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1. I n t r o d u c t i o n  

Global extremal functions were first introduced by J. Siciak [Sic1], in the spirit of the 

classical work of F. Leja [Lej], in order to extend classical results of approximation and 

interpolation to holomorphic functions of several complex variables. Later V.P. Zaha- 

riuta [Za2] gave another definition of the global extremal function based on the following 

class of plurisubharmonic functions on cN:  

s v(z)<~cv+log+]z[,VzeCN}. (1.1) 

This class is called the class of plurisubharmonic functions of logarithmic growth (or 

minimal growth) on C N. 

Then given a compact set K c C  N, we define its global extremal function on C N by 

the formula 

Lg(z)=LK(z;cg):=sup{v(z):ves z eC  g. (1.2) 

It has been proved by Siciak that  the function LK is locally bounded on  C N if and only 

if K is nonpluripolar in C N. In this case, the upper semi-continuous regularization L~  

of the function LK in C g belongs to the class s  N) (see [Sic2], [K1]). Moreover, if 

U~C g is a domain and I(cU is a nonpluripolar compact subset, then the following 

fundamental inequality, known as the Bernstein-Walsh inequality, holds: there exists a 

constant R=R(K; U) > 1 such that  

tifllu < IIflIKR d, Vfe~d(CN), Vd>~ 1, (1.3) 

where ~d(C N) is the space of holomorphic polynomials on C N of degree at most d. It is 

known ([Sic2]) that  the best constant R:=R(K; U) in the inequality (1.3) is related to 



114 A. ZERIAHI 

the L-extremal function by 

1 
R(K; U) = exp (SUpzEu LK(Z)) - - :  caPL (K; U) (1.4) 

The constant caPL(K; U) is called the L-capacity of the compact set K with respect 

to U. 

The class of plurisubharmonic functions with logarithmic growth, which was con- 

sidered earlier by P. Lelong in another context ([Lel2]), plays a fundamental role in 

pluripotential theory (see [BT2]) as does the class of logarithmic potentials in logarith- 

mic potential theory (see [Ran]). For instance, for any fixed domain U~C N, the set 

function caPL(. ; U) is a Choquet capacity on C N ([BT1], [Sic3]) which is comparable to 

the Monge-Amp~re condenser capacity ([AT]). 

On the other hand, the class of plurisubharmonic functions of logarithmic growth 

can also be defined on an algebraic subvariety of C g (see [Sa2], [Ze2]), and it turns out 

that  in this case again, the associated extremal functions play a fundamental role (see 

[Zel], [Ze2], [Ze3]). 

Now suppose that  X is an irreducible (proper) analytic subvariety of C N and K 

is a nonpluripolar compact subset of X. Then, since K is now pluripolar in C N, it 

follows from the above-mentioned result of Siciak that  the upper regularization L~: of 

the function LK in C g is identically equal to +oc. Nevertheless, it is a natural question 

to ask whether the semi-local BernsteimWalsh inequality (1.3) holds for a pair (K, U), 

where U~ X is a domain in X and K is a nonpluripolar compact subset of U. The answer 

to this question was given by the beautiful criterion of algebraicity of A. Sadullaev [Sa2], 

which says that  such an inequality holds on the analytic set X if and only if X is algebraic. 

Our first motivation was to make this criterion more effective by understanding the 

algebraicity of a local analytic set in C y in terms of the semi-local behaviour of its 

natural class of plurisubharmonic functions of restricted logarithmic growth. 

It turns out that  this investigation can be carried out in a more general context where 

precise results can be obtained. Namely, in the spirit of P. Lelong [Lel2], we introduce an 

abstract definition of a Lelong class of plurisubharmonic functions on a complex analytic 

space X, and investigate the main properties of their associated extremal functions. 

In this general context we first obtain, in the spirit of the classical works of S. N. Bern- 

stein [Ber] and J .L.  Walsh [W], an abstract semi-local Bernstein Walsh inequality for 

a natural graded sequence of complex conic spaces of holomorphic functions associated 

to a given Lelong class on X. Actually this new approach provides us with a general 

and natural framework for more general "Bernstein inequalities", which have been re- 

cently proved in special cases by C. Fefferman and R. Narasimhan for algebraic manifolds 

([FEN1], [FEN2]). This point of view will be developed later in a subsequent paper. 
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Then we prove a fundamental  theorem of algebraicity, which gives a sharp asymptot ic  

upper  bound of the Hilbert function associated to a given Lelong c lass / :  on the complex 

space X in terms of its so-called minimal Lelong number, which describes the semi-local 

behaviour o f / :  on X.  This result seems to be new even in the case of an (irreducible) 

algebraic subvariety Z C C N, where we obtain sharp estimates comparing the degree of 

algebraicity of Z with the minimal Lelong number of the Lelong class of plurisubharmonic 

functions of logarithmic growth on Z. 

Finally, from our fundamental  theorem of algebraicity, we deduce a new semi-local 

criterion of algebraicity which contains the local criterion of A. Sadullaev [Sa2] as well 

as the global criterion of W. Stoll [St2] thanks to a fundamental  est imate of J .P .  De- 

mailly [D1]. 

2. Abstract  Lelong classes and assoc iated  extremal  funct ions  

It  turns out tha t  the class / : (C N) defined by the formula (1.1) has some interesting 

properties which make the theory of extremal functions with logarithmic growth useful. 

These properties will be taken as axioms and will permit  us to develop a semi-local version 

of the theory of extremal functions with growth based on the fundamental  concept of 

"Lelong classes". 

2.1. Admiss ib le  classes and the  Lelong property  

All the complex analytic spaces considered here will be reduced and irreducible. Plurisub- 

harmonic functions on a complex space have been studied by J. E. Forn~ess and R. Nara- 

simhan [FoN], and also by J .P .  Demailly [D1]. Pluripotential  theory in complex spaces 

has been investigated in [Bed], [D1], [Ze2]. 

Let X be a complex space of dimension n and Xreg the complex manifold of its 

regular points. Recall that  a function u: X--+[-oc ,  +c~[ is said to be (weakly) plurisub- 
harmonic on X if and only if u is locally bounded above on X and plurisubharmonic 

o n  Z r e g .  

For any function u:X-->[-oc, § defined on X,  it is convenient to consider the 

(generalized) upper  regularization of u on X defined by the formula 

u* (x ) :=  lira sup u(y), 
y--+ x 

yC Xreg 

for x c X .  

If u is locally bounded above on X then u* is upper  semi-continuous on X and is 

called the upper  semi-continuous regularization of u on X.  
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If u is plurisubharmonic on X, then the function u* is upper semi-continuous on X 

and coincides with u on Xreg. 

Let us denote by PSH(X) the cone of plurisubharmonic functions on X which are 

not identically - o c  on X, so that  P S H (X )C  L~oc(X). The space L~oc(X ) will be endowed 

with the L~or induced by local embeddings of X into complex Hermitian spaces. 

Then it is well known that  the cone PSH(X)  endowed with the L~oc-topology is closed 

in L~oc(X ) (see [Ho2]). 

In order to extend the theory of global extremal functions, we need to introduce the 

following important  definition. 

Definition 2.1.1. Let s  be a class of plurisubharmonic functions on a 

complex space X. 

(1) The c lass / :  is said to be an admissible class of plurisubharmonic functions on 

X i f / :  contains all the (real) constants and is translation-invariant, i.e. if uEs and a E R  

then u + a E E .  

(2) If ~ t c X  is an open subset of X, the class s is said to satisfy the Lelon9 property 
on ~t if the following condition holds: 

Lelon9 property (LP): For any subfamily A4 C s define the set of pointwise bounded- 

ness of A/l in ft by 

: =  sup v(x)< 
vE2r 

Then either the set B ~  is pluripolar in 12 or the family A/[ is locally bounded above 

on ~t. 

(3) An admissible class s c PSH(X)  will be called an abstract Lelong class (or simply 

a Lelong class) on X if it is a closed subset of PSH(X)  which satisfies the Lelong property 

(LP) on X. 

Let s  be an admissible class of plurisubharmonic functions. Then for a 

given subset E�9 we define the s  function of E on X by 

AE(x)=AE(X;s vlE <<. O}, x E X .  (2.1) 

Moreover, as before, given a subdomain U~X, we associate with the set E a "capacitary" 

constant defined by 

capt:(E; U ) : =  e x p ( -  sup hE(x) ) ,  (2.2) 
xEU 

and call it the s of the set E with respect to U. This number always satisfies 

the inequalities 0~<capL(E; U) ~< 1. 

Let us quote here some known examples for later references (see [Ze2]). 
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Examples. Let X be a Stein space admitting a continuous plurisubharmonic exhaus- 

tion p:X--+[-cc ,+oc[  which is maximal off some compact subset of X in the sense of 

A. Sadullaev (see [Sa3], [Zl]). Following the terminology of W. Stoll [Stl], such a func- 

tion will be called a (weak) parabolic potential on X, and (X, p) will be called a parabolic 

.space. 

Then it is possible to prove that  the associated class of plurisubharmonic functions, 

s  := {v EPSH(X):  3cv e R, v(x) <~ cv+p+(x), V x e X } ,  (2.3) 

is an abstract Lelong class on X (see [Ze2]). 

In particular, if X = Z  is an irreducible algebraic subvariety of C N, then it is known 

that  there exists on Z a special parabolic potential P0 such that  po(x)- log Ixl is bounded 

off some compact subset of Z, where ]. ] is any complex norm on C g (see [Sa2], [Ze2]). 

Then the associated class s Po) coincides with the class s163  l) defined by the 

formula (2.3) with p replaced by the function l(x):=log Ix[ for xCZ.  

Therefore the class s  is a Lelong class on Z, which will be called the class of 

plurisubharmonic functions of logarithmic growth on Z. Observe that  in the particular 

case where X = C  n, the logarithmic potential itself is a parabolic potential on C n. 

The following result, which gives several characterizations of the Lelong property, 

will be useful later. 

THEOREM 2.1.2. Let s  be an admissible class of plurisubharmonic func- 

tions on a complex space X .  Then the following properties are equivalent: 

(i) The class s satisfies the Lelong property (LP) on X .  

(ii) For each aE X there exists an open neighbourhood w of a such that the class s 

satisfies the Lelong property (LP) on w. 

(iii) For any nonpluripolar subset E@X,  AE is locally bounded above on X .  

Off') For any nonpluripolar subset E @ X  and any domain U@X, capL(E; U)>0.  

(iv) There exists a subset E ~ X  such that AE is locally bounded above on X .  

(iv') There exists a subset E � 9  such that for any subdomain UG X ,  capL(E; U)>0.  

(v) There exists a subset E c  X and a real-valued function q, locally bounded on X ,  

such that the following inequality holds: 

w(x) <~supw+q(x), V x c X ,  V w c s  (2.4) 
E 

Proof. Let us first prove that  all the conditions but (ii) are equivalent. Observe that  

all the implications (iii) ~ (iv) ~ (v) and the equivalences (iii) w (iii') and (iv) ~ (iv') 

are obvious. 
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The implication ( i ) ~  (iii) is easy to prove. Indeed, let E@X be a nonpluripolar 

subset. Then consider the subclass of plurisubharmonic functions 

M:={w~s 

Since E c B ~ ,  B~  is also nonpluripolar in X, and then the condition (i) and the defi- 

nition of the Lelong property (LP) imply that  J~4 is locally bounded above on X, which 

proves (iii), 

Now let us prove the implication ( v ) ~  (i). Let AJ C s  be a subclass such that  

B:={xeZ:u(x)<+oc} is nonpluripolar, where u(x):=sup{w(x):wc.A4}. We want to 

prove that  u is locally bounded above on X. By condition (iv), it is enough to prove 

that  SUPxcE u(x)<d-cx:). Assume that  the opposite holds. Then there exists a sequence 

(wj)j>~l in the class A/I such that  mj:=SUPEWj>~2J for j>~l. From the condition (iv), 

we deduce the inequality 

wj(x)<<, mj+q(x), VxCX, Vj>~ I. (2.5) 

From (2.5) it follows that  the sequence of plurisubharmonic functions (wj -ms) is locally 

bounded above on X.  

Since limsupj_++oo suPE(W j - -mj )=0 ,  applying Hartogs's lemma, we conclude that  

there exists x0 e X such that  lira s u p j ~ + ~  (wj ( x 0 ) - m s ) > - 1 .  Taking a subsequence if 

necessary, we can assume that  the following inequalities hold: 

wj(xo)-rnj >~ - 1 ,  Vj ~> 1. (2.6) 

W "-X-~+cr 9-J(wj--mj) is plurisubharmonic on X. Moreover, by the Now the function .-z..,j=l 
definition of the set B, for any xEB we have u ( x ) < + o c ,  and then 

w(x) <. u ( x ) -  = 
J 

since mj>~2J for any j~>l. Moreover, from (2.6) it follows that  w(x0)~>-l .  Thus the set 

B is pluripolar in X,  which proves our claim and then (i). 

Now since the implication (i) =~ (ii) is obvious, it is enough to prove that  (ii) =~ (iii). 

Let E c X  be a nonpluripolar compact set. Take an open set V such that  E c V ~ X .  By 

the condition (ii), for any point aCV, there exists a neighbourhood wa of a such that  

the class L satisfies the Lelong property (LP) on wa. Since we know that  (i) and (iv) are 

equivalent, it follows that  there exists a compact set K~ C w~ such that  the L-extremal 

function of K~ is locally bounded on wa. Then, using a standard compactness argument, 

we deduce that  there exists a neighbourhood ~ of the compact set V and a compact 
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set KC f~ such that  the E-extremal function of K is locally bounded on ft. From the 

equivalence of the conditions (iii) and (iv), it follows that  the E-extremal function AE 

is locally bounded on gt, and then it is bounded on V. Since V E X  is an arbitrary open 

subset such that  EC V, we conclude that  the E-extremal function AE is locally bounded 

on X, which proves the condition (iii). [] 

The following result gives a quantitative version of the Lelong property. 

COROLLARY 2.1.3. Let E be an admissible class of plurisubharmonic functions on 

a complex space X which satisfies the Lelong property (LP) on X,  and let G � 9  be 

a fixed nonpluripolar subset of X .  Then for any subset E � 9  the following inequality 

holds: 

hE(x) ~< Q(E;G)+Aa(x) ,  Y x e X ,  (2.7) 

where ~(E; G)=~L(E;  G ) : = m a x a  AE is a positive number, which is finite if E is non- 

pluripolar in X.  

More precisely, the E-extremal function AE of the set E is locally bounded above on 

X if and only if ~(E ;G)<+c~ .  

Proof. From the definition of the E-extremal function of E, we deduce immediately 

the inequality 

w(x) <m~xw+AE(X) ,  VxCX, VweE.  (2.8) 
E 

If we define the number p(E; G) :=  maxa AE, then the inequality (2.8) implies 

maxw<~maxw+~(E;G),  VweE.  (2.9) 
G E 

Then from (2.9) and the definition of the E-extremal function Ac, we obtain (2.7). By 

Theorem 2.1.2, if E is nonpluripolar then AE is locally bounded, and so Q(E; G ) < + c e .  

Again by Theorem 2.1.2, we know that  AG is locally bounded on X since G ~ X  is 

nonpluripolar. Therefore, if Q(E; G)<  +ce then (2.7) implies that  the function AE is also 

locally bounded on X. [] 

It is interesting to observe that,  under the assumptions of Corollary 2.1.3, for a 

given subset E ~  X the finiteness condition QL(E; G)=Q(E; G ) < + c ~  is independent on 

the particular choice of the nonpluripolar subset G ~ X ,  which can be taken to be an 

open domain in X. Moreover, this condition is equivalent to the condition cap~ (E; G) :=  

exp( -~L(E ;G) )>0 .  A subset E c X  satisfying this condition will be called a non-C- 

polar subset of X. From Corollary 2.1.3, it follows that  any nonpluripolar subset of X 

is non-C-polar, but the converse is not true in general. 

The following result is of particular interest in our theory, since it shows the semi- 

local character of the notion of Lelong class and how this notion is inherited by subspaces 
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of X.  Moreover, this will be the first step in the proof of our generalization of Sadullaev's 

criterion of algebraicity in w 

THEOREM 2.1.4. Let L C PSH(X)  be an admissible class of plurisubharmonic func- 

tions on a complex space X ,  and Y an analytic subspace of X.  Let us define the class 

L(Y) to be the closure in Lloc(Y) of the the induced class 

s  := { u E P S H ( Y ) : 3 w C s  w]Y=u}.  

Then the following properties are equivalent: 

(1) The class s  satisfies the Lelong property (LP) on Y. 

(2) The class s  is a Lelong class on Y.  

(3) For some compact (and then for any nonpluripolar) subset K c  Y,  the restriction 

to Y of the s function of K on X is locally bounded on Y.  

Moreover, for any nonpluripolar compact subset KC Y the restriction to Y of the 

s function associated to K as a subset of X coincides on Y with the s  

extremal function associated to K as a subset of Y,  up to upper regularizations (in the 

generalized sense) on Y. 

Proof. It  is clear that  s  c PSH(Y) is translation-invariant and contains the con- 

stants as does s  Thus s  is a closed admissible class of plurisubharmonic functions 

on Y. Let us denote by AK,X the s  function of K on X, and by AK,y the 

s  function of K on Y. 

First we claim tha t  tha t  the following identity holds: 

Ak,w(y)=A*g,x(y), VyeY ,  (2.10) 

where the upper regularizations are understood in the generalized sense on Y, which 

means tha t  these numbers are equal even when they are infinite. 

Indeed, observe first that  the inequality AK, X~AK,y  on Y is obvious. On the 

other hand, for each function w E s  there exists a sequence (w~)j~>l from / :y  such 

that  w : = ( l i m s u p j ~ + ~  wj)* on Y. Now fix wEs  with wlK<~O and E>0. Applying 

Hartogs 's  lemma, we see tha t  there exists j0~>l such tha t  wj~<~ on K for j>~Jo. Since 

each wj is the restriction to Y of a function from s we conclude that  w j ~ §  on 

Y for j>~jo, which implies that  w<~A*K, x on Y. Therefore we obtain A*K,y<.A*K, X in the 

generalized sense on Y, which proves the formula (2.10). 

Now the equivalence of the properties stated in the theorem follows from (2.10) 

by applying Theorem 2.1.2. The last assertion of our theorem means exactly tha t  the 

formula (2.10) holds. [] 
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2.2. Abstract  semi- local  B e r n s t e i n - W a l s h  inequal i t ies  

As a first application of Theorem 2.1.2, we will give a semi-local abstract version of the 

(well-known) important  polynomial inequalities called Bernstein-Walsh inequalities in 

the literature (see [Ber], [W], [Sic2]). 

Let X be a complex space and s an admissible class of plurisubharmonic func- 

tions on X. Then we can introduce the following natural graded sequence of spaces of 

holomorphic functions associated to the class s on X. For each integer d ~> 1 define 

"~d(X; ~) : =  {f  C O (X ) :  ( l /d )  log Ifl C s (2.11) 

and 7~0 (X; s  C. 

In the case where X admits a parabolic potential p, the space (2.11) associated to 

the class s 1 6 3  is the complex linear space of holomorphic functions of polynomial 

growth (with respect to p) of degree at most d. 

In the general case, it is not clear whether the set ~d(X; s is a complex linear 

space, but it is a complex conic space, which means that  if fET)d(X; s  and ~ E C  then 

A'fET~d(X; s 
As an immediate application of Corollary 2.1.3, we will deduce the following 

Bernstein-Walsh inequalities, which will give a precise comparaison between two uni- 

form norms on the complex conic spaces ~d(X; ~). 

PROPOSITION 2.2.1. Let s  be an admissible class satisfying the Lelong property 
(LP) on X.  Then for any non-s subsets A c X  and B ~ X  of X,  the following 
inequalities hold: 

NflIA "e-d'e(B;A) ~ IIfHB <. IIfHA "ed'~(A;B), VfePd(X;  s  V d cN * .  (2.12) 

In particular, for each dEN*, the complex linear space spanned by the complex conic 

space ~)d(X; ~--.) i8 of finite dimension. 

Proof. From Corollary 2.1.3 we know that  the constants Q(A;B):=maxxeB AA is 

finite, and then the last inequality in (2.12) follows easily from the definition of the s 

extremal function AA and the definition of the space Pal(X; s The first inequality in 

(2.12) follows from the last one by permuting A and B. 

Now let A ~ X  be a fixed nonpluripolar compact subset. Then from the inequalities 

(2.12) and Montel's theorem, it follows that  the set 

b/a := {IET~d(X; s  IIfllA < 1} 

is a relatively compact neighbourhood of the origin in the space Pd(X; s for the to- 

pology of local uniform convergence on X. Therefore the complex linear subspace 
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79d(X; s s  spanned by the complex conic space 7)d(X; s  is of finite dimension, 

thanks to Riesz's theorem. [] 

Let us now see how our approch leads to abstract semi-local Bernstein-Walsh in- 

equalities, which happen to be useful in applications (see [FEN2]). 

PROPOSITION 2.2.2. Let X be a complex space and U an open subset of X .  Suppose 

that ~'=(f~) ie l  is a nonempty family of holomorphic functions on U for which there 

exists a compact set K c U ,  a family of positive integers D=(Di) ie l  and a constant 

M ~ 1 such that the following Bernstein-Walsh inequality holds: 

Iif~llv <<. MD~.i]filiK, ViEI .  (2.13) 

Then for any nonpluripolar subset E@ U and any nonpluripolar subset GC U, there exists 

a positive constant R=R(E;  G)>~I, depending only on E, G and K , M ,  such that the 

following Bernstein Walsh inequalities hold: 

IIf llG .<< riD'-Ill ,  liE, v i e I .  (2.14) 

Proof. For each integer d~>l, consider the set of all holomorphic functions f on U 

defined as 

Qd := { f c  C0(U): IIfiiv ~< Md" IifUK}. (2.15) 

Then each Qd is a complex conic space containing the constant functions, and fi C QDi 

for any iCI. Now let us consider the class 7-/=7-/(K, U, M) of Hartogs plurisubharmonic 

functions on U defined as 

7-I := {v C PSH(U) : Sd E N*, 3 f  C Qd, v = ( l / d ) log  If[}. (2.16) 

Then it is clear from the definitions (2.16) and (2.15) that  7/ is an admissible class of 

plurisubharmonic functions on U satisfying the estimates 

maxv<~ maxv+logM,  VvCT/. (2.17) 
u K 

From (2.17) and Theorem 2.1.2, it follows that  the class 7/ satisfies the Lelong prop- 

erty (LP) on U. Then, applying Corollary 2.1.3, we conclude that  Qn(E; G ) < + o c  and 

Qn(G; E ) <  +oc. Therefore, using the inequalities (2.12) for 7/, we obtain the inequalities 

(2.14) with the constant R := exp 0n (E; G), since f~ E QDi C ~Di (U; 7/) for each i E I. [] 

Observe that  the constant R(E; G) in Proposition 2.2.2 is related to the 7/-extremal 

function of the set E,  and then it is possible to compute it explicitly in some specific 

cases or, at least, to have a good estimate using the inequality (2.7). In this way, it is 

possible to deduce the so-called "doubling inequality" in the case of algebraic sets (see 

[FEN2]). In fact, our methods lead to more general "Bernstein inequalities", which will 

be investigated in a subsequent paper. 
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3. Semi - loca l  b e h a v i o u r  o f  L e l o n g  c lasses  

In this section we will investigate the semi-local behaviour of admissible classes in terms 

of their Lelong numbers. 

3.1. L e l o n g  n u m b e r s  a s s o c i a t e d  t o  a Le lo n g  class 

Let us assume that  X is a complex space and denote as before by Xreg the complex 

manifold of its regular points. Let aEXreg and let U be a coordinate neighbourhood of 

a such that  there exists a homeomorphism r ~ _ _ } / ~ n  onto the closed unit polydisc / ~  

in C a which is holomorphic on U and satisfies r  Such a coordinate system (U, r 

will be called a regular coordinate system at the point a. Let A~ be the open polydisc of 
8~ r An , radius s > 0  centred at the origin in C n and consider the sets := ( ) 0 < s < l .  

Let us denote by Ilzll the sup-norm on C ~. Then it is well known that  for any 

plurisubharmonic function w on a neighbourhood of U, the real-valued function 

Mw(a, s) := sup{w(x)  : x e Us} = su p { w ~1 6 2  Ilzll < s} 

is an increasing and convex function of logs on the real interval ]0,1[, so that  the 

following limit exists and is finite: 

v(w; a) : - -  lim supo~ w (3.1) 
s-~0 log s 

By a result of Kiselman [Nil], [Ki2], the positive real number ~,(w; a) defined by (3.1) is 

equal to the Lelong number of the plurisubharmonic function w at the point a ([Lell], 

[LG], [Hol]), and by a result of Siu [Siu] it is independent of the coordinate system we 

choose at the point aeXreg (see also [D2], [Hol]). 

Now we proceed to prove the following fundamental result which describes the semi- 

local behaviour of an abstract Lelong class. 

THEOREM 3.1.1. Let X be a complex space, f~ a Lelong class on X and (U, r a 

given regular coordinate system at a fixed regular point of aCXreg. Then the following 

properties are satisfied: 

(1) The limit 

x~(a) = x x , L ( a ) : =  lim l~ capz:(Us; U) = inf l~ caPL:(Us; U) (3.2) 
s-+0 log s s>0 log s 

exists and is finite. 

(2) We have 

x~: (a) = -l: (a), (3.3) 
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where the right-hand side is defined by 

uL:(a) := sup{u(w; a) : w �9 s (3.4) 

In particular, the number xL(a)=uz(a )  does not depend on the regular coordinate system 

(U, 0) at the point aEXreg. 

(3) The positive real-valued function xL =us is upper semi-continuous on Xreg. 

Proof. Let us denote by s the subclass consisting of functions w C s such that  

Mw(a, 1)=sup U w=O. From the definition of the s it follows that  

X(s) := l~ capz:(Us; U) i w ( a ,  s) 
= sup - -  VsE]0,1[. (3.5) 

logs ~CLo logs ' 

By Theorem 2.2.2, we have capL(Us; U ) > 0  for any sE]0, 1[, and then the function X 

defined by (3.5) is a positive real-valued function on ]0, 1[. Since for each wE/:0 the 

function sw+Mw(a,s) is an increasing and convex function of logs on the real interval 

]0, 1[, it follows that  the function s~-+M~o(a, s) / log s is an increasing function on the real 

interval ]0, 1[. Hence the function X defined by (3.5) is an increasing function on ]0, 1[ 

with positive real values. Thus the limit in (3.2) exists and can be expressed by 

U~(a, s) (3.6) x~:(a) = inf sup 
s>OweE o logs 

On the other hand, the same argument shows that  for any WEs we have 

M~(a,s) 
u(w; a) = inf 

~>o log s 

Since for any w e t :  the function wo:=W-sup{w(x):xE U} Es and satisfies u(w; a)= 
u(w0; a), it follows from the definition (3.4) that  

uz:(a) = sup ~inf  Mw(a,s)}  = sup u(w;a). (3.7) 
wcz:ol~>0 logs weZ:o 

From (3.6) and (3.7), it follows clearly that  un(a)<.xL(a). 
In order to prove the reverse inequality, we need the following property. 

CLAIM 1. The subset s  is compact. 

Indeed, let (wj)j>>.o be a sequence of functions from/:0.  Since supo wj =0 for any 

j~>0, it follows from the definition of/20 that  wj~<Au(.;L: ) on X for any j~>0. Thus 

by Theorem 2.1.2, the sequence (wj)j>~o is locally bounded above on X. Then from 

Hartogs's lemma, it follows that  limsupj_++or w j ~ - e c .  By [Ho2, Theorem 3.2.12], it 
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follows that  some subsequence (vk)k>.O converges in L~oc(X) to a plurisubharmonic func- 

tion v on X, and v=(limsupj_~+o~ vj)*. Since K : = U  is pluriregular and N:={xEX: 
limsupj_++o~vj(x)<v(x)} is pluripolar by [BT1], [Bed], it follows from a generalized 

version of Hartogs's lemma (see [Ze2, Theorem 2.5]) that  supg v=0. Since s is closed, 

v belongs to/20, and the claim is proved. 

Now let us prove that  xL(a)<<.un(a). Indeed, let x < ~ c ( a ) .  Then by (3.6), for every 

sC]0, 1[ there exists w~Cs such that  

log s 
> x. (3.8) 

Taking a decreasing sequence (sj) of numbers in ]0, 1[ converging to 0, we obtain a 

sequence (w~j) from/20 satisfying the estimate (3.8) for s=sj and j~>l. From Claim 1, 

it follows that  some subsequence converges to a function w C s Taking a subsequence if 

necessary, we may assume that  the sequence (w~j) itself converges to w. Then from [Ho2, 

Theorem 3.2.13], it follows that  w:= ( l imsup j~+~ w~j)*. By (3.8), for each re]0, 1[ and 

any j large enough so that  O<sj<t, we have 

M~s~(a; t) M~(a; sj) 
~> > x. (3.9) 

log t log sj 

By Hartogs's lemma (see [Ze2]), it is easy to see that  for any t~]0, 1[ we have Mw(a,t)= 
lim supj_++o~ M~j(a, t), which by (3.9) implies 

Mw(a,t) 
log t 

- -  />~, VtE]0,1[. (3.10) 

From the formula (3.7) and the inequality (3.10), it follows that  uL(a)>~x. This proves 

that  uL(a)>~xL(a). Thus we have proved that  xs Therefore we obtain the 

formula (3.3). 

Let us now prove (3), that  the function uL is upper semi-continuous on Xr~g. Then 

we need the following known result. 

CLAIM 2. The mapping 

u: PSH(X) x Xreg -+ R +, 
(3.11) 

(w, x) x) 

is upper semi-continuous on PSH(X) • Xreg. 

Indeed, let aGXreg be a fixed regular point and (U, r a regular coordinate system 

at the point aGXreg as before. First observe that  the problem is local and the number 
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u(w;x) is independent of the coordinate system so that  u(w;x)=u(wor162 for 

xCU. Then we can assume that  U is a fixed polydisc in C n containing the closed unit 

polydisc/~n, and consider the class PSH(U) of plurisubharmonic functions w on U. Then 

there exists s0E]0, 1[ small enough such that  for a fixed sC]0, so[, the function (w,x)~-~ 

M~(x, s):=sup{w(z): IIz-xl] ~<s} is a continuous function on PSH(U) • Therefore 

the mapping u defined in (3.11) is given by 

u(w; x) = inf Mw(x, s ) -  M~(x, 1) (3.12) 
s>0 log s 

on P S H ( U ) •  n. Then the formula (3.12) implies that  the mapping u is upper semi- 

continuous on PSH(U) • A n, which proves our second claim. 

Now, from the upper semi-continuity of the mapping u (Claim 2), the compactness 

of the set s (Claim 1) and the formula (3.7), it is easy to deduce that  the function 

xL=uL is upper semi-continuous on Xreg. [] 

Let us derive the following easy consequence of our theorem which will be important 

in subsequent considerations. 

COROLLARY 3.1.2. Let X be a complex space and s a Lelong class on X.  Then 

for any regular point aEXreg , the Lelong number uL(a) of the class s at a is finite and 

we have 

ms(a  ) <~us VfePd(X;s  VdEN*, (3.13) 

where ms(a  ) is the order of vanishing of the holomorphic function f~O at the regular 

point aEXreg (with ms(a )=0  /f f(a)r 

Proof. The finiteness of the Lelong numbers uz(a) follows from Theorem 3.1.1. 

Moreover, it is well known that  m S (a)=u(log If]; a) is the Lelong number of the plurisub- 

harmonic function log ]fI at the regular point aEXr~g (see [LG], [Hol]). Therefore 

the estimates (3.13) follow from (3.4) and the fact that  (1/d)log]flEs for any f E  

L)\{o}. 

3 .2 .  T h e  m i n i m a l  L e l o n g  n u m b e r  o f  a n  a d m i s s i b l e  c l a s s  

Let s be an admissible class of plurisubharmonic functions on a complex space X. We 

can still consider the two functions xL and us defined on Xreg by the formulas (3.6) and 

(3.7) respectively. Then we get 

V•(X) < 3*t*• (X), VX E Xreg, (3.14) 

and these two numbers might be infinite. We do not know if they are equal in general. 
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The following definition will be important  for the s ta tement  of our theorems of 

algebraicity. 

Definition 3.2.1. Let s be an admissible class of plurisubharmonic functions on a 

complex space X.  Then the positive (possibly infinite) number 

, ( s  = v(X, s  := inf {~L(a) : a �9 Xreg} (3.17) 

will be called the minimal Lelong number of the class/::. 

From Theorem 3.1.1, it follows that  for a Lelong class Z: the Lelong function is finite 

everywhere on Xr,  and then the minimal Lelong number o f / :  is finite. 

Let us consider the important  particular case of an irreducible algebraic subvariety 

Z of C N. 

Definition 3.2.2. Let Z be an irreducible algebraic subvariety of C N. The minimal 

Lelong number of the class L:(Z) will be denoted by 

t,(Z) = ~(s  := inf {V~(z)Cx) : x �9 Zreg} (3.18) 

and will be called the minimal graded Lelong number of Z. This terminology will be 

motivated later in w 

Let us first give some simple examples of computat ion of minimal Lelong numbers, 

which will be used later. 

Example 3.2.3. Let c > 0  be a real number  and consider on the space C '~ the Lelong 

class 

s  n) := {v �9 PSH(C'~) : v(z) <~ c log + Izl + O(1)}. 

If  wEs163 then for any a E C  n and any t e l0 ,  1[, the one-variable function de- 

fined by s ~+ (Mw (a, s ) - M~ ( a, t)) /( log s - l o g  t) is an increasing function on ]t, + cc [, and 

its limit as s - + + c c  is at most equal to c, so tha t  vCw; a)<~c. Thus by Theorem 3.1.1, we 

deduce that  xx ,  Lc (a) ~< c. On the other hand, the function z~-+ c log I z -  a I belongs to s 

and its Lelong number at a is equal to c. Therefore we have xLr  for any a c C  ~. 

Thus v(s 

Example 3.2.4. Consider the smooth algebraic curve Z : = { ( x , y ) E C 2 : y = P ( x ) } ,  

where P(x) is a polynomial of one complex variable of degree m~>l. Given a (pluri)- 

subharmonic function uCs we can define a (pluri)-subharmonic function on C by 

the formula ~z(x):=u(x, P(x)) ,  x c C .  Since y=P(x)~'.CmX m at infinity on Z, it is clear 

that  ~2�9163 and the map  u~+~ is a bijection of s  onto s  Moreover, if 



128 A. ZERIAHI 

Zo:=(xo, y0)EX, we have v(u; z0)=r'(~; x0). Therefore, from Example 3.2.3, we deduce 

the identity ~L(z)(Zo)=x~,~(o)(Xo)=m for any zoEZ. Thus r , (Z)=m.  

Recall that  for an arbitrary (irreducible) algebraic subset ZC  C N of dimension n, 

the degree of algebraicity of Z, which will be denoted here by g(Z), is the number of 

points of intersection of Z with a generic ( N - n ) - p l a n e  of C N (see [Ha], [C]). 

The last example suggests that  the minimal graded Lelong number ~(Z) of an alge- 

braic curve in C 2 coincides with its degree of algebraicity g(Z). This will be proved in 

the next section (see Corollary 4.1.3). 

Now let us prove the following important estimate for the general case. 

PROPOSITION 3.2.5. Let Z be an irreducible algebraic subvariety of dimension n 
in C N. Then we have v(Z) <~ g(Z). 

Proof. By [C, Corollary 11.3.1], there exists an ( N - n ) - p l a n e  F in C N such that  the 

projection 7r: Z-+F • is a g-sheeted analytic cover, where g:=g(Z), and moreover, after 

a unitary change of variables in C n, we can assume that  for some constant c>0,  the 

following inclusion holds: 

z c {r = (r r  ~ C n • C N - n :  Ir ~< e ( l +  Ir (3.19) 

where ~':=7r(r162 ..., ~ )  and ~":=(~n+l,  ..., ~N) (see also [Ru], [Sal]). 

Let S be the critical set of the projection 7r. Then we claim that  for any a E Z \ S  

and any wEs we have ~(w, a)~<g. Indeed, let wCs and consider the function 

7[,W(Z) := ~ W((), Z E C n. (3.20) 
~(r 

Since 7r: Z - + C  n is a &sheeted analytic cover which satisfies (3.19), it follows that  i t .wE 

/:~(C n) (see Example 3.2.3). Let a E Z \ S  and b:=Tr(a). Then there exists an open neigh- 

bourhood V of b in C '~ and an open neighbourhood U@ Z of a such that  the restriction 

rcu: U-+V is biholomorphic. To estimate ~(w, a), we can assume that  w~<0 on U. Then 

it follows from (3.20) that  rr.w~<woTru I on V, which implies the estimate 

~(Tr.w, b) ~> v(w, a). (3.21) 

Since 7r, wEs it follows from (3.21) and Example 3.2.3 that  ~(w,a)<<.g, which 

implies that  XL(z)(a)<.5. This proves our claim, from which the proposition follows. [] 

The following formula is important  for computing the minimal graded Lelong number 

and will be useful later. 
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PROPOSITION 3.2.6. For i=1 ,2 ,  let Zi be an irreducible algebraic subvariety of 
dimension ni in c N t  Then the minimal graded Lelong number of the algebraic subvariety 

Z := Z1 • Z2 is given by 

u(Z) = max{u(Z1), u(Z2)}. (3.22) 

Proof. Fix a regular point a = ( a l ,  a2) of Z, and for each i=1,  2 consider a regular 

coordinate system (Ui, hi) at the point ai. Put  U : = U l x U  2 and r 1 6 2 1 6 2  Then 

(U,r is a regular coordinate system at the point a, and for every sC]0,1[, we have 

Us:=r x U2s. From [Ze2, Theorem 4.5] we get the product property 

ho~(~; Z ) : =  sup{Ad)(r Z1), A62(~2; Z2)}, V~ = (~1, ~2) E Z. 

Now from Definition 3.2.1 and the formulas (3.1) and (3.23), we deduce 

(3.23) 

xr.(z)(a) = sup{xL(z~)(al), xz:(z~) (a2)}. (3.24) 

Then (3.22) follows from the definition (3.18) and the formulas (3.24) and (3.3). [] 

Using (3.22) and Example 3.2.4, we can now produce a simple example which shows 

that  for an algebraic subvariety of high dimension, the minimal graded Lelong number 

and the degree of algebraicity are not equal in general. 

Example 3.2.7. Let us take two algebraic curves, C1 of degree m l ) 2  and C2 of 

degree m2~>2 as in Example 3.2.4, and put Z:=CIxC2.  Then it is well known that 

the degree of algebraicity of Z is given by the formula ~(Z)=mFm2, while the graded 

minimal Lelong number of Z is given by u(Z)=max{ml ,m2},  thanks to (3.22). Thus 

4. Algebraici ty  of  Lelong classes and analytic  sets  

In this section we will prove a theorem of algebraicity for an admissible class/~ which 

gives a sharp asymptotic estimate on the Hilbert function associated to the class /2 in 

terms of its minimal Lelong number. This result will be the main step in the proof of 

our new semi-local criterion of algebraicity in w 

4.1. A theorem of  algebraicity for Lelong classes 

In this subsection, we will prove our first main result which is an algebraicity theorem 

for admissible classes with a finite minimal Lelong number. 
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Let X be a complex space of dimension n and s  an admissible class 

on X. Recall the definition of the natural graded sequence of spaces of/:-polynomial 

holomorphic functions on X: 

where 

P(X;  s  := [.J Pd(X; s (4.1) 
d~>l 

Pd(X;/:) := {f  E O(X):  ( l /d ) log  If[ e/:}U{0}, d C N*, (4.2) 

and P0 := C. We want to estimate the asymptotic behaviour of the "dimension" of the 

complex conic space Pd(X; s with respect to the s d for an admissible class s 

of finite minimal Lelong number. By definition, the (complex) dimension of the conic 

space Pd(X; s will be defined by 

hx, z(d) := dimc Pal(X;/:) := sup{dim $: SE Pd}, (4.3) 

where Pd is the family of all complex linear spaces of finite dimension contained in 

Pd(X; s If the class s is a Lelong class, then we know that  the complex linear sub- 

space spanned by the conic space Pd(X; s is of finite dimension, which implies that  the 

function defined by (4.3) takes finite integer values. 

In any case, by analogy to the case of affine algebraic varieties (see [Ha]), the function 

defined by (4.3) will be called the Hilbert function of (X,/:) .  

Our main goal here is to give a sharp asymptotic estimate of the Hilbert function 

(4.3) in terms of the minimal Lelong number of the class /:. In fact, we will need a 

slightly more general version of such an estimate. 

Let (gd)deN be a graded sequence of complex conic subspaces of O(X), which means 

that  each space C d is a complex conic space such that  C 0 = C c C  d for any dEN*. Then 

we will say that  C:= UdcN ~d is a graded complex conic space. 

For each regular point XCXreg, we can define the positive number (possibly infinite) 

pc(x) := sup{my(x)/d: f c gd, f ~ O, d >~ 1}, (4.4) 

which will be called the graded multiplicity of the graded space C at the regular point x. 

Recall that  my (x) denotes the order of vanishing of the holomorphic function f ~ 0 at the 

regular point x, and m/(x)=~(log Ifl; x) is the Lelong number of the plurisubharmonic 

function log Ifl at the point x. 

Then the positive number 

#(C) := inf {#c (x ) :x  e Xreg}, (4.5) 
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which might be infinite, will be called the minimal graded multiplicity of the graded space 

(or sequence) C= U d E N  Cd" We also define the Hilbert function of the graded sequence C 

of complex conic spaces by 

hc(d) :=sup{d ime(C) :  EeCd}, d c N ,  (4.6) 

where Cd is the family of all complex linear subspaces of C d of finite dimension. 

Now we are ready to prove our fundamental theorem of algebraicity. 

THEOREM 4.1.1. Let X be a complex space of dimension n, and C=UdENC d a 

graded sequence of complex conic subspaces of O(X) with finite minimal graded multi- 

plicity, i.c. It(C)< +cr Then the Hilbert function of the graded sequence C defined by 

(4.6) satisfies the asymptotic upper estimate 

lim sup ~< n~' (4.7) 
d--+q-ao 

where #:=#(C)  is the minimal graded multiplicity of the graded sequence C. 

Proof. Fix a regular point aCXreg, an open neighbourhood U ~ X  of a, and a bi- 

holomorphic mapping r from U onto the open unit polydisc A n in C n, which extends 

continuously to U. For each fECg, define ] : = f o e  -1, which is holomorphic on A n and 

continuous on A n. Let us denote Qd:----{f:fCCd} for dEN.  

The main idea, of the proof is to compare the dimension of any complex linear 

subspace of the complex conic space Qd with the dimension of the complex linear space 

Pm(C n) of polynomials in n complex variables of degree not greater than m for an 

optimal value of the integer m:=md. 

To this end we first consider these spaces as subspaces of the Banach space Bs of 

complex-valued continuous functions on the compact polydisc/~n endowed with the norm 

of uniform convergence o n / ~  defined by Ilglls := max{ig(z)] : z e  s } for g � 9  B~. Then we 

will estimate the distance of any element of Qd to the finite-dimensional s p a c e  ~ m ( C n ) .  

So expand each function F � 9  Q4, which is holomorphic on the polydisc A n, in Taylor 

series on the polydisc A n as 

F(z)= zeA 
c~EN,~ 

with uniform convergence on compact subsets of A n. 

Let us consider the Taylor polynomials of the function F given by the formula 

Tm(z):=~l~l<~m C~Z~ , for mCN.  



132 A. ZERIAHI 

Fix a real number 0 such that  0 < 0 <  1, take a real number O<s<O and put t :=  

s/O<l. Then using Cauchy inequalities, we get the estimates 

]]F-TmII~<~IIFIIt E 01~l' VFeQd, VmEN. (4.8) 
I~l=m+l 

An easy computation shows that  

+~ +~ (n+kX~ok+l= 1 (n_l)(O n+m) (4.9) 
E 01~l= E \ k+ l ]  ( n - l ) !  De ~ ' 

lai=m+l k=m 

where D~ n-l) stands for the derivative of order n - 1  with respect to 0. Then, since 

0<0<�89 from the equation (4.9) and the estimate (4.8), it becomes clear that  there 

exists a constant cn depending only on the dimension n such that  we have the estimates 

HF-TmN~ ~ C n ( n + m ) n - l o m + l i i g i i t  , VFEQd, VmEN,  

which imply immediately the estimates 

distB~(F; Pm(Cn) ) ~ cn(n+rn)~-lOm+lllgllt, (4.10) 

for any FC Qd, mcN and d c N ,  the distance being calculated in the Banach space Be. 

On the other hand, fix an integer dEN* and an arbitrary subspace $d of finite 

dimension contained in Cd. Then we can associate the Chebyshev constant 

Td(Us; U) :=  inf{lif[I~(d : f E  $d, IIfHu = 1}, (4.11) 

for sE]0, 1[. Since Ed is of finite dimension, a compactness argument shows that  the 

Chebyshev constant defined by (4.11) is nonzero, and the class 

nd := {u �9 PSH(U): 3 f � 9  Ed, u = ( l /d) log  If i} 

is closed in PSH(U). Then by Theorem 2.1.2, it follows that  ~ d  is a Lelong class on U. 

Therefore, applying Theorem 3.1.1, we conclude that  the limit 

•d(a) := lira log~-d(Us; U) _ inf logTd(U~; U) (4.12) 
s-~0+ log s ~>0 log s 

exists and is finite. Moreover, 

~d(a) = sup{ (1/d)mf(a) : f e Ed\{0}}. (4.13) 
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The identity (4.13) and the definition (4.4) yield the inequality 

xd(a) <. tic(a). (4.14) 

Let us define the space ~'d:= { f o e - l : f  E gd}, which is isomorphic to gd, and consider the 

numbers 

OLd(8) :~-- FE.~dSUp / ~ log [IF[IS-log lOgs lIE[[1 } = d-lOglogTd(US;s U) , (4.15) 

where the last identity follows immediately from the definition (4.11). Since for each 

F~-~a the function rF-~log []FUr is a convex function of the variable logr  for rE]0, 1], it 

is easy to derive from (4.15) the inequality 

[[Flit < IIFll~O -~(s), VFe~:d. (4.16) 

Then by combining the inequalities (4.10) and (4.16), we deduce the fundamental esti- 
mates 

distu8 (F; T'm (Cn)) ~< c~(n+m) ~-111FN~ 0 m+l-~(~), (4.17) 

for any FC.Td and any mEN*.  

Now take a real number #>#(C) and, according to the definition (4.5), choose the 

regular point aEXreg so that  #c(a)<#. Then fix e > 0  and take a large integer do such 
that 

?~d :: cn(n+#d+r n-10r < 1, Vd ~ do. 

Now fix d/> do and let md be the unique integer satisfying the inequalities rnd <. (#+ s). d < 
md+l. Moreover, observe that  lim~_~0+ ad(s)=d.~d(a)~d.#c(a)<d.#, thanks to the 

definition (4.12) and the inequality (4.14). Then it is possible to choose s so small that 

0 < s < 0  and ad(s)<d.#, which implies that  md+l--Ced(S)~sd. 
Therefore from (4.17) and the fact that  ~/d < 1 for the fixed integer d ~> do, we deduce 

the estimates 

distB~(F;~~ <~?/d'iiFl[s < IIFiis, VFcgr-d\{O}. (4.18) 

Using the estimate (4.18), we want to conclude that  d im~-d~dimT' , ,d(en) .  Assume 

that the converse is true, i.e. dim.Td>dimTZ'md(Cn). Since T'm~(C n) is a subspace of 

finite dimension of the Banach space Bs, we can apply the "projection theorem" in 

Banach spaces, known as the Krein-Krasnoselski-Milman theorem (see [Sin]), to obtain 

a function FoE~'d\{0} which is "orthogonal" to the subspace Prod (C~) in the Banach 
space Bs in the sense that 

IIFol]s = distB (Fo; 
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This contradicts the estimate (4.18) and proves the inequality 

dimgd=dim~d<~dimT),~a(Cn)=(md+n),  Vd>~do. (4.19) 

Since md~(#+e)nd n as d~+cc ,  and #>#(C) and e>0  are arbitrary, (4.19) implies 

clearly (4.7), which proves the theorem. [] 

As an easy consequence of the theorem let us deduce the following result. 

COROLLARY 4.1.2. Let X be a complex space of dimension n, and let f. be an ad- 

missible class of plurisubharmonic functions on X with finite minimal Lelong number, 

i.e. u:=p(X;)<+oc.  Then the minimal graded multiplicity of the associated graded se- 

quence 5o=P(X; L) is finite, and its HAlbert function hp =hx,L defined by (4.3) satisfies 

the asymptotic upper estimate 

_ _  ~ n  
lim sup hi,L(d) <, (4.20) 
d--++c~ dn n! ' 

where # = # ( P )  is the minimal graded mult•licity of the graded sequence/)=T~(X; 1:). 

Proof. Since Z; is an admissible class with minimal Lelong number u(L;)<+co, then 

by the estimate (3.13) of Corollary 3.1.2, the minimal graded multiplicity of the graded 

sequence :P:=:P(X; L;) satisfies the inequality #(P)~<v(s which proves that  the graded 

sequence 7~(X; L;) has a finite graded multiplicity, and then the estimate (4.7) of Theorem 

3.1.1 implies (4.20). [] 

The general idea that  Bernstein-Walsh inequalities for a sequence of linear spaces 

of holomorphic functions should imply an upper bound on their dimensions was pointed 

out earlier by W. Plesniak in a different context (see [P]). Later the author used this idea 

to prove a weaker version of Corollary 4.1.2 in the case of parabolic spaces (see [Ze2]). 

It is interesting to apply Theorem 4.1.1 to the particular case of an (irreducible) 

algebraic subvariety Z of C N. 

Let A(Z):= UdcN r be the graded algebra of regular functions on Z, and denote 

by hz(d):=dime Ad(Z) the HAlbert function of the algebraic subvariety Z. The minimal 

graded multiplicity of the graded sequence A(Z) will be denoted by #(Z) and will be 

called the minimal graded multiplicity of Z. Clearly we have #(Z)<~u(Z), and equality 

holds for algebraic curves as we will show later (see Corollary 4.1.4). We do not know if 

equality holds in general. It seems, however, reasonable to conjecture that  #(Z)=u(Z).  

With this in mind, it is quite natural to call u(Z) the minimal graded Lelong number of 

the algebraic subvariety Z. 

Anyway, we obtain the following interesting result. 
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COROLLARY 4.1.3. Let Z be an algebraic subvariety of dimension n in C N. Then 

we have the asymptotic estimate 

l imsup hz(d)  << __ (4.21) 
d--++oc d n  n! ' 

where # : = p ( Z )  is the minimal graded multiplicity of Z. 

Furthermore, the degree of algebraicity 6(Z) of Z satisfies the estimates 

, ( z )  . ( z )  < 5(z) n (4.22) 

In particular, if C is an irreducible algebraic curve of C N then # ( C ) = ~ ( C ) = 5 ( C ) .  

Proof. Since Z is an algebraic subvariety, we know that  the class s  of plurisub- 

harmonic functions with logarithmic growth on Z is a Lelong class on Z. Moreover, 

for each dEN,  .Ad(Z) is a complex linear subspace of Pd(Z; s  Thus the required 

estimate (4.21) follows from Corollary 4.1.2. Now combining this estimate with a well- 

known fact from algebraic geometry, we will obtain the last estimate in (4.22). Indeed, it 

is well known that  the Hilbert function of the algebraic subvariety Z, defined by hz(d):= 

dim.Ad(Z), is a polynomial in d of degree n - - d i m Z  for d large enough. Moreover, the 

leading coefficient of the Hilbert polynomial of Z is known to be 5(Z)/n!,  where 5(Z) is 

the degree of algebraicity of Z (see [Ha]). So our claim follows immediately, and then, 

taking into account the estimate of Proposition 3.2.5, we obtain the estimates (4.22). 

Remark. The last result (Corollary 4.1.3) shows that  the identities 5(C)=~(C)= 

#(C)  are true for any algebraic curve C in C N. In higher dimension, Example 3.3.7 

shows that  the situation is different. The inequalities (4.22) are, however, optimal, since 

if C is an algebraic curve, we have p ( C ) = v ( C ) = 5 ( C ) ,  and for the algebraic subvariety 

Z : = C  ~ of dimension n, we have ~ (Z)=~(C)  by Proposition 3.3.5 and 5(Z)=y(C)  n by 

the multiplicative property of the degree (see Example 3.3.7). 

Let us now consider a more general situation where Theorem 4.1.1 can be ap- 

plied. This was suggested by the fundamental work of Demailly [D1]. Let us first 

recall some facts from [D1] with slightly different notations. Let X be a Stein space 

of dimension n and ~ : X - + [ - c e + c e [  a continuous plurisubharmonic exhaustion, i.e. 

Br:={xCX:  ~o(x)<logr}~X, for any r>0 .  Then Demailly introduced in [D1] a con- 

tinuous family (at)  of Monge~Amp~re measures on X associated to the exhaustion ~. 

More precisely, if r 0 : = m i n x  ~ then for each real number r >r0, the measure err is a 

positive Borel measure on X supported on the pseudosphere Sr := OB~ with total mass 

Ilar]l = f B~ ( ddC~o)n. 
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Moreover, any wcPSH(X)  is a~-integrable for any r>r0 ,  and a generalized Lelong 

Jensen formula is satisfied (see [D1, th@or~me 3.4]). 

Now we need the following growth condition on (X, ~): 

lim fB~ (ddCcP) n _ O. (4.23) 
r ~ + ~  log r 

Observe that  this condition is clearly satisfied if ~ is a parabolic potential on X, since 

in this case the integral fB, (ddC~) n is constant for r large enough. 

Under the condition (4.23), Demailly introduced an interesting graded algebra of 

holomorphic functions on X. 

A holomorphic function f on X is said to be of finite degree (with respect to ~) if 

the condition 
a~(log + If[; ~) 

deg~(f) := lira sup < +o~ 
v ~ + ~  log r 

is satisfied. For each integer d~> 1 let .Ad(X; qo) be the space of all holomorphic functions 

f on X with finite degree deg~ (f)~<d, and put .A0(X; ~) :=  C .  Then using the condition 

(4.23), it is easy to see that  each .Ad(X; ~) is a complex conic space, and the set .A(X; qo):= 

Ud>~O .Ad(X; ~) is a graded algebra of holomorphic functions on X. 

On the other hand, using the condition (4.23) and his generalized Lelong-Jensen 

formula, Demailly proved the fundamental inequalities 

mf(a) ~ C(a).deg~(f), V fc .A(X;  ~), (4.24) 

for any regular point aCXreg, where C(a) is a positive constant which depends only on 

aeXreg (see [D1, corollaire 8.4]). 

The inequalities (4.24) implies immediately that  the graded sequence A ( X ; ~ ) =  

Ud>~O Ad(X; ~) has a finite minimal graded multiplicity, i.e. 

# ~ ( X ) : =  inf ( s u p { ( 1 / d ) m y ( a ) : f e A d ( X ; ~ ) , d e N * } ) < + c ~ .  (4.25) 
aEXreg 

Then from the condition (4.25) and Theorem 4.1.1, we deduce the following "algebraicity 

theorem" for the space (X, ~), which may have some interest in connection with the work 

of Demailly [D1]. 

PROPOSITION 4.1.4. Assume that (X, ~) satisfies the growth condition (4.23). Then 

the the graded sequence of complex conic spaces A(X;  ~) = Ud Ad(X; ~) has a finite mini- 
mal graded multiplicity, i.e. #= #~ ( X ) < + cx~, and its Hilbert function satisfies the asymp- 

totic upper estimate 
lira sup dimc Ad( X ; ~ ) #~ 
d ~ + ~  d ~ < ~-!' 
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It  is interesting to observe that  the inequalities (4.24) are analogous to our estimate 

(3.13) for the complex conic spaces associated to a Lelong class. In fact, given a space 

(X, ~) satisfying the growth condition (4.23), it is possible to define an admissible class 

of plurisubharmonic functions on X for which the associated complex conic spaces are 

precisely the spaces Ad(X; ~). Moreover, using the same method as in [D1, corollalre 8.5], 

we can prove tha t  this class is an admissible class with finite Lelong numbers on Xreg, 

which implies the condition (4.25). Therefore the inequalities (4.24) and (3.13) are both  

consequences of the same result (compare with Corollary 4.1.2). Unfortunately we do 

not know if this class satisfies the Lelong property, so we will omit these details here. 

4.2. A semi-local  criterion of  algebraicity for analytic sets 

In this section we are going to deduce from Theorem 4.1.1 a new semi-local criterion of 

algebraicity which contains the criterion of algebraicity of A. Sadullaev [Sa2] as well as 

the global criterion of W. Stoll [St2]. 

A piece of an algebraic set in C N will be, by definition, a local irreducible analytic 

subset of some algebraic subvariety of the same dimension. 

Let Y be a local and irreducible analytic subset of dimension n in C N. Since we 

are interested in algebraic properties of Y, it is natural  to consider the following class of 

plurisubharmonic functions of "restricted logarithmic growth" on Y: 

s  := P S H ( Y ) n { v I Y :  v c ~ ( c N ) } .  

The closure s of the induced c l a s s / :y  in Lloc(Y) will be called the class of plurisub- 

harmonic functions of restricted logarithmic growth on Y. I t  is clear tha t  s is a closed 

admissible class of plurisubharmonic functions on Y. 

On the other hand, it is also natural  to consider the graded algebra 

A(Y)= U A (Y) 

of holomorphic functions on Y, where 

Ad(Y):={fIY:fCPd(CN)}, d~>l. (4.26) 

It  is clear that  for each dEN*,  Jtd(Y) is a complex linear subspace of finite dimension of 

the conic space Pd(Y; s 
Therefore we can consider, as in the case on an algebraic subvariety, two positive 

numbers (possibly infinite) at tached to Y. 
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The minimal graded Lelong number of Y is defined by 

v(Y) :=inf{vg(y)(x):  x e Y~g}, (4.27) 

and the minimal graded multiplicity of Y is defined by 

#(Y) := inf {#A(y)(X ) : x C Yreg}. (4.2s) 

These two positive numbers might be infinite, since the class s  need not to satisfy 

the Lelong property (LP) as the next theorem will show. It is clear that  #(Y)<~v(Y), 

but we do not know if there is equality here. 

We can, however, prove the following criterion of algebraicity, which was the main 

goal of this paper. 

THEOREM 4.2.1. Let Y be a local and irreducible analytic set of dimension n in C N. 

Then the following conditions are equivalent: 

(i) Y is a piece of an algebraic set in C N. 

(ii) The class s  satisfies the Lelong property (LP) on Y.  

(iii) The class s  is a Lelong class on Y.  

(iv) There exists a compact subset E C Y  such that LE is locally bounded on Y.  

(v) Y is of s capacity, i.e. there exists a subdomain U ~ Y  and a compact 

subset KCgt  such that caps U)>0.  

(vi) The minimal graded Lelong number of Y is finite, i.e. v(Y)<+co .  

(vii) The minimal graded multiplicity of Y is finite, i.e. # (Y )<  +oc. 

Furthermore, if one of these equivalent properties is satisfied then Y is a piece of an 

irreducible algebraic subvariety Z of dimension n, whose degree of algebraicity satisfies 

the estimates 

p(Y)  < 5(Z) < ~(y)n.  

Proof. First observe that  ( i ) ~  (ii) follows from the examples given after Defini- 

tion 2.1.2, (ii) ~ (iii) follows from Theorem 2.1.4, and (iii) => (iv) ~ (v) follows from 

Theorem 2.1.2. 

If the condition (v) is satisfied, it follows from Theorem 2.1.2 and Theorem 2.1.4 that  

s  is a Lelong class on U, and then, by Theorem 3.2.1, the minimal Lelong number of 

the class s is finite. Therefore the condition (vi) is satisfied since ~(Y)=.(s  

v(s The implication ( v i ) ~  (vii) is obvious since we know that  #(Y)<~v(Y). 

Now assume that  the condition (vii) is satisfied. Let us consider the graded sequence 

of linear spaces of finite dimension .A(Y)=Ud~> 1 .Ad(Y). Then by the condition (vii) we 
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know that  # ( .A(Y) )=#(Y)<+eo .  Thus from Theorem 4.1.1, it follows that  the upper 

asymptotic estimate (4.7) is satified for the graded sequence C=A(Y) .  Namely, we have 

lim sup dim An(Y) ~< ,u n (4.29) 
d-+-i-oo d n  n!  ' 

where # : = # ( Y ) .  It is well known that  an asymptotic estimate like (4.29) implies that  

Y is a piece of an algebraic set. Indeed, let J be the ideal of polynomials belonging to 

C[z~, z2 .... , ZN] which vanishes identically on Y, and let Z = l o c ( J ) ,  the set locus of the 

ideal J.  Then Z is an irreducible algebraic subvariety of C N. 

By the Nullstellensatz, the vanishing ideal of Z is given by I (Z)=Rad  J=J .  There- 

fore we obtain 

.A(Y) -- C[zl,  z2, ..., ZN]/J ---- C[Zl, z2, ..., zNl/I(Z).  

Hence dim.Ad(Y)=dim~4d(Z)=:  hz(d) coincides, for d large enough, with the Hilbert 

polynomial of the algebraic subvariety Z, whose degree is precisely m := dim Z (see [Ha]). 

Then from the formula (4.29), it follows that  for a fixed p > # ( Y )  and d large enough, we 

have hz(d)<~v~d~/n!, which implies that  r u i n .  Since YC Z is an irreducible analytic set 

of dimension n, we conclude that  re=n, and then Y is a piece of the irreducible algebraic 

subvariety Z of C N of the same dimension n, which proves (i). Moreover, since we know 

that  hy(d)=hz(d)~5(Z) .dn/n!  for d large enough, it follows from the estimate (4.29) 

that  5(Z)~<#(y)n, wich proves the second estimate stated in the theorem. To prove the 

inequality #(Y)<~5(Z), observe first that  from the proof of Proposition 3.2.5 we deduce 

the inequalities , (w;a)~5(Z)  for any wCf~(Z) and almost any point a~Zreg. Since 

any fCAd(Y)  is the restriction to Y of a function in FEAd(Z) ,  we can apply the last 

inequalities to w=(1/d) log l f  I with fE~4a(Y) and almost any point acY~eg. Then we 

immediately get the inequality #A(a)~5(Z) for almost any point aEYreg. This implies 

in particular that  p(Y)<~(Z),  which completes the proof of the theorem. [] 

The above results show that  on a transcendental analytic subvariety YC C N the class 

s  is not a Lelong class, and then no local Bernstein-Walsh inequalities of type (2.12) 

are satisfied for the natural graded algebra ~4(Y) of holomorphic polynomials on Y. 

From Theorem 4.2.1 and Proposition 4.1.4, we can also derive the following result 

which contains the classical criterion of W. Stoll [St2]. 

COROLLARY 4.2.2. Let Y be an irreducible analytic subvariety of dimension n 

in C g. Then the following conditions are equivalent: 

(1) The set Y is algebraic. 

(2) The projective volume of Y is finite, i.e. f y  ( ddC log ( l + [z]2) )~ < +oc. 

(3) The minimal graded multiplicity of Y is finite, i.e. # ( Y ) < + c o .  
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Moreover, if one of these conditions is satisfied then Y is an algebraic subvariety 
whose degree of algebraicity satisfies the inequalities #(Y) <<.5( Z) <~#(y)n. 

Proof. The implication (1)::~ (2) is well known (see [C])- Indeed, identifying C N 

with the open set {~EPN: C0 r  in the complex projective space p N  it follows that 

is an algebraic subvariety of p N  of dimension n, so that its volume with respect to the 

metric induced by the Fubini-Study metric on p N  is finite, which means that 

f y  (dd c log(1 +lz[ 2))n = fF (dd ~ log I~l) n < + ~ .  

To prove the implication (2)::~ (3), first observe that the plurisubharmonic func- 

tion defined by qo(z):= i l o g ( l +  Izl 2) is a continuous plurisubharmonic exhaustion on Y. 

Moreover, the property (2) of the theorem implies that the condition (4.23) is satisfied 

by (Y, qo) and .Ad(Y)CAd(Y;qo) for any dEN.  Therefore, applying Proposition 4.1.4 
to (Y, ~), we conclude that #(Y)~<#(Y; ~ ) < + c ~ ,  which proves the condition (3) of the 

theorem. The implication ( 3 ) ~  (1) and the estimates on 5(Y) follow from Theorem 

4.2.1. [] 

The equivalence of the conditions (i) and (vi) of Theorem 4.2.1 is known as the local 

criterion of algebraicity of Sadullaev. The proof of Sadullaev uses methods from Padd 

approximation (see [Sa2]). A particular case of this theorem is also contained in our 

earlier paper with incomplete proof (see [Ze4]). 

(2) Aytuna gave another proof of Sadullaev's criterion, which proceeds differently in 

spirit but leads to the same conclusion that dim Ad(Y)=O(d ~) (see [Ay]). The idea of 

proving such an estimate on the dimension in order to deduce algebraicity was pointed 

out earlier by D.N. Ragozin [Rag] and has also been used more recently by L. Bos, 

N. Levenberg, P. Milman and B.A. Taylor in their characterization of real algebraicity 

in terms of "tangential Markov inequalities" (see [BLMT]). 

(3) The equivalence of (i) and (2) in Corollary 4.2.2 is known as Stoll's criterion. 

The implication (2)~ (i) was also obtained by Demailly by quite a different method 

which is also based on the estimate (4.23) (see [D1]). 
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