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1. Introduction

Using combinatorial dualities for reflexive polyhedra and Gorenstein cones together with
the theory of generalized GKZ-hypergeometric functions, one can extend the calculation
of the number n4 of rational curves of degree d on the generic quintic threefold in P4
by Candelas, de la Ossa, Green and Parkes [10] to the case of Calabi-Yau complete
intersections in toric varieties [3], [4], [7], [9].
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Another class of examples which includes Calabi-Yau quintic 3-folds are Calabi-Yau
complete intersections in homogeneous Fano varieties G/P where G is a semisimple Lie
group and P is its parabolic subgroup. It is a priori not clear how to find an appropriate
mirror family for these varieties, because G/P is not a toric variety in general. In [6],
we described a mirror construction (compatible with [12]) for complete intersections in
the Grassmannian G(k,n), which turned out to involve a degeneration of G(k,n) to a
certain singular toric Fano variety P(k,n) introduced by Sturmfels in [28].

In this paper we consider the extension of our methods to the case of complete
intersections in arbitrary partial flag manifolds and give complete proofs of statements
from [6].

It turns out that the Pliicker embedding of any such flag manifold F:=F(n1,...,ny,n)
admits a flat degeneration to a Gorenstein toric Fano variety P(ny,...,n;,n). This de-
formation has been studied recently by Gonciulea and Lakshmibai in [24], [18], [19].
The “mirror-dual” toric variety Pam,, . n,n) associated with a reflexive polyhedron
A(nq,...,n;,n) has a nice combinatorial description in terms of a certain graph I':=
I'(ni,...,n,n) that was introduced by Givental for the case of the complete flag mani-
folds [16]. The idea of toric degenerations has been discussed in a more general framework
in [4].

Using the residue formula, we compute explicitly a series ®p:=®r(q1, ..., q;) associ-
ated with the graph I and conjecture that ® ¢ gives a solution to the quantum D-module
associated with Gromov-Witten classes and quantum cohomology of the partial flag
manifold F. We note that there is no essential difficulty in checking the conjecture in each
particular case at hand, because it involves only calculations in the small quantum coho-
mology ring of F, for which explicit formulas are known [11], see also Remark 5.1.12 (ii).
Applying the “trick with factorials” (see [6], or §4.2 below) to a Calabi—Yau complete in-
tersection in F', we obtain @ as a specialization of the toric GKZ-hypergeometric series,
from which the instanton numbers (i.e., the virtual numbers of rational curves on the
Calabi-Yau) can be computed via the standard procedure (see e.g. [7]). As the validity of
this trick was shown recently for general homogeneous spaces [23], this implies that any
instanton numbers computed via the usual “mirror symmetry method” are automatically
proven to be correct in all cases for which our conjecture on ® holds. The series ®f of
complete flag manifolds has also been investigated by Schechtman [27].

The paper is organized as follows. In §2 we introduce main combinatorial no-
tions used in the definition of a Gorenstein toric Fano variety P(n1,...,n;,n) associated
with a given partial flag manifold F(n,,...,n;,n). In §3 we investigate singularities of
P(ny,...,n;,n) and show that these singularities can be smoothed by a flat deformation
to the partial flag manifold F(ni,...,n;,n). As a consequence of our results, we prove
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a generalized version of a conjecture of Gonciulea and Lakshmibai about the singular
locus of P(ny,...,n,n) [19]. In §4 we discuss quantum differential systems following
ideas of Givental [15], [16], [17]. Finally, in §5 we explain the mirror construction for
Calabi-Yau complete intersections in partial flag varieties F’ and the computations of the
corresponding hypergeometric series @ .

Acknowledgement. We would like to thank A. Givental, S. Katz, S.-A. Strgmme,
and E. Rgdland for helpful discussions, and the Mittag-Leffler Institute for hospitality.
The second and third named authors have been supported by Mittag-Leffler Institute
postdoctoral fellowships.

2. Toric varieties associated with partial flag manifolds

In this section we explain how to associate to an arbitrary partial flag manifold
F(nq,...,n;,n) certain combinatorial objects: a graph ['(n4,...,n,n), a reflexive poly-
tope A(nq,...,ny,n) and a Gorenstein toric Fano variety P(ny, ..., n, n).

2.1. The graph I'(n4, ..., 71, n)

Let k1, ko, ..., ki+1 be a fixed sequence of positive integers. We set ng=0, n;:=k1-+...+k;
(i=1,..,141) and n:=mny;1. Denote by F(ni,...,n;,n) the partial flag manifold para-
metrizing sequences of subspaces

ocvicV,cC...cv,cC?,

with dim V;=n, (i=1,...,1). Then

!
dim F(nq,...,n;,n) = Z (ni—ni—1)(n—n;).
i=1

To simplify notations, we shall often write F' instead of F(n1, ..., ny, n), if there is no con-
fusion about the numbers ni, ...,n;, n. By a classical result of Ehresmann ([13]}, a natural
basis for the integral cohomology of F is given by the Schubert classes. These are Poincaré
dual to the fundamental classes of the closed Schubert cells C,,C F', parametrized by per-
mutations we S, modulo the subgroup

W(k)l, . kl+1) = Sk1 X ... X SkH-l CS,.
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In particular, the Picard group of F, which is isomorphic to H?(F,Z), is generated
by ! divisors C4, ..., C}, corresponding to the simple transpositions 7; €S,, exchanging n;
and n; +1.

Definition 2.1.1. Denote by A:=A(n,,...,n;,n) the standard ladder diagram con-
sisting of unit squares (the number of unit squares in A is equal to the dimension of F)
corresponding to the Schubert cell of maximal dimension in the flag manifold F. We
place the ladder diagram A in the lower left corner of an (nxn)-square Q. The lower left
corner of A (or of Q) will be denoted by Op. We denote by O; (i€{1,...,1}) the common
vertex of the diagonal squares @; of size k; xk;, and Q;41 of size ki1 x ki1 (Figure 1
illustrates the case [=4).

Definition 2.1.2. Let A=A(n,,...,n;,n) be the above ladder diagram. We associate
with A the following:

(i) D=D(ny,...,m,n), the set of centers of unit squares in A: we place a dot at the
center of each unit square and call elements of D dots.

(i) S=8(n1,...,my,n), the set consisting of I+1 stars: an element of S is obtained
by placing a star at the (%,2)-shift of the lower left corner of each of the diagonal
squares @Q; (i€{1,...,I+1}).

(iif) E=FE(nq,...,ny,n), the set of oriented horizontal and vertical segments connect-
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ing adjacent elements of DUS: the vertical segments are oriented downwards, and the
horizontal segments are oriented to the right.

Definition 2.1.3. I':=T'(ny,...,n;,n) is the oriented graph whose set of vertices is
DUS, and whose set of oriented edges is E.

Such a graph I' (without the orientation!) is shown in Figure 2. The edges of I" are
drawn with solid lines.

Definition 2.1.4. We denote by L(D)=ZIPl L[(8)~Z!S! and L(E)~Z/®! the free
abelian groups (or lattices) generated by the sets D, S and E.

We remark that the lattices L(D)®L(S) and L(E) can be viewed as the groups of
0-chains and 1-chains of the graph I'. Then the boundary map in the chain complex is
O:L(E) > L(D)®L(S), e hie)—t(e),
where h,t: E—DUS are the maps that associate to an oriented edge e€ E its head and

its tail respectively. See Figure 3.

Definition 2.1.5. A boz b in T is a subset of 4 edges {e, f,g,h}CE which form
together with their endpoints a connected subgraph I'y T' such that the topological
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space associated to 'y is homeomorphic to a circle. The set of boxes in I" will be denoted
by B.

It is easy to see that
Ho(T') = Coker(d) = Z, Hy(T')=Ker(d)=ZPl.
We also consider the projection g: L(D)®L(S)— L(D) and the composed map
d:=p08: L(E) — L(D).

Since one can regard the groups L(E) and L(D) together with the homomorphism ¢ as
the relative chain complex of the topological pair (T, S), we have

Hy(T, S) = Coker(§) =0, H,y(T',S)=Ker(§) = ZB+

Definition 2.1.6. A roof R;, i€{1,2,...,l}, is the set of k;+k; ;1 edges of I' forming
the oriented path that runs along the upper right “boundary” of I' between the ith and
the (¢+1)st stars in S.

Definition 2.1.7. The corner C, of a box b={e, f,g,h}€B is the pair of edges
{e, f}Cb meeting at the lower left vertex of I',. So a corner Cp contains one vertical
edge e and one horizontal edge f such that h(e)=t(f).

The roofs and corners give a decomposition of the set E of edges of the graph I" into
a disjoint union of subsets:

E=R;U..URU U Cs.
beB

This decomposition is shown in Figure 4.

Definition 2.1.8. The opposite corner C, of a box b={e, f,g,h}€B is the pair of
edges {g, h} Cb meeting at the upper right vertex of I',. An opposite corner C, contains
one vertical edge h and one horizontal edge g such that h(g)=t(h).

By elementary arguments one obtains:
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PROPOSITION 2.1.9. The elements
»=) e=) e
€€l ecCy

where b runs over the set B, form a natural Z-basis of Ker(0)C L(E). Moreover, the
elements

0; = Z e, i1e€{1,....1},

e€ER;

and
0p = Z e— Z e, beB,
e€Cy e€Cy
form a natural Z-basis of Ker(6)C L(E). O

2.2. The toric variety P(n,,...,n;, 1)
We denote again by § the R-scalar extension L(E)@ R— L(D)®R of the homomorphism
d: L(E)— L(D).

Definition 2.2.1. The polyhedron A:=A(ny,...,n;,n) associated to F' is the convex
hull of the set
3(E)C L(D)®R,

where the set E is identified with the standard basis of L(E)@ R=ZRIEI.
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A

Oo
Fig. 5
In order to describe the faces of the polyhedron A we introduce some further com-
binatorial objects associated to the ladder diagram A.

Definition 2.2.2. (i) A positive path 7 in the diagram A is a path obtained by starting
at one of the points O; (i=1,...,!) and moving either downwards, or to the left along
some 1 edges of A, until the lower left corner Oy is reached (see Figure 5). We denote
by II the set of positive paths, and by IT; the set of positive paths connecting O; and Oy,
so that

n=Iu..ull.

Note that the number of elements in II; is

(1)

(i) A meander is a collection of positive paths {=1, ..., m} (m; €I1;), with the property
that the union

mU...Um
is a tree with endpoints Ogy, Oy, ..., 0.
The set of all meanders is denoted by M.

THEOREM 2.2.3. There is a natural bijection between the codimension-1 faces of A
and the set M of meanders.

Proof. Since every face © of A is given by its supporting hyperplane, it follows from
the exact sequence
0— Ker(§) » L(E)®R % L(D)®R -0
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that this hyperplane can be described by a linear function
A L(E)Y®R—R
which vanishes on Ker(d) and satisfies the conditions
A(v)<1, forallve L(E)QR with d(v) €A,

and
0(v)€© ifand only if A(v)=1and é(v)€A.

Let us show that every meander m={m,...,m} €M defines such a linear func-
tion A,,. We define the value of A\, on e€ E by the formula

Am(e)i=1— > [Ril. (1)

{imiNe#2}
It follows that A,,(e)=1 if the meander m does not intersect e, and A,,(e) is negative

if m intersects e. Now we show that the linear function A,, satisfies the requirement
)\m|Ke,(5)=0. By Proposition 2.1.9, it suffices to prove that

3 Anmle) =0, (2)

e€ER;

for all i€{1,2,...,1}, and

Y Amle)= Y Amle), ®3)

e€Cy ecCy

for all beB.
We remark first that every roof R;, i€{1,2,...,l}, contains exactly one edge e;€E
intersecting the positive path m; €m, for which

)\m(ei) =1- |R,| <0.
On the other hand, A(e)=1 for each eeR;, e#e;. It follows that

D Am(e)=0 forall i€{1,2,..,1}.

e€ER;

Now let b€ B be an arbitrary box. Since the positive paths of the meander m form a
tree, only the following three cases can occur:

Case 1. The meander m does not intersect edges in b. Then A, (e)=1 for all 4 edges
of b, and hence (3) holds.
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Case 2. The meander m intersects exactly two edges in b. Then m intersects exactly
one edge e’€b belonging to Cp and exactly one edge ¢”€b belonging to C, . By the formula
(1) for A, we have A\, (e')=A(e"). So again the relation (3) holds.

Case 3. The meander  intersects exactly three edges in b. Then m intersects both
edges €, e”€b belonging to C; and exactly one edge e”’€b belonging to C. By (1),

Am(€”) =Am (€ ) +Am(e”")—1.

Again the relation (3) holds.

Therefore, by Proposition 2.1.9, Am|ker(s)=0-

Let ©,, be the face of A defined by the supporting affine hyperplane A, (-)=1. We
claim that ©,, has codimension 1. Since ©,, is the convex hull of the lattice points in A
corresponding to the edges ec E on which ), takes the value 1, it is sufficient to show
that any linear function A’ satisfying X'|ker(sy=0 and XN'{v)=1 for all v€ L(E)®R with
d(v)€O,, must coincide with A,,. Indeed, by Proposition 2.1.9, the value of such a linear
function X is uniquely determined on each edge e of each roof R; (1<i<!):

(o) = { 1-|R;| i mnNe#o,

1 otherwise.

Next we remark that if for some box b€ B we have shown that

holds for all e€C;, then, by Proposition 2.1.9 and (3), we obtain

SN =" Anle)
e€Cs e€Cy

and therefore
N(e)=Xm(e) for all e€Cy,

since only one edge e€C; can be intersected by m (see Cases 1-3). Since we have
established the equality A'(e)=M\.(e) for all eeR,U...UR,;, the above arguments imply
the equality M(e)=MA..(e) for all ecE.

Now we prove that any codimension-1 face ©® of A can be obtained from some
meander me M. For this purpose, it suffices to show that if a supporting linear function
A defines a face ©@CA, then there exists a meander me M with ©CO,,. The latter is
equivalent to the condition A(e)<1 for all edges e€ E such that enm#a.

First we remark that the linear function A cannot attain the value 1 on all edges
of the roof R, because A vanishes on the element g,€Ker(d) (see Proposition 2.1.9).
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Now start a positive path m at O; whose first nonempty intersection with edges of the
opposite corner C; of some box b€ B occurs on an edge e; R, with A(e;)<1. Since

S A= Ae),

e€Cy ecCy

the value of A on at least one of the two edges of Cp has to be strictly less than 1. We
prolong our path through that edge and enter a next box, where the same reasoning
applies. Continuing this, we complete a positive path m; from O; to Oy crossing only
edges where A is strictly less than 1. Now we repeat this construction for each of the O;
in subsequent order, starting at Oz, etc. If in the process of constructing a positive path
7; we collide with some already constructed positive path 7; (j<4%), we just follow from
this point the path 7;. In the end, we produce a meander with the required property.
We conclude that ©,, (meM) are all the codimension-1 faces of A. O

COROLLARY 2.2.4. A(ng,...,nq,n) is a reflexive polyhedron.

Proof. The statement follows immediately from Theorem 2.2.3 and from the inte-
grality of the supporting linear function A, (see Definition 4.1.5 in [3]). O

Definition 2.2.5. The complete rational polyhedral fan X=X (n, ..., n;,n) is the fan
defined as the collection of cones over all faces of A. The toric variety Py associated to
the fan 2 will be denoted by P=P(ny,...,n;,n).

Using one of the equivalent characterizations of reflexive polyhedra (see Theorem
4.1.9 in [3]), we obtain from Corollary 2.2.4:

PROPOSITION 2.2.6. P{nq,...,n;,n) is a Gorenstein toric Fano variety. |

3. Further properties of P(nq,...,n;,n)
3.1. Singular locus

Definition 3.1.1. Define ﬁ:ﬁ(nl,...,nl,n) to be the toric variety Pg associated to
the fan f], obtained by refining the fan ¥ to a simplicial one, whose one-dimensional
cones are the same as the ones of ¥ (i.e., they are generated by the lattice vectors
{é(e),e€ E}C L(D)) and whose combinatorial structure is given by the following |B|+!{
primitive collections:

R1, Ry, ..., Ry and G, beB.

In other words, the cones of maximal dimension of the fan ¥ are defined by taking all

edges ec E except one from each roof and from each corner.
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PRrROPOSITION 3.1.2. The variety P is a small toric desingularization of P.

Proof. We have to show that each cone of $ is contained in a cone of £, and each
cone of & is generated by a part of a basis. It suffices to prove the above properties for
cones of % of maximal dimension.

Choose an edge e; in each roof R; (=1, ...,I) and an edge f; in each corner Cy, bEB.
This choice determines a | D|-dimensional cone o in 5. For each i=1,...,[ there exists a
unique positive path from O; to Oy with the following two properties:

(i) m; crosses the edge e;;

(ii) if 7; enters a box b, then it crosses the edge fp.

It is easy to see that the union mU...Um of these paths is a meander. Indeed, if a union
of positive paths as above is not a tree, then there must exist a box b€ B with both edges
of the corner C, intersecting the union of positive paths. This contradicts the second of
the above conditions. Therefore the set of edges {e;}U{fs} defines uniquely a meander
m&EM, and the cone o is contained in the cone over the face ©,,C A. On the other hand,
the elements {g;}i=1, .1 and {0s}se B together with the set

Go:=E\({ei}i=1,...U{fo}reB)

form a Z-basis of L(E). By Proposition 2.1.9, the set of generators of ¢ (i.e., the J-image
of G,) is a Z-basis of L(D).

The desingularization morphism P— P induced by the refinement T of ¥ is small
(i.e., contracts no divisor), because the sets of 1-dimensional cones in ¥ and X are the
same. O

There is another way to describe 13, namely as an iterated toric fibration over P:
One starts with the product of projective spaces

PRil-1x  xplRil-1

corresponding to the roofs. Then one chooses a corner Cy of a box b€ B whose opposite
corner C; belongs to a roof. This choice allows us to define a toric bundle over P! with
the fibre PIR1l=1x  xPIRi~1  Then one adds a new corner Cy of a box b€ B whose
opposite corner C;, is contained in the union of roofs and Cp, etc. At each stage of this
process one gets a toric fibre bundle over P!, with fibre the space constructed in the
previous step. Using this description of 13, one obtains an alternative proof of the fact
that the anticanonical divisor on P is Cartier and ample, i.e., that the polyhedron A is
reflexive.

Definition 3.1.3. Let b€ B be an arbitrary box. Define W, C P to be the closure of
the torus orbit in P corresponding to the 3-dimensional cone o, generated by the é-image
of the 4-element set 5.
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THEOREM 3.1.4. The singular locus of P consists of codimension-3 strata Wy,
be B. These are conifold strata, i.e., transverse to a generic point of W, the variety P
has an ordinary double point.

Proof. Since the desingularization morphism ¢: P—Pis small, P is smooth in codi-
mension 2. Moreover, the singular locus of P is precisely the union of toric strata in P
over which the morphism ¢ is not bijective. According to the main result of [26], the
exceptional locus Exz(p)C P (i.c., o~ (Sing(P))) is the union of toric strata covered by
rational curves contracted by ¢. On the other hand, since P is an iterated toric bundle,
the Mori cone ]—V_E‘(ﬁ) is a simplicial cone generated by the classes of the primitive rela-
tions

> 8e)=0, i=1,..,1,

e€ER;

and

> de)=)_ d(e), beB,

ecCy eeCy
(see §82 and 4 in [2]). Since the morphism ¢ is defined by the semiample anticanonical
class of P, it contracts exactly the extremal rays in NE(ﬁ) defined by the primitive
relations corresponding to the boxes b€ B. The rational curves representing each such
class cover the codimension-2 strata Wb, be B, corresponding to the 2-dimensional cones
in & spanned by the d-images of the edges forming the opposite corner C, . These strata
are contracted, with Pl-fibres, to the codimension-3 strata W, in P corresponding to
the 3-dimensional cones o, €X over the quadrilateral faces @, of A whose vertices are
d-images of the edges in b (b€ B). It follows that | J,.z W, is exactly the singular locus
of P. O

3.2. Canonical flat smoothing
Let F=F(nq,...,n;,n) be a partial flag manifold. The semiample line bundles
o), ..., O(Cy)
associated to the Schubert divisors Ci, ..., C; define the Pliicker embedding of F into a

product of projective spaces:

n
¢: F =Pl  xPNM~1  where N, = (n )
i
We will always consider F' as a smooth projective variety together with this embedding.
We describe now an embedding of P in the same product of projective spaces.



14 V.V. BATYREV, 1. CIOCAN-FONTANINE, B. KIM AND D. VAN STRATEN

Definition 3.2.1. For each e€ E, let H, be the toric Weil divisor on P determined
by the 1-dimensional cone of ¥ spanned by the vector (e).

For every edge ec Uﬁ:l R; which is part of a roof, denote by U(e) the subset of F
consisting of the edge e, together with all edges f€ E which are either directly below e
in the graph I, if e is horizontal, or directly to the left of e, if e is vertical.

Fix 1<i<l. For e€R; consider the Weil divisor 3_ ;) Hy-

LEMMA 3.2.2. For each e€eR;, the Weil divisor > FeU(e) Hy is Cartier. Moreover,
if €'€R; is another edge in the same roof, then the associated divisor }_ ¢ ueyHy i
linearly equivalent to 3 ;. u(e) Hy-

Proof. To each edge ecR;, and each positive path w€ll; joining O; with Op, we
associate a linear function nle]: L(E)—Z defined by

0 ifnNg=2 and g¢ U(e),
0 ifnNg#oand geU(
7le](g) = (
(

—1 ifxnNg=2 and ge Ule),

)
€),
)
1 ifrNg#@ and g¢Ule).

It is an elementary exercise to check that m[e] vanishes on the elements

05 = Z g, j€{1,..,1},

gER;

and

=Y g- Y, g bEB.
9€C  gecy
It follows from Proposition 2.1.9 that 7[e] descends to a linear function on L(D).
To show that > ey Hy is Cartier, it suffices to construct for each maximal-

dimensional cone ¢ in ¥ an integral linear function
Ao: L(E)—Z

which vanishes on ker(d) and satisfies
(i) As{(g)=0, for all g€ F such that d(g)€o and g¢ U(e);
(i) As(9)=-1, for all ge E such that é(g)€o and geUl(e).
By Theorem 2.2.3, every maximal cone ¢ is determined by a meander m=(m;, w2, ..., M),
and §(g)€o if and only if the meander does not intersect the edge g (cf. the proof of
Theorem 2.2.3). It follows that
Ao i=e]
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satisfies the above conditions, where 7; is the positive path in m which joins O; with Op.
Hence ) (¢ () Hy is Cartier. Note that the functional A, defined above does not depend
on the positive paths 7; (j#%) in m that do not intersect the roof R;.
To prove the second part of the lemma, define an integral linear function u: L{E)—Z
by
-1 if geU(e),
ug)=4q 1 ifgeU(e),
0  otherwise.
As above, one can easily check that p vanishes on ker(§), and hence it descends to a
linear function on L(D). The descended linear function defines a rational function on P,
whose divisor is > re ) Hf =2 preu(ery Hy - This finishes the proof of the lemma. 0

Definition 3.2.3. For each i=1,2,...,1, the line bundle associated to the roof R; is

Ei::O( > Hf>,

fet(e)

for some edge ecR,;.

It follows from Lemma 3.2.2 that £; does not depend on the choice of the edge eeR;.

We note that for each maximal-dimensional cone ¢ the linear function A, defined
in the proof of Lemma 3.2.2 satisfles A,{g) >0 for all g€ E such that g¢o. This implies
that the line bundle O (3 reue H r) is generated by global sections (cf. [14, p. 68]). We
will now identify the space of global sections.

The Cartier divisor } ¢y (. Hy determines a rational convex polyhedron Ale] in
the dual vector space L(D)*®R, given by

Ale]={ e L(D)*®@R: A(0(g)) = —1 VgeUle), \Md(g)) =0 Vge E\U(e)}.

The space of global sections of the line bundle (’)(Z Feu(e) H f) has a natural basis,
indexed by the lattice points in Ale]. By its very definition, for each positive path = €I,
the linear function 7[e] introduced in the proof of Lemma 3.2.2 gives such a lattice point.

ProprosITION 3.2.4. For each i=1,2,...,1, the space of global sections of L; has a
natural basis parametrized by the set I1; of positive paths connecting O; and Oyg.

Proof. Choose an edge e€R;. We have to show that the only lattice points in Ale]
are the ones given by mle], 7€ll;. Let A: L(E)—Z be any linear function vanishing on
ker(d), and such that the descended linear function is in Ale].

Since on the one hand A vanishes on every

0= 9 Je{l,.l},

gER;
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and on the other hand )\ can be negative only on edges in U(e), there are exactly two
possibilities:

(I) A(g)=0 for all geUélej;

(I1) A(e)=-1, there exists an edge h in the ith roof R; with A(h)=1, and A(g)=0
for all gel; ., R;\{e, f}-

If (I) holds, then we start a positive path 7 at O; that intersects the roof R; at the
edge e. Let b be the box containing e in its opposite corner and let f be the other edge
in U(e) contained in this box. If A(f)=0, we prolong the path through the edge f, and
enter a next box b’, where we have the same situation as before (i.e., there is another
edge f'eU(e), and if A\(f’)=0, then we prolong the path through f’, etc.). So we may
assume that A(f)=-—1. The edge f is part of the corner C, of b. Let f” be the other
edge in Cp. Since A vanishes on all elements

%=y 9- Y g beB,

9€C  gecy

A(f") must be strictly positive (hence at least 1). We prolong the path 7 through the
edge f”, and enter a next box b”, for which f” is part of the opposite corner. Now A is
nonnegative on all four edges of ", and A(f”)>1. It follows that there must be an edge
""" in the corner Cy-, with A(f””)>1. We prolong the path through this edge, and enter
a next box, where the same reasoning applies. Continuing this, we complete eventually
a positive path m. Consider the linear function v:=A—mle] on L(E). By construction,
and the definition of m[e], the functional v is nonnegative on all edges g€ E. On the
other hand, v vanishes on the generators of ker(4) described in Proposition 2.1.9, since
both A and 7[e] do. We claim that v is identically zero on L(E)®R. Indeed, since v is
nonnegative and V(E 9ER, g) =0 for j=1,2, ...,1, it follows that v takes the value zero on
each edge in the union of all roofs. Similarly, if v vanishes on each of the edges of the
opposite corner C, of some box, then it must vanish on each of the edges of the corner
Cy as well. From these two facts, one obtains inductively that v takes the value zero on
every ge E. Hence A=mle].

Assume now that (II) holds. In this case, we start a positive path 7 at O; that
intersects the roof R; at the edge h. A reasoning entirely similar to that in case (I)
shows that the path 7 can be completed such that the functional A—[e] is nonnegative
on every edge. Hence we obtain again A=n]e]. 0

Definition 3.2.5. The (|D|+1)-dimensional cone C=C(ny, ..., n;, n) associated to the
flag manifold F' is the convex polyhedral cone in the space Im(0)®R spanned by the
vectors

d(e) € Im() @R = RIPIHISI-1
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with e€ E. We denote by C* the dual cone in the dual space Im(9)*®R.

Definition 3.2.6. Let w€lIl be any positive path #€Il. We associate to m a linear
function
At L(EY—Z
by setting A.(e)=1 if the path 7 crosses the edge e, and A, (e)=0 if it does not.

Remark 3.2.7. If the path 7 enters a box b€B, then it does so by crossing an
edge which is part of the opposite corner C, , and it has to leave b by crossing an edge
which is part of the corner C;. It follows that the corresponding functional A, is zero
on Ker(8)=H1(T'), and hence it descends to a functional on L(E)/Ker(9)=Im(9), still
denoted by A.. By definition, A, is a lattice point in the dual cone C*CIm(9)*®R.

THEOREM 3.2.8. The semigroup of lattice points in C* is minimally generated by
the set of all Ar, where m runs over the set II of positive paths.

Proof. Let A: L(E)—Z with X|ger(9)=0 and A(e)>0 for all e€E. We define the
weight of A to be

w(A) = Ae).

e€E
It is clear that w(A) >0, and that w(A)=0 if and only if A=0. Note also that w(A;)=n
for all well.

The statement of the theorem will be proved if we show that w(A)>=n for all nonzero
integral linear functions \: L(E)—Z with A|ker(9)=0 and A(e)>0 for all e€ E, and, more-
over, any such A is a nonnegative integral linear combination of A, (w€Il).

By Proposition 2.1.9, the requirement A|ker5)=0 is equivalent to A(gp)=0 for all
beB, or

Z Ae) = Z Ale) for all be B.
e€Cy ecC;

As in the proof of Proposition 3.2.4, the above condition implies that if A0, then
there exists a roof R; containing an edge e on which X is nonzero (hence A(e)>=1). We
start to construct a positive path m; from O; by choosing its edges in such a way that
e is the first edge of the graph I intersected by ;. Let b€ B be a box containing e in
its opposite corner (i.e., e€C, ). Since A\(gp)=0, there must be an edge f€C;, such that
A(f)>0 (hence A(f)>1). We prolong the path m; through f and enter a next box ¥, for
which feC;,. Again there must exist an edge g€Cy such that A(g)>1, etc. Continuing
this process, we eventually obtain a positive path m;, which only crosses edges e of T’
having the property A(e) >1. This shows that A':=X— A, is again an integral nonnegative
linear functional on C. On the other hand,

w(N)=wA)—w(Ar,) =w(d)—n.
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Fig. 6
Since w(A’) >0, this shows that w(A)>n. By induction on w(\), we can assume that A’
is already a nonnegative integral linear combination of A,, and hence so is A=A+ A,,. O

Definition 3.2.9. We define a partial ordering on the set II of positive paths by
declaring that m>#’ if the path 7 runs above the path «’. See Figure 6.

Remark 3.2.10. It is easy to see that the set II of positive paths together with the
above partial ordering is a distributive lattice. The maximum max(rw, 7’} for any two
paths 7 and 7’ is the path bounding the union of the regions under 7 and #’; similarly,
min{r, 7’) bounds the intersection of these regions.

Definition 3.2.11. Consider the partition of the set of independent variables {z; }ren
into [ disjoint subsets

{Zﬁ}ﬂeni, i:I,...,l,
and define X=X{n4,...,n;,n) to be the subvariety of
PVl pMNe-ly  xpMiTl

given by the [-homogeneous quadratic equations

ZxRx’ — Zmin(m,x’) Zmax(m,x!) = 0’ (4)
for all pairs of noncomparable elements 7, 7' €1l.

The variety X has been investigated by N. Gonciulea and V. Lakshmibai in the
papers [18], [19], where the following result has been proved:
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THEOREM 3.2.12. (i) X(n1,...,n,n) is a |D|-dimensional, irreducible, normal,
toric variety.
(ii) There exists a flat deformation

0: X — Spec(Clt])

such that o=1(0)=X(n1,...,ny,n) and o~ (t)=F(ny,...,m,n) for all t+0.

The next theorem describes an isomorphism
X(ny,.,ny,n) 2 P(ng,...,n,n).

THEOREM 3.2.13. Let P=P(ny,...,n;,n) be the toric variety associated with a par-
tial flag manifold F=F(n,,...,n;,n). The line bundles L; (i=1,...,1) define an embedding

P P PNy pNa—ly  wpNi-l

whose image coincides with the toric variety X (ny,...,n;,n).

Proof. We have X =Proj(C|zy;7€ll]/T), with Z the ideal generated by the qua-

dratic polynomials in (4), and Proj is taken with respect to the Z!-grading given by

deg(z:) = (0, ...,0,1,0,..,0), if rel,.

If we identify IT with the set {A\,,7€II}CIm(d)*, then T is the toric ideal (see the
definition in {28, p. 31]) associated to this set (this is a standard fact about the ideals
associated to distributive lattices; see for example Theorem 4.3 in [18] for a proof). Let Y
be the affine toric variety Spec(C[zr;w€ll]/Z). By Theorem 3.2.8 and Proposition 13.5
in [28], Y coincides with the affine toric variety defined by the cone CCIm(9)®R, i.e.,
Clzp;m€ll]/Z can be identified with the ring C[S¢] determined by the semigroup S¢ of
lattice points in the dual cone C*.

Pick an edge e;€R; for each 1<i<l, and identify the line bundle £; with
O(Zer(ei) Hy). For each 1<i<!, let Ale;]C L(D)*®R be the supporting polyhedron
for the global sections of the line bundle £; (cf. Proposition 3.2.4); recall that the lattice
points in Ale;] are given by the linear functions nle;] (w€Il;) defined in the proof of
Lemma 3.2.2. Define now for each 7 a linear function vle;]: L(E)—Z by

1 if feU(e),
0 otherwise.

v[ei](f)={

It is clear that vle;] descends to a functional on Im(9), and that for every path well;
the functional A, in Definition 3.2.6 coincides with =[e;]+vle;]. For each 1<i<l, let
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0;CIm(0)*®R be the cone over the translated polyhedron v[e;]+A[e;]. Then the Min-
kowski sum o:=07 +...+0; of these cones coincides with the cone C*, since both ¢ and
C* are generated by the vectors {\., w€Il}. It follows that P=Proj(C[Sc]), where Proj
is taken with respect to the natural Z‘-grading induced by the decomposition of C* into
the Minkowski sum of the o;.

For each 1<i<!, choose an ordering {m; 1,7 2,...,7; n,} of the set II;. Let s, ;€
HO(P, L;) denote the section determined by m; ; (:=1,...,1, j=1,..., N;). The line bundles
L1, ..., L; define a morphism

Y: P PVl pNe-ly  xPM—1

L3 ([Smy 1 (2) 1 oo 87y, (T)]s ooey [870, (2) 2 o1 8y (2)])-
By the above arguments, v is the isomorphism
Proj(C[Sc]|) — Proj(Clzx; w €11 /T),

and the theorem is proved. il
From Theorems 3.2.12 and 3.2.13 we obtain

COROLLARY 3.2.14. There exists a flat deformation
0: X — Spec(C[t])

such that 0~ 1(0)=P(ny,...,ny,n) and o~ (t)=F(ny,...,my,n) for all t#0.

Remark 3.2.15. A description of the singular locus of P was conjectured by N. Gon-
ciulea and V. Lakshmibai in the case when F is a Grassmannian (see [19]). Our The-

orem 3.1.4 proves this conjecture and its generalization for arbitrary partial flag mani-
folds F.

4. Quantum differential systems
4.1. Quantum D-module

In order to explain our mirror construction, we give a short overview of the quantum
cohomology D-module. The reader is referred to [15], [23] for details.

Let V be a smooth projective variety. Denote by {7}, and {T}, two homogeneous
bases of H*(V,Q), dual with respect to the Poincaré pairing, i.e., such that

(Ta, T%) =640
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We will consider only the even-degree part of H*(V, Q) and will assume that H?(V,Z)
and Hy(V,Z) are torsion-free. We denote by 1 the fundamental class of V.

To simplify the exposition, suppose that there is a basis {p;,i=1,2,...,1} of H*(V, Z)
consisting of nef-divisors. Let NE(V') be the Mori cone of V.

Introduce formal parameters ¢;, i=1, ...,1, and let Q[[q1, ..., ¢:]| be the ring of formal
power series. The small quantum cohomology ring of V will be denoted by QH*(V).
This is the free Q[[q1, ..., ¢i]]-module H*(V, Q)®qQl[q1, -.., @]}, together with a new mul-
tiplication given by

l
TooTh= Y. Hq?i’ﬁ)(ZIE‘,{E(TGT,,TC)TC)

BENE(V) i=1
with I3 5(T,TyT.) the 3-point, genus-0, Gromov-Witten invariants of V.

Remark 4.1.1. For the case of a partial flag manifold, the small quantum cohomology
ring is well understood. A presentation of this ring is known ([1], [20], [21]), as well as
explicit formulas for quantum multiplication ([11]).

The operators of quantum multiplication with the generators p; give the gquantum
differential system, a consistent first-order partial differential system (see e.g. [15]):
0 5 S,
h—é?S=p¢OS, 2=1,...,£,
1
o - .
h—5=1-8
dto ’
where S is an H* (V, Q)-valued function in formal variables ty and t;=logg;, i=1,...,1.
Here Fi is an additional parameter.
Remarkably, a complete set of solutions to this system can be written down explicitly
in terms of the so-called gravitational descendants [15]:

GV i et/ (ept/hTa+ Z ) 2 T”/f e*{(e:/hTa) Ue;(Tb)>.
BENE(V)—0 b [Mo,2(V,5)] ¢

Here My >(V, B) is Kontsevich’s space of stable maps, with evaluation morphisms e;, es:
Mo 2(V,8)—=V at the two marked points, [Mpo(V, B)] is the virtual fundamental class
([81, [25]), and c is the first Chern class of the line bundle over My 2(V, 3) given by the
cotangent line at the first marked point. Finally, pt and ¢‘»# are shorthand notations
for Y, pit; and [, g!*® respectively.

The quantum D-module of V is the D-module generated by the functions (S" , 1) for
all solutions S to the above differential system.

A general conjecture about the structure of quantum D-modules is Givental’s version
of the mirror conjecture [16]:
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CONJECTURE 4.1.2. There exists a family (Mg, Fy,wq) of (possibly noncompact)
compler manifolds Mg, having the same dimension as V, together with holomorphic
functions Fy and holomorphic volume forms w, such that the D-module generated by

/ o Fatto)/hy,
TCM,

where y are suitable Morse-theoretic middle-dimension cycles of the function Re(Fy), is

integrals

equivalent to the quantum D-module of V.

4.2. Complete intersections

Now assume that V is Fano. Let X be the zero-locus of a generic section of a decompos-
able rank-r vector bundle

E=@ L,
=1

such that each L; is generated by global sections. In such a situation one can also define
a quantum ring QH*(&) over the coefficient ring Q|[qy, ..., ¢]] which encodes some of
the enumerative geometry of rational curves on the complete intersection X. This leads
to a quantum differential system for (V,€) (see [17], [23]). We define degrees of g;’s by
requiring that

a(TV)—ci(€) = Z (deg g:)p:.

Furthermore, we suppose that all degrees of ¢; are nonnegative (this is equivalent to the
condition that —Kx is nef). One can write down a similar complete set of solutions to
the quantum differential system for (V, &) [17]:

3 *( ,pt/h
Sy =e/t (ept/ﬁTa+ Yo gy / - —_—el(eh L) Ue;(Tb)UEﬂ),
BENE(V)—0 b [Mo,2(V,B)] -¢

where Eg is the Euler class of the vector bundle on ]\70,2(‘/, 3) whose fibre over a point
(C, p; z1,22) is the subspace of H(u*€) consisting of sections vanishing at z2, and the
rest of the notations are as above.

Consider the cohomology-valued functions

Syi=Y (SY, 11"
and

Se = Z (S:asa e (E) T

a
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These functions are given explicitly by the expressions

SV:e(to+pt)/h(1 . q(p,ﬁ)(el)*(h_l-))
—C

BENE(V)—0

and

nge(to+l7t)/h(cr(g)+ > q<p,ﬂ>(el)*(§(i%‘@ﬂf.)),

BENE(V)—0 —¢

where now E;, is the Euler class of the vector bundle on Mg 2(V, 3) whose fibre over a

point (C, u; x1,2) is the subspace of H®(u*&) consisting of sections vanishing at ;.

Remark 4.2.1. If we view X as an abstract variety, the general theory in §4.1 gives
an H*(X,Q)-valued function Sx. The functions Sx and Sg¢ are closely related. For
example, if i*: H2(V,Z)S H%(X, Z), where i: X =V is the inclusion, then 4,(Sx)=S¢.

Now consider a new cohomology-valued function

(ea(L;),8)
1
— oltotpt)/h E 38) Nim -
Ig—e TP (Cr(g)+ q(P IJI 71:[0 (cl(LJ)+ h)(el)*(h_c))

BENE(V)—0

In general it is very hard to compute Sx or Sg explicitly. However, note that Iz can
be computed directly from the function Sy associated to the ambient manifold, which
in many cases turns out to be more tractable. It is therefore extremely useful to have a
result relating Sg and I¢. Extending ideas of Givental, B. Kim [23] has recently proved
the following theorem, which applies to the cases considered in this paper:

THEOREM 4.2.2. If V is a homogeneous space and X CV tis the zero-locus of a
generic section of a nonnegalive decomposable vector bundle &€, then Sg and Ig coincide
up to a weighted homogeneous triangular change of variables:

to—~+to+fo(@)h+f-1(g), loggi—loggi+fi(e), i=1,..,1,
where f_1, fo, fi,..-, fi are weighted homogeneous formal power series supported in
NE(V)—0, with deg f_1=1 and deg f;=0, i=0,1,...,1.

In particular, this implies that the coefficient @y of the cohomology class 1e H*(V, Q)
in Sy, and the coefficient ®x of ¢.(£) in Iz (specialized to Ai=1, {,=0) are related in a
very simple way. Namely, if

oy = Z aﬁq(pﬁ)’ Oy = Z bﬁqmﬁ)’
BENE(V)—0 BENE(V)—0
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then

bg=ag [ [ ((r(L:), B)1). (5)

We will refer to Theorem 4.2.2 as the quantum hyperplane section theorem. The
relation (5) above was called the “trick with factorials” in [6].

5. The mirror construction

In this section we give a partially conjectural mirror construction for partial flag mani-
folds, and use it to obtain an explicit hypergeometric series as the power-series expansion
of the integral representation. The case of Calabi—Yau complete intersections is then dis-
cussed in some detail.

5.1. Hypergeometric solutions for partial flag manifolds

Let F=F(ny,...,n;,n) be a partial flag manifold. In the notations of §2, we introduce !
independent variables g;, i=1,2, ..., (each ¢; corresponds to the roof R;), |B| indepen-
dent variables G, b€ B, and |E| independent variables y., e€ E. Consider the following
set of algebraically independent polynomial equations:

(i) Roof equations: for i=1,2,...,1,

Fie= ][] ve—a:=0. (6)
e€R;

(i) Box equations: for b={e, f,g,h}€B,

Go:=Yeyf —@Ygyn =0, (7)

where {e, f}=C,.

This set of equations was discussed by Givental [16], and was used to give an integral
representation for the solutions to the quantum cohomology differential equations for the
special case of complete flag manifolds. The results in that paper were the starting
point for our investigations. We describe below Givental’s result and our (conjectural)
generalization to a general partial flag manifold.

Let A'El be the complex affine space with the coordinates y. (ecE). For fixed
parameter values of

(q7 (j) = (ql: ey iy '"7663 )

we obtain an affine variety

M, ;:={ucAlFl: F,=0,i=1,..,1, and G, =0, be B}.
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If all components of (g, ) are nonzero, M, ; is isomorphic to the torus (C*)'D I,

One can define on M, 4 a holomorphic volume form

w Res < L >
.4 = Mg,5 ?
o ici 7 Hoe 9o

where
Q= A dye.

ecE
Let F=3 . Y. Consider the integral

Iq(q,(j):z/equ,q,
2!
where v€ H|p|(Mg,5, Re(F)=—00). We put

@, (q1, @) =1y(q1, @, 1, 1,0, 1),
We can now formulate a precise version of Conjecture 4.1.2:

CONJECTURE 5.1.1. Let S be any solution to the quantum differential system for F.
Then the component (S,1) can be ezpressed as ®,(q) for some YCMg.

Remark 5.1.2. This conjecture generalizes Givental’s mirror theorem for complete
flag manifolds [16].

Definition 5.1.3. Let W denote the set of edges in the diagram A that intersect I
We orient the vertical edges in W upwards and the horizontal edges to the right. Let
V:=BuU{0,1,2,...,l}. For weW, the tail t{(w) of w is defined to be the box b;€B where
w starts. Similarly, the head h(w) of w is the box by € B where w ends. If w crosses the
roof R, so that its “head” is outside the graph T, we put h(w):=¢, and if the “tail” of
w is outside I', we put t(w)=0. In the sense of duality of planar graphs, the graph with
vertices V, edges W and incidence given by h,t: W —V is dual to the graph " with all
stars collapsed to one point.

Definition 5.1.4. For each cone o€S of maximal dimension we define a cycle y=
Yq,4(0) in Mg g by
v:={yeMygs:|ye|=1 for all e E with §(e)€o}.

Note that the y; with 6(f)¢o are determined uniquely by the y. with d(e)€o and the
roof and box equations (6), (7).

The cycle + is a real torus, of dimension equal to dimg (M g)=dimc(F). Since it is
defined over the entire family of the M, 4, it is invariant under monodromy. The integral
over this special cycle will be denoted by I(q, §).
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Definition 5.1.5. The specialization ®r(q):=1(q1,...,q;,1,...,1) is called the hyper-
geometric series of the partial flag manifold F.

It turns out that I(g, §) has a nice power-series expansion.

THEOREM 5.1.6.

~y ma my S~y
I(qu)— E Aml,.l.,ml,...,mb,...ql - q qu s
Ty sy Mgy beB
with
A 1 1 1 B
LTI TRPN  TRE (my!)ki+ka (mg!)ka+ka (ml!)kl+kl+l Ly Moy T o0
. Mh(w)
Bomyymiyeimy,e = H (m -
wew t(w)

Proof. By Leray’s theorem, the integral is equal to

- Q
€ 1 )
T(v0.40)  [Liz1 Fi [lpen o

where T is the tube map. For |¢|<1, |§|<1, the cycle T(,,4(c)) is homologous to the
cycle
T:={yeAlPl: |y, | =1 for all ec E}

in the complement of the hypersurfaces y.=0. We now expand all the terms in the
integrand:

o] d
1 e
oF Z : Fd HeeE Ye

' )
d=0 de>0 HeGE de!

my
1 1 Z ( g >
‘E HeERi Ye m; 20 HeGRi Ye ’

~ mp
1 1 3 (Qbygyh)
Gb  Yeys Yeyr )

meO

where {e, f} makes up the corner and {g, h} the opposite corner of the box b={e, f, g, h}.
The integral picks up precisely the constant coefficient of the following power series in

the y.’s, with parameters the ¢’s and §’s:

l ; s
Z HeEE yge H( qi )m H (Qbygyh)mb
HEEE de! i=1 HeERi Ye beB yeyf

de,m;,mp 20
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Now there are three types of edges.
Type 1. eeR; for some ¢=1,...,I. Then e is also edge of the opposite corner of a
unique box b. Only the terms with

de =m;—myp

will give a contribution.
Type 11. ecbNb’ for two boxes b and b’. We can then assume that e is part of the
corner of b, and the opposite corner of ¥’. Only the terms with

de =mp— My

will give a contribution.
Type III. e is contained in a unique be B. In this case e is part of the corner of b.
Only the terms with

de:mb

will give a contribution.
Hence we see that the integral is given by the series

1 L
Z HeeE de' Hq:nl H qgnb,

m;,mp20 Ti=1 beB

where for each edge the number d, is determined by the m; and m; by the above equa-
tions. We can rewrite this coeflicient nicely in terms of binomial coefficients as follows.
Each edge we W of the diagram A intersects precisely one edge ec E of Type I or Type II.
The corresponding coefficient, d. is then given by

de =Mp () — Mi(w)-

Trivially,
1 - HwEW mh(w)!
HeGE de! HwEW mh(w)! HeGE de! .
The heads of arrows weW which are not tails are the heads of arrows intersecting the
edges of Type I. The tails of arrows w€W which are not heads are in bijection to the edges

of Type IIL. Hence, when we pull out a factor Hé:l [lcer,me! from the denominator

of the left-hand side of the above equality, the other terms in the numerator and the
denominator can precisely be combined into the product

11 (mh(w))_
wew mt(w)

This proves the result. |
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Remark 5.1.7. Note that I(q,q) is the generalized hypergeometric series for the
smooth toric variety P defined in §3. The parameters qi,...,q correspond to the gen-

erators of Pic(P) coming from the singular variety P (the pullbacks of the line bundles
L1,...,Ly;), while §, correspond to the additional generators of Pic(ﬁ).

Theorem 5.1.6 shows that it is very easy to write down the power-series expansion
for I(q, G) directly from the diagram.

Ezample 5.1.8. F(2,5) (the Grassmannian of 2-planes in C®):

*

.._._.>S
....-.>5

v
v
3

Hence we read off:

Haa= 3 a0 (’Z)2qmq{d§-

Ezample 5.1.9. F(3,6) (the Grassmannian of 3-planes in C®):

*
m m
A A
o n
1 1
r -—-F>» S --f-)m
) h
T 1
1 1
] ]
u -—L) vV ~-=-F»»m
%

Hence we read off:

wo= 3 e OOOCE)E @) rwss
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Ezample 5.1.10. F(1,2,3,4) (the variety of complete flags in C*):

E3
my
A
: *
1
t
r ==t my
. A«
[] ]
1 )
1 1
t --P» s --f»m3
%
Hence we read off:
I(Qa ‘7) = Z Aml,mz,ma,r,s,t Q;nl q;nz Q:73H3 (ﬂ'qg ‘j:fh

™m1,M2,M3,7,8,1

Ao =g ()7 (7) (F)(F)

A weaker version of Conjecture 5.1.1 is

with

CONJECTURE 5.1.11. The series ®p:=1I(q,1) is the coefficient of the cohomology
class 1 in the H*(F, Q)-valued function Sp describing the quantum D-module of F, i.e.,

* CtQ
Sp=1+ > (/ -‘ie—F—)Ue;(n) g™,
MO’Q(F,’I_H)

_ 1-c
mi=(ma,...,my) #0

where Ct stands for Cit1+...+City, with {C,,...,Ci} the Schubert basis of H?(F,Q),
and Qp is the cohomology class of a point.

Remark 5.1.12. (i) Besides the case of complete flag manifolds (cf. Remark 5.1.2),
there is another case for which the above conjecture agrees with previously known results.
Consider the partial flag manifold F:=F(1,n—1,n) of flags V1CV"~!CC". The Pliicker

embedding identifies F' with a (1,1)-hypersurface in P*~!xP"~!. The hypergeometric
series for P"~I1x P71 ig

1 mi Mo
Z (mll)"(mzl)"ql ))

mi1,mz20



30 V.V. BATYREV, 1. CIOCAN-FONTANINE, B. KIM AND D. VAN STRATEN

(cf. {17]), and by the quantum hyperplane section theorem ([17], [23]) we obtain that the
hypergeometric series for F' is

mi+ma)!
y Amdt ) s ®)
a0 (ml) (mg)

On the other hand, the recipe of Theorem 5.1.6 gives the formula

()
> (T,fll)(ani!)n)_l T 9)

my,m220

for the hypergeometric series of F. The identity

my\[mz\ [(mi+m2
=(0)(0)=("n")
implies that the series (8) and (9) coincide.

(ii) The quantum Pieri formula [11] gives explicitly the quantum product of a special
Schubert class with a general one, and in particular the quantum product of a Schubert
divisor with any other Schubert class. Using this, one can write down in reasonably
low-dimensional cases the quantum differential system for F, and reduce this first-order
system to higher-order differential equations satisfied by the components. In particular,
one can write down the differential operators annihilating the component (S,1) of any
solution S, and check by direct computation that the hypergeometric series ®r(q) of
Theorem 5.1.6 is annihilated by these operators. In [6] this is done for the Grassmannians
containing complete-intersection Calabi—Yau 3-folds. For the complete flag manifolds, the
operators are known to be the operators for the quantum Toda lattice (see [22]).

5.2. Calabi-Yau complete intersections in F(ni,...,n, 1)

Recall that Pic(F') is generated by the line bundles O(C;), i=1, ...,{, which also generate
the (closed) Kéhler cone. Hence any line bundle H on F which is globally generated is
of the form O(d):=0O(¥._,d®)C;), with d®) nonnegative. The common zero-locus of r
general sections of the line bundles O(d1), ..., O(d,) will be denoted by X:=X; ;.

Assuming Conjecture 5.1.11, it follows from the quantum hyperplane section theorem
that the hypergeometric series ® x has the expression

l

®x :Z H(Z dj(»i)mi)!Aml,“.,mz @t g, (10)

m j=1 Vi=1
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where A, . m, are the coefficients of ®f in Theorem 5.1.6.

From now on the complete intersection Xz,  ; is assumed to be a Calabi-Yau mani-
fold. The construction of mirrors described in [6] for the case when F is a Grassmannian
can be extended to the case of a general F' as follows:

X can be regarded as the intersection of FCPN1—1x ... x PM~1 with r general hyper-
surfaces Z; (j=1,...,7) in PV~ 1x...xPM~1 with Z; of multidegree (d;l), ...,dJ(-l)). Let
Y be the Calabi-Yau complete intersection of the same hypersurfaces with the toric
degeneration P of F.

For each edge ec Uizl R; which is part of a roof, define polynomials

Pe(y) = Z Crys,

feU(e)

where c; are generically chosen complex numbers. (Recall that we have defined U(e) as
the set consisting of e, together with all edges in the graph I" which are either directly
below e, if e is horizontal, or directly to the left of e, if e is vertical.)

Partition each of the roofs R;, i=1,...,1, into r disjoint subsets

R; —_—Rile...U'Ri,r

such that |R;, jl=d£j ). 1t follows from Definition 3.2.3 and Theorem 3.2.13 that the toric

Weil divisor .
> > H

1=1 e€Ri,j;

is Cartier, and

l
o 045" ®d;"
o(z > H) 2L ®..RL .

t=1 e€R;,;

Consider the torus T in the affine space =2 AlE| given by the following set of equa-
tions:

(i) Roof equations: for i=1,2,...,1,

H ye:]--

ee€R;

(ii) Box equations: for b={e, f,g,h}€B,

YeY5 —Yg¥Yn =0,

where {e, f} form the corner C of b.
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Introduce additional independent variables z4, d€ D, one for each generator of the
lattice L(D). For every edge ec F, set

x&(e) =The) (wt(E)) ! )

where, as before, h(e) (resp. t(e)) is the head (resp. tail) of e. The torus T can be
identified with Spec(C[zq,z;';d€D]), with the embedding T>Al®! induced by the
ring homomorphism

C[ye;€€E]—>C[xd,z;1;deD], yep—)x‘s(e).

With this identification, we obtain Laurent polynomials

e(x) := Z cfx‘s(f).

feu(e)

For j=1,...,r, let V; be the Newton polyhedron of the Laurent polynomial

!
Pj = 1—2 Z we(x).

i=1 e€R;

The polyhedra V;, j=1, ...,r, define a nef-partition of the anticanonical class of P (see
definitions in [9], [4]), and according to [7], [9], the mirror family Y™* of the Calabi-
Yau complete intersection Y C P consists of Calabi-Yau compactifications of the general
complete intersections in 7" defined by the equations

!
1-3" 3" @e(z)=0, j=1,..,m (11)

i=1 EERi’j

CONJECTURE 5.2.1. Let Yy be a Calabi-Yau compactification of a general complete
intersection in T defined by the equations (11), with the additional requirement that the
coefficients satisfy the relation

CfiCfa =Cf3Cfy
whenever {f1, fo, f3, fa} make up a box bEB, with {f1, f2} forming the corner Cy of b.

Then a minimal desingularization of Yy is a mirror of a generic complete-intersection
Calabi-You XCF.

The main period of the mirror Y* of Y is given by

Q
Dy :/ Requ,q( ),
4 H;=1 & H’i:l Fi Hbes G
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where the extra factors £; come from the nef-partition of the anticanonical class of P
described above. Specifically,

gj = 1—2 Yf, j:l,...,r.
t=1e€Ri,; fEU(e)

By direct expansion of the integral defining ®y (as in Theorem 5.1.6), followed by the
specialization g,=1, b€ B, one gets exactly the hypergeometric series ®x.

Finally, we discuss some applications to the case when X C F' is a Calabi—Yau 3-fold.

First, as discussed in [6], our construction can be interpreted via conifold transi-
tions. Indeed, by Theorem 3.1.4, if X is generic, then its degeneration YC P is a singular
Calabi—Yau 3-fold, whose singular locus consists of finitely many nodes. The resolution
of singularities P— P induces a small resolution ¥ —Y. In other words the (nousingu-
lar) Calabi-Yau’s X and Y are related by a conifold transition, and Conjecture 5.2.1
essentially states that their mirrors are related in a similar fashion.

Second, it is well understood (see e.g. [7]) that the knowledge of the hypergeometric
series ® x for a Calabi—Yau 3-fold gives the virtual numbers of rational curves on X via a
formal calculation. In [6] we have used the hypergeometric series (10) to compute these

numbers for complete intersections in Grassmannians.

5.3. List of Calabi—Yau complete-intersection 3-folds

Recall that if F:=F(n1,...,n;,n) is a partial flag manifold, then

i
dlm(F) =Z(n,—n,_1)(n—nz) (12)

1=

In the Schubert basis of the Picard group, the anticanonical bundle of F is given by

w;1=(’)(§(ni+1—ni_1)0i>. (13)

A (general) complete-intersection Calabi~Yau 3-fold in F is the common zero-locus
of r:=dim(F)—3 general sections s;€ H(F,0(d;)), where O(d;), j=1,2,...,7, are line
bundles with ®;=1(’)(Jj)=w;1. Hence, if F contains a complete-intersection Calabi—
Yau 3-fold, then necessarily

l
dim(F) <3+ (nig1—ni—1) =n+n;—ny+3. (14)

3=1



34 V.V. BATYREV, 1. CIOCAN-FONTANINE, B. KIM AND D. VAN STRATEN

ProproSITION 5.3.1. If F:=F(ni,...,n;,n) s a partial flag manifold containing a
complete-intersection Calabi-Yau 3-fold, and F is not a projective space or one of the
manifolds F(1,n—1,n), then n<7.

Proof. Using (12), after some manipulation, one can rewrite the inequality (14) as
(ni—D(n—n1—D+(ne—n))(n—nz—D+..+(n—ni_1){n—n—-1) < 4. (15)

There are two cases.

(1) ny>1. Then it is easy to see that (n; —1)(n—n; —1)>4 for n>8, unless ny=n—1,
in which case F' is a projective space.

(2) ny=1. If I=1, then F is a projective space, so we may assume [>2. As above,
(ng—1)(n—n2—1)>4 for n>8, unless ny=n-—1, in which case F=F(1,n—1,n). O

Remark 5.3.2. The flag manifold F(1,n—1,n) sits as a (1,1)-hypersurface in
P~ 1xP"~1. Hence these cases (as well as the case when F is projective space) can

be viewed as particular instances of complete-intersection Calabi—Yau’s in toric varieties.

We list below all the partial flag manifolds (not excluded by Proposition 5.3.1) for
which the inequality (14) is satisfied. The anticanonical class of F', denoted by — K, is
expressed in terms of the natural Schubert basis of the Picard group. The last column of
the table below contains the possible splittings of the anticanonical class into dim(F")—3
nonnegative divisors.

In general, there is a natural duality isomorphism
F(ny,..,n,n) 2 F(n—ny,...,n—n3,n). (16)

This is taken into account by listing only one of the two isomorphic flag manifolds. It
may also be that the flag manifold is self-dual, i.e., (16) is an automorphism, and two
families of complete-intersection Calabi-Yau 3-folds corresponding to different splittings
of the anticanonical class are interchanged by the duality automorphism. Whenever this
happens (e.g., when F' parametrizes complete flags), only one of the two splittings of
— K is listed.
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n F dim(F) —Kr splitting of —Kr
71 F(2,7) 10 7 7(1)
7| F(1,2,7) 11 (2,6) 2(1,0)+6(0, 1)
7| F(1,5,7) 14 (5,6) 5(1,0)46(0,1)
7| F(1,2,6,7) | 15 (2,5,5) 2(1,0,0)+5(0,1,0)+5(0,0,1)
6| F(2,6) 8 6 (2)+4(1)
6 F(3,6) 9 6 6(1)
6| F(1,2,6) 9 (2,5) (2,0)+5(0,1)
(1,0)+(1,1)+4(0,1)
2(1,0)+(0,2)+3(0,1)
6| F(1,3,6) 11 (3,5) 3(1,0)+5(0,1)
6| F(1,4,6) 11 (4,5) (2,0)+2(1,0)+5(0,1)
3(1,0)+(1,1)+4(0,1)
4(1,0)4(0,2)+3(0,1)
6| F(1,2,5,6) | 12 (2,4,4) (2,0,0)+4(0,1,0)+4(0,0,1)
(1,0,0)+(1,1,0)+3(0, 1,0)+4(0,0,1)
(1,0,0)+(1,0,1)+4(0, 1,0)+3(0,0,1)
2(1,0,0)+(0,2,0)42(0,1,0)+4(0,0,1)
2(1,0,0)+(0,1,1)43(0,1,0)+3(0,0,1)
2(1,0,0)+4(0,1,0)+(0,0,2)+2(0,0,1)
6 | F(1,3,5,6) 13 (3,4,3) 3(1,0,0)+4(0,1,0)+3(0,0,1)
5| F(2,5) 6 5 (3)+2(1)
2(2)+(1)
5| F(1,2,5) 7 (2,4) (2,0)+(0,2)+2(0,1)
(1,0)+(1,1)+(0,2)+(0,1)
2(1,1)+2(0,1)
2(1,0)+2(0,2)
(1,0)+(1,2)+2(0,1)
(2,1)+3(0,1)
51 F(2,3,5) 8 (3,3) (1,0)+(2,0)+3(0,1)
2(1,0)+(1,1)+2(0, 1)
5| F(1,3,5) 8 (3,4) (3,0)+4(0,1)

(1,0)+(2,1)+3(0,1)
(1,1)4+(2,0)+3(0,1)
(1,0)+2(1,1)+2(0, 1)
(1,0)+(2,0)+(0,2)+2(0, 1)
3(1,0)+2(0,2)
3(1,0)+(0,1)+(0,3)
2(1,0)+(1,2)+2(0,1)
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F dim(F) —Kr splitting of —Kp

F(1,2,4,5) 9 (2,3,3) 2(1,0,0)+(0,3,0)+3(0,0,1)
2(1,0,0)+3(0,1,0)+(0,0,3)
(2,1,0)+2(0,1,0)+3(0,0,1)
(2,0,1)+3(0,1,0)+2(0,0,1)

(1,2,0)+(1,0,0)+(0,1,0)+3(0,0,1)
2(1,0,0)+(0,2,1)+(0,1,0)+2(0,0, 1)
2(1,0,0)+(0,1,2)+2(0,1,0)+(0,0,1)
(1,0,0)+(1,0,2)+3(0,1,0)+(0,0,1)
(1,1,1)+(1,0,0)+2(0,1,0)+2(0,0,1)
(2,0,0)+(0,2,0)+(0,1,0)+3(0,0,1)

(2,0,0)+(0,0,2)+3(0,1,0)+(0,0,1)

2(1,0,0)+(0,2,0)+(0,1,0)+(0,0,2)+(0,0,1)
2(1,1,0)+(0,1,0)+43(0,0,1)

(1,1,0)+(1,0,1)+2(0,1,0)+2(0,0,1)

(1,1,0)+(1,0,0)+(0,1,1)+(0,1,0)+2(0,0,1)

2(1,0,0)+2(0,1,1)+(0,1,0)+(0,0,1)

(1,0,0)+(1,0,1)+(0,1,1}+2(0,1,0)+(0,0,1)
2(1,0,1)+3(0,1,0)+(0,0,1)

(2,0,0)+(0,1,1)+2(0,1,0)+2(0,0,1)

(1,1,0)+(0,2,0)+(1,0,0)+3(0,0,1) v

(1,0,1)+(0,2,0)+(1,0,0)+(0,1,0)+2(0,0,1)

2(1,0,0)+(0,2,0)+(0,1,1)+2(0,0,1)

(1,1,0)+(1,0,0)+2(0,1,0)+(0,0,2)+(0,0,1)

(1,0,1)+(1,0,0)+3(0,1,0)+(0,0,2)
2(1,0,0)+(0,1,1)+2(0,1,0)+(0,0, 2)

F(1,2,3,5) 9 (2,2,3) (2,0,0)+2(0, 1,0)+3(0,0, 1)
(0,2,0)+2(1,0,0)+3(0,0, 1)
(0,0,2)+2(1,0,0)+2(0, 1,0)+(0,0,1)
(1,1,0)+(1,0,0)+(0,1,0)+3(0,0,1)
(1,0,1)+(1,0,0)+2(0, 1,0)+2(0, 0,1)
(0,1,1)+2(1,0,0)+(0, 1,0)4+2(0,0,1)

F(1,2,3,4,5) | 10 |(2,2,2,2) (2,0,0,0)+2(0,1,0,0)+2(0,0, 1,0)+2(0,0,0,1)
2(1,0,0,0)+(0, 2,0,0)+2(0,0,1,0)+2(0,0,0,1)
(1,1,0,0)+(1,0,0,0)+(0,1,0,0)+2(0, 0, 1,0)+2(0,0,0, 1)
(1,0,0,1)+(1,0,0,0)+2(0,1,0,0)+2(0,0,1,0)+(0,0,0, 1)
(1,0,1,0)+(1,0,0,0)+2(0, 1,0,0)+(0, 0, 1,0)+2(0,0,0, 1)
(0,1,1,0)+2(1,0,0,0)+(0,1,0,0)+(0,0, 1,0)+2(0,0,0, 1)
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n F dim(F) —Kr splitting of —Kp

4 F(2,4) 4 4 (4)

4 F(1,2,4) 5 (2,3) (1,0)+(1,3)
(1, 1D)+(1,2)
(2,1)+(0,2)
(2,2)+(0,1)

41 F(1,2,3,4) 6 (2,2,2) (2,0,0)+(0,2,0)+(0,0,2)

(1,1,0)+(1,0,1)+(0,1,1)
(1,2,0)+(1,0,0)+(0,0,2)
(1,2,0)+(1,0,1)+(0,0,1)
(2,1,0)+(0,1,0)+(0,0,2)
(2,1,0)+(0,1,1)+(0,0,1)
(2,0,1)+(0,2,0)+(0,0,1)
(2,0,1)+(0,1,1)+(0, 1,0)
2(1,1,0)+(0,0,2)
2(1,0,1)+(0,2,0)
(2,2,0)+2(0,0,1)
(2,0,2)+2(0,1,0)
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