Z+ HO(Z; Nz d) _+ 0, 1 ~< d. 
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Thus 

for l ~ d .  

d 

dim H~ [dZ]) = dim H~ [dZ']) = ~ H~ N}) 
j = 0  

Remarks. (1) Note that  the hypotheses of the corollary imply that  dim H~ [dZ]) 

achieves the maximum possible value for all 0<d.  

(2) It seems likely that  the conclusion of the corollary does not require an additional 

hypothesis as strong as (7.9). Using once again Lempert 's  estimate one can show that  

for a fixed d and sufficiently small w, sections in H~ [dZ]) are well approximated on 

X by sections in H~ [dZ~]). A priori the necessary smallness of w depends on d. 

The results in [Ep2], however, suggest that,  at least when [-Jd>0 H~ [dZ])IM is dense 

in the CR-functions on M, there should be a uniform estimate that works for all d. 

In the case that  X \ Z  is a Stein manifold, the stability property obtained in the 

previous corollary can be strengthened. 

COROLLARY 7.3. Suppose that (X, Z) satisfies the hypotheses of Proposition 7.2, 

and that X \ Z  is a Stein manifold. Then any sufficiently small deformation of the CR- 

structure on M with an integrable extension to X_, vanishing to order d>~3 on M, can 

be realized by a small deformation of the embedding of M into X itself. 

Remark. Colloquially one says that  all sufficiently small embeddable deformations 

of the CR-structure on M are obtained by "wiggling" M within X. In this case the 

results in [Ep2] do indeed show that  ker CSb is uniformly well approximated by elements 

of ker c~, and vice versa. 

Proof. Let Y C C  ~ denote a proper embedding of X \ Z  obtained from a basis of 

sections of [Z]. It follows from a theorem of Docquier and Grauert  that there is a 

neighborhood U of Y and a holomorphic retraction 

R : U ~ Y ,  

see [DG]. For a sufficiently small, embeddable deformation, the image of the perturbed 

embedding, defined in Proposition 7.2, is transverse to the fibers of R. Hence we can 

compose this embedding with R to obtain an embedding of the deformed CR-manifold 

into Y itself. As Y is biholomorphic to X \ Z  this proves the corollary. 
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8. Deformat ion  of  the  defining equat ions  

We now let XC pN be an algebraic surface with Z a smooth hyperplane section and 

MC X a separating, smooth, strictly pseudoconvex hypersurface. Let X• be the com- 

ponents of X \ M ;  assume that  X is smooth and that  Z c c X _ .  We have seen that  

an embeddable deformation of the CR-structure on M which has an extension to X_ 

vanishing to sufficiently high order along Z can be embedded as a small deformation 

of M in pN. In this section we show, under additional hypotheses, that  the deformed 

embedding lies in an algebraic variety which is a deformation of X. 

We let (@:... :~N) denote homogeneous coordinates for pN. Let H denote the hyper- 

plane {~0=0}, and suppose that  X is embedded into p N  with 

Z = X A H  

a transverse intersection. We can also think of the functions {(i} as a basis for 

H~  [H]). With this interpretation we denote the restrictions of {r : j : 0 ,  . . . ,N} 

to X by {aj}, and the restrictions of {aj : j : l ,  . . . ,N} to Z by {Tj}. 

We begin with a crude algebraic stability result: 

PROPOSITION 8.1. Let w denote a sufficiently small, embeddable deformation of the 

CR-structure on M,  having an extension to X_ vanishing to order d>~3 along Z. The 

deformed CR-manifold (M, ~T~ can be embedded into a projective variety ft. which 

satisfies 

deg(_~) = deg(X). 

Proof. Let ~ denote the integrable deformation extending w which vanishes to order 

d~>3 along Z. We let X~ denote the normal, complex spaces bounded by (M, ~T~ 

and set 

X'= X+ IIM X'_. 

Let (7~ denote the section of [Z'] introduced in (7.1). Recall that  h={hi} ,  defined in 

(7.2), is a smooth 0-cochain defining an isomorphism between [Z] and [Z']. Using Propo- 

sition 7.2 it follows that  for each l>0  and e>0  there exist a k>0  and a (~>0 such that  if 

NWlICk(M)<5 then there are holomorphic sections {(7~, ..., (7~v} of [Z'] such that  

, = O ( l ( 7 ~ l ~ - a ) ,  hi ai - ai 

IIh-~(7~-(Ti[[c,(x_)<c for i=O , . . . ,N .  

From the definition of h it follows that  

i = h(70. (7 0 
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Thus the embedding of X'_ into p N  defined by {a/> ...,a~v } meets the embedding of 

X along Z = X N H .  On the other hand, by taking w sufficiently small we obtain the 

estimates above for l=2  and an 0<E<<I. This gives an embedding of bX r which is 

a small deformation of b X .  As bX'_ is contained in the affine chart p N \ H ,  we can 

apply the Harvey-Lawson construction to obtain an irreducible analytic variety X+ with 

bX+ =-bX~.  
As )(+ is contained in a compact subset of the affine chart p N  \ H ,  we see that  

H ~ ) ( +  = O. 
A 

Thus X=X+ IIbx, - X'_ is a subvariety of p N  which meets H along Z. Since X intersects 

H transversely we have the formula 

d e g X  = # ( X n P )  

for P C  H a generic (N-2)-d imensional  subspace. As transversality is an open condition, 

under the smallness hypotheses of the proposition we also have that  

d e g X  = # ( X n P ) .  

As )(N H = X n H the proposition follows immediately. 

Suppose that the ideal of the subvariety XC pN is generated by homogeneous poly- 

nomials {pl, ...,Pt} of degrees {ma, ..., mr}. The sections {ai} satisfy the relations 

pj(O'o,. . . ,ON)=O , j =  l , . . . ,1.  (8.1) 

If ft vanishes to order d~>3 along Z then the holomorphic sections {a~} of [Z'] satisfy 

h.cr i - o - ~  = O ( I o ' 0 l d - i ) .  ( 8 . 2 )  

As a consequence of (7.3) it follows that,  in local coordinates near to a point on Z, we 

have the estimate 
! = o(1 01 d - l )  - -  O(la'old-l). (8.3) 

Using the homogeneity of pj it follows that,  along Z, 

pj(~') = O(l~0ld-1), 

and therefore by the Riemann removable singularities theorem it follows that  

extends to define a holomorphic section of [(mj-  d+ 1)Z']. 

Let 

D = max{rut, . . . ,  ml }. 

The discussion in the previous paragraph establishes the following strong stability result: 
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THEOREM 8.1. If  cz is a sufficiently small, embeddable perturbation of the CR- 

structure on M which has an integrable extension to X vanishing to order d>~D+2 

along Z, then (M, ~T~ is realizable as a small perturbation of bX+ within X .  

Proof. Under these hypotheses the bundles [ (mj -  d+ 1)Z'] are negative, and there- 

fore the holomorphic sections {~j} must vanish identically. As the polynomials {pj} 

generate the ideal of X it follows that  the image of the map x~-~(a~(x):...:a~v(x)) is 

contained in X. That  the image of M under this embedding is a small perturbation of 

bX+ follows from Proposition 7.2. 

This result has an interpretation in terms of the relative index between the ref- 

erence CR-structure and that  defined by aJ, see [Ep2]. Let (M, CSb) denote an embed- 

dable, strictly pseudoconvex, 3-dimensional CR-manifold, S an orthogonal projection 

onto ker0b, and cu an embeddable deformation of the CR-strueture on M. If w arises 

from a wiggle of M then it is shown in [Ep2] that  the relative index vanishes, see w Let 

8~ denote the orthogonal projection onto kercS~ ~ If Ind(0b, 0;~ then 

II,S-,S~ll = O(l~l). (8.4) 

Here 1[. 11 denotes the operator norm relative to the HS-topolog37 for some fixed s, and 

1" I is an appropriate Ck-norm. Thus we see that if Ind(0v, 0~')=0 and I~l is small then 

the entire algebra ker C~b is uniformly well approximated in the HS-topology by ker c5~. 

In [EH1] it is shown that,  for any O<.d, $ a ( M , X _ , Z )  contains a finite-eodimensional 

subvariety of the set of all deformations. 

COROLLARY 8.1. If w belongs to the intersection of gO+2 with the set of embeddable 

CR-structures, then 

Ind(0b, (9~) = 0. 

Pro@ This is an immediate consequence of Theorem 8.1 and the fact, proved 

in [Ep2], that  the relative index vanishes for wiggles. 

Remark. This corollary will perhaps be an important step in the understanding of 

the set of embeddable CR-structures in the general case. As eodim gO+2 is finite it gives 

strong support for the conjecture that  Ind(CSb,@) assumes only finitely many values 

among small embeddable deformations. In [Ep2] it is shown that  this conjecture implies 

that  the set of embeddable structures is locally closed in the C~-topology. 

We now consider the stability properties of deformations of the CR-strueture on 

M which have extensions to X vanishing along Z to order 0 < d < D + 2 .  We make an 

additional assumption on X and its embedding into projective space: 

H~ [H]) --+ H~ [Z]) and H~ [Z]) --~ H~ N z )  are surjective. (8.5) 
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As above we let {40,--., ~N} denote homogeneous coordinates for pN with H={(0=0} .  

We may consider {~i } as a basis of sections for H~ [H]), and, with this interpretation, 

set 

ai=~i lx ,  i =0, . . . ,  N, 

Wi=ai]Z, i = 1,..., N. 

Our assumptions on X and Z imply that  {a~:i=0, ..., N} is a basis for H~ [Z]), and 

{T.i: i=1,  ..., N} is a basis for H~ Nz).  

We also require that  the normal bundle satisfy the condition: 

SymmH~ Nz)  -+ g ~  N~)  is surjective for 2 <~ m. (8.6) 

As noted in the proof of Corollary 7.2, there is a constant re(k, g) such that it suffices 

to assume this surjectivity for m<.m(k, g). The conditions in (8.6) hold for Z = P  l, any 

hypersurface in p3, the projective completion of the total space of the canonical bundle of 

a non-hyperelliptic Riemann surface. As follows from the Castelnuovo bound, this is the 

case for the compactification of any line bundle with degree sufficiently large compared 

to the genus, see [GH]. We can now establish a stronger algebraic stability statement. 

PROPOSITION 8.2. Suppose that X is a projective variety containing a smooth, very 

ample divisor Z, satisfying (8.5) and (8.6). Let w be a sufficiently small, embeddable 

deformation of the CR-st~ucture on M which has an extension to X vanishing on Z 

satisfying: 

(a) the normal bundle of Z' is isomorphic to the normal bundle of Z, 

(b) the map H~ ; [Z'])--+H~ g z , )  is surjective. 

Then the CR-manifold (bX ,~T~ has an embeddin 9 into a projective variety X .  

For each j there exist homogeneous polynomials {Pjl,..., Pjm~ } in the variables (~1, ..., ~N) 

such that the homogeneous polynomials 

rnj  

Pj (~)=pj (~ ) - -Ep jk (~)<~,  j = l , . . . , m ,  
k = l  

belong to the ideal of X .  

Proof. Let {a~, ..., a~v } denote sections of [Z'] which satisfy 

( a ~ ) = Z ' ,  cr;lz,=~-i , i = l , . . . , N .  (8.7) 

As the sections {T~} satisfy the relations pj (7)=0,  j = l ,  ..., l, it follows that  

- p j  
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are holomorphic sections of [ ( m j - 1 ) Z ' ] .  Our assumptions (8.5) and (8.6) imply that  

there exist homogeneous polynomials {Pal} of degrees {m j - 1 }  such that  

! ! (pj(~)/%)lz,=pyl(r), j=l,...,l. 

Note that  these polynomials are functions of N variables, i.e. they do not depend on 40. 

We can repeat this argument with 

~jl ~- PJ(~176176176 
(~,o)~ 

which are holomorphic sections of [(mj -2)Z'] .  Arguing recursively we obtain a sequence 

of homogeneous polynomials 

{p jk( r  ..., I N ) :  k = t ,  . . . , ,~ j} ,  

where degpjk = m j -  k, which satisfy 

Setting 

rrtj  

v, ( , / )  - ~ ( 4 ) ' %  k (o') = o. (8.8) 
k = l  

?i-tj 

PJ(~) P,(;)-Z pjk(;)~ 
k = l  

completes the proof of the proposition. 

Remark. If w has an extension vanishing to order d~>3 along Z then conditions (a) 

and (b) are automatically satisfied. Moreover one can arrange that  the polynomials Pjk, 

k = l ,  ..., d - 2 ,  vanish identically. If Z-~P  1 then such high-order vanishing is not needed. 

Now we suppose that  X \ Z  is a normal cone in C g. This implies that  the polynomials 

{pj(~)} are independent of ~0. Using the simple structure of the deformed polynomials 

we can show that  the variety .~ is a fiber in a deformation space of X. 

THEOREM 8.2. If, under the hypotheses of Proposition 8.2, V o • p N \ z  is a normal 

cone, then there exists a fiat family of projective varieties, rr:Y--~C, such that X is a 

fiber. 

Proof. We define a family of polynomials, depending upon t c C ,  

m j  

j = 1,_. , / ,  ~ = (~I,---,~N), 
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and a holomorphic action of C* on pN by 

Kt(~0 : C1: --. : CN) = (@: t~l : ... : tCN). 

Observe that  for tT~0 the equation Pj(s P]  (~)=0 is satisfied if and only if P~(Kt(~))=0. 
Define the analytic space 

12C C x p N =  {(t,~):  p t ( ~ ) = 0 ,  j =  1,...,l}. 

Let 7c denote the natural projection 7r: 1)--+C and Vt=rr- l ( t ) .  

If ts # 0 then the map Mt/s induces a biholomorphic equivalence between Vs and Vt. 

As XCV1 it is apparent that  for each tEC,  Vt contains a 2-dimensional subvariety of 

C x pN. Observe that  as subvarieties of p N  we have, for all t, that  

= z .  ( 8 .9 )  

In light of (8.9), if we can show that  the germ of Vt at each point xEZ is irreducible then 

it follows that  Vt is globally irreducible. For each xEZ we can select a neighborhood 

Ux c p N  and a subset {Jl,---, jN-2 } C { 1,..., rn} such that  {dpj~(4),..., dpjN_2 (4) } are lin- 

early independent in Ux. For sufficiently small t and a possibly smaller neighborhood 

U z' of x, the differentials {dpt  (~),...,dP~x_2(~)} are linearly independent in Us The 

implicit function theorem then implies that  

{PJ,(<) . . . . .  PL_jO =o}nu" 

is a smooth submanifold. As Kt(V1)NUs is contained in this manifold and is itself a 

2-dimensional manifold they must coincide. This shows that,  for small enough t, the 

germs of Vt at points along Z are irreducible and smooth. As Kt fixes {@=0} and is a 

biholomorphism, this proves the desired statement for all t C C \  {0}. 

We have now established that  V is an analytic space with irreducible fibers. All 

that  remains is to show that  the map 7c is flat. Arguing as above, this is essentially 

immediate near smooth points of V0. We use the method introduced in [B1E] to establish 

the flatness near to the singular point of V0. 

Let y be the singular point of V0 and let {zl, ..., zN} denote affine coordinates in 

a neighborhood of y with y = { z = 0 } .  In virtue of the Artin approximation theorem, 

to establish the flatness of 7c at y it suffices to show that if r=(rl, ..., r,~) is a relation 

satisfied by the generators p of Zuo, that is, 

m 

r.p = E riPi -- O, 
j = l  
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then there is a formal series R ~, with polynomial m-vector  coefficients 

0 ( 3  

R t ,.Jr+ E tkrk, 
k = l  

such that 

For L) > 0 let 

(8.1o) 

Rt.Pt=-O(t q) for every q. (8.11) 

A o = { 0 <  [zl < 20}. 

For sufficiently small 0<6,  AoAVo is a smooth manifold, and therefore we can find a 

smooth family of diffeomorphisms {Ft:ltl <~} such tha t  

F 0 = I d  and Ft(AQNVo) cVt. (8.12) 

This implies that  F~pt=o for j = l ,  ...,rn. Since the coordinate functions of r are poly- 

nomials, as are the generators {Pl, ...,Pro} of the ideal ZVo, we can apply the proof of 

Theorem 7.2 in [B1E] to obtain a series as in (8.10) satisfying (8.11). This completes the 

proof of the theorem. 

Remark. In this circumstance we have embedded the hypersurface M,  with the 

deformed CR-structure,  as a hypersurface in a fiber of an analytic deformation space 

of X. 

A p p e n d i x :  T h e  e x a c t  o b s t r u c t i o n  to  

e x t e n d i n g  s e c t i o n s  o f  t h e  n o r m a l  b u n d l e  

As before, MC X is a strictly pseudoconvex, separating hypersurface, X•  are the compo- 

nents of X\M,  and ZCX is a smooth, compact,  holomorphic curve. In this appendix 

we analyze precisely when H~  [Z])-+H~ Nz) is surjective. To answer this question 

we use (2.7) w i t h / = 1 ,  d=l to obtain the long exact sequence in cohomology 

H~ Oz) -+ H~ H~ i z )  J-~ Hi(Z; Oz) --+ .... (A.1) 

By Proposition 2.2 the issue is to decide if a section sCH~  Nz) is in the kernel of 6. 

Of course, if Z ~ P  1 then the group H i ( z ;  O z ) = 0 ,  and thus all sections of the normal 

bundle extend to holomorphic sections of [Z]. In this appendix we assume that  Z ~ P  1. 

Suppose that  w defines a deformation of the CR-structure on M which has an exten- 

sion to an integrable almost complex structure ~ on X_,  vanishing to order 2 along Z. 

Denote X with this complex structure by X'_. As before, we denote objects connected 
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with the deformed complex structure with a !, e.g. Z I. Suppose that  (M, ~T~ is the 

boundary of a compact  Stein space X+. From Lemma 2.1 we conclude tha t  the compact  

complex space 

X ! X ! II v '  ---~ _ M A +  

is a modification of a projective variety. As the deformation tensor vanishes to order 2 

along Z, the complex structure on Z and its normal bundle are unchanged. Thus we 

have the exact sequence 

! 

H~ O z )  --~ H ~ 1 7 4  ~ o ~' - -+  H (Z; N z )  - -+ H i ( Z ;  O z )  --+ . . . .  (A.2) 

Fix a cover of a neighborhood of Z c X _  by open balls {U1, ..., UQ} such that  in each 

Ui we have c%holomorphic coordinates (zi, wi) with 

ZnU  = =0}.  

We further suppose that  each Ui contains the unit ball in the (zi, w~)-coordinates, and 

that  these balls also define a cover of a neighborhood of Z. Let U0 denote an open set 

in X ,  disjoint from Z, such that  Uo along with the balls of radius I is a cover of X_. 

If we set 
zi. l<~ i<~Q,  

aoi = 1, i = O, 

then cr o = {aoi} is a holomorphic 0-cochain with (ao)=  [Z]. 

Let {z~} be as defined in (7.1) noting that  

/ 

z - A = l + O ( I z i [ )  and o Z ~ = z i a i  (A.3) 
Zi Zi 

for a smooth 1-form a~. Transition functions for [Z] and [Z'] are given by 

! 
Zi t Zi 

g i j  - ~  - -  and gi~ = 
Zj Zj 

respectively. From (A.3) it follows that  

and therefore 

= +v ,z?  + o(Iz,  13), 

- ! 

0z, o(1 o1 ). Og~j = o(1~ol 2) and - ' = 

! . We have an expansion for gij .  

(A.4) 

(A.5) 

! 
gij = gij (1 + zi ( vi - gj~ v j  ) + O(Izi 12)). (A.6) 
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From (A.5) and (A.6) it follows that 

~(vi -gj iv j ) l z  = 0. (A.7) 

Invariantly (v i -g j iv j ) l z  is a Cech 1-cocycle with values in N~. We define a cohomology 

class/32EH~(Z; N~) as the cohomology class of the Cech cocycle 

32]UiNUjNZ = g i jV i - -  VjIUiNUjNZ . (A.8) 

PROPOSITION A.1. If  ~ is the deformation tensor of an integrable almost complex 

structure which vanishes to order 2 along Z, then the connecting homomorphism in (A.2) 

for the deformed structure is given by 

5'(s) =5(s) - /32(s ) ,  s e H ~  (A.9) 

Proof. Let Wi=ZN Ui. A section s of Nz  is represented by a collection of functions 

si E (g z(  Wi ) which satisfy 

s i l w i n w j  = gij s j lW~AWj.  (A. 10) 

Let {~i} denote cSoholomorphic extensions of {si} to neighborhoods of {Wi}. The con- 

necting homomorphism is defined as a Cech 1-cocycle by 

3 ( s ) -  s~-gij~j (A.11) 
CrOi 

To compute 5' we find O'-holomorphic extensions of {si}, {s~} which satisfy 

s' i = ~i+ O((z~)2). (A.12) 

To accomplish this we need to solve the equation 

cS'u~- c~% 

That this is possible follows easily from the fact that c51~=z~a, where a is a smooth c5 t- 

closed (0, 1)-form. Formula (A.9) now follows easily from (A.4), (A.6), (A.11) and (A.12). 

LEMMA A.1. If  X satisfies: 

H~ [Z]) -+ H~ Nz)  -+ 0 is exact, (A.13) 

and ~ is the deformation tensor for an integrable almost complex structure which vanishes 

to order 2 along Z, then H~ [Z'])-+H~ Nz) is surjective if and only if the map 

from H~ Nz) to Hi(Z,  Oz) defined by /3~(~) is trivial. 

Proof. The hypothesis implies that the map r in (A.1) is also surjective, and there- 

fore, for the reference structure the connecting homomorphism g is the zero map. Thus 
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5~=0 if and only if the map defined by/32 is trivial, and so r' in (A.2) is surjective if and 

only if this map is trivial. The proposition now follows from Proposition 2.2. 

Remark. If the genus of Z is at least 1 then one can easily show that  Hi(Z; N~)~- 
H~ x|176 x ) Q H ~  gz)]'. Thus the map defined by/32 is trivial if and 

only if/32=0 in Hi(Z, N~). 

I I I .  Examples 

9. T h e  ease  Z = P  1 

In this section we consider a projective surface X with a smooth, ample divisor Z--~P 1. 

Castelnuovo's condition implies that  X is a rational surface. As H i ( x ;  O x ) = 0  it follows 

from (2.6) with d=l=l that 

0 -+ H~ Ox) --+ H~ [Z]) ~ H~ Nz) --+ 0 

is exact, and therefore 

dim H~ [Z]) = dim H~ Nz)+ 1. (9.1) 

Suppose that  w is an embeddable deformation of the CR-structure on bX which has an 

integrable extension 12 to X .  As Z-~P  1 it follows that  

Hi(Z; gz)  = 0. (9.2) 

Thus, provided that ~ is sufficiently small we can apply the stability theorem of Kodaira 

to conclude that there exists a smooth rational curve Z I which is holomorphic with respect 

to the deformed complex structure and a small deformation of Z. As observed in Step 1 

of the proof of Theorem 6.1 we can actually assume that Z=Z ~. Let X ~_ denote X_ with 

this complex structure, X~ the normal Stein space bounded by (bX_,~T~ and 

X'=X~_ Hbx_ X ' .  

As holomorphic line bundles over p1 are classified by their degree, 

Nz, ~-- Nz. (9.3) 

As X ~ is also rational it follows as above that  

dim H~ [Z]) = dim H~ Nz)+ 1. (9.4) 

Indeed, we can easily show that  

d imH~ [kZ]) = dim H~ [kZ']) for k > 0. (9.5) 
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Using the cohomology sequence derived from the sheaf exact sequence 

[-z]-+ [kz]  OxlZ +le[kz]-- o 
we conclude that  

H~ [kZ]) ~- H~174 [kZ]). (9.6) 

Using the cohomology sequence derived from 

0 ~> NkZ - j  --+ O x / Z J + I ~ [ k Z ]  -+ Ox/Z~@[]gZ ] --+ 0 

in an inductive argument, and the fact that  Hi(Z; N3z)=0 for all j > 0 ,  we conclude that  

k 

dim H~174 [kZ]) = E dim H~ U~). (9.7) 
j = 0  

From Proposition 2.2, (9.6) and (9.7) we easily derive (9.5). 

Let {cro, ..., CrN} denote a basis of sections for H~ [Z]) with (ao)=Z.  

THEOREM 9.1. Suppose that M is a smooth, strictly pseudoconvex, separatin9 hyper- 

surface in a rational surface X .  Let X• be the components of X \ M ,  and suppose 

that X contains a very ample, smooth rational curve Z. If H~(X ; O ) = 0  and w is a 

sufficiently small, embeddable deformation of the CR-structure on M, then there exists 

a basis {a~, ..., or'N} for H~ [Z']) such that the differences 

CY i 0"~ 
i = 1, ..., N ,  (9 .8)  

O- 0 O'~ 

are bounded on M by the size of w. The set of embeddable deformations of the CR- 

structure on M is closed in the C~-topology. 

Proof. As H2(X_; O ) = 0  we can extend w as an integrable deformation of the com- 

plex structure on X_ as described above. As d imH~ [Z])=H~ [Z']) the argument 

of Lempert  used in the proof of Proposition 7.2 applies in this case as well to establish 

the existence of the basis {a~, ..., a~v } for H~ [Z']) satisfying the conclusions of the 

theorem. 

The last statement follows as in Lempert 's  work: let {a;n} be a sequence of small 

embeddable deformations converging to w in the C~-topology. For each n the theorem 

provides a CR-embedding ~bn of (M, ~ T ~  into C N with uniform estimates on the 

coordinate functions. We can therefore select a convergent subsequence of embeddings 

{~b~j} which converge to a CR-embedding of (M,"~T~ 

Theorem 9.1 implies that  the affine embedding of M defined by {ai/cr0} is stable 

under small embeddable deformations of the CR-structure on M. Arguing as in the proof 

of Corollary 7.3 we easily establish 
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COROLLARY 9.1. If in addition to the hypotheses of Theorem 9.1, X is assumed 

to be smooth and reduced, then every sufficiently small, embeddable deformation of the 

CR-structure on M can be realized as a small deformation of M within X .  

We now consider the special case of Hirzebruch surfaces. Let O(k) denote the unique 

holomorphic line bundle of degree k over p 1  and Sk denote the rational ruled surface 

obtained as the projectivization of the Whitney sum (9(k)O (9(0), i.e. 

Sk = P[(9( k )| (9(O)]. 

If  k > 0  then the boundary of a strictly pseudoconcave neighborhood of the 0-section in 

Sk satisfies the hypotheses of Theorem 9.1. Consequently the CR-structure on such a 

boundary has a stable embedding. Let Sk0 denote the space obtained by blowing down 

the exceptional curve in Sk. The space Sk0\P  1 embeds into C k+l as a cone with an 

isolated normal singularity. This space has non-trivial smooth deformations. These are 

of course just the affine bundles associated with (9(k). These deformations are naturally 

parametr ized by H i ( p 1 ;  (9(-k)) .  We denote the versal deformation by l)k, see [MR1], 

[Pi], [B1E]. Let X•  denote the components of Sko\M, and Z C X _  denote the 0-section 

of (9(k). In w (a) it is shown tha t  HI(X_;  O |  

THEOREM 9.2. Let M be a strongly pseudoconvex, separating hypersurface embedded 

into Sk0\{0}. Any sufficiently small, embeddable deformation w of the CR-str"ucture on 

M embeds as a hypersurface in a fiber of the versal deformation of the singular space Sko. 

Pro@ The deformation w has an extension to X_ which vanishes along Z. As Sk0 

is a cone we can apply Theorem 8.2 to construct a flat family of projective varieties 

7r: ]2--+C such that  7r- l (0)=Sko and (M, "T~ is embedded in the fiber 7r-1(1). From 

the versality of lYk it follows that  if w is sufficiently small then 7r-l(D1) has a holomorphic 

embedding into this space, and therefore the deformed CR-structure embeds into a fiber 

of Fk. 

Using special features of the affine bundles we can say even more about  the topology 

of the space of embeddable deformations. If X '  denotes a fiber of ~k with Z ' c X '  the 

curve at infinity, then it is shown in [MR1] that  

(gx/Z~ ~-- (gx,/Z2,. (9.9) 

Let {cr0i } be a 0-eochain defining Z. A consequence of (9.9) is 

LEMMA 9.1. There exists a O'-holomorphic O-eoehain {a'oi} with ( a~ i )=Z '  such that 

~,aoi , (9.10) 
_"27- ~ O'0i Cti 
(Y0i 

for a O-cochain of smooth (0, 1)-forms {ai}. 
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To prove this lemma we use the "tubular neighborhood theorem in the holomorphic 

category". This gives a convenient way to s tudy the deformation tensor describing the 

complex structure on a neighborhood of Z ' .  

LEMMA 9.2. Let Y be a compact, complex submanifold of a complex manifold X with 

holomorphic normal bundle N Y .  Let i: NY--~ T I ,~  be a complex linear inclusion. 

There exists a neighborhood U of the O-section in N Y ,  a neighborhood V of Y in X ,  and 

a diffeomorphism ~b: U-+V such that 

(1) ~bly = Id ,  where we identify Y with the O-section of N Y ,  

(2) for each y E Y  the restriction ~blN~yn v is holomorphic, that is, r is fiber-holo- 

morphic, 

(3) restricting ,b. to the vertical tangent space along the O-section induces the in- 

clusion i: NY--+ T I ' ~  

The result is a simple consequence of Lemma 4.1 in [Ku]. 

Proof of Lemma 9.1. The normal bundle sequence of Z~c-+X t splits, and therefore 

there is a holomorphic bundle map 

i: N Z  ~ --+ TI'~ ,. 

Let ~ be a normal fibration as in Lemma 9.2 with r  inducing i along the 0-section. Using 

we pull back the complex structure from a neighborhood of Z ~ in X ~ to a neighborhood 

of the 0-section in N Z q  Let f~ denote the deformation tensor for this deformed complex 

structure on N Z  ~. We introduce local coordinates (z, w) in a neighborhood of a point p 

in the 0-section so that  {w=0} is the 0-section and {z=c} are the fibers of the normal 

bundle. A computat ion in these coordinates shows that  

ft = w(a(z, 2, w)Oz +b(z,  2, w)0~) |  

where, as indicated, a and b depend holomorphically on w. 

Since the inclusion i is holomorphic it follows that  0~ is a cS~-holomorphic vector 

field along the 0-section. This is equivalent to the condition 

a +Waaz+wba ]lw=0 = 0. 

This in turn implies that  a(z, z, O)=b(z, z, 0 )=0 .  Thus f~ is of the form 

f t  = W 2 ~ ,  

for ~, a smooth tensor. The assertion of the lemma follows from Lemma 7.1. 
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We use this to show that  the set of small embeddable deformations is path-connected. 

Let cz denote a small embeddable deformation of the CR-structure on M. From The- 

orem 9.1 it follows that  (M,~T~ is either a wiggle within Sk0 or embeds as a hy- 

persurface in a smooth fiber of lZk. In the former case we can obviously isotope the 

deformed embedding through smooth, pseudoconvex hypersurfaces in Sk0 back to the 

original embedding of M. Henceforth we assume that  the deformed structure embeds 

into a smooth fiber X ~ of 12k. 

We can apply Lemma 9.1 to conclude that  the 0-cochain {hi}, which defines the 

smooth bundle isomorphism between [Z] and [Z'], satisfies 

hilz 1, O'hi ' (9.11) ~ (TOi C~i. 

Let {O'j} denote a basis of sections of H~ [Z]) with 

Tj=ajlz ,  j = 1 , . . . , k + l .  

We set sj=h~j, obtaining a C~-section of [Z'] which extends rj. From (9.11) and the 

fact that  the deformation tensor vanishes on Z it follows that  

O~ S j  
/~j - -  p 

is a smooth, closed (0, 1)-form. The size of ~j is controlled by estimates on the defor- 

mation tensor. As X ~ is a smooth rational surface it follows that  H~ Thus we 

can solve the equation 

~tUj = ~ j ,  

where again the size of uj is controlled by estimates on the deformation tensor. We set 

cr}=Sj--a~uj to obtain a holomorphic section of [Z'] which restricts to ~-j on Z ' .  

The space Sko\Z has an embedding into C k+l such that  its ideal is generated by 

the (2 x 2)-minors of the matr ix  

X 2  X 3  . . .  X k + l  

We let (ao, a l ,  ..., ak+l)  denote a basis of sections of [Z] such that  

a j  
X j  =- - - .  

~r o 

Let (a, b, c, d) be indices such that  

X a X b - - X c X d  
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belongs to the ideal of Sk0. Then 

! I / l I ((O*aO* b ( 9 . 1 2 )  

~- abcdl This is a holomorphic section of Nz, and therefore there are constants tY~ ; such that  

the right-hand side of (9.12) equals 

E -'~ eabcd Te " (9.13) 

As H~ Nz) is a finite-dimensional vector space it is apparent that  the coefficients in 

(9.13) can be estimated by the supremum norm of 7-dUc+W~Ud--T~Ub--~-bU~ and therefore 

by size of the deformation tensor. There is one further constant ~/abcd such that  

X ~ abcdx XaXb--Xc d - -~ . .~ / e  e--~abcd 

is a generator for the ideal defining X' .  Evidently this constant is also estimated by the 

size of the deformation tensor. 

Thus we see that  the deformed CR-manifold embeds as a hypersurface in a surface 

whose defining equations are perturbations of the defining equations for Sko. The coeffi- 

cients of the linear and constant terms are estimated by the size of the deformation tensor. 

Let M '  denote the embedded image of the deformed CR-manifold in X 1. Let 7r: )2--+C 

denote the 1-parameter deformation space containing X '  constructed in the proof of 

Theorem 8.2. Lamina 9:2 implies that  there is a foliation of a fibered neighborhood U of 

M~+Sko by holomorphic disks, transverse to the fibers of )2. If the deformation of the 

CR-structure is sufficiently small then ~-1(1) lies in the neighborhood U. Let t denote 

the deformation parameter. The foliation by disks defines an analytic 1-parameter family 

of diffeomorphisms Ft between M and hypersurfaces Kt, lying in ~ - l ( t ) .  Again, if w 

is sufficiently small then FI(M) is a smooth, strictly pseudoconvex hypersurface in X '  

isotopic to M'  through strictly pseudoconvex hypersurfaces. We can then deform FI(M) 

back to M through Ft(M), tE[0, 1]. If we resolve the singularity at (0,0) in • then all 

the fibers of resolved space satisfy 

H~ =H2'I(xt) =0.  

We can therefore apply Theorem C in [Ep2] to conclude: 

THEOREM 9.3. The set of small embeddable deformations of the CR-str"ucture on a 

smooth, separating, strictly pseudoconvex hypersurface MC Sko is locally path-connected. 

Each sufficiently small, embeddable deforTnation has relative index zero. 

If we instead begin with a smooth, separating, strictly pseudoconvex hypersurface 

in an affine bundle L~ over p1, then it is easy to show that  all sufficiently small defor- 

mations are wiggles. By semicontinuity it follows that  H~(X_;O| so every 
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small deformation has an extension to X_ retaining the holomorphic p1. Thus we can 

extend all sections in H~ Nz)  as holomorphic sections of [Z']. Using Lemper t ' s  ar- 

gument we can show that  a small embeddable deformation has an embedding near to a 

given embedding of L~. As L~\Z is a Stein manifold, there is a holomorphic retraction 

of a neighborhood of L~\Z onto L~\Z. If the deformation is sufficiently small then the 

deformed embedding is transverse to the fibers of the retraction, and so we can compose 

them to obtain an embedding of the deformed CR-structure into L~. 

THEOREM 9.4. Let L~ be an affine bundle over p1, and M a smooth, separating, 

strictly pseudoconvex hypersurface in L~. All sufficiently small, embeddable deformations 

of the CR-structure on M can be realized as small deformations of M within L~. 

Remarks. (1) Theorem 9.1 was previously obtained by Hua-Lun Li. Among other 

things, he proved 

THEOREM 3.4.3 ([Li]). If M is a CR-manifold which bounds a strictly pseudoconvex, 

open neighborhood of the O-section in the line bundle (9(-m) over p1, then there exists 

a stable embedding of M into C m. 

(2) Let (M, T~ be an embeddable 3-dimensional CR-manifold with a stable 

embedding 

~: M ~ C N, 

where N~>3. If w defines a small, embeddable deformation of T~ then there is a 

c~-CR-embedding 

~w: M ~-+ C g 

so that  Ilp-~,,ll=O(Iwl). This does not imply the local pa th  connectedness of the 

space of small embeddable deformations. To obtain the pa th  connectedness one needs 

an isotopy from a deformed embedding to the reference embedding through maximally 

complex submanifolds. If  the codimension is greater than  1 then this is difficult to 

accomplish because maximal complexity is non-generic. 

10. S o m e  e x a m p l e s  a n d  p r o b l e m s  

In the examples below we compute H~ (X ; O |  under various circumstances. The 

size of the pseudoconcave neighborhood X of Z which we employ is not very impor- 

tant.  I t  follows from results in [Gr] tha t  this cohomology group, or rather  its Serre dual 

H~174 is determined by a fixed, finite-order formal neighborhood of Z 

in X_. 
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(a) Line bundles over curves. Let L - ~ E  be a holomorphic line bundle of degree 

k > 0  over a surface E of genus g. We denote by ], the compactification of L obtained by 

adding the "curve at infinity". We let {z~, Un} denote a cover of E by coordinate charts 

where 

z~= f~(zz) in U~NU~, 

and we let ~n denote a fiber variable for LIu ~. On the overlaps we have 

Let p be a smooth function which vanishes along the 0-section Z of L and is given in a 

local coordinate chart by 

= + o ( I q  ). 

We further assume that  - l o g p  is strictly plurisubharmonic in a deleted neighborhood 

of Z. Let X_ be a strictly pseudoconcave neighborhood of Z, with bX a level surface 

of p. We first compute  H{(X_;O| Next we consider the deformations which 

define the affine bundles associated to L. 

To compute H~(X_; @@[- jZ] )  we use Serre duality to identify this group as the 

dual of H~ ; ~tt@K@[jZ]). Here Ftt is the sheaf of holomorphic l-forms, and ~ is the 

canonical sheaf. We compute the latter group by expanding sections into power series 

along Z. This has an invariant description in terms of the St-act ion induced on sections 

of Q t |  [jZ]. Let s denote a section of H~ ; ~tl@]C| [jZ]); in local coordinates we 

have 

Here en is a section locally trivializing L. We expand a~, bn in Taylor series along Z: 

O| (:X) 

k = 0  k = 0  

The coefficients of these series satisfy the transition relations 

[ #  ~2 ~ 1 - J  a 
az0 = ~,Jnl3) 9 a ~  nO,  

00.1) (az(k+t)~ k-j+2#, ( f : z  g~Ygnz)(an(~+l)~ k = 0 , . . . .  
b~= )=unZ Jn~ 0 1 b~k ) '  

The transition relations appearing in the first equation in (10.1) define holomorphic 

sections of x2| @(j-I), where x is the canonical bundle of Z. The  matr ix  appearing in 
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the second equation in (10.1) defines a rank-2 vector bundle E-+Z. The sheaf of sections 

g of E fits into a short exact sequence 

O---~ O z --+ g-~ x-+ O. 

The factor in front of the matrix amounts to tensoring by the line bundle xQL j-k-2. 

We begin with the observation that  

dim H~ 2 (X_ ; 0 |  [ -Z] )  ~> dim H~ x2). 

The group on the right-hand side vanishes if and only if Z ~ P  1. In this case using the 

exact sequences considered below one easily shows that  

HI(X_; O| =0 

= 0  

HI(X_; |174 =0 

if and only if deg L = 1, 

if and only if degL = 1, 2, 3, 

if degL > 0. 

We now turn our attention to line bundles over curves of genus at least 1. In 

these cases the only group which may in fact vanish is H~(X_;O) .  Let H~2(X_;O)(k), 

k = - l ,  0, ..., denote the various Taylor series components of these cohomology classes. 

We have that 

H2(X_ ; O)(-1) ~ [H~ x 2 + n - 1 ) ]  '- 

For k~>0 the other components fit into long exact sequences: 

H~ x |  -k-2) -~ [H2 (X_ ; O)(k)]' -+ H~ •2 |  --+ . . . .  

Evidently if d e g L > 2 d e g x = 4 g - 4  then the group H 2 ( X _ ; O ) = 0 .  For deg~<degL~< 

2 deg x the size of this group depends in a subtle way on the holomorphic moduli of L. 

If degL~<x then H2(X_; 0)7~0. 

From these considerations we conclude: 

PROPOSITION 10.1. Suppose that L--+E is as above and d e g L > 2 d e g ~ .  Let X be 

a strictly pseudoconcave neighborhood of the O-section in L. The set of sufficiently small, 

embeddable perturbations of the CR-structure on bX_ is closed in the C~ 

Proof. This is an application of Theorem 6.1. We have verified that  H~(X_; 0)=0. 

The normal bundle to the 0-section is canonically isomorphic to L, and thus as deg L >  

2 deg x it follows that  

H i ( z ;  Nz)  = O. 
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We now consider a special family of deformations of the complex structure on the 

total  space of L. These are the affine bundles. Let { u ~ }  be a 1-cocycle with values in L*. 

Using this 1-cocycle we can define a new complex structure on L using the transition 

relations 
~ a =  g a # ~  

1- u ~  

In terms of coordinates on the dual bundle r/~=~g 1 this becomes 

~7r = g~#77~ +u~Z" 

We let L~ denote the compact  manifold defined by these relations. The effect of such 

a deformation is to eliminate the holomorphic representative of the "curve at infinity". 

Thus L \ { Z }  is a complex manifold with a non-trivial exceptional locus, whereas the 

deformation L . \ { Z }  is a Stein manifold. Let M be an Sl-invariant,  strictly pseudocon- 

cave hypersurface bounding a neighborhood X_ of Z. The deformation of the complex 

structure on L defined by u can be identified with a deformation of the CR-structure 

on M with an integrable extension to X_.  We use X~_ to denote the pseudoconcave 

domain with the deformed complex structure. 

The class u E H I ( Z ;  N})  can be identified with the class ~2 defined in the appendix 

to w A little care is required as the tensor defining the complex structure on L~ as a 

deformation of the complex structure on L does not vanish to order 2 along Z. As shown 

in [MR1], however, there is a canonical identification 

(lo.2) 

so the argument from the appendix can be carried through in this case as well, see also 

Lemma 9.1. I t  is evident tha t  

H~ [Z]) --+ H~ Nz) 

is surjective. It  follows from Proposition A.1 that  the obstruction to extending a section 

seH~ Nz) to an element of H ~  [Z.]) is exactly 

e Hi(z; Oz). 

If g ) l  then the map u: H~ Nz)--+Hz(Z, Oz) is non-trivial if u r  in Hi(z, N}). For 

such an element one can show tha t  

Ind(bX_, bX,_ ) < O. 
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These examples illustrate two points: (1) The condition in (10.2) does not suffice to 

conclude that the algebra of CR-functions is stable under small deformations. Indeed, 

these are the first examples where the entire algebra of CR-functions is not stable under 

all small embeddable deformations, and yet the set of such deformations is known to be 

closed in the C~-topology. (2) In [Epl] it is shown that  under deformations of the CR- 

structure on circle bundles with "non-negative" Fourier coefficients the whole algebra of 

CR-functions is stable. These examples show that there are embeddable deformations 

not satisfying the non-negativity hypothesis, but that the algebra of CR-hmctions is not 

stable under such a deformation. 

(b) Neighborhoods of curves in p2. Let ZC p2 be a smoothly embedded curve of 

degree d. The classical formula 

g---- �89 1)(d-2)  

gives the genus of Z in terms of its degree. The normal bundle is O(d){z. By Serre 

duality we obtain that 

dim Hi(Z; Nz) = dim H~ (.9(-3)) = 0. 

Note that  the degree of Nz is d2> 2g-2 .  Let X_ be a neighborhood of Z with strictly 

pseudoconvex boundary. As P 2 \ { X  } is a Stein manifold with boundary bX,  it follows 

that  bX is an embeddable CR-manifold. Using Serre duality, we identify 

H~(X_; O| [ - jZ] )  --[H~ f~I|174 (10.3) 

From Hartogs's extension theorem for sections of a holomorphic vector bundle we con- 

clude that  

N~ ; ~I@K@ [jZ]) - H~ ~l| @ [jZ]). 

Let [H] denote the hyperplane section bundle. As is well known, ]Cp2_~[-3H], and 

therefore the group we must compute is 

H~ f~l| 3)HI). 

A calculation shows that  

dim H0(p2; f~l| ) = ~ 0 
[ �89 

if k < 2 ,  
(10.4) 

if k~>2, 
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see [Bot]. Combining (10.3) and 

H:(X_; e o [ - 4 z ] )  = 

H~(X_;O| = 

dim H2c(X_ ; O| [ -Z] )  = 

H (x ; e ) :  

(10.4) we obtain 

0 if and only if d = 1, 

0 if and only if d = 1, 2, 

0 if and only if d = 1, 2, 3, 4, 

( d - 2 ) ( d - 4 )  if d~>5, 

0 for d > 0 .  

(10.5) 

Note that  ( d - 2 ) ( d - 4 )  is the codimension of the planar deformations in the space of all 

deformations of the complex structure on Z. 

The case d = l  is simply that  of a domain in C 2, which was treated in [Le2]. If d=2  

then Z-~P 1, and the analysis presented in w applies to show that  every sufficiently small, 

embeddable perturbation can be obtained by wiggling bX in p2. This is true because 

the normal Stein space bounded by b X  is P 2 \ { X _  }, which is a smooth manifold. From 

Theorem 6.1 we obtain 

PROPOSITION 10.2. If  X is a smoothly bounded, strictly pseudoconcave neighbor- 

hood of a curve in p2 of degree d>2,  then the set of suJflciently small, embeddable 

perturbations of the CR-structure on bX is closed in the C~-topology. 

Problem 10.1. Is the embedding of b X  in p2 stable for any d >2 ?  

Problem 10.2. Let X be a strictly pseudoconcave domain in p2. Is the set of 

sufficiently small, embeddable perturbations of the CR-structure on bX_ closed in the 

C~176 

Remark. There exist smoothly bounded, strictly pseudoconcave domains in p2 which 

do not contain any compact, holomorphic curves, see [F]. 

(c) Quadric hypersurfaces. The quadric hypersurfaces in p3 are classified by the 

rank of the quadratic form defining them. If we require the surface to be connected and 

irreducible then there are only two examples: 

/ - 2 + / - 2 + / - 2  0 l  #2_}_r2_~_F2 d_F2 = 0}.  
{~0 = {[~]:~,1 ~2 '~3 = J ,  {~1 = { [ ~ ] : ' ~ 0  "~1 S2 $3 

In either case there is a rational curve Z "at infinity" with normal bundle of degree 2. 

The cone Q0 is the compactified total space of the line bundle of degree 2 over p1 

with the exceptional locus blown down. This is the same as the space denoted as $20 

in w Let X_ denote a neighborhood of ZCQo with strictly pseudoconcave boundary. 

In Theorem 9.3 it is shown that  any sufficiently small, embeddable perturbation of the 
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CR-structure on b X  is realizable as a hypersurface in a fiber of the total  space of the 

versal deformation of Q0. Tha t  space can be described quite simply in this case: 

v = { ( t , [ C ] )  2 2 2 2 : 40 ~-41 +42 -Ft43 = 0}. 

Now let X_ c Q1 be a neighborhood of Z with strictly pseudoconcave boundary. 

Using the semicontinuity of dim H ~ ( Y t ; O |  for {Yt} a smooth family of strictly 

pseudoconcave domains in the fibers of V, it follows tha t  H I ( X ,  O |  We can 

therefore apply Theorem 9.1 to conclude: 

PROPOSITION 10.3. If  X C Q1 is a smoothly bounded, strictly pseudoconcave neigh- 

borhood of Z, then every sufficiently small, embeddable perturbation of the CR-structure 

on bX_ is realizable as a small wiggle of bX within Q,1. 

(d) Cubic hypersurfaces. Let X c P  3 be a cubic surface, not necessarily smooth. 

Let Z = X n P  2 be a smooth hyperplane section and X a smoothly bounded, strictly 

pseudoconcave neighborhood of Z. A computat ion shows that  both  

H~(X_;Oe[-2Z])=O and H](Z;N~)=O. 

Thus we can apply Theorem 6.1 using either cohomological hypothesis to conclude: 

PROPOSITION 10.4. Let X c X ,  as above, with X a cubic surface in p 3  Then the 

set of sufficiently small, ernbeddable perturbations of the CR-structure on bX is closed 

in the C~-topology. 

(e) Quartic hypersurfaces. Now we suppose that  X c P  3 is a quartic surface, not 

necessarily smooth. Let Zd=XNY~t be a smooth intersection in p3 of the quartic X 

with a hypersurface Yd of degree d. Let X_ be a smoothly bounded, strictly pseu- 

doconcave neighborhood of Zd. Computat ions  show in this case that ,  for all d~>l, 

dimHl(Zd, Nzd)=l.  On the other hand, dimH~(X_,O| is equal to the codi- 

mension of the set of deformations of Za extendible to deformations of X in the space of 

all deformations of the complex structure on Zd. If d = l  then H2(X_, O |  and 

we can apply Theorem 6.1 to conclude that  the set of small embeddable per turbat ions 

of the CR-structure on bX_ is closed in the C~-topology. 

If d >~ 2 then 

Hff(X , O |  and HI(Zd, Nz~)r 

Hence we cannot directly apply Theorem 6.1. Nevertheless with the help of the informa- 

tion above and the precise version of Theorem EH1, we obtain 
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PROPOSITION 10.5. Let X_ be a smooth domain with strictly pseudoconcave bound- 

ary in a quartic surface in p3. If X contains a smooth divisor Zd=XAYd,  with Yd a 

surface of degree l <. d, then the set of small embeddable perturbations of the CR-structnre 

on bX_ is closed in the d~~ 

By modifying the construction of Cat l in-Lempert ,  see [CL], one can obtain an ex- 

ample of a singular quartic hypersurface such that  the embedding of b X  into p a  is 

not stable. In this example we again have a case where the algebra of CR-functions is 

not stable under all small embeddable deformations, but  the set of such deformations is 

closed in the d~176 

Note that  a quartic surface X is a K3-surface. The deformations of the complex 

structure on X are parametrized by a 20-dimensional complex space T 2~ The algebraic 

deformations depend on only 19 parameters.  In fact, T 2~ has a countable collection of 

19-dimensionM proper subvarieties {An} which parametr ize the algebraic K3-surfaces. 

The index n is the minimal degree of a curve defining a very ample divisor on a K3- 

surface with complex structures parametrized by .An. The union of the {An} is dense 

in 8, see [GH]. The closedness problem for sequences of complex structures on projective 

varieties analogous to that  which we have been considering for CR-manifolds has in the 

present case a negative solution: Choose a sequence ~nE.An which converge to a point 

f~ooET2~ Let Xn denote X with complex structure defined by ~tn. Observe tha t  

Xoo is not a projective variety. 

As the pseudoconcave manifold X_ with b X = M  is highly non-unique, it is not 

immediately apparent  what bearing this example has on the Stability problem for em- 

beddable CR-structures. Let X be a smooth algebraic K3-surface. We can construct 

the versal deformation space 7c: Y--+T 2~ for the complex structure on X.  We identify X 

with 7r-l(0). Let M~-+X be a smooth, strictly pseudoconvex, separating hypersurface. 

We can find a hypersurface germ Ad C ~2 such that  

M = A,,lnTr-l(O), 

and so that  

Mt = M n ~ - l ( t )  

is separating and strictly pseudoconvex for sufficiently small t E T 2~ For the generic t the 

surface 7r-l(t) is not algebraic, and so we have Mt embedded in a "non-embeddable",  

compact  surface. On the other hand, Mt bounds a compact  region in ~ - l ( t ) ,  and is 

therefore itself embeddable. We can find a Stein neighborhood UC X which contains M; 

this neighborhood has in turn a Stein neighborhood W in )2 on which there is a holomor- 

phic retraction R: W-+U. For sufficiently small t the hypersurfaces Mt are transverse to 

the fibers of R, and therefore can be reembedded into X as wiggles of M. 
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(f) Quintic hypersurfaces. Let X c p 3  be a quintic surface, not necessarily smooth, 

and let Z denote a smooth hyperplane section. As usual we take X to be a smooth, 

strictly pseudoconcave neighborhood of Z in X.  A computat ion shows tha t  

H[(X ;O)=0, 
dimH2(X_;O| = 6 ,  

dim Hi(Z; Nz) -- 3. 

The results in this paper  cannot be applied directly to Study the structure of the em- 

beddable per turbat ions on b X .  With these computat ions and a more precise version of 

Theorem EH1 we can show that  the set of embeddable structures lying in a codimension-3 

subspace of the set of all deformations is closed in the Ca-topology.  

Problem 10.3. Is the set of all sufficiently small, embeddable deformations of the 

CR-structure on bX_ closed in the C~-topology? 

The principal difference between quintic and quartic surfaces is tha t  for a quintic 

surface not every element of Hi(Z, Nz) can be generated by global deformations of 

the complex structure on X.  It  follows from results of Kodaira,  see [Kdl], that  all 

deformations of the complex structures on hypersurfaces in p3 of degree different from 

4 are algebraic. 

Let M be a smooth, compact,  strictly pseudoconvex, embeddable 3-manifold. In 

[Ep2] it was conjectured that  among the sufficiently small, embeddable perturbat ions 

of the CR-structure on M only finitely many different relative indices actually arise. 

This in turn implies that  the set of sufficiently small, embeddable per turbat ions is closed 

in the Ca-topology.  In Theorem 6.1 we have shown that  the set of small embeddable 

perturbat ions is closed in the Ca- topology  without verifying this conjecture. 

Problem 10.4. Suppose that  M is as above and also satisfies the hypotheses of The- 

orem 6.1. Show tha t  only finitely many different relative indices arise among the set of 

sufficiently small, embeddable perturbations.(2) 

(2) Note  added in proof. In recent work of the first au thor  this question has been answered 
affirmatively. 
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