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I n t r o d u c t i o n  

In a celebrated paper Lempert [12] and later in a more general setting Klimek [9], Poletskff 

[20], and Zaharjuta [27] introduced the notion of a pluricomplex Green function g for 

a bounded convex domain G in C N. Assuming that G contains the origin, this Green 

function with pole at 0 is given by 

g(z) :=supu(z) ,  z E G, 

where the supremum is taken over all plurisubharmonic functions u: G ~ [ - c o ,  0[ with 

u(w)~log ]wl+O(1 ) as w-*0. This function is plurisubharmonic and it is continuous on 

G \  (0} if g lOG:--O. Lempert's. results imply that also the sublevel sets Gx = {zig(z)< x}, 
x<0,  are convex. If 

Hx(z):=sup{Re(w,z)lg(w)<x }, z e C  N, 

denotes the supporting function of Gx c R 2N, we introduce a type of directional Lelong 

number 

DG(a) := lim Ho(a)-Hx(a) e ]0, co], a �9 S := {z �9 C/Vl Iz I = 1}, 
xTo --X 

which measures the rate of approximation of cOG by cOGx, x<0,  in the direction of a. In 

the case that there is a biholomorphic mapping r of the ball U:= {z �9 C NI I zl < 1} onto 

G with r  this quantity is closely related to the notion of an angular derivative. 

For instance if N = I ,  DG is bounded if and only if Ir is bounded on G (see [16]). 

We show that the lower semicontinuous function DG is connected with the boundary 

behavior of another extremal plurisubharmonic function, which has been introduced by 

Siciak [23], [24], [25]. We put H:=Ho and consider 

VH(Z)=SUpU(Z), z � 9  N, 
u 
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where the supremum is taken over all plurisubharmonic functions u ~ H  on C N with 

u(z)<.log[zI+O(1 ) as z--*oo. This function is plurisubharmonic and continuous. It 

attains the values of H on a compact star shaped set 

p z  := {ha 10 < ~ ~< 1/C~(a), a e s}, 

the numbers CH(a) being in ]0, ~] .  If N = I ,  PH is the set of accumulation points of the 

Fekete-Leja points with respect to H (Siciak [23]). 

THEOREM I. There is some C>~I such that CH~DG~CCH.  

As a corollary of Theorem I we obtain: 

THEOREM II. The following assertions are equivalent. 

(i) Dc (or CH) is bounded. 

(ii) There is some C>0 with 

GcGx+C(-z)U, z<O. 

(iii) There is a plurisubharmonic function v<.H with v(z)~<log ]zl+O(1 ) as z---~c~ 

which coincides with H on a neighborhood of zero. 

Using well known facts about the angular derivative of conformal mappings, for 

N = I ,  we have studied in [16] whether DG is bounded. For N>~2, we investigate DG by 

investigating CH. If OG is of class C 1,1 then CH is bounded. A maximal cone F c C  N 

of linearity of H with R-linear hull L(F) is called quasi-real if the maximal C-linear 

subspace L(F)MiL(F) of L(F) intersects F only in the origin. 

THEOREM III. If G is a polyhedron and F ~ is the union of all quasi-real cones of H, 

then CH is bounded on F'fSS and is infinite on the complement. 

Since the support of (ddCH) g is the union of all maximal cones F of linearity of 

g for which L(r)niL(r)={O}, this shows that supp(ddCH)NcF '. If g>~2, there are 

examples for which this inclusion is proper. 

The results presented here have been developed from the author's investigations [16] 

and [17] for the case N = I .  

The organization of the present paper is as follows. In part one we collect some facts 

about the functions u(z ,x) :=Hx(z)  and v(z, C):=CVH(z/C)  where z e C  N, x<0, and 

C>0. These facts (in particular one due to Demailly [4]) show that both functions are 

members of two classes of one-parameter families of plurisubharmonic functions which 

are mapped onto each other by Kiselman's [7] partial Legendre transformation. We 

obtain -~2(., 1)<~v(., 1)=VH. Applying Zaharjuta's two-constants-theorem for analytic 
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functionals [26]-[28], we prove that XHsupzecN(VH(z)--Hx(z)) is a convex function of 

x<0, which implies v(-, 1)=VH <~--~(., C) for some C>0.  By the "boundary behavior" 

of the partial Legendre transformation, this proves Theorem I. 

In part two we study the boundary behavior of the pluricomplex Green function 

by investigating the function CH. We obtain that the finiteness of the limit DG is a 

local property of OG. We obtain a subordination principle. Using ideas of [18], [19], and 

Krivosheev [11], we prove Theorem III for polyhedra. 

1. The "boundary behavior" of  the partial Legendre transformation 

Kiselman [7] has introduced the partial Legendre transformation for families of plurisub- 

harmonic functions. In Kiselman [8] and Demallly [5] this transformation has been ap- 

plied to study different types of Lelong numbers. We consider two classes of families (one 

in the range and one in the source of the transformation) having appropriate bounds and 

investigate how a type of directional Lelong number behaves under the transformation. 

It turns out that both classes have a prominent member. 

Notations. For z, wEC N, we write (z,w/:=~-~N=l zi~i and M:=(z, zl 1/2. We put 

B(R):~-(zeCNI [z I <R} for R~>O, S:~{zeCNI I z l = l } ,  D : = { z e C I  Izl < 1}, H_ : = { z e C  I 

Re z<0}, R+:={xER[x />0} ,  R _ : = - R + .  We will use the conventions ~/a=cx~ and 

a/cr for each a>0,  and inf O=c~. 

The pluricomplex Green function of a bounded convex domain in C g. Let G C C g be 

a bounded convex domain with 0 E G. By H: C N--*R+ we denote its supporting function 

H(z) = sup Re (w, z). 
wcG 

According to Lempert [12], Klimek [9], Poletskff [20], and Zaharjuta [27], we consider 

the pluricomplex Green function g: G ~  [-oo, 0[ with pole at 0 

a(z)=supu(z) 
U 

where the supremum is taken over all plurisubharmonic functions u: G--*[-oo,0[ with 

u(w)<~loglwl+O(1 ) as w~O. Then (see Klimek [9]) g is plurisubharmonic, maximal 

(i.e., (ddCg)Y--o), continuous on G\{0} (where glOG:-O) and has logarithmic pole at 

0, i.e., there is C > 0  such that 

- C  <~ g(z)-log [z[ ~< C as z --* 0. 
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1.1. THEOREM. For each z � 9  we have 

g(z) = inf{log r I 0 <~ r < 1, 3f: D ~ a analytic, f(O) = O, f (r)  = z}. 

Proof. By Lempert [13, Theorem 1], and Klimek [9, Corollary 1.7], we have g (z )=  

log tanhka(z ,0 ) ,  zEG, where ka denotes the Kobayashi metric. Thus the assertion 

follows from the definiton of ka (see e.g. [9]). 

Essential for our analysis of the boundary behavior of g is the following result which 

extends a classical one of Study to several complex variables. 

1.2. LEMMA. With G also the sublevel sets 

a.:={zealg(z)<x}, z < 0 ,  

a r e  c o n v e x .  

Proof. (See Lempert [12, p. 462].) By 1.1, for each x<0 ,  

Gx = {z �9 G I ~0 ~< r < e x, f :  D --* G analytic with f (0)  = 0, f (r)  = z} 

= {f ( r )  I 0 ~< r < e x, f :  D ~ G analytic with f (0)  = 0}. 

Let a, bEGx, a~b and 0<)~<1. Choose f,g:D---*G analytic with f ( 0 ) = g ( 0 ) = 0 ,  and 

O<~rl,r2<e x such that f ( r l )=a  and g(r2)=b. We may assume rl<~r2~O. Since G is 

convex, the function h:D---~G, h(z)=Af(zrx /r2)+(1-A)g(z)  is well defined, analytic 

and satisfies h(0)=0.  Thus h(r2)=Aa+(1-)~)bEGx. 

1.3. PROPOSITION. The function u: CN• H _ - * R + ,  

u(z, if) := sup{Re (w, z)[ w �9 G, g(w) < Re ~}, z �9 C N, ff �9 H_,  

is continuous and plurisubharmonic, u(z, ~) does not depend on Im ~. There exists M > O  

with U-le*]zl  ~u(z,  x )~Ue* l z  I for all zEC  N and x<0 .  We have limxT0 u(z, x)=H(z) ,  
z EC  N. 

Proof. Since (z, w)~-~Re (5, w) is continuous and pluriharmonic, it follows from De- 

mailly [4, Corollary 6.12], that  u is continuous and plurisubharmonic. Since g has a 

logarithmic pole at 0, there is C e R  with log Iwl-C<~g(w)<~log IwI+C, weG, and thus 

u(z,x)<<, sup Iwllzl<<.ec+*lzl, z e C  N, x < 0 .  
g(w)<z 

On the other hand, for each zEO g and x<0 ,  there is weOG. with u(z,x)>~iwlizI= 

eg( )-Ctz t =e -Clz I 
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Another proof for the plurisubharmonicity of u can be obtained from the following 

representation, which holds by 1.1, 

u(z, ~) = sup sup Re (f(a), z), z E C N, ~ �9 g_,  
f [aI<exp Re ~ 

where the first supremum is taken over all analytic functions f :D-*G with f(O)=O. 
Clearly, u is continuous in z. On the other hand for each f and z, the function r  

sup{Re (f(a), z) i la I < e x p R e  ~} is plurisubhaxmonic, hence convex in Re r Thus, as in 

Demailly [4, Corollary 6.12], we conclude that u is continuous. 

1.4. Remark. For each x<0 ,  we have G~={zEGig(z)<.z }. 

Proof. By 1.3, in particular the function u is continuous and x~-*u(z, x) is strictly 

increasing in x<0 ,  hence u(z, x)=inf~<u<0 u(z, y) for all x < 0  and z E C  N. This gives 

N cy= n 
x ( y ~ O  x<y,~O 

1.5. THEOREM. Let u:CNxH_--*R+ be a plurisubharmonic function such that 
u(z,~)=u(z, Rer for all zEC N and r Assume that there is M > 0  such that 
u(z,x)<.Me~izl, zEC N, x<0 .  The hypotheses imply that x~--~u(z,x), x<0 ,  is non- 
decreasing and convex. For zE C N, we put u(z, 0):----limxT0 u(z, x) E R+ and 

D~,(z) := lim u(z, O)-u(z, x) = sup u(z, O)-u(z, x) E [0, CO]. 
xT0 --X x<O --X 

Then the function v: CNx ]0, CO[ ---~R+, 

v(z, c):= c):= in 0(u(z, z)-xc), z E C  N , C > 0 ,  

is upper semicontinuous, is plurisubharmonic in z, is concave and nondecreasing in C (fi 
is called the "partial Legendre transform" of u). Moreover, 

(i) v(z, C)<<.min{Clog+(Mizl/C)+C, Mizl} for all zEC N and C>0;  

(ii) v(z, cr v(z, C) =u(z, O) for all z E c N ;  

(iii) n~(z)=inf{C>O I v(z , C)=v(z, Co)} for all zEC N, i.e., v(z, C)=v(z, Co) if and 
only if D~(z)<.<C. 

If u(., x) is positively homogeneous for each x < 0  (i.e. u(tz, x)=tu(z, x), t~O, zE 
oN), then v(z,C)=Cv(z/C, 1) for all zEC N and C > 0 .  

Proof. The convexity and monotonicity of x~-~u(z, x) follows, since r ~) is 

subharmonic and does not depend on Imp. By Kiselman [7, Theorem 4.1], v is upper 

semicontinuous, plurisubharmonic in z and concave in C. 
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Direct calculation shows that  

v(z, C) <~ inf (MeXizi-xC) = ~ CI~ M[z[ >t C, 
x<0 [ M[z[, MIz [ <~ C, 

which equals the right hand side of (i). (ii) is a well known property of the Legendre 

transformation. To prove (iii), fix z E C  N and note that  for C > 0  we have: D~(z)<~C r 
u(z,O)<.u(z,z)-cx for an x < 0  , ,  

1.6. Notation and remark. For u from 1.3, we denote the lower semicontinuous 

funct ion Du by Do.  We note t hat DG I S > 0 and t hat v (z, 1) - log + I zl = - ~(  z, 1) - log + I zl ,  

zEC N, is bounded. 

In contrast to the case of one complex variable, Dc  may be bounded on S even if 

OG is not of class C1: 

1.7. Example. Let H~ Clv---*R+ be a norm on C N, i.e., H ~ is convex, H~ 
]A]H~ for all AEC and z E C  N, and H ~  if and only if z=0.  Then g(z)=log H~ 
zEG:={zEClV[ H~ < 1}, is the pluricomplex Green function of G. Let r R_--*R_ be 

convex with r  and r x~<0, for some m~>0. If H is the supporting func- 

tion of G, then u(z, ~):=er162 is continuous, plurisubharmonic, does not depend 

on Imr and satisfies u(z,x)<~em(maxaesH(a))eXlz [ for all z E C  N and x<0.  For all 

zEC N, 
1 - e 4~(~) 

Du(z) = lira - - H ( z )  = ~b'(0)H(z). 
xTO --X 

If r  the function u coincides with the function u from 1.3 and thus DG=H. 

Proof. By Klimek [10, Theorem 5.1.6 and Lemma 6.1.3], log H ~ is plurisubharmonic 

and the pluricomplex Green function of G. Since r is convex and increasing (the latter 

fact follows from the upper bound for r the function ~-*r ~) is subharmonic on H_.  

Since also H is a norm on C N, hence (z, r is pturisubharmonic on 

CN• H_.  Thus u(z, ~) =exp(r ~) +log H(z)) is plurisubharmonic. 

Further examples are given in [16] ( N =  1) and in section two. 

Siciak's extremal function. Let s denote the set of all plurisubharmonic functions 

u on C N with u(z)~<log + Izl+C~, zEC N, for some C~>0. Fix the supporting function 

H: CN--*R+ of a bounded convex domain in C N containing the origin. We introduce 

Siciak's extremal function v: CN• ]0, cx~[---~R+ with respect to H (see Siciak [25]), 

v(z, C) := sup u(z), z E C Iv, C > O, 
11 

where the supremum is taken over all plurisubharmonic functions u with u/CEs and 

u<.H. Note that  v(z,C)=Cv(z/C, 1) for all z E C  ~v and C>0 ,  and that  v ( - , c~) :=  

supc>0 v( . ,  C)~<H is positively homogeneous. 
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1.8. LEMMA. Let u � 9 1 6 3  with u<~H. Then 

u(z) <. log+ ( H /  R)+ max g(w) ,  z E C  N, R>O. 

Proof. (Siciak [25, Lemma 3.4].) Fix R>0.  By the hypothesis we have 

u < max H(z) =: M on B(R). 
I~I-.<R 

Furthermore u - M  El:. Hence u - M  is dominated by the pluricomplex Green function 
of C N \ B ( R )  with logarithmic pole at infinity, i.e., u(z)-M<~log+([z[/R), z e C  N. 

1.9. PROPOSITION. The function v: CNx ]0, oo[--~R+ is continuous, v is plurisub- 

harmonic in the first argument, and concave and nondecreasing in the second one. For 

M:=maxzes  H(z), we have 

v(z,C)<.min{Clog+(M[z[/C)+C,M[z[},  z e C  N, C > 0 .  

v( . ,  1) is maximal (i.e., solves ( dd%( . , 1))N=0) on the complement of the set 

PH := {z �9 cNI v(z, 1) = H(z)}. 

Proof. By 1.8 and the proof of 1.5, all functions uEl: with u<.H have the uniform 
bound 

u(z) < inf (log([zl/n)+RM)--min{log+(M[z[)+l,h~/Izl}, z � 9  n.  
o<n~<l~l 

This shows v( . ,  1)* El: for v(z, 1)* =hm supr z v(r 1), zEC N. Since H is upper semicon- 
tinuous, also v(-, 1)* ~H.  Thus, the upper envelope v( . ,  1) is plurisubharmonic. Since 
H is uniformly continuous on C N, by the usual smoothing procedure for the plurisub- 

harmonic function v( . ,  1), we get smooth functions une l :  with v( . ,  1)<~un<~H+l/n, 

hEN.  Thus v( . ,  1)=sup,~eN(Un--1/n) is lower semicontinuous (see Siciak [25, Proposi- 
tion 2.12]). Hence, v( . ,  1) is continuous. Since v(z, C)=Cv(z lC,  1) for all z e C  g and 

C>0,  v is continuous, too. Clearly for all C>0,  

v(z, C) <~ Cmin{log+(Mlzl/C)+l, MIz/CI}, z e C N. 

If C, D>O and 0<A<I ,  it follows immediately from the definition of v( . ,  AC+(1-A)D),  
that Av(., C ) + ( 1 - A ) v ( . ,  D)<.v(. ,)~C+(1-A)D). The maximality of v(-,  1) outside 
PH follows by standard arguments solving locally an appropriate Dirichlet problem for 

the complex Monge-Amp~re equation (see Bedford and Taylor [2, Corollary 9.2]). 
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1.10. THEOREM. Let v: CNx ]0, oo[--*R+ be upper semicontinuous and such that 
v(z, C) is plurisubharmonic in zEC N and concave and nondecreasing in C>0. Assume 

that there is some M > 0  such that 

v(z,C)<~min{Clog+(Mlzl/C)+C, Mlzl), z e C  N, C > 0 .  

For zEC N we put v(z, oo):=limc-.oo v(z, C)ER+ and 

C~(z) := inf{C > 01 v(z, C) = v(z, oo)} e [0, c~]. 

Then the function u: CNx H_ ~ R +  (the "partial Legendre transform" of - v  ), 

u(z,r Rer  z E C  N, ( E H _ ,  
C > 0  

is plurisubharmonic and does not depend on Im ~. Moreover 

(i) u(z,x)<.MeXlzl /or all zEC N and x<0, 

(ii) limxT0 u(z, x)=v(z,  oo) for all z e C  N, 
(iii) C~(z)=D~(z) for all z e C  N (see 1.5). 

If v(z, C)=Cv(z/C,  1) for all zEC g and C>0, then u( . ,  x) is positively homogeneous 

for each x<0. 

Proof. By Kiselman [7, Theorem 4.2], u is plurisubharmonic. By the hypothesis and 

by the proof of 1.5, we get for all zEC N and x<0, 

u(z, x)<~ sup ( inf (MeViz i -yC)+xC) = MeXlzI . 
C > 0  y<0  

This gives (i). (ii) is a well known property of the Legendre transformation. (iii) follows 

from the definition of Cv, from 1.5 (iii) and the following remark. 

Remark. By well known properties of the Legendre transformation (see e.g. Rocka- 

fellar [21]), we have for u as in 1.5 and for v as in 1.10, 

u(z,x)  = s u p ( i n f ( u ( z , y ) - y C ) + x C ) ,  
C > 0  y<0  

v(z, C) = inf (sup (v(z, D ) + x D ) - x C ) ,  
x<O D>O 

z E C  N, x < 0 ,  

z E C  N, C>O. 

1.11. Notation. For v from 1.9, we write CH:=C,. 

1.12. Example. Let H: CN--~R+ be a norm o n  C N (see 1.7), and let v be Siciak's 

function with respect to H. Then v(. ,  1)--H on the set G~ I H(z)~<l} and 

v(. ,  1 ) = l + l o g H  on C N \ G  O. In particular CH=H. 
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Proof. Let u be the function which equals H on G o and equals 1+log H on C N \ G  0. 

By the hypotheses, log H is plurisubharmonic and log H(z)-log Izl is bounded on C g. 

Thus u belongs to /:, is bounded by H, and thus bounded by v( . ,  1). On the other 

hand, applying the maximum principle to the restrictions to the complex lines through 

the origin, we get for each 0<~<1 that ( 1 - e ) v ( . ,  1)~<u on CN\G O. 

The relation between DG and CH. Up to the end of the chapter, let G be a bounded 

convex domain in C N containing the origin and with supporting function H. 

1.13. PROPOSITION. If v i8 Siciak's function with respect to H, then 

v(z, oo) = e--,oolim v(z, C) = Jimo Cv(z/C, 1) = H(z), z E C N. 

Proof. Choose u:CNxH_---*R+ according to 1.3. Then by 1.3 and 1.5, for each 

C>0,  we have -~i(. ,C) /CEs and supc>0 -~2(., C ) = u ( . ,  0 )=H.  Thus H<.v(. ,oo)<.H. 

1.14. THEOREM. For u and v as in 1.3 and 1.9, respectively, we have 

inf(u( . ,x)-x)<~v(. ,1)  and C~<~Dv. 
x<o  

Proof. By the reasoning of the previous proof, we have -~(.,C)<<.v(.,C) for all 

C>0,  and moreover DG=D,~=C_~>~Cv=CH. 

In 1.20 we will prove a converse of 1.14. In view of 1.13, the function C/~ has the 

following interpretation: 

1.15. Remark. If v is Siciak's function with respect to H, then the set of contact 

PH (see 1.9) satisfies 

PH = {Aa ] a E S, 0 ~< A ~< 1/CH(a)} 

and is a compact set star shaped with respect to the origin. We have {zEC g ] v(z, C)= 
H(z)}=CP~ for each C>0.  There is R0>0 such that for all R>~Ro (see Siciak [25]), 

v( . ,  1) = V~,H := sup{u(z) I u e s with u ~< H on E := B(R)}. 

For N = I  the set PH coincides with the set E*(H) of all accumulation points of the 

Fekete-Leja points of E with respect to H. (This follows from Siciak [23, (3.12), The- 

orem 2.1], and from the following observation: If aEC\{0}  and v( . ,  1) is harmonic in 

a neighborhood of a then v(a, 1)< H(a), since otherwise, subtracting the linear function 

z~--*(Ov(a, 1)/Oz)z+(Ov(a, 1)/05)5, we may assume that v(- ,  1) has the local expansion 

v(z, 1)=Re(c(z-a)'~)+O(]z-at n+l) for some n~>2 and cEC\{0};  but this would not be 
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compatible with the property v()~z, 1)~>Av(z, 1) for all 0~<)~<1 and zEC, which holds 

by the definition of Siciak's function.) This shows that PH is the set of all accumulation 

points of the (n+l)-tuples (z0 (n), ..., z(,")), hEN,  of numbers in C which maximize the 

value of 

Proof. OEPH because H~>0=H(0). For z=aa, aeS, ~>0, we have Izl<~l/CH(z/Izl) 
r CH(z)~<I r v(z, 1)=H(z). 

Put rn:=minzes H(z)>0,  M:=max~es H(z), and choose Ro~>max{1,1/m} with 

M~<Rom-logRo. Let R~>Ro. Then 

inf (sin-log s) = R m -  log R. 
s>~ R 

For the plurisubharmonic function VE,H, by 1.8, we get for all Izl~>R, 

V~,H(Z) <~ log IzI+M ~< Izlm <~ H(z). 

This shows that VE,H <~v(., 1). Obviously v(-, 1)<<.VE,H. 

Notation. By AH we denote the space of all entire functions f on C N, i.e., f 6  

A(cN),  satisfying the estimate 

If(z)l ~< Cexp(r/g(5)), z �9 C N, 

for some C>0  and some 0<r /<l .  Let u: CNx ]--c~, 0[--*R be the continuous function 

from Proposition 1.3. Recall that u(z,x) is positively homogeneous in zEC N and is 

strictly increasing in x<0  with limit0 u(z, x)=H(z) for each z � 9  N. The space AH can 

also be written as 

AII= U {f  6 A(CN) l lifiix < co}, 
z < O  

Ilfll~ := sup IS(z)l exp(-u(~,z)) .  
z 6 C  N 

The following result is essentially Zaharjuta's two-constants-theorem for analytic 

functionals (see [26, Theorem 4.1], [27], and [28, Theorem II.1.1]). Since [26]-[28] are not 

accessible very well, we will give an independent proof of the following theorem. 

1.16. THEOREM. If u /s from 1.3, then for each f6AH\{O} the nonincreasing 
function z~-*log II:llx, z<0  (with values in RU{oo}), is convex. 

The proof of Theorem 1.16 requires some preparations. 
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Notation. For all z, wEC N we write z.w:=(z,W). If ~2 is a bounded subset of C N 

which contains the origin in its interior, then 

~ ' : = { z e O g i z . w ~ l  for all w e f t }  

is of the same type. ~ is closed (open) if ~ is open (closed). Since G is convex, we 

have Gr'=G. For further information on G' and the history of this notion, we refer to 

Andersson [1]. 

By U: CN--* [0, co[, we denote the pluricomplex Green function with pole at infinity 

of the compact (and not pluripolar) set G ~, i.e., 

V ( z )  = sup z e c N, 

where the supremum is taken over all uEl :  with u ~ 0  on G ~ (see Klimek [10] for elemen- 

tary properties and for the history of this Green function). By the following theorem, 

the properties of the Green function g will imply that  U is continuous, hence plurisub- 

harmonic, and that  U(z)>0 if and only if z e C N \ G  '. 

1.17. THEOREM. If we put g( w ) :----O for all w E C N \ G , the following formula holds: 

U ( z ) = -  inf g(w), z � 9  g. 
Z ' W ~ I  

In particular, we get for the level sets {zECNI U(z)<~-x}=G~ for all x<0.  

Proof. In Lempert [14, Theorem 5.1 and equation (5.4)], the formula for U is proven 

for the case that  G is strictly convex and has a smooth real analytic boundary (see the 

remark on p. 884 of [14] for the domain D:=G~). Here, strict convexity means that  for 

each zEOG, there is a ball which contains G and which is tangent to OG in z. 

In the general case we choose a sequence Gj, j �9 N, of strictly convex domains with 

smooth real analytic boundary such that  0 �9 Gj C G j+l for all j �9 N and with G =  UjeN Gj. 

This can be done by applying the usual smoothing procedure to the gauge function of 

G (see Schneider [22, Theorem 3.3.1]) but with a real analytic kernel (see Cegrell and 

Sadullaev [3, Theorem 1,2]). If we add ~[z[ with sufficiently small e>0,  this yields gauge 

functions of convex domains with the desired properties. 

We have Gj'DGj+I ~, jEN,  and G~=NjeNGj ~. If gj and Uj, j � 9  denote the 

corresponding Green functions (extended to functions on CN), we know that  g=inf jeN gj 

and U=supjeN Uj on C N (see Klimek [10, Corollary 6.1.2 and Corollary 5.1.2]). We thus 

get for all z � 9  N, 

U(z)=sup sup (-gj(w))= sup sup(-gj (w))- - -  inf g(w). 
j E N  z . w = l  z . w = l  j E N  z . w - ~ l  

If x < 0  and zEC N, then U(z)<.-x r g(w)>~x for all z .w=l  ~ z .wr  l for all w�9 r 
zEG~ ~. 
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1.18. LEMMA. Let xo<O and let u be plurisubharmonic on {zEC N] U(z)<-Xo}.  

Then the function 

v : x H  max u(z), X o < X < 0 ,  
u(z)~<-x 

is convex. 

Proof. Since U is a continuous exhausting function for {zeCNI U(z)<-xo}  and is a 

maximal plurisubharmonic function on {zeCNI 0 < U ( z ) < - x 0 }  (see Bedford and Taylor 

[2, Corollary 9.2]), the assertion follows from Demailly [4, Corollary 6.12]. For sake of 

completeness we give a direct proof here. Let Xo<Xt<X2<xa<O. For O<U(z)<-Xo 
define 

~(z) := r(xl) x3+U(z) ~r (xz) -u(z ) -Xl  
X 3  - - X l  X3  - - X l  

_ ~(Xl)-~(x3) v(z)~ ~(Xl)XZ-~(x3)Xl 
X 3 - -  X 1 X 3 - -  X 1 

Since T(Xl)~>V(X3), the function w is a continuous maximal plurisubharmonic function 

with u<~w on the boundary of {zECNI -x3<~U(z)<~-Xl}. Thus by the minimum prin- 

ciple of Bedford and Taylor (see Klimek [10, Corollary 3.7.5]), also u(z)<.w(z) for all 

-x3  <. U(z) <~ -Xl .  In particular 

x ~ \ X 3 - - X 2  , t ~ X 2 - - X l  
T(x2) = U(z)~<-x2max u(z) • U(z)=--z2max h)(Z) - ----T(Xl)x3_X 1 - t - T ( X 3 ) X ~ _ X  1 . 

This proves the convexity of T. 

Notation. Let G ~ be defined as above. We note that  for the compact sets G= ~, x<0 ,  

the following holds: G ~ C G= 2 ~ C G=I~ =int  G=~ ~ (the interior of Gx~ ~), whenever Xl < x2 < 0, 

and G~=nz<0 Gx ~. By A(G ~) we denote the space of all germs of analytic functions on 

G ~, i.e., 

A(G') = U A~176 �9 
z<O 

Here A~176 ~) denotes the space of all bounded analytic functions on G~.  To check 

bounds for the functions in A(G ~) we introduce the norms 

Ilfll~ : =  sup lY(z)l, f E A~176 x < 0. 
z E G z  J 

The space A(G) ~ of all analytic functionals on A(C N) which are carried by some 

compact subset of G, can be written as 

A(G)' = U {~ e A(CN)'I I~1~ < ~}, 
x < 0  
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I~l; := sup{l~(h)l I h e A(C N) with sup [h(z)[ ~< 1}, x < O. 
z E G ~  

Proof of Theorem 1.16. By the Laplace transformation (see e.g. Hbrmander [6, 4.5]) 

TL: A(G)'--~ AH, TL(#)(z):= #(exp(z.w)), z e C N, 

and by the Fantappi~ transformation (Martinean [15, Theorem 2.2]) 

(1) 
, zea', 

the space A(G)' can be identified with AH and A(G'). To be more precise, for all x < y < 0  

there is C > 0 such that 

(a) fITL(~)II~<I~I* and II:/'F(~)ll~<Cl~l; for all #cA(G)' with l#l;<co; 
(b) ]TLlfI;<~CHflI~ and ]TFlgl;<.CllgH~ for all feaH with [lfil~<co and all 9E 

A~tG '~ k x i .  

We apply Lemma 1.18 to u=log ]fl for all functions fEA(G')\{O}. Then by Theo- 

rem 1.17, A(G') has the following property (even with 5=0 and C--1): For all Xl <xa <0, 

0<~<1,  and all 5>0 there is C>~1 such that with x2:--(1-a)xl+wxa, 

clIfll~l-~[tfll~-~, for all f E (1) 

We claim that AH has the same property (1) but with "fEA~(Gxl_a ' )  " replaced 

by "fEA~ with IIfH,~-a<co" (the corresponding property for the intermediate space 

A(G)' is Zaharjuta's two-constants-theorem): Let Xl<Xa<0, 0 < a < l  and 5>0 be arbi- 

trary and put x2 := (1 -~ )x l  +~x3. We choose xi-�89 <xi, i= 1, 2, and put 5 : :  �89 

Then ~2:=(1-c~)~1+(~3<x2 and ~i-5>xi-5, i=1,2. For each feAH we denote 

the corresponding function in A(G') by ]. By (a), (b) and by (1), there are con- 

stants Ci>l, i=l, ..., 4, such that the following holds: If fEAH with IifiIx~-6<co, then 

[I][[~1_$,.< 61 [[ fl[x~_a < co and 

l - - a  c~ ~ l - - a  

This proves the property (1) for A~. Now fix fEAH\{O} and put a(x):=log Ilfllxe 

RU{co}, x<0. Let I be the interior of the set {x<Ola(x ) <co}. We assume that XlEI, 

then [Ifiixl-~<cr for all sufficiently small 5>0. By the homogeneity of H, also the 

functions fk :=f("/k) k belong to A/~ and [[fkii=l-a= [if Ilk1-6 <co for all keN.  Inserting 

these functions in (1) we get 

1 / k  1 - - a  a []f[[x2 ~<C Hfllxl-6[if[[xa-~, k e N ,  
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hence 

f l - a  f ~  Ilfll   II II ,- ll 
Since this holds for arbitrary ~f>0, we obtain 

~(x2) < ( l - a )  lira a ( y ) + a  lira a(y).  (2) 
y l x l  Ylxa 

The proof will be finished when we prove that  the nonincreasing function a is continuous 

on I .  Assume that  there is x e I with limvTx a(y)>lim~tx a(y). Since a is nonincreasing, 

we may choose Yl < x < y 3  <0 in I with x ~  �89 +Y3) so close to x such that  

( l - a )  lira a(y)+a lira a(y )<a((1-a)y l+aY3)  for all 0 < a <  �89 
YTYl YTY3 

For any such a we may consider y2:=(1-a)yl  +ay3 and get a contradiction to (2). 

1.19. COROLLARY. Let u be from 1.3 and v be from 1.9. Put 

sup (v (z ,1 ) -u (z ,x ) ) ,  x < 0  
zEC N 

Then a is convex, nonincreasing, and limxT0 a(x)=O. 

Proof. By 1.15 and Siciak [25, Theorem 4.12], we have 

v(~, 1) = sup sup i log [p(z)l, z �9 C iv ' 
h E N  pEPn 

where P,~ is the set of all complex polynomials p of degree at most n with [p(z)l~< 

exp(nH(z) ), zEC N. This gives 

1 
a(x) = sup sup - sup (log [p(w/n)l-u(w,x)),  x < O. 

nENpEPn n wEC N 

By 1.16, a is convex. Clearly a(x)~O for all x<0 .  On the other hand 

l ima(x)  = sup (v(z, 1 ) - g ( z ) )  < 0. 
xTO zEC N 

1.20. THEOREM. Let G be a bounded convex domain in C N containing the origin 

and with supporting function H. Let u and v be from 1.3 and 1.9, respectively. Then 

there is C~  1 with v( . ,  1) ~inf~<0(u(. ,  x ) - x C )  and DG <~ CC~. 

Proof. By 1.6, 2log Izl<.~inf~<o(U(Z,X)-X2)+O(1) for Izl--,co. Hence there is R > 0  

such that  

v(z, 1 )~  in f (u(z ,x ) -x2) ,  Izl>~R. 
x<o 
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By 1.19, there are x0<0  and C'>.1 with a(x)<~-xC ~ for all x0~<x<0. We choose C/> 

max{C', 2} such that for all zEB(R)  and all X<Xo, 

x) _ �89  xo) 
z o - Z  ~ �89 ~< C, 

hence u(z, Xo)-xoC<~ u(z, x ) - x C .  Thus 

v(z, 1) ~< inf ( u ( z , x ) - x C )  = inf (u(z, x ) - x C )  = -ft(z,  C), Izl ~< R. 
zoo<X<0 x< 0  

By the definition of Cv, this gives Da=D~,=C_a<~CC,=CCH. 

1.21. THEOREM. For a bounded convex domain G of C N containing the origin and 

with supporting function H the following assertions are equivalent. 

(i) CH is bounded on S. 

(ii) DG is bounded on S. 

(iii) There is some C > 0  with 

G c G x + C ( - x ) B ( 1 ) ,  x < 0 .  

(iv) There is some v E f_. with v <. H and which coincides with H on some neighbor- 

hood of zero. 

Proof. (i) r (ii) holds by by 1.14 and 1.20. (ii) r (iii) holds by [16, Lemma 3.4]. 

(i) r (iv) holds by the definition of CH. 

2. Investigation of  CH 

In the case of one complex variable, as it has been shown in [16], much is known about  

the function DG, because of its close relationship to angular derivatives of conformal 

mappings, which have a rich theory. In the present section we prefer to investigate CH 

to derive analogous results for the case of several variables. We start with the following 

crucial lemma. 

2.1. LEMMA. Let H be the supporting function of a bounded convex domain in C N 

which contains the origin. For each bounded open set D c C  g and each c > 0  there is 

C > 0  such that the following holds: If u is plurisubharmonic on D with u<~ H on D and 

limsupr z u(~)<<.H(z)-~ for zEOD, then there exists U<~H with U/CE~ and u<.U 

o n  D .  

Proof. Let v be as in 1.9. Since v ( . ,  C), C > 0 ,  and H are continuous, by 1.13 and by 

Dini's theorem, limc--.~ v(z, C)=H(z)  uniformly for zEOD. Hence we can choose C > 0  

5-945201 Acta Mathematica 172. lmprim~ le 29 mars 1994 
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such that  v(z, C)~>H(z)-~>limsupr u((),  zeOD. We put U(z):=max{u(z), v(z, C)} 

for zED, and U(z):=v(z,C) for zEc, lV\D. Then U is plurisubharmonic on O N (see e.g. 

Klimek [10, Corollary 2.9.15]), U<.H, U/Ces  and u<.V on D. 

The fact that  CH is bounded on a certain subset A of ,9 does not change if we 

translate G, as long as the translated set contains the origin. The following shows that  

"CH is bounded on A" is even a local property of OG. 

2.2. PROPOSITION. Let Hi be the supporting ]unction of the bounded convex domain 
Gi with 0EGi, i=1,2. Let A c S  be closed. Fori=l,2,  let Ai be the set of all hES such 

that there are aEA and wEOGi with Re (w, a)=Hi(a) and Re (w, 5)=Hi(5). We assume 
that A:=.41=.42 and that ~i has an open neighborhood V in S with HI IV=H2IV. Then 

CH11A is bounded if and only if CH21A is bounded. 

Proof. By vi we denote Siciak's function with respect to Hi, i=1 ,  2. Assume that  

Vl(.,C)=H1 on A for some C>0 .  Put  

L(z) := sup Re (w, z), z E C N, 

where the supremum is taken over all wEOG2 such that  there are aEA with Re (w, a ) =  

H2(a). By the compactness of A and OG2, the supremum is in fact a maximum. By 

the definition, we have L<<.H2 and LIA=H2IA. If z e S  and L(z)=H2(z) then there 

are wEOG2 and aeA with Re(w,a)=H2(a) and Re(w,z)=H2(z). Hence zE2~, by the 

definition of A. This shows that  L(z)<H2(z) for all zES\~i. 

We choose g~>0 with g>~maxzes(Hl(z)-H2(z)). We put 

:= min (H2(z)-L(z))>O and c . -  
zes\v ~+K" 

We consider the plurisubharmonic function v :=ev l ( . ,  C ) + ( 1 - r  On F(V):={talt>~ 
0, aE V} the hypothesis gives 

v .< sH1 + ( i - s ) H 2  =/-/2. 

For z~F(V),  we get 

V(Z) ---- H2(z)'~-~(Vl (Z , C ) -  g2(z))- (1-e)(H2(z)-L(z)) 

<<. Hu(z)+~glzl-(1-e)~lzl--  H2(z). 

Furthermore v=cHI+(1-r on A. For sufficiently large Izl, we have v(z)<. 
~Vl(Z, C ) +  (1-E)H2 (z)~< H2(z)- 1. By 2.1 and the definition of v2, this shows v2(.,  C ' ) =  

/-/2 on A for some Ct>  0. 

The following trivial lemma is the counterpart of the subordination principle for 

angular derivatives. 
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2,3. LEMMA. Let G1cG2 be bounded convex domains in C ~ both containing the 

origin. Let A c S  with HllA=H21A. Then CH21A<~CHxlA. 

Proof. With the notation of the proof of 2.2, we have vl ( . ,  1) ~<//1 ~< H2 hence vl ~< v2. 

Since v l ( . ,  c~)=HI=H2 =v2(-, c~) on A, CH2 I A<~CHllA follows from the definition of 

CH~, i=1,2. 

In view of Example 1.7, for N~>2, smoothness of OG is not necessary for CH to be 

bounded on S, but it is sufficient in the following sense. 

2.4. LEMMA. Let G={z6CNI dist(z, K)<~} for some ~>0 and some compact con- 

vex set K c C  g and let OEG. I f  H is the supporting function of G then CH is bounded 

on S. In particular CH is bounded for each bounded convex domain G containing the 

origin with boundary of class C 1'1. 

Proof. Note that G =K+B(~)  hence H(z)=Hg(z)+~lzl ,  zEC N, where HK denotes 

the supporting function of K. We consider the plurisubharmonic function 

u(z) :=HK(z)+clog Izl+c,  z �9 c N. 

Then 

u=H on S, 

u(z)<~Hg(z)+r ) f o r z e C  N, 

u(z) <. H(z ) -e ( l z [ - log  Izl- 1) H ( z ) -  1 for sufficiently large Izl. 

By 2.3, there is C>0  with v( . ,  C )=H on S. 

2.5. LEMMA. Let H be the supporting function of a compact convex set in C g. 

Let a E C  g be such that there is yES  and an unbounded domain D of C with OED and 

such that z~-*H(a+zr?), zED, is a~ine (i.e., convex and concave). Then there is no 

plurisubharmonic function v<.H on C g with v(a)=H(a) and v < H  outside a compact 

set. If  in particular H is the supporting function of a bounded convex domain in C y 

containing the origin, then CH(a)=c~. 

Proof. If there were such a function v, then u: D--*R, 

u(z ) :=v(a+z~)-H(a+z~) ,  z e D ,  

is subhaxmonic, nonpositive with u(O)=O. Thus u - 0 .  Since D is unbounded, this con- 

tradicts the fact that v equals H only on a compact subset of C g. 

The following lemma shows how to deal with Cartesian products. 
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2.6. LEMMA. Let Gt be a bounded convex domain in C jvz containing the origin with 
supporting function Hi, /=1,  ..., n ( N = ~ l ~ l  Nz). Let H be the supporting ]unction of 
G:=I=Iln_-i Gz, i.e., H(z)=Ez~=, Hl(zi), z6YI~= 1 c N' = c  N. Then there is C > 0  with (see 
1.9) 

i I  ~ 1 pH, c P H c C Y I P ,  ' 
n 

1-=1 1~1 

and 
n 

l<~l<~n 
/=1 

Proof. Let v and vl be Siciak's function with respect to H and Hi, respectively 

( /=1,  ..., n). It follows from the definition of Siciak's function that  

n 

..... N .  

l=1 

This gives ( l / n )  1-L~=I PHz CPH and hence 

1C~(z)<~ max CH,(Zl), z=(z~)t_-i ..... . e C  N. 
n l<~l<~n 

To prove the other estimate, choose R > 0  with PHCB(R) and v(z, 1 ) ~ < H ( z ) - i  for all 

Izl>~R. Let a=(al, ...,a,~)EPH and l<<.k<~n. Then 

Uk,~(Zk) := v(al, ..., ak-x, zk, ak+l, .-., a,~; 1)-- E H,(a,) <. nk(zk), zk �9 C :V~, 
l r  

is plurisubharmonic on C Nk with Uk,~(Zk)~Hk(zk)--I for all [z~[~R. By 2.1, there is 

Ck >0 with 

Hk(ak ) = Uk,~(ak ) <. vk(ak, Ck ) < Hk(ak ), 

hence vk(ak,Ck)=Hk(ak) and akECkPH~. With C:=maxk=l  ..... n Ck, this proves the 

second part of the assertion. 

The remaining part  of this section is devoted to an investigation of the case of a 

polyhedron. We will prove a converse of 2.5. We refer to Rockafellar [21] for standard 

notations for convex sets. 

Notation. In the sequel, linearity and dimension always concern the field of real 

numbers. If FCC n we write F(F):=( ta l t~O,a �9  ). If F c C  n is a cone (i.e., tFcF  for 

all t>0) ,  by L ( F ) c C  ~, we denote its linear hull. By int F we denote the relative interior 

(in L(F)) of r .  
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A cone F is called "real" if L(F)AiL(F)={O} and "complex" otherwise (see Krivo- 

sheev [11]). We call it "quasi-real" if rn(L(r)niL(r))={o}. 
Let H: Cn--}R be the supporting function of a compact convex set. A convex cone 

F will be called a maximal cone of linearity for H if { ( z ,H(z ) ) l zEF  } is a face of the 

epigraph epi H =  {(z, y) e c N •  R I Y >1 H(z)}  of H,  or what is the same if H tF is linear 

(i.e., H is convex and concave) and for each convex cone F ' C C  n on which H is linear 

and with F ' n i n t  F ~  we have F 'CF.  In this case, F is closed. If H is linear on a convex 

cone F, by F c C  ~, we denote the maximal cone of linearity for H with FAint  F r  In 

this case int F Cint F. 

2.7. LEMMA. Let H be the supporting function of a compact convex polyhedron 

in C N. Let F C C  N be a maximal cone of linearity .for H. Then there is an open convex 

cone U c C  g which contains in tF,  there are O<.l<.N, the supporting function H'  of a 

compact convex polyhedron in C N-t, a linear function A: C t --* R such that after a suitable 

C-linear transformation of C Iv the function H has the representation 

g ( z ) = H ' ( z ' ) + A ( z " ) ,  z = ( z ' , z " ) e u c c N - t x C  t. 

H(z)  >~ H'(z ' )  + A(z")  holds for all z e C  N (we use the convention H'  =O and A = 0  if l = N  

or l=0,  respectively). L(F)OiL(F)={O} x C t C C  g - t  x C t. For l<N,  let P: cN--*C g - t  

denote the canonical projection. H'  is linear on P(F) and L(P(F))=L(P(F)). P(F) is a 

real cone in C g - t .  / ]z 'eP(F)  and z=(z ' ,  z " ) e C  N-t x C t we have that z e F  i f  and only 

if g ( z ) = Y ' ( z ' ) + A ( z " ) .  

Proof. By the hypothesis, there are bl, ..., bM EO with 

H ( z ) =  max Re(z,  bi), z E C  N. 
l~ i~M 

We may assume that  there is l ~ m < . M  with 

F := {(z, H(z)) I z E F} = N {(z, y) E c N •  R [ y  = Re (z, bi)}nepi H, 
i = 0  

where all hyperplanes y--Re (z, bi) occur which support ep iH in F. If aE in tF ,  then 

Re(a, bi)<H(a) for all i = m + l , . . . , M .  Otherwise the hyperplane y--Re (z, bi) would 

support epi H in all points of the face F ,  which is a contradiction to the choice of m. 

Thus H(z)=maxl~<i<~m Re (z, hi) for all z from a neighborhood of a. Taking the union 

over aEint  F of those neighborhoods we get an open set U in C g (we may assume that 

U is a convex cone) with int F C U and 

H ( z )  = m a x  Re  (z, b~), z �9 U. 
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We consider the maximal C-linear subspace E:=L(F)NiL(F) of L(F) and put  h= 
d imcE .  Applying an appropriate C-linear transformation of C N, we may assume that  

E = { 0 }  x C t c  c N - I x  C I. Since H is linear on F, we obtain for each a Eint F that  

N 

z"~-*H(a+(O,z"))=H(a)+ max ~-~ Rezk-bi,k, 
l~i~m k:~--l+l 

Z"=(ZN-~+I,...,ZN), is affine in a zero neighborhood of C I. Hence we get for all k= 
N - l +  l, ..., N and i , j = l ,  ..., N that  bi,k--bj,k--:b k. This gives 

N 

g(z )  = l<m<aXm((Zl,..., zg-l) ,  (b,,1,. . . ,bi,N-l))+ ~ Rezkb k =: g ' (z ' )+A(z") ,  
k=N-I+ l 

for all z=(z ~, z " ) E U c C N - l x  C ~. Obviously H(z)>~H~(z~)+A(z ") holds for all zEC N. 

For the sequel, we assume that  l<N.  First, from the representation of H,  we obtain 

that  H '  is convex and concave hence linear on P(F)  and thus P ( F ) c P ( F ) ,  by definition. 

Since int FcU,  we have 

O # int F -- ( ( P ~  • Cl)nU)nint F. 

By the representation of H,  H is linear on the convex cone ( P ( F ) •  Thus 

(P(F)  • C I ) n U c F = F .  Since U is open and P ~  • C l is a convex cone, we have 

L( (P(F)  • CI )nU)  = L ( P ~  • Cl), 

and thus 

N ~ N 

L(P(F) )  = P(L(P(F)) • C *) = P(L(P(F) • C*)) C P(L(F) )  = L(P(F)) .  

N 

To argue by contradiction we assume that  L(P(F))=L(P(F)) is complex. Then 

there is ~? E L(P(F)) \ {0} with C77 C L(P(F)) .  After a suitable C-linear transformation of 

C g-g we may assume that  ~=(0 , . . . ,0 ,  1 )EC N-I. If we apply the previous arguments 

with H and F replaced by H '  and P(F) ,  we get an open cone U ' c C  N-t with int P ( F ) C  

int P (F)  C U' and some b N-l E C such that  

H'(z') = H"(zl,. . . ,  ZN-l-1) +Re  ZN_tb n- l ,  z' = (Zl,..., Zg-l) E U'. 

For the open cone P - I ( U ' ) ,  we have P-I(U' )DP-I( in tP(F))DintF.  Hence we may 

assume that  UcP- I (U ' ) .  This shows that  H is linear on E 'nU where E':={O}xC z+l 
and thus E ' c L ( F ) .  This contradicts the choice of I. 
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To prove the remaining part of the assertion, we choose a linear functional B: cN- - ,R  

such that  its graph is a supporting hyperplane for epi H which touches epi H precisely 

on F. We show that  B(z ' ,z")--H'(z ' )+A(z")  for all z'~P(r) and z " E C  l. Because 

of the continuity of A, H' and B, it is enough to prove this for z 'EintP(F)=P(intF).  

Let z'EP(intF) and choose w"EC z with (z' ,w")EintF. Then there is a neighborhood 

of w"EC 1 on which H(z' , .  ) equals B(z' , .  ) and H'(z ')+A. Since both functions are 

affine on C l, we have B(z' , .  )=H'(z ' )+A on C t. We thus proved our claim. If now 

g(z )=H'(z ' )+A(z")  with z'eP(r) and z " E C  t, then by the previous remark, we get 

g ( z ) = S ( z ' ,  z") and hence z=(z ' ,  z " ) e r .  

2.8. LEMMA. Let H be the supporting function of a compact convex polyhedron 

in C ~. Assume that F c C  n is a real maximal cone of linearity for H. Then for each 

a ~ F there is a continuous plurisubharmonic function Va : C n--* R with va <. H, such that 

va(z)=H(z) if and only if z=a. Moreover, va(z) is a continuous function of (a,z)E 

FxC ~. 

Proof. Since F is real, as shown in [18, Lemma 4], there is a C-linear orthogonal 

mapping T: C n-+C n with T(L(F))cR ~. Hence we may assume that L(F)C R n. By the 

hypothesis, there is bEC n with 

F={zECniH(z)----Re(z,b)} and H(z)>~Re(z,b) forallzEC ~. 

If we put [-l:=H-Re(.,b) then/~>0 and F={zEC ~ ]/~r(z)--0}CR n. Since/~ is the 

maximum of finitely many linear functions, this shows that there exists e > 0 with/~(z)/> 

~-]~jn= i ]Ira zj] for all z E C ~. We consider the continuous subharmonic function h: C--* R+ 

which is harmonic on the disc D and which equals r if Ir It is well known 

that 

~ ( h ( ~ ) - I I m  ~I) = h(O) = 2/7r. 

For a E F C R n we define 

n 

j=l  

By [18, Lemma 3], the plurisubharmonic function ha satisfies ha(z)<.~-~d~=l [Imzj[ if 

[z-ai>~v~, and ha(z)<~-~j~___l [Imzj[+2/Tr if [z-ai<~x/~, where equality holds if and 

only if z=a. We define the plurisubharmonic function 

va(z) :=~(ha(z) -2 /r )+Re (z, b), z E C n. 

Then va does not exceed H. If z E C  n then va(z)=H(z) if and only if z=a. 
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2.9. LEMMA. Let H be the supporting function of a compact convex polyhedron 

in C N. Let F c C  N be a maximal cone of linearity for H. We assume that F is quasi- 

real. Then there exists a plurisubharmonic function v<~H on C N with v = H  on FMB(1) 

such that v < H outside some compact set. 

Proof. We apply 2.7. We use the notations of 2.7, omit the C-linear transfor- 

mation, and recall that  L(F)MiL(F)= {0} x CIC C N-l x C I. Since F is quasi-real, we have 

FM({0} x Cl)----{0}, in particular l<N.  Hence FN(P(K)  x C t) is bounded for the compact 

set K:=FMB(1) .  

Fix a e K  and put a':=P(a). By Lemma 2.7, for F ' : = P ( F )  we have L(F')=L(P(F)). 

Hence by 2.7, the cone F ~ is real. We apply Lemma 2.8 to H ~, F ~ and a ~. Let v~,: C N-t --*R 

be according to 2.8 and define 

va(z) := v,,, (z ')+A(z"),  z = ( z ' ,  z t ' )  E c N - I x  C l = C N.  

Then va is plurisubharmonic on C N, satisfies va(z)<~H'(z')+A(z")<~H(z) for all 

( z ' , z " ) = z e C  N. Moreover v~(a)=H'(a')+A(a")=H(a). Vice versa, let zEC N with 

va(z)=H(z). Then by the previous estimate, we get va, (z ')=H'(z ')  hence z'=a' EP(K) ,  

by 2.8. Furthermore H'(z ' )+A(z")=H(z)  and thus zEF, by 2.7. Thus we have zE 

r n ( P ( g )  • C~). Now define 

v = sup va. 
aEK 

Then v<~H, and by the continuity of (a,z)~-,v~(z), v is continuous and plurisub- 

harmonic on C N. Let z E C  N with v(z)=H(z) .  By the compactness of K,  there is a se- 

quence (an)heN in K with limn-.o~ a n = a e K  and H ( z ) = l i m n - ~  va~(z)=v~(z). Hence 

zEFM(P(K) • Cl). Thus v<H outside a compact set. 

2.10. PROPOSITION. Let H be the supporting function of a compact convex poly- 

hedron in C N. Let F~:=U F where the union is taken over all quasi-real maximal cones 

F of linearity for H. Then there exists a plurisubharmonic function v<~H on C N with 

v< H outside some compact set and with v=H on F~MB(1). Since we may replace U F 

by U i n t F  in the definition o f f  ~, we have c N \ F ~ = U i n t F  where the union is taken over 

maximal cones of linearity for H which are not quasi-real. 

Proof. For F as in the definition of F ~, choose vr according to 2.9. Then v :=maxr  vr 

suffices. Since the relative boundary of a quasi-real closed maximal cone of linearity for 

H is the union of such cones (of lower dimension), we may replace U F by U int F in the 

definition of F ~. 
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2.11. THEOREM. Let G be a bounded open convex polyhedron in C N containing the 

origin and with supporting function H. Let F' be as in 2.10. Then CH is bounded on 

F'MS and CH=_Oo on (CN\F ' )MS.  The support of (ddeH) N, which is the union of all 

real maximal cones of linearity for H, is contained in F ~. 

Proof. Choose v according to 2.10. Since v is upper semicontinuous, there is a ball 

B(R), R~>I, and some e>0  such that  v < . H - e  on OB(R). By 2.10, 2.1, and by the 

definition of CH, there is C > 0  with Ctt<~C on F'NS. If a E ( c N \ F ' ) M S ,  by 2.10, there 

is a maximal cone F of linearity for H with aEint  F and which is not quasi-real. Hence 

there is some fIEF\{0} with C r l c L ( F  ). It follows that  the set D:={r162 
is an unbounded domain which contains 0 and on which ~-4H(a+~?) is affine. Hence 

CH(a)=oe,  by 2.5. 

The remaining assertion follows from the geometrical characterization of the support 

of (ddCH) N ([18, Proposition 10], and Krivosheev [11]) and since each real cone is quasi- 

real. 

2.12. Remark. If the convex polyhedron of 2.11 is the Cartesian product of convex 

polyhedra in C, then F' and the support of (ddeH) N coincide. For N =  1, this is obvious. 

The general case follows from 2.11, 2.6 and [19, Lemma 3.4]. 

If N~>2, it may happen that  the support of (ddeH) N is a proper subset of F': 

2.13. Example. Let 

{ 14 1} a= z=(zl, z2)=(xl,...,x4)ec  lx l< 
i = 1  

Its supporting function is H: C2--*R 

H(z)  = H(Xl,...,  x4) = max{exi ]~ e {-1 ,  1}, i = 1, ..., 4} = max Ix/i, 
i = 1 , . . . , 4  

z E C  2. Then the support of (ddCH) 2 is the union of all maximal cones of linearity for H 

(m.c.1.) of dimension one or two. F' (see 2.10) contains in addition some (but not all) 

m.c.1, of dimension three. It contains no m.c.1, of dimension four. 

Proof. Note that  the polar set G O equals 

{ z e C 2 i H ( z ) ~ < l } = { ( X l , . . . , x 4 ) e C  2] max ]x i ]< l} .  
i = 1 , . . . , 4  

Of course each m.c.1, of dimension one is real. If F is an m.c.1, of dimension two, then 

r=r([a,b]) for some face [a,b] of G O of dimension one and where a, be{ -1 ,1}  4 are 

extremal points of G O which differ precisely in one coordinate. One easily checks that  
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L(F)r  Hence r is real. If r is an m.c.1, of dimension bigger than two, then 

L(F)NiL(F) has at least the dimension two, i.e., F is complex. By 2.11, this gives the 

assertion about the support of (ddCH) 2. To describe F', we note that  if F is a m.c.1, of 

dimension four then trivially FA(L(F)A iL (F) )=Fr  Hence F is not quasi-real and 

thus i n t F c C 2 \ F  ~. We now consider two examples of m.c.1. F of dimension three. If F : =  

{zEC 2 I x l = x 2 = l } O O G  ~ then F is a face o f G  ~ of dimension two. It is the convex hull of 

the extremal points (1, 1, 1, 1), (1, 1, 1 , -1) ,  (1, 1, -1 ,  1), and (1, 1 , -1 ,  -1) .  For r : = r ( F ) ,  

we get L ( r ) = R ( 1 ,  1) • C and hence L(r)niL(r)=(o, 0) • c .  Obviously FN((0, 0) • C ) =  

(0} which shows that  F c F ' .  If F : = { z E C 2 I x l = x 4 = I } A O G  ~ then F is the convex hull 

of the extremal points (1, 1, 1, 1), (1, 1, -1 ,  1), (1, -1 ,  1, 1), and (1, -1 ,  -1 ,  1). For r : =  

r (F) ,  we get L(r)niL(r)=R(1, 0, 0, 1)+a(0,  1, -1,  0). Since (1,0, 0, 1)= �89 1, - 1 , 1 ) +  
1 1 ~( , - 1 ,  1,1)EF, F is not quasi-real and hence int F c C 2 \ F  '. 
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