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The classical Kelvin transform associates to a smooth function f on R N \ { 0 }  (N>~2) the 

function K f  (also defined on R N \ { 0 } )  by the formula 

K f(~) = II~N2-N f(UII~II2). 

The main result is tha t  if f is harmonic, then K f  is also harmonic. Although we shall 

not use this remark, this result reflects a covariance property of the Laplace operator  

under the action of the conformal group. The Kelvin transform is used to generate (all) 

harmonic polynomials on R N by the following process (due to Maxwell, cf. [CH]): take 

p to be any polynomial on R N, form the usual constant-coefficient differential operator  

O(p), apply it to the Green kernel G(~)zlI~H 2-N (to be replaced by log I1~11 in case N 2). 

The result O(p)G is defined and harmonic on RN\{0} ,  so that  we may apply the Kelvin 

transform to get a harmonic function KO(p)G, which can be shown to extend to all of 

R N as a harmonic polynomial. Moreover, all harmonic polynomials can be obtained by 

this process. 

We generalize such a t ransformation in the context of analysis on matr ix  spaces. 

By this terminology is usually meant analysis that  gives a special role to some subgroup 

of the linear or orthogonal group which can be interpreted as (say) a left action on a 

space of (rectangular) matrices. One classical case is the left action of GL(n, R) on 

Matn,m(R),  and related versions where R is replaced by C or the field of quaternions. 

Various notions of harmonic polynomials (under various names) were introduced in the 

literature (see the references at the end), related to invariance or covariance properties 

under the above-mentioned subgroup. Here we work in the context of representations 

of (Euclidean) Jordan algebras, where the appropriate  theory of harmonic polynomials 

(called Stiefel harmonics) was developed in [C1]. I t  covers these classical cases, but  also 
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contains new cases, associated to the representation of the Lorentzian Jordan algebra 

R O W  on a Clifford module for the Clifford algebra of W. 

In w we introduce a function which to some extent plays the role of the Green kernel 

in the classical potential  theory. In his thesis (see [He]), C. Herz already introduced this 

function for the space Mat,~,m(R), stating incidentally some of its properties, but did not 

push the theory further, and, up to our knowledge, his remarks have staid unnoticed. 

In w we define the (generalized) Kelvin transform and show in w tha t  it is possible, 

under some mild conditions, to generate all these harmonic polynomials by a process 

similar to the one described above. 

Let us mention some places were such harmonic polynomials have been used: 

�9 harmonic analysis on Stiefel manifolds ([GM], [Ge], [C1]); 

�9 decomposition of unitary representations (lEVI, [C2]); 

�9 construction of zeta functions and series ([M], [C3]). 

1. R e p r e s e n t a t i o n  o f  a J o r d a n  a l g e b r a  

Most of the results needed in this section can be found in [FK] (see also [C1]). Let V be 

a simple Euclidean Jordan algebra over R,  with identity element e, of dimension n, rank 

r and characteristic number d, so tha t  

n=r+d. �89  

For any xEV, denote by L(x): V-+V the endomorphism y~-~xy. Denote by tr  and det 

respectively the trace and norm function (generalized determinant) ,  and recall that ,  by 

assumption, (x, y) = t r  xy defines an inner product on V, for which the operators L(x) and 

P(x )=2i (x )2 -L(x  2) are symmetric.  The norm function is a polynomial, homogeneous 

of degree r. The set of invertible elements is denoted by V • and V • is exactly the set 

of elements xEV such that  det x ~ 0 .  The connected component  of the identity in V • is 

an open convex cone, denoted by ~. 

The group of linear t ransformations which preserve 12 is denoted by G. I t  is a 

reductive Lie group, and it acts transitively on ~. The stabilizer in G of the identity 

element e is a maximal  compact  subgroup of G, denoted by K.  The elements of K are 

automorphisms of the Jordan algebra structure, and they are isometries for the inner 

product  on V. 
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Let e=cl-~C2-~...+Cr be a Peirce decomposition of the identity. Let 

{• } a= A= Aici : A~ c R , 
i=1  

i=1  

Then, up to a set of Lebesgue measure 0, every element x of V can be writ ten as kA, 

where k E K  and ,kcR (polar decomposition). Up to a set of Lebesgue measure 0, every 

element in ft can be writ ten as k,k, where k c K  and AER+. There is a corresponding 

integration formula for the Lebesgue measure on E,  namely, 

/V f(~)d~=c~ ~ JR f(k)~) I~ ()~J-- ~i)dd)~l dA2 "'" dArdk 
i<j 

(i) 

where dk is the normalized Haar  measure on K,  and co is a positive constant depending 

only on V. 

Let E be a Euclidean vector space of dimension N,  with an inner product  denoted 

by (~, rl). A representation of V on E is a linear map  r V - + E n d ( E )  satisfying the 

assumptions 

r = �89162162162162 

r =Id,  

<r162 7> = <~, r 

for all x, yEV,  ~, ~EE. 

There is an associated symmetric  bilinear map H: E x E--~V, defined for (, f lEE by 

(r  =(x,H(~,~?)) ,  for all x e V .  

Let Q be the associated quadratic map  defined by 

Q(~) = H(~,~).  

The relation 

implies tha t  

r  =r162162 for all x, y e  V, 

Q(r =P(x)Q(~) ,  for all xEV,  ~cE .  (2) 
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Let us also recall that  the dimension of E is a multiple of the rank of V, and 

Det r = (det X) N/r, for  all x E V. 

The representation is said to be regular if the set 

E '  = {~ E E : det Q(~) ~ 0} 

is nonempty. If this is the case, then E '  is a dense open set in E.  Let 

Z =  {~EV:  Q(~) =e} .  

It is a (nonempty) compact submanifold of V, called the (generalized) Stiefel manifold. 
Every element ~ in E '  can be written 

~=r x ~ ,  acE. 

Moreover, x=Q(~), a=~(x-1/2)~, and the map 

(x, ~) ~ r 

is a diffeomorphism of ~ x E onto E ~ (polar coordinates on E) .  

There is a corresponding integration formula for the Lebesgue measure on E: 

/E f (~) d~ =Cl ~ ~ f ( r /2)a) det xN/2r-n/r dx dcr (3) 

where cl=~Y/2/Fa(N/2r) and da is the (normalized) Euclidean volume element on E. 

2 .  T h e  m e a s u r e  dtts 

This section is devoted to introduce a positive measure supported on the singular set 

S=E\E ~, and to give its expression in polar coordinates . It is related, through the 

map Q, to the Euclidean measure on the singular set 0 ~ = ~ \ ~ t .  

We first need an extension of the polar coordinates in V up to the boundary. For 

xE~ ,  let #1, #2, .--, #k be the (positive) distinct eigenvalues of x, and Cj, l<.j<.k, be the 
k corresponding idempotents (not necessarily primitive), such that  x=~j=l #jCj. Then 

k the element Y=~-~j=I x/~VJ is in ~ and satisfies y2=x. Conversely, if y is any element 

in ~ such that  y2=x ,  let Y=-~=l ujDj be its spectral decomposition. Then x : y  2= 

~-~lj= 1 u~Dj. By the uniqueness of the spectral decomposition, we get that  k=l, that  the 

sets of idempotents are the same, and after relabelling, that  the eigenvalues are the same. 

So for each x E ~ ,  there exists in ~ a unique square root, which is denoted by x 1/2. 
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LEMMA l. The map x~+x 1/2 from ~ into itself is continuous. 

Let (pn(t))~>0 be a sequence of real-valued polynomials which converges to v~ on 
k [0, § uniformly on any compact subset. If x = ~ j = l  #iCy is the spectral decompo- 

k sition of any element in ~, then pn(X)=~j=lpn(#j)Cj ,  and hence pn(x)--~x 1/2. The 

eigenvalues #j satisfy I#jl~< Ilxll, and so they are bounded when x stays in a bounded set. 

Hence, on any compact set of ~, pn(X) converges uniformly to x 1/2, and the continuity 

of the mapping x~-+x 1/2 follows. 

PROPOSITION 1. The mapping (x, a)~-~r is a continuous, proper, surjeetive 

map from ~ x E onto E. 

The continuity is clear from the previous lemma. If ~=r then 

Q(~) = Q( r = P(xl/2)Q(a) = (x]/2) 2 = x. 

So, if ~ stays in a compact set of E,  then x runs through a bounded set of ~. So the map 

is proper. This implies that  its image is closed in E.  As the representation r is assumed 

to be regular, we already know that  the image contains a dense open set (namely E ~). 

Hence the surjectivity. 

Let Zc be the space of functions on E which can be written as FoQ, where FCCc(V). 

It can also be described as the space of continuous functions on E with compact support 

which are constant on each level set of the map Q. It is a closed subspace of C~(E) when 

equipped with the topology of uniform convergence on compacta. For the inner product 

(f,g)~-~fEf(~)[7(~)d~, let us consider the orthogonal space Z~. From the integration 

formula (3), we deduce the following characterization of Z~: 

f o r a l l x C ~ .  

PROPOSITION 2. Let # be a (positive Radon) measure on E. Then the following 
properties are equivalent: 

(i) fE g(~)d , ( r  for all geZh.  
(ii) There exists a measure ~ on ~ such that 

/Eg(~)d#(~) =Cl ~ /  g(r du(x)da, for all gCg~(E) .  (*) 

Conversely, given any measure u on ~, the formula (.) defines a measure # on E which 

satisfies either property. 

Notice that  the measure ~ is uniquely determined by the formula 

s F(x) du(x )=fE  F(O(~))d#(~), for all F c g ~ ( ~ ) .  

The proof follows a standard pattern, using mainly Proposition 1. 
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Our next step is to determine the (Euclidean) surface measure on the singular set 

c g ~ = ~ \ ~ = { x : d e t x = 0 } A ~ .  The strategy is the following: We first compute the Eu- 

clidean length of the gradient of the function det on 0~.  As we will see, it is nonzero on 

a dense open set of 0~.  Near these points, 0 ~  is a hypersurface, and we determine the 

associated Leray form (~(det) (see [GC]). This can be obtained as the residue of det x ~ at 

the first pole s = - l ,  and it turns out to be a positive measure on 0~2. Then the Euclidean 

surface measure on 0~t is 

dvo~ = lIVdet II ~(det). 

?. 
Before stating the result, we need some more notation. For A = ~ = I  Aici an element 

of a, write A=AlCl+A ~ with A~ ..., A~). Let 

o{ ) R + =  ~ 0 =  A ~ c i : 0 < ~ 2 < . . . < A ~  . 
i=2  

The elements of R ~ all have rank r - 1 .  The elements of rank r - 1  in 0 ~  form a dense 

open set in 0~,  and, except for a subset of dvo9-measure 0, an element of rank r -  1 in 

0 ~  can always be writ ten as kA ~ with )~~176 

THEOREM 1. The Euclidean surface measure dvo~ on O~ is given by 

o j : 2  2 ~ i < j ~ r  

For the proof, we first compute Vdet  on 0 ~  (Step 1), then compute ~(det) (Step 2). 

Step 1. Inside ~,  there is a well-known formula for the gradient of the function det: 

Vdet (x)  = (det x)x -1 (4) 

(see [FK, Proposition III.4.2]). Of course, Vdet (x)  is really a polynomial map, and it is 

possible to find its value on the boundary of ~ by continuity. For A = ~ i ~ l  A~c~ (with 
r 0 r 0<A1 ~<A2<...~<)~r), then V d e t ( A ) = ~ = l  A1 ... ~ ... Arci, so that  for /~ = ~ , = 2  )~ic~ one 

has, by continuity, Vdet(A~ .../~rCl and hence IIVdet(A~ ... )~. As the norm 

of the gradient of the function det is invariant by K,  one has 

liVdet(kA~ = A2 ... A~ 

for A~176 This shows in particular that  the gradient does not vanish on the set of 

elements of rank exactly r -  1 in 0~.  
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Step 2. Assume now that  Re s > - 1, and let g be any function in the Schwartz space 

S(V). Then the integral 

~ g(x) (det x) s dx 

converges. As a tempered distribution, it has a meromorphic continuation in the vari- 

able s, with simple poles at s = - l , - 2 ,  ... (see [FK, Chapter VIII). The residue at s = - I  

is a positive measure ~(det) supported on Of/. We will now find its expression in terms 

of the polar decomposition. 

LEMMA 2. Let g be a K-invariant function in S(V). Then 

/'(det)(x)g(X)=s~im_l~g(x)detxSdx 

s 9(~ H H ---- Co  

Proof. We use formula (1) to get 

"i=l ~ i<j 

As det s is K-invariant, we may assume without losing any generality that g is already 

K-invariant. Abusing somewhat notation, denote by g(A) the restriction of g to a. For 

Al>0 set 

R+(A1) = {A0 = (A~,---, A,): A1 < A2 < ... < A,}, 

~(,~0) d,X0 = H (Aj-A~)ddA2 ... dA~, 
2~i<j~r  

and define for A1 >0 and Re s > - l ,  

f g(~x, ~0) ~ H (Aj-~l)d~(~ ~ ~0.  G(A1, s) = JR+(~I) 
2<~j~r 

This integral converges and moreover can be extended continuously to the closed quad- 

rant {Al~>0, s~>-l} .  Moreover, G is a smooth function of both variables up to the 

boundary, and in particular its value at ( 0 , - 1 )  is 

G(O' -I)  = /R+(.h)g(O' AO) (2<~j<~ rAj)d-lw(AO) dAO" 



8 8  J . -L .  C L E R C  

LEMMA 3. Let G(A~, s) be a function on {Aa ~>0, s>~-l}, smooth up to the boundary, 
with compact support in the variable A1. Then 

sl~m_l(s+ 1) ~0+~G(A1, s)A~ dAI -- G(0 , -1) .  

The proof is elementary. 

Lemma 2 now is an easy consequence of Lemma 3. Finally, by combining the results 

of Step 1 and of Step 2, we get Theorem 1. 

Now to the measure duo~ we associate, as explained in Proposition 2, a measure 

dps by the formula 

fE f(~) d#s(~) =cl ~ ~ f(O(xi/2)cr) da dvo~(x). (5) 

3. T h e  G r e e n  f u n c t i o n  

This section is devoted to constructing the Green function G, which is a sort of substi- 

tute for the classical Green function adapted to the context of multi-harmonic functions 

(see w It depends only on Q(~), behaves well under the action of the representation r 

and is harmonic outside of the singular set S. Being locally integrable near any point 

of S, it extends as a distribution on E, and the computation of AG as a (singular) 

distribution is of major importance. Some preliminaries are needed. 

To state the first result, introduce an orthonormal basis (ai)l~<i~<n of V. The next 

proposition gives the expression for the (analogue of) the radial part rad(A) of the 

Euclidean Laplace operator on E. 

PROPOSITION 3. Let FEC~(V) and set f =FoQ. Then, for (EE, 

A/(~) = (rad(A)F)(Q(~)) 

nnO2F fi~a~ 
----4i~1j~1"= = OaiOa-~(Q(~))(a~aj'Q(~))+2~Nr ~:1 (Q(~))(ai, e). 

For the proof, let us introduce an orthonormal basis (~)l<~a~<N of E. For each i, 
Q n l<.i<.n, set qi(~)=(O(ai)~,~), so that  (~)=~-~i=1 qi(~)ai. With this notation, 

Of f i  OF Q ~ Oqi 

02f ~ - ~  O2F Oqi Oqj ~ O F  O2qi 
0~2 ---- i = 1  j=~ Oa, Oa t (q(~)) ~ 04~ + = ~a~ (Q(~)) O~ 2 ' 



K E L V I N  T R A N S F O R M  A N D  M U L T I - H A R M O N I C  P O L Y N O M I A L S  89 

so that 

• ~ n 02 qi N 02 f 02F ( Q ( ~ ) ) ~  Oqi Oqj + E ~  N 
E 0~2 = OaiOaj 0~, 0 ~  ~ai (Q(~)) E 0 ~ '  
c~=l  i = 1  j = l  c~=l  i = 1  c~=l  

Now if q is any quadratic form on E, expressed as <A~, ~) for some symmetric operator A, 

then grad q(~) =2A(, and Aq(~) = 2 tr A, so that 

N Oqi Oqj 
E 0 ~  0~, -- 4<r r = 4(aiaj, Q(~)) 
c~=l  

and 

N 02qio~ 2 2Nr E - 2 tr r = (ai, e). 

Proposition 3 follows from these computations. 

If the function F is invariant under K, then the value F(x) depends only on the 

eigenvalues of x, and it is possible to express the result uniquely in terms of these eigen- 

values. To be precise, denote by (A~)l~</~<r the eigenvalues of Q(~). 

PROPOSITION 4. Let F be a C~-function on V, invariant under K. Set f=FoQ. 
Then 

( ~-~ A 02F r OF 1 
Af( : )  = 4 i ~ - ~  + ~ / ~  ~-~i + ~d 

-- i = l  i = 1  l~i,j~r 
1 A i  - A d , 

Ai - Aj 

where 
N d ( r -  1) - ~-1. 

~/-  2r 2r r 

For the proof, we use computations originally due to Dib ([DID, in the simplified 

version which appeared in [FK]. In the latter reference, the authors introduce, for any 

complex parameter ~, the differential operator B, on C~(V) with values in C~(V, vC), 

defined by 
02g 0g 

(x)P(ai ,aj)x+u E O~ai (x)ai" B g(x)= 0a 0a  
l~i,j~n l~i~n 

As tr P(ai, aj)x= (aiaj, x), the radial part of the Laplace operator, computed in Proposi- 

tion 1, is easily seen to be 4 tr B~, with v=N/2r. Our assertion is then just a consequence 

of Theorem XV.2.7 of [FK]. 
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PROPOSITION 5. For vo=n/r- N/2r, 

AdetQ(~) "~ for all ~EE'. 

In case N=2n (which corresponds to v0=0), AlogdetQ(~)=0 on E'. 

Using the previous notations, det Q(~)=~1A2 ... At, and the result follows by an easy 

computation. 

In what follows, denote by G(~) (Green function) the function detQ(~) ~~ when 

N~2n, and log det Q(~) in case N=2n. This function is well defined and smooth on E 1, 

locally integrable everywhere in E (and has slow growth at infinity), so it defines a 

(tempered) distribution. We now wish to compute the distribution AG, which by the 

previous result is supported on S. 

THEOREM 2. 

A G = - 4 t t s  /] N =  2n. (6') 

Proof. Let Zoo be the set of functions f on E which can be written as F(Q(~)), 

with FECc~(V). Because Q is a proper map from E to V, the functions in :Yo~ are 

in fact in C~(E). Let ;Z~ be the orthogonal (in C~(E)) of Zo~ for the inner product 

(f,g)=fE f(~)g(~) d~. As for Zc, one sees that 

Z ~ = { f E C ~ ( E ) : ~  f(r for all xCf~}. 

Now, if f belongs to Z~, A f  also belongs to Zoo, as Proposition 3 shows. As A is 

self-adjoint, Z~ is stable by A. Hence (AG, f)=(G, A f ) = 0  for any function in Z~. 

Clearly, as Z~+Z~ is dense in C~(E), we only need to compute AG against functions 

in Zoo. Further, it is possible to take advantage of the action of K. Reflecting the fact 

that the Laplace operator is invariant under rotations, its radial part tad(A) commutes 

with the action of K (more generally, the operator tr B~ commutes with the action of 

K as a consequence of [FK, Proposition XV.2.3]). In order to compute the integral 

f~ G(~)Af(~) d~, we may use the expansion along K-types of the function F. For each 

K-type, the corresponding integral vanishes except for the K-invariant contribution. In 

other terms, it suffices to determine the value of AG against functions of the form FoQ 
where F is a K-invariant function in C~(V). 
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Let F be such a function. The integral we wish to evaluate is (at least in the case 

where N r  2n) 

EG(~)A(FoQ)(~) d~ = Cl f a  rad(A) F(x)  dx 

(ff~=l 02F ~ O F I  =4~o~[ ~ §  § E JR+ O~ i ~ O)~ ~d 
-- "= l<~i, j~r iCj 

x ~ (~j -~)dd~d~. . .d~.  
l ~ i < j ~ r  

1 (~i OF OF ~ j  ~ J ~ ) )  

?. 
This can be rewritten as 4coel ~ i=1  Ii, where 

R / 02F OF 1 OF 

+ j r  l ~ j < k ~ r  

Now, for a fixed index i, 

/R ~ 02F , ~  H (~k-~j)dd~ld)~2""d)~r 

= r ( F ~  ~ ~) (~  ~,~) ~ ~ 
k , l r  

For the integral with respect to Ai, we use integration by parts to get 

~ ~ ~(~  ~ , ) ~ = / ~ i : ~ ( n ( ~  - 

so that  

fR OF ] i  = (~ / - -1 )  ~ / /  H ( ~ J - ) k i ) d d ~ l d ) ~ 2  "'" d)~r" 

+ l ~ i < j ~ r  

We are left with the integral 

4(~-1)COCl f ~ OF d~r. 
JR+ i=1 l ~ i < j ~ r  

Let 8 be the vector field defined by 
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Observe t h a t  ~(I]l<xi<j<xr(/~j--/~i)d)----0, SO that  by an integration by parts  there remains 

only the contribution of the boundary of the domain of integration. The boundary 

consists of several pieces, a typical one being 

{0 < ~1 < ... < ~i = ~+1 < ... < ~r}. 

But  the density [Ii<<i<j<~r ()~J-Ai) d vanishes on this piece of the boundary. Hence, the 

only remaining piece of the boundary which contributes to the integral is the domain 

{0 = ~1 < ~2 <...  < ~ } = R ~ for which the contribution is easily computed to be 

f_ u( H 
2<<.j 2<~i<j<~r 

This finishes the proof of the theorem, at least in the case where N ~ 2 n .  If  N = 2 n ,  the 

proof follows exactly the same pattern.  Details are left to the reader. 

The previous computat ion has a consequence that  will be needed later. 

PROPOSITION 6. Assume that N>~2n. Then S is a polar set. 

Recall tha t  a set A C E  is said to be polar if every point of A has an open connected 

neighborhood U such that  there is a subharmonic function u, not identically equal to - o o ,  

but  equal to - o o  on AAU (see [Do] or [Ho, p. 203]). But Theorem 2 implies tha t  the 

Laplacian of - C  (as a distribution) is a positive measure (this is where the assumption 

N>~2n is needed), and hence - G  is subharmonic. But the set where - G  takes the value 

- c e  is exactly S, so tha t  S is polar as stated. 

4. T h e  K e l v i n  t r a n s f o r m  

Before defining the Kelvin transform and developing some applications, we first need to 

recall some definitions and properties of multi-harmonic functions. We use this terminol- 

ogy rather  than pluriharmonic used in [KV], or Stiefel harmonic used in [Ge] and [C1]. 

An open set O of E is said to be r if O is invariant under all the diffeo- 

morphisms (r162215 In practice, O will always be E or E ' .  A smooth function f 

defined on such a r  open set O is said to be multi-harmonic if, for each x E V x, 

the function f o e ( x )  is a harmonic function on O in the ordinary sense. There are several 

equivalent characterizations of multi-harmonic functions (see [C1]). 

We also need to recall the notion of C-homogeneity (we slightly modify the usual 

definition for our purposes). A function f defined on an open r set O is said 

to be C-homogeneous of degree m (m an integer) if 

f ( r  for all x E V  x, ~EO. (7) 
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Clearly, a function which is C-homogeneous (of some degree) is multi-harmonic if and 

only if it is harmonic. 

The inversion t is the transform defined on E ~ by the formula 

= ( s )  

By (2), 

Q(t(~) ) = P(Q(r = Q ( ~ ) - I  

so that  t(t(~))=r Hence t is an involutive diffeomorphism of E ' .  

The inversion satisfies another important  property, namely, 

t ( r 1 6 2  for a l l x C V  •  (9) 

The Kelvin transform of a function f defined on E '  is given by 

Kf(~)  = det Q(~)~~ (10) 

THEOREM 3. Let f be a smooth function on E r which is C-homogeneous of degree m 

and multi-harmonic. Then K f is C-homogeneous of degree 2 v o - m  and multi-harmonic 
o n  E I . 

Proof. Thanks to the C-homogeneity, 

Kf( ) = d e t  

This shows that  K f  is C-homogeneous of the right degree (use (9)). So, it is enough to 

prove that  A K f = 0  on E'. 

We need to recall some elementary facts and prove a few lemmas. First recall the 

formula for the Laplacian of a product of two arbitrary (smooth) functions u and v on 

an open subset of E: 

A(uv) = vAu+ 2(Vu, Vv) +uAv.  (11) 

Next, introduce for convenience the following notation: for any complex number u, denote 

by P ,  the function on E '  defined by 

P~(~) -- det Q(~)v. 
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Ne~,  

LEMMA 4. For all ~ E E', 

V(log det oQ)(~) = 2t(~), (12) 

(13) 

As (13) is an immediate consequence of (12), we prove (12). Using notation from w 

0 @ 0det  
0~---~ det Q(~) _ _ 2-., ~ (Q(~)) Oqj 0(~ 

j = l  

Oqj 0det  
0~ = 2 ( r  and --~aj ( x )= de t x ( x - l , a j ) .  

Hence 

0 n 
det Q(~)-I ~ det Q(~) = 2 E (Q(~) - I  aj)(r ~ )  

j = l  

--2 r (Q(~)-l ,aj)aj ~ , ~  - -2( r  

and the lemma follows. 

LEMMA 5. Let v be any real number. Then 

A P ,  (r = 4v(u-uo)P~(()(Q(r -1, e). 

This is an easy computation using Proposition 4. 

(14) 

LEMMA 6. 

homogeneous of degree m . Then, for any xCV x and any ~C(9, 

(r Vf(~)) = m tr x f(c). 

From the homogeneity property, we get for any small real number t, 

f (r  = det(e+tx)mf(~). 

Now differentiate both sides with respect to t, and use the fact that  

det(e+tx)= l + t t r x  +O(t 2) as t--+O 

Let f be a smooth function defined on a r open set (9, r 

(15) 

to get the result. 
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We are now ready to complete the proof of Theorem 3. Let g=Kf so that g(~)= 

P,o_,~(~)f(~). Then, thanks to (ii), 

Ag = (AP~o_m)f +2(WP, o_m, V f) ,  

which by (13) and (14) gives 

Ag({) = 4(-0 - m) (•0 - m - , 0 ) P , o _ m  (~)(Q(~) -1, e) f(~) 

+4(-0 - m) P-o-m (~)(L(~), (V f)(~)). 

Now use (15) with x=Q(~)  -1 to get (~(~), ( V f ) ( ~ ) ) = m t r  Q(~)-lf(~) .  Putt ing all things 

together gives Ag=0,  which finishes the proof of Theorem 3. 

5. M u l t i - h a r m o n i c  C - h o m o g e n e o u s  polynomials 

One of the classical applications of the Kelvin transform is the generation of harmonic 

polynomials from the Green kernel (see [CH]). We imitate the process, but have to use 

more refined analytic arguments instead of algebraic computations ([Ko] may also be 

quoted as a source of inspiration for our results). 

If p is any polynomial on E, associate the constant-coefficient differential operator 

O(p) on E characterized by 

cg(p)e (~'') =p(~)e (r for all ~EE.  

THEOREM 3. Assume that N> 2n. Let m be a nonnegative integer, and let p be a 

polynomial on E, C-homogeneous of degree m. Then 

K(0(p) G), 

originally defined on E', extends to E as a polynomial, is C-homogeneous of degree m, 

and is multi-harmonic. 

In case N=2n,  the same result is true, provided m>~l. 

Let us assume first that  N >  2n. For the homogeneity, observe that  if f and g are 

C-homogeneous of degree k and 1 respectively, then fg  is C-homogeneous of degree k+l. 

If p is a C-homogeneous polynomial of degree m then O(p)f is C-homogeneous of degree 

k - m ,  as is easily checked. Hence the homogeneity of K(O(p)G) (at least in E ' )  is clear. 

As A commutes with 0(p), it is clear that  O(p)G is harmonic in E'. By Theorem 3, 

K(O(p)G) is harmonic on Eq The last easy observation is that  as a consequence of the 

homogeneity, the function g=K(O(p)G) remains locally bounded near any point of S. 
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By Proposition 6, S is a polar set. Any harmonic function on the complement of 

a polar set which is locally bounded near any point of the polar set can be continued 

(uniquely) as a harmonic function on the whole space (see [Do] or [Ho D. Still denote by 

g this extension. As g is harmonic, g is an analytic function on E. The C-homogeneity 

of g implies homogeneity of degree mr in the ordinary sense. By considering the Taylor 

development of g at the origin, we may conclude that  g is indeed a polynomial. This 

finishes the proof of the theorem, for the case N>2n. 
For the remaining case, we observe that  the Green function in this case is quasi- 

homogeneous of degree 0, in the sense that  for any xEV x, 

G(r =G(~)+21ogdetx, for all ~EE', 

which is a consequence of the formula det(P(x)y)=det x 2 dety.  Now if p is a C-homo- 

geneous polynomial of degree m/> 1, then O(p)G is still C-homogeneous of degree - m ,  

and the rest of the proof is the same. 

Denote by M the map that  associates to any C-homogeneous polynomial p the ex- 

tension to E of K(O(p)G). The map M produces many multi-harmonic C-homogeneous 

polynomials. In fact, under appropriate assumptions it generates all multi-harmonic C- 

homogeneous polynomials. To state the result, we need some more notation and some 

preliminary results. 

Let P=7~(E)  denote the space of all polynomials (with complex coefficients) on E. 

There is a standard inner product on P called the Fischer inner product, defined by 

(r, s).~ = a(r)~(0).  (16) 

With the help of the Fischer inner product, it is possible to reinterpret the notion of 

multi-harmonic polynomial. We already introduced the polynomials qj for l ~ j 4 n  as 

defined by 

qj(~) = (r162 r = (aj, e ( r  

Let J = J ( E )  be the ideal i n / )  generated by the qj, l ~ j ~ n .  Then the space H = 7 / ( E )  

is the orthogonal space of J in • (see [C1]). 

Denote by pdet the space generated by the C-homogeneous polynomials of any de- 

gree, and let 7/det (resp. j de t )  be the intersection of pdet with 7t (resp. J ) .  For x E V  x, 

the map p~-+por maps 7t into itself. As it is self-adjoint for the Fischer inner product, 

it maps also J into itself. It obviously maps 7 )d~t into itself, and hence 7/det (resp. j d e t )  

into itself. We clearly have 
~)det __-- 7/det (~ ~.~det (17) 

(orthogonal direct sum). 
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We also need an assumption already considered in [C1]. Denote by Vc the complexi- 

fled Jordan algebra of V, and extend the inner product on V as a C-bilinear form on Vc. 

Similarly let E c  be the complexified space of E,  and extend the inner product on E to a 

C-bilinear form on E c .  The map H has a C-bilinear extension to E c  • E c ,  still denoted 

by H,  and, with the same convention, the map Q is now regarded as a C-quadratic map 

from E c  into Vc. Consider the algebraic set 

A f =  { ~CEc  : Q({ )=0} .  

An element ~ in E c  is said to be regular if the differential of Q at ~ is surjective, which 

is tantamount  to the fact that  the map 7/~+H(~, ~) is surjective. Then our assumption, 

denoted by (H), is: 

There exists a regular element in Af. (H) 

As a consequence, the set Af t of all regular elements in A/" is dense in Af. 

Now we can state our main result. 

THEOREM 4. Assume that the representation r satisfies the condition (H) and that 

N > 4n-2r .  Then the map M is a surjective map from p d e t  onto ~.~det. 

We need several lemmas before attacking the proof of Theorem 4. 

LEMMA 7. Let pEP be C-homogeneous of degree k, and let f be a smooth function 

defined on some open subset of V. Let ~EEc. Then 

O(p) f ( H ( . ,  4)) = P(~)(0(det k) f ) ( H ( . ,  4)). 

In fact, let A: Ec--+Vc be a linear map. Then O(p)(foA)=(O(7~)f)oA, where 7r-- 

poA t. Apply this to the operator A defined by A~=H(~, 4). Then, for xEV,  Atx=r 

and so =(get  x)kp(;), and the claim follows. 

LEMMA 8. Let k be any positive integer, and v a complex number. Then 

O(det k) det v = b(~) b ( v -  1)_. b ( v -  k + 1) det ~- k (18) 

with b(/~)=/~(~+[d) . . .  ( ~ + l d ( r - 1 ) ) .  

This is an obvious extension of the Bernstein identity for the polynomial det x (see 

[FK, Proposition VII.1.4]). 

COROLLARY. Assume condition (H) to be satisfied. Suppose also that N > 4 n - 2 r .  

Let k c N .  Then 

0(det k) det v~ ~ 0. 
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Recall that uo=n/r-N/2r ,  so that  

The last factor in the product is equal to ( 4 n - N - 2 r ) / 2 r .  Hence our condition implies 

that  this factor (as well as the other factors) is <0. Thus b(u0)~0, and more generally, 

b(uo-k)~O for any k. 

PROPOSITION 7. Assume that (H) is satisfied and that N > 4 n - 2 r .  Let p@~pdet be 

such that O(p)G=O on E ~. Then p vanishes on Af. 

Let p E~Ddet be such that  O(p)G= O. More precisely, assume that  p is C-homogeneous 

of degree k. The function G has an extension to the set E~,  at least locally, because one 

might have to choose a determination of the square root of det Q(~) in case u0 is half 

an integer. The operator O(p) commutes with translations and is homogeneous (in the 

ordinary sense). Hence, for any t > 0  and any ~CEc ,  the function G(t~+r satisfies 

0 ( p ) ( G ( t .  = 0 

where defined. If ~EA/, then Q(t~§ ~). If moreover ~EJV v, the map 

~-~H(~, ~) is surjective, so that  det H(~, 4 ) 5 0  on a dense open set ~r of E.  Let t tend 

to 0. Then, on ftr t-r'~162 tends to det(2H(~,~))  ~~ uniformly on any compact 

subset of ~r and the same is true for any partial derivative. So, on ~i ,  

0(p)(det  H ( . ,  ())~o = 0. (19) 

From Lemma 7 and the corollary to Lemma 8, we see that  p ( ( )=0 .  But ~ was arbitrary 

in 2~ r~, so p vanishes on Aft and hence on Af by continuity. 

Now we are ready for the proof of Theorem 4. 

Let us first determine the kernel of the map M. If p belongs to ,jdet, then O(p)G= 0, 

and hence Mp--O. Conversely, let pC~ Odet and assume that  it belongs to the kernel of 

the map M. Then O(p)G=O. By Proposition 7, p vanishes on Af. But an important  

result of [C1] is, under the assumption (H), the equivalence (valid for any polynomial p 

on E):  

p v a n i s h e s o n A f  -'. :- pE ,7 .  

Hence the kernel of the map M is exactly ,jdet. SO the map M induces an injective map 

from ~odet mod ~'det into ~.~det. But ~pdet rood J'det ~ '~det ,  and the map M preserves the 

degree of C-homogeneity. Hence by a dimension count we get the surjectivity of M. 
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