Acta Math., 184 {2000), 113-143
(© 2000 by Institut Mittag-Leffler. All rights reserved

A criterion of algebraicity
for Lelong classes and analytic sets

by

AHMED ZERIAHI

Université Paul Sabatier
Toulouse, France

1. Introduction

Global extremal functions were first introduced by J. Siciak [Sicl], in the spirit of the
classical work of F. Leja [Lej], in order to extend classical results of approximation and
interpolation to holomorphic functions of several complex variables. Later V.P. Zaha-
riuta [Za2] gave another definition of the global extremal function based on the following
class of plurisubharmonic functions on CN:

L(CN):={vePSH(CY):3c, R, v(2) < cy+log* |2], V2 CN}. (1.1)

This class is called the class of plurisubharmonic functions of logarithmic growth (or
minimal growth) on CV.

Then given a compact set KCCY, we define its global extremal function on CV by
the formula

Ly (2)=Li(z;CN) :=sup{v(z): ve L(CN),v|K <0}, zeCV. (1.2)

It has been proved by Siciak that the function Lk is locally bounded on C¥ if and only
if K is nonpluripolar in CV. In this case, the upper semi-continuous regularization L}
of the function Ly in C¥ belongs to the class £L(CV) (see [Sic2], [Kl]). Moreover, if
UeCY is a domain and KCU is a nonpluripolar compact subset, then the following
fundamental inequality, known as the Bernstein—Walsh inequality, holds: there exists a
constant R=R(K;U)>1 such that

Ifllv <|fllxRe, VfePy(CN),Vd>1, (1.3)

where P4(C?) is the space of holomorphic polynomials on C¥ of degree at most d. It is
known ([Sic2]) that the best constant R:=R(K;U) in the inequality (1.3) is related to
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the L-extremal function by

1
R(K;U)=exp(sup Lg(2)) = ————=~.
(3 U) =exp(sup L)) = o TR0y
The constant capy (K;U) is called the L-capacity of the compact set K with respect
to U.

The class of plurisubharmonic functions with logarithmic growth, which was con-

(1.4)

sidered earlier by P. Lelong in another context ([Lel2]), plays a fundamental role in
pluripotential theory (see [BT2]) as does the class of logarithmic potentials in logarith-
mic potential theory (see [Ran]). For instance, for any fixed domain U€CY, the set
function capy (-;U) is a Choquet capacity on C¥ ([BT1], [Sic3]) which is comparable to
the Monge-Ampeére condenser capacity ([AT]).

On the other hand, the class of plurisubharmonic functions of logarithmic growth
can also be defined on an algebraic subvariety of CV (see [Sa2], [Ze2]), and it turns out
that in this case again, the associated extremal functions play a fundamental role (see
[Zel], [Ze2], [Ze3)]).

Now suppose that X is an irreducible (proper) analytic subvariety of CV and K
is a nonpluripolar compact subset of X. Then, since K is now pluripolar in CVN it
follows from the above-mentioned result of Siciak that the upper regularization L} of
the function Ly in C¥ is identically equal to +00. Nevertheless, it is a natural question
to ask whether the semi-local Bernstein-Walsh inequality (1.3) holds for a pair (K,U),
where U€ X is a domain in X and K is a nonpluripolar compact subset of U. The answer
to this question was given by the beautiful criterion of algebraicity of A. Sadullaev [Sa2],
which says that such an inequality holds on the analytic set X if and only if X is algebraic.

Our first motivation was to make this criterion more effective by understanding the
algebraicity of a local analytic set in C¥ in terms of the semi-local behaviour of its
natural class of plurisubharmonic functions of restricted logarithmic growth.

It turns out that this investigation can be carried out in a more general context where
precise results can be obtained. Namely, in the spirit of P. Lelong [Lel2], we introduce an
abstract definition of a Lelong class of plurisubharmonic functions on a complex analytic
space X, and investigate the main properties of their associated extremal functions.

In this general context we first obtain, in the spirit of the classical works of S. N. Bern-
stein [Ber| and J.L. Walsh (W], an abstract semi-local Bernstein—Walsh ineguality for
a natural graded sequence of complex conic spaces of holomorphic functions associated
to a given Lelong class on X. Actually this new approach provides us with a general
and natural framework for more general “Bernstein inequalities”, which have been re-
cently proved in special cases by C. Fefferman and R. Narasimhan for algebraic manifolds
([FeN1], [FeN2]). This point of view will be developed later in a subsequent paper.
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Then we prove a fundamental theorem of algebraicity, which gives a sharp asymptotic
upper bound of the Hilbert function associated to a given Lelong class £ on the complex
space X in terms of its so-called minimal Lelong number, which describes the semi-local
behaviour of £ on X. This result seems to be new even in the case of an (irreducible)
algebraic subvariety ZCCY, where we obtain sharp estimates comparing the degree of
algebraicity of Z with the minimal Lelong number of the Lelong class of plurisubharmonic
functions of logarithmic growth on Z.

Finally, from our fundamental theorem of algebraicity, we deduce a new semi-local
criterion of algebraicity which contains the local criterion of A. Sadullaev [Sa2] as well
as the global criterion of W. Stoll [St2] thanks to a fundamental estimate of J. P. De-
mailly [D1].

2. Abstract Lelong classes and associated extremal functions

It turns out that the class £(C?) defined by the formula (1.1) has some interesting
properties which make the theory of extremal functions with logarithmic growth useful.
These properties will be taken as axioms and will permit us to develop a semi-local version
of the theory of extremal functions with growth based on the fundamental concept of
“Lelong classes”.

2.1. Admissible classes and the Lelong property

All the complex analytic spaces considered here will be reduced and irreducible. Plurisub-
harmonic functions on a complex space have been studied by J. E. Fornzess and R. Nara-
simhan [FoN], and also by J.P. Demailly [D1]. Pluripotential theory in complex spaces
has been investigated in [Bed], [D1], [Ze2].

Let X be a complex space of dimension n and X, the complex manifold of its
regular points. Recall that a function u: X —[—o0, +oo] is said to be (weakly) plurisub-
harmonic on X if and only if u is locally bounded above on X and plurisubharmonic
on Xreg.

For any function u: X —[—o0, +00] defined on X, it is convenient to consider the
(generalized) upper regularization of u on X defined by the formula

u*(z):= lirglj}:xp u(y), for zeX.

YE Xreg

If u is locally bounded above on X then u* is upper semi-continuous on X and is

called the upper semi-continuous regularization of v on X.
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If w is plurisubharmonic on X, then the function u* is upper semi-continuous on X
and coincides with u on X,eg.

Let us denote by PSH(X) the cone of plurisubharmonic functions on X which are
not identically —oo on X, so that PSH(X)C L}, .(X). The space Lj (X ) will be endowed
with the L{ -topology induced by local embeddings of X into complex Hermitian spaces.
Then it is well known that the cone PSH(X) endowed with the L -topology is closed
in LL (X) (see [Ho2).

In order to extend the theory of global extremal functions, we need to introduce the
following important definition.

Definition 2.1.1. Let LCPSH(X) be a class of plurisubharmonic functions on a
complex space X.

(1) The class L is said to be an admissible class of plurisubharmonic functions on
X if £ contains all the (real) constants and is translation-invariant, i.e. if u€ £ and ac€R
then u+aeL.

(2) If QC X is an open subset of X, the class £ is said to satisfy the Lelong property
on ( if the following condition holds:

Lelong property (LP): For any subfamily M C £, define the set of pointwise bounded-
ness of M in @ by

Bumi={z€Q: sup v(z) <+oo}. -
vEM

Then either the set B, is pluripolar in © or the family M is locally bounded above
on Q.

(3) An admissible class £C PSH(X) will be called an abstract Lelong class (or simply
a Lelong class) on X if it is a closed subset of PSH(X) which satisfies the Lelong property
(LP) on X.

Let LCPSH(X) be an admissible class of plurisubharmonic functions. Then for a
given subset E€ X, we define the L-extremal function of £ on X by

Ap(z)=Ag(z; L) :=sup{v(z):ve L,v|[EL0}, zeX. (2.1)

Moreover, as before, given a subdomain U€ X, we associate with the set E a “capacitary”
constant defined by

cap,(E;U):=exp(— sup Ag(x)), (2.2)
zelU

and call it the £-capacity of the set E with respect to U. This number always satisfies
the inequalities 0<cap(E;U)<1.
Let us quote here some known examples for later references (see [Ze2]).
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Ezamples. Let X be a Stein space admitting a continuous plurisubharmonic exhaus-
tion p: X —[—o00,+00[ which is maximal off some compact subset of X in the sense of
A. Sadullaev (see [Sa3], [K]]). Following the terminology of W. Stoll [St1], such a func-
tion will be called a (weak) parabolic potential on X, and (X, p) will be called a parabolic
space.

Then it is possible to prove that the associated class of plurisubharmonic functions,
L(X;p):={vePSH(X):3c, €R, v(z) < ey +pT (), Vz € X}, (2.3)

is an abstract Lelong class on X (see [Ze2)).

In particular, if X =27 is an irreducible algebraic subvariety of CV, then it is known
that there exists on Z a special parabolic potential py such that po(z)—log|z| is bounded
off some compact subset of Z, where |- | is any complex norm on C¥ (see [Sa2|, [Ze2]).
Then the associated class £(Z; po) coincides with the class £(Z):=L(Z;!) defined by the
formula (2.3) with p replaced by the function [(z):=log |z| for z€Z.

Therefore the class £(Z) is a Lelong class on Z, which will be called the class of
plurisubharmonic functions of logarithmic growth on Z. Observe that in the particular
case where X=C", the logarithmic potential itself is a parabolic potential on C™.

The following result, which gives several characterizations of the Lelong property,
will be useful later.

THEOREM 2.1.2. Let LCPSH(X) be an admissible class of plurisubharmonic func-
tions on a complex space X. Then the following properties are equivalent:

(1) The class L satisfies the Lelong property (LP) on X.

(ii) For each a€X there exists an open neighbourhood w of a such that the class £
satisfies the Lelong property (LP) on w.

(ili) For any nonpluripolar subset E€X, Ag is locally bounded above on X.

(iii') For any nonpluripolar subset E€X and any domain U€X, cap,(E;U)>0.

(iv) There exists o subset E€X such that Ag is locally bounded above on X.

(iv') There exists a subset E€X such that for any subdomain UEX, cap,(E;U)>0.

(v) There exists a subset ECX and a real-valued function g, locally bounded on X,
such that the following inequality holds:

w(z)<supw+g(z), VzeX,Vwel. (2.4)
E
Proof. Let us first prove that all the conditions but (ii) are equivalent. Observe that

all the implications (iii) = (iv) = (v) and the equivalences (iii) < (iii’) and (iv) < (iv')
are obvious.
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The implication (i) => (iii) is easy to prove. Indeed, let E€X be a nonpluripolar
subset. Then consider the subclass of plurisubharmonic functions

M:={weLl:w/E<L0}.

Since EC By, Bay is also nonpluripolar in X, and then the condition (i) and the defi-
nition of the Lelong property (LP) imply that M is locally bounded above on X, which
proves (iii).

Now let us prove the implication (v)=-(i). Let MCL be a subclass such that
B:={zeX:u(x)<+oo} is nonpluripolar, where u(z):=sup{w(z):weM}. We want to
prove that u is locally bounded above on X. By condition (iv), it is enough to prove
that sup,ep u(z) <+oo. Assume that the opposite holds. Then there exists a sequence
(w;)j>1 in the class M such that m;:=supgw;>2? for j>1. From the condition (iv),
we deduce the inequality

wi(z) <mj+q(z), VzeX,Vjxl. (2.5)

From (2.5) it follows that the sequence of plurisubharmonic functions (w; —m;) is locally
bounded above on X.

Since limsup,_, , . supg(w; —m;)=0, applying Hartogs’s lemma, we conclude that
there exists zo€X such that limsup;_, +oo(wj(zo) —m;)>—1. Taking a subsequence if
necessary, we can assume that the following inequalities hold:

wi(zo)—m; =2 -1, Vj>1 (2.6)

definition of the set B, for any z€ B we have u(z)<+o0, and then

Now the function w::Ejt"‘l3 277(w;—m;) is plurisubharmonic on X. Moreover, by the

w(z) < u(x) —Z 279m; = —o0,

since m;>27 for any j>1. Moreover, from (2.6) it follows that w(zp)>-—1. Thus the set
B is pluripolar in X, which proves our claim and then (i).

Now since the implication (i) = (ii) is obvious, it is enough to prove that (ii) = (iii).
Let EC X be a nonpluripolar compact set. Take an open set V such that FCVEX. By
the condition (ii), for any point a€V, there exists a neighbourhood w, of a such that
the class £ satisfies the Lelong property (LP) on w,. Since we know that (i) and (iv) are
equivalent, it follows that there exists a compact set K, Cw, such that the L-extremal
function of K, is locally bounded on w,. Then, using a standard compactness argument,
we deduce that there exists a neighbourhood €2 of the compact set V and a compact
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set KCQ such that the L-extremal function of K is locally bounded on €. From the
equivalence of the conditions (iii) and (iv), it follows that the L-extremal function Ag
is locally bounded on €2, and then it is bounded on V. Since VEX is an arbitrary open
subset such that ECV, we conclude that the £-extremal function Ag is locally bounded
on X, which proves the condition (iii). 0

The following result gives a quantitative version of the Lelong property.

COROLLARY 2.1.3. Let L be an admissible class of plurisubharmonic functions on
a complex space X which satisfies the Lelong property (LP) on X, and let GEX be
a fized nonpluripolar subset of X. Then for any subset E€X, the following inequality
holds:

Ag(z)<o(E;G)+Ag(z), VzelX, (2.7)

where o(E;G)=p,(F;G):=maxg Ag 15 a positive number, which is finite if E is non-
pluripolar in X.

More precisely, the C-extremal function Ag of the set E is locally bounded above on
X if and only if o(F;G)<+00.

Proof. From the definition of the L-extremal function of E, we deduce immediately
the inequality
w(m)gmgxw—{—AE(x), VzeX,Ywel. (2.8)

If we define the number o(E; G):=maxg Ag, then the inequality (2.8) implies
mgxw<mgxw+g(E;G), Ywe L. (2.9)

Then from (2.9) and the definition of the £-extremal function A, we obtain (2.7). By
Theorem 2.1.2, if E is nonpluripolar then Ag is locally bounded, and so o(E; G)<-+oc.
Again by Theorem 2.1.2, we know that A¢g is locally bounded on X since GeX is
nonpluripolar. Therefore, if o(E; G)<+o0 then (2.7) implies that the function Ag is also
locally bounded on X. O

It is interesting to observe that, under the assumptions of Corollary 2.1.3, for a
given subset F€X the finiteness condition gz (F;G)=p(FE;G)<+oco is independent on
the particular choice of the nonpluripolar subset G€ X, which can be taken to be an
open domain in X. Moreover, this condition is equivalent to the condition cap,(E; G):=
exp(—oc(E; G))>0. A subset EC X satisfying this condition will be called a non-L-
polar subset of X. From Corollary 2.1.3, it follows that any nonpluripolar subset of X
is non-L-polar, but the converse is not true in general.

The following result is of particular interest in our theory, since it shows the semi-

local character of the notion of Lelong class and how this notion is inherited by subspaces
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of X. Moreover, this will be the first step in the proof of our generalization of Sadullaev’s
criterion of algebraicity in §4.

THEOREM 2.1.4. Let LCPSH(X) be an admissible class of plurisubharmonic func-
tions on a complez space X, and Y an analytic subspace of X. Let us define the class
L(Y) to be the closure in L (Y) of the the induced class

loc
Ly :={uePSH(Y): Jwe L, w|Y =u}.

Then the following properties are equivalent:

(1) The class Ly satisfies the Lelong property (LP) on Y.

(2) The class L(Y) is a Lelong class on Y.

(3) For some compact (and then for any nonpluripolar) subset KCY, the restriction
to Y of the L-extremal function of K on X is locally bounded on Y.

Moreover, for any nonpluripolar compact subset KCY the restriction to Y of the
L-eztremal function associated to K as a subset of X coincides on Y with the L(Y)-
extremal function associated to K as a subset of Y, up to upper regularizations (in the
generalized sense) on Y.

Proof. 1t is clear that £y CPSH(Y) is translation-invariant and contains the con-
stants as does £. Thus £(Y) is a closed admissible class of plurisubbarmonic functions
on Y. Let us denote by Ak x the L-extremal function of K on X, and by Ak y the
L(Y )-extremal function of K on Y.

First we claim that that the following identity holds:

Ak y(y)=Ak x(), Vyey, (2.10)

where the upper regularizations are understood in the generalized sense on Y, which
means that these numbers are equal even when they are infinite.

Indeed, observe first that the inequality Ax, x <Ak,y on Y is obvious. On the
other hand, for each function we L£(Y), there exists a sequence (w;);»1 from Ly such
that w:=(limsup,_, ., w;)* on Y. Now fix we L(Y) with w|K <0 and £>0. Applying
Hartogs’s lemma, we see that there exists jo>1 such that w;<e on K for j>jo. Since
each w; is the restriction to Y of a function from £, we conclude that w;<e+Ag x on
Y for j>jo, which implies that w< A} x on Y. Therefore we obtain A} y <Ak x in the
generalized sense on Y, which proves the formula (2.10).

Now the equivalence of the properties stated in the theorem follows from (2.10)
by applying Theorem 2.1.2. The last assertion of our theorem means exactly that the
formula (2.10) holds. a
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2.2. Abstract semi-local Bernstein—Walsh inequalities

As a first application of Theorem 2.1.2, we will give a semi-local abstract version of the
(well-known) important polynomial inequalities called Bernstein-Walsh inequalities in
the literature (see [Ber], [W], [Sic2]).

Let X be a complex space and £ an admissible class of plurisubharmonic func-
tions on X. Then we can introduce the following natural graded sequence of spaces of
holomorphic functions associated to the class £ on X. For each integer d>1 define

Pa(X;L):={feO(X):(1/d)log|f|€ LIU{0} (2.11)

and Po(X;L):=C.

In the case where X admits a parabolic potential p, the space (2.11) associated to
the class £L=L(X;p) is the complex linear space of holomorphic functions of polynomial
growth (with respect to p) of degree at most d.

In the general case, it is not clear whether the set Py(X;L) is a complex linear
space, but it is a complez conic space, which means that if fePy(X; L) and A€ C then
A fePu(X; L).

As an immediate application of Corollary 2.1.3, we will deduce the following
Bernstein—Walsh inequalities, which will give a precise comparaison between two uni-

form norms on the complex conic spaces Py(X; L).

ProOPOSITION 2.2.1. Let LC X be an admissible class satisfying the Lelong property
(LP) on X. Then for any non-L-polar subsets A€X and BEX of X, the following
inequalities hold:

1Flla-e= BN <Y fllg < IIfla-e™eB), VfePa(X; L), VdEN™. (2.12)

In particular, for each deN*, the complex linear space spanned by the complex conic
space Pyg(X; L) is of finite dimension.

Proof. From Corollary 2.1.3 we know that the constants o(A; B):=max,ep Ayg is
finite, and then the last inequality in (2.12) follows easily from the definition of the L-
extremal function A4 and the definition of the space P4(X;L). The first inequality in
(2.12) follows from the last one by permuting A and B.

Now let A€ X be a fixed nonpluripolar compact subset. Then from the inequalities
(2.12) and Montel’s theorem, it follows that the set

Us:={f€Pa(X;L): | flla<1}

is a relatively compact neighbourhood of the origin in the space Py(X; L) for the to-
pology of local uniform convergence on X. Therefore the complex linear subspace
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Pa(X; £)+Pa(X; L) spanned by the complex conic space Py(X; L) is of finite dimension,
thanks to Riesz’s theorem. u

Let us now see how our approch leads to abstract semi-local Bernstein-Walsh in-
equalities, which happen to be useful in applications (see [FeN2]).

PROPOSITION 2.2.2. Let X be a complex space and U an open subset of X. Suppose
that F=(fi)ic1 s a nonempty family of holomorphic functions on U for which there
exists a compact set KCU, a family of positive integers D=(D;)ic; and a constant
M 21 such that the following Bernstein—Walsh inequality holds:

I fillo < MP-|| fillk, Vi€l (2.13)

Then for any nonpluripolar subset E€U and any nonpluripolar subset GC U, there ezists
a positive constant R=R(E;G)>1, depending only on E,G and K, M, such that the
following Bernstein—Walsh inequalities hold:

Ifille <R\ fillg, Viel (2.14)

Proof. For each integer d>>1, consider the set of all holomorphic functions f on U
defined as

Qa:={f€OW): |Iflv < M* |k} (2.15)

Then each Q4 is a complex conic space containing the constant functions, and f;€Qp,
for any ieI. Now let us consider the class H=H(K,U, M) of Hartogs plurisubharmonic
functions on U defined as

H:={vePSH(U):3deN"*,If€Q4,v=(1/d)log|f|}. (2.16)

Then it is clear from the definitions (2.16) and (2.15) that A is an admissible class of

plurisubharmonic functions on U satisfying the estimates
mnggmng+logM, YveH. (2.17)

From (2.17) and Theorem 2.1.2, it follows that the class # satisfies the Lelong prop-
erty (LP) on U. Then, applying Corollary 2.1.3, we conclude that g4 (E;G)<+4o00 and
011 (G; E)<+o00. Therefore, using the inequalities (2.12) for H, we obtain the inequalities
(2.14) with the constant R:=exp gy (E;G), since f;€Qp,CPp,(U;H) for each icl. O

Observe that the constant R(E; G) in Proposition 2.2.2 is related to the H-extremal
function of the set E, and then it is possible to compute it explicitly in some specific
cases or, at least, to have a good estimate using the inequality (2.7). In this way, it is
possible to deduce the so-called “doubling inequality” in the case of algebraic sets (see
[FeN2]). In fact, our methods lead to more general “Bernstein inequalities”, which will
be investigated in a subsequent paper.
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3. Semi-local behaviour of Lelong classes

In this section we will investigate the semi-local behaviour of admissible classes in terms
of their Lelong numbers.

3.1. Lelong numbers associated to a Lelong class

Let us assume that X is a complex space and denote as before by X;e; the complex
manifold of its regular points. Let a€X,ez and let U be a coordinate neighbourhood of

a such that there exists a homeomorphism ¢: U — A™ onto the closed unit polydisc A™
in C™ which is holomorphic on U and satisfies ¢(a)=0. Such a coordinate system (U, ¢)
will be called a regular coordinate system at the point a. Let A§ be the open polydisc of
radius s>0 centred at the origin in C™ and consider the sets Us:=¢}(A%), 0<s<1.
Let us denote by |/z|| the sup-norm on C”. Then it is well known that for any
plurisubharmonic function w on a neighbourhood of U, the real-valued function

My (a, s) :=sup{w(z):z€Us} =sup{wop ' (2):|2|| < s}

is an increasing and convex function of logs on the real interval ]0,1[, so that the

following limit exists and is finite:

. Supg,w
v(w;a):= ll_l;l’(l) Togs 3.1)

By a result of Kiselman [Kil], [Ki2], the positive real number v(w;a) defined by (3.1) is
equal to the Lelong number of the plurisubharmonic function w at the point a ([Lell],
[LG], [Hol]), and by a result of Siu [Siu] it is independent of the coordinate system we
choose at the point a€ X, (see also [D2], [Hol]).

Now we proceed to prove the following fundamental result which describes the semi-
local behaviour of an abstract Lelong class.

THEOREM 3.1.1. Let X be a complexr space, £ a Lelong class on X and (U,¢) a
given reqular coordinate system at a fized regular point of a€ Xieg. Then the following
properties are satisfied:

(1) The limit
logcap,(Us;U) .

_ L log cap,(Us; U)
#e(a)=sx,c(a):= lim log s ;I;% log s

(3.2)

exists and is finite.
(2) We have

#c(a) =ve(a), (3.3)
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where the right-hand side is defined by
ve(a) :=sup{v(w;a): we L}. (3.4)

In particular, the number stc(a)=v,(a) does not depend on the regular coordinate system
(U, ) at the point a€ X ep.
(3) The positive real-valued function sxc=v s upper semi-continuous on Xreg.

Proof. Let us denote by Ly the subclass consisting of functions we L such that
M, (a,1)=supg w=0. From the definition of the L-capacity, it follows that
x(s):= logcap  (Uss U) _ sup M, Vselo,1[. (3.5)
log s wel, logs
By Theorem 2.2.2, we have cap,(U;; U)>0 for any s€]0,1[, and then the function x
defined by (3.5) is a positive real-valued function on ]0,1[. Since for each we Ly the
function s—M,,(a, s) is an increasing and convex function of logs on the real interval
10,17, it follows that the function s+ M,,(a, s)/log s is an increasing function on the real
interval ]0,1[. Hence the function x defined by (3.5) is an increasing function on ]0, 1|
with positive real values. Thus the limit in (3.2) exists and can be expressed by

My (a,
#¢(a)=inf sup ﬂ.

3.6
s>0,e7, logs (36)

On the other hand, the same argument shows that for any we Lg, we have

My (a,
v(w;a) = inf ii)—.
s>0 logs
Since for any we L the function wy:=w—sup{w(z):z€U}€ Ly and satisfies v(w;a)=
v(wo; a), it follows from the definition (3.4) that

ve(a)= sup {inf M,)}

SUp | 08 g = sup v(w;a). 3.7

w€ Ly

From (3.6) and (3.7), it follows clearly that v, (a)<s(a).
In order to prove the reverse inequality, we need the following property.

CLAIM 1. The subset LoCPSH(X) is compact.

Indeed, let (w;);>0 be a sequence of functions from L. Since supg w;=0 for any
720, it follows from the definition of £y that w;<Ag(-;£) on X for any j>0. Thus
by Theorem 2.1.2, the sequence (w;)j»o is locally bounded above on X. Then from
Hartogs’s lemma, it follows that limsup;_, ,, wj#—oco. By [Ho2, Theorem 3.2.12], it
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follows that some subsequence (vg)xo converges in L (X) to a plurisubharmonic func-
tion v on X, and v=(limsup;_, ., v;)*. Since K:=U is pluriregular and N:={z€X:
limsup;_, , o, vj(z)<v(x)} is pluripolar by [BT1], [Bed], it follows from a generalized
version of Hartogs’s lemma (see [Ze2, Theorem 2.5]) that sup v=0. Since L is closed,
v belongs to Ly, and the claim is proved.

Now let us prove that s, (a)<ve(a). Indeed, let < sc.(a). Then by (3.6), for every
$€]0, 1{ there exists ws€ Ly such that

M, (a; ) S 5

3.8
log s (38)

Taking a decreasing sequence (s;) of numbers in |0, 1] converging to 0, we obtain a
sequence (ws;) from Ly satisfying the estimate (3.8) for s=s; and j>1. From Claim 1,
it follows that some subsequence converges to a function we Ly. Taking a subsequence if
necessary, we may assume that the sequence (w;, ) itself converges to w. Then from [Ho2,
Theorem 3.2.13], it follows that w:=(limsup,_, , ., ws,)*. By (3.8), for each t€]0, 1[ and
any j large enough so that 0<s; <t, we have

it

My, (a;t) M, (a;s;
0, (050)  Ma, (055, 9
logt log s;
By Hartogs’s lemma (see [Ze2]), it is easy to see that for any t€]0, 1] we have M,,(a,t)=
limsup;_, | Mwsj(a, t), which by (3.9) implies
My (a, t)
S 50 EE]0, 1] 3.10
gt 220 V0] (3.10)
From the formula (3.7) and the inequality (3.10), it follows that v.(a)>s. This proves
that v,(a)>sc(a). Thus we have proved that ».(a)=v,(a). Therefore we obtain the
formula (3.3).
Let us now prove (3), that the function v, is upper semi-continuous on X,e;. Then
we need the following known result.

CLAM 2. The mapping

v: PSH(X) X Xpeg > RY,
(3.11)
(w,z) = v(w;x)

is upper semi-continuous on PSH(X) X X eg.

Indeed, let a€ X, be a fixed regular point and (U, ¢) a regular coordinate system
at the point a€ X;ez as before. First observe that the problem is local and the number
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v(w;z) is independent of the coordinate system so that v(w;z)=v(we¢™';¢(x)) for
z€U. Then we can assume that U is a fixed polydisc in C" containing the closed unit
polydisc A", and consider the class PSH(U) of plurisubharmonic functions w on U. Then
there exists so€]0, 1] small enough such that for a fixed s€]0, so[, the function (w,z)—
M, (z,s):=sup{w(z):||z—z||<s} is a continuous function on PSH(U)xA™. Therefore
the mapping v defined in (3.11) is given by

—My(z,1
v(w;z) = inf My (z,8)~Mu(z, 1)
5>0 log s

(3.12)

on PSH(U)xA". Then the formula (3.12) implies that the mapping v is upper semi-
continuous on PSH(U) x A", which proves our second claim.

Now, from the upper semi-continuity of the mapping v (Claim 2), the compactness
of the set Ly (Claim 1) and the formula (3.7), it is easy to deduce that the function
»#c =V, is upper semi-continuous on Xreg. O

Let us derive the following easy consequence of our theorem which will be important

in subsequent considerations.

COROLLARY 3.1.2. Let X be a complex space and L a Lelong class on X. Then
for any regular point a€ X ez, the Lelong number ve(a) of the class L at a is finite and
we have .

mg(a) <vela)-d, VfePg(X;L)\{0}, VdeN*, (3.13)
where mg(a) is the order of vanishing of the holomorphic function f#0 at the regular
point a€ Xreg (with mys(a)=0 if f(a)#0).

Proof. The finiteness of the Lelong numbers v(a) follows from Theorem 3.1.1.
Moreover, it is well known that m¢(a)=v(log|f|; ) is the Lelong number of the plurisub-
harmonic function log|f| at the regular point a€Xreg (see [LG], [Hol]). Therefore
the estimates (3.13) follow from (3.4) and the fact that (1/d)log|f|€L for any f€
Pa(X; £)\{0}.

3.2. The minimal Lelong number of an admissible class

Let £ be an admissible class of plurisubharmonic functions on a complex space X. We
can still consider the two functions s, and v, defined on X;e, by the formulas (3.6) and
(3.7) respectively. Then we get

ve(z) < sec(z), VI€ Xieg, (3.14)

and these two numbers might be infinite. We do not know if they are equal in general.
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The following definition will be important for the statement of our theorems of
algebraicity.

Definition 3.2.1. Let £ be an admissible class of plurisubharmonic functions on a
complex space X. Then the positive (possibly infinite) number

v(L)=v(X,L):=inf{ve(a):a€ Xieg} (3.17)

will be called the minimal Lelong number of the class L.

From Theorem 3.1.1, it follows that for a Lelong class £ the Lelong function is finite
everywhere on X,., and then the minimal Lelong number of £ is finite.

Let us consider the important particular case of an irreducible algebraic subvariety
Z of CV,

Definition 3.2.2. Let Z be an irreducible algebraic subvariety of CV. The minimal
Lelong number of the class £(Z) will be denoted by

v(Z)=v(L(Z)):=inf{v(z)(T): € Zreg} (3.18)

and will be called the minimal graded Lelong number of Z. This terminology will be
motivated later in §4.

Let us first give some simple examples of computation of minimal Lelong numbers,
which will be used later.

Ezxample 3.2.3. Let ¢>0 be a real number and consider on the space C™ the Lelong
class

L.(C"):={vePSH(C™): v(z) < clog™ 2| +O(1)}.

If weL:=L,(CV), then for any a€C™ and any t€]0, 1], the one-variable function de-
fined by s (My(a, s)—My(a,t))/(log s—logt) is an increasing function on |t, +oo[, and
its limit as s—+-00 is at most equal to ¢, so that v(w;a)<c. Thus by Theorem 3.1.1, we
deduce that xx . (a)<c. On the other hand, the function z—clog|z—a| belongs to L.,

and its Lelong number at a is equal to ¢. Therefore we have s, (a)=c for any acC".
Thus v(L.)=c.

Ezample 3.2.4. Consider the smooth algebraic curve Z:={(z,y)€C?:y=P(z)},
where P(z) is a polynomial of one complex variable of degree m>1. Given a (pluri)-
subharmonic function u€ L(Z), we can define a (pluri)-subharmonic function on C by
the formula @(z):=u(z, P(z)), x€C. Since y=P(z)~c,rz™ at infinity on Z, it is clear
that 4€L,,(C) and the map u—4 is a bijection of £(Z) onto L£,,(C). Moreover, if
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zo:=(@o, yo)€ X, we have v(u; 29)=v(u;zo). Therefore, from Example 3.2.3, we deduce
the identity s (zy(20)=¢,,(c)(zo)=m for any z9€Z. Thus v(Z)=m.

Recall that for an arbitrary (irreducible) algebraic subset ZC C?¥ of dimension n,
the degree of algebraicity of Z, which will be denoted here by §(Z), is the number of
points of intersection of Z with a generic (N —n)-plane of CV (see [Ha], [C]).

The last example suggests that the minimal graded Lelong number v(Z) of an alge-
braic curve in C? coincides with its degree of algebraicity §(Z). This will be proved in
the next section (see Corollary 4.1.3).

Now let us prove the following important estimate for the general case.

ProrosiTiON 3.2.5. Let Z be an irreducible algebraic subvariety of dimension n
in CN. Then we have v(Z)<8(Z).

Proof. By [C, Corollary 11.3.1], there exists an (N —n)-plane T' in C" such that the
projection m: Z—T'* is a §-sheeted analytic cover, where §:=§(Z), and moreover, after
a unitary change of variables in CV, we can assume that for some constant ¢>0, the
following inclusion holds:

ZC{¢=(¢,¢")eC"xCN " |¢"|<e(1+[¢])} (3.19)

where ¢":=7({)=((1, -, (n) and ¢":=(Cp+1,---,Cn) (see also [Ru], [Sal)).
Let S be the critical set of the projection w. Then we claim that for any a€ Z\S
and any we £(Z), we have v(w,a)<d. Indeed, let we L£{Z) and consider the function

maw(z):= Y w((), z€C™ (3.20)
m(¢)=2

Since m: Z—C™ is a d-sheeted analytic cover which satisfies (3.19), it follows that m.we
L5(C™) (see Example 3.2.3). Let a€ Z\ S and b:=m(a). Then there exists an open neigh-
bourhood V of b in C” and an open neighbourhood U€ Z of a such that the restriction
7y: U—V is biholomorphic. To estimate v(w,a), we can assume that w<0 on U. Then
it follows from (3.20) that m.w<wony' on V, which implies the estimate

v(maw, b) 2 v(w,a). (3.21)

Since m,weLs(C™), it follows from (3.21) and Example 3.2.3 that v(w,a)<d, which
implies that s;(z)(a)<4. This proves our claim, from which the proposition follows. (1

The following formula is important for computing the minimal graded Lelong number
and will be useful later.
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ProPoSITION 3.2.6. For i=1,2, let Z; be an irreducible algebraic subvariety of
dimension n; in CN:, Then the minimal graded Lelong number of the algebraic subvariety
Z:=2Z1xZ3 18 given by

v(Z) =max{v(Z1),v(Zs)}. (3.22)

Proof. Fix a regular point a=(a1,as) of Z, and for each i=1,2 consider a regular
coordinate system (U®, h;) at the point a;. Put U:=U'xU? and ¢:=¢1X¢p2. Then
(U,¢) is a regular coordinate system at the point a, and for every s€]0,1[, we have
Uy:=¢ 1AV =U! x U2. From [Ze2, Theorem 4.5] we get the product property

Ag,(¢; Z) ==sup{Ag:(C1; 1), Apz(Ca; Z2)}, V(=((1,2) € Z. (3.23)

Now from Definition 3.2.1 and the formulas (3.1) and (3.23), we deduce

spzya) =sup{sgzy(ar), #0(z,)(az)}- (3.24)

Then (3.22) follows from the definition (3.18) and the formulas (3.24) and (3.3). O

Using (3.22) and Example 3.2.4, we can now produce a simple example which shows
that for an algebraic subvariety of high dimension, the minimal graded Lelong number
and the degree of algebraicity are not equal in general.

Ezxample 3.2.7. Let us take two algebraic curves, C; of degree m;>2 and C; of
degree m9>2 as in Example 3.2.4, and put Z:=C;x (3. Then it is well known that
the degree of algebraicity of Z is given by the formula §{Z)=m,-mg, while the graded
minimal Lelong number of Z is given by v(Z)=max{m,, ms}, thanks to (3.22). Thus
v(Z2)<8(Z).

4. Algebraicity of Lelong classes and analytic sets

In this section we will prove a theorem of algebraicity for an admissible class £ which
gives a sharp asymptotic estimate on the Hilbert function associated to the class £ in
terms of its minimal Lelong number. This result will be the main step in the proof of
our new semi-local criterion of algebraicity in §4.2.

4.1. A theorem of algebraicity for Lelong classes

In this subsection, we will prove our first main result which is an algebraicity theorem

for admissible classes with a finite minimal Lelong number.
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Let X be a complex space of dimension n and £LCPSH(X) an admissible class
on X. Recall the definition of the natural graded sequence of spaces of L-polynomial
holomorphic functions on X:

P(X;L):= U Pa(X; L), (4.1)
d>1
where
Pa(X;L):={feO(X):(1/d)log|f|€ L}YU{0}, deN", (4.2)

and Py:=C. We want to estimate the asymptotic behaviour of the “dimension” of the
complex conic space Py(X; L) with respect to the L£-degree d for an admissible class £
of finite minimal Lelong number. By definition, the (complex) dimension of the conic
space P4(X; L) will be defined by

hx c(d) :=dimg Py(X; L) :=sup{dimE: E€ Py}, (4.3)

where 75d is the family of all complex linear spaces of finite dimension contained in
Pa(X; L). If the class £ is a Lelong class, then we know that the complex linear sub-
space spanned by the conic space P(X; L) is of finite dimension, which implies that the
function defined by (4.3) takes finite integer values.

In any case, by analogy to the case of affine algebraic varieties (see [Ha]), the function
defined by (4.3) will be called the Hilbert function of (X, L).

Our main goal here is to give a sharp asymptotic estimate of the Hilbert function
(4.3) in terms of the minimal Lelong number of the class £. In fact, we will need a
slightly more general version of such an estimate.

Let (C4)den be a graded sequence of complex conic subspaces of O(X), which means
that each space Cy4 is a complex conic space such that Co=CCCy for any de N*. Then
we will say that C:=|J . Ca is a graded complex conic space.

For each regular point 2 € X,eg, we can define the positive number (possibly infinite)

pe(z) :=sup{mys(z)/d: feCq, f#0,d>1}, (4.4)

which will be called the graded multiplicity of the graded space C at the regular point z.
Recall that m¢(z) denotes the order of vanishing of the holomorphic function f#0 at the
regular point x, and my(z)=v(log |f|;z) is the Lelong number of the plurisubharmonic
function log | f| at the point z.

Then the positive number

w(C) :=inf{uc(z): z € Xreg}, (4.5)



A CRITERION OF ALGEBRAICITY FOR LELONG CLASSES AND ANALYTIC SETS 131

which might be infinite, will be called the minimal graded multiplicity of the graded space
(or sequence) C=|J o Ca- We also define the Hilbert function of the graded sequence C
of complex conic spaces by

he(d) :=sup{dimc(€): £€Cq}, deN, (4.6)

where Cg is the family of all complex linear subspaces of C4 of finite dimension.

Now we are ready to prove our fundamental theorem of algebraicity.

THEOREM 4.1.1. Let X be a complex space of dimension n, and C=|J;cnCa @
graded sequence of complex conic subspaces of O(X) with finite minimal graded multi-
plicity, i.e. u(C)<+oo. Then the Hilbert function of the graded sequence C defined by
(4.6) satisfies the asymptotic upper estimate

limsup he (nd) < il

d—+o0 n! (47)

n
7

where p:=p(C) is the minimal graded multiplicity of the graded sequence C.

Proof. Fix a regular point a€Xeg, an open neighbourhood U€X of a, and a bi-
holomorphic mapping ¢ from U onto the open unit polydisc A™ in C™, which extends
continuously to U. For each feCy, define f:=fo¢~!, which is holomorphic on A™ and
continuous on A”™. Let us denote Qq:={f: feCq4} for deN.

The main idea of the proof is to compare the dimension of any complex linear
subspace of the complex conic space Q4 with the dimension of the complex linear space
Pn(C™) of polynomials in n complex variables of degree not greater than m for an
optimal value of the integer m:=my.

To this end we first consider these spaces as subspaces of the Banach space B; of
complex-valued continuous functions on the compact polydisc As endowed with the norm
of uniform convergence on A§ defined by ||g||s:=max{|g(z)|: z€As} for g€ Bs. Then we
will estimate the distance of any element of Q4 to the finite-dimensional space P,,(C").

So expand each function F € Qy, which is holomorphic on the polydisc A", in Taylor
series on the polydisc A" as

F(z)= Z ca2®, zZ€A",
aEN™
with uniform convergence on compact subsets of A™.

Let us consider the Taylor polynomials of the function F given by the formula
Tm('z)::Z|a|<m ca 2%, for meN.
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Fix a real number 6 such that 0<0<%, take a real number 0<s<# and put t:=
3/6<1. Then using Cauchy inequalities, we get the estimates

+o0
|IF=Tmlls <IFll. > 6, VFeQq, ¥meN. (4.8)
|a]=m+1

An easy computation shows that

+oo +o00
+k 1 n—1) 0n+m
glel = (" )0’°+1= D (—— , 4.9
[a|§+1 kg;n k+1 (n-1)! 1-9 o

where D((,"*l) stands for the derivative of order n—1 with respect to 6. Then, since
0<6<%, from the equation (4.9) and the estimate (4.8), it becomes clear that there
exists a constant ¢, depending only on the dimension n such that we have the estimates

|F=Tmlls < cn(n+m)" 0™ Y| F|;,, VFeQ4 VmeN,
which imply immediately the estimates
distg, (F; Prm(C™)) < ca(n+m)* 1™ | F|,, (4.10)

for any FeQq, meN and deN, the distance being calculated in the Banach space B;.
On the other hand, fix an integer deN* and an arbitrary subspace £; of finite
dimension contained in Cyz. Then we can associate the Chebyshev constant

ra(Us; U) = inf {| 11/ f€Ea, 1 fllu =1}, (4.11)

for s€]0,1[. Since &; is of finite dimension, a compactness argument shows that the
Chebyshev constant defined by (4.11) is nonzero, and the class

Hy:={uePSH(U): If € €4, u=(1/d)log|f|}

is closed in PSH(U). Then by Theorem 2.1.2, it follows that H4 is a Lelong class on U.
Therefore, applying Theorem 3.1.1, we conclude that the limit

! U log 74(Us; U
%d(a) — lim OgTd(Us, ):lnf OgTd( s5 )

(4.12)
s—=0+ log s >0 log s

exists and is finite. Moreover,

»4(a) =sup{(1/d)my(a): f€&a\{0}}. (4.13)
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The identity (4.13) and the definition (4.4) yield the inequality
ala) < pic(a). (4.14)

Let us define the space Fy:={fo¢*: f€&;}, which is isomorphic to &4, and consider the

numbers

aq(s):= sup , (4.15)

{log |Flls—log | Fl1 } _ d-log 74(Ug; U)
FeFq

logs log s
where the last identity follows immediately from the definition (4.11). Since for each
FeF,4 the function r—log || F||, is a convex function of the variable logr for re€]0,1], it
is easy to derive from (4.15) the inequality

)l <||F|ls6%), VFeF,. (4.16)

Then by combining the inequalities (4.10) and (4.16), we deduce the fundamental esti-
mates

distg, (F; P (C™)) < cp(n+m)" || F||s 71— 2als) (4.17)

for any Fe Fy and any meN*.

Now take a real number p>p(C) and, according to the definition (4.5), choose the
regular point a€ X.eg 80 that pc(a)<p. Then fix £>0 and take a large integer dg such
that

Na:=cn(nt+pd+ed)* 16°¢ <1, Vd>dy.

Now fix d>dy and let mg be the unique integer satisfying the inequalities mg < (pu+¢)-d<
mg+1. Moreover, observe that lim, ,o+ aq(s)=d-s4(a)<d-uc(a)<d-u, thanks to the
definition (4.12) and the inequality (4.14). Then it is possible to choose s so small that
0<s<@ and ag(s)<d-p, which implies that mg+1—ag4(s)>ed.

Therefore from (4.17) and the fact that nz<1 for the fixed integer d >dy, we deduce
the estimates

dists, (F; Pmy(C™)) <na-[|Flls <|F'lls,  VFe€ Fa\{0}. (4.18)

Using the estimate (4.18), we want to conclude that dim F;<dimP,,,(C"). Assume
that the converse is true, i.e. dim Fy4>dim P,,,(C"). Since Ppm,(C™) is a subspace of
finite dimension of the Banach space Bs, we can apply the “projection theorem” in
Banach spaces, known as the Krein—Krasnoselski-Milman theorem (see [Sin]), to obtain
a function Fy€ Fy\{0} which is “orthogonal” to the subspace P,,,(C™) in the Banach
space B; in the sense that

[ Folls = dists, (Fo; Pmy(C™))-
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This contradicts the estimate (4.18) and proves the inequality

mq+n

dim £; = dim F, < dim Py, (C™) :( > Vd > do. (4.19)

n
Since mg~(u+e)*d™ as d—+oo, and u>u(C) and £>0 are arbitrary, (4.19) implies
clearly (4.7), which proves the theorem. d

As an easy consequence of the theorem let us deduce the following result.

COROLLARY 4.1.2. Let X be a complex space of dimension n, and let L be an ad-
missible class of plurisubharmonic functions on X with finite minimal Lelong number,
i.e. v:i=v(L)<+o0o. Then the minimal graded multiplicity of the associated graded se-
quence P=P(X; L) is finite, and its Hilbert function hp=hx, . defined by (4.3) satisfies
the asymptotic upper estimate

. hx c(d) _p"
lim su - < —, 4.20
iates  dv Ol (4.20)

where p=p(P) is the minimal graded multiplicity of the graded sequence P=P(X;L).

Proof. Since £ is an admissible class with minimal Lelong number (L) <+o00, then
by the estimate (3.13) of Corollary 3.1.2, the minimal graded multiplicity of the graded
sequence P:=P(X; L) satisfies the inequality p(P)<v(L), which proves that the graded
sequence P(X; £) has a finite graded multiplicity, and then the estimate (4.7) of Theorem
3.1.1 implies (4.20). O

The general idea that Bernstein—-Walsh inequalities for a sequence of linear spaces
of holomorphic functions should imply an upper bound on their dimensions was pointed
out earlier by W. Plesniak in a different context (see [P]). Later the author used this idea
to prove a weaker version of Corollary 4.1.2 in the case of parabolic spaces (see [Ze2]).

It is interesting to apply Theorem 4.1.1 to the particular case of an (irreducible)
algebraic subvariety Z of C¥.

Let A(Z):=en Ad(Z) be the graded algebra of regular functions on Z, and denote
by hz(d):=dimc A4(Z) the Hilbert function of the algebraic subvariety Z. The minimal
graded multiplicity of the graded sequence A(Z) will be denoted by p(Z) and will be
called the minimal graded multiplicity of Z. Clearly we have pu(Z)<v(Z), and equality
holds for algebraic curves as we will show later (see Corollary 4.1.4). We do not know if
equality holds in general. It seems, however, reasonable to conjecture that u(Z)=v(Z2).
With this in mind, it is quite natural to call ¥(Z) the minimal graded Lelong number of
the algebraic subvariety Z.

Anyway, we obtain the following interesting result.
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COROLLARY 4.1.3. Let Z be an algebraic subvariety of dimension n in CN. Then
we have the asymptotic estimate

hz(d) _p

limsup < —, (4.21)

d—+o0 d
where p:=p(Z) is the minimal graded multiplicity of Z.
Furthermore, the degree of algebraicity 6(Z) of Z satisfies the estimates

w2) <uv(Z) <(Z) < 2)™. (4.22)

In particular, if C is an trreducible algebraic curve of CV then p(C)=v(C)=4(C).

Proof. Since Z is an algebraic subvariety, we know that the class £(Z) of plurisub-
harmonic functions with logarithmic growth on Z is a Lelong class on Z. Moreover,
for each deN, A4(Z) is a complex linear subspace of P4(Z; L(Z)). Thus the required
estimate (4.21) follows from Corollary 4.1.2. Now combining this estimate with a well-
known fact from algebraic geometry, we will obtain the last estimate in (4.22). Indeed, it
is well known that the Hilbert function of the algebraic subvariety Z, defined by hz(d):=
dim A4(Z), is a polynomial in d of degree n=dim Z for d large enough. Moreover, the
leading coefficient of the Hilbert polynomial of Z is known to be §(Z)/n!, where §(Z) is
the degree of algebraicity of Z (see [Ha]). So our claim follows immediately, and then,
taking into account the estimate of Proposition 3.2.5, we obtain the estimates (4.22).

Remark. The last result (Coroliary 4.1.3) shows that the identities §(C)=v(C)=
p(C) are true for any algebraic curve C in CV. In higher dimension, Example 3.3.7
shows that the situation is different. The inequalities (4.22) are, however, optimal, since
if C' is an algebraic curve, we have u(C)=v(C)=6(C), and for the algebraic subvariety
Z:=C" of dimension n, we have v(Z)=v(C) by Proposition 3.3.5 and §(Z)=v(C)" by
the multiplicative property of the degree (see Example 3.3.7).

Let us now consider a more general situation where Theorem 4.1.1 can be ap-
plied. This was suggested by the fundamental work of Demailly [D1]. Let us first
recall some facts from [D1] with slightly different notations. Let X be a Stein space
of dimension n and ¢: X —[—0co+40o[ a continuous plurisubharmonic exhaustion, i.e.
Br:={zeX:¢(x)<logr}€X, for any r>0. Then Demailly introduced in [D1] a con-
tinuous family (¢,) of Monge-Ampere measures on X associated to the exhaustion ¢.
More precisely, if ro:=minx ¢ then for each real number r>ry, the measure o, is a
positive Borel measure on X supported on the pseudosphere S,:=3B, with total mass
o= fi, (ddeio).
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Moreover, any wePSH(X) is o,-integrable for any r >, and a generalized Lelong—
Jensen formula is satisfied (see [D1, théoréme 3.4]).
Now we need the following growth condition on (X, ¢):

fB,. (dd°p)” _

4.2
ro+oo  logr (423)

Observe that this condition is clearly satisfied if ¢ is a parabolic potential on X, since
in this case the integral |, Br(ddcgo)" is constant for r large enough.

Under the condition (4.23), Demailly introduced an interesting graded algebra of
holomorphic functions on X.

A holomorphic function f on X is said to be of finite degree (with respect to ) if
the condition loa* | 1

deg,(f) :=li§i1:£) ar(—oligwlf—l’ﬂ < +00

is satisfied. For each integer d 21 let 44(X; ) be the space of all holomorphic functions
f on X with finite degree deg,,(f)<d, and put Ao(X;¢):=C . Then using the condition
(4.23), it is easy to see that each A4(X; o) is a complex conic space, and the set A(X; ¢):=
Udso Aa(X; ) is a graded algebra of holomorphic functions on X.

On the other hand, using the condition (4.23) and his generalized Lelong-Jensen
formula, Demailly proved the fundamental inequalities

my(a) <C(a)-deg,(f), VYfeA(X;p), (4.24)

for any regular point a€X,eg, where C(a) is a positive constant which depends only on
a€ X e (see [D1, corollaire 8.4]).

The inequalities (4.24) implies immediately that the graded sequence A(X;¢)=
Udso Ad(X;¢) has a finite minimal graded multiplicity, i.e.

Po(X) = Elgl(f (sup{(1/d)mys(a): fe Ay(X;p), de N"}) < +o0. (4.25)
a reg

Then from the condition (4.25) and Theorem 4.1.1, we deduce the following “algebraicity

theorem” for the space (X, ¢), which may have some interest in connection with the work

of Demailly [D1].

PROPOSITION 4.1.4. Assume that (X, p) satisfies the growth condition (4.23). Then
the the graded sequence of complez conic spaces A(X;p)=|J, Aa(X; ) has a finite mini-
mal graded multiplicity, i.e. p=p,(X)<+oc, and its Hilbert function satisfies the asymp-

totic upper estimate
dim X; "
d—+00 an n!
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It is interesting to observe that the inequalities (4.24) are analogous to our estimate
(8.13) for the complex conic spaces associated to a Lelong class. In fact, given a space
(X, p) satisfying the growth condition (4.23), it is possible to define an admissible class
of plurisubharmonic functions on X for which the associated complex conic spaces are
precisely the spaces A4(X; ). Moreover, using the same method as in [D1, corollaire 8.5],
we can prove that this class is an admissible class with finite Lelong numbers on X;eg,
which implies the condition (4.25). Therefore the inequalities (4.24) and (3.13) are both
consequences of the same result (compare with Corollary 4.1.2). Unfortunately we do
not know if this class satisfies the Lelong property, so we will omit these details here.

4.2. A semi-local criterion of algebraicity for analytic sets

In this section we are going to deduce from Theorem 4.1.1 a new semi-local criterion of
algebraicity which contains the criterion of algebraicity of A. Sadullaev [Sa2] as well as
the global criterion of W. Stoll [St2].

A piece of an algebraic set in C" will be, by definition, a local irreducible analytic
subset of some algebraic subvariety of the same dimension.

Let Y be a local and irreducible analytic subset of dimension n in CV. Since we
are interested in algebraic properties of Y, it is natural to consider the following class of
plurisubharmonic functions of “restricted logarithmic growth” on Y:

Ly :=PSH(Y)n{v|Y :ve £(CM)}.

The closure L(Y') of the induced class Ly in L] _(Y) will be called the class of plurisub-
harmonic functions of restricted logarithmic growth on Y. It is clear that £(Y") is a closed
admissible class of plurisubharmonic functions on Y.

On the other hand, it is also natural to consider the graded algebra

AlY)= U Aa(Y)

d>1

of holomorphic functions on Y, where
AY):={flY:fePy(CM)}, d=>1. (4.26)

It is clear that for each deN*, A4;4(Y) is a complex linear subspace of finite dimension of
the conic space Py(Y; L(Y)).

Therefore we can consider, as in the case on an algebraic subvariety, two positive
numbers (possibly infinite) attached to Y.
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The minimal graded Lelong number of Y is defined by
v(Y) :=inf{vg(y)(z): 2 €Yieg), (4.27)
and the minimal graded multiplicity of Y is defined by

p(Y) :=inf {pay)(z) : T € Yeeg}. (4.28)

These two positive numbers might be infinite, since the class £(Y') need not to satisfy
the Lelong property (LP) as the next theorem will show. It is clear that u(Y)<v(Y),
but we do not know if there is equality here.

We can, however, prove the following criterion of algebraicity, which was the main
goal of this paper.

THEOREM 4.2.1. Let Y be a local and irreducible analytic set of dimension n in CV.
Then the following conditions are equivalent:

(i) Y is a piece of an algebraic set in CV.

(ii) The class Ly satisfies the Lelong property (LP) on'Y.

(iii) The class L(Y') is a Lelong class on Y.

(iv) There exists a compact subset ECY such that Lg s locally bounded on Y.

(v) Y is of L-positive capacity, i.e. there exisis a subdomain UEY and a compact
subset KCQ such that capg(y)(K;U)>0.

(vi) The minimal graded Lelong number of Y is finite, i.e. v(Y)<+00.

(vii) The minimal graded multiplicity of Y is finite, i.e. u(Y)<+oo.

Furthermore, if one of these equivalent properties is satisfied then Y is a piece of an
irreducible algebraic subvariety Z of dimension n, whose degree of algebraicity satisfies
the estimates

n(Y) <8(2) <p¥)™

Proof. First observe that (i) = (ii) follows from the examples given after Defini-
tion 2.1.2, (ii) = (iii) follows from Theorem 2.1.4, and (ii) = (iv) = (v) follows from
Theorem 2.1.2.

If the condition (v) is satisfied, it follows from Theorem 2.1.2 and Theorem 2.1.4 that
L(U) is a Lelong class on U, and then, by Theorem 3.2.1, the minimal Lelong number of
the class £(U) is finite. Therefore the condition (vi) is satisfied since »(Y)=v(L(Y))<
v(L(U)). The implication (vi) = (vii) is obvious since we know that u(Y)<v(Y).

Now assume that the condition (vii) is satisfied. Let us consider the graded sequence
of linear spaces of finite dimension A(Y)={J;, Aa(Y). Then by the condition (vii) we
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know that p(A(Y))=p(Y)<+ooc. Thus from Theorem 4.1.1, it follows that the upper
asymptotic estimate (4.7) is satified for the graded sequence C=A(Y). Namely, we have

di "
lim sup amAat) Aq(Y) < il

4.29
d— 400 an n! ( )

where p:=p(Y). It is well known that an asymptotic estimate like (4.29) implies that
Y is a piece of an algebraic set. Indeed, let J be the ideal of polynomials belonging to
C|z1, 22, ..., znv] which vanishes identically on Y, and let Z=loc(J), the set locus of the
ideal J. Then Z is an irreducible algebraic subvariety of CV.
By the Nullstellensatz, the vanishing ideal of Z is given by I(Z)=Rad J=J. There-
fore we obtain
A(Y)=C|z, 22, ..., 2n] /T = C|21, 22, ..., 28]/ I(Z).

Hence dim A4(Y)=dim .A4(Z)=:hz(d) coincides, for d large enough, with the Hilbert
polynomial of the algebraic subvariety Z, whose degree is precisely m:=dim Z (see [Hal).
Then from the formula (4.29), it follows that for a fixed v>pu(Y) and d large enough, we
have hz(d)<v"d™/n!, which implies that m<n. Since YC Z is an irreducible analytic set
of dimension n, we conclude that m=n, and then Y is a piece of the irreducible algebraic
subvariety Z of C¥ of the same dimension n, which proves (i). Moreover, since we know
that hy(d)=hz(d)~6(Z)-d"/n! for d large enough, it follows from the estimate (4.29)
that 6(Z)<p(Y)™, wich proves the second estimate stated in the theorem. To prove the
inequality u(Y)<46(Z), observe first that from the proof of Proposition 3.2.5 we deduce
the inequalities v(w;a)<d(Z) for any we L£(Z) and almost any point a€Zye,. Since
any feAy(Y) is the restriction to Y of a function in FeA4(Z), we can apply the last
inequalities to w=(1/d)log|f| with f€.44(Y) and almost any point a€Ye,. Then we
immediately get the inequality pa(a)<d(Z) for almost any point a€Y;eg. This implies
in particular that p(Y)<d(Z), which completes the proof of the theorem. O

The above results show that on a transcendental analytic subvariety YCC?¥ the class
L(Y) is not a Lelong class, and then no local Bernstein—Walsh inequalities of type (2.12)
are satisfied for the natural graded algebra A(Y") of holomorphic polynomials on Y.

From Theorem 4.2.1 and Proposition 4.1.4, we can also derive the following result
which contains the classical criterion of W. Stoll [St2].

COROLLARY 4.2.2. Let Y be an irreducible analytic subvariety of dimension n
in CN. Then the following conditions are equivalent:

(1) The set Y is algebraic.

(2) The projective volume of Y is finite, i.e. [, (dd®log(1+]|z]?))" <+oc.

(3) The minimal graded multiplicity of Y is finite, i.e. u(Y)<-+oo.
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Moreover, if one of these conditions is satisfied then Y is an algebraic subvariety
whose degree of algebraicity satisfies the inequalities p(Y)<d(Z)<p(Y)™.

Proof. The implication (1) = (2) is well known (see [C]). Indeed, identifying CV
with the open set {¢€P":{;#0} in the complex projective space P¥, it follows that ¥
is an algebraic subvariety of P" of dimension n, so that its volume with respect to the
metric induced by the Fubini-Study metric on P" is finite, which means that

/(ddclog(l-{-lzlz))":ﬂ(ddclog]C|)n<+oo.
Y Y

To prove the implication (2)=>(3), first observe that the plurisubharmonic func-
tion defined by ¢(2):=3log(1+|z[?) is a continuous plurisubharmonic exhaustion on Y.
Moreover, the property (2) of the theorem implies that the condition (4.23) is satisfied
by (Y,¢) and A4(Y)C.A4(Y ;) for any deN. Therefore, applying Proposition 4.1.4
to (Y, ), we conclude that u(Y)<u(Y;p)<+oo, which proves the condition (3) of the
theorem. The implication (3)=(1) and the estimates on §(Y") follow from Theorem
4.2.1. |

The equivalence of the conditions (i) and (vi) of Theorem 4.2.1 is known as the local
criterion of algebraicity of Sadullaev. The proof of Sadullaev uses methods from Padé
approximation (see [Sa2]). A particular case of this theorem is also contained in our
earlier paper with incomplete proof (see [Zed]).

(2) Aytuna gave another proof of Sadullaev’s criterion, which proceeds differently in
spirit but leads to the same conclusion that dim . A4(Y)=0(d") (see [Ay]). The idea of
proving such an estimate on the dimension in order to deduce algebraicity was pointed
out earlier by D.N. Ragozin [Rag] and has also been used more recently by L. Bos,
N. Levenberg, P. Milman and B. A. Taylor in their characterization of real algebraicity
in terms of “tangential Markov inequalities” (see [BLMT]).

(3) The equivalence of (1) and (2) in Corollary 4.2.2 is known as Stoll’s criterion.
The implication (2)= (1) was also obtained by Demailly by quite a different method
which is also based on the estimate (4.23) (see [D1]).
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