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1. Introduction 

Imagine a one-dimensional monochromatic  film, infinitely extended along a straight line, 

and a one-point signal emit ter  at tached to an infinite rail running parallel to the film, 

which sends light signals to the film. An emitted signal is recorded on the film, and 

we may think of the result as a real-valued Borel measurable function on the line. The 

recording process is assumed reversible, in the sense that  if a signal is received, and 

afterwards the opposite signal is received, the net result is zero. We may move the 

emit ter  freely along the rail, and there is a volume dial on the emitter,  which permits us 

to vary the ampli tude of the signal, and even reverse it. Suppose the emit ter  is equipped 

with a single signal. A natural  question is what kind of images can be obtained if the 

emitter  is placed in several positions along the rail and the signal, modified by adjusting 

the volume dial, is emitted from each of these positions. An interesting subquestion is 

that  of determining which signals may be used to approximate every conceivable image. 

When we translate this model to a mathemat ica l  setting, we need to define the 

distance between recorded images. The usual way would be to take the square root of 

the integral Mong the film of the square modulus of the difference of the two images, 

that  is, the L 2 metric. Should the sensitivity of the film not be homogeneous, a weight 

function can be used to express the degree of inhomogeneity. 

The above described model is a physical interpretation of translation invariance in 

function spaces on the real line. This area was initiated in the early 1930's by Norbert  

Wiener, Arne Beurling, Izrail Gel'fand, and Laurent Schwartz, and a multi tude of beau- 

tiful papers were produced by them and their followers between 1930 and, say, 1960. 
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A number of difficult problems remained. In this paper, we solve one of them. To give 

the flavor of results obtained in the time period 1930-1960, we describe the contents 

of Theorems A and B stated below. They are concerned with the spaces of (equiva- 

lence classes of) square Lebesgue integrable complex-valued functions on the real line 

R, L2(R), and on the half-line R+=[0, +col, L2(R+). First, we need some terminology. 

The translation operator Tx: L2(R)---~L2(R) associated with the real number x is defined 

by the formula 

T x f ( t ) = f ( t - x ) ,  t E R .  

We consider L2(R+) to be the norm closed subspace of L2(R) of functions equal to 

0 on the negative half-axis R =] -c r  The right translation operators Tx, xER+, 

then act on the space L2(R+), which makes it natural to study the closed subspaces 

of L2(R+) that are invariant with respect to all of them. The Fourier transform of an 

L2(R) function f is given by the formula 

/_+~ ~ f ( x )  = e - i t x f ( t )  dt, x � 9  (1.1) 

with the usual convention of how to interpret this integral in case it is not absolutely 

convergent; by the Plancherel theorem, ~ f � 9  The Fourier image of L2(R+) is 

known as H2(C_), which can also be described as the subspace of L2(R) consisting of 

those functions whose harmonic extensions to the lower half-plane 12_ via the Poisson 

integral formula are holomorphic. One frequently thinks of the elements of the space 

H2(C ) as being holomorphic functions on C rather than square integrable functions 

on R. 

THEOREM A (Wiener [30], Ditkin [7]). Every closed translation invariant subspace 

of L2(R) is determined by a Lebesgue measurable set E C R ,  in the sense that the subspaee 

coincides with the set of all functions whose Fourier transforms vanish on E. 

An inner function on C_ is a bounded analytic function on C_ whose (nontangential) 

boundary values on R have modulus 1 almost everywhere. The inner functions on C_ 

are isometric multipliers on H2(C ). 

THEOREM B (Beurling [3], Lax [23]). Every closed right translation invariant sub- 

space of L2(R+ ) is either the {0} subspace, or determined by an inner function q on the 

lower half-plane C , in the sense that the subspace coincides with the set of all functions 

whose Fourier transforms belong to qH2(C_). 

Theorem A incorporates, among other things, the L 2 analog of Wiener's classical 

theorem on the completeness of translates of a given collection of functions in the space 
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L I(R).  Theorem B, or perhaps more accurately, the corresponding statement for the unit 

disk, has been vital to the development of operator theory. Theorem B easily answers 

the question of when the right translates of a given collection of functions in L2(R+) 

span a dense subspace of L2(R+). The L 1 analog of this question was solved by Bertil 

Nyman in his 1950 thesis [25]. We note that  for f E L l ( R + ) ,  its Fourier transform ~ f ,  as 

given by the formula 

~f(z)  = e-UZf(t) dt, x �9 C_,  (1.2) 

is continuous and bounded throughout C ,  holomorphic in the interior C_,  and vanishes 

at infinity. 

THEOaEM C (Nyman). Let G be a collection of functions in LI(R+) .  Then the 

right translates Txf,  with O<.x and f � 9  span a dense subspace of LI(R+)  if and only 
ff 

(a) for each zEC_, there exists an f � 9  with ~f(z)r  and 
(b) there is no interval [0, E], 0<~, such that all functions in | vanish (almost 

everywhere) on it. 

Let us say that  w: R+=[0,  +oc[---~]0, +c~[ is a weight function on R+ if w is contin- 

uous, the function log w is concave on R+, and 

logw(t) = o(t), as t --* +c~. 

With this definition, every weight function w has t~-~w(t+x)/w(t) bounded on R+, for 

each xCR+.  In fact (Proposition 4.3), one can show that  

w(O)w(s+t) <. w(s)w(t), s,t  e R+. (1.3) 

The above property implies that  right translation is a bounded operation on the weighted 

L p spaces LP(R+, w) which we are about to introduce. For weight functions w on R+, and 

for a real parameter p with 1 ~<p<+cc, the space LB(R+, w) consists of all (equivalence 

classes of) complex-valued Lebesgue measurable functions f on R+ for which 

IlfllLp(~)= (fo+~lf(t)[Pw(t)P dt)l/P< +c~; 

here, []. [[Lp(~) defines a norm on LP(R+,w) which makes it a Banach space, and for 

p=2 ,  a Hilbert space. Observe that  since O<w(O)<<.w(t) on R+, LP(R+,w) is a subspace 

of LP(R+), and as a mat ter  of fact, the imbedding LV(R+,w)--*LP(R+) is continuous. 
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The space LP(R+, w) is a subspace of L 1 (R+) automatically for p-- 1, and for l < p <  +co, 

this is so, provided that  

f0 §  w(t) -p dt < +co, (1.4) 

where p~ is the conjugate exponent to p ( l /p+  l ip  t-- 1), by using HSlder's inequality. The 

reason why this question is of interest is that  the condition that  LP(R+, w) be contained 

in LI(R+) assures us that  the Fourier image of a function in LP(R+,w), as defined by 

(1.2), is continuous and bounded on C_, and vanishes at infinity. It is clear without any 

additional condition that  ~ f  is holomorphic in the interior (3_ for fELP(R+,w).  

A key interest of Beurling was the notion of quasianalyticity, in the many shapes 

this concept took following the initial work of Arnaud Denjoy and Torsten Carleman. 

According to Beurling's classification, a weight function w on R+ is said to be non- 

quasianalytic if 

f0 +~  log w(t) dt < +co, 
l + t  2 

and quasianalytic if the above integral diverges. The relevance of the concept of quasi- 

analyticity is better understood in the context of weighted L p spaces on the whole real 

line. Let ~ be the symmetric extension to R of the weight function w, so that  ~(t)--w(Itl) 

for all t E R, and consider the space L p (R, ~) of all (equivalence classes of) complex-valued 

Lebesgue measurable functions f on R for which 

[/ fq-c~ ~l/p 
Ilfl[Lp(~) = ~ ] _ ~  If(t)lPw(t) p dt)  < +co. 

The Fourier transform on this space is given by formula (1.1). 

THEOREM D (Paley-Wiener [26], 1-~<p<+co). Let w be a weight function on R+ 

satisfying (1.4) if l < p < + c o ,  with symmetric extension ~ to all of R.  Then the space 

LP(R,w) contains a nonzero element having Fourier transform with compact support if 

and only if w is non-quasianalytic. 

For a simple proof of the above result in the case p = l ,  which easily carries over to 

general p, we refer to Garth Dales' and Walter Hayman's paper [6, p. 143]. Theorem D is 

the key element in the standard proof of the following extension of Wiener's completeness 

theorem, Theorem E (a). We note that,  by (1.3), the spaces LI(R+,  w) and LI(R,  ~) are 

Banach algebras when supplied with convolution multiplication, and that  the same holds 

true for general p, l < p < + c o ,  if we add some slight regularity conditions on w. Let us 

say that  a collection of functions G in LI(R)  has the Wiener property if for each x E R  

there exists an f E | with ~ f ( x ) 5 0 .  Moreover, let us say that a collection of functions 

G in LP(R,~)  is translation complete in LP(R,~)  if the translates Txf,  with x E R  and 

f E  8 ,  span a dense subspace of LP(R, ~). 



C O M P L E T E N E S S  OF TRANSLATES IN W E I G H T E D  SPACES ON THE HALF-LINE 5 

THEOREM E ( l~p<+oc) .  Fix a weight function w on R+, meeting condition (1.4) 

for l < p < + c o .  

(a) (Seurling [2], p--l)  If w is non-quasianalytic, then each collection | in 

LI(R, ~) which has the Wiener property is translation complete in L 1 (R, ~). 

(b) (Domar [9]) If  w is quasianalytic, then there exists a collection G in LB(R,~) 

with the Wiener property which is not translation complete in LP(R, ~). 

There is another way to prove Theorem E (a) which does not explicitly use Theo- 

rem D, but instead employs a function-theoretic device, known as the 'log-log' theorem; 

see for instance [17, pp. 142-143]. The log-log theorem seems not to be well-known to a 

wide audience, so we present here a version of it. EvseY Dyn'kin showed in [121 that it 

should be thought of as a dual formulation of Theorem D. An account of who did what 

pertaining to the log-log theorem can be found in [10]. 

THEOREM F (Carleman, Levinson, SjSberg, Wolf, Beurling, Domar). Let M: ]0, 1]-* 

[e, +c~[ be a continuous decreasing function, and suppose f is a holomorphic function in 

the strip 

E(-1,1) = { z E  C: - l < I m z <  1}, 

which there obeys the growth control 

I f (z) l<~M(lImzl) ,  z E E(_1,1). (1.5) 

If  the function M satisfies 

~o 1 log log M(t)  < +c~, dt 

then the function f must be bounded throughout E(-1,1). If, on the other hand, the above 

integral diverges, then there exists an f ,  satisfying (1.5), which is unbounded on E(-1,1). 

In a paper from 1964, Vladimir Gurari~ and Boris Levin ([16], see also [14]) extended 

Bertil Nyman's theorem (Theorem C) to the context of LI(R+,w), where w is non- 

quasianalytic. The result is described below. 

THEOREM G (GurariY-Levin). Let w be a non-quasianalytic weight function on R+, 

and suppose | is a collection of functions in LI(R+,w). Then the right translates Txf ,  

with O~x and rE |  span a dense subspace of L l (R+,w)  if and only if  

(a) for each zEC_ ,  there exists an re| with ~ f ( z ) ~ O,  and 

(b) there is no inte~val [O,E], 0<~, such that all functions in G vanish (almost 

everywhere) on it. 
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The main technical vehicle for proving Theorem G, the way Gurarii and Levin did 

it, is the log-log theorem (Theorem F). It comes in naturally at a particular stage of the 

proof, where a certain function 

M~,(x) = e-Xtw(t) dt, 0 < x < +oc, 

appears, and one uses heavily the fact that  the integrals 

fo +~  logw(t) dt 
l + t  2 

and 

f0 1 log log M~(t) dt 

converge simultaneously. So, for a while, it seemed reasonable to suppose that  the natural 

extension of Theorem G to quasianalytic w should be false, just as Beurling's theorem 

(Theorem E (a)) failed for quasianalytic weights w. But the apparent need of the log-log 

theorem to control the growth of analytic functions was an illusion, as shown by the 

theorem below, the proof of which constitutes the bulk of this paper. We note that  the 

regularity condition imposed on w entails that  LP(R+, w)C L 1 (R+). 

The function O(p) appearing in the theorem is defined as follows: 0(p)=3-1/I9  for 

1 < p < 2  and 2<p<+cx),  0(2)=�89 and 0(1)=3. 

MAIN THEOaEM (l~<p<+oO). Let w be a weight function on R+, such that 

logw(t ) - (O(p)+E)log( l+t)  is concave, for some fixed e, 0<e.  Let | be a collection 

of functions in LP(R+,w). Then the right translates T~f,  with O<.x and f E| span a 

dense subspaee of LP(R+,w) if and only if  

(a) for each zEC_,  there exists an f c ~  with ~ f ( z ) r  and 

(b) there is no interval [0,6], 0<5, such that all functions in G vanish (almost 

everywhere) on it. 

The smaller you can get O(p), the less regularity is required of w; thus, the sharpest 

result is obtained for p=2.  

One of the basic ingredients in the proof of the Main Theorem is the fact that  

we are able to successfully model the Fourier image of LB(R+,w) as a fairly concrete 

space of asymptotically holomorphic functions (see w167 2 and 3). The term asymptotically 

holomorphic function is used here to mean a function of a complex variable whose 

derivative is controlled (by some kind of weight function), and frequently quite small, 

near a prescribed set. The concept of asymptotically holomorphic functions originates 

with Dyn'kin [11] (see also [12]). We should like to mention at this point that  in the 
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works of Sergel BernshteYn and Beurling one can trace ideas closely linked to the notion 

of asymptotic holomorphicity. 

In [15], Guraril conjectured that  our Main Theorem should hold for p--1. 

The organization of the paper is as follows. In w we assume l < p < + c ~ ,  and 

identify the Fourier image of LP(R+, w) with the space QP(C_, a) of Cauchy transforms 

of elements of a space of densities ~P(E, a). We explain the details in the special case 

p--2. The elements of the space s a) are Borel measurable complex-valued functions 

g in the strip E = R •  1[, subject to the norm condition 

Ilfll~2(~,~) -- ( l ~ lg(x+iy)12a(y)2 dxdy)l/2 < +oc, 

where a: ]0, 1]---*]0, +c~[ is continuous, and a-2  is in LI(]0, 1[). The Cauchy transform 

of gC~2(E, a) is the function 

1 g(z) dS(z),  eC_. 

The space Q2(C , a) of Cauchy transforms then coincides with the Fourier image of 

L2(R+, w), provided the weights w and a are related by the identity 

fo 1 e_2ty .~-i/2 2 dy)  , 

In w an analogous model is developed for p =  1. It should be mentioned that  Dyn'kin, in 

his unpublished 1972 Leningrad thesis, found a related isometry construction for weighted 

12 sequences on the positive integers. In w we study what classes of weights w correspond 

to certain given classes of weights a. In w we reformulate the Main Theorem, discuss 

the analogies with our previous paper [5], and derive an important corollary describing 

all closed right translation invariant subspaces of LP(R+, w) whose Fourier transforms 

have no common zeros. The topic of w is to reformulate translation invariance for closed 

subspaces as invariance with respect to convolution with cut-off exponentials e~, with 

ranging over the upper half-plane C+. In w we introduce the concept of multipliers 

on space of densities. In w167 8 and 9 we study how conditions on the weight a influence 

properties of the space QP(C , o'), such as when it is a Banach algebra under pointwise 

multiplication of functions. 

w is devoted to the topic of what we call the resolvent transform, which has its roots 

in early work by Carleman, Gel'fand, and Beurling. The resolvent transform ff~r of an 

element r of the dual space L#(R+, w -1) is essentially the usual Laplace transform. We 

assume r annihilates all right translates of 8 ,  and study when 9~r extends to an entire 
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function. The plot is to show in later sections that  file satisfies estimates that  together 

with the fact that  it is entire force it to vanish identically. Initially, we carry out our 

manipulations in the operator algebra on a quotient space. Later on (more precisely, in 

Proposition 10.8), a convolution algebra assumption is made on LP(R+, w). The resolvent 

transform method was used by Gurarg and Levin in their proof of Theorem G. It is 

sometimes possible to get resolvent transforms of dual elements to extend analytically 

although the underlying space lacks a Banach algebra structure (see [19]). 

We next describe a procedure for estimating the resolvent transform, which we call 

the holomorphization process (w167 12 and 13). Given a function fEQP(C_,  a), which does 

not vanish identically, one constructs another function g �9 Qp (C_, a) such that  fg extends 

analytically to a region slightly bigger than C_. This is done by solving a particular 

equation. The method resembles to some extent what Alexander Volberg [29] did 

for asymptotically holomorphic functions in his proof of the celebrated result that  the 

logarithm of an L 1 function on the unit circle T is summable, provided its negative 

Fourier coefficients decrease quasianalytically rapidly. The proof of the Main Theorem 

is then brought to a conclusion in w 

A number of technical results concerning moment problems are contained in Appen- 

dices A and B. 

At the time when GurariY and Levin wrote their paper, it was not clear that  the 

resolvent transform technique works also for quasianalytic w, in the sense that  it turns 

the completeness problem into a question involving entire functions. This point was later 

(in 1975) clarified by Yngve Domar [8]. Still, even after Domar's contribution, people 

were not able to stretch the validity of Theorem G beyond the border of quasianalyticity. 

In retrospect, we can say that  the reason why Gurari[ and Levin stop there is that  they 

use too little of the information available about the size of the resolvent transform. 

2. The isometry construction: l < p < + o o  

Throughout this section, we fix a p, 1 < p <  +o~, and write ff =p/(p-1). Let o~ be positive 

and continuous on ]0, 1], and satisfy 

fo I dt < +oo. (2.1) 

We associate with a the weight function w,,p, 

( f0 t 't \ - l /p 'a(y)p 'e-p Y / w,,,p(t) = 2 d y ]  , t �9 [0,+oo[.  (2.2) 



C O M P L E T E N E S S  O F  T R A N S L A T E S  IN W E I G H T E D  S P A C E S  O N  T H E  H A L F - L I N E  9 

By Proposition 4.1 (w is independent of this one, as it is based on results from Appen- 

dices A and B), logw~,p is concave and increasing on [0, +cr and has 

logw~,v(t)=o(t), as t--*+cr (2.3) 

Let E be the strip 

E= { x + i y E C :  0 < y < l } ,  

and write dS for area measure on C, 

dS(z) = dx dy, z = x+iy. 

The space LP(E, a) of pre-densities consists of all (equivalence classes of) Borel measur- 

able complex-valued functions g on E meeting the integrability condition 

(2 < 

For p=2,  this is a Hilbert space. The density space s cr) is the image of LV(E, a) 

under the operation of taking the Fourier transform in the variable t. More precisely, if 

gy denotes the function gy(t)=g(t+iy), then 

~(x+iy) =~gy(x) ,  x + i y � 9  (2.4) 

is a general element of ~P(E, cr). For almost all y, 0 < y < l ,  gy belongs to LP(R), so 

that,  for l<p~<2, ~gy makes sense as a function in LP'(R), by the Hausdorff-Young 

theorem. The norm on s a) is the one that  makes the mapping g~-*~ an isometry. 

The Plancherel theorem states that  for L 2 functions ~ on the real line, the norm identity 

[~:(x)l 2 dx = 27r I:(t)[ 2 dt 
O 0  

holds, so for p=2  we may use this to rewrite the norm on s and the result is 

,,,,[s = ( t  ~ ,~t(z),2a(imz)2dS(z)~/2. (2.5) 

For 2 < p <  +cr it is necessary to interpret (2.4) as expressing a tempered distribution on 

C supported on the closed strip E, so that  for test functions ~ on C, 

(~, ~) = f ~:y(t)a(t+iy) dS(t+iy), (2.6) 
JE 
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where ~y(t)=~(t+iy), as expected. By H61der's inequality, 

](~o,/}) I ~< s I;~qoy(t)g(t+iy)l dS(t+iy) 

/E  \l/p' I  o (t)lp'a(y) -p' dS(t+iy)) 
X ( ~  ]g(t-~-iy)]Pa(y) p dS(tq-iy)) l/p, 

(2.7) 

(2.6) makes sense for all ~ in 2P'(E,a-1) ,  this space being defined analogously (here, 

a- l= 1/a). The first factor on the right hand side of (2.7) is estimated as follows, 

I ! 

[~%(t)l  p a(y) -p dS(t+iy) <. sup 
0<y<l 

, fo 1 dy P 
Ila  lfL,,(R) a(ylP" 

thus, by (2.1), the integral on the right hand side of (2.6) is summable for test functions ~o 

in S(C),  the space of C ~ test functions on C which, along with their partial derivatives, 

decay more rapidly than Izl-n near infinity, for all n =  1, 2, 3, .... The above distributional 

interpretation of (2.4) for 2 < p < + o o  extends to the general case l < p < + o o ,  and for 

1<p~<2 it coincides with our earlier interpretation of it as a Borel measurable (and, in 

fact, locally integrable on E) function. The Cauchy kernel is the function 

C(Z,~)~---~-I(4--z) -1, Z,4(--C , Z-7~"; 

we write Cy (x, 4)=C(x +iy, 4). The Fourier transform of the function Cy (x, ~) with respect 

to the x variable is 

-2 i  exp(-t(y + i4 ) )H ( - t  ), 
lC~(t, 4) = 2i exp(-t(y+i4))H(t), 

y < I m 4 ,  
(2.8) 

Im4 < y, 

where H is the Heaviside function, 

/ 1, 0 ~ t ,  
H(t) 

I 0, t < 0 .  

The Cauchy transform of a density ~ is the holomorphic function in the lower half-plane 

~g(4) = (C(., 4), [?) = s ICy(t, 4)g(t+iy) dS(t+iy) 

= 2i ~ exp(-t(y+i4))g(t+iy) dS(t+iy), 
R+ x]0,1[ 

(2.9) 
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which satisfies the inequality 

]E~(~)] <~ 2/R+ x]o,l[ lexp(-t(y+ir )g(t +iy)l dS(t +iy) 

<- (2 s215 Ig(t +iy)lPa(yF dS(t +iy)) 1/p 

( JR dS(t+iy) )Up' (2.10) x 2 exp(-tp'(y-Im~)) 
+x]0,1[ a(y)P' 

2 f 1 dy ~l/p' f 
< I1011~,(~,~)[,)7 Jo ] < +~ ,  C e C_. (y-Im~)a(y)P' 

If the density ~ is a genuine function on E, as is the case for 1 <p~< 2, its Cauchy transform 

may be computed as follows (one needs to be careful with the convergence of the integral 

for pr  

~0(~)= 1 L  ~0(z) dS(z), ~EC_.  (2.11) 

We write QP(C_,a) for the space Es of Cauchy transforms of functions in 

s It is a Banach space of holomorphic functions in the lower half-plane C_, 

when equipped with the norm 

I l h l l Q , ( c _ , ~ )  = i n f { l l g l l c , ( E , ~ )  : g e s a), Eg = h}. 

THEOREM 2.1. The Fourier transform ;~ maps LP(R+,wo,p) isometrically onto 
Qp(c_, ~). 

For the proof, we introduce the operators ~P and g, as follows�9 Given an fE  

LP(R+, W~,p), associate to it the pre-density function 
�9 p '  g[f,p](t+iy)=-za(y)- f(t)W~,p(t) p exp(-typ'/p), t+iy6E, (2.12) 

(we agree that f ( t )=0  for t<0,  so that the right hand side vanishes for t<0) and the 

density function 
~P f(x +iy) = ~[f , Pl(x + iy) 

fo +~ , . , (2.13) =-ia(y) -p' f(t)W~,p(t) p exp(-t(~x+yp/p))dt, x+iy6E. 

For 0 < y < + o e  and 0~<a<+oc, 

L+~t~[f(t),W~,p(t)P'exp(-typ'/p)dt<~(fo+~,f(t),PW~,p(t)Pdt) 1/p 

i f  f + o o  , ,~l/p' 
X t .L t~" c~ ) 

(/o = Ilfll~,(l~+ . . . .  ,,) t"%,,,, ,(t)q exp(-tyq) dt 
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holds, where q=p'(p'-1)=(p')2/p, so that  with the notation, 

~r(p, c~, y) = t'~P'w~,p(t) q exp(-tyq) dt, (2.14) 

this results in an estimate of the nth  partial derivate with respect to x of the density 

function ~e f ( x + iy ) , 

~(p, n, y)1/r 
10"2~Pf(z)l <<" a(y)p' IIf[ILp(R+,~,p), z = x + i y e E .  (2.15) 

The function ~(p, c~, y) is finite for 0<y,  by (2.3). By the same token, ~Pf(z)  is contin- 

uous on the half-open strip E, 

E= { z+ iyCC:  0 < y ~ < l } ,  

and of class C ~ in the x variable. In fact, if we write 

f + ~  
~Pf(z) = - i  ]o exp(itz)f(t)W~,p(t) p dt, z �9 C+, 

which represents a holomorphic function in the upper half-plane, the expression for the 

density ~Pf  becomes 

~Pf(x+iy)  =a(y)-P '~Pf( - (x- iyp ' /p) ) ,  x + i y � 9  E. 

LEMMA 2.2. The operator ~P maps LP(R+,wa,p) isometrically into s a ) , that 
is~ 

o+~lf(t)lPw~,,(t) v dt= 2 ~ Ig[f, pl(t+iyll 'a(y) p dS(t+iy) 

holds for all f �9 L p (R+, w~,p). 

Proof. By the definition (2.2) of the weight W~,p, we have 

2 .~ Ig[f,p](t+iy)lpa(y) p dS(t+iy) 

f ~  t i ! = 2 a(y)Pa(y) -pp If(t)lPwa,p(t) pp exp( -p  ty) dS(t+iy) 

= fo+~lf(t)tPw~"P(t)P(w~'P(t)P'2 ~ l  exp(-p'tY) dY) 

= I l f l l~p(R+,~ ,p ) .  

The proof is complete. [] 

Densities of the type ~Pf  for some f E LP(R+, W~,p) will be called canonical densities, 
and by Lemma 2.2, they form a closed subspace of s a). 
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LEMMA 2.3. The operators E~P and ~ coincide on LP(R+, Wa,p), that is, ~ P  f(z)= 
~f(z) holds on C for all fELP(R+,w~,p). 

Proof. A computation based on the definition of ~Pf and the expression (2.9) for 

the Cauchy transform reveals that  

~ P f ( ~ )  = ~0[f,P](~) = 2i f exp(--t(y+i~))g[f,p](t+iy) dS(t+iy) 
JR +X]0,1[ 

f + ~ f '  . , , , =2.Io J o  exp(-t(y+z~))a(y) P f(t)Wo,p(t) p exp(-typ /p)dydt 

, 1 e-typ' 

= e x p ( - i t r  dt = ;~f(r r �9 C_,  

which completes the proof. [] 

Given an element 0 of 2P(E, a), its extraction is the function 

gO(t) = 2i exp(-ty)g(t+iy) dy, t �9 [0, +oc[ ,  (2.16) 

where g is the pre-density associated with g. For l<p~<2, 0 is a function, and the 

extraction may be written as 

_i L exp(itz)O(z) dS(z), t �9 [0, +oc[ @ ( t )  = 

where one has to be a little careful with convergence of the integral. By H61der's in- 

equality, 

f01 IEO(t)l ~< 2 e-t~lg(t+iy)l dy 

( ~1 c--t 'yp "~I/P'( ~01 ,liP 
<<. 2 a(y)p, dy) 2 b ( t+ iy ) l ' a (yFdy)  , t �9162 

and if we use the explicit formula (2.2) giving w~,p, we arrive at the norm control 

~0+oc 1 I$O(t)lPwo,p(tF dt ~ 2 . + _ _  Ig(t+iy)lPc~(y) p dy dt JO JO 
~01/~ ~ O p <. 2 Ig(t+iy)l'a(y) p dt dy = II II~,(~,~). 

We formulate this result as a lemma. 
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LEMMA 2.4. For every ~Cs we have C~ELP(R+,W~,p), and the mapping 
C: riP(E, a)-~LP(R+, W,,p) is a contraction: ]]~gl]Lv(R+ . . . .  p) < I]gll~p(E,a)- 

The relevance of the extraction operator is due to the following fact. 

LEMMA 2.5. The operators ~E and E coincide on s a), that is, ~:C~(z)=E~(z) 

holds on C_ for all ~Es a). 

Proof. Let g be the pre-density associated with ~. Then, by the definitions (2.9) 

and (2.16) of E and $, 

~g~(() = exp(- i t ()g~(t)  dt 

1 

=2i  exp(-t(y+i~))g(t+iy)dydt=~(~),  ~EC_,  
J0  J0  

as asserted. [] 

Proof of Theorem 2.1. We will use the results of Lemmas 2.2, 2.3, and 2.4, freely, 

without particular reference. The mapping E:~2P(E,a)-~QP(C_,a) is norm contrac- 

tive by definition. Hence ~=E~P is contractive LP(R+,w~,p)--*QP(C_,a). Take an 

hEQP(C_,a); by definition, this means that there is a ~e~P(E,a)  with E~--h. If 

we put f--C~CLP(R+,wa,p) and go:~Pfe~P(E, a), then ~f=~C~--E~=-h and Et~o = 

~ P ~ C t ) = ~ C ~ = h .  In particular, h belongs to the Fourier image of LP(R+,w~,p). More- 

over, IIg011zp(~,o) ~< IIgll~(~,~), which implies that IlhlIQ,(C_,~)= IIg011s Note that 

f=C~o since both sides have the same Fourier transform, and thus 

IIflIL~(R+,~,~) ~< I1~o11~:~(~,,,) ----IlhllQp(C_,,~) = II~fllQ~(C_,o). 

The proof is complete. [] 

The global Cauchy transform ~.~ of a density ~ is the extension of ~ to all of C, 

which for p--2 (and for l < p < 2  also, if there are no convergence problems) takes the 

form 
1 ~ ~(z) ds(z), ~eC,  

wherever the integrand is summable (this happens area-almost everywhere). For general 

p, 1 < p < + c c ,  this corresponds to putting 

~,~(ff) -- .~ Eu(t, r dS(t+iy) 

-- 2i __]i~( r exp(-t( i~ + y) )g( t + iy) dS( t + iy) (2.17) 

- 2 i [  exp(-t(i~+y))g(t+iy)dS(t+iy), ~ C ,  
Jv (r 
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where U(~)=R+ x (] Im ~, 1]n]0, 1[) and V ( ~ ) = ] - o e ,  0[ x (]0, Im ~]M ]0, 1[). To properly 

interpret r  as a tempered distribution, we need to know that  it is a well-defined function 

area-almost everywhere, and that  it belongs to a reasonable space of locally integrable 

functions on C. For l~<q<+oo, let us agree to say that  a Lebesgue area measurable 

function f on C is in L ~ ( C )  provided that  

sup f If(z+r dS(r < +c~, 
z E C  JD 

where D is the unit disk, with the usual agreement to identify functions that  coincide 

with the exception of a set of area measure 0. 

LEMMA 2.6. For jEs  a), we have r  

Proof. By (2.8) and HSlder's inequality, 

, .~l/p' i ~ f+oo ,~l/p 

= 2 (p ' ly -  Im q)-l/p' IIg~IILP(R), 

so that,  by (2.17), 

/E ~ 0 1 !  -liP' I~.~(~)1 ~< I/~(t ,  ~)g(t+iy)l dS(t+iy) <<. 2 (P l y - Im~l )  IlgyllL,(R) dy. 

If R is a square with side length 1, then 

R lY--Im ~l-1/P'dS( ~ ) << 2p, 

and consequently, 

/,~ Ir162 dS(r .< C(p) f f  II"~,ItL"(R)dy 
~ C(p)(~ 1 dy )lip' 1 .~l/p 

IIg,,IIL,,(R) ( ) dy) 

(o~01 dy )lip' -- c(p)lloall~:,,(=,,:) o-(y),,' 

where C(p)=4p(p')-Up'. The assertion is now immediate, in view of (2.1). [] 

So far, we have only defined the global Cauchy transform ~.  on spaces of functions 

or distributions supported on the closure of E. There is, however, no reason for doing so 

in general; for instance, if ~ is a test function in ~q(C), we may define 

1 / c  ~(~)dS(~) '  z E C ,  ~,~(z)-- ~ 
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and observe that  Or162 holds on C. In particular, 

~ou( x) = ~o(x + iy) = - Sc Cu(x, ~)0~o( ~) dS( ~), 

so that  

~%(t)  = - i c  iCy(t, ~)O~o(~) dS(~). (2.18) 

PROPOSITION 2.7. /f.~Es then f = E . ~ E L I ( C ) ,  and Of--~7, in the sense of 
distribution theory. On the other hand, if f E L ~ ( C ) ,  and its distributional derivative Of 
belongs to the space 2P(E, a), then there exists a constant t3(f) such that f =13(f)+E.Of 
holds area-almost everywhere on C; in particular, the restriction to C_ of f - t3( f)  belongs 
to Q p ( C _ ,  

Note. One should think of/3(f)  as the value of f at infinity. 

Proof. That f = ~ . . ~ c L ~ ( C )  for ~C2P(E,a)  was demonstrated in Lemma 2.6. We 

proceed to check that  c~f=~. For test functions ~o on C, we have, by (2.18) and Fubini's 

theorem, 

= = - [ dS( ) 
J c  

= -  i c  i~ tCy(t, ~)g(t + iy) dS(t + iy) O~o(~) dS(~) 

= / ~  ~%(t)g(t  +iy) dS(t +iy) = (~o, ~7), 

as claimed. 

We turn to check the third assertion, which states that  if f E L ~ ( C ) ,  and its distri- 

butional derivative cgf belongs to the space s a), then f - r  equals a constant 

almost everywhere (dS) on C. By what we have done so far, it is clear that the function 

~o=r belongs to L ~ ( C ) ,  and has (9~o=c~f. The difference ~o- f  is then an entire 

function in L ~ ( C ) ,  which of course must be constant, by the mean value property and 

Liouville's theorem. If we denote this constant by/3(f) ,  the claim is verified. [] 

For t~E2P(E, a), the restriction of r to C_ coincides with the earlier introduced 

Cauchy transform ~ .  Thus, according to Lemma 2.3, the operator ~ .P=r  supplies a 

canonical generalized Fourier transform. We shall obtain an explicit expression for ~.Pf. 

For 0 < y < l ,  write 

qo,p(t, y) = 2w~,p(t)p,i i f  
e -  p'ut 
a(u)P' du, t c R+, 

a~ 
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and put q~,p(t, y ) = l  for y~<0, and qo,p(t, y)=0  for 1 ~<y. The function q~,p is continuous, 

and has O<~q~,p(t,y)<~l for all ( t , y ) � 9 2 1 5  Moreover, for 0<s~<y and l < 0 < p ' ,  we 

have the crude estimate 

(2.19) 

uniformly in y, if e and 0 are fixed. 

PROPOSITION 2.8 ( I < p < + c C ) .  In terms of the function q~,p, the canonical gener- 
alized Fourier transform on LP(R+,wa,p) is given by the formula 

fo ~P,f(z) = ~ ,~Pf (z )  = e-UZf(t)q~,p(t, Im z) dt, z �9 12\N. 

Proof. Let Q(t)--1/a(t) for 0 < t < l ,  and set p(t)=0 elsewhere on R. If we write 

z=x+iy ,  we have for l < p < + c c ,  in the sense of distribution theory, 

~ z  - - i t z  - - i t z -  1 .  i t z  0 , , (e q~,p(t,y)) = = e Ozq ,p(t,y) 

= -ie-UZw~,,p(t)p'p(y)P'e-typ' 

=-ie-U~W~,p(t)P'y(y)P'e -typ'/p, z �9 12. 

(2.20) 

For an fGLP(R+,w~,p), let ~.Pf denote the function given by the expression involving 

q~,p, so that  what we need to check is that  ~Pf - -~ .~Pf .  The function ~ P f  is, as an 

element of s or), a tempered distribution on t2 with support contained in E, and 

~.~PfGL~(12),  by Proposition 2.6. The density ~Pf  is furthermore a locally bounded 

function in 12+ (it is declared to vanish off E), making ~ . ~ P f  continuous on C+, due to 

local elliptic regularity. Since ~ . ~ P f  is automatically holomorphic in 12_, we see that  it 

is continuous on 12\R. Now suppose temporarily that  f has compact support, so that  

~P.fGL~(12)NC(12), by the properties of q~,,p. Using the identity (2.20), summability, 

and b-hbini's theorem, one quickly verifies that,  in the sense of distributions, 

Oz~P.f(z) =~Pf(z) ,  z �9 C, 

holds. By Proposition 2.7, ~P.f=~.~Pf ,  as claimed. In fact, this identity holds pointwise 

on C \ R ,  because there, at least, both functions are continuous. To get the identity for 

general fELP(R+, ~,p) ,  we use an approximation argument. So, let {f~}n be a sequence 

of compactly supported functions in LP(R+, W~,p), converging in norm to an arbitrary 

f ~  ELP(R+,w~,p). Estimate (2.19) assures that  ~P.fn--~Pf~ as n--~+c~, uniformly on 

compact subsets of C+. On the other hand, by general Fourier analysis, it is clear that  

2-945205 Acta Mathematica 174. lmprim6 le 20 janvier 1995 
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we have uniform convergence on compact subsets of C_ as well. The same of course 

happens for the operator ~ .~P ,  which finishes off the proof. [] 

The dual space of bounded linear functionals on LP(R+, W~,p) may be identified with 
LP'(R+, -1 W~,p), the space of functions r on R+ satisfying 

llr247 = Ir < +oc, 

with the dual action 

{f, r = f(t)r dt, I e LP(R§ ~,~), r e Lr ~gl). 

The resolvent transform of a CELP'(R+, -1 w~,p) is the function 

Nr = - i  exp(itz)r dr, z e C§ (2.21) 

which is holomorphic in the upper half-plane C+. It is a transformation of Fourier- 

Laplace type, and will prove invaluable for the proof of the Main Theorem. 

For z e C \ R ,  let 

r = exp(-itz)q~,p(t, Im z), t e R+, 

so that  (f ,C~)=~P.f(z) for fELP(R+,wa,p).  One then has 

(f0 +~ ' , , )~/r 
II~IIL,,(R+,~:I) = e t yp  W a , p ( t )  - p  qa,p(t ,y)  p dt , z = x + i y ,  

and this is thus the norm of the point evaluation functional. In view of this observation, 

the following is immediate. 

PROPOSITION 2.9. For fELP(R+,w~,p) of norm <.1, 

I~P.f(z)l <~ li~P.f("+iY)II~LI(R) <~ ilq~zliLP'(R+,~j.~> 

---- sup{]~Ph(z)] : h �9 LP(R+, w,,p), ]lh]]L,(R+,~,p) ~< 1}, Z = x + i y  �9 C \ R .  

Remark 2.10. The norm on ~ L I ( R )  is the one that  makes the Fourier transform 

an isometry L I(R)--*~L 1 (R). 

The relations between the various mappings occurring in this section are illustrated 

in the following two commutative diagrams; ?-/P(E, a) is the closed subspace of canonical 
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densities in 2P(E, a), which is the image of LP(R+, W~,p) under ~P, R is the restriction 

operator f~-+flc-,  P is the projection s which makes the diagram 

commute, and = is used to indicate the identity mapping, provided it commutes both 

ways. For p=2 ,  P is the orthogonal projection 22(E, a)--~7-/2(E, a). 

LP(R+,w~,p) < ~ s 5 r  

Q~(C_, o) - -  Q~(c_ ,  ,,) - -  Q~(C_,,~) 

?-/'(E, a) ~ ' ( E ,  a) - -  7-/P(E, a) r ~ QP(C_, a) 

LP(R+,w~,p ) LP(R+,w~,p ) ) E.7_/p(E,a ) R , QP(C_,a) 

Qp(C_ ,a )  Qp(c  ,a) Qp(c  , a ) - - Q p ( C _ , o  -) 

3. The isometry construction: p----1 

Let a be a positive strictly decreasing C 2 function on ]0, 1], with limit a(y)--++oc as 

0<y-+0 .  Suppose, furthermore, that  its logarithm y~-+loga(y) is strictly convex, in the 

strong sense that its second derivative is positive throughout ]0, 1]. Put  

w~,l ( t ) = inf ( exp( ty)a(y ) : 0 < y <~ 1), (3.1) 

which then has a concave logarithm logw~,l, and has the limit Wo, l ( t )~+cc  as t ~ + c r  

By the general properties of the Legendre transform, we may recover a from W~,l, 

(r(y) = sup{exp(-ty)w~,l(t):  t �9 R+}, 0 < y ~< 1. (3.2) 

We assume, moreover, that a ( 1 ) = l  and a'(1)--0; as a consequence, W~,l(0)--1. The 

function y~ (t) is defined by the equality 

~ , ~  (t) = exp(ty~, (t))o(y~, (t)); (3.3) 

one then computes that y~(t)=(logw~,l)'(t), which is a decreasing function on R+. 

The inverse function of yc,(t) is denoted by t~(y), and one finds that ta (y )=-a ' (y ) /a (y ) .  
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The functions y~ and t~ are of class C1; y~ is strictly increasing on R+, and t~ is strictly 

decreasing on ]0, 1]. By assumption, a ( 1 ) = l  and a ' (1)=0,  so the image of ]0, 1] under 

t~ is R+, and accordingly, the image of R+ under y~ is ]0, 1]. 

Let A/[(R) be the set of all finite complex-valued Borel measures on R.  Given 

#EA/I(R), we write [[#I[~(R) for the total variation of #. 

If w is a weight function on R+ (in the sense used in the introduction), we consider 

the space A/I(R+, w) of all Borel measures # supported on R+ = [0, +co[, subject to 

= [ o;(t) dl#l(t) < +co. {I#{}~(R+,~) 
JR + 

It is a Banach space with the above norm, which contains L { (R+, w) as a closed subspace 

in a canonical fashion: an L I function f is mapped onto the measure f dr. 

Let A/{(E) be the set of all finite Borel measures on the half-open strip E--Rx ]0, i], 

normed appropriately: 

= / ~  dl#l(z)" 
g l  

Every measure # in A/I(E) may be decomposed (see, for instance, [24, pp. 595-618]) 

dp(t+iy) = d#y(t) dr(y), t+iy �9 E, (3.4) 

where v is the finite positive Borel measure on ]0, 1] obtained by setting v (E)=  I#1 (R x E), 

and the mapping y~-+#y is Borel measurable and well-defined almost everywhere (dr) as 

a mapping from ]0, 1] into the closed unit ball of Y~4(R). If # is a probability measure, 

#u is the conditional distribution of t for fixed y. The space Y~4(E, a) of pre-densities is 

the subspace of A/I(E) consisting of those Borel measures # on E with finite norm, 

= 2 f .  a(y) d[p{(t+iy) < +co. 

The density space ~1 (~, a) is defined to be the image of A/l (E, a) by the Fourier transform 

in the variable t. More precisely, if # � 9  a) and # has the decomposition (3.4), then 

df~(x+iy) = ~#y(x) dx dx/(y), x+iy �9 E, (3.5) 

is a typical element of ~1(~, a), where 

~#y(x) = /Rexp( - i t x )  dpy(t), x + i y � 9  E, 

which is bounded and continuous in the x variable. The elements of ~ZI(E, a) are thus 

Borel measures on E. The norm in s  is defined to be the one induced by the 
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pre-density space A//(E,a): i]/2[ls Since they are Borel measures on 

E, the elements of ~1(~, a) are naturally distributions on C; as in w this is compatible 

with defining the action of /2E~I(E,  a) on a test function ~oE8(C) to be 

(~o, f~) = f~ ~oy( t ) d#( t + iy). 

Again as in w the right hand side expression makes sense for a larger class of ~ than 

those in S i C  ). The Cauchy transform is defined on s a) by a formula analogous to 

(2.9), 

~Ft(r = (C(., ~), f~) = /~  ICy(t, ~) d#(t+iy) 
(3.6) / ,  

= 2 i [  exp(-t(y+i~)) d#(t+iy), ~ E C_. 
J[0 ,+~1 • ]0,al 

This definition involves a choice of how the Borel measure #v acts on the Heaviside 

function H. The Canchy image s of/5 is a holomorphic function in the lower haif-plane 

O_, because the integral defining it converges absolutely for all r E C_,  since 

1E/2(r ~< 2 rio exp(_t(y_imr dr(y) 
,+~[• ,1] y - I m ~  

Ilull ( , ) 
<~ inf{(y-Imr 0 < y <<. 1}" 

Write Q1 (C_, a) for the image ~s (~, a) of ,~1 (~-], O') under the Cauchy transform s It 

is a Banach space of holomorphic functions in the lower half-plane C_,  when supplied 

with the norm 

]]hiIQl(o_,~) = inf{iigl]~s(~.,~) : g E ,~1 (~], 0"), ~g = h}. 

THEOREM 3.1. The Fourier transform ~ maps Jk/[(R+,wa,1) isometrically onto 
Q I ( C _ , a ) .  

As in w the first step is to introduce the operators ~1 and E. Given a measure 

~EJ~4(R+,w~,I), let ~ot~ be the measure on ]0, 1] defined by 

~ot~(E) = ~(t~(E)), 

for Borel sets E. Consider the pre-density measure 

1 
d#H(t +iy ) = ~ exp(yt~(y) ) d6o(t-t~(y) ) d(~ot~ )(y), t+iy E E, (3.7) 
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and the associated density ~1~=/5[~], 

1 
dfit[~](x + iy) = "~z exp(yt~(y) ) exp(-ita(y)x) dx d(~ota )(y), x + iy E E. 

The measure #[~] has norm 

II#[~] I1~(~,~) = . s  a(y)exp(yta (y)) dSo(t-ta(y)) d(l~l ota)(y) 

= f a(y) exp(yt~(y)) d(l~lot~)(y) 
J]o ,1] 

= __JR+ a(ya(t)) exp(ty~(y)) dl~l(t) 

= ]R+ w~,l(t) dl~l(t ) = Ileitis(R+ 

thus ~-*#[~] is an isometry A~(R+, wo,1)--~Ad(E, a), and ~1 is an isometry Ad(R+, w~,l) 
- -~ l (E ,a ) .  By (3.6), the Cauchy transform of ~1~ is 

�9 ~[~] (~) = 2i LvI.,+oo[ x ]o,1] exp(-t(y+i~)) d#[~](t+iy) 

= L-~I,+~[ • 10,1] exp(-t(y+ir dS(t-t~(y)) d(~ot,)(y) 

= j_~o,1] exp(-it~(y)~) d(~ot~)(y) 

= JR+ exp(--itr d~(t) = ~(~) ,  ~ E C_. 

Given a pre-density #EA/t(E, a), let ~[#] be the Borel measure on R+ which assigns 
the mass 

~[#] (E) = 2i / exp(-ty) d#u(t) d~(y) (3.8) 
JE • 

to a Borel set E. The extraction of the density t~E~ 1 (E, a) is then $~=~[#], which is an 
element of Ad(R+,w~,I) (use (3.2)): 

II [ ]ll (m . . . .  , ) =  f_ Wa,l (t) dl~l[#](t) 
+ 

2 __JR.+ x ]0,1] exp(--ty)w~,l (t) dl#l~(t)  d~,(y) 

<. 2 / a(y) dl#ly( t ) du(y) = 
JR + • ]0,11 
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By inspection, the Fourier transform of ~[#] coincides with ~fi, 

f 
~[#](~) = __/R§ exp(-it~) d~[#](t) 

= 2i / exp ( - i t~ - t y )  d#y(t) du(y) = Eft(C), ~ E C_. 
+ 

Let us gather these observations in a proposition. 

PROPOSITION 3.2. The following assertions are valid. 

(a) The mapping ~1 is an isometry A4(R+,aJ~,l)--~21(E,a). 

(b) For each ~CAd(R+,w~,z), E ~ l ~ ( z ) = ~ ( z )  holds on C . 

(c) The mapping $ is a norm contraction 21(E,a)--~2~4(R+,w~,]). 
(d) ~C=E as mappings ~z(E, a)__.QI(C_, a). 

Proof of Theorem 3.1. Mimic that of Theorem 2.1. [] 

We need to extend the Cauchy transform to a global one, denoted ~.. As was the 

case with the usual Cauchy transform, there will be some degree of arbitrariness in our 

choice, due to the fact that we are dealing with measures, not functions. For #~AA(E, a), 

put 
/ -  

~,fi(~) = 2 i /  exp(- t ( i (+y))  d#(t+iy) 
Jy (r 

(3.9) / ,  

- 2 i [  exp(-t( i~+y))dp(t+iy) ,  ~ e C ,  
Jv  (r 

where U(~)=a+x( ] Im~, l ]A]0 ,1] )  and V(C)--]-c~,0[•  ImCJN]0,1]). It is clear 

that this defines a bounded Borel measurable function on C, and that in fact 

(3.10) 

holds. 

PROPOSITION 3.3. IfftE~21(E, ~), so that f =~. f tEL~(C) ,  then Of =fi, in the sense 

of distribution theory. On the other hand, if f E L l ( C ) ,  and its distributional deriva- 

tive Of belongs to the space s then there exists a constant ~(f)  such that f =  

~ ( f ) + ~ . O f  holds area-almost everywhere on C; in particular, the restriction o f f  to C_ 

belongs to QI(C_, a). 

Proof. Analogous to that of Proposition 2.7. [] 

By Proposition 3.2, the operator 51 , -~ ,~1  supplies a canonical generalized Fourier 

transform. It is given by the formula stated in the proposition below. 
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PROPOSITION 3.4. The canonical generalized Fourier transform on 2~I(R+,o2a,1) is 

given by the formula 

J~[0 e -itz d~(t), z = x+iy  E C, ~l*~(z) = r = ,~o(~)[ 

where we agree that t a (y )=+oo  for y<~O, and t a (y )=0  for l~<y<+oc.  It is thus a 

bounded Borel measurable function on C. If  the measure ~ in J~cI(R+,wa,1) is absolutely 

continuous with respect to Lebesgue measure, then ~.~ is continuous on C. 

Note. The interval [0, 0[ is the empty set, and an integral over the empty set is 0. 

Hence ~l.~(z)--0 for l~<Imz. 

Proof of Proposition 3.4. Since O<.ta(y) always holds, the measure #[~] in (3.7) 
places no mass on the set V(~) occurring in the definition (3.9) of E./i(~), and thus 

E./i[~](~) = 2 i f  exp(-t(i~+y))d#[~](t+iy) 
Ju (;) 

---- ~]Im 4,1]n]O,1] exp(-it~(y){) d(~ot~ )(y) = /[o,to(y)[ e -ire cl~( t). 

The boundedness and continuity mentioned follow from direct inspection. [] 

The space L i(R+, w~,i) will be identified with the closed subspace of A/I(R+, W~,l) 

of measures that  are absolutely continuous with respect to linear Lebesgue measure. 

The dual space of bounded linear functionals on LI(R+,w~,I) may be identified with 

L~ the space of functions r on R+ satisfying 

[[(~[[Loo(R+,w~-,~) = ess sup{[r t E R+} < -boo, 

with the dual action 

(f,r f( t )r  feLl(R+,w~,~),  CeL~(R+,~g~). 

The resolvent transform of a CEL~(R+,w~,  1) is the function 

file(z) = - i  exp(itz)r dr, z e e+,  (3.11) 

which is holomorphic in the upper half-plane C+. 

For zEC,  let 

r Imz),  t e R + ,  

where q~,,l(', Y) is the characteristic function of the interval [0,t~(y)[, so that  (f, r  

~l.f(z) holds for f e L l ( R + ,  ~ ,1 ) .  One then has, with z=x+iy ,  that  r  for 1 ~<y<+c~, 

and 

I]r ---- ess sup{etY/Wa,l(t): 0 ~< t < ta(y)} = 1, --oc < y < 1, 

so the norm of the point evaluation functional is either 0 or 1. Just as in the previous 

section, the following is immediate. 
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PROPOSITION 3.5. For fELl (R+,W~, l )  of norm <.1, 

1 �9 <.1, z = x + i y E C .  ]~.~f(z)] < I]~.f(" +zY)r]~Ll(m 

4. The class of  weight functions of  type wa,p 

Fix a p, 1 ~p<+cx~, and write p~=p/ (p -1 ) ,  with the usual convention that  p~=co i f p = l .  

The continuous function a:]0, 1]--~]0,+c~[ satisfies (2.1) if l < p < + c ~ ,  and for p = l ,  it 

is assumed to be strictly decreasing and have a strictly convex logarithm, as in w It 

is then of interest to know which weights w on R+ are of the form w~,p, but since this 

question has a complicated answer, and we actually are only interested in the spaces 

LB(R+,w),  we shall be equally happy to know for which w we have w~.W~,p. Here, we 

use the notation f •  and say in words that  f and g are comparable on R+, if f and g 

are two functions on R+ with values in [0, +c~[,  which satisfy 

e l f ( t )  <. g(t) < c f(t), t �9 a+, 

for some constants C1, C2, 0<C1, C2<+c~.  One easily convinces oneself that  given two 

different weight functions Wl and w2 on R+, the spaces LP(R+,~vl) and LP(R+,w2) axe 

the same (and the associated norms equivalent) if and only if Wl• 

We first treat  the case l < p < + c o .  Let ~ denote the collection of all continu- 

ous (weight) functions ~v:R+--~]0, +co[ which are increasing, have limit w( t ) - -*+~ as 

t--*+co, and possess a logarithm logw which is concave, and satisfies 

logw(t) = o(t), as t -~  +oo. 

PROPOSITION 4.1 ( l < p < + c ~ ) .  I r a  is as above, then W~,p belongs to fs If, on the 

other hand, w is in ~ ,  then a a can be found such that W~,p.~W. 

Proof. Let us start with having a a, and t ry  to prove W~,pEf~. Since, with the 

notation of Appendix B, and d # ( x ) = d x / a ( x )  p', 

w~,,p(t) = (2Fdg(p't)) -1/p', t �9 R+, (4.1) 

holds, and Fd~ belongs to g; in view of Proposition B.1, the assertion that  (.do., p is in 

is immediate from the definitions of the classes ~ and ~ .  

We proceed to the case when we have an w, and seek a a. Let the function F be 

defined via 

w(t) =- (2F(p't))  -1/p', t e R+, (4.2) 
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and use Proposition B.1 to produce a # E ~  of the form d#(t)=~a(t)dt,  where ~ is a 

continuous positive real-valued function on ]0, 1], for which Fdu• The choice a ( t ) =  

~(t) -1/p' then does the trick. [] 

For a fixed real parameter s, 0 ~ s < + c ~ ,  let ms  denote the set of all weights w in 

with the additional property that  the function t~-* (1 +t ) - sw( t )  is in !~l~. In particular, ~ 0  

coincides with ~[~. Recall from Appendix B the definition of the sets ~ ,  with 0 < s < + c ~ ,  

of fractional integrals of positive Borel measures in 9 .  

PROPOSITION 4.2 ( l < p < + c C ) .  Fix a real parameter s, 0 < s < + c o .  I f  a is such 

that a -p '  is in ~sp '  , then there exists a weight ~,,p in m s  such that ~a,pXO2a,p. On the 

other hand, if an element w of m s  is given, then there exists a a with (7-P'�9 with 

the property that wa,p~w. 

Proof. If we start out with a, we put ~=O "-p', which is assumed in ~sp,, and note 

that  

W~,p(t) = (2Fe(p't)) -~/p', t �9 R+, (4.3) 

which is (4.1) specialized to the present situation. Let FQ be as in Corollary B.4, and 

define ~ , p  by the identity 

~ , p ( t )  = (2FAp't))  -~ / r  t �9 a + .  

Corollary B.4 tells us that  Fe • F0, hence ~ , p  • and that  Fe �9 ~ p ' ,  hence ~o,p �9 ~ .  

We next deal with the case when we begin with an w, and look for a a. Let F 

be related to w via (4.2), so that  w � 9  entails F � 9  Proposition B.5 provides us 

with a function pE~3~p, such that  F e ~ F ,  so if we put a-~p -1/p', we get w~,p• This 

completes the proof. [] 

It is time to formulate an assertion about weights in ~ ,  which we mentioned without 

proof in the introduction. 

PROPOSITION 4.3. Suppose w E ~ ;  this is so if w is of the type W~,p, by Proposi- 

tion 4.1. We then have the inequality 

t ,x �9 a+ .  

Proof. By definition, u( t )=logw(t )  is increasing and concave on R+. In particular, 

v'(t) decreases with t, so that  

fo fo J(t+s) ds<  
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from which the claimed inequality 

w(0)w(t+x) ,< w(t)w(x), t, x �9 R+, 

is immediate. 

Recall the notation 

[] 

~0 § e~ (T(p, a, y) = t~P'w~,p(t) q exp( - tyq)  dt, (4.4) 

from w where q=p' (p ' -1)=(p ' )2 /p .  As a function of y, ~(p, a, y) is strictly decreasing, 

and has 0<~(p, a, y)<+c~ for yE]0, +oo[, because W~,vE~ (Proposition 4.1). 

PROPOSITION 4.4 ( l<p<+oO).  Given s and a, subject to the restraints l i p '<  

s<+oo and 0~<a<+oo, there exists a constant C =C(  s, a, p, a ), 0<C<+oo ,  such that if  

a -p' is in ~3sp,, then 
~(p,a,y)l/P'<~Ca(y)q, 0 < y ~ l ,  

where q= ( sp'/p+ c~ + 1/p') / ( s -  1/p'). 

Proof. With the notation of Appendix B, 

/ t 
W~,p(t) = (2F~_,, (p t)) -1/p , 0 <<. t < +oc, 

so we see that by substituting u=p't ,  

.~0 -j-~176 i l _ t (~(p,a,y)=2-P'/P(p')  -~p ' - I  u ~p exp(-uyp/p)Fo_p, (u)  P/Pdu, 0 < y < + o c .  

The assertion is now an immediate consequence of Proposition B.8. [] 

Consider the related functions (0 < r < +oo) 

{ ~ (p ,y )=  f :~exp ( -p t y )w~ ,p ( t )Pd t ,  0 < y < + c o ,  
+~ , r '  (4 .5 )  

(T(p, r, y) = fo exp ( - t y rp  )W~,p(t) p dt, 0 < y < +oc, 

which, as functions of y, are strictly decreasing, and have values in ]0, +co[ for 0 < y < +oc, 

because w~,p E ~  (Proposition 4.1). They have similar estimates. 

PROPOSITION 4.5 ( l<p<+r I f  S has 1/p' <s< +oc, there exist two constants 

C = C ( s , a , p )  and K = K ( s , a , p , r ) ,  0 < C , K < + ~ ,  such that i ra  -p' is in ~3sp,, then 

&(p, y)l/p < Ca(y)~, 0 < y < 1, 

(~(p ,r ,y )UP'<ga(y)  ~, 0 < y < l ,  
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with ~= (s + l lp) l ( s  - l ip '  ) and fl= (rs + l lp ' ) l ( s  - l ip '  ). 

Proof. Analogous to that  of Proposition 4.4. [] 

We turn to the case p =  1. If we do not make any additional regularity assumptions 

on a, the relationship between a and W~,l is sufficiently well understood in w To 

treat regularity conditions on the weights a and w~,l, we proceed as follows. Start with 

an w E ~ ,  where s has 0<s ,  replace it with ~ E ~  in C 2, having ~ w ,  ~(0)=1,  and 

~'(0)--1, and put 

a ( y ) = s u p { e - t Y ~ ( t ) : t e R + } ,  0 < y < l .  (4.6) 

This a then has all the properties requested of it in w we mention here that  in particular, 

a ( 1 ) = l ,  and a ' (1)=0.  By the definition (4.7) of W~,l, and standard properties of the 

Legendre transform, w~,l(t)=~(t) holds on all of R+. To study the functions y~(t) and 

to(y) considered in w more closely, introduce temporarily the notation a(t)--log W~,l(t) 

and fl(y)=log a(y), and note that  these functions are connected via 

{ ~(t) = inf {f l(y)+ty : 0 < y <~ 1} = fl(y~(t) )+ty~(t), (4.7) 

fl(y) = s u p { a ( t ) - y t :  t �9 R§ = a( t~(y) ) -y t r  

By differential calculus, 
{ y~(t) = ~'(t), 

t~(y) = -~ ' (y ) ,  

so that  since the functions y.( t)  and tc,(y) are inverse to each other by definition, it 

follows that 
{Oll I (-fi ( y ) )  = u,  

= - t .  

Differentiating once more, we get 

f i , , ( y )  = (4.8) 

LEMMA 4.6. In the above context, the following estimates hold: 
(a) O<ta(y)=- f l ' (y )<e.a(y)  1/s, yE]O, 1], 

(b) -(e2/s)a(y):l (y)=-fl"(y) <0, ye ]o ,  l ] .  

Proof. Since W~,l=WC~s, we have a(t)=slog(l+t)+(~o(t) ,  where a0 is concave, 

and has (~o(t)=o(t) as t-~+oc. Moreover, since a(0)=0,  Co(0)=0, and thus, by concavity, 

0<. (~'o(r)--~'o(t))dT=ao(t)--ta'o(t), t e R + .  
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We conclude that 

s(log(1 + t ) - t / ( l + t ) )  <. a( t ) - ta ' ( t ) ,  

and since ~(yo(t))=/3(a'(t))=a(t)-ta'(t),  that 

or, equivalently, 

t E R + ,  

e - l ( l + t )  ~< exp(j3(y~(t))/s), 

l+t~(y)  ~< e.exp(~(y)/s). (4.9) 

Assertion (a) is immediate. Furthermore, assertion (b) follows from (4.8), (4.9), and the 
inequality a"(t) ~ - s ( 1  +t) -2. [] 

PROPOSITION 4.7. If wo,l C~l~s for some s, 0 < s < + c c ,  then 

O(1,y)= e-tyw~,,l(t)dt<~ear(s)a(y) 1+1/~, 0<y~<l .  

Proof. The assumption on co~,1 should be thought of as 

a"(t)<~-s(l+t)  -2, t ~ R §  (4.10) 

The integrand is exp(-ty+~(t)) ,  and by (4.7), it attains its maximum value ~(y)= 
exp(~(y)) at t=t~,(y). By (4.10), the function t ~ - t y + a ( t )  is strictly concave, and one 

easily derives the estimate 

t - t~(y)  "~ t e - ty+a( t )  <.~(y)+s log(l+t)-log(l+t~(y)) l+t~(y)] '  R+. 

When the integrand is replaced with the exponential of the right hand expression, one 
arrives at 

/o +~exp(- ty+a(t))  dt e2r(s)(l +t~(y))a(y), <<. 

whence the assertion follows by invoking (4.9). [] 

We now formulate three equivalent ways of expressing quasianalyticity. A proof is 
essentially contained in Beurling's paper [4]. 

PROPOSITION 4.8 ( l ~ p < + c ~ ) .  Suppose a is unbounded and decreasing. Fix a real 
number 5, 0 < 5 < 1, with the property that e ~ min{a(5), &(p, 5)}. Then the following three 

conditions are equivalent: 

(a) f :  log log c~(t) dr< +c~, 

(b) f :  log log 5(p, t) dt < +oc, 
(c) f+~(logw~,p(t))/(l+t 2) dt< +co. 
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5. The Main Theorem on completeness  of  translates in LP(R+, w) 

We shall now reformulate the Main Theorem from the introduction in terms of the weight 

classes ~ of w and derive a corollary from it. First, however, we need the following 

lemma. 

LEMMA 5.1 (l~<p<+co). Fix an hE[0, +co[, and a weight w in the class ~ intro- 

duced in w Denote by LP([c~, +co[, w) the subspace of LP(R+, w) consisting of all func- 

tions that vanish (almost everywhere) on the interval [0, a[. Then the image T~LP(R+, w) 

of LP(R+, w) under the right translation operator Ta coincides with LP([a, +co[,w). 

Proof. By Proposition 4.3, the image of LP(R+,w) under T~ is contained in 

LP(R+, w), and hence in LP([a, +co[, w). On the other hand, since the weight w increases, 

the left translation operator T_~ is norm contractive LP([a, +co[, w)--,LP(R+, w). That 

does it. [] 

The following statement is an equivalent formulation of the Main Theorem (see w 

The condition w E ~  requires not only that l ogw( t ) - s log ( l+ t )  be concave, but also 

that it tend to +co as t--*+co. What allows us to say that the two formulations are 

equivalent is that the prescribed intervals of s and E are open. 

THEOREM 5.2 (l~<p<+co). Put O(p)=2+l/p'  for l < p < 2  and 2<p<+co,  0(2)= 1, 

and 0(1)-=-3. Suppose w E ~YOs for some s, 0(p)<s<+co.  Let G be a collection of elements 

in LP(R+,w), and denote by T+(| the set of all (finite) linear combinations of right 

translates T~f, xER+, of elements rE|  Then ~+(G) is dense in L~(R+, w) if and only 

if 
(a) the functions in ~(G) have no common zeros in C_, and 

(b) there is no 5, 0<5, such that | is contained in LP([5, +col,w). 

We obtain this theorem by proving a corresponding approximation statement in the 

context of the spaces Q P ( C ,  a), for weights a satisfying 1/aP'E~3sp,. In view of Theo- 

rems 2.1 and 3.1, proving an approximation theorem for the space QP(C_, c~) (suitably 

modified for p = l )  is equivalent via the Fourier transform to proving one for the space 

LP(R+,w~,p), where W~,p is connected with a as in w167 and 3. Moreover, from w we 

know that the requirements 1/aP'E~Jsp, and wE~U8 correspond. 

In an earlier paper [5], we studied certain spaces Q(C_, w), which are similar to the 

spaces QP(C_, a) investigated here. They were defined as spaces of bounded holomorphic 

functions in the lower half-plane, having extensions to the whole complex plane that 

are bounded and asymptotically holomorphic in the sense that their 0 derivatives are 

controlled by a weight function w. It is possible to regard each such space Q(C_, w) as 

consisting of Cauchy transforms of a space of densities ~ satisfying a weighted uniform 
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norm condition 

I~(z)]<C(p)w(Imz),  zEC+. 

In the setting of the present paper, the function w corresponds to I/a. Our space 

Qv(C_,a) is defined as the image under the Cauchy transform of the density space 

~P(E, a), which contains unbounded functions. This difference causes us some difficulty, 

hut it is not too serious. What we actually need is that the image ~.T/P(E, a) under the 

global Cauchy transform of the space T/p(E, a) of canonical densities (see w consists of 

sufficiently smooth functions. 

It is easy to derive from Theorem 5.2 the following consequence, which at first glance 

seems much stronger. All one needs to do, however, is to apply a couple of translation 

operators, together with Lemma 5.1. 

COROLLARY 5.3 (I~p<+CO). Suppose that the weight w is as in Theorem 5.2, 

and that we have a collection G of elements in LP(R+, w) whose Fourier transforms 

lack common zeros in C_. Then the closure ofT+(| in n~(R+,w) coincides with the 

subspace LP([o~(G), +c~[,w), where c~(| [0, +co[: | +col,w)}. 

6. Translation invariance versus convolution 

invariance in the space LV(R+, W~,p) 

Fix a p, l ~ p < + c o ,  and write p'=p/(p-1) ,  with the usual convention that p '=co  if 

p=l.  The function a: ]0, 1]--~]0, +co[ is continuous, and satisfies (2.1) for l < p < + c o ,  

and the requirements of w for p = l .  The related weight function w~,p on R+, as defined 

in w167 2 and 3, belongs to ~IJ, that is, it is increasing to +co, has a logarithm logw~,p that 

is concave, and satisfies 

logw~,v(t)=o(t), as t ~ + c o .  

Our aim is to show, for closed snbspaces of LP(R+, w~,v), the equivalence of right trans- 

lation invariance and invariance with respect to convolution with the functions e;~, for 

)~EC+, which are defined in the proposition below. We shall see that we can do this 

without making any additional regularity assumption on a. 

PROPOSITION 6.1 (I~p<+CO). For ~EC+, the function 

e (t) = - i  exp(/ t), t e R §  

is an element of LP(R+,w~,p), with norm &(p, ImA)UP, where & is given by (4.5). More- 

over, every function in LP(R+, W~,p) can be approximated in norm by finite linear combi- 

nations of the functions e~, AEC+. Denote the Fourier transform of e~ by E;~. We then 
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have E~ E QP (C_, a) for )~ E C +, and the explicit formula 

-1, zeC_. 

Proof. We noted in w that,  on its interval of definition, &(p,. ) is strictly decreasing, 

and has image contained in ]0, +c~[. It is clear by (4.5) and the definition of the norm 

in LP(R+,wa,p) that  e~ has norm &(p, ImA) 1/~, so we immediately obtain that  e~E 

LP(R+, W~,p) for AEC+. The formula for E~ is obtained by a straightforward calculation. 

We now check the statement on approximation. Suppose that  the functional CE 

LP'(R+, wj,~) annihilates all e~, with )~E C+. Because of the way we defined the resolvent 

transform, this means that  ~r for all )~EC+. But then r  by the uniqueness 

theorem for Laplace transforms. By duality, the functions e~, with AEC+, must span a 

dense subspace of LP(R+, W~,p). [3 

We need an upper estimate for the norm of the translation operator T~ (xER+),  on 

the space LP(R+, W~,p). For p=  1, the translation operator Tx also acts on J~4(R+, w~,l), 

Tx~(E)=~((E-x)MR+), where E - x = { t E R :  t+xEE}. 

PROPOSITION 6.2 ( l~<p<+c~).  For xER+ and fELP(R+,Wa,p), we have the in- 
equality 

(wc,,p(x) ~P [+~176 p dt. fo +~ ITJ(t)IPw~,p(t) p dt <. \ w~,p(O) ] Jo 

For measures ~EA~(R+, W~,l), 

fo fo dlT  l(t) ca ,p(O) o.3o-,1(t) dl l(t). 

Proof. The assertion is an easy consequence of Proposition 4.3, if we note that  

/o+~'Txf(t)'Pwa,p(t)P dt= /o+CC'f(t)'Pwa,p(t+x)P dt. 

This also works for measures, which completes the proof. [] 

Now we set Q~(C_,a)-=~LP(R+,w~,,p). We note that,  for l < p < + c ~ ,  QP(C_,a)  

coincides with QP(C_, a), but that  Q~(C_, a) is a proper closed subspace of QI(C_,  a). 

The statement corresponding to Proposition 6.2 on the Fourier transform side is as 

follows. 
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COROLLARY 6.3 (l~<p<+CO). For xER+ and f EQP(C_,a), the function 

M~f ( z )=e  -i~.f(z), zE C_, 

belongs to QP(C_, a); in fact, we have 

IIM~flIQ.(C_,~) <. ~, . (x)  I lf l lQ,(C ,~,), x �9 R+. ~,p(0) 

(This follows from the identity Mx~g=~T~g.) Moreover, if fEQ01(C_,a), then M x f  

also belongs to Q~(C_, a). 

The above result permits us to estimate the norm of the operator of multiplication 

by E~ on QP(C_, G). 

PROPOSITION 6.4 (l~<p<+oC). For AEC+, multiplication by the function E~ is a 

bounded operator on QP(C_, a), which for p= l preserves Q~( C_ , a), and we have in fact 

IlE~fllQ,(c_,~) ~ oJa,p(0) -1 (~+c~e--tlm;~)a,p(t)dt)IlfllQ.(C_,~) 
W~,p(0)-l(im A)-~/~'&(p, Im A/p)i/p IlfllQ,(C_,~) , f E QP(C_, G). 

Proof. The first inequality is immediate from the identity 

/5 E;~f(z) ---- - i  Mzf (z ) .e  iz~ dx, z E C_, (6.1) 

and the estimate of the norm of Mx obtained in Corollary 6.3; analogous formulas work 

for measures. The second estimate results from an application of H51der's inequality. [] 

We now state the promised result on the equivalence of translation and convolution 

invariance for closed subspa~es. 

PROPOSITION 6.5 (l~<p<+c~). Let G be a collection of elements in Q~(C_,G). 

Denote by J,~(| the closure of the set of all (finite) linear combinations of functions of 

the type M~f  with f E |  and xER+, and by Je(| the closure of the set of finite linear 

combinations of functions of the type Ear, with AEC+ and f e e .  Then Jm( |  

Remark 6.6. If Q P ( C ,  a) is a Banach algebra when supplied with pointwise multi- 

plication of functions, it follows from Proposition 6.1 that Je(G) equals the closure of 

the ideal in Q~(C_, (7) generated by G. 

Proof of Proposition 6.5. Let us first show that Jm(O) is contained in Je(G). Given 

f e e  and xER+, it suffices to approximate M x f  by elements of J~(G). By Corollary 6.3 

3-945205 Acta Mathematica 174. lmprirn~ le 20 janvier 1995 
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and Proposition 6.4, the operator of multiplication by the function MxEi~ is bounded 

for 0 < a .  Moreover, if 0 < a < ~ ,  and F is the line F = { A E C : I m A = � 8 9  oriented from 

the right to the left, the identity 

1 fr i(~-a)e-ix:~ MxSi~(z)-MxEiz(z) = ~ (ia-A)(i~-A) Ex(z) dA, 

where the integral is norm convergent in the space of multipliers on Qp(c_ ,  a) (use 

Proposition 6.4), shows, by approximation with Riemann sums, that  M~Ei~f-M~Ei~f 
belongs to Je(~) .  But if we let ~--++oo, Ei~ tends to 0 as a multiplier, by Proposition 6.4 

and the fact that  &(p,t)-+0 as t -++c~,  so we arrive at the conclusion that  MxEiafE 
J~(~).  We would now be done if we could show that  

I[(iaEia-1) M~fIIQp(C_,(,)-~0 as 0 < a - - ~ + o c .  (6.2) 

We shall in fact prove that  (6.2) holds for g e n e r a l / E Q ~ ( C _ ,  (7), not just members of | 

Since we know M~ is a bounded operator on Q v ( C ,  a) (Corollary 6.3), and a simple 

calulation based on (4.5) reveals that  5(p, x)=O(1/x) as x--*+cc, so that  by Proposi- 

tion 6.4, the multiplier norm of iaEi~ remains bounded as a - * + c c ,  it suffices to obtain 

(6.2) on a dense set of f in QP(C , (7 ) .  By Proposition 6.1, finite linear combinations 

of the functions E~, with AEC+, span a dense subspace of Q0P(C_,(7), so we shall be 

content to check that  (6.2) holds for f of the form f=E~, with AEC+. Since the norm of 

E~ in QP(C, (7) is ~(p, Im A) 1/p (Theorems 2.1 and 3.1, Proposition 6.1), and &(p, t)--+0 

as t -~+oc ,  we have that  

iaEi.(z)E;~(z)-E~(z)= iaAEic~ i,~--: ( z ) -  E~(z) ~ 0 a s  R +  ~ ~ ~ + ~ ,  

in the norm of QB(C_, (7). By applying the operator M~ to both sides, we arrive at (6.2) 

for the function f=E~. 
We now check that J~(| is contained in Jm(| It suffices to show that  for AEC+ 

and f E  G, the function E~f may be approximated with finite linear combinations of Mxf. 
This, however, is possible by relation (6.1), if we use Riemann sums to approximate the 

integral. [] 

7. M u l t i p l i e r s  o n  s p a c e s  o f  d e n s i t i e s  

A C a function %z on C is said to be a multiplier on s (7), provided that  ~OEs (7) 

whenever ~Es (7), and a norm estimate holds: 
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In the special case p=2,  the norm on ~P(E, o) is given by identity (2.5) in terms of the 

modulus of ~, and thus (7.1) holds for all ~ E L ~ ( E ) ;  in fact, L~ is the space of 

multipliers on ~2(E, 0). For other p, no such simple characterization holds. What  one 

would need is a description of the convolution multipliers on LP(R): the space ff.rt(E) of 

multipliers on s (7) would then consist of functions ~(x+iy)  that  for fixed y, 0 < y < l ,  

are Fourier transforms of convolution multipliers on L p (R), with norm uniformly bounded 

in y. On the other hand, we do not really need a complete description of convolution 

multipliers. We make use of the following simple observation. 

LEMMA 7.1. For #EA/t(R), the space of finite complex-valued Borel measures on R,  

and f ELP(R), the convolution 

F ~*f (x)  = f ( x - t )  d~(t), x~  R,  

is in L~(R), and II~*fllL~(R)~<ll~ll~(mllfllL,(m. Moreover, M(R) is a convolution 

algebra, that is, for #, u e M ( R ) ,  # * u e M ( R ) ,  and II#*ulI~(R)~ II#I[~(R)IlUll~(rt) �9 

This result is well known. 

Introduce the space 93I(E) of all functions ~aEL~176 with the following properties: 

for almost all y, 0 < y < l ,  the function qay(x)=qa(x+iy) belongs to the Fourier image of 

A//(R), and y~-%ay is a Borel measurable uniformly bounded mapping ]0, I [ - -~A4(R) ,  

II~ll~(~,) = ess sup{II~yH~(R):  0 < y < 1} < +c~. 

Define the space 9Y~(E) as follows: ~Eg~(E) means that  ~ is a Borel measurable bounded 

function on E, such that  y~---~y is an everywhere defined Borel measurable uniformly 

bounded mapping ]0, 1]--+ ~ 4  (R), 

I[~l[~(~) = sup{ll~yll~r 0 < y ~ 1} < +c~. 

By Lemma 7.1 and the well-known fact that  the Fourier transform turns convolution 

into pointwise multiplication, and vice versa, it is clear that  the functions in 9Yt(E) are 

multipliers on s (~) (for l < p < + o o ) ,  and that  the functions in 9Yt(E) are multipliers 

on ~1(~, a). However, for l < p < + c ~ ,  there are plenty of multipliers on ~P(E, o) which 

do not belong to 93I(E). 

We note that  this way of multiplying elements of 9Yt(E) with densities coincides with 

the usual multiplication of functions, if the density is a sufficiently well-behaved function. 

This follows from Lemma 7.2 below. Define L ~ ( R )  to be the space of all (equivalence 

classes of) Borel measurable complex-valued functions f on R for which 

sup f l  [f(x+t)[ dt < +o0. 
xCR Jo 
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LEMMA 7.2 (l~<p<+oC). If fELP(R) and g e L l ( R ) ,  and the Fourier transform 
~ f  is an element of L I ( R ) ,  then ~ ( f * g ) = ~ f . ~ g E L l ( R ) .  

The proof is an exercise in distribution theory. 

8. Smoothness  properties  of  canonical densities 

and their Cauchy transforms: l < p < + ~  

Throughout this section, l < p < + o c ,  and a: ]0, 1]--*]0, +oc[ is continuous, and satisfies 

(2.1). The weight W~,p is related to a by formula (2.2). We note that  W~,pE~lJ, by 

w In this section we study how smoothness properties of the functions in the spaces 

QP(C_, a) and Z;P(E, a) vary with the weight a. For instance, we want to know when the 

functions in QP(C_, or) extend continuously up to the real line, and when the product of 

two functions in Qp(c_, a) remains in Qp(c_, Cr). 

PROPOSITION 8.1 ( l<p<+oO) .  If the condition 

'o dt 
ta(t)p~ < +c~ 

holds, then the functions in QP(C_, a), initially defined in the open lower half-plane C_, 
extend continuously to the compactified lower half-plane C_ t2{oc}, and assume the value 
0 atoc. 

Note. (a) The above condition may be phrased in terms of w~,p: 

_2/ol 
w~,v(t)P' p' ta(t)P' " 

(b) The condition of the lemma is fulfilled if 1/a p' belongs to ~3sp,, 1 / p ' < s < + c ~  

(notation as in Appendix B). 

Proof. If ~C~P(Z) has compact support in ~, its Cauchy transform extends analyt- 

ically to C t2{cc} with value 0 at e~. For a general t)G2P(E, (r) we have, by inequality 

(2.10), 
( fo  1 dt ~l/p' Ir I] Flcp(z, ) - - p ,  < z e c . 

ta(t) ] 

Approximating ~) in I~P(N,(7) by densities with compact support, we get the desired 

result. [] 

We study when the space of canonical extensions (see w to C of'the functions in 

QB(C_, ~), denoted ~.7-(P(N, a)=~PLP(R+,wo,p), is contained in L~(C)NC(C).  Here, 
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C(C)  is the Fr~chet space of continuous functions on C, with the topology of uniform con- 

vergence on compact subsets. The following lemma explains what properties of 7-/P(E, a) 

we should look for. The functions in the space Lq(E) are tacitly assumed extended to C 

by declaring them equal to 0 on C \ E .  

LEMMA 8.2. Let q satisfy 2 < q < + c ~ .  If hELq(E), then ~,hEL~ and 

there is a constant C(q), 0 < C ( q ) < + c ~ ,  such that 

I]r ~C(q)lihilL~(~), hELq(E). 

Proof. The integral defining r  is 

r = ~ h(() dS(~), z e C ,  

and it is absolutely convergent, because of the estimates (q' is the dual exponent to q: 

1/q+l/q'=l) 

f~ hz(~) dS(r <<. llhllLq(~) ( f~ Iz-r CdS(~) )l/q', 
and 

dS(~) 

The last estimate holds because of symmetry, and because 2 < q < + c ~  is equivalent to 

1 < q ' <  2. This shows that  r  is bounded, and that  the uniform norm estimate holds. 

To see that  r  is continuous, consider a translate Tnr162 of r  where 

7/C C. Computations analogous to those we have performed already show that  Tnr is 

close to r  in L ~ ( C )  if ~ is close to the origin. This demonstrates that  r  is in fact 

uniformly continuous on C. [] 

Recall from Appendix B the definition of the sets ~s ,  with 0 < s < +cx~, of fractional 

integrals of positive Borel measures in ~3. The easiest estimate of the size of canonical 

densities is the following; it shows that  they are bounded provided a-P'E~31+p,. 

PROPOSITION 8.3 ( l < p < + c ~ ) .  If cr-P' belongs to 9~p, for some s, 1/p' <s< +oc, 

we have for f E L p (R+, W~,p) 

I~pf(z) i<ca(Imz)  -r, z E E ,  

where r= (s -  1 -1 /p ' ) / ( s -  lip'), and C-- C(s, a, p, f) is a positive constant. 

Proof. The assertion is immediate from Proposition 4.4 and (2.15), with n=0 .  [] 
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Our next result provides L q norm estimates of canonical densities. For l ~ q ~ + c c  

and r real, the space Lq(E, a r) consists of all (equivalence classes of) Lebesgue area 

measurable functions f on E with the function f ( z ) a ( I m  z) r in Lq(E). The norm of f in 

this space is the Lq(E) norm of f ( z ) a ( i m z )  ~ (in w we multiplied by 21/p to make the 

isometry work). 

PROPOSITION 8.4. Suppose a is such that a -p' belongs to ~3sp, for some s, liPS< 

s< +co, and that q and r are two real numbers, subject to the conditions max{p, pr}< 

q<+c~  and 
1 - 2 / q  

0 ~ < r ~ l  . (8.1) 
s - 1/p' 

We then have the estimate 

[[~P fllLq(~,:) ~ CIIfIIL,(R+,,~,,), f �9 LP(R+,w,,p),  

where C = C (  s, a,p, q, r) is a positive real constant which does not depend on f .  

Proof. We begin by remarking that  with the notation as in w 

~ P f ( x + i y )  =~[f ,p](x+iy) ,  x + i y � 9  

where 

g[f ,p](t+iy) = -ie-typ'/P f(t)w~,p(t)P'/a(y) 6 ,  t + i y  e E; 

recall that  the tilde stands for taking the Fourier transform in the variable t. An appli- 

cation of the Hausdorff-Young theorem [28, p. 178] shows that  (2<q) 

l]~P f ( '+ iY) l l iq (R)  = H~g[f,P]('+iy)iliq(R) <. (2~r)l/qtIg[f,P]('+iY)Nir 

where q~ is the dual exponent to q: 1 / q + l / q t = l .  By applying HSlder's inequality (with 

three factors), we get 

,. ( :  ) e-tyq'P'/Plf ( t )l q' W~,p ( t ) v'q' dt xq/q' o(y)rq]~P f(x +iy)l q dx <~ a(y)qP'-"q 

~q/p--I , , xq/p'--I 

<~ a(y)qp,_.q 

~0 O0 I # • e -typ [f(t)lPw~,p(t) p+p dt (8.2) 

q-P ~ y ) q / p ' - l a ( y ) p ' + r q - q P '  
= 2~ f Lv(I:t+ wa,p) (p, R ,  

x e -typ f ( t )  va~,,p(t)P+P a(y)  -p  dt, 
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where R=(1 /p -1 /q ) / (1 /p ' - l / q ) ,  and ~ is as in (4.5). Proposition 4.5 supplies us with 

an estimate of ~, so that (8.2) condenses to 

/ ~ o'(y)rql~P f(x+iy)l  q dx 
o ~  

(8 .3)  
P 

<~ q-P Jo e-tYP f(t) Pw~,p(t) p+p a(y) -p dt, c U I G ( R + , ~ o , p )  ~ ( y ) a  ~ ' 

where C=C(s,  a,p, q) is a positive constant, and 

( A = q  r - l q  s - 1 / p ' ]  ~<0, 

by assumption (8.1). Since a-P'Cq38p, C~1, a is decreasing, and the exponent A is ~<0, 

a(y) A ~<a(1) A, so that if we introduce another constant, 

c = 1 C ( s ,  ~ , p ,  q ) o 0 )  A, 

we may therefore obtain from (8.3) the simpler estimate 

/_ ~ ~r(y)rql~P f(x+iy)l  q dx 
(8 .4)  

I l f l l~-~R§ .... .) .2 - t  ' - ' ~< C p e up I f ( t )  Pw~,p(t) p+p a(y)  P dt, 

On integrating (8.4) with respect to the y variable, we get 

f a(Im z)'ql~Pf(z)l q dS(z) 

~< CII f l I~R§ . . . .  ~)-2 e -  up If(t)lpa&,p(t)p+p (r(y)-p dtdy 

q 
= CIIflIL~(R§ 

The proof is complete. [] 

In view of Lemma 8.2, Proposition 8.4 has the following corollary. 

COROLLARY 8.5 ( l < p < + o c ) .  Suppose t ha t  (3r--P'E~3sp, with max{1/p, 2 -3 /p}<s .  
We then have ~,7-/P(E, a)cL~(C)NC(C) ,  and 

II;F.fllL~(C) ~< CIIfllL~(R+,~,p), f e LP(R+,w~,,p), 

holds for some constant C=C(s,a,p) ,  0 < C < + c ~ .  

Proof. Pick q>max{p,p'} very close to max{p,p'}. Proposition 8.4 (with r=0)  

then asserts that ~PLP(R+, oda,p)C Lq(E). In terms of norms, we have the corresponding 

inequality 

II~PflIL~(~) <~ CIIflIL~(R+ .... .), f EL~(R+,w~,p), 
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for some constant C- -C(s ,  a, p, q), 0 < C < +c~. The assertion of the corollary now follows 

from Lemma 8.2. [] 

Recall the definition of the space 9Tt(E) in w The next result follows from Corol- 

lary 8.5 and Proposition 2.9. 

COROLLARY 8.6 ( l < p < + c o ) .  Suppose that o'-P'E~SB, with max{l /p ,  2-3 /p}<s .  

Then the restriction of ~P.f to E is in 9~(E) for fELP(R+,wa,p), and 

l]~.Pf]l~(~) ~< CI[fIIL~(R+,~,~), f E LP(R+,W~,p), 

for some constant C=C(s, a,p), 0 < C < + o c .  

To handle multiplicative properties of the spaces QP(C_, 6), we need to know when 

Leibniz' rule applies in the sense of distribution theory. 

LEMMA 8.7. Let ~ be a domain in the complex plane, and let f ,  g E C ( ~ )  be functions 

whose 0 derivatives, Of and Og, taken in the sense of distribution theory, belong to 

Lloc(~). Then fog and gOf are also in Lloc(~), and Leibniz' formula holds: 0 ( f g ) =  

fOg+gOf. Both sides of this identity are to be interpreted in the sense of distribution 

theory. 

Proof. Smooth up f and g by convolving them with a C ~ approximate convolution 

identity. Then apply Leibniz' rule to the smoothed up functions, and make an appropriate 

passage to the limit. Interpreted in the sense of distribution theory, this yields the 

result. [] 

We now deal with the multiplicative properties of the spaces QP(C_, a). 

PROPOSITION 8.8 ( l < p < + C o ) .  Suppose that a--P'E~sp, with max{l /p ,  2-3 /p}<s .  

Then if f ,  g e QP (C_, a), we have fg  E QP (C_, a), and moreover, there exists a constant 

C=C(s,a,p),  0 < C < + c o ,  such that 

II/gllqp(c_, ) CII/llQp(C_, )IlgllQ (C_, ) �9 

It follows that QP(C_, a) is a commutative Banach algebra under pointwise multiplication 

of functions. 

Note. We consider the more general definition of a Banach algebra with the norm 

of a product bounded by a constant times the norms of the factors. 

Proof. By Theorem 2.1, we can find functions ~,r with ~ - - f  and 

~r  which have the same norms as f and g in Q P ( C ,  a), respectively. The functions 
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f .=~'P~ and g.--~P.r then provide extensions to the whole complex plane of the func- 

tions f and g (see w which are bounded and continuous (Corollary 8.5), and satisfy 

Of.=~PqpEP.P(E, a) and 0g.=~PCEgP(E,a) .  By Proposition 8.4, 0f .  and 0g. belong 

to Lq(E) for some qE]2,+e~[. By Lemma 8.7 (with f~=C), O(f.g.)=f.Og.+g.Of., and 

consequently, ah(f.g.)Es in view of Corollary 8.6. An application of Proposi- 

tion 2.7 shows that fg is in QP(C_, a), and it is easy to verify that the claimed norm 

inequality holds. [] 

If we recall the well-known fact that the Fourier transform turns convolution into 

ordinary pointwise multiplication of functions, Proposition 8.8 has the following conse- 

quence, in view of Theorem 2.1. 

pt 
COROLLARY 8.9 (l<p<+OC). Suppose a- E~3~p, with max{1/p, 2 -3 /p}<s .  Then 

if f, gELP(R+, Wo,p), we have f *gELP(R+, W,,p), and moreover, there exists a constant 
C=C(s,~r,p), 0<C<+o% such that 

Remark 8.10. It is possible to arrive at the conclusion of Corollary 8.8 in a more 

elementary way, as we shall see. By Proposition 4.2, the assumption a-P'Eq3~p,, for 

some s, 0<s<+oc ,  entails that there exists a weight ~ in ms with ~;~W~,p. 

Claim. For 1/p~<s<+oz, there is a constant C, 0<C<+oo ,  such that 

xeR+. 

To this end, note that ~(t)=(l+t)8~(t),  where ~ E ~ ,  so that what needs to be checked 

is 
fo x (l+x)SP'ws(x)P' dt 

(l+x_t)~p,(l+t)~p,~(x_t)p,~(t)p, <~C, xER+.  

By Proposition 4.3, ~ (0)~ (x)~<~ ( x - t ) ~  (t), and consequently, it is sufficient to verify 

that 

fo x (l+x) ~p'dt 
(l+x_t)~P,(l+t)8 p, <. C, xER+,  

if we change the value of the constant C by multiplying it with ~(0) p' . This is very easy 

to check, if we use that 1/pr<s<+oc; notice the symmetry of the integrand, and split 
1 the integral at the middle point ~x. [] 

Since w~,p• the assertion of Corollary 8.9 follows from the above claim and the 

following lemma. 
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i i 1" i 

LEMMA 8.11 (1<p<+r Ira weight function w on R+ satisfies (w -p *w -p ) /p <~ 
Cw -1 on R+, then 

IIf*gIIL~(R+,~) <~ C IIflIL~(R+,~)tlglIL~(R+,~), f, g c LP(R+, w). 

Proof. By HSlder's inequality, 

fo +~ f+~] f ~ f ( y ) g ( x - y ) d y  p  dx=9/o Jo  (xl dx 

f0+= (ff dy )P/P' .< ~ ( x F  , .p, . ,p, 
w(y) w ( x - y )  

• (~o x , f (y) ,P,g(x-y) ,Pw(y)Pw(x-y)Pdy)dx 

f+oc f z  
<<" C~Jo ]o If(Y)I~"~(YFIg(x-YlIP~(x-Y)P dy dx 
= C P l I f l I ~ , ( R + , ~ )  P HgflL~(s+,~) ,  

as claimed. [] 

Remark 8.12. By Proposition 4.2 and Lemma 8.11, the assertion of Proposition 8.8 

actually holds for all s, 1/p'<s<+~c. The point with the approach chosen here is that 

with the excessive regularity condition, we know that the reason why QP(C_,a) is a 

Banach algebra is that the canonical extensions to C of the functions in QP(C_, a) are 

sufficiently smooth. 

We need to identify the maximal ideal space of the algebra QP(C_, a); however, since 

this algebra lacks a unit, it is preferable to consider instead the unitization QP(C_, a) of 

QP(C ,a). 

PROPOSITION 8.13 ( l<p<+c~) .  Suppose a-P'E~Jsp, for some s, 1/p' <s< +oc, so 

that Q P ( C , a )  is a Banach algebra. Then the maximal ideal space of the unitization 
QP(C_,a) of QP(C_,a) coincides with C_U{co}, in the sense that every nontrivial 

complex homomorphism T: QP(C_, a)--*C has the form 

~(f) = f(zo), f E Q~(C_, ~), 

for some ZoEC_U{c~}. 

Proof sketch. Check first that a nontrivial complex homomorphism is a point eval- 

uation on the functions Ex, AcC+. Then use Proposition 6.1 to show that it is a point 

evaluation on all functions. [] 
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Remark 8.14. Some condition on c~ is needed to ensure that  QP(C_, a) is a Banach 

algebra. To illustrate this point, take a ( t ) - 1 ,  so that  Q2(C_, a) becomes the Dirichlet 

space, which contains unbounded functions, and hence is no Banach algebra, yet a -2 is 

in ~ 2 s  for all s, 0 < s < 1. 

9. M o r e  o n  s m o o t h n e s s  p r o p e r t i e s  

The parameter p has l~<p<+c~ (p' is the dual exponent), and W~,p and a are as in w167 2 

and 3. 

As in w we study canonical densities, that  is, elements of 

7-lP(E, a) = ~P LP(R+ , W~,p), 

and their global Cauchy transforms. This time we want to get more smoothness than 

that  which is needed to have a Banach algebra structure. 

PROPOSITION 9.1 ( l < p < + c ~ ) .  Suppose a -p' is in q3sp, for some s, 1/p' <s< +oc. 

Fix Oo and 01, O o = l - ( s - 1 / p ' )  -1, 0 1 = l - 2 ( s - 1 / p ' )  -1. Then the estimates 

II~PfIIL~(E,~o> < CIIflIL~(R+,~o,~), 
IlOx~P fllL~(~,~ol) <<. CI[flIL~(R+,~o,~), 

hold, for some positive real constant C = C ( s ,  a,p). 

Proof. The assertion of the proposition follows from (2.15) and Proposition 4.4. [] 

For f ELl(R+,wa,1),  we identify the function with the corresponding absolutely 

continuous measure, and thus write ~ l f  for the density associated with the measure 

f ( t )  dt, 

1 
~ l  f ( x  +iy) = ~ exp(yt~(y) ) e x p ( - i t ~ ( y ) x ) f  oto(y)lt~(y)l , x + iy E ~. 

By (3.3), this may also be written as 

~ l  f ( x  q_iy ) _ W~,l (ta(y) ) 2ia(y) exp(-it~,(y)x)fot~(y)[t'(y)l, x+iycE.  

For p = l ,  the following result is helpful. 

The analog of Proposition 9.1 for p = l  is obtained through an argument slightly 

different from what was used for l < p < + c ~ .  The space L~(R+,w~,I )  is needed, which 

consists of all Lebesgue measurable functions f on R+, subject to the norm condition 

IIflIL~(R+,~,I) = ass sup{w~,x(t)lf(t)l: t E R+} < +c~. 
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PROPOSITION 9.2 (p=l ) .  Suppose Oda, l E ~  s for some s with 0 < s < + o o .  Then, 

with 0o=1-2 / s  and 01=1-3 / s ,  the following estimates hold, for fELI(R+,wa,1)M 

L~(R+,wo,1), 

II~a fllL~(~,~Oo) ~ CIIflIL~(R§ .... ~), 

I l a ~ i  fllL~(~,~o~ ) ~ CIIflIL~(R+ .... 1), 

where C=C(s,  a) is a positive real constant. 

Proof. Note first that by the definition of the density ~ l f ,  we have for integers 

n=0, 1, 2, ..., 

so that 

on~l  f ( x  +iy) = (--ita(y) )n~l  f ( x  +iy) 

(--i)n %t~" "w~ l -- ~ ] (y) , ot~(y) exp(-ixt~(y))to(y)nlt'(y)[, 

t~ .... 1), x+ iyE  E, I~ 2o(y) 

at least almost everywhere. The assertion now follows from Lemma 4.6. [] 

LEMMA 9.3 (p=l ) .  For each fELI(R+,w~,I),  the restriction to E of ~l.f is in 

93t(E); in fact, II~.PflI~(~) ~< IIflILI(R+ .... 1)" 

Proof. This follows from Proposition 3.5. [] 

As in w the space Qol(C , a) is the Fourier image of LI(R+, w~,l), which is a proper 

closed subspace of Q I ( C ,  a). 

PROPOSITION 9.4 (p----1). When equipped with pointwise multiplication of functions, 

the space QI(C_,a)  is a commutative Banach algebra with unit, and Ql(C_,cr) is a 

closed ideal in it. 

Proof. The space A4(R+,w~,I) is a convolution algebra, because W~,l is sub- 

multiplicative, by Proposition 4.3. Moreover, LI(R+,w~,I) is the closed ideal of all 

absolutely continuous measures in fl4(R+,w~,l). The result follows by taking Fourier 

transforms. [] 

Remark 9.5. It is possible to obtain the assertion that Q~(C_, a) is a Banach algebra 

by working with canonical extensions, as in w 

We identify the unitization Q1 (C_, a) of QI(C_, a) with the subalgebra of QI (C_, a) 

generated by Q I ( C ,  a) and the constant functions. 



C O M P L E T E N E S S  OF T R A N S L A T E S  IN W E I G H T E D  SPACES ON T H E  H A L F - L I N E  45 

PROPOSITION 9.6 ( p = l ) .  In the sense of point evaluations, the closed lower half- 

plane C_ is an open subset of the maximal ideal space of QI(C ,a) .  Moreover, in the 

same sense, the maximal ideal space of Q I ( C ,  a) is C_ u{oo}. 

This result is well known. 

10. H o l o m o r p h i c  c o n t i n u a t i o n  o f  t h e  r e s o l v e n t  t r a n s f o r m  

Let p be in the interval l~<p<+oc,  p~ be the dual exponent to p, and W~,p be related to 

cr as in w167 2 and 3 for appropriate weights a. 

The resolvent transform of an element r of the dual space to LP(R+, W~,p), identified 

with the weighted space LP'(R+, w~,~) on R+, was introduced back in w167 2 and 3 (relations 

(2.21) and (3.11)): 

9~r = - i  exp(itA)r a c e §  (10.1) 

The function 9~r defined by relation (10.1) is analytic on the upper half-plane C+, and 

by the uniqueness theorem for the Fourier transform, it vanishes identically if and only 

if r  The idea to use such a transform to gather information about the structure of 

closed ideals in a Banaeh algebra goes back to Arne Beurling, Torsten Carleman, and 

Izrail Gel'land [13]; as far as we know, Gel'fand has the earliest paper using this method, 

and he also has, in a simple special case, the elegant way of getting the analytic con- 

tinuation which was later rediscovered by Yngve Domar [8]. Beurling's and Carleman's 

contributions have been more influential, and what we refer to here as the resolvent 

transform is frequently called the Carleman transform in other research papers. 

In terms of the bilinear form 

we may rewrite (10.1) as 

(f, g) = t)g(t) dt, 

!Re(A) : (e~,r A e C+, (10.2) 

with e~ as in Proposition 6.1: 

e~(t)----iexp(iAt),  t E R+. 

For l < p < + c c ,  the Fourier transform maps LP(R+, ~ , p )  isometrically onto QP(C_, a), 

by Theorem 2.1. As a consequence, the functional r on LP(R+,w~,p) corresponds to 
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a bounded linear functional r on QP(C_, a), and in terms of bilinear forms, we write 

(~f, r r We may thus write (10.2) as 

9~r (E~, r )~ E C+, (10.3) 

where E:,(z)--~e~(z)=()~-z) -1, as in Proposition 6.1. For p--1, the Fourier transform 

maps A4(R+, w~,l) isometrically onto Q1 (C_, a), by Theorem 3.1. Extend the functional 

r to all of A4(R+, wo,1) by declaring (~, r  for measures ~ that are singular to the linear 

Lebesgue measure. This extended r then corresponds to a bounded linear functional 

on QI(C_, ~) via ( ~ ,  ~)= (~, r and (10.3) holds for p= 1 as well. We intend to study 

resolvent transforms ffr162 of mean-periodic functions r that is, functions in the annihilator 

of a non-zero, closed, right translation invariant subspace of LP(R+, W~,p). In particular, 

we investigate the possibility of holomorphically extending 9~r across parts of the real 

axis. The purpose is to show that under certain conditions, 9~r is an entire function; 

we shall later show that 9~r which by the uniqueness theorem for the Laplace 

transform implies that r 

Consider a closed, right translation invariant, nonzero subspace I of LP(R+, Wa,p), 

other than the zero subspace {0}, and assume that CELP'(R+,w~, 1) annihilates I. In 

other words, J = ~ ( / )  is a closed (nontrivial) subspace of QP(C_, a), invariant under the 

operators Mx, xER+, which were introduced in Corollary 6.3. It is a consequence of 

Proposition 6.5 that J is then also invariant under multiplication by the functions E~, 

for AEC+. Introduce, for every AEC, the function 

A:~(z) =l+()~-i)Ei(z)= . , zEC_, 
Z - - Z  

and note that it is clear from this formula and Proposition 6.4 that Ax is a multiplier on 

QP(C_, a), which for p-- 1 preserves Q~(C_, a), for every :~ E C. Again by Proposition 6.4, 

A~ is invertible as a multiplier provided that AcC+, if we use the identity 

A~(z)_l= i - z  )~_z=l-()~-i)E),(z), zEC_.  

Now, E:~=A~IEi for AEC+, so that relation (10.3) may be written as 

9~r (A;1Ei,r A E C+. (10.4) 

Since we know J is invariant under multiplication by the function Ei, it makes sense to 

consider the operator A~[J]: QB(C_, a)/J---*Qp(C_, a)/J, as given by 

A:~[J](f+J)=A~f+J, fEQP(C_,a). 
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The condition that  r annihilates I is equivalent to the requirement that  q~ annihilates J,  

which permits us to think of r as acting on the quotient space QP(C_, a)/J. We are now 

in a position to extend the definition of the resolvent transform via the formula 

91r = (Ax[J]- I (Ei+J) , r  f~(J), (10.5) 

where f~(J) denotes the invertibility domain for A~ [J], that is, the set of ),C C for which 

the operator Ax [J] is invertible. 

PROPOSITION 10.1 ( l~<p<+oc).  The set ft(J) is open, and it contains C+. 

Proof. Since Aa itself is invertible as multiplier on QP(C_, a) for AEC+, it is evident 

that  f~(J) contains C+. We proceed to show that  Ft(J) is open. To this end, suppose 

AoCf~(J), so that  A~o[J] -1 exists. We shall show that  there exists an e, 0<e,  such that  

if ~EC has I~-~0I<e ,  then hEf t (J ) .  Let Ei[J] denote the operator QP(C_,a)/J--* 
Q p ( C ,  a)/J  that  multiplies the cosets by Ei. Then, if 

e. IIA~ ~ [ j ] - I  II-II E.~ [ J] II < 1, 

we have the identity 

A~ [J]-I = A~ ~ [ j ] - i  ~-~,(~0 - ~)'~(A~0 [J]-lEi[J])n, (10.6) 
n = 0  

for I~-~0I<~,  which does it. [] 

Remark 10.2. It is clear from (10.6) that  the function 9lr given by (10.5), is holo- 

morphic on ~t(J). 

The following lemma explains what we need to check to know whether a point is 

in ft(J) .  

LEMMA 10.3 (l~<p<+oe).  A point ,~EC belongs to f~(J) if and only if 
(a) A;~QP(C , a)+ J=Qp(C_, or), and 

(b) if fEQP(C ,a), and A~ fcJ ,  then fEJ .  

Proof. By the definition of the set f~(J), the point ~ belongs to it if and only if 

Aa[J] is invertible, which means that it is one-to-one and onto. The assumption (a) 

of the lemma is exactly the condition that  A~[J] be onto, and (b) means that Aa[J] is 

one-to-one. [] 

For p = l ,  consider the set fro(J) of all .~cC for which Aa,o[J], the restriction of 

A:~[J] to Q~(C_, a)/J, is invertible Q~(C_, cr)/J~Q~(C_, cr)/J. 
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LEMMA 10.4 (p=l ) .  The space QI(C_,o') is a commutative Banach algebra with 

unit under pointwise multiplication of functions, and QI(C_, a) is a closed ideal in it. 

Thus, the operators A~[J] and A~,0[J] are invertible simultaneously, that is, f ] ( J )=  

f~o(J). 

Proof. That Q I ( C ,  a) is a commutative Banach algebra with unit follows immedi- 

ately from the fact that Ad(R+, w~,l) is a commutative convolution Banach algebra with 

unit, which is verified using the essential submultiplicativity of W~,l stated in Proposi- 

tion 4.3. Hence QI(C_, a) / J  is a quotient Banach algebra. 

Suppose A~[J] is invertible; then multiplication by A x + J  maps Q I ( C _ , a ) / J  

onto QI(C_,a) /J ,  which is only possible if A x + J  is invertible in QI(C_,a) /J .  Since 

Ql (C_ ,a )  is a closed ideal in Ql(C_,a) ,  and J is contained in it, multiplication by 

(d~+J)  -1 on Q~(C_, a) /g  is the inverse of da,0[g]. 

On the other hand, suppose A~,0[J] is invertible. Then the image of Q~(C_, cr)/J 

under the operator Aa [g] is all of Qol (C_, a)/g,  and since A~[J](1 +Y)=A~ + J  belongs 

to the unitization Q~,e(C_,a)/g of Q~(C_,a) / J ,  but not to Q~(C_,a) /J  itself, the 

image of Q~,r , a) / J  under the multiplication by A~ + J  is all of QI,~(C_, cr)/J. Then 

A ~ + J  is invertible in Q~,~(C_, a)/J ,  and thus in the larger algebra QI(C_, a)/J .  This 

supplies the inverse to A~ [J]. [] 

In view of Lemma 10.3, we define f~'(J), the weak invertibility domain for A~[J], as 

consisting of all points AEC for which 

AAQP(C_, a ) + J  = QP(C_, a). (10.7) 

Then clearly f2(J) is a subset of f~'(J). To better understand this definition, we need the 

following result, which is of independent interest. 

PROPOSITION 10.5 ( l < p < + o o ) .  For AEC+, we have A)~Q.P(C_,cr)=QP(C_,cr), 

and for A �9 C_, 

A~QP(C , a ) = { f � 9  

For hER,  we have either that A;~QP(C , or) is dense in QP(C_, a), which happens when 

os dt to(t)P' -- +oo, (10.8) 

or that its closure coincides with 

which occurs in case 

{ f � 9  ,cr) : f (A)=0},  

fo 1 dt ta(t)p--------7 < +c~. (10.9) 
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Proof. Since A~ is an invertible multiplier on QP(C_, a) for AEC+, we immediately 

have A~QP(C_,a)=QP(C_,c~). So, let AE(2_. Since A~ vanishes at the point A, we 

clearly have that  A~QP(C_, a) is contained in the subspace of all functions in QP(C_, a) 

that  vanish at )~. To obtain the reverse inclusion, we argue as follows. Note that  IA~(z)l 

is bounded away from 0 off a neighborhood of )~, and bounded away from +co off a 

neighborhood of i. Suppose fEQP(C_,a) has f(Jk)=O. In view of the results in w 

there exists a canonical extension f . E ~ . s  a) to the whole complex plane of the 

function f ,  and by Proposition 2.7, it satisfies f .  E L I ( C )  and Of. EgP(E,a). Since 

f()~)--0, the function g=f./A~ is holomorphic off the closure of E, and it also belongs 

~.gP(E,  a), because g E L S ( C ) ,  and Og=Of./A~Es a) (use Proposition 2.7). 

We finally turn to the case )~ER. Simple algebra shows that  the function 

N~f(z) = f(z)-f()QZ,(z)/E,(A), z E C_, 

belongs to A~QP(C_,a) for all f in QP(C_,a)  that  are finite linear combinations of 

the functions E~, with AEC+. If condition (10.9) is fulfilled, then by Proposition 8.1, 

point evaluation at )~ is a bounded linear functional, so that  an approximation argument 

based on Proposition 6.1 proves that  N~f is in the closure of A~QP(C_, a), for every f E  

QP(C_, a). But it is easy to see that  N~QP(C_, a) consists of all functions in QP(C_, a) 
that  vanish at )~. 

If )~ER, but (10.8) holds, we adopt a different modus operandi, based on duality. Let 

r247 be such that  the associated bounded linear functional r on QP(C_, a) 

annihilates A~QP(C_, a). If we can show that  this r must equal 0, then the claim that  

A~QP(C_, a) is dense in QP(C_, a) follows immediately. The resolvent transform of r 

is given by the formula 9~r162162 for (EC+.  Since r is assumed to annihilate 

A~QP(C_, a), we have (A~Er ~b)=O for (EC+,  and in view of the identity 

A - i  Er162 -~E i ( z ) ,  z E C_, 

we can now assert that  

)~-i ^ A - i  9~b(~) = (Er162 = ~ - ~ ( E i , r  = ~--~9~r ( E  (2+. 

By the uniqueness theorem for the Fourier (or Laplace) transform, this entails that  as 

an element of LP'(R+, w~,~p), 

its norm is 

r = (i-)~)9~r t E R+; 

IIr ----IA-iI'Ig~r w~,,p(t)p' 
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which is finite only if ~Rr by the note right after Proposition 8.1. Thus 9~r 

so that r  The proof is complete. [] 

The details of the proofs of the following two propositions are left to the interested 

reader. The results are of value when one tries to work with weights ~ for which QP(C_, 0) 

is not a Banach algebra. 

PROPOSITION 10.6 ( l<p<+Cr The weak invertibility domain ~'(J) is open. 

Moreover, we have the relation C_ M 12' ( J) = C_ \ Z ( J, C_ ), where 

Z(J, C_) = {z E C_: f (z)  = 0 for all f E J}. 

Proof sketch. To see that ~ ' (J )  is open, one expresses (10.7) in terms of the adjoint 

operator to A~[J]. For the proof of the identity C_Mfl ' (J )=C_\Z(J ,C_) ,  appeal to 

Proposition 10.5. [] 

PROPOSITION 10.7 ( l<p<+c~) .  If  the set RMf~'(J) zs nonempty, we have ~ ( J ) =  

~2'( J). 

Proof sketch. As in the proof of Proposition 10.6, work with the adjoint operator 

to A~[J]. Standard operator theory arguments then show that each boundary point of 

f~(J) on the real line R must also be a boundary point of f~'(J), whence the assertion 

follows. [] 

At this point, it is helpful to assume that QP(C_, a) has a Banach algebra structure, 

in order to identify f~(J) and f~'(J). 

PROPOSITION 10.8 ( l~<p<+~) .  Suppose either p = l ,  or a-P'E~3sp, for some s, 

1/pP < s, so that QP( C , a) is a commutative Banach algebra under pointwise multiplica- 

tion of functions. The weak invertibility domain ~l( j )  and the invertibility domain f~( J) 

for A~[J] coincide, and equal f~'(J)=f~(J)=C\Z(J,  C_), where 

Z(J, C_) = {z E C-,_ : f (z)  = 0 for all f E J}. 

Proof. We first consider l<p<+c~ ,  assuming only that (10.9) holds, which ensures 

the boundedness of point evaluations on the real line (Proposition 8.1), so that the 

definition of Z(J, C_) makes sense. By Proposition 10.6, all we need to check is that 

RM~'(J)  =RMf~(J )=R\  Z(J, C_). Given the elementary property of bounded holomor- 

phic functions on C_, continuous in the closed lower half-plane C_, that they either van- 

ish identically, or vanish on the real line at most on a closed set having one-dimensional 

Lebesgue measure 0, Proposition 10.7 shows that we in fact only need to check that 

RMfl'(J) = R \  Z(J, C_ ). 
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If )~ERMZ(J, C ) ,  then (10.7) cannot hold, because the functions on the left hand 

side all vanish at A, whereas this is not so for the functions on the right hand side. This 

shows the inclusion RMfY(J)cR\Z(J, C_). 
To obtain the reverse inclusion, suppose )~ER\Z(J, C_). We note that  by Proposi- 

tion 10.5, A~QP(C_, a) is dense in the subspace with codimension 1 in QP(C_, a) con- 

sisting of all functions vanishing at A, so that  since J contains a function that  assumes 

a non-zero value at )~, we must have that  A~QP(C_,a)+J is dense in QP(C_,a). 
We now make use of the powerful Banach algebra assumption, for general p. The 

maximal ideal space of QP(C_,a)  was identified in Propositions 8.13 and 9.6. The 

maximal ideal space of QP(C_, a)/g is then (canonically) identifiable with Z(J, (2_)U 

{oc}, and the operator A~[J] is identified with multiplication with the element A~+J 
in the space QP(C_, a)/J. One checks that  A~+J is invertible in Q P ( C _ , a ) / J  if and 

only if A c C \ Z ( J ,  C_), by verifying that  this is precisely when the Gelfand transform 

of A~+J lacks zeros. However, A~[J] is invertible if and only if A~+J is invertible in 
QP(C ,a)/J. [] 

11. The quick est imate  of  the resolvent transform 

We continue our discussion from w with a particular interest in obtaining size estimates 

of the resolvent transform 9~r The function CELP'(R+, w~,~) of course remains in the 

annihilator of I,  and thus the associated functional r remains in the annihilator of J.  

By Proposition 6.1, we have the estimate 

liRr ~< C(r ImA) 1/p, A E C+, (11.1) 

where C(r162 This only estimates 9~r in the upper half-plane, but as 

we know, this function has a holomorphic continuation to the invertibility domain f~(J) 

(Remark 10.2), since r annihilates J.  We assume in the sequel that  the weak invertibility 

domain fY(J) has the property that  fY(J)MR is nonempty, which, by Proposition 10.7, 

ensures that  ~(J)=~'(J). Proposition 10.6 (and Proposition 10.8 for p- - l )  informs 

us that  in our situation we have ~(J)MC_=C_\Z(J,C_). We would like to have an 

estimate of the size of ff~r in C_ \ Z(J, C_). To this end, we introduce, given a function 

f E QP( C_,a), its backward shift with respect to the point ~, AEC_, 

S f(z)- f(A)-f(z) ' z e C _ \ { @  

and we note that  A is a removable singularity of this holomorphic function. One in- 

teresting observation about S~f is that  it automatically belongs to QP(C_,a), for the 
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following reason. If f .  EE.7-/P(Z, a) (?-/P(E, a) is the subspace of s a) of canonical 

densities) is the canonical extension of the function f to the complex plane, then the 

function 

SAf.(z)-  f .(A)-f .(z) A-z , zeC_\{A}, 

is an extension of S~f, which belongs to L1((3) ( f .  does, see Propositions 2.7 and 3.3), 

and its c5 derivative is 

~s~f.(z)- Of.(z) zeC_\{A}, 
A-z ' 

which clearly is in s a), because Of. is, and the function ( A - z )  - 1  is  an element of 

the multiplier space ff~(E). Moreover, we have the norm control 

II,Of. I1~(~.,,~)- Ilfllo,,(c_,~) 
limA[ limA[ 

Propositions 2.7 and 3.3, together with the definition of the norm in QP(C_,a) ,  now 

assert that  

IIfrIQp(C_,~) (11.2) 

from which it is immediate that  S~f is in Qp(c_ , a ) .  Let Z(f, (3)  denote the zero set 

of the function f in ( 3 .  It is now claimed that  for fEJ  and AEC_ \Z(f,  C_), 

Sxf + A ~ [ J I - I ( E i + J ) = ~  J (11.3) 

holds. We know that  A~ [J] is invertible, because A 6 f~(J), so it would be sufficient just to 

check that  A~S~f/f(A)-EiEJ. But this is obviously true, by Proposition 6.5, because 

A~(z)S~f(z) Ei(z)f(z) 
f(A) -Ei(z) f(A) ' zEC_. 

If we combine identity (11.3) with norm estimate (11.2) and the definition (10.5) of 9~r 

we are left with the estimate 

c(r 
[~r If(A)l.llmAl' AcC_\Z(f,C_), (11.4) 

where C(r f )  = ]] r Lp'(R+,~;.~) I] f ]I Qp(o_ ,~), and f E J is arbitrary. 
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12. The holomorphization process:  p----2 

In this section we provide (for p=2) the tool which enables us to prove the Main Theorem 

without resorting to the log-log theorem, which permits us to work with quasianalytic 

weights. 

We proceed as in [5] to obtain more information about the resolvent transform ~Rr 

of CEL2(R+,a~,I), which is an element perpendicular to the closed right translation 

invariant subspace I, I~{0}.  We recall that J stands for the Fourier image ~(I) of I. 
1 At this point, it is convenient to make the assumption that a - 2 C ~ 2 s  for some s, ~ < 

s<+cc ,  so that the Fourier image of L2(R+,w~,2), Q2(C_, a), will be a Banach algebra 

(Corollary 8.8), and (Proposition 10.8 and Remark 10.2) 9~r is holomorphic on ft(J)--  

C \ Z ( J ,  C_). 

Let f be a function in J which does not vanish identically, and let f .  denote the 

canonical extension of f to C, which is an element of the space ~.7-/2(Z, a) (see w By 

Proposition 2.7, c~f. ET-/2(Z, a), and f.=~,Of., and according to Corollary 8.5, we also 

have f .  eL~(C)nC(C),  because of the assumption made on a. 

Let q and r be real numbers such that 2<q, 0<r ,  and (8.1) holds (just choose q 

sufficiently close to 2 to ensure that the right hand side of (8.1) is (strictly) positive). 

Proposition 8.4 then tells us that 0f.eLq(Z, a r) (because cgf. is a canonical density), 

and that 

]]c~f. IiLq(S,a~) < C(s, a, q, r)]Jfilq2(o _,a). (12.1) 

Now, let T:C--*[0,-{-cc[ be defined by T(z)=a(Imz) -1 for zEZ, and by 7(z)=O for 

z E C \ Z .  For AEC and TEl0, +cc[, D(A,T) denotes the open disk centered at AEC with 

radius ~; we agree that D(A, 0 ) = 0  and D(A, +cc )=C .  Given a real parameter e, 0<~, 

and a point AcC, let T(A,~; f . )  be the largest number ~, 0~q,~<-{-~, with the property 

that 

If.(z)[ ~>max{r(z)r,e}, zED(A,-~), (12.2) 

holds. In the sequel, we shall assume that we have picked a point A for which 0< 

~(A, s; f .) .  Denote by X~ the characteristic function of D(A, q,(A, s; f .)) ,  and consider the 

function 

F ~ ( z l = - x ~ ( z ) ~  ), z e C ,  

where we treat the right hand side as identically 0 off the disk D(A, V(A, c; f.)).  Since 

0<E<if . ]  on D(A,'7(A,s; f . ))  by (12.2), and cgf.es a), we have that F~ vanishes on 

C \ E ,  and also that F~es  If we use (12.2) and the properties of T, we get 

IF~, (z)l q dS(z) <~ ~ IOf.(z)l%r(Imz) rq dS(z), 
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so that if we invoke (12.1), we arrive at 

HF~IILq(~) < C(s, a, q, r)IifilQ2(C_,a). (12.3) 

The global Cauchy transform E.F~, belongs to the space E.~2(E, a), and consequently, 

its restriction to C_, EFt, is in Q2(C_,a). By (12.3) and Lemma 8.2, E.F~ is in 

L~(C)MC(C), and its uniform norm is controlled by 

]]E,F~ ]Ii~(c) ~< C(s, a, q, r)]]fliq2(c _,a), (12.4) 

where the constant appearing in (12.4) may be different from the one in (12.3). Let the 

function G~ be defined by the relation 

1 
Gi( z  ) = ~ exp(E.F~(z)-E.F~,(A)) ,  z E C. 

This is a bounded and continuous function, and we would like to identify its 0 derivative. 

For this, we need the following lemma. 

LEMMA 12.1. Let gEC(C) have the property that 0gEL~or ). Then 6~(exp(g))-- 

exp(g)0g in the sense of distribution theory. 

Proof. Analogous to that of Lemma 8.7. [] 

We can now safely assert that 

1 
OG~(z) = G~(z)F~(z) = - -  exp (~ .F~(z ) -~ .F~(A) )F~(z ) ,  z e C, 

f.(A) 

so that 0G~c~2(~,a) .  Since G~ is bounded, Proposition 2.7 therefore tells us that 

G~,-/3(G~) is in E.~2(~, a), where ~(G~)=exp ( -E .F~(A) ) / f . (A )  denotes "the value of 

G~ at infinity". In particular, the restriction G~Ic_ belongs to Q~(C_, a). We have the 

uniform norm estimate 

1 
I[CiitL~(C) ~< ~ exp(211E,F~IIL~(C)). (12.5) 

The function G~f,  is in L~(C)MC(C), and by Leibniz' rule, applicable by Lemma 8.7, 

O ( C i ( z ) f . ( z ) )  = C~(z)OI.  (z) + f.(z)0Gi(z) 

= (Of . ( z )+F~(z ) f . ( z ) )G~(z )  = (1-X~(z) )G~(z)Of . (z ) ,  z �9 C. 

It follows that G~f.  is holomorphic on D(A, ~/(A, e; f .)),  and by inspection, 

G~(A)f,(A) -- 1. 
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We conclude that  the function given by the formula 

H~,(z) = 1 , f . ( z )G~(z )  z E C\{,~}, (12.6) 
~ - - Z  

has a removable singularity at z=~ ,  and that  it too is holomorphic on D(,k, ~/(,k, e; f . ) ) .  

We have moreover H[EL~(C)VIC(C).  On applying the 0-operator to the function HI ,  

we get the expression 

OHm(z) = -Ge~(z)Of.(z) 1-X~(z) z E C\{A}, (12.7) 
~ - - Z  ' 

so that  since (~f. EI~2(E, a), the above formula, shows that  oSH~ Eg2(E, a). Identity (12.7) 

is what makes the whole construction tick! For, as we compute the norm of 0HI  in 

s cr), we are no longer concerned with the norm of Gale_ in e Q~(O_,a),  all that  

matters is its norm in the space of multipliers on densities, which in this case is L~(N).  

It is clear by (12.6) that  H~, vanishes at infinity, whence H~Er in view of 

Proposition 2.7. Formula (12.7) permits us to make the estimate 

IIC~ll~(~) 
~ laH[(z)l=a(Imz) 2 dS(z) <~ "r(A, e; f.)2 ~ IOf*(z)l~~ ~ dS(z), 

or, using (2.5), 

IIOH~ I1~(~,~) ~< ~(~, ~; f.) IIG~ IIL~(~.)IlfllQ:(C_,~). (12.8) 

Estimates (12.4), (12.5), and (12.8) combine to yield the norm estimate 

IIHalc_ll ~ <  - ~ 

< ~()~,llfllQ2(c-'~)6; f.)lf.(A)l -exp(C(8, o, q, r) f Qe(C_.~)" 
(12.9) 

w 

The reason why we are interested in this function H~, is that  if )~Ef~(J)=C\Z(J, C_), 

then 

~r = <H~,, r (12.10) 

To see this, note that  since AEf~(J), the operator A[J] is invertible (notation as in w 

and 

A~[J]-~(Ei+ J) = H~lc_ + J 

holds, because 

Ei(z)-A~(z)H~(z)  = f(z)G~(z)Ei(z),  z E C_, 
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so, since rE J, and J is a closed ideal in Q2(C_,a), we have fG~EiEJ. Now (12.10) 

follows from (10.5). It follows from (12.9) and (12.10) that  

C(r f )  exp(C(s, a, q, r)]l fllQ2(O_ : ) ) ,  (12.11) I~tr ~< ~,()~, s; f.)If.()~)l 

where C(r f)=ll~CllQ=(C_:)IIfllQ=(C_:)- We recall that  in the above estimate, f is an 

arbitrary nonzero element of J ,  0 < E, and A E ~(J )  C C is a point for which 0 < 7(A, e; f . ) .  

The variable e has all but disappeared in (12.11). If we set 7 (A; f . )=sup{T(A,e ; f . ) :  

0<E}, we obtain from (12.11) a simplified estimate: 

C(r f )  exp(C(s, a, q, r)llfllQ2(c _,~)). (12.12) 

13. M o d i f i c a t i o n s  t o  t h e  h o l o m o r p h i z a t i o n  p r o c e s s  for  p o t h e r  t h a n  2 

Let us recall the general setting: ~ is an arbitrary nonzero element of the norm clo- 

sure of finite linear combinations of right translates of functions in the collection G in 

LP(R+,w~,p), and we put f = ~ ,  and f.=~jP.~. In case p=l, we also need to assume 

that  ~ELI(R+,w~,I )ML~(R+,  w~,l), which is achieved by replacing ~ with ~*r  where 

r is a compactly supported C ~ function on ]0, + ~ [ ,  subject to the conditions 0~<r and 

f :~r  dt=l. This smoothing of ~ enables us to apply Proposition 9.2. It is clear that  

the new ~ belongs to the same class of functions, and that  it does not vanish almost 

everywhere. There is one additional modification of technical nature, which we should 

insert: we replace f .  with ] . ,  

].(z)=A(z)f.(z), z E C ,  (13.1) 

where A(z) equals (z - �89  -2 off the disk D(�89 ~) with radius ~ centered at �89 and is 

of class C ~ in the whole complex plane. Thus, f .  is small near cx~. 

The function f is in QP(C_, a), f .  is in ~.~P(Z,  a), the restriction of f .  to C_ is 

f ,  and f does not vanish identically, because ~ is not the 0 element. The weight a is 

assumed to be such that  1 /a  f is in ~sp, for some s, 2 + l / p ~ < s < + c ~ ,  for l < p < + c ~ ;  

for p=l, a is to conform with the requirement that  w~,lE~l~s, where 3 < s < + c ~ .  Note 

that  by the assumptions made on the size of the parameter s, Propositions 9.1 and 9.2 

tell us that  Of. EL~176 ~176 and O~=Of. EL~176176 where �89 -1 and 

0<01 = l - 2 ( s -  lip') -~ for l<p<+cx~, and �89 <00= 1 - 2 / s  and 0<01 = l - 3 / s  for p = l .  

The notation D(A,7 ) and the function T are defined as in w Suppose AEC, 
0 < 7 ~  1 g, and 0<e  are given, such that  

[f,(z)i>.max{3'-lT(Z)~176176176176 z E D(A,~). (13.2) 
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The function x ~ � 9 1 7 6 1 7 6  is to be real-valued, and to have 0~X~(Z)~<l throughout C, 

X~(Z)--0 on C\D(A,-~), and XA(z)=I on D(A, �89 Clearly, a XA can be found such that  

IVX~(Z)l ~ 5/% z �9 C, (13.3) 

where V=(0~,0~) is the gradient operator (where z--x+iy). As in w consider the 

function 

F~(z) -=-X~(z)Of.(z)/f.(z), z �9 C, 

where we treat the right hand side as identically 0 off the set E N D(A, "y). Since 0 < s ~<lf*] 

on D(A,'7) by (13.2) and in addition, x~/f .  is smooth enough to be in the space ~ ( E )  

(to see this, use the results in w the fact that  0 f . � 9 1 6 3  a) entails that  F~�9163 a). 
If we recall that  0 f .  � 9176176  a~176 and use (13.2), we get 

(13.4) 

We intend to show that  the restriction to E of the global Cauchy transform ~.F~ is in 

9:~(E), and that  we can control its norm in that  space, with a bound that  does not depend 

on the particular values of the parameters A and % In w it was sufficient to estimate 

the supremum norm of ~.F~ on E, but here, we need more, due to the phenomenon that  

pops up in w To this end, the following lemma is useful. 

LEMMA 13.1. If gEL2(I:t) and g'EL2(R),  then gE~LI(R) ;  in fact, 

IIglI LI(R) 2 llg' IIL=(R))  " 

Proof. By Parseval's identity, we have g=~h, where hEL2(R),  and [[g[[L2(R)= 

(2~r)I/2Hh][L2(R). The same argument applied to the derivative g' yields [[g'[[L2(R)= 

(2~r) 1/2 Ilt~-+th(t)l[n2(R). By the Cauchy-Schwarz-Sunyakovski~ inequality, 

OO 

Ilgl]~LI(R) = ]]hlILI(R ) = lh(t)] dt 

~(/_;~176176176 1/2 

-- l/2(lthll  (m+llt ~th(t)ll~,<~>) 

The proof is complete. [] 
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PROPOSITION 13.2. The restriction to P~ of E.F~ is in 90t(~) for all pairs (A,7) 

such that (13.2) holds. Moreover, the norm is bounded by a constant independent of the 

particular (A, 7)- 

Proof. It is well-known that for functions he  L ~ (C), with support contained in the 

closure of the disk D(A, 7) (recall that  0 < 7 <  1), 

and 

I{~.hl{L~(c) < IIhllL~(C), 

1 [Ihl[L~(C) 
Ir ~< 

4 d(z, D(A,7))' 

Here, d is the usual Euclidean distance function. 

assert that 

By Lemma 13.1, 

(13.5) 

z E C\D(X,  7). (13.6) 

Thus, by (13.5) and (13.6), we can 

sup{[{Z,h(- +iY)l{L~(m: y ~ R} ~< 2llh{IL~(C). (13.7) 

II~.F~,[l~(~)<sup{ll~.Fj,(.+iy)llL=(m+l{Ox~.F~,(.+iy)llL~(m:O<y<l}. (13.8) 

We already have good control of the first term of the expression on the right hand side, 

by (13.4), the fact that F~ is supported in the closure of D(A, 7), and (13.7). To control 

the second term, we study OxF~. Differential calculus gives us 

O=F~(z) = -0=x~ (z) ~,S*, (z) ' , OxOf.(z) ~s 
j . tz)-x~,~z)  ~ t-x~,(z)&~f.(z) f--]7~' (13.9) 

where the function O.f. is hounded, for the following reason. First of all, c~f. and OxOf. 

are bounded, and by the modification (13.1) of f., &Of. is so small at infinity that 

we can apply the global Cauchy transform to it, and get O:~f.=g.O:~Of. bounded. By 

(13.2) and (13.3), the right hand side of (13.9) is uniformly bounded, and the bound 

is independent of (A, 7). The operator g .  is of convolution type, whence it commutes 

with the differential operator 0. ,  O~g.Fa=g.OxFa. The support of the function O.F~ is 

contained in the closure of D(A, 7)NP~, so that  by (13.7), we have the desired control of 

the second term in (13.8). The proof is complete. [] 

The rest of the holomorphization process runs as in w except that where you use 

L~176 in w it is usually necessary to replace it with fiR(Z). For instance, in (12.7), 

the norm of ( 1 - X ~ ( z ) ) / ( A - z )  in gq(~) may be estimated, 

1 -  X____~ x< 8") '-3/2, 
A - z  [1~(:~) 



C O M P L E T E N E S S  O F  T R A N S L A T E S  IN W E I G H T E D  S P A C E S  O N  T H E  H A L F - L I N E  5 9  

by using (13.3) and Lemma 13.1. The resulting estimate of the resolvent transform is 

C(r f )  (13.10) < I, 

on the set of (A,"y) with AEC, 0<~<�89  and (13.2) valid for some ~, 0<e.  Although it is 

not indicated, the constant C(r f )  may also depend on other parameters which are held 

constant, such as s, but not on ()~, "~). 

14. The conclusion of  t h e  p r o o f  o f  the Main Theorem (Theorem 5.2) 

We shall prove the statement as formulated in Theorem 5.2. By the results of w we may 

restrict ourselves to the case w:w~,p, with ~ assumed to be such that  1/~ p' is in (p=2) 
1 ~32~ for some s, ~ < s < + c ~ ,  ( l < p < + c ~ ,  p~2)  ~ p ,  for some s, 2+l/p'<s<+~, and for 

p :  1, a is to conform with the requirement that  w~,l E ~ s ,  with 3 < s < +c~. The necessity 

of conditions (a) and (b) in Theorem 5.2 is clear, so we shall concentrate on proving 

their sufficiency. To this end, we use duality arguments. Assume that  CELP'(R+, W~,p)-I 

annihilates if+(| we intend to show that  every such r must equal the 0 functional, which 

would entail that  if+(| is dense in LP(R+,w~,p). We shall in fact prove that  9 t r  and 

use the fact that  r is uniquely determined by its resolvent transform ~Rr (this follows from 

the uniqueness theorem for Laplace transforms). Let us agree to write I ( 6 )  to denote 

the closure of ~+(~)  in LP(R+,w~,p), and let d ( ~ ) = ~ ( I ( ~ ) ) .  By Proposition 10.8, 

formula (t0.5) extends 9~b to an entire function, because condition (a) may be written 

as Z(J(| C_)--O. For reasons of brevity, we carry out the remainder of the proof in 

the special case p=2  only. It is not difficult to generalize it to general p; in fact, the only 

place where it is necessary to make any essential modifations is in Lemma 14.3, where 

one could instead follow the line of argument in the proof of Theorem 8.2 [5]. 

As in w we choose real parameters q and r, subject to the conditions 2<q, 0< 

r<l, and (8.1). We also need 0, 0 < 0 < r ,  and fl=(s+�89189 Let f E ~ ( |  

Q2(C_,a)  be a function which does not vanish identically on C_, and let f .  be its 

canonical extension to C (see w which is in E.~L2(R+,w~,2). Introduce the set 

u(L) = e c :  o A)} ,  

where "y(A; f . )  is as in w Contemplating for a moment on the definition of the function 

"y(~; f . ) ,  we see that  the set b/(f.)  is open. In fact, for )~Eb/(f.), "y(A; f . )  expresses the 

distance from A to the complement of b/(f.).  
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By (11.1) combined with Proposition 3.4, (11.4), and (12.12), we have the following 
estimates of the entire function 9~r 

l!~r ~< c(r A)a/2, A �9 12+, (14.1) 

I~r < C(r A �9 E, (14.1') 

C(f, r A �9 12_ (14.2) 
19~r ~< IIm,~l'lf(),)l' 

C(f ,r  A �9  (14.3) 19~r ~< 7(~; f.)lf.()~)l' 

Here, we no longer indicate when constants depend on the parameters s, a, q, r, because 

they are kept fixed. Estimate (14.1) implies that fire is bounded in every half-plane 

12++iE, with 0<e. Estimate (14.2) entails that 9~r belongs to the Nevanlinna class of 

holomorphic quotients of bounded analytic functions in every half-plane 12_-ie, with 

0<e. By [21, pp. 184-185], condition (b) of Theorem 5.2 states on the Fourier transform 

side that to every 6, 0<6, there exists an fEE(O)  which has 

lim sup y-X log If(-iy)l /> -6.  

Using this fact, it is not hard to verify using (14.2) that 9~r belongs to the Smirnov class 

(which consists of quotients F/G, where F, G are bounded and holomorphic, and G is 

outer) in every half-plane 12_-ie, 0<e. We have in particular for all 6, 0<6, 

l!RO(-iy)] = O(exp(6y)), as y-+ +co. (14.4) 

Moreover, by (14.2) and Proposition 14.1 below, we also have 

log 19~r ~< C(r f )  1+1z[2 
[ imzl ,  z � 9  (14.5) 

for some constant C(r  0 < C ( r  For a proof of Proposition 14.1, we refer 
to [5, Lemma 8.3]. 

PROPOSITION 14.1. 

on C+, and suppose 
Let F and G be holomorphic in (3+, with F~O, and F bounded 

IF(z)G(z)] <<. 1/Imz, zEC+.  

Then, for some constant C(F), 0 < C ( F ) <  +co, the following estimate holds: 

log IC(z)l ~< C(F)(1+ Izl ~) < C(F).(l+lzl4+(Im z)-~), z �9 C+. 
~mz 
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In order to be able to effectively apply estimate (14.3), we need to show that U( f . )  

contains certain massive subsets; as it turns out, these will be rectangles. In the sequel, 

q, r, s, 8, a, r and f are fixed ( fEE( |  is not identically 0), and dependence of constants 

on any of them (with the exception of f and r will not be indicated explicitly. For big 

positive integers k, say k ~> k0/> 1, it is always possible to find real numbers C~k, 0 < ak ~ 1, 

such that 

because the condition 1/aE~328, for some s, �89 < s < + c o ,  implies that the continuous func- 

tion a is strictly decreasing, and that cr(t)-~+co as t-*0. The numbers ak are actually 

uniquely determined by the above equation, and they form a strictly decreasing sequence, 

with limit c~k--*0 as k-~+c~.  Given that k>~ko, we introduce, for j = 0 ,  ...,3k-- 1, the thin 

rectangles 

1 9~(j, k) = {z E C: k+j3  -k < Re z < k T ( j + l ) 3  -k, - ~  < Im z < ak --2-k}.  

We quote here Theorem 8.1 [5], specialized to the case a=b= 1, h= 1 / ( 2 N +  1); it should 

be mentioned that Semen Khavinson studied the same basic problem in [20]. 

PROPOSITION 14.2. Let N be a positive integer, and let e, 5 be real parameters with 

0 < e , 5 < l .  Suppose we have a finite sequence ~o, ...,~g of points in the upper half-plane 

C+, with the property that e ~ I m ~ j ~ l ,  and 

2j <Re~j~< 2j+_____~l j=O,  N. 
2 N + l  2 N + l  ' "'" 

Introduce the rectangles 

R ( c ) = { z E C +  :0 ~< Rez  ~< 1, s ~<Imz~ 1}. 

There exists an absolute constant C such that the following holds: if F is a holomorphic 

function on C+ with IF (z ) l< l  on C+, and ]F(~j) t<5 for all j=O,. . . ,N,  then if M0= 

C exp(78(N+2)  log (2N+l ) ) ,  we have the estimate 

IF(z)] < ( l§ z E R(e). 

We use Proposition 14.2 to show that 14(f,) contains many rectangles of the type 

~ ( j ,  k). 

5 k LEMMA 14.3. For all big integers k, say k>/kl (/>1), having (~) ~(~k, there exists a 

jk, O~jk <. 3k--1, such that 

(a) exp(--e2k)=a(c~k) -~ < If,(z)l, zeg~(jk, k). 
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It follows that ffl(jk, k)Cl.l(f.), whence 
(b) d(z, C+ \9l(jk, k)) <.7(z; f.), zE97(jk, k), where d(z, E) denotes the Euclidean 

distance from zEC to a set E c C .  

Proof. We first give some motivation. By the definition of T in w the fact that  

a decreases, and our assumption 0 < 0 < r ,  the inequality (12.2) is fulfilled for all z6 

9~(jk,k) with the choice 0<e=exp(--e2k), whence fft(jk,k)cl4(f.). Inequality (b) is 

then a consequence of our interpretation of 7(z; f . )  as the distance from z to C \ /4 ( f . ) .  

We now turn to the main assertion, (a). Let s be the set of all k for which the 
5 k inequalities (~) ~<ak and 

in f{I f . (z ) i :zE~(j ,k)}<a(ak)-~ j =0 , . . . 3k - - i ,  (14.6) 

both hold. It is maintained that  ~ is finite. The intuitive reason why this is true is that  

(14.6) forces f .  to be very small on all line segments { x C R : k ~ x ~ k + l } ,  with k e g ,  

which is not possible for the boundary values of a bounded holomorphic function (other 

than the 0 function), unless J~ is finite. 

Let E(o,(~k) denote the infinite strip 

E(o,a~) = { z 6 C : O < I m z  < ak}, 

let Ilk be the product of cgf. and the characteristic function of ~(0,~k), and consider its 

global Cauchy transform 

Gk(z) = E.gk(z)  = in ~f.(~) 
(o,:k) z - (  dS((), z e C .  

By Proposition 8.4, Of. 6Lq(~, a~), with norm control 

I lOf.tlL,(s,.m ~< CIIfllQ~(C_,<,), 

whence 

i s  - \llq IIo~.f. IIL,(S(o.<.,<)) = IOf,(zllqdS(z)) ~< co (~k ) - "  II f lion(c_,,.) �9 
(o,<~k) 

We conclude from Lemma 8.2 that  GkeL~(C)RC(C) ,  and 

IIGkllL~(C) < c a ( ~ k )  -~ I l f l lQ,(c_,~), 

with a different constant than before. Because 0 < 0 < r ,  we can therefore safely assert 

that  for sufficiently large k, say k~k2, the estimate 

IGk(z)l -<< ~(~k) -~  = exp(--e2k), z 6 C, (14.7) 
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holds. By (14.6), we can, for kEY, and j = 0 ,  ..., 3 k -  1, find points ~(j, k) in fit(j, k), such 

that  

]f,(~(j, k))l < a(~k) -O = exp(--e2k), 

so that  if we introduce the function ] k = f . - - G k ,  and require kEY to meet k>~k2, then 

estimate (14.7) informs us that  tt)~IIL~(C)~<IIf.IIL~r162 , and 

Ifk(r k))l < 2 a ( a k )  - ~  = 2 e x p ( - e 2 k ) ,  j = 0, ..., 3 k -  1. 

The function ]~ has, by the construction of Gk, 0]k=0  on the half-plane C +iak, and 

is therefore holomorphic there. For this reason, the function 

F(z) = A ( k + l - z + i w k )  
C( f )  , z �9 C+, 

where C ( f ) =  ]lf*llL~<C)+ 1, is holomorphic on C+, and its uniform norm there is bounded 

by 1. At this point, we find it convenient to make the additional normalizing as- 

sumption that  IIf*llL=(c)=l, so that  C ( f ) = 2 .  If we plug in the parameter choices 

N= �89  e=2  -k, and 5 = e x p ( - e  2k) into Proposition 14.2, noting in passing that  

M0 ~<C exp(43k(3 k +3)), where C is the absolute constant mentioned in Proposition 14.2, 

so that  we must have 5Mo~<exp(-�89 for large k, say k>~k3 (we use here the fact that  

3 < J ) ,  we obtain, for real x, k<<.x<~k+l, the estimate 

is  = 2 f f ( k + l _ x + i , ~ ) l  <. 4 e x p ( _ l  3 k +2 exp(--�89 

valid under the assumption on k that  k �9  and k>~k4=max{k2, k3}. If we also use the 

property of Y that  if keY, then (5) k ~<ak, we get 

whence 

Ih(x)l ~ 6exp(-~(5)k), k<~x<~k+l, 

If,(x)l <~ 7 e x p ( - }  (5)k), k<~x<~k+l, 

in view of (14.7), again for kcY with k>~k4. But if the set Y were infinite, this would 

then force 
+ ~ l o g  [f.(t)l dt= 

l + t  ~ 

which indeed is not possible for the boundary values of a bounded holomorphic function 

in C_, unless it vanishes identically. The set Y must therefore be finite. [] 

We proceed with the proof of Theorem 5.2. Consider the auxiliary entire function 
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and the infinite strip 

{z �9 c : - � 8 8  <Imz < �88 

Elementary computations show that  we have the estimate 

~--~[15"Re z)6 - ~6 • Re(z6)  • ~--~ (Re z)6 -~- ~ 6 , 1 7  z �9 ~--]~(_ 1/4,1/4) ' (14.8) 

so that  by (14.1), and by (14.2) together with Proposition 14.1, the function �9 is bounded 

on the boundary 0E(_1/4,1/4) of E(-1/a,1/4), and enjoys the estimate 

Ir exp(C(l+lImzl-2)) ,  z �9 n c - ,  (14.9) 

for some constant C, 0 < C < + o o ,  which may depend on all the fixed parameters. 

LEMMA 14.4. I f  O iS bounded on E(-1/a,1/a), then 9~r 

Proof. If r is bounded on ~(-1/4,1/4),  then the entire function Fie enjoys the fol- 

lowing properties. It is bounded in the shifted upper half-space C++�88 and by (14.8), 

it satisfies the estimate 

I~r ~< Cexp(2(Re z)6), z 6 E(-1/4,U4), 

for some constant C, 0 < C < + o o .  Furthermore, from (14.5) we know that  9~r is of slow 

growth in C_, which allows us to appeal to the Phragm~n-LindelSf principle for angles, 

and if we do this successively for various angles, we see that  there exists a constant C, 

0 < C < + c ~ ,  such that  

I~r  as I z l ~ .  

By (14.4), we may appeal once more to the Phragm~n-Lindel5f for angles, to get that  

for each fixed 5 with 0<5, 

]~tr = O(exp(SH)), as ]z] --* oo, 

holds. This growth is, however, insufficient for 9~r not to be bounded in the whole 

complex plane, by the Phragm~n-Lindel5f for half-planes, because 3 r  is known to be 

bounded in the shifted upper half-plane C+ + �88 Liouville's theorem then asserts that  

9~r must be constant. This constant must equal 0, for the following reason: by (14.1), 

and the fact that  &(2, t)--~0 as t--*+oo, we have ~tr as y--~+c~. [] 
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Lemma 14.4 shows that  to finish the proof of Theorem 5.2, we just need to check 

that  (I) is bounded on the strip E(-1/4,1/4). To this end, let us introduce two sets of 

positive integers 

and 

y = {k �9 Z + :  k l  ~ k, Ot2k ~< O~ k - 2 1 - k } ,  

where kl is the positive integer that  appears in Lemma 14.3. For convenience, we assume 

kl ~>4. For k �9  consider the line segments 

Zk { z � 9  k+( j k  1 - k  O~k_21-k} ,  = = +7)3  , - �88  

flk { z � 9  k+( j k  1 - k  21-k 1 ---- = +7 )3  , a k -  ~<Imz~< Z}, 

where O<~jk<~3k--1 is as in the formulation of Lemma 14.3. Then, by Lemma 14.3, 

�89 f . )  for all z �9  and k � 9  and we conclude from (14.3) that  

I~r ~Cexp(2e2k), z e Z k ,  (14.10) 

for some constant C, 0 < C < + o o ,  provided that  kE2(. If we apply (14.1'), using that  (r 

is decreasing, we obtain for k � 9  2(Ny the estimate 

IVtr ~< Ca(a2k ) ~ ----- C exp(/3e4k/o), z e ,]k, (14.11) 

where C = C ( r  is as in (14.1'), and we as usual drop dependence on fixed parameters. If 

we combine our estimates (14.10) and (14.11), and use (14.8), we get for some constant 

C, 0 < C < + c ~ ,  

sup{lO(z)l :z �9 ~k} ~ C'exp(/3eak/O), k �9 X A y ,  (14.12) 

where/Ck denotes the line segment that  is the union of 77k and Jk: 

_a~<imz~<l}. Ek = :TkUJk = {z E C : Re z =  k + (jk + �89 )3 -k ,  -~ 

It was observed earlier that  the entire function ~ is bounded on the boundary of 

E(-1/aA/4)- If the number of integers in A'fq3) is infinite, then the growth that  esti- 

mate (14.12) permits in E(_U4,U4) is too small for (I) to be unbounded in the part of 

5-945205 Acta Mathematica 174. Imprim6 le 20 janvier 1995 
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•(-1/4,1/4) that  lies in the right half-plane (because 4<2~r); the critical growth rate re- 

quired by the Phragm~n-LindelSf principle in the strip E(-1/4,1/4) is in fact of the order of 

magnitude exp(exp(2~rz)). We conclude that  �9 is bounded on the portion of E(_1/4,1/4) 
that  lies in the right half-plane, provided X My  is not finite. We proceed to prove the 

following. 

Claim. If the set XMy finite, then X is finite, too. 

We argue as follows. Since ,u is finite, there exists an integer l ~ X N y  such that  

k<~l for all (other) kE2cMy. If 2( contains an integer k which is bigger than l, then k 

cannot belong to y ,  and hence 

(5)2k < (5)k--21-k <~ O~k--21-k < Ol2k, 

because 4~<k. We see that  2k also belongs to X, and 2k being bigger than l, we must have 

2 k c X \ y .  If we continue inductively, it follows that for n =0 ,  1, 2, ..., we have 2 n k c x \ Y ,  

and we also get the inequality 

ak--2/(2k--1) < ak--2.(2-k +2-2k +...+2 -2nk) < a2nk �9 

Since k E X  and 4~<k, we have 

0 < (5)k--2/(2k--  1) ~< ak--2/(2k--1), 

which is absurd together with the previous inequality, because we know that a2~k--*0 as 

n--*oc. This shows that  our assumption concerning the existence of a k E X  bigger than 

l must be wrong. Therefore, the set X is also finite. [] 

We finally treat  the case when X is finite. Then ak< (5)k, and its immediate con- 

sequence, 

< = e x p ( e 2 k / 0 ) ,  

hold for all but  finitely many positive integers k. This last inequality implies that  

or(t) • exp(--1/t11), 0 < t < E 0 ,  

holds for some small but positive real number E0. The weight a is thus of non-quasi- 

analytic type, so by the estimates (14.V) and (14.9), the log-log theorem applies to the 

function r and proves that  it is bounded in the whole strip ~-](--1/4,1/4)" 

We conclude that  the function ~ is bounded at least on the portion of the strip 

~(-1/4,1/4) that  lies in the right half-plane, no matter  whether 2dMy is finite or not. 

However, the right half-plane plays no special role here. Lemma 14.3 has a version with 
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rectangles approaching infinity in the left half-plane, or if you prefer, it is possible to apply 

it as it stands to the function f . ( - ~ ) ,  and the conclusion is that If*l is reasonably big on a 

union of rectangles moving toward infinity in the left half-plane. All the computations we 

have made for the right half-plane carry through analogously, and show that �9 is bounded 

on the portion of E(-1/4,1/4) that lies in the left half-plane as well. The function (I) is 

therefore bounded on the whole infinite strip E(-1/4,U4). 

In view of Lemma 14.4, the proof of Theorem 5.2 is now complete. [] 

Remark 14.5. For p=2 ,  there is an alternative way of getting the holomorphic con- 

tinuation of the resolvent transform and estimates similar to (14.1)-(14.3), without ap- 

pealing to the Gelfand theory of commutative Banach algebras. The argument is difficult 

to generalize to other p, but works very smoothly for this particular value of p. It runs 

as follows. Suppose, to begin with, that CEL2(I=t+, w~,~) is arbitrary. By the isometry in 

Lemma 2.2, its resolvent transform satisfies 

~ [9~r -2 dS(z) < +c~, 

as is seen by noting that 9~r with f(t)=r Thus, if ~ is a density in 

~2(E, a), the product iRr belongs to LI(E),  and, moreover, 

~0 +cr 1 ~E gO(t)r dt = - -  9~r dS(z). (14.13) 
7~ 

Let f E Q 2 ( C  , a), and write f .  for its canonical extension to the whole complex plane, 

so that f . ( z ) - -0  for l < I m z ,  and cgf. is the associated density in ~2(E, a). Let q~ be the 

bounded linear functional on Q2(C_, a) induced by r via the Fourier transform, as in 

w Then, by the identity (14.13), 

(f ,~)=_l /~ 9~r 

Moreover, with E~(z)=(A-z) -1, the function Ea(z)f.(z) has no singularity at z=A 

provided that l < I m A  (recall that f.(z)=O for l < I m z ) ,  so that it is the global Cauchy 

transform of its density O(Exf.)=EaOf.. If we again appeal to (14.13), we see that 

(E~S,(~/= -1~ ~r l < I m A .  (14.14) 

If, as in w q~ annihilates an invariant subspace J in Q2(C_, a), and feJ, then (14.14) 

shows that the global Cauchy transform ~.(9~0 0 f . )  vanishes on { z e C : l  <Im z}. The 

function ff.(9~r belongs to ff .LI(E),  and hence in particular to L ~ ( C ) ,  for every 
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r<2 .  The functions ~ r  and E . ( f f t r  have the same 0 on C+, and both vanish 

on { z E C : l < I m z } ,  so they must coincide area-almost everywhere in C+. To get the 

holomorphic continuation, we assume f .  is continuous on C, and that  O f . E L q ( E )  for 

some q, 2 < q < + c o .  Declare f f t r 1 6 2  off the zero set Z ( f . )  of f . ,  

which then is a function in L q locally on C \ Z ( f . ) .  Since E . ( ~ r  is in nqr we 

can apply elementary distribution theory arguments analogous to those of Lemma 8.7, 

to obtain ~ r  througout C \ Z ( f . ) .  This gives us the analytic continuation; size 

estimates of 9~r are obtained by using the mean value property of holomorphic func- 

tions on disks, to get an estimate of 9~r in terms of the L 1 norm of E . ( i R r  on 

the disk in question. 

Remark  14.6. As the referee kindly pointed out to us, it is possible to replace the 

operator-theoretic considerations in w with purely analytical arguments based on the 

holomorphization process. In fact, the holomorphization process supplies us with an 

explicit extension of the resolvent transform 9~r so it is not surprising that it can be 

used to show that  the extension is holomorphic. We explain the details in the setting of 

w Fix a point AoEC such that  f . (A0)~0,  and if necessary, multiply f by a suitable 

constant multiple so that  (12.2) holds for some radius % 0 <% To simplify the notation, 

let us write f~o ( z )= f* ( z )G~o  (z),  and note that  the restriction of f~o to C_ belongs to J ,  

because f does. The function f~o is holomorphic and zero-free on the small disk D(A0, ~/) 

centered at )~0. If we write 

H~(z )  = 1 -Y~~176  z e C,  
)~- z 

then / ~  is holomorphic in )~ on the disk D(A0,'y), and just as in w V t r1 6 2  

holds. The assertion about analytic continuation follows. Since the regularity assump- 

tions on the weight a for the holomorphization process (w167 12 and 13) are generally more 

restrictive than those of w no gain is made in that  respect with this method. 

Appendix A. Moment problems, part I 

The problem to characterize the class of functions Fd, on R+ that  arise from a finite 

positive Borel measure # on R+ with finite moments 

j fo+~t n d#( t )  < +co, n = O, 1, 2, ..., 

via the moment-type formula 

Fd,(X)  = e -t~ d#(t) ,  x E R+, 
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was solved by SergeY BernshteYn [1]. The description is in terms of total monotonicity; a 

function f on the real line is said to be totally monotone provided that  ( - 1 ) n f  (n) ( x ) ) 0  

for all real x in the relevant interval and all n--0, 1, 2, .... 

PROPOSITION A.1.  Let # be a positive finite Borel measure on the real line, sup- 

ported on a compact interval. We denote by supp # the support of the measure #, and by 

a(#) and 13(#) the infimam and supremum of the set supp #, respectively. The function 

Fdt,(x) = e -tx d#(t), x E R,  
o o  

is then the restriction to the real line of an entire function of finite exponential type, it 

is positive, and the function G~=- log  Fd~ is concave. We also have, with G~ (co) and 

G~ (-c~ ) denoting the asymptotical slopes of the concave function G t, at plus and minus 

infinity, respectively, 

and 

We finally note 

line R.  

C~(ec)=  lim G ' . (x )=  lim x - l G , ( x ) = a ( # ) ,  

G ~ ( - c ~ ) =  lim G~(x)= lim x-XGu(x)=13(#). 
x - - - * - -  o o  x - - - +  - -  o o  

that the function x~-*logFdu(X)+a(#)x decreases on the whole real 

Proof. The measure # is supported on the interval [a(#),/3(it)f, and by definition, 

this is the smallest closed interval with that  property. The formula 

Fall(z)---- fo+~e -tz d#(t), z e C, 

defines an entire function of finite exponential type, and the type is the maximum of the 

two numbers Ic~(#)] and I/3(#)I. In fact, if "/(it) denotes this maximum, then 

]Fdu(Z)I ~<C.exp('),(#)iRez]), z e C ,  

holds for some constant C, 0 < C < + c ~ .  The function Fd~ has the property that  

IFd~(Z)] <<. Fd~(Rez), z E C ,  

and it is bounded in every region 

{ z E C : a < R e z  <b} 
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with a, b, a<b, arbitrary, so an application of the corollary following Theorem 12.8 [27, 

p. 275] yields that  G~ = -  log Fd~ is concave on all of R.  The asymptotics of G~ near 

infinity follows from [21, pp. 184-187]. That the function x~-~ log Fall(x)+a(p)x decreases 

on the whole real line R is a consequence of the formula 

fo exp(a(#)X)Fd,(X) = e -t~ d#( t+a(#)) ,  

valid because the measure d#( t+a(#))  is supported on the interval [0, 3(#)-c~(#)]. [] 

THEOREM A.2. Let v be a positive concave function on R+ with ~ ( 0 ) < + c ~ .  We 

can then find a finite compactly supported positive Borel measure # on R+, such that 

fo 1_ < e~(~) e -xt d#(t) < 3, x �9 R+. a 

If  ut( c~ ) denotes the slope of the function u at infinity, 

v'(cx~)= lim v'(t)= lim v(t)/t>~O, 
t---*+ cc t---*+c~ 

the measure # may be chosen to have support contained in the interval [v~(~), v~(0)]. 

Proof. Without loss of generality, we may assume u to be of class C 1 on R+. Con- 

sider the tangent line function 

L ( x , t ) - - ( x - t ) v ' ( t ) + v ( t ) ,  (x,t) �9 R+ xR+,  

and note that by the concavity of the function v, we have 

v(x) <. L(x,  t), (x, t) �9 R+ x R+. 

Let A, 0<A, be a real parameter, to be determined later. We now introduce two sequences 

of points tj,sj in R+, with to<81<tl<82<t2<s3<..., via an iterative process. These 

sequences may be finite or infinite, depending on the outcome of the process. The starting 

point is t0--0, and the other t j 's  and sj's are defined recursively by (j=O, 1, 2, ...) 

(i) L(Sj+l, t s ) -v(Sj+l)=i~,  and 

(ii) n(s j+l ,  t j+ l ) -v (S j+ l )=A;  

(i) and the assumption t j<ss+l determine Sj+l from tj, and (ii) with Sj+l<tj+l gives 

tj+l from sj+l. Geometrically, condition (i) determines Sj+l uniquely as the point to 

the right of tj where the tangent line y=L(x ,  t j)  deviates vertically (upward) by A units 

from the curve y=v(x) .  Moreover, condition (ii) determines tj+l uniquely as the point 

to the right of sj+l whose associated tangent line exceeds the curve y=u(x)  by )~ units 
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at  the  point  x:sj+ 1. There  are two possible obstacles  in this construct ion:  (a) it is 

possible t ha t  the  solution sj+l to (i) or the  solution tj+l to (ii) is not  unique, and (b) it 

is also possible t ha t  the  i terat ive process stops, which happens  if for some index j ,  there  

is no solution s j+ l  or tj+l to (i) or (ii), respectively.  If  (a) occurs,  this would mean  tha t  

the  curve v is affine on some segment ,  in which case the  set of  solutions forms a closed 

interval.  To make  the numbers  sj+l and tj+l unique, we choose t h e m  as the  lef tmost  

point  on the respect ive solution interval.  As to  whe ther  (b) occurs,  we separa te  be tween 

the  following cases. 

Case I. T h e  i tera t ive  process continues indefinitely. 

Case II.  The  i terat ive process comes to  a stop. 

We first deal wi th  Case I, and later  indicate  wha t  modif icat ions have to be  made  in 

order  to  handle  Case II.  Note  t ha t  the  numbers  tj and sj cannot  t end  to a finite l imit  as 

j - - , + o c ,  because in this case (i) and  (ii) lead to  a contradict ion.  Tak ing  into account  the  

posi t iv i ty  and concavi ty  of the  funct ion v, and  the cons t ruc t ion  of the  sequences {tj}j 
and {sj}j, we see t ha t  

0 < L, '( t j+l) < lff(Sj+l) (1/(tj),  j ---- 0, 1, 2, . . . .  (A.1) 

By the  definit ion of the  t angen t  line funct ion L(x, t) and the  concavi ty  of u, the  funct ion 

y=L(x , t ) -v(x) ,  x e R + ,  

is convex, a t t a ins  the  value 0 a t  x=t, decreases on the  interval  0 ~ x < t ,  and  increases on 

the  interval  t < x < + o c .  One consequence of this is tha t  for j - - l ,  2, 3, ..., 

u(x) <. L(x, tj) <. u(x)+A, sj ~<x~<sj+l;  (A.2) 

actually, (A.2) holds for j = 0  as well, if we accept  the  definit ion s0=0 .  Ano the r  conse- 

quence is t ha t  for j = 0 ,  1, 2, ..., 

A+v(x)~L(x, tj), 8j+ 1 <X<-~-O0, 

and  since L(x, x ) - - v ( x ) ,  we have in par t icu lar  

A+L(tj+l, t j+ l )  ~ L(tj+l, t j ) ,  

f rom which the  es t imate  

A+v(x) <. A+L(x, t j + l )  ~< L(x, tj), tj+l ~< x < +oc ,  (A.3) 
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is immediate, because the slope of the line x ~-* L(x,  t j) is bigger than that  of x~-* L(x, tj+ 1 ) 

(this is simply the statement that  v'(tj+ 1) < u' (tj)), by (A. 1). If we iterate (A.3) m times, 

we arrive at 

m~+u(x )  <<. m/k+ L(x,  tj+m) <~ L(x,  tj),  tj+m <~ X < +OC. (A.4) 

An argument analogous to the one used to obtain (A.3) leads to 

~ + u ( x ) < . ~ + n ( x ,  t j )<.L(x ,  tj+l), O<.z<.t j ,  

and iterated n times, this estimate becomes 

nA+u(x) <<. n~+L(x,  tj) • L(x, tj+n), 0 < x < tj. ( A . 5 )  

Consider the functions 

E j ( x ) = e x p ( - L ( x ,  ty)), z e R ,  

which we shall find it advantageous to write in the form 

E j ( x ) = a j e x p ( - b j x ) ,  x E R ,  

where bj=#(tj)>>.O and 

aj = exp(-L(0,  tj)) = exp(tj #( t j )  - v(tj)) > O. 

By (A.1), the sequence {bj}j is strictly decreasing. We may also add, since we are in 

Case I, that  bj >0, because if we had by = # ( t j )  =0 for some index j ,  then the iterative 

process would come to an end in the next iteration. The function 

+oo 

E(x)  = y ~  Ej(x) ,  x E R, 
j=O 

will prove essential to us; in fact, our next step is to obtain the estimate 

e -~ <<. exp(v(x))E(x)  < 2 ( 1 - e - ~ )  -1, x E R+. (A.6) 

By (A.2), 

and consequently, 

exp(- )~-v(x))  <. Ej(x) ,  sj <~ x<. sj+l, 

OO 

exp( - /k -u(x) )  ~< y ~  Ej(x)  = E(x) ,  x E R+, 
j=O 
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which is the left hand side inequality of (A.6). If we rewrite (A.4) and (A.5) in terms of 

the functions Ej(x), we have, for m = 0 ,  1, ..., k, 

Ek-m(X) ~ e -m~ exp(--v(x)),  tk ~ x < +0% (A.7) 

and for n=O, 1, 2, ..., 

Ek+n+l(X) ~ e -n~ exp ( -v (x ) ) ,  0 < x < tk+l. (A.8) 

To get the remaining inequality of (A.6), we invoke (A.7) and (A.8), and obtain, for x in 

the interval [tk, tk+l], 

+oo k +(:~ 

E(x) = ~_, Ej(x)= E Ek-m(X)+ Z Ek+n+l(X) 
j=0 m=0 n=0 

k +co 
exp( - - / ] (x ) )  ~ e-mA--~exp(-- /](x))  ~ e -n)~ < 2(1--e- )~)  -1  e x p ( - - v ( x ) ) .  

m~0 n=0 

(A.9) 

This completes the verification of (A.6). We now plug in the numerical value A=log2, 

and see that  (A.6) simplifies to 

1 <~ exp(v(x))E(x) < 4, x �9 R+, 

that  is, 

2 -3/2 • 21/2 exp(v(x))E(x) < 2 3/2, x e R+. 

The assertion of the lemma, 

f0 ! < exp(v(x))  e -xt  d#(t) < 3, x �9 R+, 3 

is now evident if we put  
+ ~  

d , ( x )  : 21/2 Z ak d~(x-bk) ,  
k=0 

where d~ stands for the Dirac unit point mass at the origin. The statement on the 

support of # is an immediate consequence of this definition, if we note that  b0=#(0) ,  

and that  the sequence bj=u'(tj) decreases down to the slope at infinity #(co) .  This 

completes the proof in Case I. 

We now turn to Case II. This time the iterative process defined by (i) and (ii) stops 

for some index N,  which means that  we have been able to find the numbers tl ,  t2, ..., t N ,  
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but unable to get tN+l. This can happen in two ways, one is that  (i) fails to deliver an 

SN+I, in which case u is affine on the interval [tN, +(x)[, or, expressed differently, 

u ( x ) = L ( x ,  tN), tN<~X<+OC, 

and we then write 8N-t-I--~~(N:). The computat ions carried out in Case I cover the present 

situation as well, with the obvious necessary modifications, such as the definition 

N 

j=O 

and they show that  with A=log 2, 

1 <~ exp(u(x) )E(x)  < 4, 

from which it is immediate tha t  

holds with 

x � 9  

x E R + ,  

! < exp(u(x))  e -s t  dp(t) < 3, x �9 R+, 
3 

N 

d.(x) = 2 E 
k=O 

The other way for the iterative process to stop is that  (ii) fails to deliver a tN+ 1 out 

of SN+l. We shall now see that  this can happen only if v is almost affine near infinity, 

that  is, with a higher level of precision, 

O<~Lg+l(x)--u(x)<~s 8N+I~X<~-O0, (A.10) 

where 

Lg+l(x)  = U(SN+I)+(X--SN+I)U'(OC)+ )~, 

is the "tangent line at infinity". Consider the function 

x E R ,  

rl(X) ~- LN+I(X--SN+I)--V(X--SN+I), X �9 [0, +OO[, 

and note that  what is claimed is that  0~y(x)~<A on [0,+c~[. It  is convex, has slope 

y ' (c~)--0,  and attains the value ~(0)=)~. The nonexistence of a finite tg+l translates to 

the s tatement  that  none of the lines x Hf l x ,  with f l<0,  can be tangent to ~. But then 

none of these lines can even intersect y, because if one did, then by continuously lowering 

fl, we would eventually have a tangent to ~?, by convexity, and 0<y(0) .  This then implies 
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that 0~<~(x) on [0, +oc[.  Since the convex function ~ has slope 0 at infinity, it has to be 

decreasing, so we also get ~(x)~<~](0)=)~ on [0, +co[.  Hence (A.10) holds. Put  

where 

N 

E(x) = Z EN+I(x), 
j=O 

x E R ,  

EN+I(x) =exp(--LN+l(x)), X �9 R, 

and note that by (A.2) and (A.10), we have, just as in Case I, 

e x p ( - A - , ( x ) )  < E(x), x �9  (A.11) 

From the treatment of Case I we pick up the inequalities 

Ek-m(X) <. e -m~ exp(--u(x)), tk ~< x < +oo, (A.12) 

for k=0,  1, ..., N and m=0 ,  1, ..., k, and 

Ek+,+l(x) <. e -"x exp(--u(x)), 0 ~ x < tk+l. (A.13) 

for k=0,  1, . . . , N - 1  and n=0 ,  1, . . . ,N-k .  We need to verify that  (A.13) holds for k=N 
as well, that is, since we should think of tN+l as +cxD, 

EN+I(X) ~<exp(--u(x)), 0 ~ < x < + o c .  

This, however, is an obvious consequence of the fact that 

u(x)<.LN+I(Z), x � 9  

which follows straightforwardly from (A.10), by the convexity of the function LN+I--v. 
Using these inequalities (A.12)-(A.13), we obtain the analog of (A.9), that is, for x in 

the interval Irk, tk+l [, with k=O, 1, ..., N, and the convention tN+l =+c~,  we have 

N + I  k N - - k  

E(x) =- E Ej(x)= E E k - m ( x ) +  E Ek+~+l(x) 
j=O m=O n=O 

k oo 

~< exp(--L'(X)) E e-m~+exp(- '(x)) ~ e-hA < 2(1 --e-A) -1 e x p ( - , ( x ) ) .  
m = 0  n = 0  

If we plug in A=log 2, this inequality combined with (A.11) yields 

! < exp(v(x))E(z) < 4, x �9 R+. 2 
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If we write 

EN+I (X) -~ aN+l exp(--bN+lX), x �9 4 ,  

with bg+l ---- v'(oo) and ag+l =exp(-- , (SN+I ) -- SN+I V' (OC) + A), the measure 

N + I  

d#(x) = 21/2 E ak dS(x-bk) ,  
k = 0  

now fulfils the property of the lemma: 

1 < exp(u(x)) e -xt  d#(t) < 3, x �9 R+ 
3 

This concludes the proof of Theorem A.2. [] 

Appendix  B. Moment  problems, part II 

Consider the collection ~3 of finite positive Borel measures # on [0, 1], placing no mass 

at the point 0, but  having #(]0, ~])>0 for every e, 0<~. We shall also be concerned with 

the collection ~U of all continuous functions F: R+--* ]0, +oc[,  subject to the conditions 

that  F is decreasing, F(t)--*O as t--~+oo, l o g F  is convex, and 

log F ( t )  = o(t)  as t - - ,  

Recall from Appendix A the convention to assign a function 

Fdu(t) = e -tx d#(x), t �9 R+, (B.1) 

to a given measure # in ~ .  Let us introduce the notation f •  and say in words that  f 

and g are comparable on R+, if f and g are two functions on R+ with values in [0, +cx~[, 

which satisfy 

Cl f ( t )  <.g(t) <<. C~f(t) ,  t � 9  

for some constants C1, C2, 0<C1 ~ C~ < + ~ .  The following statement contains most of 

the information from Appendix A that  we shall need. 

PROPOSITION B. 1. If tt is in ~3, then Fdu belongs to ~ .  If, on the other hand, 

F is in ~ ,  then a #�9 can be found such that Fdu• there exists in fact a # of the 

form dp(x)=~a(x) dx, where ~ is continuous on ]0, 1], and enjoys the additional condition 

for all x�9 

Proof. Let us start with having a #, and try to prove FduE~U. It is clear from the 

definition that  Fdu is decreasing, and that  Fdu(t)-~O as t--~+oc. Proposition A.1 tells us 
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that  log Fdt, is convex, and since we know a (# )=  0 (in the terminology of Proposition A. 1), 

we also have 

log Fd (t) = o( t ) ,  t --+ + c o .  

This completes the verification that  Fd# is in !Us. 

We proceed to the case when we have an F ,  and seek a #. Let AC ]0, +co[,  and 

put v(t)=logw(t) on the interval [A,+co[,  noting that  by assumption, t, is concave 

and increasing. We extend v to be affine on the interval [0, A], in such a way that  v 

becomes differentiable at A. The extended v is concave and increasing on [0, +col ,  with 

u ( t ) -++co  and v'(t)--+0 as t--++oc. We now stipulate that  A be chosen so large that  u is 

positive throughout R+, and v ' (A)<  �89 By Theorem A.2, a finite positive Borel measure 

#, supported on [0, �89 may be found such that  Fd#•215 Moreover, since 

F(t)--+O as t -++co ,  # cannot place a positive mass at 0. It is clear from Proposition A.1 

that  the assumption v(t)--o(t)  as t--+ +co forces p to place positive mass on every interval 

]0, e], with 0<c.  We conclude that  # E ~ .  If we analyze the proof of Theorem A.2, we 

see that  # is obtained as a sum of discrete point masses. We may then mollify each 

point mass a little bit, without changing the main relation Fdu~F, to get # of the form 

dp(x)--~o(x) dx, with ~o continuous on ]0, 1]. Similar reasoning permits us to add a little 

background noise, to ascertain that  0<~(x) ,  for all x E]0, 1]. The proof is complete. [] 

We now intend to use Proposition B.1 to study functions of the type 

r a t )  = e- xo(x) dx, t �9 R, (B.2) 

associated with functions Q: [0, 1 ]~ ]0 ,+e~[ ,  belonging to the families ~8, 0 < s < + c o ,  

which we are about to define. For a # � 9  and all real numbers s, 0 < s < + c o ,  we 

introduce the fractional integrals 

1 (x - t )  ~-1 d#(t), O<~x<<. 1, 

where F denotes the gamma function: 

f0 F(s) = e-tt s-1 dt. 

The above fractional integral, as all other integrals in this paper, should be thought of 

as ranging over the closed interval between the indicated endpoints, unless specifically 

indicated otherwise. We shall specify that  an endpoint is not to be included with a 

superscript, a plus if it is the left endpoint, and minus if it is the right one. The set of 
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all I~[p], with s fixed and p ranging over all of ~ ,  is denoted by ~3~. It is clear from the 

above definition that  

lf0  Ir+~[#](x)=r--- ~ (x-t)r-lIs[#](t)dt, O~x~<l ,  O < r , s < + o e ,  

by the well-known fact that  the fractional integral kernel functions K~(x)=x~-l/F(s) 
(xER+) form a convolution semigroup: K~+~=K~,K~, for O<r , s<+e~ .  Note that  it 

follows from the above observation that  the classes gls are nested: ~3~Cgl~Cgl, O<s< 

r < + ~ .  

PROPOSITION B.2. Suppose QE~3s, for some s, 0 < s < + c ~ ,  so that Q=Is[#] for 
some peq~, and let the functions Fd• and F~ be as in Appendix A and formula (B.2), 

respectively. Then the functions F~ and Fdt, both belong to ?0. Moreover, we have the 
following relationship between the functions F~ and Fd,: 

O<<.Fd,(t)-t~Fe(t)<<.el-t(l+t)~#([0,1]), l<~t < +oe. 

Proof. By Proposition B.1, applied to the measures dp(x) and Q(x)dx, the functions 

Fe and Fd, belong to the class !B. 

Since Q--/~[#], we have 

f0 ~ 1 f0' fx Fe(t) = e-tXI~[#](x) dx = ~(s) e-t~ao (x-u)  ~-~ d#(u) dx (B.3) 

= ' - '  <',* '), ' 

r ( s )  _ J0 

by switching the order of integration, and applying the change of variables y=t(x-u) ,  
u=u. If we use (B.3), the integrM definition of the gamma function, and make the change 

of variables v=y- t (1 -u ) ,  u=u, we obtain 

1 1 dy) e -tu 
Fd~(t)-t~F~(t)= ~(s) fo (F(s) -  fo ~(1-~)e-yy~-I dp(u) 

/ 

l f'F  --  e - Y y  s -1  dye - t u  d # ( u )  
r ( S )  JO Jr(l--u) (B.4) 

F(s) .10 J0 e -V(v+t (1 -u ) )  ~-1 dv d#(u) 

~0 
1 r ( s , t ( l - ~ ) )  

= e - t  
r ( s )  d~(~),  

where F(s, a) denotes the generalized gamma function: 

r ( s ,  ~)  = e - ~ ( ~ + ~ )  ~-~ d~. 

The case c~=0, gives us the gamma function itself: F(s )=F(s ,  0). To carry on the proof, 

we need a lemma concerning the growth of the generalized gamma function. 
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LEMMA B.3. For s, c~E ]0, +oc[, the following holds: 

r(s, ~) ~< e(l+~Fr(s). 

Proof sketch. Break up the two integrals defining F(s) and F(s, a) into two parts 

each, from 0 to 1, and then from 1 to +oc. One then obtains 

~o 1 e-~(u+a) 8-1 du <~ e(l+c~)~01 e-~u~-l du, 

and 

l+~176  s - 1  d u  ~ (l+a)S~l+~176 s-1 du, 

from which the assertion is immediate. [] 

We now proceed with the proof of Proposition B.2. By (B.4), Lemma B.3, the 

estimate t ( 1 - u ) ~ t  (in the setting of (B.4)), and the fact that the expression ( l + a )  s 

appearing in Lemma B.3 increases with a, we arrive at 

0 ~ Fd~(t)-tSF,(t) < el-t(l+t)s#([O, 1]), 

as asserted. [] 

For a fixed value of the real parameter s, 0~<s<+oo, !U, will denote the subset of 

consisting of all FE~U for which t~-~(l+t)SF(t) belongs to !U. From Proposition B.2 we 

may derive the following useful result. 

COROLLARY B.4. Suppose ~=I~[#] for some s, 0 < s < + c ~ ,  and some #E~3. Denote 

by Fe the function F~(t)=(l+t)-~Fdt,(t), tER+. Then Fe belongs to ~U~, and Fe~Fe, 

that is, the functions Fe and F e are comparable on R+. 

Proof. It is clear from Proposition B.1 and the definition of the classes ~U~ that Fe 

is in ~Us. Moreover, that FQ• e follows from Proposition B.2, and the fact that both Fe 

and/~Q are bounded away from 0 and +oo on a finite interval. [] 

PROPOSITION B.5. Fix a real parameter s, 0 < s < + o o ,  and let F be an element of 

~U~. Then there exists a continuous function Q: ]0, 1]-~]0, +oo[ in ~3~ such that Fe~F.  

Proof. Since F is in ~s,  the associated function F s (t)= ( l+t)SF(t) ,  t ER+, belongs 

to !U. By Proposition B.1, we may then find a # E ~  of the form d#(t)=~(t) dt, where 

~: ]0, 1]-~]0, +oo[ continuous, with the property that Fdp~F ~. Define ~ E ~  by p=I~[#], 

which is then continuous on ]0, 1], and takes values in ]0, +oo[. By Corollary B.4, the 

function FQ(t)=(l+t)-~Fd~(t), tER+, has Fe~F~. On the other hand, F e ~ F ,  which 

does it. [] 
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LEMMA B.6. Suppose p=Is[#] for some s, l < s < + c ~ ,  and some # e ~ .  If two real 
parameters x and y are given, satisfying 0 < y < x < l ,  then the following estimate holds: 

28-1  
~(x)-2~-1~(~) ~< r--~.(10,xll(x-y)~-l. 

Proof. An elementary estimate of the integral expression defining Is [#] yields 

1 
uO(X) =Is[#](x) < ~(s),(]O,x])xS-1, 0 < x <  1. (8.5) 

We split the verification of the lemma into two cases. 

Case 1. Y~�89 Then by (B.5), 

1 2 ~-1 2 ~-1 
~(x) < r - ~  " ( ]0 'x l )~ ' -~  = C(s) , ( ] 0 , x l ) ( � 8 9  < r - ~  , ( ] 0 , x ] l ( x - y ) ' - ' , ( )  

which is even better  than requested. 

Case 2. �89 We then have the partition O < 2 y - x < y < x <  1 of the interval [0, 1], 

and split the integral defining ~ (x ) -# (y )  accordingly: 

f2y--x 
jo ( ( x - t ) ~ - l - ( y - t ) ~ - l ) d # ( t )  

+ ~ i _ x + ( ( x - t ) ~ - l - ( y - t ) ~ - ' ) d # ( t ) + ~ :  ( x - t )  ~-I d#(t). 

The last two integrals allow themselves to be estimated as follows: 

((x--t) s-1 - ( y - t )  s- l)  d#(t)+ ( x - t )  8-1 d#(t) <~ 2~- l ( x -y )S - lp ( ]2y -x ,  x]). 
y--x+ + 

Moreover, the first integral is estimated by 

~02y--x f 2y-- x 
((x--t) s-1 --(y--t) s-1) d#(t) <. (2 s-1 - 1) Jo ( y - t )  ~-1 d#(t) 

~< ( 2  ~ - 1  - 1)r(s)o(y). 

Adding these estimates together, we arrive at 

2~-1 
Lo(x)- LO(y) ~ ~-~7---~ (x-- y)s- l ~( ]2y-- x, X])-~- (21-s -- 1)Q(y), 

~(S) 

from which it is immediate that 
2s-1 

Q(~)-2~-l~(y) ~< ~-=~(x-y)~-~(]2y-~,/]) ,  

and the assertion follows. 

The proof of the lemma is complete. [] 
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LEMMA B.7. Suppose ~oE~3~ for some s, l < s < + c o ,  and let 8 satisfy 0 ~ 8 < + c o .  

We then have the estimate 

sup{  (x - -y ) l+O Q(y) : y �9 ]0, X[}/> CQ(X) (s+O)/(s-1) , X �9 ]0, 1], 

where C=C(s ,  Q,8), 0 < C < + c ~ ,  is a constant. 

Proof. The function ~=/~[#] �9 is continuous, because it is the integral of 5 - 1  [#], 

which is in LI([0,1]). We choose y, 0 < y < x ,  as a solution to the equation Q(y)= 

2-SQ(x), which is possible, by the intermediate value theorem. When we plug this y 

i n t o  Lemma B.6, we obtain 

2 - ' r ( s )  x (x-y) 

and if we raise both sides to the power ( l + 8 ) / ( s - 1 ) ,  and multiply by Q(y), we get 

[ 2_~F(s) ~(1+0)/(~-1) 
( x - - y )  1+SLg(y) ~ 2-- ~--'~]) ; ~(X) (s+o)/(s-1),  

as asserted. [] 

PROPOSITION B.8. Given s, a, ~, 7, and ~, subject to l < s < + c ~ ,  0 ~ a < + c ~ ,  

0 < f l , 7 < + c c ,  and QE~3s, the following estimate holds, 

fo +~t~(e-~tXFe(7t) - l )  ~ <~ < x <<. C o ( x ) - ( ~ s + a + l ) / ( s - 1 ) ,  dt 0 1. 

where C=C(s ,  ~, a, ~, 7), 0 < C < + c o ,  is a constant. 

Proof. The change of variable u=7t  shows that  without loss of generality, we may 

take 7=1.  

Let y be a real parameter satisfying 0<Y~<�89 Then, in view of the fact that  g is an 

increasing function, and the more or less trivial inequality 

fy 
l e - t  l _e - (1 -y ) t  e -tu du e- tY  -- -- _~_ e - tY  

t t 

1 - e  - t / 2  e - t y  
>/ e - t y  - >/ - -  0 ~ t  < q-(X), 

t 2 ( t + l ) '  

we have 

fo 1 f a Fe(t) = e-t~y(u) du > e-t~Q(u) du 

~yl e - tY  
>~(y) e - t~du>/o (y )2 ( t+ l ) ,  0 < t  < +co. 
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For a given x, 0<x~<l ,  suppose that  y in addition has 0 < y < x ,  so that  by the above 

estimate, 

f +~e-t~Fo(t)-ldt<" \ - ~ ]  Jo t~(t+ l)O e x p ( - t 3 ( x - y ) ) d t  

O(y)3(x_y)l+a+3' 

for some positive constant C(c~, 3)- The assertion of the proposition now follows from 

Lemma B.7. [] 
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