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1. I n t r o d u c t i o n  

We characterize the class of measurable functions (or, more generally, real- or complex- 

valued distributions) V such that  the Schr5dinger operator H=-A§ maps the energy 
o 

space L~(R n) to its dual L~-I(Rn). Similar results are obtained for the inhomogeneous 

Sobolev space W~(Rn).  In other words, we give a complete solution to the problem 

of the relative form-boundedness of the potential  energy operator  V with respect to 

the Laplacian --A, which is fundamental  to quantum mechanics. Relative compactness 

criteria for the corresponding quadratic forms are established as well. We also give 

analogous boundedness and compactness criteria for Sobolev spaces on domains f t C R  n 

under mild restrictions on 012. 

One of the main goals of the present paper  is to give necessary and sufficient condi- 

tions for the classical inequality 

fR lu(x)12V(x)dx <.consts (1.1) 

to hold. Here the "indefinite weight" V may change sign, or even be a complex-valued 

distribution on R n, n~>3. (In the latter case, the left-hand side of (1.1) is understood as 

](Vu, u) l, where ( V - , . )  is the quadratic form associated with the corresponding multipli- 

cation operator V.) We also characterize an analogous inequality for the inhomogeneous 

Sobolev space W.J(Rn), n~>l: 

fRnl u(x )12V(x )dx  ~<const s u E C ~ ( R n ) .  (1.2) 
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Such inequalities are used extensively in spectral and scattering theory of the Schrb- 

dinger operator H=Ho +V, where H0 = - A  is the Laplacian on a n, and its higher-order 

analogues, especially in questions of self-adjointness, resolvent convergence, estimates 

for the number of bound states, Schrbdinger semigroups, etc. (See [Bi], IBIS1], [BiS2], 

[CZ], [D1], [Fa], [Fe], [RS2], [S1], [Si], and the literature cited there.) In particular, (1.2) 

is equivalent to the fundamental concept of the relative boundedness of V (potential 

energy operator) with respect to H o = - A  in the sense of quadratic forms. Its abstract 

version appears in the so-called KLMN theorem, which is discussed in detail, together 

with applications to quantum-mechanical Hamiltonian operators, in [RS2, Section X.2]. 

It follows from the polarization identity that  (1.1) can be restated equivalently in 

terms of the corresponding sesquilinear form: 

I(Yu, v)] <~ const. HVuHL2 IlVVllL~ 

for all u, vCC~ (an) .  In other words, it is equivalent to the boundedness of the operator 

H=Ho+V, 
o 

L - l t R  ~ n>~3. (1.3) H : L ~ ( R  ~)--+ 2 ~ J, 
o 

Here the energy space L21(R ~) is defined as the completion of C ~ ( R  n) with respect to 
o 

the Oirichlet norm IIVulli~, and L~-I(R n) is the dual of L~(Rn). Similarly, (1.2) means 

that  H is a bounded operator which maps W21(R n) to W2-1(Rn), n ~ l .  

The idea of considering H as a bounded operator acting from the energy space 

to its dual goes back at least to E. Nelson's way to prove that  densely defined closed 

quadratic forms bounded from below on a Hilbert space 74 are uniquely associated with 

a self-adjoint operator on 74 [Ne, pp. 98-101] (see also [RS1, pp. 278 279 and Notes to 

Section VIII.6]). Moreover, Nelson also used this technique to prove the existence of 

the Friedrichs extension for densely defined, symmetric operators bounded from below 

([Ne, pp. 101-102], [RS2, pp. 17~179 and Notes to Section X.2]). A proof of the KLMN 

theorem using this approach (i.e., scales of Hilbert spaces) can be found, for instance, in 

[RS2, pp. 167-168]. 

Thus, from the point of view of perturbation theory, we distinguish a natural class 

of admissible potentials V such that  the mapping properties of H 0 = - A  are preserved 

for H=Ho+V. It is well-known that,  in the opposite situation where Ho is dominated 

by V, the properties of the perturbed operator may change in a spectacular way. For 

instance, under the growth conditions on V>~0 at infinity prescribed by the classical 

A. Molchanov's criterion [Mo], H has a purely discrete spectrum. (Another proof of the 

discreteness-of-spectrum criterion was found in [Ma2]; see also lEE], [Ma3]. General- 

izations to Schr6dinger operators on manifolds and magnetic Schrbdinger operators are 

given in [KoS], [KMS].) 
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Previously, the case of nonnegative V in (1.1) and (1.2) has been studied in a compre- 

hensive way. We refer to [CWW], [Fe], [KeS], [Ma3], [MaV], [RS2], [$3], where different 

analytic conditions for the so-called trace inequalities of this type can be found. (A re- 

cent survey of the vast literature on this subject is given in [Ve].) For general V, only 

sufficient conditions have been known. 

It is worthwhile to observe that  the usual "naive" approach is to decompose V into 

its positive and negative parts, V = V + - V _ ,  and to apply the just mentioned results to 

both V+ and V_. However, this procedure drastically diminishes the class of admissible 

weights V by ignoring a possible cancellation between V+ and V_. This cancellation 

phenomenon is evident for strongly oscillating weights considered below. Examples of 

this type are known, mostly in relation to quantum mechanics problems [AiS], [CG], 

[NaS], [Stu]. 

In w we establish a general principle which enables us to solve the problems stated 

above for arbitrary V. Before stating our main results, we reiterate that  we do not impose 

any a priori assumptions on V, and hence throughout the introduction the left-hand sides 

of (1.1) and other similar inequalities are defined in terms of the corresponding quadratic 

forms. Also, we use some expressions involving pseudodifferential operators, e.g. VA -1V 

or ( - A ) - I / 2  V, which will be carefully defined in the main body of the paper. 

THEOREM I. Let V be a complex-valued distribution on R n, n~3 .  Then (1.1) holds 

if and only if V is the divergence of a vector field 1~: R n - + C  n such that 

/R~ ]U(X)]2 IP(x)t2 dx ~ const/R [Vu(x)[2 dx, (1.4) 

where the constant is independent of u E C ~ ( R ~ ) .  The vector field FEL2,1oc(R n) can be 

chosen as F = • A -  1V. 

Equivalently, the SchrSdinger operator H = Ho + V acting from ~1 (Rn) to L~ 1 (R~) 

is bounded if and only if (1.4) holds. Furthermore, the corresponding multiplication 
o 

operator V: L~(Rn)-+L~-I(R n) is compact if and only if the embedding 

I,I(R~) C L2(R n, []~12 dx) 

is compact. 

We remark that  once V is written as V = div ]~, the implication (1.4) ~ (1.1) becomes 

trivial: It follows using integration by parts and the Schwarz inequality. This idea has 

been known for a long time in mathematical physics (see, e.g., [CG]) and in the theory 

of Sobolev spaces [MRS]. 
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On the other hand, the converse statement (1.1) ~ (1.4), where F = ~ A - 1 V ,  is quite 

striking, and its proof is rather delicate. It is based on a special factorization of func- 
o 

tions in L I ( R  n) involving powers _Pa K of the equilibrium potential PK associated with an 

arbitrary compact set K c R  n of positive capacity. New sharp estimates for P~,  where 

ultimately 5 is picked so that  l<2($<n/(n-2),  are established in a series of lemmas 

and propositions in w We also make use of the fact that  standard Calderon-Zygmund 

operators are bounded on L2(R n) with a weight P~,  and the corresponding operator 

norm bounds do not depend on K [MaV]. 

Thus, Theorem I makes it possible to reduce the problems of boundedness and 

compactness for general "indefinite" V to the case of nonnegative weights ]~[2, which is 

by now well understood. In particular, combining Theorem I and the known criteria in 

the case V~>0 (see Theorems 2.1 and 4.1 below) we arrive at the following theorem. 

THEOREM II. Under the assumptions of Theorem I, let I~=YTA-1VcL2Joc(Rn). 

Then the following statements are equivalent: 

(a) Inequality (1.1) holds. 

(b) For every compact set e C R  n, 

f IF(x)[2 dx <<. const.cap(e), 

where cap(e) is the Wiener capacity of e, and the constant does not depend on e. 

(c) The function g(x)=(-A)-l /2[F(x)] 2 is finite a.e., and 

( - - A ) - - I / 2 g 2 ( x )  ~ c o n s t ' g ( x )  a . e .  

(d) For every dyadic cube Po in R n, 

PC_poE [ f PT~'F(X)I2 dx J]2'P' ~< const/Po 'F(x)'2 dx, 

where the sum is taken over all dyadic cubes P contained in Po, and the constant does 

not depend on Po. 

As a corollary, we obtain a necessary condition for (1.1) in terms of Morrey spaces 

of negative order. 

COROLLARY 1. / f  (1.1) holds, then for every ball BT(xo) of radius r, 

R~(xo)[VA-1V(x) ] 2 dx < const.r  n-2, 

where the constant does not depend on x0CR u and r>0 .  
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COROLLARY 2. In the statements of Theorem I, Theorem II and Corollary 1, one 
can put the scalar function ( - A ) - I / 2 V  in place of F = V A - 1 V .  In particular, (1.4) is 
equivalent to the inequality 

Rn[U(X)[2 [(-A)- l /2V(x)]2 dx ~ const/R, [Vu(x)[2 dx (1.5) 

for all u CF(Rn). 

The proof of Corollary 2 uses the boundedness of standard singular integral operators 

in the space of functions fEL2,1oc(R n) such that  

/Rn,u(x)[2[f(x),2 dx ~ const jRn,Vu(x)[2 dx 

for all u E C ~ ( R n ) ;  this fact was established earlier in [MaV]. 

Corollary 2 indicates that  an appropriate decomposition into a positive and negative 

part for (1.1) should involve expressions like ( - A ) - I / 2 V  rather than V itself. Another 

important consequence is that  the class of weights V satisfying (1.1) is invariant under 

standard singular integral and maximal operators. 

Remark 1. Similar results are valid for inequality (1.2); one only has to replace the 

operator ( - A )  -1/e by ( l - A )  -1/2, and the Wiener capacity cap(e) with the correspond- 

ing Bessel capacity. In statement (d) of Theorem II and Corollary 1, it suffices to restrict 

oneself to cubes or balls whose volumes are less than 1 (see details in w 

Before proceeding to further results and corollaries of Theorem I and Theorem II, it is 

instructive to demonstrate the cancellation phenomenon mentioned above by considering 

an example of a strongly oscillating weight. 

Example 1. Let us set 

y(x) = Ixl N - 2  s i n ( I x l N ) ,  (1 .6 )  

where N~>3 is an integer, which may be arbitrarily large. Obviously, both V+ and V_ 

fail to satisfy (1.1) due to the growth of the amplitude at infinity. However, 

V(x)=div~(x)+O([xl-2),  where F ( x ) -  - 1  ~ eOS([x[N). (1.7) g 2 

By Hardy's inequality in R n, n~>3 (see, e.g., [D2]), 

JR 2 dx 4 f ]Vu(x)] 2 dx, u ~ C ~ ( R n ) ,  (1.8) 
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and hence the term O(Ix1-2) in (1.7) is harmless, whereas F clearly satisfies (1.4) since 

]F(x)]2~<]x] -2. This shows that  V is admissible for (1.1), while ]V] is obviously not. 

Similar examples of weights with strong local singularities can easily be constructed. 

We now discuss some related results in terms of more conventional classes of admissi- 

ble weights V. The following corollary, which is an immediate consequence of Theorem I 

and Corollary 2, gives a simpler sufficient condition for (1.1) in terms of Lorentz-Sobolev 

spaces of negative order. 

COROLLARY 3. Suppose that n~3  and that V is a distribution on R '~ such that 

( - A ) - I / 2 V c L n , ~ ( R n ) ,  where Lp,c~ denotes the usual Lorentz (weak Lp) space. Then 

(1.1) holds. 

For the definition and basic properties of Lorentz spaces Lp,q (R n) we refer to [StW]. 

In particular, it follows that  ( - A )  -1/2 VE L~.~ is equivalent to the estimate 

f l (- /X)-l /2p(x)l  2 dx <<. COASt. le l l -2 /L (1.9) 

where lel is the Lebesgue measure of a measurable set eCRn .  

Remark 2. Using duality and the Sobolev embedding theorem for Lp,l(R'~)-spaces 

one can show that  the class of potentials V such that  ( - A ) - I / 2 V E L n , ~ ( R  n) is wider 

than the well-known class VE L~/2, ~ (Rn). 

Remark 3. Corollary 3 demonstrates that  ( -A) -U2VCLn ,~(Rn) ,  n~>3, is sufficient 

for V to be relatively form-bounded with respect to - A .  For n~>5, this condition is 

enough for V to be even ( -A)-bounded ,  according to the terminology of Reed and 

Simon; see [RS2, pp. 162 172]. 

A sharper version of Corollary 3 can be stated in terms of Morrey spaces of nega- 

rive order. We recall that  a measurable function W lies in the Fefferman-Phong class, 

introduced in [Fe], if for every ball Br(xo) of radius r in R n, the inequality 

B r ( x o )  Iw(x) Ip dx <~ const . r  n- 2p (1.10) 

holds for some p > l ,  where the constant does not depend on xo and r. 

It is easy to see that (1.10) holds for every l < P < � 8 9  if WCLn/2,oc(Rn). As was 

shown in [Fe], (1.10) with p > l  is sufficient for W to be relatively form-bounded with 

respect to - A .  

The following corollary of Theorem I is applicable to distributions V, and encom- 

passes a class of weights which is broader than the Fefferman-Phong class even in the 

case where V is a nonnegative measurable function. 
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COROLLARY 4. Let V be a distribution on R n which satisfies, for some p> l, the 

inequality 

Br(xo)l(--A )-U2 V(x)12p dx < const, r n-2p (1.11) 

for every ball Br(xo) in R n. Then (1.1) holds. 

Note that by Corollary 1 the preceding inequality with p=  1 is necessary in order 

that (1.1) hold. 

Remark 4. A refinement of (1.11) in terms of the Dini-type conditions established 

by Chang, Wilson and Wolff [CWW] is readily available by combining them with our 

Theorem I. 

To clarify the multi-dimensional characterizations for "indefinite weights" V pre- 

sented above, we state an elementary analogue of Theorem I for the Sturm Liouville 

operator H =-d2 /dx  2 + V on the hMf-line. 

THEOREM III. The inequality 

s dx const s 2dx (1.12) 

holds for all uEC~(R+)  if and only if 

f ~  dt 2dx f s u p  a l ! V(t) <oc,  (1.13) 
a >0  Ja Jx 

where F(x)=f~176  V(t) dt is understood in terms of distributions. 

Equivalently, H:L~(R+)-~L~I(R+)  is bounded if and only if (1.13) holds. More- 

over, the corresponding multiplication operator V is compact if and only if 

a F(x)[2dx=o(1),  where a-+O + and a-++oo. (1.14) 

For nonnegative V, condition (1.13) is easily seen to be equivalent to the standard 
Hille condition [Hi]: 

/? sup a IV(x)l dx < oc. (1.15) 
a> 0  

A similar statement is true for the compactness criterion (1.14). 

The gap between (1.13) and (1.15) is evident from the following example which is 

of interest to spectral and scattering theory. 

Example 2. Let V(x )=s in (x ) / x  p, p>0, where x~>l, and V(x)=0 for 0 < x < l .  Then 
o 

the operator H = - d 2 / d x  2 +V: L~ (R+)-+L~-1 (R+) is bounded if and only if p>~ 1. More- 

over, by (1.14), V is compact for p > l .  However, (1.15) is applicable only when p>2. 
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We observe that  Theorem III, in spite of its simplicity, seems to be new for experts 

in spectral theory. Its proof will be given elsewhere in a more general framework. 

We now briefly outline the contents of the paper. In w we define the SchrSdinger 
o 

operator on the energy space L l f R  n~ and characterize the basic inequality (1.1). The 2 \  / ,  

compactness problem is treated in w Analogous results for the Sobolev space W I ( R  n) 

are obtained in w while w is devoted to similar problems on a domain f ~ c R  n for a 

broad class of ft, including those with Lipschitz boundaries. 

In this paper, we restrict ourselves to the Hilbert case p=2, and the second-order 

operator H 0 = - A .  However, our boundedness and compactness criteria can be carried 
o 

over to Sobolev spaces Lp*(R n) and W~'(R'~), where l < p < o o  and m>0 ,  and higher- 

order operators like H = ( - A ) m + V .  The proofs of the necessity statements for p r  

and m r  are technically more complicated, and will be presented separately. The cor- 

responding Lp-inequalities have applications to certain nonlinear problems (see, e.g., 

[HMV], [KaV]). 

The main results of this paper were established at the Mittag-Leffler Institute in 

October, 1999. It is a pleasure to thank Fritz Gesztesy, Ari Laptev, Yehuda Pinchover, 

Michael Solomyak and Timo Weidl for the discussions of our work from the viewpoint of 

mathematical physics, and references to the literature. 

o 

2. T h e  SchrSd inge r  o p e r a t o r  on  L ~ ( R  n) 

We start with some prerequisites for our main results. Let :D(Rn)=C~(R n) be the 

class of all infinitely differentiable, compactly supported complex-valued functions, and 

let :D~(R n) denote the corresponding space of (complex-valued) distributions. In this 
o 

section, we assume that  n>~3, since for the homogeneous space L~(R '~) our results become 

vacuous if n = l  and n=2:  they hold only for Schr6dinger operators with zero potential. 

(Analogous results for inhomogeneous Sobolev spaces W2 ~ (R n) are valid for all n~> 1; see 

w and w below.) 

For VC:D'(R~), consider the multiplication operator on :D(R n) defined by 

(Vu, v) :=(V, fiv), u, vE:D(R'~), (2.1) 

where ( . , .  > represents the usual pairing between :D(R n) and :D'(R~). 
o 

The space L I ( R  n) is defined as the completion of :D(R n) in the Dirichlet norm 
o 

IIVullL2(m~). Elements of L~(Rn), for n~>3, are weakly differentiable functions uC 

L2n/(n_2) (R n) whose first-order weak derivatives lie in L2(R~). By Hardy's inequality, 
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�9 

an equivalent norm on L I ( R  ~) is given by 

"UlI~(R~) = [/R,('X'-21U(X)' 2+ ,Vu(x),2)dx] 1/2 

o o 

If the sesquilinear form (V. , . )  is bounded on L~(R n) x LI(Rn):  

I(vu,~)l ~<cllVuHL2(R~)IIVVlIL2(R~), u, veT)(Rn),  (2.2) 

where the constant c is independent of u,v, then VuEL21(Rn), and the multiplication 
o 

operator can be extended by continuity to all of the energy space L21 (Rn). As usual, this 

extension is also denoted by V. 

We denote the class of multipliers V such that the corresponding operator from 
o 

L~(R n) to L ~ I ( R  n) is bounded by 

�9 

M(L~(R ~) -+ L21(R~)). 

Note that  the least constant c in (2.2) is equal to the multiplier norm: 

IIVIIM(tUR~)_~L~(R,~)) = sup{lIVUllL~l(R~) : llullLh(R,~)<~ 1, u C:D(Rn)}. 

o 

For we will extend the form (V, ~v) defined by the right- 
o 

hand side of (2.1) to the c a s e  where both u a n d  v a r e  in LI(Rn) .  This can be done by 

letting 

(Vu, v) := lira (VuN,VN}, 
N---~oo 

o 

where u = l i m g ~  Ug and v=  limg-+~ VN in L~(Rn), with UN, VN E Z)(Rn). It is known 

that  this extension is independent of the choice of UN and Vg. 
We now define the Schrbdinger operator H=Ho+V, where H 0 = - A ,  on the energy 

o o 

space n~(Rn). Since H0: L~(R")-+L~-I(R ") is bounded, it follows that  H is a bounded 
o o 

operator acting from L I ( R  n) to L ~ I ( R  n) if and only if VeM(L~(R'~)---~L~I(Rn)). By 

the polarization identity, (2.2) is equivalent to the boundedness of the corresponding 

quadratic form: 

I(Vu, u)l I(V, lut2>l~<cllVull~,=(R,~), ueD(Rn), (2.2') 

where the constant c is independent of u. If V is a (complex-valued) Borel measure 

on R n, then (2.2 ~) can be recast in the form (see the Introduction) 

fm[u(x)[2dV(x) ~<~IIwlI~2(R,~), uET)(R'~) �9 (2.3) 



272 V . G .  M A Z ' Y A  A N D  I .E .  V E R B I T S K Y  

For positive distributions (measures) V, this inequality is well studied. We collect several 

equivalent characterizations of (2.3) for this case in Theorem 2.1 below. 

For a compact set e C R  n, define the Wiener capacity by 

cap(e) = in f { l lVul l~2(R,0  : u e  7~(RD, u(x )  > 1 on e}. (2.4) 

Let V be a positive Borel measure on R n. By I 1 V = ( - A ) - I / 2 V ,  we denote the Riesz 

potential of order 1: 

i i V ( x ) = e ( n )  f R dV(t )  
I x - t l  n - l  ' 

where c(n) = F ( �89 (n - 1)) / 2~(n+1)/2. More generally, the Riesz potential of order c~ E (0, n) 

is defined by 

I~V(x)  =e(n,c~) / R  dV(t )  
I x - - t l n - ~  ' 

where c(n, c O = r ( 1 ( n - ~ ) ) / 2 % r n / 2 F ( ~ ) .  In particular, for c~=2 we get the Newtonian 

potential /2 = ( - A )  - 1. 

THEOREM 2.1. Let V be a locally finite positive measure on R ~. Then the following 

statements are equivalent: 

(i) The trace inequality 

RnlU(X)12 dV(x)  <~ elIIVulI2L2(Rn), ueT)(Rn) ,  (2.5) 

holds, where cl does not depend on u. 

(ii) For every compact set e C R  n, 

V(e) <~ c2 cap(e), (2.6) 

where c2 does not depend on e. 

(iii) For every ball B in R n, 

B(I1VB)2 dx ~ c3V(B), 

where dVB=XB dV, and c3 does not depend on B. 

(iv) The pointwise inequality 

(2.7) 

Ii(I1V)2(x) ~ c411V(x ) < oo a.e. (2.8) 

holds, where c4 does not depend on x E R  n. 
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(v) For every compact set e c R  n, 

fe ( I1Y )2 dx < c~ cap(c), (2.9) 

where c5 does not depend on e. 

(vi) For every dyadic cube Po in R n, 

[ v(.) ]2 
E [[pi l -1 /n j  IPI <~c6V(Po), (2.10) 

PC_Po 

where the sum is taken over all dyadic cubes P contained in Po, and c6 does not depend 

on Po. 

The equivalence (i)~=> (ii) is due to IVIaz'ya [Mall, and (i)~=> (iii) to Kerman and 

Sawyer [KeS]; (i)r (iv)c=~(v) was obtained in [MaV]; (i)v=~(vi) is discussed in [Ve], 

where a survey of trace inequalities of this type in Lp-spaces is given. 

Remark 1. The least constants in the inequalities (2.5)-(2.10) are equivalent in the 

sense that the quotients ci/cy (i, j = 1, ..., 6) are bounded from above and below by positive 

constants which may depend only on n. Moreover, 

c2 <. cl <. 4c2, 

where both the lower and the upper estimates are sharp (see [Mall, [Ma3]). 

We now state our main result for arbitrary (complex-valued) distributions V. By 

L2joc(Rn)=L2,1oc(Rn) |  n we denote the space of vector functions F=(F1,  ..., Fn) such 

that Fi C L2,1oc (an) ,  i = 1, ..., n. 
o 

THEOREM 2.2. Let V~TY(Rn). Then VEM(L~(Rn)--+L~I(R~)) ,  i.e., the inequat- 

ity 

holds for all u, vE/ ) (Rn) ,  if and only if there is a vector field FcL2,1oc(R n) such that 

V =  div F and 

/Rnlu(x)12 IF(x)l 2 dx <~ C / m  ,Vu(x),2 dx (2.12) 

for all u E ~ ( R n ) .  The vector field F can be chosen in the form F = V A - 1 V .  

Remark 2. For I~=VA-1V,  the least constant C in the inequality (2.12) is equivalent 

t o  [[VII~M(~I(Rn)__~L;I(Rn)). 
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Proof of Theorem 2.2. Suppose that V=div]~, where ]~ satisfies (2.12). Then using 

integration by parts and the Schwarz inequality we obtain: 

t ( V u ,  v}l  = I(Y, ~v} l  = I(I', vW)+ (F, ~W}t 
~< Ilr'~llL~(m~)IIV~IIL=(Rn)+ ]IFUIIL2(R ~) IlVvlIL=(Rn) 

~< 2V~ IIWlIL~cRn)IlVvlIL2(R~), 

where C is the constant in (2.12). This completes the proof of the "if" part of Theorem 

2.2. 

The proof of the "only if" part of Theorem 2.2 is based on several lemmas and 

propositions. 

In the next lemma, we show that F=~  7/~-1  V ~  L2,1o c ( R ' ~ ) ,  and give a crude prelim- 

inary estimate of the rate of its decay at oc. Denote by BR=BR(xo) a Euclidean ball of 

radius R centered at x0E R ~. 

LEMMA 2.3. Suppose that 

Ve M(L~(R n) --~ L~ 1 (R~)). (2.13) 

Then F=VA-1VELa,zoc(R n) and V = d i v F  in D'. Moreover, for any ball BR(xo) 

(R>0) and r 

B IF(x) 12 dx <~ C(n, n-2-1-z 2 R vii o , (2.14) ) 11 hI(L~(l:tn)_+L;l(Rn)) R(zo) 

where R~>max{1, Ixol}. 

Proof of Lemma 2.3. 

field r E D '  by 

o 1 
Suppose that VEM(LI(Rn)--+L2 (Rn)). Define the vector 

(P, r = -(V, A-1 div q~} (2.15) 

for every r174 n. In particular, 

(F, V ~ ) = - ( V , r  r  (2.15') 

i.e., V = d i v F  in D'. 

We first have to check that the right-hand side of (2.15) is well-defined, which a priori 

is not obvious. For CED| n, let w : A - l d i v r  where - A - l f = I 2 f  is the Newtonian 

potential of fc~9. Clearly, 

w(x)=O(Ixl >n) and IVw(x)l=O(Ixl -~) as Ixl~<~, 
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and hence 
o 

w = A - l d i v  r E L~(Rn)AC~(Rn). 

We will show below that  w=uv, where u is real-valued, and both u and v are 
o o 

in L~(Rn)nC~(Rn). Then, since VEM(L~(Rn)-~L~I(Rn)), it follows that {V,w)= 
(Vu, v) is defined through the extension of the multiplication operator V as explained 

above. 

For our purposes, it is important to note that  this extension of (If, w) to the case 
o 

where w =uv,  and u, v E L I ( R  n) N C ~ (an) ,  is independent of the choice of factors u and v. 

To demonstrate this, we define a real-valued cut-off function Z]N(X)=z](N -1 Ixl), where 

f lECk(R+) ,  so that  r / ( t )= l  for 0~<t~<l and rl( t)=0 for t~>2. Note that  V~]N is supported 

in the annulus N<~[xl<<.2N , and IV~N(X)I <.clx1-1. It follows easily (for instance, from 

Hardy's inequality) that  
o 

lira II~?Nu-ull o = 0 ,  u E L I ( R n ) .  
N--+ac L I ( R  n) 

Then letting UN=?]N u and VN=~?gV, so that  ftN?JN=l]2W, w e  define (V, w) explicitly 

by setting 

{V,w) := N-,~lim (VUN,VN)= limo {V,~2NW). 

This definition is independent of the choice of ~?, and the factors u, v. Moreover, 
o 

](V, w)] ~< C inf { ]]ull~URn > ]]vl] ~(R")  : W = gv; u, v E L~(R ~) A C ~ (R n) }, 

where C =  IIVIIM(Lg(R~)_~L;~(R,~) ). 
Now we fix e > 0  and factorize: where 

U(X)=(I-~-Ixl2) -(n-2+e)/4 and v(x)=(l+lxl2)(n-2+~)/4A-tdiv~(x). (2.16) 
o 

Obviously, uEL~(R~)nC~176 and 

Ilull;IiR. = c(~, c) < o~. 
o 

It is easy to see that  vEL~(Rn)Nc~176 ") as well. Furthermore, the following statement 

holds. 

PROPOSITION 2.4. Suppose that CEC~176 ~) and suppr Let v be defined 
by (2.16) where 0 < e < 2 .  Then 

Ilvll~g(R~).< c(n, c) R (~- 2+~) /2 IIr (2.17) 

for R~>max{1, Ix01). 

Proof of Proposition 2.4. Since r is compactly supported, it follows that  

IA-~divr  <,e(n)l~ljl(x ), x E R  n. 
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Hence 
c(n, r L~(R~) < I[ (1 + Ixl2) (n-2+E)/4 VA- 1 div j(x)IlL2 (R n) 

+ II (1 + Ixl~)(~-~+~)/% I j)(x)II ~.(Ro). 

Note that VA-ld iv  is a Calderon-Zygmund operator, and that the weight w(x)= 
(l+[x]2) (n-2+e)/2 belongs to the Muckenhoupt class A2(R n) if 0<r  (see [CF]). 

Applying the corresponding weighted norm inequality, we have 

[[ (1 + Ix[ 2) (n-2+r ~ T A - l d i v  0(x)[[ L2(R -) (2.18) 

<~ c(n, ~)II (1 + fxI2) <~-2+~)/4 IJ(x) 111 ~, (R..)- 

The other term is estimated by the weighted Hardy inequality (see, e.g., [Ma3]): 

s l&.))'(l+ ixl')(--'+.v'-.x ~< o(~,.)s247 (2.19) 

Clearly, 
II (1+ IX12)(n-2+')I4@x)II ~.(~~ < "(', ") n ( ' -2+ ' ) / '  II& ~.(~-)- 

Hence, combining (2.18), (2.19) and the preceding estimate, we obtain the desired in- 

equality (2.17). The proof of Proposition 2.4 is complete. 

Now let us prove (2.14). Suppose that 5eC~(R '~) |  n and supp$CBa(x0). Then 

by (2.15) and Proposition 2.4, 

(2.20) 
<~ C(n, ~)R (n-2+~)/2 ]IVllM(L~(m,)~L~(m~) ) IIJllL.(R~/- 

Taking the supremum over all r supported in Bn(xo) with unit L2-norm, we arrive at 

(2.14). The proof of Lemma 2.3 is complete. 

It remains to prove the main estimate (2.12) of Theorem 2.2. By Theorem 2.1, it 

suffices to establish the inequality 

f IF(x)12 dx ~< [I VII2M(~(R~)__~L~m~))cap(e) (2.21) c(n) 

for every compact set eCR n. Notice that in the special case e=BR(XO), the preceding 

estimate gives a sharper version of (2.14): 

s i~(x)12dx<<.C(n)R~_2llVl]2 ~ ~ , xoeRn, R>O. 
R(xo) M(L~(Rn)---+L; (Rn)) 
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Without loss of generality we assume that  cap(e)>O; otherwise lel=0, and (2.21) 
holds. Denote by P(x)=P~(x) the equilibrium potential on e (see [AdH], [Ma3]). It is 

well known that  P is the Newtonian potential of a positive measure which gives a solution 

to several variational problems. This measure t,~ is called the equilibrium measure for e. 

We list some standard properties of u~ and its potential P~(x)=I2zJ~(x) which will 

be used below (essentially due to O. Frostman): 

(a) supp t, e C e; 

(b) P~(x)= 1 d~-a.e.; 

(c) ~'e(e) = cap(e) > 0; (2.22) 

(d) IIVPolI~2(Rn) = cap(e); 
(e) sup P~(x) <~ 1. 

x E R  n 

The rest of the proof of Theorem 2.2 is based on some inequalities involving the 

powers P~(x) a which are established below. 

PROPOSITION 2.5. Let 5> �89 and let P=P~ be the equilibrium potential of a compact 
set e of positive capacity. Then 

5 
IIVPa[IL2(R~)- 2dgga-~-i ~ (2.23) 

Remark 3. For 5~�89 it is easy to see that  VPa~L2(Rn) .  

Proof of Proposition 2.5. Clearly, 

s ivp(x) ,2ex=a=[ ivP(x)12p(x) 2a- dx. (2.24) 
n j R n 

Using integration by parts, together with the properties - A P = u ~  (understood in the 

distributional sense) and P(x)= 1 dt~-a.e., we have 

/ n  'VP(x)'2p(x)2a-2 dx= fRVP(x) 'VP(x)P(x)2 ' -2  dx 

= fR~p(x)2~-I d~r (25-2)/wlVP(x)12p(x)2a-2 dx 

= cap(e) - (2a-  2) f IVP(m)12P(x) 2a-2 dx. 
J R n 

The integration by parts above is easily justified for 5> 1 by examining the behavior of 

the potential and its gradient at infinity: 

cllxl2-~p(x)<~c2lxl 2-n, IVP(x)l=O(lxl 1-~) as ]xl--+oo. (2.25) 
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From these calculations it follows that 

(25-1)  fro, [VP(x)[2p(x)25-2 dz = cap(e). 

Combining this with (2.24) yields (2.23). The proof of Proposition 2.5 is complete. 

In the next lemma we demonstrate that  [[Vv[[g2(nn) is equivalent to the weighted 

norm IIP-~V(v#) l lL2m, , / .  
o 

LEMMA 2.6. Let 5>0 and let vELJ(R~) .  Then 

IlVvllg2mn) ~< fR Iv(vP~)(x)12 dx p(x)25 <~ (5+1)(45+1)IlVvlI~(Rn)- (2.26) 

In what follows only the lower estimate will be used, together with the fact that 
o 

IIP-~V(vP~)IIL~m,, ) <oc for every veL~(Rn) .  

Proof of Lemma 2.6. Without  loss of generality we may assume that v is real-valued. 

We first prove (2.26) for vGD(Rn) .  The general case will follow using an approximation 

argument. Clearly, 

fR iv(vpa)(x)l 2 dx f = Jn,~ [Vv(x) + 5v (x)VP(x)  P(x)-'I 2 dx p26 (~) 

= /R, lVv(x)le dx +~2 fmv(x)2 lVP(x)12p(x) 2 dx 

+ 2~/Row. Vp(x) 
V(X) 
p----~ dx. 

Integration by parts and the equation --AP=u~ (understood in the distributional sense) 

give 
v(x) 2/,v..Vp(.)~(x) dX f v(x) 2 dur dx+ f v(x) 2 ]VP(x)12 =J,~o P(x) Ji~ p(x)~ dx. 

Using this identity, we rewrite the preceding equation in the form 

/R ,V(vp~)(x),2 dx /R 'Vv(x)'2dx+5(5+l) /R nv(x)2 'VP(x) '2 p25(x) = . p ( / ) 2  dx 
(2.27) 

+ 5 / n  v(x)2 dur 
P ( x )  " 

The lower estimate in (2.26) is now obvious provided the last two terms on the right-hand 

side of the preceding equation are finite. They are estimated in the following proposition, 

which holds for Newtonian potentials of arbitrary (not necessarily equilibrium) positive 

measures. 
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PROPOSITION 2.7. Let co be a positive Borel measure on R n such that P ( x ) =  

I2oa(x) ~oc .  Then the following inequalities hold: 

and 

s v(x)2 IVP(x)l ~ n p(x )  2 dX<<41[VV[I2L2(R,,), V c D ( R n ) ,  (2.28) 

/RV(X) 2 dco(x) ~ ~ IlVvlI~(R~), v c ~ ( R n )  - (2.29) 

Remark 4. The constants 4 and 1 respectively in (2.28) and (2.29) are sharp. 

Indeed, if co is a point mass at m=0, it follows that  P(x)=c(n) lx]  2-n. Hence, (2.28) 

boils down to the classical Hardy inequality (1.8) with the best constant 4 / ( n - 2 )  2. To 

show that  the constant in (2.29) is sharp, it suffices to let co=u~ for a compact set e of 

positive capacity, so that  P ( x ) =  1 dco-a.e, and u~ (e)= cap(e), and minimize the right-hand 

side over all v>~l on e, where vED(Rn).  

Remark 5. An inequality more general than (2.29), for Riesz potentials and L v- 

norms (with nonlinear Wolff potential in place of P(x)),  but with a different constant, is 

proved in [Ve]. 

Proof of Proposition 2.7. Suppose vED(Rn).  Then A=suppv  is a compact set, 

and obviously infxeA P(x)>0.  Without loss of generality we may assume that  VPE 

L2,~oc(Rn), and hence the left-hand side of (2.28) is finite. (Otherwise we replace co by 

its convolution with a compactly supported mollifier wt=co*gt, and complete the proof 

by applying the estimates given below to P(m)=I2wt(x) ,  and then passing to the limit 

as t--+ oo.) 

Using integration by parts together with the equation - A P = c o  as above, and ap- 

plying the Schwarz inequality, we get 

f nV(X)  dx+[ v(x)  eco( ) 
P(X) 2 J R  n P ( x )  

=2 f I Vv(~).VP(x) v(x)-  
J R~ ~ ( x )  ax 

for all vED(Rn).  The preceding inequality obviously yields both (2.28) and (2.29). This 

completes the proof of Proposition 2.7. 
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We now complete the proof of Lemma 2.6. Combining (2.27) with (2.28) and (2.29) 

(with ur in place of a;), we arrive at the estimate 

[IVvl[~2(a~) ~< fR  [V(vPh)(x)[Z dx ,~ p(x)26 • (5+1)(45+1)]IVv[I22(Rn) 

for all vED(Rn) .  
o o 

To verify this inequality for arbitrary v in L21 (R'~), let v = l i m g _ ~  VN both in L~(R n) 

and dx-a.e, for VNE:D(Rn). Now put VN in place of v in (2.28) and let N--+oc. Using 
o 

Fatou's lemma we see that (2.28) holds for all vELI(R'~).  Hence 

fR IVP(x)I2 lira [VN(X)--v(x)[ 2 p(x)  2 dx=O, 
N - - - ~  n 

and consequently 

lim f IV(vuP~)(x)l 2 dx _ lim f VVN(X)+hVN(X) VP(x) 2 
N-~ JR" P2~(x) N-~ JR" ~(X) dx 

, V P ( x )  2 =fR'  Vv(x)+a,(x) dx 

dx 
2 p2 (x)" 

Thus, the proof of the general case is completed by putting VN in place of v in (2.26), 

and letting N-+oc .  The proof of Lemma 2.6 is complete. 

In the next proposition, we extend the equation (V, w ) = - ( F ,  Vw) to the case where 
o 

w=uv, where both u and v lie in L~(Rn), are locally bounded, and have a certain decay 

at infinity. 

PROPOSITION 2.8. Suppose that V6M(LI(R")---~ L~I(Rn)), and that ~=VA-1Ve 
o 

L2,1or n) is defined as in Lemma 2.3. Suppose that w=uv, where u, veL~(R~), and 

]u(x)]<C(l+]x]2) -~/2, [v(x)[<C(l+]x[2) -~/2, x e R  n, (2.30) 

for some/~>�89 Then F.V~ is summable, and 

(V, w} = - / R n F - V w ( x )  dx. (2.31) 

Proof of Proposition 2.8. Clearly, 

/R, 'F'V~(x)' dx <- ( fR 'F(x)'2'u(x)'2 dx)X/2 ( fRn'Vv(x)'2 dx)l/2 

1/2  N1/2 
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To show that  the right-hand side is finite, note that,  for every e>0 and R>~I, 

J xl IF(x) 12 dx <~ CR n-2+~, (2.32) 

by Lemma 2.3. It is easy to see that  the preceding estimate yields 

fR,]F(x)12(l+lxl2) - Z d x  < (2.33) O~ 

for 3 > � 8 9  Indeed, pick eE(0, 2 /3-n+2) ,  and estimate 

s lP(x)12(a+lxl=)-Zdx<~ fxt<llP(x)12dx+ [ IP(x)12lxl-2Zdx 
Jixl>l 

) <~ C 1-~- C 2 IF(x) 12 dx r - 2 r  dx 
J1 \Jlxl~<~ 

~< Cl + e2 r n-3-2~ dx < c~. 

From this and (2.30) it follows that  

/R 'F(x)[2[u(x)'2dx<oo, /Rn'F(x)[2lv(x)'2dx<oc. 

Thus F. V ~  is summable. 
o 

To prove (2.31), we first assume that  both u and v lie in L ~ ( R n ) ~ C ~ ( R n ) ,  and 

satisfy (2.30). Let ~TN(X) be a smooth cut-off function as in the proof of Lemma 2.3. Let 

UN=rINU and VN=~?NV. Then by (2.15'), 

(v, ~NVN> ---- -- [ P - V ( ~ ) ( x )  dx JR n 
- [  [ ~ R,f- w ~  (x) ~N (x) dx- ~ ~,,L WN(X) ~ ( x )  dx. 

Note that  0~<VN(X)<~I and ]VrlN(X)[<~C[x] -1, which gives 

<~ ClP(x)l(lu(x)[ Iv(~)l Ixl-~+ IVu(x)l Iv(x)l + IVv(x)I I~(x)l). 
o 

Since vEL~(R'~), it follows from Hardy's inequality (or directly from (2.30)) that  

[v(x)l [x[ - lcLe(R~) .  Applying (2.33) and the Schwarz inequality, we conclude that  

the right-hand side of the preceding inequality is summable. Thus (2.31) follows from 

the dominated convergence theorem in this case. 
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It remains to show that  the CX-restriction on u and v can be dropped. We set u.r = 
u*Or, v~=v*r  where r162 Here r n) is a C~ supported 

in B(0, 1) such that  0~<r 1. It is not difficult to verify that  u,- and v~ satisfy estimates 

(2.30). We use the Hardy-Lit t lewood maximal operator 

Mf(x)= sup 1 /B If(y)Idy' xER~" 

Obviously, ]ur(x)l=lu,~T(x)l<~Mu(x ). We can suppose without loss of generality that  

� 8 9  in (2.30). Notice that.  for 0 < ~ < n ,  

M(l+lxl2) -~/~ <~ C(l+lxl2) -~/2, x E R  n. 

Hence, 

l~(x)l-< M~(x).< C(~+lzt ~) e/~, zeU,~, 

where C does not depend on r, and a similar estimate holds for v. 

We will also need the estimate 

(2.34) 

]VuT(x)] = ]Vu*Or(x)] ~< M]Vul(x). (2.35) 

As was shown above, 

[ 
J R  '~ J R  

Moreover, by (2.34) and (2.35) we have 

[F" Vgtr(x) Or(x)[ + [F. VOr(x)gZr(X)I <~ C[F (x)[(l + [x[2)-~/2( M]Vu[(x)+ MiVvi(x) ). 
o 

Since u, vEL~(Rn), and M is a bounded operator on L2(R~), it follows that  M[Vu[ 

and M]Vv[ lie in L2(Rn).  Applying (2.33) again, we see that  the right-hand side of 

the preceding inequality is summable. Thus, letting r-+0,  and using the dominated 

convergence theorem, we obtain 

(V,w} = lim(V, urv,-} = -  f F.VO(x) dx, 
' r  ---~ 0 d R n 

which completes the proof of Proposition 2.8. 
o 

We now continue the proof of (2.21). Suppose that VEM(LI(Rn)-+L~I(Rn)), i.e., 

the inequality 

I < V ~ , v > l ~ l l Y l l  o ~ IlullL=l<pj,)llvll,%~<R~ ) 2VS(L~(W~)-~L~ (m~)) 
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o 

holds, where u, vEL~(Rn). 
L e t  (~---(r ..., (~n) be an arbitrary vector field in ~ ) @ C  n, and let 

w = A - l d i v  r  -I2 div 0, (2.36) 

so that  

j =  Vw+~', div ~'= O. 
o 

Note that  w E L~ (R n) n C ~ (R~), since 

w(x)=O(lxl l-n) and IVw(x)l=O(Izl -n) as Ixl~oo. (2.37) 

Now set 

~(~) (2 .38)  u(x)= P(x) ~ and v(X)= p(x)[, , 

where P(x) is the equilibrium potential of a compact set e C R n, and 1 < 26 < n / ( n -  2). 

By (2.22) and (2.25) we have 0 4 P ( x ) 4 1  for all x e a  n, and P(x)<cix] 2-n for Ix] 

large. Hence IP(x)I ~ < C ( 1 +  ]x]2) -~(n-2)/2. Since f l = 6 ( n - 2 )  > } (n -2 ) ,  it follows that  u 

satisfies (2.30). 

To verify that  (2.30) holds for v=wP -~, note that  infK P(x)>0 for every compact 

set K,  and hence by (2.25), P(x)-~EC(l+ix]2)~("-2)/2. Combining this estimate with 

(2.37) we conclude that  

Iv(x)l ~< c(I+IxI~)-z/L 
where f l = - 5 ( n - 2 ) + n - l >  �89 2). 

o 

By Proposition 2.5 and Lemma 2.6 both u and v lie in LI(R;~). Now applying 

Proposition 2.8 we obtain 

( W ,  v) = (V, w) = - . / , o F . V ~ ( / )  dx- 

Hence, 

fR, F" V~(x) dx ~ HVHM(~h(R~)__+L~X(R~)) IIWIIL=(R~) IlVvlIL=(Rn). 

By Lemma 2.6, 

IIVvllL(R,,) ~ s 2 dx f~ IVw(x)p dx P(x) 2~ -- n P(x) 2--------~ < oc. 

Applying this together with Proposition 2.5, we estimate 

m f  .V~(x) dx < C(5)IIVIIM(~(R~)_+L21(Rn))cap(e)l/2 
(2.39) 

•163 dx )1/2 
p ( x ) 2 ~  �9 

To complete the proof of Theorem 2.1, we need one more estimate which involves 

powers of equilibrium potentials. 
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PROPOSITION 2.9. Let w be defined by (2.36) with CEI)| n. Suppose that 1 < 2 5 <  

n/(n-2). Then 

fRnlVw(x)l 2 dx ~ C(n,~) I R P(x) 2~ P(x) 2~ [~ (x ) [2  dx (2.40) 

Proof of Proposition 2.9. Note that  Vw is related to q~ through the Riesz trans- 

forms Rj, j = l ,  . . . ,n ([Stl]): 

V w =  RjRkCk , j= l,...,n. 
" k = l  -- 

Since Rj are bounded operators on L2 (R ' ,  ~) with a weight 0 in the Muckenhoupt class 

A2(R n) ([CF], [St2]), we have 

IlVwlIL2(R",~) ~< ClIr176 

where the constant C depends only on the Muckenhoupt constant of the weight. 

Let ~(x)=P(x) -2~. It is easily seen that  infz~K P(x)>0 for every compact set K,  

and hence P(x)-2~ELl,loc(R'~). In our earlier work, it was proved that  P(x) 2~ is an A2- 

weight, provided l<25<n/(n-2). Moreover, its Muckenhoupt constant depends only 

on n and 5, but not on the compact set e. (See [MaV, p. 95, the proof of Lemma 2.1 in 

the case p=2].) Clearly, the same is true for p(x) = P ( x )  -25. This completes the proof of 

Proposition 2.9. 

We are now in a position to complete the proof of Theorem 2.2. Recall that  from 

(2.15') and Proposition 2.8 it follows that  

(V,w) 
j p , n  

Using (2.39) and Proposition 2.9 we obtain 

c e 1/2 Ir 2 IR,~'j(x) dx ~C(~)llWllM(~l(i~n)__~i~l(Rn)) ap( ) (/anP---~-~dx) 1/2 

for all r174 ~, and hence for all gcL2,1oc(Rn). 

Now pick R > 0  so that  ecB(O,R). Letting r in the preceding in- 

equality, we conclude that  

(/B(0,R)I F(x)I 2 P(X)25(x) dx)l/2~ O(n,(~)llVIIM(~(R~)_~Lgl(RD)cap(e)I/2. 
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Since P(x)~>l dx-a.e, on e (actually P ( x ) = l  on e \E ,  where E is a polar set, i.e., 

cap(E)=0) it follows that 

~ II~(x)l 2 dx <~ C(n, 532 IIVfl 2 cap(e 
. . . . . .  M(L~(Rn)__>L~I(R~))~ - ) 

Thus, (2.21) holds for every compact set e C R  n, and by Theorem 2.1 this yields (2.12). 

The proof of Theorem 2.2 is complete. 

We now prove an analogue of Theorem 2.2 formulated in terms of (_A)-U2 V, which 

is stated as Corollary 2 in the Introduction. 

THEOREM 2.10. Under the assumptions of Theorem 2.2, it follows that 

o 

Ve M(L~ (R n) -+ L 2 ' (R ' ) )  

if and only if ( - A ) - I / 2 V e  M(LI(R')--+ Le(R~)). 

Proof. By Theorem 2.2, VA-  1 VE L2,1oc (R '~) is well defined in terms of distributions. 

We now have to show that ( - A ) - I / 2 v  is well defined as well. 

Let M be the flmction space which consists of fEL2,1oc(R ~) such that 

/ n  'u(x)'2'f(x)12 dx <<. const / n  'Vu(x)'2 dx 

for every uEZ)(Rn). By Theorem 2.2, VA-1V lies in M |  n. It follows from Corol- 

lary 3.2 in [MaV] that the Riesz transforms Rj ( j = l ,  ..., n) are bounded operators 

on M.  Hence (-A)-I/2~7={Rj}I<j<~n is a bounded operator from Ad to M |  ~. Then 

( - A ) - I / 2 V  can be defined by 

( - A ) - I / 2 v :  ( - A ) - I / 2 v . V A - 1 V  

o 
as an element of 34. By Theorem 2.1, ( -A)- I /2VcM(L~(Rn)-~L2(Rn)) .  The proof of 

Theorem 2.10 is complete. 

The following corollary is immediate from Theorem 2.10. 

COROLLARY 2.11. Let V be a complex-valued distribution on R ~, n>>.3. Then the 
SehrSdinger operator H = - A + V ,  originally defined on 7p(Rn), can be extended to a 

o 

bounded operator from LI(R n) to L21(R ~) if and only if 

( - A ) - l / 2 V e  M(L~(R '*) --~ L2 (nn)). 

Equivalently, any one of the conditions (ii)-(vi) of Theorem 2.1 holds with ](-A)-l /2VI2 

in place of V. 
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3. A compac tnes s  cr i ter ion 
o 

In this section we give a compactness criterion for Ve M(L~ (R n)--+L~ -1 (R~)). Denote by 
o o 1 o 

M(L19 (R '~)-+ L~ (Rn)) the class of compact multiplication operators acting from L91 (R n) 

to L~ - I (R ' ) .  Obviously, 

o o o 

M ( L I ( R  '~) --+ L~'  (R")) C M(L~(R ' )  --~ L~'  (Rn)), 

where the latter class was characterized in the preceding section. 

THEOREM 3.1. Let VeD'(R~),  n~>3. Then VelI~ if and only 

if  

Y = div F, (3.1) 

o o 

 here a veetor f d d  s eh that F~eM(LI(R'~)-+L2(Rn)) ( i=l , . . . , n ) .  

Moreover, F can be represented in the form VA-1V,  as in Theorem 2.2. 

o 

Remark 1. The compactness of the multipliers Fi:L~(Rn)--~L2(Rn), where i=  

1, ..., n, is obviously equivalent to the compactness of the embedding 

LI(Rn) C L2(R n, l~12 dx). (3.2) 

Different characterizations of the compactness of such embeddings are known (see [AdH], 

[Ma3], [MaS S. 
o 

Proof. Let V be given by (3.1), and let u belong to the unit ball B in L~(Rn). Then 

Vu = div(uF)-I~.Vu. (3.3) 

The set {div(uF): u e B} is compact in L~ 1 (Rn) because the set {uF: u E B} is compact 

in L~I (Rn). The set {l~-Vu : uE13} is also compact in L~-I (R n) since the set {IVul : uEB} 
is bounded in L2(Rn), and the multiplier operators F~, being adjoint to Fi (i=1, ...,n), 

are compact from L2(R n) to L~I(Rn). This completes the proof of the sufficiency of 

(3.2). 
We now prove the necessity. Pick F E C ~ ( R + ) ,  where F ( t ) = l  for t~<l and F ( t )=0  

for t~>2. For x0ER n, a>0 and R>0,  define the cut-off functions 

X~,xo(x)=F(a-llm-mol) and ~R(x)= 1-F(R-11xl) .  
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(3.4) 

lira [15RfIIL  (R ) = 0. (3.5) 
R - + c x ~  

Proof of Lemma 3.2. Let us prove (3.4). The distribution f has the form f = d i v  r 

where r162  ..., Cn)eL2(R~) .  Hence, 

Clearly, 

This proves (3.4). Since (3.5) is derived in a similar way, the proof of Lemma 3.3 is 

complete. 

LEMMA 3.3. 

and 

o o 

If VEM(L1(Rn)--+L21(Rn)), then 

lim sup ]]Xa,xoVll~I(~I(Rn)__+L~I(R~))=O 
5-+0 xo6R~ 

(3.6) 

lim (3.7) 

Proof of Lemma 3.3. Fix c>0,  and pick a finite number of f a E L 2 1 ( R  ~) such that 

IIvU--AIIL I(Rn) < 
o 

for k = l ,  ..., N(z), and for all uEB, where B is the unit ball in LI(Rn) .  

Hardy's inequality 

sup II Xh,xo IIM(~.21 (Rn)__+L~_I ( R n ) ) ~  C < (NiL 
Xo6 R ~, 5>0 

Next, 

Hence, 

Note that by 

[[X xoll ~  n 1 n ~ U ~ H .~CC+u~.(~,Xo,]k[iL21(Rn). 
' M ( L 2 ( R  )-+L~ ( R ) )  
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By Lemma 3.2, this gives (3.6), and the proof of (3.7) is quite similar. The proof of 

Lemma 3.3 is complete. 

We can now complete the proof of the necessity part of Theorem 3.1. Suppose that  
o o 

VEM(L~(Rn)--+L21(Rn)). By Theorem 2.2, 

HV A-1 (~RV)IIM(~(R.~)~La(R~) ) ~ c H~RVIIMd~(Ro)_~L2VRo)). 
By the preceding estimate and (3.7), 

Hence we can assume without loss of generality that  V is compactly supported, e.g., 

snpp VC/~1(0). To show that  

�9 r 

P ---- VA - 1 V e  54(L~ (R n) --+ L2 (Rn)),  

consider a covering of the closed unit ball B1 (0) by open balls Bk (k= 1, ..., n) of radius 

x/~ 5 centered at the nodes xk of the lattice with mesh size & We introduce a partit ion 

of unity Ok subordinate to this covering and satisfying the estimate ]VOkl<<.c5 -1, so 

that  supp Ck C B~, where B~ is a ball of radius 2x/~5 concentric to Bk. Also, pick 

~kEC~(B;),  where ~gkCk=r a n d  IV@kl<C(~ -1. 
We have 

N(6) g(6) m(6) N(6) 

r a y =  ~ vzx(r Z v z x ( ~ y ) =  Z ~vzx(,~v)+ ~ [vzx,,~]O~v, 
k = l  k = l  k = l  k = l  

where [A, B ] = A B - B A  is the commutator  of the operators A and B. We estimate 

N(6) ]l 

r 1 6 2  ~ ~ <~ c (~ )  sup  
k = l  M ( L 2 ( R  )--+L2 (Rn))  I<~k<~N(eh)]]VA(r 

since the multiplicity of the covering t.)k=l ok depends only on n. The last supremum is 

bounded by c 11Ck VII A)(s 21 (R n)-, ns ~ (R,~)), which is made smaller than any e > 0 by choosing 

5=5(e) small enough. 

It remains to check that  each function ~k :=[VA,  Ck]r is a compact multiplier 
o 

from L~ (R n) to L2 (R n), k = 1, ..., n. Indeed, the kernel of the operator V--~ [VA, Ck] Ck Y 

is smooth, and hence, 

]~k(x)[ = ]([VA, eklCkV)(x)] <~ c a ( i +  ]xl) 1-n IlCkYllL;~tlV,) 
~< ck(l+ IxI) ~-~ IIVII;~d~(a~)__,L;~(an) ) l]~k II;~(l~ ) ~< Ck(l+lxl) a-n, 

where the constant Ca does not depend on x. Since n>2 ,  this means that  the multiplier 
o 

operator ~k: L I ( R n ) - + L 2 ( R  n) is compact. The proof of Theorem 3.1 is complete. 
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4. T h e  space  M(W~(Rn)---+W21(Rn)) 
In this section, we characterize the class of multipliers V: W~ (Rn)--+W2-I(R n) for n~> 1. 

Here W~I(R~)=W~(Rn) *, where W~(R '~) = H  1 is the classical Sobolev space of weakly 

differentiable functions uEL2(R ~) such that VuEL2(R n) with norm 

, l u l l w ~ ( R ~ )  = [/R(lu(x)12+l~u(x)[2)dx] 1/2. (4.1) 

Let J,~=(I-A) -~/2 (O<a<+cc)  denote the Bessel potential of order a. (Here I stands 

for the identity operator.) Every uEWI(R n) c a n  be represented in the form u=Jlg 
where 

cIlIglIL2(P- n) IlulIw~<R~) ~< ~2 IlgllL~<R~)" 
(See [St1].) 

Let S ' (R  n) denote the space of tempered distributions on R n. We say that VC 

S ' ( R  n) is 'a multiplier from W.J(R') to W2-1(R ~) if the sesquilinear form defined by 

(Vu, v):= (V, ~2v) is bounded on W~ (R '~) x W~ (Rn): 

I<Vu, v>l <~ cllulIw~(R~)IIvlIw~(R~), u, ve  S(Rn), (4.2) 

where the constant c is independent of u and v in Schwartz space S(Rn). As in the case 

of homogeneous spaces, the preceding inequality is equivalent to the boundedness of the 

corresponding quadratic form; i.e., it suffices to verify (4.2) for u=v. 
If (4.2) holds, then V defines a bounded multiplier operator from W~(R '~) to 

W2-1 (R~). (Originally, it is defined on S ( R ' ) ,  but by continuity is extended to W~ (Rn).) 

The corresponding class of multipliers is denoted by M(W 1 (R n)-+ W 2-1 (R ' ) ) .  

We observe that 1-A:WI(R~)-+W~I(R ~) is a bounded operator (see [St1]). 

Hence, VcM(W.~(R~)-+W~I(R~)) if and only if the operator ( I - A ) + V :  WI(Rn)-+ 

W2 -1 (R ~) ~is bounded. 

If V is a locally finite complex-valued measure on R ~, then (4.2) can be rewritten 

in the form 

fR ~(X) V(X) dV(x) <. ~IlulIw~(R.~)IIVlIw~(R~), (4.3) 
n 

where u, vES(R~). 

For positive measures V, this inequality is characterized as above (cf. Theorem 2.1), 

with Bessel potentials J1 in place of Riesz potentials I1, and with the Riesz capacity cap 

replaced by the Bessel capacity 

cap(e, HA.J)= inf{llull~(R~): u6 S(R~), u(x)/> 1 on e}. (4.4) 

For convenience, we state several equivalent characterizations below (see [KeS], [Ma3], 

[MaS], [MaV]). 
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THEOREM 4.1. Let V be a locally finite positive measure on R n. Then the following 

statements are equivalent: 

(i) The trace inequality 

fR 2 (4.5) ,, ]U(X)1 2 dV(x)  ~ c1 ]lull w21 ( R n )  

holds, where Cl does not depend on uCS(Rn) .  

(ii) For every compact set e c R  n, 

V(e) ~ c2 cap(e, W~), (4.6) 

where c2 does not depend on e. 

(iii) For every open ball B in R n, 

B( J1VB) 2 dx <~ c3V(B),  (4.7) 

where d V B = x B  dV, and c3 does not depend on B .  

(iv) The pointwise inequality 

d l (J1Y)2(x )  < c4JIV(X) < c~ a.e. (4.8) 

holds, where c4 does not depend on x E R  n. 

(v) For every compact set e C R  n, 

f ( J1V) 2 dx <~ c 2 cap(e, W~), (4.9) 

where c5 does not depend on e. 

(vi) For every dyadic cube Po in R n of sidelength l (Po)~ 1, 

E[  v(P) ]2 P -o IP "J IPI <CBV(Po), (4.1o) 

where the sum is taken over all dyadic cubes P contained in Po, and c6 does not depend 

O~ PO. 

The least constants cl, ..., c6 in the inequalities (4.5)-(4.10) are equivalent. 

Remark 1. It suffices to verify (4.6) and (4.9) for compact sets e C R "  such that 

d i a m e ~ l .  In this case, the capacity cap(e,W~) is equivalent to the Riesz capacity 

cap(e) provided n~3 .  

Remark 2. For n = l ,  the Bessel capacity of a single point set is positive, and hence 

cap(e, W1), for sets e such that  d i a m e ~ l ,  can be replaced by a constant independent 

of e. Thus, in this case (4.5) holds if and only if 

sup < (4.10) 
x E R  

We now characterize (4.3) in the general case of distributions V. 
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THEOREM 4.2. Let VC,S'(R~). Then V c M ( W ~ ( R n ) - + W f l ( R * ~ ) )  if and only if 

there exist a vector field F={F1, .. . ,F,~}cL2jo~(R ~) and FoEL2,1oc(R n) such that 

V = d i v F + F 0  (4.11) 

and 

~, I~(~)I ~ Ir~(x)l ~ dx <<. CII~II~I(R,), 

where C does not depend on uES(R~) .  

In (4.11), one can set 

i = 0, 1, ..., n, (4.12) 

~ = - v ( I - ~ ) - ~ v  and ro=(z-~)-'V. (4.13) 

Remark 3. It is easy to see that  in the sufficiency part of Theorem 4.2 the restriction 

on the "lower-order" term F0 in (4.12) can be relaxed. It is enough to assume that  

F0 E L Llo~ (R ~) is such that  

ZR I~(X)I2 Ir0(x)l dx ~ Cllull~vm(a~). (4.14) 

Proof of Theorem 4.2. Suppose that  V is represented in the form (4.11), and (4.12) 

holds. Then using integration by parts and the Schwarz inequality, we have 

l(v, ~v)l = 1(~, vw)+(~,  ~w)+(r0 ,  ~v)l 

where C is the constant in (4.11). This proves the "if" part of Theorem 4.2. 

To prove the "only if" part, define F={F1,  ...,F~} and F0 by (4.13). Then, for every 

j = 0 ,  1, ..., n, it follows that  Fj EL2jo~(Rn), and the following crude estimates hold: 

/~ Iry(x)l ~ dx <<. C(n, ~)R n-~+~ IIVII~,(wm(R~)_~w~ (4.15) l ( a n ) )  ~ 
R(~0) 

where R~>max{1, Ix01}. The proof uses the same argument as in the proof of Lemma 2.3 

in the homogeneous case. 

Now fix a compact set e C R  u such that  diam(e)~<l and cap(e,W~)>0. Denote 

by P(x)=P~(x)  the equilibrium potential of e which corresponds to the Bessel capacity 

(4.4). Letting 

u ( x ) =  P(x )  ~ and v (x )=  w(x) 
P(x)~ ' 
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where l<25<n/(n-2)  and wES(Rn) ,  we have 

I(v, w)[ ~< II v [I M(w~ (w~)-~ ~ - '  (g~)) fl Pa II wj (R~)II Vv II w~ (R~)- 

Calculations analogous to those of Propositions 2.5-2.9 yield 

IIP~IIw,(R,~) ~< c(n, 5)cap(e, w l )  1/2 

and 

IlVVflw~(R.) <-- C(n,~)[s dx ]1/2 
p(x)2~j �9 

Combining the preceding inequalities, we obtain 

[<v, w>l ~< C(n, ~)IIVIIM(w~(Rn)~W,(w~)) cap(e, W~) U2 

x [/R (lw(x)12 +lVw(x),2) ~ ] l / 2 .  

Set w =  ( l - A )  - l d i v  0, where g is an arbitrary vector field with components in 8(R~) .  

Then the preceding estimate can be restated in the form 

[(F,r <<. C(n, 5)cap(e,W~) 1/2 .(Iw(x)[2+[Vw(xD[2) p-~-~ (4.16) 

Unlike in the homogeneous case, for Bessel potentials, P(x)-2~ is not a Muckenhoupt 

weight. To proceed, we will need a localized version of the estimates used in w 

LEMMA 4.3. Let P(x)=P~(x) be the equilibrium potential of a compact set e of 
positive Bessel capacity, and such that eCB, where B=Bx(xo) is a ball of radius 1 
centered at x 0 c R  ~. Let w = ( I - A ) - I V r  where ~bEC~(R n) and s u p p r  Suppose 
that l <25<n/(n-2).  Then 

s 2) ~<~C(n,5)s [r [2 P(x) 25"dx (4.17) 

Proof. Let u=u~ be the equilibrium measure of the compact set e in the sense of 

Bessel capacities, so that  P(x)=J2,(x) (see [AdH], [Ma3]). Suppose first that  n~>3. 

Since both supp u and supp g) are contained in B, it follows that  

P(x) = g2.(x) • h . ( x )  = e(~) L d.(y) [x_y[,~_2, xE2B, (4.18) 

where 2B is a concentric ball of radius 2. 
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We set 6(x)=I2~(x) -2~. Then p(x)~P(x) -2~ oi1 2B, and p(x) is an A2-weight (see 

the proof of Proposition 2.8). Note that  Vw=V2(I-A)-I~, where 

V2(I-A)-I={-RyRkA(I-A)-I},  j,k=l,...,n. 

Here Rj, j = l ,  ..., n, are the Riesz transforms which are bounded operators on L2(R n, p) 
(see [St2]). 

Since A(I-A)-~=I--(I-A) -1, we have to show that  J 2 = ( I - A ) - I  is a bounded 

operator on L2(R '~, 6), and its norm is bounded by a constant which depends only on 

the Muckenhoupt constant of t). It is not difficult to see that  the same is true for more 

general operators Ja = ( I -  A) -~/2, where a > 0. 

Indeed, denote by G~(x) the kernel of the Bessel potential Y~. Then clearly, 

IJ~f(x)l=lG~*f(x)[<~c(n,a)Mf(x) ~ 2 kn max aa ( t ) ,  
k=-o~ 2k~ltl<~2k+l 

where Mr(x) is the Hardy-Lit t lewood maximal function defined by 

Mf(x)=c(n) sup r - S f  [f(y)ldy. 
0<r<oc JB~(x) 

Standard estimates of Bessel kernels G~(x) (see, e.g., [AdH, Sections 1.2.4 and 1.2.5]) 

show that 

E 2kn max G~(t)<oc 
k=--ec 2k~<ltl~2k+l 

for every a > 0 .  Since M is bounded on L2(R n, P) (see [St2]), it follows that  

II~IIIL2(W~,o) <~ CIIf[IL2(Rn, e), (4.19) 

where C depends only on n, a and the Muckenhoupt constant of 6. 

Applying (4.19) with a=2, we get 

p ( x ) ~  <. C(n,d)  ]r C(n,(f) jr dx 
,~ P(x)  2~ " 

Similarly, 

Iw(x)I = I V ( I - - / k ) - l r  <~ CJli~Zl(x), 

and by (4.19) with a=l, 

f dx f 
i (x)l 2 .< c I l(x/) 2 v(x)d  

p ( x )  2~" 
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Now suppose xE(2B) ~. Then, by standard estimates of the Bessel kernel as ]xl--+ec 

([AdH, Sections 1.2.4 and 1.2.5]), 

IVw(x)l = Iv2J2r <~ co01xl(~-'~ [r dy 
JB 

and 

Iw(x)l ~< c(~)lVJ2r <<. Clxl-~/2e-I~l L lr dy. 

Also, for zc(2B)  ~ 

P(x) = J2v(x) • ]x](1-'O/2 e-I~:lt,(e), 

where ~(e)=cap(e, W 1) >0. 

Now pick 5 so that l<25<min[2, n/(n-2)]. Using the above estimates of w(x), 
Vw(x) and P(x), and the inequality 25<2, we get 

~2 (Iw(x)l~ +lVw(x)'2) dx (/B )~ B)r ~ ~C(n,5)~(e)  -26 Ir �9 

By the Schwarz inequality, 

2 dy 
/B P(x)25 dx. (/S ig'(y)l dY) <~ /B i~(Y)12 p(y)2~ 

Applying Minkowski's integral inequality and the fact that 25 <n/(n-2), we obtain 

s .(x)" s 
Thus, 

~2 (l~(x)P2+lVw(x)12) dx s dx m" P ~  ~< C(n,5) ~ I~(x)12 P(x)~" 
This completes the proof of (4.17) for n~3.  The cases n = l ,  2 are treated in a similar 

way with obvious modifications. The proof of Lemma 4.3 is complete. 

Let w = ( I - A ) - l d i v ~ ,  where ~={~k}E$(Rn).  Applying Lemma 4.3 with @=~k, 

k= l ,  ...,n, we obtain 

/R dx Jan '2dXp(x) 25" (l~(x)12+lVw(x)12)p---~ ..< c(n,  5) I~(x) 

This and (4.16) yield 

](r,(~}] ~C(Tt, 5)cap(e,W 1)1/2 [ ~  I~(X)I2 p ( x ) 2 5 j  . 
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By duality, the preceding inequality is equivalent to 

/p., iF(x)12P(x) 2~ dx <~ C(n, (5)IIVlleM(W~(an)_~wzi(p,n))cap(e, W~). 

Since P(x)~> 1 a.e. on e, we obtain the desired estimate 

f I~(x)l 2 dx < C(n, 6)II vll~(~l(~).~2 ,(~))cap(~, w~) 

The corresponding inequality with F0 in place of F is verified in a similar way. By 

Theorem 4.1 these inequalities are equivalent to (4.12). The proof of Theorem 4.2 is 

complete. 

Finally, we state a compactness criterion in the case of the space W I ( R  n) analogous 

to that  of Theorem 3.1. 

o 

THEOREM 4.4. Let VES ' (Rn) ,  n>~l. Then VeM(W~(Rn)- -+W.~I(R~))  if  and 

only if 

V = div ]~ + F0, 

where F=(F1, . . . ,F~) ,  and Fie~I(WI(Rn)- -+L2(Rn))  ( i=0, . . . ,n) .  Moreover, one can 

set F = - V ( I - A ) - I V  and F 0 = ( I - A ) - I v ,  as in Theorem 4.2. 

The proof of Theorem 4.4 requires only minor modifications outlined in the proof of 

Theorem 4.2, and is omitted here. 

5. The space M(L~(~)--+L~I(~t))  

Using dilation and the description of the space M ( W 1 ( R n ) - + W 2 1 ( R n ) )  given in the 

preceding section, we arrive at the following auxiliary statement. 

COROLLARY 5.1. Let V E M ( W ~ ( R n ) - + W 2 1 ( R n ) ) .  Suppose that there exists a 

number d>0  such that 

I<V, M2>I < e(llVnll~2(an)+ d -2 Ilull~2(Ro)), (5.1) 

where e does not depend on u c C ~ ( R n ) .  Then V can be represented as 

V =  d i v F + d - l r 0 ,  (5.2) 
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where F0 and ]~=(rl,  ...,Cn) are in M(W.J(R~)-+L2(R'~)), and 

R ICiu(x)12 dx <<. C(IIVUH2L~(R.) +d-2HuII2L~(R.)) (5.3) 
n 

for all i=0, 1, ..., n. 

Now let ~ be an open set in R" such that, for all nED(R), Hardy's inequality holds: 

dx const f~ IVu(x)[2 dx. (5.4) f In(x)I doa ( x )------------ 2 

Here do~(x)=dist(x, OR). It is well-known that (5.4) holds for a wide class of domains 

including those with Lipschitz and NTA boundaries. (See [An], [D2], [ae], [MMP] for 

a discussion of Hardy's inequality and related questions, including best constants, on 
domains ~ in Rn.) 

Let Qj be the cubes with sidelength dj forming Whitney's covering of ~ (see [St1, 

Section 5.1]). Denote by Q~ the open cube obtained from Q by dilation with coeffi- 
9 . cient g dj. The cubes Qj form an open covering of ~2 of finite multiplicity which depends 

only on n. By {~/y} (~IjEC~C(Q~)) we denote a smooth partition of unity subordinate to 

the covering {Qj} and such that I V~?j(x)l<~cd~ -1. In the proof of the following theorem 

we also will need the functions Q E C~  (Q~) such that 

Q(x)~lj(x)=~j(x) and IVQ(x)I <.cd~ -1. (5.5) 

o 

Now we give a characterization of the space M(L~(~2)-+L~I(~)). 

THEOREM 5.2. (i) Let doa(x)=dist(x, OR), and let 

V= div F+ dg~lF0, 

where and F~M(L~(a)--+L2(a))  for i=O, 1,...,n. Suppose that (5.4) 
o 

holds. Then VeM(L~(R)-+L~I(~) )  and 

e IIr llMdl(a)_ L (a)). (5.6) 

(ii) Conversely, if V e M ( L I ( a ) - ~ L ~ ( ~ ) ) ,  then there exist F=(r~ , . . . , r~)  and ro 

such that FieM(L{(~)-+L2(~))  for i=0, 1, ..., n, and V=divF+do~F0.  Moreover, 

O ~ i ~ n  
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Proof. The proof of statement (i) is straightforward (see, e.g., the proof of The- 

orem 4.2 above). To prove (ii), note that, for all u, vEC~(f~),  and the functions ~j 

satisfying the properties (5.5), we have 

I < V ~j, uv> l = I <V~j, Q u Q v>l ~ IIV ~j IIM(L~(a)_+L~<~))(IlVull L=<R~)+ dj -1 IlulIL=(R~)) 

x (IIVVlIL~_(R,)+d~IlIvlIL~(R@. 

Hence by Corollary 5.1, 

- r 2  (5.s) Vr b =divp(J)+dj  t , 

where F(J) and F(j ) satisfy the inequality 

U 2 d - 2  u 2 s Itg~(a~)+ j II IIL=(a~)) (5.9) 

for all i=0,  1, ...,n. Multiplying (5.8) by Q we obtain 

Vr b = div(Q F(J)) + dj -1F~ j ) -  F(J) VQ. 

We set 

= ~d F (j) F(J)v~ r = E Q  r(j)  and F0 E ~  J 0 - J," 
J J 

If uEC~(f t ) ,  then 

2 

where x.3EC~ (Qj)* and x j = l  on supp Q. By (5.9), the last sum does not exceed 

sup IIV~jll~ J ( ;1=( ~ ) -+L ~(1 a )) ~ fa (Iv(xju)12+d;21xjul2)dx 
J 

By Hardy's inequality (5.4), this is bounded by 

cllVll~(~g(a)_~L~(a)) ~ IVul 2 dx. 
The proof of Theorem 5.2 is complete. 

Remark. In Theorem 5.2, one can replace 

IIr~llM(Lg(a)_~L=(a)) 
O~<i~<n 

with the equivalent norm 

II(IFl+lr01)llL=<~/ 
sup sup (5.10) o 

j ocq, (cap(e,L~(Q;)))l/2 
o 

In the case n>2 ,  one can use Wiener's capacity in place of cap(. 1 , ,L2(Qj))  (see [MaS, 
Section 5.7.2]). 

o o 

We now characterize the class of compact multipliers, M(L~(~)--+L21(~)). We use 

the same notation as in the previous section. 
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THEOREM 5.3. Under the assumptions of Theorem 5.2, a distribution V is in 
�9 o 

M(L~(f~)-+L~I(f~)) if and only if 

V =  div F + d o l F o ,  (5.11) 

o o 

where FieM(L~(a)--+L2(f~)) for i=O, 1, ...,n. 

Proof. Suppose that  V is given by (5.11). Let u be an arbitrary function in the unit 
o 

ball B of L21(f~). Then 

Vu = d iv (uF) -  F + -1 don uF0. 

The set {div(uF):uCB} is compact in L~-l(ft) since the set {uF: uEB} is compact in 

L2 (ft). The sets {Vu. F : u  E B} and {do 1 F0 u :u  C B} are also compact in L~-1 (ft) since the 

sets {IVul : u ~ t~} and {dof ~ u:u  E B} are bounded in L2 (a), and the multiplier operators 

Fi:L2(f~)--+L~-l(f~), i=l , . . . ,n ,  are compact, being adjoint to r~. This completes the 

proof of the "if" part of Theorem 5.3. 

To prove the "only if'' part let us assume that the origin O E R n \ f t .  Then, for any 

xEft ,  it follows that  Ixl)don(x),  and the inequality 

lu(x)l  dx IW(x)I 2 dx (5.12) 
Ixl 2 

follows from (5.4). 

As in the previous section, we introduce the cut-off functions 

x~(x) = F(don/6) 

and 

~R(z) = l - f ( I x i / R ) ,  

where F c C ~ ( R + )  so that F ( t ) = l  for t~<l and F ( t ) = 0  for t~>2. 

The proofs of the following two lemmas are similar to those of Lemma 3.2 and 

Lemma 3.3. 

LEMMA 5.4. If  fEL~I(f~),  then 

lim ,, - , , ] [ x ~ f i i L 2 1 ( ~  ) : 0 
5 - + 0  

(5.13) 

and 

lim ]]~RfiiLT,(n) = 0. (5.14) 
R - ~ o o  



and 
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o o 

LEMMA 5.5. If VeM(L~(~)--+L~I(s then 

lim 1 1 ~ 6 v I I  o o 1 1 = 0  
6 - + 0  M(L2(~)--+L ~ (~)) 
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(5.15) 

~ II~RVII~d~(~)_~L~I(~)) = O. (5.16) 

We now complete the proof of the "only if" part of Theorem 5.3. Write V in the 

form 

V= x6V +~RV +(1-- X6--~R) V. 

By Theorem 5.2 (ii), there exist F6 and F (~ such that 

x6 V = div ]~6 + d~ 1 F~ ~ 

where 

IIr~ i) IJMdl(~)-4L2(a) ) ~< CIIx6VllMd~(a)_§ 
O~i~n 

Analogously, 

(RV = div I~(R ) + Ixl-1 F(o) (R), 

where 

O~i~n 

Hence, by Lemma 5.5, 

6 - 4 0  
0~<~<n 

and 

lira E Ilrl~)llM(;l(a)-4L~(a)) --0" 
R - - + ~  

O~i~n 

Now we estimate the multiplier 

V6,R := ( 1 - x 6 - ~ R )  V. 

o o 

Note that V6,REM(LI(~)-+L~I(~)). Since its support is separated from c~ and from 0f~, 

it follows that 
o 

V6,R e M (WI (R n) --+ W.21 (Rn)). 

By Theorem 4.4, 

V6,R = div F6,R +~6,R, (5.17) 

where each component of F6, R, together with ~6,R, are in IV/(W~ (R n)-+L2 (Rn)). 



300 V.G. MAZ'YA AND I.E. VERBITSKY 

Multiplying, if necessary, both  sides of (5.17) by a cut-off function as before, we may 

assume that  the supports  of IF6,RI and ~6.n are in ft, and are both  separated from ec, and 
o o 

from 0fL Hence, the components of F6.R, as well as doatP6,n, are in M(L~(Ft)-+L2(~)).  

Finally, 

where 

and 

V = div 1~ + do~ F (~ 

P = F6 +F(n) +F6.R 

i,(O) (0) -1  (0) (0) = F  6 +[x[ doaF(n)+donP6, n. 

~ x - l d  I "(0) It  remains to note that  F6, F(R), F~ ~ and on (R) are small in the corresponding 

operator norms, while l~6,R and p(o) --6.R are compact.  This completes the proof of Theo- 

rem 5.3. 
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