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1. Introduction

In this paper we consider perturbations

G +qzs—2|q)*g—¢lg)'g=0,

(1.1)
g(z,t=0)=qo(x) >0 as|zjo> o0
of the defocusing nonlinear Schrodinger (NLS) equation
19t + Gz —2|q 2(1 =0,
, a »

q(z,t=0)=go(z) =0 as |z|— cc.

Here >0 and [>2. The particular form of the perturbation |g|'q in (1.1) is not special,
and it will be clear to the reader that the analysis goes through for any perturbation
of the form eA’(|q|?)q, as long as A: R, —R. is sufficiently smooth, A’(s)>0 and A(s)

A more detailed, extended version of this paper is posted on http://www.ml.kva.se/publications/
acta/webarticles/deift. Throughout this paper we refer to the web version as [DZW].
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vanishes sufficiently fast as s]0. (For further discussion, see §2 and Remark 3.29 below.
See also [DZW, §3].)

As is well known, the NLS equation is completely integrable, and we view the prob-
lem at hand as an example of the perturbation theory of infinite-dimensional integrable
systems on the line. For systems of type (1.1), (1.2) in the spatially periodic case, reso-
nances, or equivalently, small divisors, play a decisive role. Using KAM-type methods,
various authors (see, in particular, [CtW], [Kul], [Ku2], and also [Cr]) have shown that,
-under perturbation, the behavior of the unperturbed system persists on certain invariant
tori which have a Cantor-like structure: on the remainder of the phase space, the KAM
methods give no information. For systems such as (1.1), (1.2} on the line, however, the
situation is very different. As time goes on, solutions of these systems disperse in space
and the effect of resonances/small divisors is strongly muted, and indeed, one of the
main results of our analysis is that, under perturbation, the behavior of the NLS equa-
tion (1.2) persists on open sets in phase space (see Theorems 1.29, 1.30, 1.32, 1.34, and
the corollary to Theorem 1.29, below): no excisions on the complement of a Cantor-like
set are necessary.

In order to understand the long-time behavior of solutions to (1.1} or (1.2), it is
useful to consider the scattering theory of solutions of the equation

iQt+sz“25|Q|IQ=O, 6>0, l>2,

(1.3)
q(z,t=0)=go(z) >0 as |z| > o0
with respect to the free Schrodinger equation
1q;+qz: =0,
¢ (1.4)

g(z,t=0)=go(x) >0 as |z|—oco.

Many people have worked on the scattering theory of such equations, beginning with
the seminal papers of Ginibre and Velo |[GV1], [GV2] and Strauss [St] (see [O] for a
(relatively) recent survey). Suppose that in a region |z/t|<M, a solution q(z,t) of (1.3)
behaves as t—co like a solution of the free equation. Then

g(z, 1) ~ 2B /)T, e/t < M, (1.5)

for some function 8(-). In particular, |g(z,t)|'~1/t!/? and substituting this relation
into (1.3) we obtain an equation of the form ig; + ¢z, — (const /t/2)q~0. If [>2, then the
interaction is short range, the assumption (1.5) is consistent, and solutions of (1.3) indeed
look asymptotically like solutions of the free equation (1.4). More precisely, in [MKS], the
definitive paper of the genre, the authors have proved the following result. Let Ut(l)(qo)
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and U[(go) denote the solutions of (1.3) and (1.4) with initial data g respectively, and
let I be any fixed number greater than 2. Then for all initial data in the unit ball of a
weighted Sobolev space, and for 0<e<e(l) sufficiently small, the wave operator

W (a0) = Jlim UZ,2U" (qo) (1.6)
exists and is one-to-one onto an open ball. Furthermore W;" conjugates the flows,
UFow =w;rou®. (1.7)

The case [=2, corresponding to the NLS equation (set e=1 by scaling), is, however,
critical. The potential term |g|2~1/t is now long range, leading to a logt phase shift
in the asymptotic form of the solution (1.5). And indeed one can show (see [ZaM],
[DIZ], [DZ2]) that solutions of the NLS equation, with initial data that decay sufficiently
rapidly and are sufficiently smooth, have asymptotics as t— oo of the form
g(a,t) = t”1/2a(m/2t) ia?/at—iv(z/2t)log2t | ) (l_otg_t) , (1.8)

where the functions & and v can be computed explicitly in terms of the initial data g
(see (1.26) et seq. below). In particular, the wave operator W, , cannot exist. The above
asymptotic form for NLS was first obtained in [ZaM], but without the error estimate.

In the language of field theory, the phase shift v(z/2t)log2t in (1.8) plays the role
of a counterterm needed to renormalize solutions of the NLS equation to solutions of the
free equation (1.4). A precise and explicit form of renormalization theory for solutions
of the NLS equation can be obtained by using the familiar scattering theory/inverse
scattering theory for the ZS—AKNS system [ZaS], [AKNS] associated to NLS,

8xw=U(m,z)1/J:<izo+<g g)) ¥, a:(l(/)2 _10/2). (1.9)

As is well known, the NLS equation is equivalent to an isospectral deformation of the

ofomr(3 1)

As described in §2 below, for each z€ C\R, one constructs solutions ¢(z,z) of (1.9) of
the type considered in [BC] with the properties: m(z, 2)=%(z, 2)e~*** is bounded in z
and tends to I, the identity matrix, as x——o0c. For each fixed z, the (2x 2)-matrix
function m(z, z) solves the following Riemann-Hilbert problem (RHP) in 2:

operator
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(1.10) m(z,2) is analytic in C\R, and m,(z,2)=m_(z, 2)v.(2), z€R, where
my(x, z)=lim g m(x, z£ic) and

vz(z)=< 1-Ir(2)F ())

—r(z)e"*® 1
for some function r=r(z) called the reflection coefficient of g, and lim,_, ., m(zx, z)=1I.

The sense in which the limits in RHP’s of type (1.10) are achieved will be made pre-
cise in §2. The reflection coefficient satisfies the important a priori bound ||| peo (4z) <1.

If we expand out the limit for m(z, 2) as z— o0,

m(x,z):1+m—1@+0(l), (1.11)

z 22

then we obtain an expression for g,
g(z) = —i(m1(2))12. (1.12)

The direct scattering map R is obtained by mapping g—r as follows: g—m(z,z)=
m(z, z;q)—v.(2)>7=R(q). Given r, the inverse scattering map R~! is obtained by
solving the RHP (1.10) and mapping to ¢q via (1.12) as follows: r—RHP—m(z,z)=
m(z, z;r)~my(z)—g=R71(r). As discussed in §2, the basic fact is that the scattering
map g—r="R(q) is bijective for ¢ and r in suitable spaces. Also, and this is the truly
remarkable discovery in the subject [ZaS], the map R linearizes the NLS equation. More
precisely, if g(¢) solves the NLS equation (1.2}, then r(-;q(t)}=R(g(t)) evolves according
to a simple multiplier,

r(zq(t)) =™ tr(z,t=0). (1.13)

Alternatively, if we take the inverse Fourier transform 7(¢)=(1/v2m ) [ €"**r(z; ¢(t)) dz,
then () solves the free Schrodinger equation

§F T = 0. (1.14)

Said differently, the map
g—=T(g)=F >R(q) (1.15)

renormalizes solutions of NLS to solutions of the free Schrodinger equation. Furthermore,

we clearly have the intertwining relation

ToUNS =Uf-T, (1.16)
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where UN5(go) denotes the solution of NLS and UF(gq) denotes the solution of the free
equation as before. Thus we see that also in the case [=2, it is possible to conjugate
solutions of the nonlinear equation (1.3) to solutions of the free Schrodinger equation,
but now the conjugating map is not given by an (unmodified) wave operator W, as in
the case [>2. In the language of field theory, the map T renormalizes solutions of NLS
to solutions of the free Schrédinger equation.

In a similar way, we do not expect that solutions of the perturbed NLS equation (1.1)
should behave asymptotically like solutions of the free equation. Rather we expect that
(1.1} is a “short-range” perturbation of (1.2) and that solutions of (1.1) should behave
as t—oo like solutions of the NLS equation, or more precisely, we expect that the wave
operator

Wt(g) = lim UNLS-Uf(q) (1.17)
t—o0

exists, where U7 (¢q) denotes the solution of (1.1) with initial data q. Then W intertwines
Ug and UM, and T.=T<W" renormalizes solutions of (1.1) to solutions of the free
equation

T.oUf =UF-TL. (1.18)

The key idea in this paper, motivated by (1.13) and by the expectation that (1.1) is
a short-range perturbation of (1.2), is to use the map g—r=7R(q) as a change of variables
for (1.1). Suppose ¢(t), >0, solves (1.1) with ¢(t=0)=go. Then as we show in §2, under
the change of variables q(t)—7(2;q(t))=R(q(t))(z), equation (1.1) takes the form

6tr:—iz2r+€/ e~V (mIlGm_ )12 dy, 7|i=0=R(q), (1.19)
where 0
. q
G=cto=—iig( ° 1), (1.20)

and m_e***° corresponds to the boundary value of the Beals—Coifman-type solution
defined above. Emphasizing the dependence on z, z and q(¢), the equation becomes

Ar(z;q(t)) = —iZQT(Z;(I(t))+€/ e (mZ1(y, 2,4(t)) Gla(y, 1)) m-(y, 2:¢(t)) )12 dy,

- (1.21)
where 7(-;¢(t))|t=0=R(qo). This equation was first obtained, essentially in the same
form, by Kaup and Newell [K1], [KN]. Observe that for e=0, (1.21) reduces, after in-
tegration, to (1.13), as it should. In the perturbative situation, € >0, the really critical
aspect of (1.21) is that the nonlinear part of the equation scales like |g|'*! as |g|—0. This
means that the inverse Fourier transform #(z, t)=(1/v2m ) [*_€'*#r(z; q(t)) dz solves an
equation of the form

i1+ — () =0, (1.22)
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where the (nonlocal) perturbation eH(7) scales like |#|'*1 as |#|—0. In other words, slow
decaying terms like |7|%# are removed under the map ¢—r—#, and as in (1.3), we may
expect that solutions of (1.22) will converge to solutions of the free equation 747, =0
as t—o00. In other words for solutions r(z; ¢(t)) of (1.21), we expect that as t— o0

r(z:q(t)) ~ e tro(2) (1.23)
for some function 7 (z). But then
R(UNFSoUE () =72 COR(UE (q)) = €% 'r(2; () = Too @S t— 00,

Le., WH{(g)=lims_, o UNISoUZ (q) exists (and equals R™!(rx)).

The body of this paper is concerned with analyzing (1.21) and ensuring that the
above program indeed goes through. Although the natural condition for the theory is
[>2 as in [MKS], for technical reasons we will need [ > -g— From the preceding calculations
it is clear that we should remove the oscillation from 7(z;¢(t)) and consider

r(t)=r(z,t) Ee”ztr(z;q(t)) (1.24)

directly instead of r(z;¢(t)). At the technical level (see in particular Theorem 4.16 and
the discussion in §4 leading up to this result) this reduces to controlling the solutions m
of RHP’s of type (1.10) with jump matrices of the form

—|r(z i(zz—tz?)
Ur,t(2) = (_ =P r(z)e ) (1.25)

Tz)e—i(zz—tzz) 1

uniformly as |z|,f—00. Such oscillatory RHP’s can be analyzed by the nonlinear steep-
est descent method introduced by the authors in [DZ1] (see also [DIZ] and [DZ2]). This
method has now been extended by many authors to a wide variety of problems in math-
ematics and mathematical physics (see, for example, the recent summary in [DKMVZ]).
In [DZ1] (and also [DIZ], [DZ2]), the potential ¢, and hence the reflection coefficient r,
lies in Schwartz space. A considerable complication in the present paper comes from the
fact that now we can only assume that r has a finite amount of smoothness and decay.
Also, as is well known, the theory for the RHP (1.10) is simplest in L?. However, it is
clear from (1.21), that if we want to consider solutions 7(2;¢g(t)) in an L?(dz)-space, we
need to control m_(y, z;q(t)), or more precisely m_(y, z;q(t))—1I, in an L*(dz)-space.
In [DZ5], and also in [DZW, §4], we develop the LP-theory of the RHP (1.10), and a
summary of the results relevant to this paper is given in §2(c) below. These LP-results
are of independent interest and require the introduction of several new techniques in

Riemann-Hilbert theory.
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Consider the weighted Sobolev space H*I={f:f,0kf,27fe L3(R)}, k,7>0, with
norm || fllzes =(IfI7:+185f 7= +I127fI32)" 2. Let Hy’=HMIn{||f|z=<1}, k21,
7>20. As noted in §2, a basic result of Zhou [Z1] is that R is bi-Lipschitz from H*J
onto Hf’k for k>0, j=1. This result illustrates, in particular, the well-known Fourier-
like character of the scattering map in a precise sense. We will consider solutions of (1.1),
(1.2) only in H!, but it will be clear to the reader that our method goes through in
H** for any k>1 commensurate with the smoothness of the perturbation e|g|'q in (1.1).
Throughout the paper we assume that £>0 to ensure that (1.1) has global solutions for
all initial data (see Theorem 2.31). For definiteness, we note by the above that R maps
HY! onto Hll’l.

The asymptotic form of solutions ¢(z,t) of NLS given in (1.8) above remains true
in H%!, but with a weaker error estimate. More precisely (see [DZ4] or [DZW, Appen-
dix III]), suppose that g(z,t) solves (1.2) with initial data q(x,t=0)=gqo(x) in H'!, then
r=R(q)€H,"', and for some 0<x<}, ast—oo,

q(z,t) = qas(x, ) + Ot~ 1/242)), (1.26)
where

Gas(z, 1) = t-l/?a(zo)eimi’/4t—iu(zo)log 2t7
(20) L log(1—|r(20)}?)
Vizg)=—— —lr
0 27 g Z)1);

|o(20)[* = §v(0),

arga(zg) = % /ZO log(z0—2) d(log(1—|r(2)|*))+ 17 +arg '(iv(zo)) + arg r(zo)-

Here T' is the gamma-function, zo=1/2¢ is the stationary phase point, 8,|,, (zz—%22)=0,
and the error term O(t~(1/2+%)) is uniform for all z€R. The proof of (1.26) in H'
requires finer control of oscillatory factors than is needed in [DIZ], [DZ2], where the data
has higher orders of smoothness and decay.

Our results are the following. Set

Bl ={qe H"':W*(qg) = lim UNESoUE (q) exists in H1}. (1.27)
oo

Observe that if ¢€ B, then Uy (¢) €Bf and WoUg (q) =lim,— 00 UF WS UNGS )0 Us, (@)=
UNLSoW+(q), ie., WHoUs =UNLSo W+,
For any >0, 0<p<1 set

Byo=R™HreHy g <, |Irl| = < o}. (1.28)

Fixl>%.



170 P. DEIFT AND X. ZHOU

THEOREM 1.29. (i) For each >0, B is a nonempty, open, connected set in H'*
and W+ is Lipschitz from Bf —HY'. Moreover Uf(B)CB; for all teR.

(i) Given any n>0, 0<p<1, there erists eg=co(n, ) such that B, ,C B} for all
0<e<eq. In particular, |J, o Bf=H".

(iii) For qeB?, for some x>0, as t— o0,

1 1
UFS O @l ~ e 1070~V 0 @0 =0 (i )

The following result (cf. (1.8) above) is an immediate consequence of (1.26) and
Theorem 1.29 (iii).

COROLLARY (to Theorem 1.29). For qeB!, as t— oo,
UE(q) = qas(, t)+O(tY/27%)  for some »>0,
where
Qas(x, t) - t—l/Qa(ZO)eix2/4t—iu(z0)log 2157
1 2
v(zp) = ~5 log(1—|ry (20)|%),

|a(Z())|2 = %1/(250),

arga(z0) == [ log(a2) d{log(1~Ir. (2)/%)) + 4 +arg D(iv(z0)) + arg . (z0).

— 00

Here I' is the gamma-function, zo=x/2t, 1. =R(W*(q)), and the error term is uniform
for all z€R.

The above corollary shows that the long-time behavior of solutions of the NLS equa-
tion gt +quzx —2|g|?g—eA’(|g)?) g=0 is universal for a very general class of perturbation

eN(|g*)g-

Remarks. In a very interesting recent paper [HN], Hayashi and Naumkin have proved
a version of (iii) above using powerful, new PDE/Fourier techniques. In [HN] the initial
data g is required to have small norm. Of course, for systems of type (1.1) where the non-
linear terms have different orders of homogeneity, the problem with finite norm | g 1.1
and ¢ small, which we treat in this paper, cannot be reduced in general to a problem

with small norm and e=1.

The proof in §3 below that W*(q) exists requires that the size of the perturbation
in (1.1) (as measured in HY!'-norm) has to be small relative to the initial data. This
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can be achieved either by making the initial data itself small, or for large data, making
£>0 small. This means that for a given £>0, B! contains a (small) H"'-ball, and
this is the main content of Theorem 1.29 (i). On the other hand, for any given initial
data g=go€ HY1, g€ B for some sufficiently small €>0, and this is the main content of
Theorem 1.29 (ii).

THEOREM 1.30. For any >0, there exists a Lipschitz map W*:H1’1—>BE+ such
that:

(i) WHW*=1, WoW*=1,,;

(i) (Conjugation of the flow.) For ge B} and for all teR,

Ui (q) = W=eU W™ () =T ' U= T(a), (1.31)
where T.=F " 'oRoW™ as in (1.18) above.

Set B ={qeH":W~(q)=lim;— oo UNFSoUf (q) exists in HV'}. Clearly B: has
similar properties to B. The following result shows how to relate the asymptotic be-
havior of solutions U (g) of (1.1) in the distant past to the asymptotic behavior of the

solution in the distant future, in certain cases.

THEOREM 1.32. Suppose ¢q€BINB; and set g*t=W*(q). Define the scattering op-
erator
S(g)=W W (¢)=q".
Then as t— oo, ||Us (q) —Up"®(g*)l oo (axy =O(1/|t|*/2+%) for some >0.
)

Using the fact that if ¢(z,t) is a solution of (1.1), then ¢(z, —t) is also a solution,
the asymptotic behavior of Uf(q) in the above theorem can be made explicit as t— —oo,
as in the case t—+00 in the corollary to Theorem 1.29.

Our final result, which is perhaps unexpected, shows that (1.1) is completely inte-
grable on the nonempty, open, connected, invariant set BY. As noted in §2, in addition
to the reflection coefficient r(z)=r(z;¢q), scattering theory for the ZS-AKNS operator

)

also involves a transmission coefficient #(2)=1(z; q). In ZS-AKNS scattering theory, r(z)
and t(z) are given in terms of natural parameters a(z) and b(z) where t(z)=1/a(z) and
r(2)=—b(2)/a(z) (see §2). As is well known (see §3), equations (1.1) and (1.2) are
Hamiltonian with respect to the following (nondegenerate) Poisson structure on suitably

smooth functions H, K, ...:
0H 0K O6H 0K
H K = —_—— e e 1.33
kye= [ (G250 -2 0 (133

where g=a+if=Reqg+ilmgq.



172 P. DEIFT AND X. ZHOU

THEOREM 1.34. Fiz ¢>0. Then on B! the functions —(1/2n)log |a(z; W*(q))],
z€R, provide a complete set of commuting integrals for the perturbed NLS equation (1.1).
Together with the function argb(z'; W*(q)), 2’€R, these integrals constitute action—angle
variables for the flow: for z,zZ/€R,

{55 toglate: W (@) argbls's W 0) = 6=,

EE RTINS BN (139
{35 o8l W (@) — 5 Togla('s W @] =0,

{argb(z; W (q), arg b(2'; W™ (q))} =0.

Remark. The theorem of course remains true if we replace Bf with BZ. Also note
that when =0, the above result reduces to the standard action—angle theory for NLS
(see, for example, [FaT}]).

As shown in §3, the proof of Theorem 1.34 follows directly from the fact that W+
is symplectic. The fact that any Hamiltonian system whose solutions are asymptotically
“free” (or “integrable”), is itself automatically completely integrable, was first pointed
out, many years ago, to one of the authors by Jiirgen Moser. For example, if (z(t), y(t))

solves a Hamiltonian system
t=Hy, y=-H; (z(t=0),y(t=0))=/(x0,y0) (1.36)
in R?", and if for suitable constants (Zoc,¥yoc) ER*"
Z(t) =Yoot +Toot0(1),  y(t) =ysoto(l) (1.37)

as t— 00, then the wave operator W*(zq, ¥o)=lim¢—0c U, Ut(20, ¥0) ={(Too, Yoo ) €xists,
where Uy (g, yo) denotes the solution of (1.36) and UQ(z}, yj) denotes the solution of the

free particle motion
i=HY, y=—H) (z(t=0),y(t=0))=(zg,y)), (1.38)

where H(z,y)=1|ly||?. Necessarily W™, as a limit of a composition of symplectic maps,
is also symplectic. Clearly the momenta y provide n commuting integrals for the free
flow, and so, using the intertwining property for W+, UPoW+=W*oU,, we see that yoo,
the asymptotic momenta for solutions of (1.36), provide a complete set of commuting
integrals for the system. We note in passing that, because of the above comments,
it follows from the results of McKean and Shatah [MKS]| that equation (1.3) is also
completely integrable on an open (invariant) set in phase space.

It is an instructive exercise to apply these ideas to the Toda lattice, which is gen-
erated by the Hamiltonian Hp=1 S>7_ 42+ 72 e®*~#++1, on R?". Solutions of this
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system are free in the sense of (1.37), and it is easy to relate the asymptotic momenta yo,
to the well-known integrals for the Toda lattice given by the eigenvalues of the associated
Lax operator. We refer the reader to [Mol] for details.

The outline of the paper is as follows. In §2(a) we give some basic information on
RHP’s and introduce, in particular, the rigorous definition of the RHP (1.10). In §2(b)
we discuss the solution of (1.1) in H! and show how to derive equation (1.21). Finally,
in §2(c), we present uniform LP-bounds, p>2, for solutions of RHP’s of type (1.10) with
jump matrices v, ; of form (1.25). In §3 we prove the main Theorems 1.29, 1.30, 1.32 and
1.34 using fairly standard methods together with estimates from the key Lemma 6.4 of §6.
In §4 we prove various smoothing estimates for solutions of the NLS equation and also
for the solutions of the associated RHP’s. The main results of the section are presented
in Theorem 4.16. The time decay in (4.17)—-(4.21) is obtained by using and extending
steepest descent ideas from [DZ1], [DIZ] and [DZ2]. We note that related, but weaker,
smoothing estimates for NLS were obtained in [Z2]. Also, certain smoothing estimates for
KdV were obtained by Kappeler [Ka], using the Gelfand-Levitan-Marchenko equation.
In §5 we supplement the estimates in §4 and place them in a form directly applicable to
the analysis of the evolution equation (1.21). The principal technical tool in this section
is a Sobolev-type theory using the modified derivative operator L=0,—~i(x—2zt)ad o in
place of the bare derivative d,. The operator L is closely related (see e.g. Lemma 5.14) to
the operator L=iz ad o —2td,, which is very close in turn to the operator Lyg, = —2it0,
considered by McKean and Shatah in [MKS]. Finally, in §6 we use results from the
previous sections to prove basic a priori estimates for solutions of (1.21) (or more precisely,
for solutions of the equivalent equation (6.3)). The main results of the section are given
in Lemma 6.4.

The theory of perturbations of integrable systems has generated a vast literature,
and we conclude with a brief survey of results which are closest to ours and which have
not yet been mentioned in the text. We will focus, in particular, on problems in 1+1
dimensions.

Equations of the form (1.21) for a variety of systems of type

qt+K0(Q7Qacanz,-~)=5K1(q7(ha-~)7 (139)

where q;+Ko (4, Gz, Gz, ---)=0 is integrable, were first derived in [K1], [KN] and [KM].
In these papers the authors used equations of form (1.21), expanded formally in powers
of €, to obtain information on solutions (in particular, soliton-type solutions) of (1.39) for
times of order £~ for some a>0. Recently, Kivshar et al. [KGSV], and also Kaup [K2],
have extended the method in [K1], [KN], [KM] to obtain information for times of order
e~ for large values of a.
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Results similar to [K1], [KN] and [KM] have been obtained by many authors, dating
back to [A], [MLS], [W], using the multi-scale/averaging method directly on the per-
turbed equation (1.39) (for further information see [AS]). We also refer the reader to
the interesting paper [Br| in which the author obtains similar results to those of Kivshar
et al., using standard perturbation methods.

The result (1.7) of McKean and Shatah provides a very interesting infinite-dimen-
sional example illustrating the case when a given nonlinear equation &= f(x), with equi-
librium point £=0, say, can be conjugated to its linearization y=f'(0)y at the point.
Equation (1.31) above now provides another such example. The subject of conjugation
has a large literature; see, for example, [P], [Si], [H]|, [N], among many others. The
literature is devoted almost exclusively to the finite-dimensional case.

As we have noted above, the map ¢—R(qg) can also be viewed as a renormalization
transformation taking solutions of (1.2} to solutions of the normal form equation (1.4).
Kodama was the first to apply normal form ideas to nearly integrable (1+1)-dimensional
systems, and in [Ko], in the case of KdV, he obtained a normal form transformation
up to order £2
Liu [FLJ.

In a different direction, Ozawa [O] considered solutions of generalized NLS equations

. Kodama’s transformation has been generalized recently by Fokas and

iqs+ Qe —MNg2g— g’ =0, —oo<z< 00, (1.40)

where A€ R\{0}, u€R and p>3. Under certain additional technical restrictions (e.g.
120 if p=5), Ozawa used PDE methods to prove that modified Dollard-type wave op-
erators W+ (see, for example, [RS]) for (1.40) exist on a dense subset of a neighborhood
of zero in L?*(R) or HY°(R). This means that solutions of (1.40) with initial data in
Ran W+ behave, as t— 400 respectively, like solutions of the NLS equation

igi+qez —Mal*g=0. (1.41)

In the case A>0, these results are clearly related to Theorem 1.30 above.

Finally we mention the fundamental work of Zakharov on normal form theory for
nonlinear wave systems [Za]. A particularly illuminating exposition of the consequences
of Zakharov’s theory in the context of a class of (1+1)-dimensional dispersive wave
equations can be found in the recent paper of Majda et al. [MMT)].

Some of the results of this paper were announced in [DZ3]. In future publications
we plan to extend the methods of this paper to analyze perturbations of a variety of
integrable systems, including systems with soliton solutions. Of course, when solitons

are present, smoothing estimates of the form (4.20) can no longer be valid. However,
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Fig. 2.1

after subtracting out the contribution of the solitons, we still expect an estimate of the
form (4.20) to be true, but perhaps with a smaller power of t-decay.

Notational remarks. Throughout the text constants ¢>0 are used generically. State-
ments such as || f|| <2¢(1+e°) e, for example, should not cause any confusion. Through-
out the text, ¢ always denotes a constant independent of x, t,  and p.

Throughout the paper we use ¢ to denote a dummy variable. For example, e%g
denotes the function f defined as f(z)=e?*g(z).

2. Preliminaries

This section is in three parts:

Part (a). Give some basic information on RHP’s, with particular reference to special
features of RHP’s occurring in this paper. A general reference text for RHP’s is, for
example, [CG].

Part (b). Discuss the solution of {1.1) in H"! and show how to derive the basic
dynamical equation (1.21).

Part (¢). Present LP-bounds, p>2, for solutions of RHP’s of type (1.10) with jump
matrices vy ¢ of form (1.25). The key property of these bounds is that they are uniform
in z and t.

Considerably more detail on parts (a), (b), (¢) can be found in [DZW, §§2, 3, 4].

Part (a). Consider an oriented contour ¥CC. By convention we assume that as
we traverse an arc of the contour in the direction of the orientation, the (+)-side (resp.
(—)-side) lies to the left (resp. right), as indicated in Figure 2.1. Let v:E—GL(k,C)

be a kxk jump matrix on ¥: as a standing-assumption throughout the text, we always
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assume that v, v 1€ L*(E—GL(k, C)). For 1<p<oo, let

C’h(z)ngh(z)=/ Ms) ds e oy,

5 §—z 2mi’

define the Cauchy operator C on ¥. We say that a pair of L?(X)-functions f.€0Ran C if
there exists a (unique) function h€ LP(X) such that f.=C"h, the nontangential boundary
values of Ch from the (4)-sides of X. In turn we call f(2)=Ch(z), z€C\X, the eztension
of fs=C*h€dRanC off . We refer the reader to [DZW, Appendix I] for the relevant
analytic properties of the operators C' and C*. Note in particular that C* are bounded
from LP(¥)—LP(X) for 1<p<oo. A standard text on the subject is, for example, [Du].

Formally, a (k x k)-matrix-valued function analytic in C\¥ solves the (normalized)
RHP (%,v) if m, (2)=m_(z)v(z) for z€X, where m. denote the nontangential boundary
values of m from the (+)-side, and m(z)—1I in some sense, as z—o0. More precisely, we
make the following definition.

Definition 2.2. Fix 1<p<oo. We say that m. solves the (normalized) RHP (X, v),
if my—IeLP(X)NORanC and m,(z)=m_(2)v(z), a.e. z€X.

In the above definition, we also say that the extension m of my off ¥ solves the
RHP. Clearly m solves the RHP in the above formal sense with my—7I€L?.

Mostly, we are interested in p=2, in which case we will drop the subscript and
simply write (£,v). Let v=(v")"tv*=(I—w")"!(I+w") be a factorization of v with
v, (v*)7te L™, and let Cy, w=(w™,w"), denote the associated singular integral oper-
ator

Cuh=C*(hw™)+C~ (hw") (2.3)

acting on LP-matrix-valued functions h. As w¥e L™, C,, is clearly bounded from L? — L?
for all 1<p<oo. The operator C,, plays a basic role in the solution of the RHP (X, v),.
Indeed, suppose that in addition w*==4(v*—1I)€ LP, and let pe I+ LP(X) solve the equa-
tion

(1-Cy)p=1, (2.4)

or more precisely, suppose that h=pu—I solves the equation
(1-C)h=Cpl=CTw +C w"
in LP. Then a simple calculation shows that
my = I1+C* (pw*+w™)) = po* (2.5)

and hence solves the RHP (X, v), for any factorization v=(I—w~)"!(I+w"), as long
as w*==+(vE—I)eLPNL>. Such factorizations of v play the role of parametrices for
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the RHP in the sense of the theory of pseudo-differential operators, and different factor-
izations are used freely throughout the text in order to achieve various analytical goals.
Moreover, using simple identities, it is easy to see ([DZW, §2]) that bounds obtained
using one factorization v=(v~)"'v* imply similar bounds for any other factorization
v=(77)" 1o+,

If k=2, p=2 and det v(z)=1 a.e. on ¥, then the solution m (or equivalently m.) of
the normalized RHP (X, v)=(X,v), is unique. Also det m(z)=1 (see [DZW, §2]). These
results apply in particular to the RHP (1.10), and will be used without further comment
throughout the paper.

The principal objects of study for the RHP (1.10) are eigensolutions ¢=v(z, z) of
the ZS-AKNS operator 8, —U(z, z) (see (1.9)),

(8 —U(z,2)) )= (az - <iza—|— < 0 a@) ))) w=0. (2.6)
g(z) 0
Setting
m= we—izza, (27)
equation (2.6) takes the form

Iym=izado(m)+Qm, Q=<g g), (2.8)

where ad A(B)=[A, B|=AB—BA. Under exponentiation we have

eadAB:Z (adf;)' (B) —eABeA
n=0 :

The theory of ZS-AKNS ([ZS], [AKNS]) is based on the following two Volterra integral
equations for real z,

x

mE)(z,2) = I+/ e E=vz2do 0N mE (y, 2) dy = [+ K, . . m*). (2.9)
+oo

By iteration, one sees that these equations have bounded solutions continuous for both

z and real z when g€ L'(R). The matrices m*)(z, z) are the unique solutions of (2.8)

normalized to the identity as x—=+oo. The following are some relevant results of ZS-
AKNS theory:

(2.10a) There is a continuous matrix function A(z) for real z, det A(2)=1, defined
by ¥t =¢(-) A(z), where 1(*) =m(#)ei*29 and A has the form

A(z)z(Z 2)
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(2.10b) @ is the boundary value of an analytic function, also denoted by a, in the

upper half-plane C,: a is continuous and nonvanishing in C,, and lim,_,, a(z)=1.

(2.10c¢)

a(2) =det(m{P,m§) =1 / ay)m) (9, 2) dy =1+ /R d@)m'3) (v, 2) dy,
R
__ pirz (=) () _ iyz (+) _ iyz (-)
b(z) = €% det(m{ ), m{") = - / ) e miD(y, 2) = /R 1 mi} (v, 2) dy,
R

where
?jolh) ’”(1;)
+ +
m*) = (m§ ),mé ))——( (+) (i)>

(2.10d) The reflection coefficient r is defined by —b/a. As det A=1, |a]?—|b]2=1, so
that |a|>1 and |r|>=1~|a|~2<1. Together with (2.10b), this implies that ||7||f®)<1.
The transmission coefficient t(z) is defined by 1/a(z). Thus

tlzemy <1 and  [r(z)+]e(2)]*=1.

The basic scattering/inverse scattering result of ZS-AKNS is that the reflection map
R:g—R{q)=r is one-to-one and onto for g(x) and 7(z) in suitable spaces. In this paper
we will study the map R by means of the associated RHP for the first-order system (2.6)
introduced by Beals and Coifman. In [BC] the authors consider solutions m=m(x, z) of
(2.8) for z& C\R with the following properties:

m(z,z) =1 as x— —o0, (2.11)

m(x,z) is bounded as z — +oo. (2.12)

Such solutions exist and are unique, and for fixed z, they are analytic for z in C\R with
boundary values my (z, z)=lim. o m(x, z+ic) on the real axis. Moreover, m.. are related
to the ZS-AKNS solution m{~) through

my(z, 2) =m ) (z, 2)e®2490%(2), 2€R, (2.13)

v+:(—lf (1)) U-:<(1] T) (2.14)

(see e.g. {Z1]). Note that the asymptotic relation (2.11) fails for my(z,2), z€R, but
(2.12) remains true both as z—+oo, £— —00.

where
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Using the notation B,=€"**247B, we have from (2.13), (2.14) the jump relation

my(z,2)=m_(z,2)v,(z), z€R, (2.15)
where R r(2)
1-|r(2)[?2 r(z
v=ov(z)=( (2)) Wt (z)= o . 2.16
(2)=(v"(2)) ()(_T(z) 1) (2.16)
Thus
vy = (v;) "0, (2.17)

where we always take vi=(v*),. In addition, if ¢ has sufficient decay, for example if ¢
lies in the space {q: [ (14+2?)|q(z)|?> dz<oo}C L*(R)NL?(R), then for each z€R, my=
my(z,-)€I+L*(R) solves the normalized RHP (X, v,)=(Z,v;)2 in the precise sense of
Definition 2.2,

my(z,z)=m_(x,2)v.(2), z2€R,

(2.18)
my(z,-)—I €IdRanC,

with contour ¥ =R oriented from left to right (see e.g. [Z1]; see also [DZW, Appendix II]).
This is the Beals—Coifman RHP associated with (2.6) and the NLS equation.

Define w,=(w;,w}) through vi=I+w% and let C,, be the associated singular
integral operator as in (2.3). Then (see §2(c) below), 1—C,,, is invertible in L2(R). Let
¢ be the (unique) solution of (1—C, )u=I, p€I+L*(R). Then as noted above, the

boundary values my of

m(z)=m(xvz)zf+/ e, o) (wg (o) +we(s) ds g (2.19)

-7

R s—2z 271

lie in I+ L?(R) and satisfy the RHP (2.18). Set

Q=Qo)= [ )i (s)+usz (5)) ds. (2.20)

R

Then a simple computation shows that
Q= % ad #(Q) (2.21)

is the potential

0 ¢
(s )
in the ZS-AKNS equation (2.8).
As indicated above, the map R is a bijection for ¢ and r in suitable spaces. In
particular, the methods in [ZS], [AKNS] and [BC] imply that R:S(R)—S&1(R)=
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SR)N{r:|rllpe(m)<1}, taking g—r=R(q), is a smooth bijection with a smooth in-
verse R™1. However, for perturbation theory, it is important to consider R as a mapping
between Banach spaces. The following result plays a central role.

First we need some definitions. Throughout this paper we denote by |A| the Hilbert—
Schmidt norm of a matrix A=(4;;), |A|=(3, ;14:;|*)'/?. A simple computation shows
that | - | is a Banach norm, |AB|<|A||B|. For a matrix-valued function f(z) on R, define
the weighted Sobolev space

H* = {f:f,05f,2f e A(R)}, k,j>0, (2.22)
with norm

£ Nes = (WF 12+ 105 FIZ2 + 127 F11F) Y2, (2.23)

where the L2-norm of a matrix function f is defined as the L-norm of |f|. Also define
HYY ={feBM:|fll=<1}, k21,520, (2:24)
Observe that by standard computations, if f€ H*7, then z'0."f€L?(R) and

Ity fllzz < el f e (2.25)

for 0<i<I=min(k, j).

Recall that a map F from a subset D of a Banach space B into B is (locally) Lipschitz
if D is covered by a collection of (relatively) open sets { N} with the following property:
for each N there exists a positive number L{V) such that

1 F(q1)— F(g2)lls < L(N)llg1 — 2| (2.26)

for all g1, NCD.

PROPOSITION 2.27 [Z1]. The map R is bi-Lipschitz from H*3 onto H}* for k>0,
Jjz1

A proof of this proposition in the case k=j=1, which is of central interest in this
paper, is given in [DZW, Appendix I1]).

Part (b). The spaces H*J are particularly well-suited to the NLS equation. Indeed,
as is well known (see below), if ¢(¢), >0, solves the NLS equation with initial data ¢(0),
then R(q(t)) evolves in the simple fashion

R(q(t)) =R(g(0) e~ =re~i=", (2.28)
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On the other hand, a straightforward computation shows that for k=7, multiplication
by e~"*2" is a bijection from H?* onto itself (the key fact is that if fe HI* for j<k,
then 2!'0J~!feL? for 0<I<7, by (2.25)). Hence the NLS equation is soluble in H*»J for
1<) <k,

qt=0) 55 r—s reit? N q(t)
Moreover, as R~ is Lipschitz, it is easy to verify that the map t—q(t)=R ™ (re=%%") is
continuous from R to H*J.

The perturbed equation (1.1) is a particular example of the general form

th+qza: = V’(|Q|2)q,

2.29
q(t =0) = qo, (229)

where V' is a smooth function from R, to R, with V(0)=V'(0)=0. We say that g(¢),
t>0, is a (weak, global) solution of (2.29) if geC([0,00), H**) for some k>1 and

1
g(t) =~ Holg / e~ =9 V1 (1g()[2) g (s) ds, (2.30)
0

where Hy=—082 is negative Laplacian regarded as a self-adjoint operator on L?(R). Ob-
serve that if k>2, then g solves (2.29) in the L?-sense, and if k>3, then g=q(z,t) is a
classical solution.

The following result, which is far from optimal, is sufficient for our purposes. For
more information on solutions of (2.29) see, for example, [O] and the references therein.

THEOREM 2.31. Let >0 and suppose that A is a C*-map from R, to R,. Sup-
pose in addition that A(0)=A(0)=0 and A(s),A'(s)>0 for scR,. Then for V(s)=
s2+eA(s), equation (2.30) has a unique (weak, global) solution q in H''. Moreover, for
each t>0, the map qo—qo(t)=q(t; qo) is a bi-Lipschitz map from HY! to HVL.

The proof of Theorem 2.31 is standard and uses the conserved quantities
[ a2 de= [ o) (282)

/ 1Baq(a, DI da+ / V(l(z, 1)) de = / 1Bado(z) 2 i+ / V(lao()?)dz (2.33)

to obtain a global solution in the familiar way. If V has additional smoothness, then
(2.30) has a solution in H** for values of k>1. Equation (1.1) corresponds to the choice

2e
=g24 = U+2)/2
V(s) s+l 58 ,
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and throughout this paper by the solution of (1.1) we mean the unique (weak, global)
solution of (2.30) in H11.

As R is a bijection from H'' onto H,"', solutions ¢(t) of (1.1) induce a flow on
reflection coefficients r=R(g(0)) in H}"' via ts7(-;q(t))=R(g(t)), t=0. The equation
for this flow can be derived as follows (cf. [KN]). Simple algebraic manipulations show
that (2.29) with V(s)=s2+¢eA(s) is equivalent to the commutator relation

(0.~ U,8,—-W]=¢G(q), (2.34)
where
_—cr
=1z0 N
qg 0/
. 0 ¢ ~i|g|? z‘é‘zq)
=—iz%0— 2.35
W=—ie Z(a 0)+(~iazq ial? )’ (2:35)
0
G:_qu( ) q).
—q 0

Applying (2.34) to P =m(Sgizze using variation of parameters, and evaluating the

constant of integration at x=—o00, one obtains the equation

X
@ =W)pD =iz2p g4y / (B) Gy dy. (2.36)
—oC
Using the relation (*)=4{)A to substitute for ¥(-) in terms of ¢{*) and letting
z—+00, one obtains an equation for A1, and hence for a and b:

oa=ea( [~ W euOd) —ab( [T o) |
-0 11 —0o 21

—8t5=iz2b+de</oo (¢(‘))‘1Gw()dy) —Be(/oo (¢())_1Gw(‘)dy> :
—00 12 — 00 22

(2.37)

Substituting m~ for m(~) via relation (2.13), we obtain finally an equation for r=-b/a:
B .
Oyr = —i22r+s/ eV (m-'Gm_ )12 dy, (2.38)

—x0

or emphasizing the dependence on z, z and ¢(t),

o0

8ir(z;q(t)) = —iz%r(z;q(t)) +e /_ e~ (m (y, z,4(1)) Gla(y, 1)) m-(y, 2;¢(t)))12 dy,
(2.39)
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where r(z; q(t))=(R{q(¢)))(z). Defining r(t) via

r(t)(2) = €1 (2; q(t)) (2.40)

as in (1.24), and integrating, we obtain

r(B)(2) =ro(2)+e / dset | dye™ = g, 70(5)) Glaly: ) m- (0,21 0() o
(2.41)
where
T0(2) =R(qo)(2), qo=q(t=0). (2.42)

Note that if q(t)=UN"S(qp) solves NLS (i.e. the case £=0), then
r(0)(2) = r(z U} (q0)) = (23 0)

and the H'9(dz)-norm of r(t) is constant and hence bounded in t. As we will see, for
the general evolution ¢(t)=Uf(qo), at least when >0 is small, the heart of the analysis
lies in the fact that the H'%(dz)-norm of r(t)(z)=€*"r(z; q(t)) also remains bounded as
t—o00.

Note that if e=0, so that G=0, then r(z; q(t))=e~**"*R(qo), which is the well-known
evolution for the reflection coefficient under the NLS flow as described above. Replacing
r=R(go) with e~**"tr in (2.16) we obtain the RHP

mi(z)=m_(2)ve(z), 2z€R,

(2.43)
my—1€0RanC,
for the solution g(z,t)=(R~1(e~"°*tr))(z) of NLS, ¢(0)=go, where
. 1—|r|2 e*r
=z2—tz" and wvp=¢"37y= | | . (2.44)
—e ¥y 1

Observe that = and t play the role of external parameters for the RHP. For future
reference, we note from (2.20), (2.21) that if p=pu(z,t,2) solves (1—~C,,)u=1, then

Q= (Q(f’ ) q(gg t)) = a;i—: (/Ru(x,t,z)(w;—l—wg)dz). (2.45)

In order to write (2.41) as an equation for r(t)=e**R(g(t)) we must substitute
R‘l(e‘izztr) for ¢ on the right-hand side of the equations. Recall that m_(y, z;q),
which is the boundary value from C_ of the Beals—Coifman eigensolution for ¢, can also
be viewed as the boundary value from C_ of the solution of the RHP (2.18) with r=R(q).
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Reif<0 Rei0>0

20

Reif>0 Reif<0

Fig. 2.51. Signature table for Re 6.

With this understanding it is natural to write m_(y, z; q)=m_(y, z;7) where r=R(qg).
With this notation (2.41) becomes

o0

r(t)(z)zro(z)+6/0 dseizzs/- dye_iyz(mfl(y,z;e‘iozsr(s)) (246

xGR™H e 0" r()) W) m- (v, 217 () s,
where 7(t=0)=7, and r€C([0, c0), HI"!). Uniqueness for solutions of (2.46) follows from

the Lipschitz estimate (6.6) in §6. The basic result on (1.1), (2.41), (2.46) is the following.

PROPOSITION 2.47. If g€ C([0,00), H'!) solves (1.1) with €>0, [>2, thenr(t)(2)=
€ R(q(t))(2) solves (2.41). Conversely, suppose that reC([0,00), H}'") solves (2.46).
Then q(t)=R~1(e~"*tr(t)) solves (1.1) in C([0,00), H'1).

For later reference we note the following useful property of functions in H'!.

LEMMA 2.48. If re HY! then zr2c L'N L™ and |Or2(O)||1r <cpllr||Z, 1<p<o0.

Part (c). The operator 1—C,, associated with the RHP (2.43) with factorization

1 —re® )‘1 ( 1 0)
Vg — .
““\o 1 —Fei 1

is invertible in L? with a bound independent of z and ¢ (see [DZW, (4.2)]),

(1= Cup) lr2my—r2m) <c(1-0) 7" (2.49)
for some absolute constant ¢ and for all r€ L™ satisfying ||re®||pe=||7|r=<o<1.
Furthermore if m. solves the RHP (2.43), then (see [DZW, (4.7)])

|ms =Tl 2m) < c(1—0) M IrllL2my (2.50)
for all z,t€R. In the analysis of (2.46), we will need similar uniform bounds in L? for
p>2. Standard RHP arguments (see e.g. [CG]) imply that 1-C,, is invertible for all
1<p<oo, but a priori the bounds on [[(1—Cu,) ! Le(r)—Lr(®) and ||me—1||zrr) may
grow as x,t—o00. It is one of the basic technical results of [DZ5] (see also [DZW]) that
for p>2, there exists bounds, uniform in z,t€R, on these two norms.
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Following the steepest descent method introduced in [DZ1], and applied to the NLS
equation in [DIZ], [DZ2], we expect the RHP to “localize” near the stationary phase point
zo=z/2t for =z2—122, 0'(29)=0. Furthermore, the signature table of Reif should
play a crucial role. The basic idea of the method is to deform the contour I'=R so
that the exponential factors ¢ and e~* are exponentially decreasing, as dictated by
Figure 2.51. In order to make these deformations we must separate the factors e and

e~% algebraically, and this is done using the upper /lower and lower /upper factorizations

=G )G )

:<-f/<11—|r|2> 2)(1_tlr|2 1/<1E|r|2>)(; r/(IIW))'

The upper/lower factorization is appropriate for 2>z, and the lower /upper factorization

of v,

(2.52)

is appropriate for 2<zy. The diagonal terms in the lower/upper factorization can be
removed by conjugating v,

1 0
0=072v8.7%, o03=Pauli matrix= (0 ) =20, (2.53)

by the solution &, of the scalar, normalized RHP (R.. 429, 1—|r|?),
8, =0_(1—Ir%), zeR_+z,

(2.54)
d+—1€IJRanC,

where the contour R_+2y is oriented from —oco to zy. The properties of § can be read
off from the following elementary proposition, which will be used repeatedly throughout
the text that follows, and whose proof is left to the reader.

PROPOSITION 2.55. Suppose € L®(R)NL?(R) and ||r||p~<o<l. Then the so-
lution 0. of the scalar, normalized RHP (2.54) exists, is unique and is given by the

formula

ox log(1—!712 1?0 log(l-— r(s)’)d
(5i(z)=e R_ +zl08(1=ir] )=ezm oo =2t 57 zeR. (2.56)

The extension § of d= off R_+2zy is given by

5(z) = eCr—baoloB1=r®) _ ook [0, 8050 ds - o\ (R_4), (2.57)
and satisfies for ze€ C\(R_+2g),
8(2)8(2) =1,
(1-0)2< (1= <16 (2)| < (1-0) < (1-0) V2, (2.58)

|61 (2)| <1 for £Imz>0.
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For real z,

16.(2)0(2)] =1 (2.59)

and, in particular, |6(2)|=1 for 2>z, |0, (2)|=]621(2)|=(1~|r(2)|})V/?, z<2, and

A55+5_26#P~V-ff‘;’—°§‘-‘—?_%fﬂﬂds’
(2.60)
IAl=0,0.|=1, ||5i—1||L2(dz)<c””””.
1-p
We obtain the following factorizations for v:
1 782 1 b
p=v"19, = . Z> 2, 2.61
Ve (0 1 )(-M—? 1) 0 (2.61)
1 0 1 762/(1—|r|?
1“1:17:117+:< L, )( o/ H)), z2< 2, (2.62)
—767%/(1—=|r[?) 1/\0 1

which imply in turn the factorizations for #g=e®2d7y:

1 1 re's? 1 0

Vg = U971U9+ = (O 1 ) ( _re—ifs—2 1 ) , Z2>20, (263)
1 0) (1 re62 /(1—1|r|?)

—7e=®62%/(1-|r>) 1/\0 1

Using Figure 2.51 we observe the crucial fact that the analytic continuations to C, of the

g = 170__1179+ = ( ) , 2<2p. (264)

exponentials in the factors on the right in (2.63) and (2.64) are exponentially decreasing,
whereas the same is true for the exponentials on the left, when continued to C_.

For later reference, observe that (2.62) and (2.64) can also be written in the form

1 0 1 rd,. 0.
N , < 2, 2.65
v (—f&;‘é:‘ 1)(0 1 ) Fs0 (2:65)
and
1 0\ /1 re¥6,s_
g = _ , < 20, 2.66
Vg (—Fe"e(sjléfl 1) (0 1 ) 2 < 20 ( )
respectively.

The basic result is the following. For any jump matrix v let C, denote the asso-
ciated operator C,, with the trivial factorization v=I""v, i.e. vi=v, v"=1. As noted
earlier, LP-bounds for (1—C,)~"! imply similar L”-bounds for any other factorization
vo=(vy )~ *v}. Hence by (2.49),

1(1=Cup) 22 <c2(1—0) ' =K

for the trivial factorization vg=1I"1vy above.
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PROPOSITION 2.67. Suppose reHll’o, Irllzro <A, ||rl|pe<o<1. Then for any
z,teR, and for any 2<p<oco, (1-C,,)"! and (1—Cy,)~! exist as bounded operators
in LP(R) and satisfy the bounds

1= Cug) Nzrozes 1(1=Cip) M lirosir < Ko, (2.68)

where Kp,=cp(1+2)8(1—0)737. The constants c, may be chosen so that K, is increasing
with p and K, 2 K.

As above, the bounds in (2.68) imply similar LP-bounds for (1—C,,,)~! for any other
factorization vg=(vy ) lvy. We will use this fact throughout the paper without further
comment. Bounds on |[ms—1I||zr(r) of type (2.50) for p>2 are immediate consequences
of (2.68).

The proof of Proposition 2.67 is given in [DZ5] and also in [DZW, §4].

3. Proofs of the main theorems

Notation. We refer the reader to (4.1) below for the definition of the symbol

E ol
i
and to the beginning of §5 for the definition of A.

In this section we use the estimates for F' and AF' in Lemma 6.4 in §6 below to
prove Theorems 1.29, 1.30, 1.32 and 1.34 in the Introduction.
Suppose l>% and choose n sufficiently large and p sufficiently close to 2, 2<p<4, so

that I 1 3 1 1 1
LR T 3.1

2 2m 472 2 wm 7 (3-1)

Let n>0 and 0<p<1. Then it follows from (6.5) and (6.6) that for >0 and r,71,72€

{F: 0 <, 1 fllz~ <o},

dy d2
n™(1+m)
||F(t"")||H111 <c(1+t)1+d3(1—g)d4’ (3‘2)
n® (14n)
|E(t,r2)—F(t,r1) || < e ()T (1 —g)s lra =71 g1, (3.3)
where c¢ is a positive constant and
i1 7
di={+1, do=10+429, dz=-———->0, dy =51+111, (3.4)
2 2n 4
I 1 1 452
e1=1, e2=1+38, e3=-+———-2>0, eys=5l4+—. (3.5)

3



188 P. DEIFT AND X. ZHOU

If 124, these constants can be reduced considerably. Indeed for [>4, we may take

2
dy=1+1, dy=141T+e, dg—é-£>o dy =5l+57+e, (3.6)
! 1 13 236
e =1, ex=1422+¢, ey 2+2p 5 >0, eys=5l+ 3 +e, (3.7)

for p>2, p sufficiently close to 2, and for any £>0.

Remark. These large constants should perhaps be compared with the large constants
that appeared in the early papers in KAM theory (see, for example, {Mo2]). Just as the
sizes of the KAM constants have been reduced by various researchers over the years, we
anticipate that the constants in (3.4), (3.5), (3.6) and (3.7) will also be reduced when
finer estimates on the inverse spectral map, r—R~!(r), become available.

Observe from (6.3) that the basic dynamical equation (2.46) takes the form

¢
r(t) :ro-}—e/ F(s,r(s))ds, (3.8)
0
where F' is given by (6.1), (6.2). The proofs of Theorems 1.29, 1.30 and 1.32 follow by
applying (6.5) and (6.6) to (3.8) in the standard way.

‘We begin with the proof of Theorem 1.29. Fix > % Suppose that >0 and 0<p<1
are given, and suppose that [[rg||g1.,: <7 and ||ro]|L~ < eo. By the results of §2, equation
(3.8) has a (unique) global solution r€C([0,00), H}!), r(t=0)=ry. Let

T =sup{7: |lr(t)|l g2 <2, [|r(t)|| L < 3(140) for all 0<E< 7} (3.9)
Clearly T>0; suppose T'<co. Then by (3.2), for all t<T,

" (2n) N (1+2m)%2%
(1+5) 1+ (1 g)da
et (a2t 3
d3(1‘Q)d4 = 2

I g < |roll g +€c/
’ (3.10)

<+

provided that e<e1(n, 0)=d3(1—p)%/cnt1 ~1(14-2n)9224: T4 +1 Similarly, using the fact
that [|7( L <[l g,

Ir(®)llz < 5(1420) < 3(1+0) (3.11)

provided that e<ez(n, 0)=da(1—p)%*+?/3cn® (1+2n)%2241+44. But then by continuity
I (e <2n, |r(t)|| L < 3 (1+0) for all 0<¢< T for some 7>T, which is a contradiction.



PERTURBATION THEORY—A CASE STUDY 189

Hence T=c0 and ||7(t)|| g2.2 <27, ||7(t)|| e <3(1+0) for all t20. It follows then that for
ta>t1 >0

() =r(t) e < =

cemB(42mEt ( 1 1 )
(1 )d4d3 ((1+t1)d3 (1+t2)d3

and so {r(t)} is Cauchy and Q(rg)=lim ., 7(¢) exists in H)''. But then as R is
bi-Lipschitz and R(UNFSoUf (go))=r(t), r(t=0)=ro=R(qo), the wave operator

W*(q0) = lim UN}®oUf (qo) =R™'=Q2*>R(qo) (3.12)

exists in H'! provided that e<eo(n, o)=min(e1(n, 0), €2(7, @)). Thus in the notation of
the Introduction, B, ,C B} for e<eo(n, o). This proves (ii) in Theorem 1.29.

As noted in the Introduction, from the relation UNYSoUgo Us =UNLSoU N(Iﬁs) Ufis
s,t€R, it follows that UfBXC B and the intertwining relation W*oUf =UN-S-W+ is
satisfied on B/.

As Uf(qo)=UNS(gy)=0 for go=0, it follows that B #@ for all £>0. We now
show that B} is open. Suppose that ro =07 (ry) exists for some ry. Set n=||rw|lgr1,
0=|"oo||Lee. Then if r(¢) is the solution of (3.8) with r(0)=ry, there exists T>0 such
that ||[r(¢)||zra<3n, |r(t)||Le<2(1+2p) for t>T. We can assume in addition that T is
sufficiently large so that

gc2hitdapdi-l(14op)d2 | ec2hitdapdi(142n)dz 1

(—ouds(i1 D 2 ™ T < 6

Now choose >0 sufficiently small so that if ||7g—7gl|g1.1 <7, and 7(¢) is the solution of
(3.8) with 7(t=0)=70, then [|F(T)||g11<Zn, |F(T)||lL=<5(142¢). Such a y>0 clearly
exists as go—U%(qo) is continuous in H!. Arguing as in (3.9) above, we conclude that
7)) oo <2, |7(¢)||pee <3 (1+p) for all t>T, and hence, as before, {7(t)} is Cauchy.
Thus Q*(7p) exists in HY?! for all ||7o—7g]|| 1.1 <. This proves that BZ is open.

Now suppose that 7o, 7o €R(B}) so that QF (ro)=lims_ 00 7(t), QT (fo)=lim_e0 7(t)
exist. Let

n:max(sup (l7 ()| 1.2, sup ||77(t)||H1,1), Q=max(sup | (#)]| L, sup ”'F(t)“Loo).

ES = t2 =

Clearly n<oo and p<1, and it follows from (3.3) that for all £:0,

gen® (14n)°2 / I7(8)—r(s)||grr
(1—p)es 1+3)1+€3

I17() = (Ol 2 < |lFo—rollgra +

and hence by integration ||7(t) —r(¢)| g1 <(1+3c€*) |79 —7o|| g1.2, where

_een(1+m)e
63(1 — Q)e‘l
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Thus
1927 (7o) ~Q2F (ro) | r1r < (1+3¢€) ||[Fo =70l 12 (3.13)

Now it is easy to see from the previous calculations that the map

ro — (sup [|7(t; 7o) || g1, sup |7 (t;ro)l L)
20 >0
is a continuous map from R(B;) to R?, and hence for each n>0, 0<p<1, the set N, ,=
{g€ B :sup,0 [|7(t; R(qo)) | 11 <m, supysg [|7(t; R(go)) || L <o} is open. Clearly

Bi= U Np,.
7>0
0<e<1
We conclude from (3.13) that W+ is (locally) Lipschitz. More precisely (see (2.26)), if
40, Go €Ny, for some >0, 0<p<1, then [W*(go)—W*(go)||gr.2 SL(Ny, o) lldo—qoll a2
for some constant L(N,, ,).
This completes the proof of (i) in Theorem 1.29, apart from the fact that B} is

connected, which we will prove a little further on.

The fact that |[UNYS(WH(q))|p ~t~'/? as t—oo follows directly from (1.26). Al-
ternatively, by (4.20) for g€ B we have ||[UNYS(W*(q))||L==0((1+t)"1/2) as t—oc.
Then an argument using the conservation of the L2-norm of q(t) (see [DZW, §8]) shows
that in fact |[UNS(W*(q))||p=~t"12 as t—oc.

Finally suppose that g€ B} and let r(t) solve (3.8) with ro=R(g). Set roo=Q"(ro)=
lim; o 7(t). Then by (4.21), for any p>2, as t— o0,

~ A2 A2 C
1Qe™ " r (1) = Qe oo )l Lo () < W'lr(i)_rw||Hl’l
for some constant ¢. Unravelling the definitions, this implies that

- [
IV (@) = U5 (W (@) 2w ) < (40 /5 7 (8) 7ol 21

But inserting (3.2) into (3.8), we easily see that as t—o0, ||[r(t) —Teollg1.: =O(1/t%).
Choosing p>2 appropriately, it follows that ||Uf (q) = UNS (W*(q))|| L (az) =O(t~1/27%)
for some 3 >0. (Clearly we choose p so that i is arbitrarily close to d3.) This completes
the proof of the second part of (iii} in Theorem 1.29.

We now consider Theorem 1.30. Fix l>% and £>0. Let n>0 and 0<p<1 be
given and suppose that 7°OOEH11’1 with {|7oe || 511 <7, [|7oc]le <o. It then follows from
(3.2) and (3.3) that for >0 sufficiently large the map Z(r)(t)=re—¢ [ F(s,r(s))ds,
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t2T, is a strict contraction, || Z(F)—Z(r)||x <L||F—r|x, L<1, on the Banach space
X=C([T,00), H"" )N {sup,> 1 |7 ()|l 11 <27, sup,>r [I7(t)[| L <5(1+0)}. Hence Z has
a (unique) fixed point re X,

P(t) = Z(r)(t) = ro—e /t TF(s,7(s)) ds. (3.14)

It follows directly from (3.2) and (3.14) that lim,_,c r(t)=ro exists in H"'. Set ¢(T)=
R~1(r(T)) and let ¢(¢), t<T, be the (unique) solution of (1.1) in H! with q(¢t=T)=q(T).
Such a solution exists for all ¢ by the methods of §2, which also imply that 7(t)=R(g(t))
solves (3.8),

¢
F(t)zfo—i—s/F(s,f(s))ds (3.15)
0
for all t>0, where 7o=R(g(t=0)). In particular for t>T, as #(T)=R(q(T))=r(T),
we have F(t) —|—5qu F(s,7(s))ds. But from (3.14), also for ¢t=T, r(t)=r(T)+
€ fT ds and hence by uniqueness (again use (3.3)) we must have
r(t)=7(t), t=T. (3.16)

Set Q)+ (roo) =70, which is clearly well defined (independently of T'). As before, it
is easy to check that QF is Lipschitz on H]''. Now R(7g)e€Bf. Indeed if 7(t) solves
(3.15), then #(t)=r(t) for t>T by (3.16), and so lim,_,, 7(t) exists in H,"'. Moreover
lim; o0 7(t) =reo, and so Q1 (Fy)=rs. It follows that if we set W*zR‘lofA)*oR, then
W+ maps H"! into B and

WH W+ =1. (3.17)

Conversely if goe B}, and r(t) solves (3.8) with ro=R(gg), then it follows that r(¢)=
Teo—¢ [, F(s,7(s)) ds, t>0, where 75,=Q" (ro). But then the preceding arguments show
that QO (reo)=ro. Thus

WHeW " =1,. (3.18)

This proves (i) and (ii) of Theorem 1.30. The proof of (iii), conjugation of the flows, is
immediate from the above intertwining relation and (3.17). This completes the proof of
Theorem 1.30.

From (3.18) we see that Bf=W*(H'!), and as H'! is connected, it follows, in
particular, that B} is connected. This completes the proof of Theorem 1.29.

The set B ={qeH"1: W (q)=lim;_,_ o, UNSoUs(q) exists in HV1} clearly has
similar properties to BY. The proof of Theorem 1.32 follows immediately by unravel-
ling the definitions and using the proof of (iii) in Theorem 1.29.
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Finally we consider Theorem 1.34. As is well known (see, for example, [FaT]),
equation (1.1) and the NLS equation are Hamiltonian with respect to the symplectic
structure on suitably smooth functions H, K, ...,

{H,K}(q)= / (5H 6K 8H 5K)

=2 00 ) g, (3.19)
R

where ¢g=a+if=Reg+iImq. Indeed

. 1 2e
K () =7 | [10:a+lq*+7=q/"* ) dx
2 Ju 1+2

generates (1.1), 8g/0t={q, K} =i({q.» —2|q|*q—¢lq|'q), and

1
K¥8(0) = [ (o.aP+lal") de

generates NLS, 9q/0t={q, KN} =i(q.. —2|q|%q).
The action—angle variables for NLS are given in terms of the matrix

=5 o)

{—% log |a(z)|, arg b(z')} =6(z—2"),

of §2 (see [FaT]). One has

1 1 (3.20)
= —=1 Y=o
{35 toglal@), ~ 55 g o)1 } =0,
{arg b(z),arg b(z')} =0.
Using the relations |a]?—[b]>=1, r=—b/a, and the identity
1
KNS = [ log(1- () dz
4
(cf. the proof of Lemma 5.24), we compute for solutions g(t) of NLS,
d 1 ’ 1 ’ NLS
adly . = —— K t
5 (3 o8 la(ea0)]) = { 55 0g ol K¥25(q(6)
oL log |a(z")] L /z2 log |a(z)}| dz (3.21)
2 ‘2

= —(2—;)3 /z2{1og la(2")|, log |a(2)|}(g(t)) dz =0,

9 axg (= 4(1) = - / Plargh(z ), logla(2) }(a() de= (). (3.22)
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Thus {—(1/27)log |a(z)|}.cr give the actions and {arg b(z)},cr give the angles for NLS.
Of course, (3.21) and (3.22) are nothing more than the familiar fact that (d/dt)r(2"; q(t))=
—i(2")*r(2'; ¢(t))-

Now as (1.1) and the NLS equation are Hamiltonian, it follows immediately that the
maps ¢— Ut (g), g—UN"5(q) are symplectic for any t€R. In particular, g—UNFSoUZ (g)
is symplectic for any t. The nontrivial fact, which can be proved by the methods of
this paper, and whose details are left to the (energetic) reader, is that this map remains
symplectic in the limit as t—o0. More precisely, W+ =1im;_, UEItLSon is symplectic
on B}. Thus

{H-W*, KoW™}q) ={H,K}(W"(q)) for qeB;. (3.23)

It follows immediately that
1
{- - togla(a W @) zeR} and  {argd(z W (g), € R)

provide action—angle variables for (1.1) on B/. Indeed, the commutation relations (3.20)
are preserved by (3.23), and for all z,2’€R,

5 log a(z; W (U (@) = 5= log la(zs UNS (W ()
; (3.24)
=0 log Ja(2; W' (q))l,

arg b(="; W* (U5 (9))) = arg b(='; U5 (W ()

3.25
=argb(z'; W*(q))+(2')*t. (4:25)

In particular, {—(1/27)log |a(z; W*(g)|, z€R} provide a complete set of integrals for the
perturbed NLS equation. This completes the proof of Theorem 1.34.

Observe that if t— U, is a Hamiltonian flow on H'', then the same is true for the
flow t—V, E@V*oUtoWJr on B}. Indeed if K is the Hamiltonian for #—U;, then for
qeBt, (d/dt)H(Uy oW (q))={H, K}{UsoW*(q)), which can be rewritten using (3.23)
in the form (d/dt)HeW*(Vi(q))={H - W, KeW*}(V;(q)), and so t—V; is generated
by the Hamiltonian KoW*. In particular, 15—)1’],?:W*oUtNLSoW+ is generated by the

Hamiltonian 1
KMSew () =5 L(IazW+(Q)I2+IW+(q)I4) dz.

But we know that ¢— U is generated by the Hamiltonian

3

K®(q)= §A(I3quz+lqr‘+i—e2lf1|”2) dx
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so that for ge B} we must have the interesting identity

/ (lazq|2+|q|4+35—|q|l+2) da= [ (oW @+ W (@)1 do (3.26)
R 1+2 R

A similar argument shows that
/ lg|? dx:/ (W*(q)|? dz. (3.27)
R R

For any z€R, let Ut(z)(qo) denote the flow generated by the Hamiltonian

1
-5~ logla(zi )
™

(suitably mollified with respect to z). These flows form a commuting family of
flows for the NLS equation. But then by the above comments, the flows U™ (go)=
/I/I?JroUt(Z)oWJf(qO), 2€R, form a commuting family of Hamiltonian flows for the per-
turbed NLS equation (1.1), with Hamiltonians —(1/27)log|a(z; W*(q))|, 2z€R. Said
differently, we see in particular that B7 is invariant under the flows generated by all the
commuting integrals —(1/2m)log |a(z; W*(¢))|, 2€R, for the perturbed equation (1.1).
Observe that if we replace ¢ by W*(q) in the Lax pair U, W for NLS (see (2.35)),
(U(q),W{(q))=U(W*(q)), W(WT(q)), then the zero curvature condition

(0= UoW*,8,—WeW*] =0 (3.28)

is equivalent to the fact that G(t)=W"(q(t)) solves NLS, i.e., W*(q(t))=UNLS-W™*(q),
q(t=0)=¢p. But then by the intertwining relation, q(t)=Uf(qgo). Thus J,—U-WH,
Oy —WoeW™ constitute a Lax pair for the perturbed NLS equation on B}. Of course,
UsW™ and WeWt are highly nonlocal.

Remark 3.29. Keeping careful track of all the orders of decay, the reader may check
that the proofs of Theorems 1.29, 1.30, 1.32, 1.34, as well as the proof of the corollary
to Theorem 1.29, go through for A satisfying the following conditions: (i) A€C?(R,),
OA’€Lip, (ii) A,A'>0, A(0)=A'(0)=A"(0)=0, (iil) (zA"(z))’=0(z*) as z.0, for some
s>2.

4. Smoothing estimates

In this section we will prove various smoothing estimates for the solution m of the nor-
malized RHP (R, vg), where

1-|r]? r

vgzewaddv:eieada( B 1)’ GZIZ—tZZ.
—F
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Z0 <0

Fig. 4.4. R, and T',.

Our main results are given in Theorem 4.16 below.

Henceforth we will always assume that 7‘€H11 1 which corresponds to potentials
q=R~(r) in H! by Proposition 2.27. We will use g, A and 7 to denote L>-, H':*- and
H"-bounds for r, respectively. Thus ||7]| e r)<o, 7m0 <A, [I7]lz12<n. Of course
we only consider g<1. By virtue of the Sobolev inequality, we can, and will, always
assume that p<A<n. For 20, 0<p<1, we will also use the notation

k1] enf(1+n)
[z’ j]"(ut)i(l—g)j @)

for some constant ¢ and nonnegative integers k, [, ¢ and j. Note that

{kl llHlfz 12]=[k1+k2 lﬁlz}, (4.2)

1 Jilli2 Jo i1+ia  Ji+i2
[/'61 1.1 ] + [k2 1'2} < [mi‘n(k.h k2) max (ki +11, k2+.l2)'—min(k1, k2) (4.3)
1 J1 2 72 min(iy, iz) max(j1, j2)

Let § be given as in (2.57). Reverse the orientation of R_ 4z to obtain R.,,
ﬁzo =e™(Ry+20)U(Ry +20),

and extend f{ZO to a complete(!) contour I',, as shown in Figure 4.4. As T,  is complete,
C’f:zonzo———O by Cauchy’s theorem.

(4.5) Denote the boundary values of 8(z) on R, by 64(z). Thus d.(2)=d(z) for
2>20, and d+(z) =06 (z) for 2<z.

(Y) A contour is complete (see e.g. [Z1]) if C\T is a disjoint union of two possibly disconnected
open regions €2+ and Q_, and I' may be viewed as the positively oriented boundary of €, and also as
the negatively oriented boundary of Q_.
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For 26 C\R+ 2z, set
m(zy=m{z}d(z)" . (4.6)

It is easy to see that m solves the normalized RH problem (R, 79) where

) 5"31)5“"3, z > 20,
Gp=e2dog  5={_ ’ (4.7)
0% L6773, 2 < zp.
Note that in the notation of §2,
Dg(2) =p(2) for 2>z and De(2) =0;"(2) for 2< 2. (4.8)

We have o0=(I—w~ )" '(I4+w")=(3")"10" where

(0 7"52> ( 0 0))
, , for z > 2,
(0 0 —7572 0

w=(w ,w")= 4.9
@ ) 0 —rdéb_ 0 0 (4.9)
() (s ) e
0 0 7o, 67 0

which can also be written as

_ ({0 =re2/-IrP) 0 0
w“((o 0 )’(f812/(1-|r|2) o)) (4.10)

for 2<zp. As usual wp=e03d7=(e®¥2do 5~ e¥adog+) We consider the singular inte-
gral equation associated with the normalized RH problem (ﬁzO,f;g), as described in §2
(see (2.4)),

f=1+Cg, i (4.11)
We have m. =jitg+ and
1 —r 1 0
_ = [167? , Z>20; _ =% , Z2< 2. 4.12
m-=H (0 1)9 fos Mok (f/a-W) 1)9 o 1

Introduce

oG e

corresponding to the factorization

-1
- 1 0
v=(v‘)‘1v+=((1) {) ( . 1) for all zeR.
bt
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Again wp=€" 247, By the results of §2, both the operators (1—C,,)~" and (1-Cg,) ™!
are bounded from L? to L?, and

c
I(1=Cuo) ™ llL2mr2, 1(1=Cap) " lLamsre < - (4.14)
for all z,t€R. Similarly for p>2, we obtain from (2.68)
[(1=Cug) " Hlzrosre, 1(1=Cap) lzo—ze <K, (4.15)

for all z,¢€R.. In particular,

. _ 1
p=(1-Cg) II:I+*1TH~)9(CEGI)

exists in J+LP(R) for all p>2.

Notational remark. Observe that if m_ is obtained from (4.12) for given z, t and r,
then in the notation of §1, m_=m_(z, z; re_”oz). In particular if r=7(z) is independent
of x and ¢, then m_ is the boundary value m_(z, z; ¢(t)) of the Beals—Coifman solution
of (2.8) with potential q(t)=R~(e~9"r) solving NLS. In the calculations that follow,
7 in (4.12) should be regarded simply as a function in H,"® or H}"" which may or may

not depend on external parameters such as z and t.

The goal of this section is to prove the following smoothing estimates. Recall that
K,>1 and increases with p.

THEOREM 4.16. Let r,r;€H'® and set r(t)=e~"r, ri(t)= ““221"]-, j=1,2.

€
Let ji=fi(r(t)), fy=f(r;(t)), j=1,2, and as in (2.20) set Q=[ (T +a,), Q;=
i (@} +157,), j=1,2. Then

- c MK 1 0
i1l < oo [

(1+8)1/% (1-0)2 ~ | 1/2p z]K" forany p>2,  (417)

& (1+)\)2Kp/K

o P
||/L2—[L1||Lp < (1+t)1/2p/ (1__9)4 ||T2_T1||H1'0
R (4.18)
<|. o, T|E2lra=rillae  for any p'>p>2,
1/2p" 4
~ ¢ MlI+A)K 1 1
Qe < 7 X T L] o any e, (4.19)
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Moreover, if r€ H*Y, ||r||g11<n, then

~ c  n(l+n)Ks 1 1
QI < 4072 (1=0)® < 12 5 for any t >0, (4.20)
O, -0 ¢ (1+A)°K,
1Q2—QullL= < (14+)1/2p+1/4 (1—p)7 Irz=r1llgrs
(4.21)
0 3
S 1/2p+1/4 7 Kyllre—r1ll g

for any 2<p<oo and for any £>0.

Proof. For =0, (4.17)—(4.21) follow from Corollary 4.58 and Lemmas 4.70, 4.74
and 4.75 below. When 2#0, a simple translation argument (see [DZW, (4.132)]) shows
that

o= fi(z, 2 €710 (0)) = =) 249 (02— z0: €70 P (04 20)), (4.22)

where again zo=x/2¢. Also,
We(2) — ¢10(20) ada(e—it(z—zo)zada,a)'(z)) (4.23)

and hence

Qa, r(t)) = €047 Q(0; 7" (0+20)), (4.24)
with similar formulae for @j, j=1,2. As the L>°- and H"%-norms of r are independent
of translation, the inequalities (4.17)—(4.19) in the case x#0 now follow from the case
z=0 with r replaced by (- +2¢). However, examining the proof of (4.20) in Lemma 4.74
below, we see that the H'!-norm of r is only needed to control the L'-norm of r(- +2zp).
As the L'-norm is translation invariant, (4.20) remains true for z#0. Similar considera-
tions apply to (4.21). a

As ||7|leo <1, we have the estimate,

r(2))?
og(L- ()P < . (4.25)

In particular,

Irllzo=llrlize  Nrllze=lirlize (4.26)

log(1—|r|*)|lz2 < <
A=l S TS S T s

From (2.60), we have

A=8,5_ =e HX(-oz0)lo8(1=Ir") (4.27)
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where X(_oo,,) is the characteristic function of (—oo0, 29) and

Hf(z)=P.V. i b f—(s—zds
im ) oo 2—S$
is the Hilbert transform (see e.g. [DZW, Appendix I]). Observe again as in (2.60)
that |A|=1. For the remainder of this section we will assume that =0. Thus 2 =0,
ﬁzf{zOzo, ['=T,,—0 and §=—t22. As noted in §2, the signature table for Reif (see
Figure 2.51) plays a crucial role.

LEMMA 4.29. Let Tl,TQEHlLO(R), ||n-||oo<g<1, ”Ti||H1v°(R)<)" Then |A2—A1|,

|A; T — ATH<IH+IT where
cA

HI”HLO<W||7"2—7“1||H1,0a (4.30)
1 01
1(z) < -2 —P.V./ 28 s\ ra—ra |l i
l—po|7 _18—2
(4.31)
1
_%;’l-i—(z-l-l)log li—z 72 =71 ]| zr1.0.

Proof of Lemma 4.29. First we consider As—A7; the proof of the estimate for
A;'—A7" is the same. Define x(s)=(1+s5)x(_1,)(s), where x(_1,0) denotes the char-
acteristic function of the set (—1,0). We have

As(2)—Ar(2)| < ‘H((bg(t::j:z) w%%) x) XR_>I
| =)

(e (i) oo ) e

A simple calculation shows that

‘log<1:::?g;lz>’ < 12_QQIT2(Z)—7“1(Z)|

|H(x)| =T+IL

Note that

and hence

1—|7‘2|2> (1—|7“2(0)|2>

lo —log| ————~-—

H g<1—|m|2 1= 0P )X
20
1-p

L*(R)

co

<
1-p

20
lre—71liz2 + o [72(0) —r1(0)| IxllL2(r) < lre—r1llzo0-
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i (oo (157 ol
1
-0

Also,

o)) )

o +ryFo — 17y — 1171 || L2

<

~

—

492 ’
+—— lri—rallze= |71l L2
(1-0)? !

< 2||7"§“L2’||7”2—7“1HL<>o
~

1-0
2

2
+22

1-0

+ 5 Irz=rallzeellryliz2 +

40
(1-0)
C)\”TQ_TIIIHLO

(1-9)?

20

1-—

L2

2@
+ —0|r1— =)
1 Q” 1 T2||L

|T§—7‘I1||L2

71 —="2|| Lo

e

As H is bounded from L?— L? and commutes with differentiation, this proves the bound

for I. On the other hand,

0
co 1 14+s)ds
II(Z) < I—Q ||7'2—T1I|H1,0 ;PV " —(ST
co 1 Z
F= 1_9”’[’2—’]‘1”1_11.0 ;(1+(Z+1)) lOg H_z‘ ‘ |
LEMMA 4.32. Let r1,79 be as in Lemma 4.29. Then
1652 621 < e —A—-+L 14(z+1)log Z |2 =71l g0, (4.33)
s (1—0)2 1-p 14z

A
|6§f—6fi2|<c( +2 1+ (2+1)log

(1-9)? (1-0)?

Proof. For +1Im z2>0, direct calculation shows that

z
1+2

)Ilrz—rlllm,o. (4.34)

1—|rgl?
|5§c2_6112| < max |e:|:2CR*(log(l—lrg|2)(1—T)+log(1—|r1|2)T)I 2CR_log | 2|2
0<T<1 1—|r|
1—]7‘2]2
<2|Cr_1 .
‘ A
Again for +1Im 2<0,
1—|ra)?
|5;F2—5i':2| < 0r<n1@§1|e:F2CR_ (log(l*|T2|2)(1—T)+10g(1—|r1|2)T), 2Cr_log 1—:7-2:2 ’
~ ~ 1
2 1—|’I"2|2
<—|Cr_1 .
| Ontos T
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The lemma now follows from the proof of Lemma 4.29 above, together with the identities
C*=1(£1-H). a

A consequence of the proofs of Lemmas 4.29 and 4.32 is

cA
1052 - 6% < W(l—i—llog zl)[lr2=rillgro, £Imz>0,

cA (4.35)
(1=9)? (1+|log z|)[[ra—r1llgro, £Imz>0,

where log(-) denotes the principal branch. These inequalities are useful for |z| small,

052 —0T?| <

but when more precise bounds are needed for |z} large, we will use the full inequalities
(4.33), (4.34) in Lemma 4.32.

LEMMA 4.36. Let reH1'°, ||r|lpe <o<1, ||r|lg10 <. For zeR\0,

|A"(2)] < I+11, (4.37)
1T < 222 (4.38)
1—p
2
co” 1
g —=- —. 4.39
1-o |2| (4.89)

Proof. We have

A'(2) = = A(z) 5 H((log(1 - ) xs.)

= A(z)H(_""P_' _) _ % log(1-|r(0)[*)

1—|r|? AR z

The result now follows as before. 0O

LEMMA 4.40. Let nEHll’O, il e <o<1, |Irillmromy<A, i=1,2. Then for any

0<a<],
cA(1+A) 1+|logal

(1-9)* +Va

||A§EII—A{EU||L2(|Z|>G) < lre—r1||g1o- (4.41)

Proof. As in Lemma 4.36,

AN 0 log(1—-|r;(O))
Aj— ZAJ(ZH<1—|7"]-|2XR_ + .

z

Hence

Ay — AL = —i(Ag—A,) (ZH( Iral™ xR_) +—1°g(1_|r2(0)|2))

1—|rg|2 z

s (- o )
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|ra|? |re |* [ral?’ )
H H —
(1—|7"2|2 X )1+ I—|r1[2 1—|re|? XR-

log(1- | (0)]" ]

og(1=[r2(0)F)
1+|loga|>) 0

so that

|AY(2)— & (2) < [mz—m

+ |:|A2—A1| |10g(1_|zr2(0)|2)‘ +§

From previous estimates we have

7ol L2

QC”T’Q—T‘lHHl,o (
-0

”AIQ—AllllLZ(|z|>a) < ( -

5 ||7‘2—T1||H1,0+

cA
(1-0)
C)\||T2—7‘1“H1,0 cA
(1_0)2 + (]._Q)2 ||7'2 7'1”H1,0

2
collre—r 0 o 20 1
+¢"’—%(1+uoga|))——+—g||r2—n||m-o—

1- (1-o)va 1- va
cA(1+A) 1+]log a|
L — — 1,0 —————.
STgp e
The proof for (A=Y is similar. O

LEMMA 4.42. Suppose r€H,°, ||r|lz=<o0<1, |[rllgro<), and suppose feH .

Then for all t>1,

c 1+

< ||f||H1,0, (443)

A:tl ?itz2d < —
‘/Rf B T

where h:% in the general case and h:% if f(0)=0.

Proof. We only consider the case A=A*! above. The other case is similar. Decom-

pose the integral as

/ fAe™ 2 gy = / fAe™ 2 gyt / fAe™ " dz =1+11.
—o0 |z|<1/vE lz|>1/V1

Changing variables,
¢

R e e

We consider z< —t~1/2. The case z>t1/2 is similar. Integration by parts leads to

i, _ e 1 _ L
/fA =gt ( \/E)A( \/i)

_1/2

_itzz(f’A fA! fA)
e dz

[PAIPERR

1
2t |

__+ -
z z 22

=T+ +1I7 +1V'.
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Clearly

cllfllmro

cllfllare
$1/2 :

/
|I | < t1/2

c
;< gz flle and JVAES
Finally using Lemma 4.36,

_—1/2

vy Lo |
<R

which now leads directly to (4.43) for h= % If f(0)=0, then the same arguments together
with the bound |f(2)|<|2|"/2||fl| 1.0 for |2|<1, say, in I, I/, TII" and IV’, yield (4.43) for

h=3. O

dz< ||f||H10( oA A4 cd® t1/2>
z 2t

1-0 1-0

The following result is a Lipschitz version of the lemma above.

LEMMA 4.44. Suppose f€ HO. Then for all t>0,

ite clog(2+t) A(1+X
’/fA Ail $t2dz‘< (1f—(t)1/2) (:E_ ))HfHHlOH’I‘g T1||H10 (445)

Proof. Again we only consider the case Ay—Aj; the other case is similar. As in the

proof of Lemma 4.42 we decompose the integral
/ f(AQ—A1)e—itz2dz:/ f(Az—Al)e"itzzdz+/ F(Do—Ay) e dz
-0 |z|<t—1/2 |z|>t=1/2
=I+I1

Using Lemma 4.29,

L A
o5 (5)
< o (g gzlra=rilmsat 2 Ira=rilis

/ ”(ﬁ“) ‘1+2/\fH )

c(logt) A
S Vi(i—op

c
< %”f”Hl:O

L1((—1,1),dz)

[l zrollre—ri]lzie  for ¢ 2.
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In estimating II, we again only consider z<—t~1/2; the case z>t~'/2 is similar. Inte-
grating by parts, we obtain as before
= if(—i)(Ag—Al)(—l/ﬁ)
20Vt \ Vi

_4—1/2

! R (C RO

2it

z z 22

=T+IV+ 1 +1V'.
Again by Lemma 4.29,

|l |z collra =71l o

A
I|< € — 1,0
i< <l ((1_9)2||7‘2 rillna-+ T2
clogt
f
i £l zreo a

(17 el 57 )

A
=02 [lra—7i||gre  for t22.

Also,

_—1/2

1/2
1’| < #1374 </ |f’|2|A2—A1|2dz)

C
< m”f”mﬂ sup 2|A2(Z)—A1(Z)|

z<—t—1/
c cA
<'tm||f||H1:0 WHW 7'1”H10+1 lre—=7r1llg10(1+1ogt)

logt A
\Ct(;%(1—_9?“]0”111,0”7'2—7'1”]{1,0 for t>2,

and

0o Wfllgre clogt A
IVI< =57 Z<iiltll_)l/2|A2(Z)-A1(Z)|<”il/—zWllf”mﬁlh“z—ﬁﬂmov

again for t>2. Finally, using Lemma 4.40, we obtain for ¢t>2,

cllfllare A(14+X) logt
t3/4  (1—p)3 t~—1/4 Ir2=7all e

C s
00 < D 1/ G iy <

cA(1+A) logt
- W t1/2 ”f”Hlvoll'f'z—’f’l”Hl,o.

Assembling these estimates, we have proved

0 i logt A(1+A
] | rtaam a0 ae] < XL T ol il (46)
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for t22. On the other hand, by the proof of Lemma 4.29, for all ¢,

/ F(Aa—Ay)e " dz

S NlzemyllAr—Azllze

cA
<Wlmno (sl —ribio+ 2 ra=rille Hxlie )
(1-0) 1
cA
< a—ar I fllaolira—rillgro.
Together with (4.46), this proves {4.45). [

COROLLARY 4.47 (to Lemmas 4.42 and 4.44). Suppose rieHll’O, Irillze o<1,
[rillaro <A, i=1,2, and suppose f;€HO, j=1,2. Then for all t>1,

22 c 14+
‘/ (foAZ — fLAT) e dz ‘ SHARTS, ||f2“f1||H10
(4.48)
clog(2+t) A(1+X) T P —
R — 1,0.
+172 (1=g) Huo||lra—rillg
Let Dj;, j=1,...,4, be the jth quadrant in C\T,
Dy | Dy
T (4.49)
3 4

In the lemma below, H? denotes Hardy space. A general reference for Hardy spaces
is, for example, [Du].

LEMMA 4.50. Suppose f€ H'O. Then for 2<p<oc and for all t>0,

_ —2 g it0? ¢ | fllero
|Cr, srd2fe® memlw izl flare < STTo7% 1-9
ICoirr, r0F 572" o < W”‘S_anw(Ds)”f”Hl W“f”m 0,
(4.51)
¢ |fllare

Foas 52 —itQ? » < 2 <
G, 8% Fe | ——(1+t)1/2,,||6 (o)1 lrno < T

Suppose in addition that f(0)=0 and that g is a function in the Hardy space HI(C\R)
for some 2<q<00. Then for all 20,
— itO2
||CR+_>r9+f€ 7|
1Cm, r8+Fe iz ¢
+—>1" - ||
i < ——= gl zecc\r) Il | 51205 (4.52)
I, pg-Fet0%||pa [ (L8)172=17a IO
~ —i 2
IIC;wR+—>r9—f€ 07 2

where g; are the boundary values of g on R and §s =g+ on e"R,.

-~ - 2
e e
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Proof. Consider the first inequality in (4.51). The other cases in (4.51) are similar.

By Fourier theory,

f(2)= J% / e~ f(y) dy.

We have for any >0,

1
V2o

A2
Cr,pd 270 it0" =

where

] 2
Fi(y)= Cﬁ+_§r(5_26‘fox(0’a)ezt(O—y/2t) ),
Fy(y)= Cl_{+_)1'*(5‘2€_S<>X(a’oo)eit(o_y/2t)2)

. ) 1 . ig?
/f(y)e_”’z/‘“Fldyﬁ-ﬁ/f(y)e 4 /4tF2 dy,

(4.53)
(4.54)

and a=max(0,y/2t). (The factor e~¢ is included just to ensure that F>(y) exists in LP.)

Clearly F(y) is supported on R, . Assume first that p>2. Then for y>0,

ly|*/?

1Fu 2o ry < elld ™z mp Xl < ld 2Ny iy

and hence

1 : iy clld ey [ ; 1
— | d iy 4t g g____Jr/ P dy

t1/p

L#(I)

)67 Lo (py)

SO | .

~

For p=2, rewrite the integral as

1 > -2 _—eQf —q itO?
ﬁcfh_m(/zto(s 270 f(y)e e dy)-

Using Hardy’s inequality [HLP],

/:olf(y)l dy

tO

2 .
<2107 hsm,
L2(Ry)

and hence

clld=?ll=(p
——i7a 22 e

N

1 . .
HE / fem =0 W%y dy

L (1)

(4.55)

(4.56)
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For F;, first consider the case when y<0, and hence a=0. Then for p>2 and by
Cauchy’s theorem,

_ o _ (o 2 e _ it 2
ICR, (672670 O3 | 1y = ||Cirsap, oy r (8720 V20T 1,

it(O—y/2t)2)

<cl672 (= (pylle |l Lr(eiram.)

A2
zt()e

<872 | oo (o) €™ €O | pogeinsar, )

_ 102
<cll672 || oo (pyy € Lo (ein/ar,)
< (c/tM?) 167 oo (D),

by scaling. The fact that y<0 is used to obtain the third inequality. If y>0 then a=y/2t,
and for p>2, again by Cauchy’s theorem,

it(O—y/2t)

ICr, 58 %X (a,00)€ l| = ()

1C7 26,00y 10 2€ =0 O=¥/27 | Ly

-2 _ —eQ 7 — 2
= [ICyjat 4 einrtmy )~ 2e =0 OTI2 Ly 1y

it(0-v/20)% | o EATN)

<clld2(| oy lle LP(y/2t+€i7/4R ) S YR

again by scaling. Thus for p>2,

H \/% / dy f(y)e ¥/ Ry

Letting €}0 in (4.55)—(4.57), we obtain for p>2 and £21,

cll6?] o= (py)
< ———ﬁ/z—p—~ﬂf|lH1,o. (4.57)

Lr(I)

— _ it 052 C _
IR, (82N zoiry < 75162 o) | fll 20

As
- — ; 2 —
ICR, (872" ) o0y < cll6 2| zoo (I fllre  for all >0,

we obtain (4.51).
Now we prove the first inequality in (4.52). Again, the remaining inequalities are

similar. As before, we have the representation
- —e g it)? 1 3 —iy?/4t 1 g —iy?/4t
Cr,rg+€¢ fe = 7 fly)e Fldy+\/—§ fye Fy dy,
but now as [ f(y) dy=v2x £(0)=0,

Fi(y) = Cr, r(9+€ X (0,me ™04/ (1-€0)),
Fa(y)= Cf_br—>F(g‘re_eox(a,oo)eit(o_y/zt)Z(1 —e?)).



208 P. DEIFT AND X. ZHOU

As before, for y>0, the integral involving F) can be rewritten as
S=Ca ([ e OO ay )
Ver BT o

For ¢’ >2, using the inequality

( | 1w dy)q/ < ( | 1w dy>( | 1w dy)2

together with the above Hardy inequality, we obtain for ¢>0,

| ey

1103

c
< 7777 1 Lo
Ry PV

Hence for 1/¢'+1/¢=1/2,

1 . )
N

Now for y<0,

cllgellzary) cllgll mac\r)
S—w [FAIFTERS ey | fll 2o

L)

it(O— 2 i O3 —i
1E2 ()l < cllge™ O 7¥/2 (1 €¥0) || pa(einsam, ) = €llge™ (€770 = 1)l pa(einrar, )

Hence for >0 and ¢>0,

1 /0 : e —iy?a
— fe £0g=tv’/ tFy dy
H vV 2T — 0o L2(I“)

0 F = im /A2~ 2ty | —iet T/ 2 2
<ef dylf(y)l(/ dy g(c /Ay Pe=2" e W—u)
— 0

o0

0 . oo _ o 1/2
<C/ dylyf(y)l(/ dy¥?|g(e"™ /) e 2‘7)
0

—to

—t> 00 ) 1/2
[ anlit ( [tviateriype )

<e(t 342278 fllo 9 (O/VE ooy

Taking az%, we obtain

1 0o .
H—\/2/ fer=Oe W/ py dy
mJ-co

C
< g Il ellgll Hee\ry-
L2(r) 11/2—1/2q
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Finally for y>0,

o o3 ;
IF2(y)l|z2 < ellge™ 42 (1=e%0) | Lagy 2 einram, )

and hence for a>0 and ¢>0,

1 /oo‘ - —iy?/4t
—_— fe £0 g —iy’/ Fody
Hv27r 0 L2(T)

oo o ) 1/2
<c / dy | F(v)| ( / dy |g(y /2t + /A 262" |1 — givtu/2e <! “”'2>
0 1]

™ o0 o 1/2
<e / dy|f(y)|(/ dy |g(y/2t+ e/ Ay [Pe 2 (e W2 12 4|1 et /“71112))
0 0

Tay|f = A R\
ve [“anif) ([ ariatuasetippes)

Se(t™/4H3e/2 =3/ 4kel2 pma/21/4y ) 1o g (0/VE)

Again, setting =2, we find for >0,

2
1 bl .
e 30
0
On the other hand, as before,

lrocvmy:

C
L. : .
poqry D71 I fllzrollgll za(c\r)

_ itO?
ICk, 1 (g+Fe““ )2y < cllge lLamyll Lo < cllgllaracormy | fll 2o for all £>0,

+

and (4.52) follows. u

Applying Lemma 4.50 to appropriate choices of f (see w in (4.9)), we obtain the
first part of the following corollary. The second part follows from the formula ji—I=
(1-Cg,) " H(Cz,I)€LP(R), p>2. Of course, in order to prove (4.60) below, all we need
are the mapping properties of C%;_}it, etc. The full estimates in (4.59) for Cﬁ_}r will be

needed later.

COROLLARY 4.58 (to Lemma 4.50). For any 2<p<oo, and for all t>0,

£ o~y c A
”Cﬁ—mwa e < (1+1)1/2p (1—p)2’ (4.59)
MK
1Tl < = . (4.60)

(072 (1=

Remark 4.61. The proof of (4.60) clearly also shows that
c AK,
T+0)7% (1-0)?

as long as 71,72 €HYO, |rjllre <o, |Irjllgro< A, j=1,2.

”(I_Cﬁze)_lCﬁwI”LP <

We now prove a Lipschitz version of Lemma, 4.50.
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LEMMA 4.62. Suppose fe H''. Then for 2<p<oo,

+ +2 42 itQ? ¢ A _
IICR+—->F(62 _61 )fe:F ”L” < (1+t)1/2p (1_9)3 ”f”H110H7"2 r1“H1'O7 (463)
+ S+2  F42 itO? c A
”Cei"R+_.>1"(62:F _613{:)fe;1t ”Lp < (1+t)1/2p (1_9)2 ”f”HlvO”TQ_Tl”Hl’O' (464)

Proof. We only prove the bound for Cg ({65 2679 fe*©®). Again the other
cases are similar.

As in the proof of Lemma 4.50, we write for any £>0,
, 1 y - 1 y g
Cr 052 =072 fe 0ty = — /d WP 4 —— /d e VIR,
R+—>F(( 2 1 )fe ) N yf(y)e 1 N y f(y) 2

where now

Fi(y) =Cr, ,r((67%2 =67 %)e O x(0.0)e™O7¥/2)),

_ _ _ _ . _ 2

FQ(y) = CR+->I‘((62 2_'51 2)6 E<>X(a,oo)e“:(<> u/2t) )

and again a=max(0, y/2t).

Assume first that p>2. For Fj, again we only need to consider y>>0. By (4.35),

_ _ )\ a l/p
IF1 ]l Lo ry < el (65 % =61 %) X 0,0yl L7 Scmllﬁ—ﬁ”mﬂ (/ (1+|10g2|)pd2>
- 0

)\ 1 1/1’
<erm—=r2 —7r1)|roal/P (/ (1+]log s|+|log a|)? ds)
(1-0) 0

<c A
S (1-0)

Hence for t>2,

‘ \/%Tr / fly)e /"Ry

llr2 =71] 1.0 "/ (14 [log al).

L#(T)
C)\ o0 . l/p
<——2||T2—T1||H1,0/ |f(v)l y (1+|log y|+|log ¢]) dy (4.65)
(1-0) 0 t
cA  logt
< (1—_9—)2 iy (FAF7eER
For p=2, we can rewrite the integral as
| 2 ooy o [ F ) —iyotito?
F1 = ———,2—7TCR+__>F((52 —(51 )6 ¢ 0 dyf(y)e Y X(0,y/2t)
+LCﬁ (5'2—5_2)6_50/oo dy f(y)e WOTiO" = 4TI,
V2omr +-TT2 ! max(1,2tz)
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For t>2, by (4.35) and some elementary calculus,

1 -
1Tllzar) < / dy | F ()] 1652 =672l 120 9720

cA 1+logt [* -
<W\\r2—ﬁnmo—;/%/o dy (1+|logy)) f(v)

1+logt cA
= % W “f“Hlvo “7'2—7‘1“31,0.

Also,

1 oo L
I < |—=CRg, ,r(65%—=072)e=° / d e~ woHo
I ' ’\/2—7_(_ R+—~>F(2 1 ) X(0,1/2¢) . yf(y)

—iyO+itO?

1 B _ Cov o
+‘—\/§CR+—+F(52 2—07%)e EoX(l/Qt,oo) /2tZ dy f(y)e =11, +11.

Again for t>2,

Moo <655 x0a/m0 ol limo < E2ED 2 o=l

Set 9(¢)=f"dy|f(y)|. By Hardy’s inequality, ||glz2 <2||f||z1.0. For ¢>2,

ITs]| > < e

(672-07%) | " ay ()|

to

L2(1/2t,00)

0 (ar) () o

c(l+logt) cA
<2  flamollra—rallne

c

L?(1,00)

by Lemma 4.32. For F;, again we first consider the case where y<0, and hence a=0.
Then for p>2 we deform the contour as in the proof of Lemma 4.50, to obtain for t>2,
as y <0,

IR, (857 =387 2)e =0 O/ 20% 1y < ]| (852 =072) €| o (esnsam,,)

c¢(l+logt) A
STAm G-

by scaling and Lemma 4.32. For y>0, we obtain similarly for ¢t >2,

_ _ —9n N 2
ICr, (652 =67 %)e X (a,00) €OV Loy

— — i _ 2 1+10gt )\
<C||((522—(51 2)et(<> y/2t) ||LP(y/2t+e”/4R+)gc_tl/Tp m-g,
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by scaling and Lemma 4.32. Thus for all p>2, and for £>2,
1 i? c(l+logt)y A
i | a e~ W/ < Lo.
H o / y f(y) 2 o) t1/2p (1—0)3 £l e
On the other hand, for all ¢, and for all p>2, we have

ICR, (652 —072) £ |l 1o < cll(65 2 =07 2) fll Lo(rey)
T (1-p)?

0
1+s
/ ds ) H’I’Q—T‘1”H1,0
~15=0 llemy
cA

L — . -7 0.
(1_9)2 ”f||H1°||r2 1”H10

A
<A (ufumnfnmo

We conclude that for all t>0, and for all p>2,

_ _ _ 02 cA
||CR+—>1"(62 2_‘51 2)f€ *0 e <

(1= 0P (1+0)

(=)l

S (=P
we obtain the following Lipschitz estimate:

725 I lavollre=rill g 0

Using the fact that

COROLLARY 4.66 (to Lemmas 4.50 and 4.62).
c (1+)\)2
(1+t)1/2p (1—p)4 lr2 =71l 1.0

LEMMA 4.67. Let fe HY. Then the multipliers O+ O f(A1—A2) are bounded from
LIIP, g>p>2:

IC% (@5 ) s <

cA
10£(AF =AY Lamsrr < ——5 T2 =71l 1ol fllLoe
(1-0)
o (4.68)
< =0 Ire—=rilleroll fllre-
Also, the multipliers 0—O(ws —wy) are bounded and
s~ c(1+A
105 ~ et < A s (1.69)

(1-g)?
Proof. For ge L1(R),
lgf (A=A e < f e llgllza | (A =ATHI pparia—s

A
S a%?)z ”f“L°° ”g”L'I ”7"2 —T1||H1,0,

by Lemma. 4.29, and this proves (4.68). Setting f=r,; or 7; in (4.68), and using |A;t1|=1,
we obtain (4.69). t
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LEMMA 4.70. For q>p>=2,

.. c K K,(1+))?2 o 2] ,
||N2—N1||Lp(ﬁ)<(1+t)1/2q (1—o)* [ra=r1llgo < 1/2¢ 4 Kq||7'2—T1||H110-

Proof. fiz—fiz=mq+ma, where my=(1-Cg,,) 'Ca,p-iro(1—Cap) ' Canel and
ma=(1-Cg,,) *Ca,—a,,I. By Remark 4.61 and inequality (4.69), we obtain

CKQKP/\(1+)\)
(o) /2a(i gyt 2~ Tillves

[mallze <

From Corollary 4.66 to Lemmas 4.50 and 4.62, we have

cKp(1+2)
0710

lmal| s < llro—71] 1.0

This proves the lemma. a
Recall from §2 that if p=p(x,t, 2) solves (1-Cy,)pp=1I, then
m=m(a,t,2) = [+Cu(wj +w))(z), =¢R,

and m~I+Q/(—2miz)+... as z—00, where Q= [ p(wf +wy) as in (2.20). Similarly
m=I+Q/(—2miz)+... as z—00, where Q:fﬁ {Wh+w, ) (cf. Theorem 4.16). But 6=
eCR—l"g(l_'T'Z):—.1+(fR710g(1—|r|2))/(—27riz)+..., and hence from (4.6),

Q:Q+(/R log(1—|r|2)) o3 (4.71)

Now if ¢(z, ¢} solves NLS with ¢{z,0)=(R~1(r))(z), then by (2.45),
_( 9 @b\ _ado
Q_<q(w,t) 0 )_ o ¥

ado ~

s

But then by (4.71),

For later reference, we note that expanding to order 1/2%, we obtain

ada([ﬁus(w;-f—wa)ds) =ada(/fiﬁs(iﬁ;-i—ﬁ?;)ds)+iQ03/_Ooolog(1_|r|2)ds. (4.73)
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LEMMA 4.74 (smoothing estimate). If r€ H', ||r|lpe <o<l, ||7|zr.0<A, then for

all t21,
~ cA(1+X)
L —t
|Q| ~= t1/2(1—g)5

If in addition r€ H}"', ||r| g1 <n, then

N 11
Q) < —nEm <[ ] for all t 0.

(1+t)1/2(1-9)® ~ [1/2 5

Proof.
Q:/ﬁ(ﬁ3+ﬁ5)+/ﬁ(ﬁ—1)(@$+@§)
— [ @3 +d5)+ [ (oD@ +T5)+ [ (Cai=D) 5 +5)
R R R

From Lemma 4.42 and (4.9), for t>1, |Q®|<c(1+A)A/t}/2(1-p). If re H, then clearly
IROILcirllgra<en.
Now, by triangularity,

Q) = [ (g5 +CRm)(@5 +Tp) = [ ()T + [(Clgw;)wa
R R R
= J (a0 5O g0+ [ (G5 Gy

where we have used the fact that Cg oW Wy -Cz ﬁ;-—-ﬁ; on R, and equals 0 on T'\R.

Thus, by Cauchy’s theoreni,

@< [ (Ca_,c)(Ca_c00)

{/ R—T W (Cf:—m@;)
c A2
< )
A+0"72 (1=¢)*

by (4.59). Similarly, using (4.59) and (4.60),

2)|<‘/ R—»r’u IwG)Cﬁ '/ R—)I"u Iwg)Cg R—T W

corKo A < coX?
S U+OVA(=0 (H0) /A=) [0 2(1=)

The above inequalities prove the lemma. ]



PERTURBATION THEORY—A CASE STUDY 215
LEMMA 4.75 (Lipschitz smoothing estimate). Suppose ry,ro€ HYY with ||r;|| g2 <7,
llrilloe o<1, i=1,2. Let 2<g¢<o0. For all t20,

0 3
1/2q+1/4 7

c(1+N)3K,
(11 1)/2+174(1— g

1Q2-Q1 < g re=riflgrs < [ ] Kqllra=r1flmua.

Proof. In the notation of the previous lemma, set Q§k>=Q(k) (rj), £=0,1,2, j=1,2.
Then |Q2—Q1|<|QY - Q| +1Q8V - QM| +1Q - @'?)|. By Corollary 4.47, and the fact
that | [ FA%eF 2 |<c fllga,

clog(2+t) (1+)?

(0) _ ~(0)
Q2 - TIS T (1=,

”?"2—7’1”31,1 .

We find

1 ~ ~_
@8- <] [ (Con-a D@ty T3)

LAl

Again by triangularity, extension to I' and Cauchy’s theorem,

J

+| [ Cans D@50+ 53050~

+

<

/F(Cri;_}r(62‘9~1171’9)01§{_>rﬁ§9 +~/I‘Cﬁ_>p(a;9—ﬂ;-l'—9)clt{_>rﬁ§9

¢ AM1+A)?
< —rillg,
(1+t)1/2 (1__9) ”TQ Tl”Hl 0,

where we have used Corollaries 4.58 and 4.66. The estimate for f2 is similar. Thus

cA(1+ )2 1
(1—0)% (1+t)1/2

105" -Qt"| < lIra =71l .-

Expanding, we obtain

98- 1< [ (o= 1)@+ 50| +| [ (Con =)@+ 75)
R R

+ l/ﬁ(cﬁ)w (1 = 1) (W3 +igg —Wig—Wiy)

LI

+ [ |+
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As before

IS

/ (CE_ (fin—1)(Bi3g—073)) C_, -39

#] [ (Ca o =150~ W) G|
Now by (4.69) for ¢>p=2,

5 o c(l1+X -
V2= D) (@30~ i)l 2z < S5 iy g in — T 2o
(1-0)

¢ A1+ K,
S (1= 12Tl

by Corollary 4.58. Then, again by the corollary,

JiE

Ll <] [t ntm-nacs @t

3/

C/\2(1+/\)Kq ||’I‘2—-1"1||H1,0
(1+t)l/4+1/2q(1_g)6

Now for ¢>p=2,

+ / (Co_ (fn—1) ) CL_ (g —iiy)

co MKy 1 (1+A)? coA(1+))2K,
S o7 (o (v (1ot 172l = gy g 7277l

again by Corollaries 4.58 and 4.66. Finally, by Lemma 4.70 and Corollary 4.58,

J

<

/F (CE_ (=) T1y) O g

(Cr:c—w(ﬁ? — ) wip) Cf | Wa

coK2 K (1+))? T— A
Syt T T/ g)?
_ coA(1+A)? KoKy llra—71)l 0

T 1+ 21— )8

Thus for any ¢>2,
C)\(1+)\)2Kq”7‘2—7‘1”H1,0
(1) 1/24(1= g7

Assembling the above estimates, the lemma is proved.

2 2
108 -QP| <
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5. Supplementary estimates

This section plays an intermediary role. Our goal here is to supplement the estimates
in §4, and place them in a form that is directly applicable to the analysis of the evolution
equation (2.46). We continue to use the notation of §4 without further comment. Thus
m solves the normalized RHP (R, vg), etc. Throughout this section we consider reflection
coefficients r,71,75 in H}"', and as before, we assume that their L=°-, H'°- and H'!-
norms are bounded by p<1, A and n respectively. If h, say, is a quantity which depends
on the reflection coefficient, h=~h(r), and h;=h(r;), we write Ah=hy—h;. In order to
simplify the writing of Lipschitz estimates we will replace quantities h; simply by A. With
this notation A, in particular, operates formally like a derivation: Ahg=(Ah)g+h(Ag).
As 1,7 have the same L>-, H'9- and H%'-bounds, the Lipschitz estimates one obtains
are not affected by this lack of precision. In addition, to further simplify notation, we
occasionally use wg, which is defined in §2 as (w,,w}), also to denote wy +w, (see e.g.
Lemma 5.1 below). These abuses of notation should not lead to confusion. Note finally,

X = (ml xz)
r3 X4

is a (2x2)-matrix with det X =1, then

X_1= Ty —Z2
A

and so estimates for X immediately imply the same estimates for X!, for example,

once again, that if

estimates on ||m.—1I| s imply the same estimates on ||mz'—1|r»=|m+—1I|Le, etc.

LEMMA 5.1. Let 2<p<oo. Then we have

1 o1
le—TIllr2dz)s Ime—TllL2(az) < 0 1)’
(1 0]
=TI Lr(azys Imae—1I || Lr(az) < 0 0 K,
0 17 ,
[ ApllLr(dz)ys 1AM Lo (az) < 0 0 K A7) g

1

Moreover, the same estimates are true if we replace p,my by p~!, mzt.

Proof. Use the equation p—I=(1—C,,) 1Cy,I, the relation m,=pv*=p(ltw*)
and the second resolvent identity A(1—Cy,) =(1=Cup) H{Awe)(1-Cy,)™ ', as ex-
pressed in the above simplified notation. O
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LEMMA 5.2. 2{p—Iy=p;+po, z(ms—I)={my)+(mz)2, where

1

d 20 y mig Loe(dz) X -

Nl zqanys Imissllzagan < [

Proof. Using pu—I=C,,, 4, we have

<Z>(lu’”‘[) = <2>Cwa(}i‘1)+<z>c'w9[=Cw9<z)(g‘1)+cw8<z>_é}ﬁQ‘

Using the fact that C,,Q=QC,,, I, we obtain

(1= 11= (1) [ Q][ (1)1 -5 Q00 ()
= ) 2.
Now 2
!Q\=‘/(u~1)w9+/wa <-1€«:£—)+77-
Hence

e ch [ A2 1 2 cA? 1 1}
< < ~< i< :
il 2o (i) <) 5] el < s

The proof for m. now follows from the relations my :,uv;‘. (1]

LEMMA 5.3. In the notation of Lemma 5.2,

Bumlstans Vomasloza < [ o] 1Arms, ()
Du2l Lo (az), NAMa2ll1=(a2) < {g i} HArfzes. (5.5)

Proof. Let w be the data corresponding to m_. Again write

e =1)= [(1-Co) o) 5 QU= o) |~ g Q=4

Now

0
1) Cullran < ]

and

NA(L~Cy)  Cul)lz2rany € HA(I=Co) ™ Cu{2) 12 (any (1= Cu) T AC (2} [ £2(a2)

</ 18kt o ﬂumnws[g N
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Similarly
01

IA0=Cu) Cu iz <[

:l ”AT”Hl,l.

Also,
aal<| f@nul+|[ (u-1)aul+| [ aul

0 1 1 0 1 0
< A 1,1 A 1,1 A 1,1
L P R N [ LA PR e

([ 5]+[o t]re)iartma<]y 3] iarmn.

The above inequalities, together with the inequality

Q<)
Sloo1
from the proof of Lemma 5.2, prove (5.4), (5.5) for p. Again the proof for m. now follows
from the relations m, =pv; . O
LEMMA 5.6.
2y1/4 2\1/4 11
1A+ =Dllzaaz), A+ (ma=Dllea@s < | g | Kas

0 2
HL4+0*) (A paazys ((1+HODYH(Ama)llrs(az) < K| Ar) g
01

Proof.

2\1/4 _ 2\1/4
: /(Hz )= (14¢7) 1(Q)we(C) d¢

2N1/40 1y _ o\1/4, |+
(I42°) Y (u—1) = Cyy (14+07) Pt o =

= Cup (1+0H) Y44+ Co, 1+0) V4 (u—1)

1 (C+2)n(Q)ws(C) d¢

2ri ) ((14+22)V44+(14C)VA)((1422)Y2+(14¢2)1/2)

Thus
(1+22) 4 (p=1) = (1=Cuy) ™" Cup (14+0%)/*

(1=Cu) o / (¢+0O)u(Qwa(Q) de (5:7)
” (ORI VA(1+07) 2+ (14) 73)

2w
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The L*-norm of the first term on the right-hand side of (5.7) is bounded by

1 0
2 2
KilOrI 21 <cka ]

The integral in the second term on the right-hand side of (5.7) is bounded by

c c cA? 1 11
— ' < < — . 5.8
a2y IRwolle < 5o (1—g+n) (1+22)174 [0 1] (5.8)
Thus 11
040 =Dl <]
Now using (5.7), we have
(1+2)Y4 A= A(1-Cy,) 1 Cu, (1+0%)1/*

1 / (C+ OO wa(C) de
2mi ) (T 05 A+ (L+ A (T+02) 2+ (14 C)1/7)

-1_1__/ (€+0)A(pu(Qwe(C)) dS
2mi J (1402 4+ (142 )((1+02) 2+ (1+¢2)1/?)

—(A(1-Cuy,)™")

—(1_01119)

= TT1+11I,
where
111 24 (az) S NA(L=Cuy) ™) Crug (1404 o a2y
(1= Cup) " Cawe (1 +0) || s azy

<eRZarlman+Kalarte< o | K2ATn,

1 1
IM0ssqon < KD [ .

ITIL)| o gazy < cKal|Apwe || 11 (dz)
S cKa([|Apll 2o Irll L2 @z H =Tl L2 (@ | A7 22 (d2) + | AT | L1 (a2))

0 17f1 O 1 0 0 2
<ceK +1})A 11 K K4||A 1,1,
w1l oo of+o 2] r2)natns <o maanta

Finally,

1(1+0%) 4 Apll s az) < XN paaz) + 1T 24 ) + 1T o sy

01 11 0 2
< K? K? K A 1,1
([0 ofxt+[g 2] mielg o] )rarta

0 2
S
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as Ky2Ky=c/(1—p). The estimates for Am, are similar. d

Let

L=0,—i(z~-2zt)ado. (5.9)
Clearly Lfo=f}, where again fo=e?2d9f. Also (Lf)_¢=0,(f-0).

The operator L arises naturally as follows (see the discussion on LP-bounds, p>2,
for m*—1I in [DZW, §4 following Corollary 4.5]). Differentiation of the jump relation
m,=m_vy leads to

d,my =(d,m_)Yvg+m_(i(z—2tz)ad ve+(,v)e), (5.10)
which implies bounds for ||0,m_| L2 that grow quadratically in = and ¢t. The point,
however, is that one can rewrite (5.10) in the form

(L+2tQymy = ((L42tQ)m_)vg+m_(9,v)e. (5.11)

The term 2tQ) is added in to ensure that (L+2¢tQ)m. € L?. Then (5.11) is an inhomoge-
neous RHP (see IRHP2, [DZW, §2]) with an inhomogeneous term that does not involve
x, t explicitly apart from 6. Using the associated singular integral operator 1—C,,,, one
can estimate (L+2tQ)my in terms of |my||re (and [|7|g1.0), as in (5.22) et seq. be-
low. But then one can hope to estimate ||m_||z~ in turn in terms of (L+2tQ)m. by a
Sobolev-type estimate, and hence obtain a priori bounds which grow at moderate rates.

The lemmas that follow show how this scheme can be carried through.

LEMMA 5.12. Suppose that fe€ LP(dz) for all 2<p<oo, and that (L+2tQ)(f+I)€
L?(dz). Then for any n>3,

£l () < 20M ™ (L 4+26Q) (F+ DI AN
+2n ! 26QI ([ fll e+ ),

IAF (| poo(azy < 20 | ALA2Q)(F+ D350 NAFUSEDLT

L2(dz) L2n=D(dz)
1/n —1)/n
+2n1/n l2tAQ|1/n ||f“L<1(dz) “A‘f“(lji(dig

+20! " 2EAQI™ AL Z Y +20 M QP I AS o a-

Proof. Let e;=(;) and e;=(°) denote the standard basis vectors in C2. Then for
1<4,5<2,

(etf-ol2)es) =—n [ (cl0cS0e)el o) de
= n [THELRAQU ) oty (et fve)) " g

+n/ ef(QtQ(f—I—I))_gej(eff_gej)"‘l dc.
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It follows that

et £ (2)es|" < (LA20Q)(f + D)2 ) 1 I 2nmn) gz + 20U N Ttz + 112 )

and

£ 1l oe (s < 20 ™ (L4 26Q)(fF+ D oy 11 S
n n—1
+203/" 26QI™ (|| Fllamy + IS 1S )-

Here we have used the fact that for a (2x2)-matrix A,

1/2

2
— .A2 ..
IAl= ( > 14l ) <2 max [Ayl.

i,j=1

Similarly,
(€A so()e) =—n [ (0 A0 (A _pe;)" dC
= n [ (AL Q1) 06 Do) dC

+n/ooeﬁ(%AQ(fﬂ'I))_gej(eﬁAf_eej)"—l dc.
It follows from the equality AQ(f+1)=(AQ)f+AQ+QAf that

CEAf(2) eI <IAL+26Q)F+D) 2@ IAF T3y + 2U2EAQU L (any | AF W
2t AQUIASIT ) + 720 1QN A I

and

1Al gy < 208 | ALA2EQ)(F+ DI ot g | AFI 5020
+2n Y 2LAQIY ™| It 1A FI o™

Ln(dz) Ln(dz)
+2nV/™ 2t AQI M AFI Y 20 2t QI ™ | A S| o ) O

Introduce the operator
L=izado—2td,. (5.13)

Note that L is very close to the operator Lysy=x—2itd;, considered by McKean and
Shatah [MKS]. This operator commutes with i9;,—d2 and plays a central role in their
analysis of nonlinear Schrédinger flows. We may think of L as a matrix version of Lysh-
As we now see, L is also closely related to the operator L introduced above.



PERTURBATION THEORY—A CASE STUDY 223

LEMMA 5.14.
(L+2tQ)p= (8. —L)u, (5.15)
(L+2tQ)my = (8, — L)m.. (5.16)

Proof. Equations (5.15) and (5.16) follow directly from the fact that p and m. are

solutions of the equation d,m=izadom+Qm. O
LEMMA 5.17.
+1 1 1 2
I +20QU e, WL+ 2@, NEA2QMT Nz < |y 5| Katnn
(5.18)
1 2/n

I =Tl Lo ey lIms =Tl oo azy, M =1 || oo az) < [ ]K2(n—1)7 (5.19)

~1/2n 5/n

0 1+2/n

i 5/ } Ko(n_1)- (5.20)

||ﬂ:t1”L°°(dz)7 lml oo (dz) ”m;1||L°°(dz) < [

Proof. Tt follows from the equation p=1I1+Cy,u and the commutation relation

<>C*—C*<>=—L (5.21)

27

that
(L4+2tQ)n=2tQ~2tQ+C* (L+2tQ)pwy +C~ (L+2tQ)pwy

(5.22)
= Couy (L+26Q) i+ Co 1.

Thus (L—I—QtQ),u:(l—Cu,e)‘le/gu, and by Lemma 5.12,

C
(E+26Ql s < 7= Il

c —1)/n
L (120 (L4 20Q)uull " =T St

g 1__9 L2(n—1)

n n n—1
+2n /™2 QP (=T | pn + =T 22D™).

Since for a,b,y>0, y<ay'/"+b implies y<a™ =1 4nb/(n—1), it follows then from
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Lemma 5.1, (4.20) and the relation @=(1/2n)ad o Q that

[(L+2tQ)pl 2 < (=o)/-D =Tl L2

n n n—1)/n
1, (H2OQI (=Tl + =TI

< [n/(%_l) n/(:—l)] [tl) g] Fann
P [ (P s R ey )
("7 )t o o)) Ko

< ! 2 K
X _1/2n 3 2(n—1)»

as n>>3. The estimate regarding p~! follows from the facts that

1 22 —H12
I‘L =
—H21 M1l
and that 9, —L is an entrywise operation, i.e. the entries of (8,—L)u~" are the same as

the entries of (8, — L) apart from some signs and a rearrangement. Now by Lemmas 5.12,
5.1 and 4.74,

=11l <20V (LA 20Q)ul 2 =T G2

2t/ M2QI (=1 + =111 Y™)

Ln—1
§|: 1/n 2/n [(n—l)/n 0 K(n_l)/n
—1/2n% 3/n 0 0] %D

1/n  1/n 10 (n—=1)/n 0] (n—l)/n)
Kn+ K,~
+[—1/2n 5/n]([0 0} [ 0 o] !
1 2/n 1 2/n 1 2/n]
< Kom_1) + K, < Komn-1)-
[—1/2112 3/n} 2An=1) [—I/Zn 5/n] " [~1/2n 5/n] 2
The estimate regarding p~! is the same. We have proved the first part of (5.18) and

the first part of (5.19). The second part of (5.19) follows from the first part using the
relation my=pwvy, and then the third part of (5.19) follows as before using det m, =1.
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Since 8,—L is a derivation, by Lemma 5.14 and the fact that (az—i) fe=14, we
obtain (L+2tQ)m, = (8, — L)pvg =((8, — L)u)vi +p(v*)}. Thus

I(L+2tQ)m ] 124z < cll(0: _z)ulle(dz) 7l oo az) + 1l Loo (azy 7 1| L2 az)

2 0 1+2/n]K [1 0}
S|c1/on 372 YT 120 5/ T2V 0 0

<[ L2k
Sl-1/2n 3 A

As &, —L is an entrywise operation, the estimate regarding m7 ' is again the same. This
proves the second and third parts of (5.18). Finally, (5.20) follows trivially from (5.19). O

LEMMA 5.23. For n23 and 2(n—1)>=p>2, we have

0 2+3/n

K2 Ar|| gaa
1/2pn—3/4n 1+7/n] 2 [ A7l

JAL+26Q)ul z2as) < [

0 3
<{—1/4 10/3]K§(n—1)llArllH1,l

and

0 1+3/n

2
1/2pn—-3/4n  T/n JKQ("—I)“AT“HM

Al o) < {

T
<|_Un 1ra) Ko ulArlir

Remark. The condition 2(n—1)>p is only for convenience in order to write the final
estimates in the lemma in a compact form.

Proof. Using (L+2tQ)u=(1—Cuy,) ' Cyy i, we compute

A(L+2tQ)/1' = A(l_cwo)_lcwéﬂ
= (A(I—Cwe)_l)cwglj"“ (1_Ctve)_ICAw'gu+(I—Cwe)_lcwfg A“'

Thus by Lemmas 5.17 and 5.12,

0

1 0 0
S P L B PR

0 0
IA(L+2tQ)ullze < [ o

0 2

0 0]f1 O
Ap|ln=
o 1lle o|1auts
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0 0 1+2/n 1 0
< A K n— + A o (dz
S il S i VP

0 242/n
[ :lKQ(n—l)”Ar”Hl-l

-1/2n 2+45/n
10 1/n (n—1)/n
o p |IAC+2QullE" 1AM L)

F26QIY ™ =T [ | Apl D/

H2tAQM ™ [lu— T I ApN T D" +(2tAQ1 ™ | Apl )
Therefore, as in the proof of (5.18),

0 2+42/n

1 0 n/(n-1) %
~1/2n 2+5/n | Y

A B TV R

AL+ 2Qulin < |
]. n n— n
tly o] ReaQr i nAu g

10 n—1)/n
Fly 3| RAQET AN G 1Al

<[5 waenllo o] Keotarti

242/n
-1/2n 2+45/n

H1/2zm 3/4n i;Z}Kl/"[lgn g]Kl/n

oy
o
<[ o a1
|
o

+ :( Kg(n_l)”AT’”Hl,l

+

0 1

-1
3/”] Kl/n l:O (TL )/Tl:l K£2111~2)/n||A7'||H1y1

1/2pn 3/4n T/n 0 0

' H ]i//zn ;;:Ho O}KQHAran

243/n

< K Ar|| s,
[1/2pn—3/4n 1+7/n J 2(n~1)” | P7ee

as n23, 2(n—1)=p>2. The second inequality follows by Theorem 4.16 and Lemma 5.1.
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Hence

1ALl L < c(IAL+2tQ)ul 12 | Au T2+ 126 Q1Y ™ | Apll
+126AQIY ™ | Ap Y [ 2EAQI M T | P N Apl TP

<[ 0 3/n } K™ A [0 ("_1)/"}K2<"‘1)/"||Ar||(,;’;}>/"

—1/4n 10/3n | 2»-1 HLL 0 2(n—1)
L_1/2 5 0 0 n Tl g1t
_ 0 31" 1 im [0 1 (n=1)/n (2n—2)/n (n—1)/n
+ _1/2p—-3/4 7:| Kp/n ”AT“HI,I [0 0:| Kn—l “[S’I‘“Hl’1
0 314/
Tl1j2p-3/ 7] K/ Al
1 o1Y" 0 11»b/n o
X 0 0:| Krll/n|:0 0:| KS?”_Z)/"HATH(;L})/

0 1+3/n
K2 Arll,
[1/2pn—3/4n T/n ] (-1 |AT][Fr.2
0 2 )
S [—1/4 7/3] KQ(”—l)”AT“Hm- -

LEMMA 5.24. For ge HY', and hence for re H"'

LIl

—_— 1 S ,
lali =5 [logt-Ir®)< 5
0

1
1 I7]l L2 1
llgllz= < Jon W < [O 1/2] ,

1 |07l [1 0
Oy S—=7""773 <
10:4ll 2 Ax (1—0)1/? 0
Proof. The inequalities follow from the identities

/|q|2dx:—~2—17;/10g(1—!7'|2)dz, (5.25)
Jt0uaP+lalt)do =~ [ 10g1-IrP) (5.26)
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for the basic NLS-conserved quantities, probability and energy, respectively (see (2.32),
(2.33) with V(y)=9?). These identities are proved by expanding loga(z) in powers of
1/z and using (2.10c), as in [FaT], for example. O

For the perturbed NLS equation (1.1), we must set A(s)=2(I+2)"!s!+2)/2 in (2.35),
and we obtain 0
. q
G(q)=—ilql .
(q)=—ilq| (_q 0)

41 1-1
(1-1)/2 51—4]'

LEMMA 5.27.
IG o 18:G s < [

Proof. By Lemma 5.24 and (4.20),

2 0 -1 -1 [+1 -1
v<ellgl?a gl < = ’
Gl < cllgliz=llaliz [0 1”(1_1)/2 51—5] [(l—l)/Q 51—4}

10:Gl 1 < cllall 2 18zgll 2 1l
2 0 -1 l—l} [ 1+1 l—1}
< = ) a
0 1)|(@-1)/2 5I-5 (1-1)/2 5l-4

We compute, using Lemma 5.14,
iqQ-= / (Epyws-+uLwp) = / (Ep)we -+ (8¢ Yw) = / ((=0s+ E)ywo— )

:_/(((L+2tQ)u)w9—(u~1)wé)+/wé
.=_LQ+LIQ~

By Lemmas 5.17 and 5.1,

L@l oo (az) < INL+2tQ) ) 22z 7l L2(a) + W= T L2z 7'l 220y

o2 2], 2o o2 2}[{
Slo1/on 3720V 0 1] S -1/2n 3] AT

Together with the fact that w, and hence v/, is off-diagonal, this proves the following
result.

LEMMA 5.28.

2 2
L > (dx g
oz <|_ o s

1 0
]K’z(n—l) and ”L/(,2”L2(dx)<077<[0 0}’
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LEMMA 5.29.
“sz“LZ(dx) < :(1—1)1/42_11/211 51;-—21J 2(n—1)> (5.30)
LGl 12 (ax) < :(l—2)l/;il/2n Sll—ﬁi/QJ Kon_1), (5.31)
I1EG v o < :5/2—1l;)1—1/2n 5zl:3/i/f;p} Koy Tp<2 - (532)

Proof. Estimates (5.30) and (5.31) are just special cases of (5.32), while (5.32) follows
from (5.30), (5.31) and the interpolation inequality

I£llze < IFIZ22P YA (5.33)

Using the identity —2t9,|q|'=31|q|'~2((izq—2t0,q) G+ (izg—2t.q)q), we obtain

ZG:~i(ixada—2t6x)|q|’(_0q_ g):'i(_o/; g) (5.34)

where 8=|q|'(izq—2t8.q)+1|q|' 2q Re(q(izqg—2t0,q)). Thus by Lemmas 5.28, 5.24, and
(4.20), together with the fact that the off-diagonal part of LQ has the form

0 (iz—2t0;)q
(-(m—mz)q 0 ) ’

we obtain

ILG |2 (az) < clllal' (iz—2t0;) g +1lal'~*q Re(g(iz—2t8:) @) L2 (ax)

-
<ellallze lallze [ Lallze +ellal o o) | Lol 2 (an)

g[; 1?2“(&2)32 511_—15H—132n z]KQ("‘1’+[l/l2 5llH(1) 8}

B 142 H1 ], [l
T la-1/2-1/2n s51-3/2] VT 2 sl

I+1 I+2

<[(lﬂ1)/2—1/2n 5l—1}K2(”—1)'
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Similarly,
LGl (azy < cll gl (i~ 205 ) g +1ql" 2 q Re(q(iz —2t02)q) | L2 (ax)

<cllallfz lal =2 1Ll Lo +clial 2 (as lall Toe gy 1 ol 22 a2)

<[§ ?][(ll-_;/Q 5§:30][—12/2n Q]KZ‘”‘”

2 VA | P | B
+1 -1 ]

142 !
:[(1—2)/2—1/% 51—6]K2("‘1)+[(1—1)/2 51—q/2

+1 +1
< [ ]KQ(n—1)~
(1-2)/2—1/2n 5l—11/2

w

Here we have used twice the fact that (1—p) ! <cKop(n—1)- O

LEMMA 5.35. Let n>3 and 2<p<2(n—1). Then for Lg and Lg as in Lemma 5.28,
HAL’QHLz(dz)<c||A7'HH1,1 and

1 2+3/n
} K2, A

ALg| <
ALl [1/2pn—3/4n max(1+7/n,2)

1 3
< K2 A 1,1,
[_1/4 10/3} 2(n—1)|| la

Proof. The first part is trivial. For the second part, we compute
J1aws2Qutwo+ [ (@2t [(@uug- [ =150,

<AL A+2tQ) | L2 az) 17 L2 (az) + L +2¢Q)pll L2(az) | AT [ £2(a2)
AL L2(an) 17 | L2 (az) F =T L2(d2) | A7"|[ L2z

0 243/n 10
< [ Ky lAT | 1 [ ]
1/2pn—3/4n 1+7/n 00

|ALg|=

1 2
+ Kon-1)|Ar|[gr1n

-1/2n 3
01 1 0 1 0
+[0 0}K22||A7”HHL1[0 OHO 0]K2||A7”||H1,1

(by Lemmas 5.23, 5.17 and 5.1)

1 2+3/n 1 2] (11} [1 0) ,
< K. A 1,
([1/2pn——3/4n 1+7/n]+[—1/2n 2]+[0 0%[0 0] 2n—1) 1 AT|| o1
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(as Kan-1y>Ko=c/(1-0))

1 243/n
< [ Koy A7 1

1/2pn—3/4n max(14+7/n,2)

1 3
< K2 A7) g1, O
[_1/4 10/3:| Z(n—l)“ THH

LEMMA 5.36. For Lg and Lg as in Lemma 5.28, 2<p<oo, n>3, 22p'>1,
l [+4
1/2+1/2p—1/2n—3/4 5l+1

! 143 )
n—n) 1A || 12
1/2+1/2p—1/2n—5/4 5l—-7/2] *"Y

AL g am < [ ] K2y 187l s,

VAL 1 (am) < [

and

l [+5-2/p'

K; AT g
1/241/2p—1/2n~1/4-1/p’ 5l+11/2—9/p’] 2(n—1)” || g1a

1ALl iany < [

Proof. Let 2<p<2(n—1). Using Lemmas 5.28, 5.35, 5.24, Theorem 4.16, the form
(5.34) of LG, and the form of the off-diagonal part of LQ, we compute
IALGI| 2242y < c(1Ag]) LQII L2 (ae) + 1A 242 LQI L2(uz) + Il gl ALQ 12 (ax))
<ellalf= gz gl L2 (a) | Agl| Lo () | Ll Lo (a)
el 5o (g |1 A4l Lo () 1L || 2 ()

+C||QHlL'oi(dm) g/l z2(dz) | ALl Lo (az) + C”q”lLOO(dz) “ALZQ | L2 (dz)

1 117%r1 o 0 3 2 2
< K, ||A 11 Ko
[1/2 5] [0 1/2H1/2p+1/4 7] pharla [—1/2n 3] 2

+[1}2 ;}1_1[1/2;1/4 ﬂK””AT”"”'l[é g}

J{ 1 1]’"1{1 0 H 0 2+3/n ]
1/2 5 0 1/2][1/2pn—3/4n max(1+7/n,2)
XKzz(nq) (AN Ip7ese

1 1T
1/2 5 T Hi1
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<([ I+1 1+3 }+[ ! l+2]

S\ L1/241/2p—1/2n-3/4 5l+1/2 1/241/2p—1/4 51+1
N l [+1+3/n ]
1/24+1/2pn—3/4n—1/2 max(5l+7/n—7/2,51-5/2)

1 1 )
+‘:l/2 5l})K2(n—1)“AT”H1,1 (as p<2(n_1))

{ {+4
< [ }Kg(n—l)”AT”Hl’l-
1/2+1/2p—1/2n—-3/4 51+1

Similarly,

IALG| 23 (ax) < c(1A(a) LQI 2 a2y Al %0 LQI| 1 4y + 1| gl ALQ| 21 a)
< ellgl 7 am 197 2y 180N v a2y | Ll £ ()
+C||Q||lL_o§(dm) lgll L2(az) | Al Loo (az) 1 LG | 22 (az)
+ellall 72 aay gl 22 (ao) 1ALl L= (az)

+cllq| lL_ocl(dI) gl 22 ae) 1A LGN L2 (dx)

<o o] o ) Lo 3

2 2
XKPHAT'“HLI [_1/2n 3:| K2(n-1)

+[1}2 ;H[(l) 132”1/2;11/4 ﬂKFHAT”HI’I[(l) 8}

1 1772 0 7P 0 2+3/n ]
+[1/2 5] o 1/2] [1/2pn—3/4n max(1+7/n, 2)

X Ky A7 [

1 117 o
A 1,1
[1/2 5] o 1/2]ll rlla

<< I+1 l+2]+[ l I+1 ]
S\ 1/2+1/2p-1/2n—5/4 51-4) |1/2+1/2p—-3/4 51-7/2

N l [-3/n ]
1/241/2pn—3/dn—1 max(5l+7/n—8,51—7)

! -1
K? Ar gia
+[l/2—1/2 51—9/2}) 20 |87l
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[ l +3
<

K? Ar|[ga.
1/24+1/2p~1/2n—5/4 51~17/2 2(n—1) |1 AT{[ 21

Finally the L,-results follows as before from (5.33). a

LeMMA 5.37. For any 2<p<oco, A3, Q=1+11, where

1 4
1/2p 8

(&
} Kol A, 0 e ey € s Al .

12l oo (azy < [ ERE

Proof. For simplicity, we write w=wp, f'=0,f, and therefore w' =iz ad o w. Notic-
ing that [0, p)w is diagonal, we compute

d
AaxQ:AaQ—:/(u'w+uw’):@/((Au’)ww’AwA(uw/))

27
ado . . ’
=5 | (Alzlo, Wl +Qu)w+(zlo, ]+ Qu)Aw+(pw'))
=57 [(B@uu+nwrQuaw)+ 52 [ A =1+
For any p>2,

L] < c)|AQN Lo (aay (16— T | 2 (ax) I | 22 (az) F T £ (a))
H@N zoo (ae) 1A L2 (a2 171 L2 (a2)
Qoo (aw) It =T | 22 (a2) 1A L2 (a2) + | AT] L1 42))

<[1/2p(irl/4 ﬂK’””Ar“HI"([; 2]“”)“{1}2 ;Hg ;]”AT”H”A

1 1 1 0
A 1,1 1,1
tlus sl ([o 1] 1artmasiarin. )

(by Theorem 4.16 and Lemma 5.1)

<([1/2p1+1/4 g%[l% i]+[1}2 EDK”"AT”H“

1 4
< Ky|lA 1.
[1/2p+1/4 8} pllAri
A simple computation shows that ado [ pzado(we)dz=20ado [ pzwedz, and
hence by the analog of (4.73) for general 2z,

Ig:igada/ ZA(ﬂ@g)dZ—l—é(Q/ log(1—|r(z)|2)dz).
T ., 27 oo
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Set W:fﬁzgz,uwg dz. Then

AW:/N z(Aﬁ)ﬁgdz—%/N z(ﬁ—I)Aﬁgdz—i-ﬁ 2AiTp dz = Wi +Wa+ Wa.
R,

RZO Rzo
By Theorem 4.16, for any p>2,

0 2 1
W1l < KpllArllgron  and  [W|<

1/20 5 1/4 3} NATls.

Reversing the orientation on R_ +zg, we see from (4.9), (4.10) that

Wy=A [ z ) P
8 R —r—#5f2e‘io 0 ’

where r#(2)=r(z) for 2>z, r#(2)=r(z)/(1—|r(z)|?) for z<z. Of course, if 4, were
independent of z, then we would obtain immediately a bound for ||W3||12(45) in terms of
the H%!'-norm of Ar. But 6.=44(2,2) depend on z through zy, and this complicates
the estimation of Wj.

We proceed as follows. Consider first

/RzA(r#éf)ewdzz/z(Ar#)einz+/z(Ar#)(éf—l)eigdz+/zr#(A53)ei9dz
=T +II'+110T.
Clearly
17122 az) < ellOe™ 0 Ar# | 2 (az) < el Ar# || goa <

A7 os < m—5 |AT|| g1

(1-0)?

Using the identity zz—tz2=—t((z—20)%—22), we have

(1)

Il = eit2 (/ zAr(éZ—l)e_it(z_z°)2dz+/ ZAT#(éz-l)e‘“(Z_z‘))zdz>

— 0
=23 (I +111").
Now 62 solve the normalized RHP (R._ +zg, (1—|r|)?), and hence by the methods of §2,

=y [ EOOERD o

§—2z 2

— o0

for 2 C\(—00, 29]. Thus

Z0 —Ir(s 2\2 _
2(6%(z)~1) = / 82 (s)((1 |T(3)|2)2~1)%+/ 53(3)8((1 Ir(s)¥)* 1) gs__,

oo §—z 27
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and inserting this relation into II” we obtain

_ _( /0 wAT(u+z0)e—”“2du) ( /_ Z:Oé?((l—lrlz) -1 27”)

° _ 22 _ ooe—ituzAT(u‘*‘ZO) w Kiad
+ [ Eetalaral-ra+a)) 1>1[/0 a

. y—u 27
By Proposition 2.55,
dz eA?
52 (( < 5.38
‘/ |T| “Dom 2mi 1-o° ( )
Set u
Gw=[ e uz0 (5.30)
e—im/4

where the integration takes place along the contour a=u+e /43, 3>0. Note that
(i) G/(u)fe—itu? and (i) G(u)=—e i/4eitw’ [©=F"1-2"2ubt 4g g0 that |G(u)|<
cfye”? te=V2uBtgg Integrating by parts,

< |Ar(z0)G(0)|+

/ Ar(u+z9) e du
0

/Ooo(auAr(u+ZO))G(u) du

Cl|Tg—T 1,0
< A=l oyl NG

But by Minkowski’s inequality,

2
_ﬂt c

oC o0
—B%t ||~ V2 0Pt _ e _ <
Gl 2(0,00) <C/O e lle |2 dﬁ—c/0 TDRE dg= VS

and hence

/Ar utzo)e R

1 1
<C”7’2 T1||H10<t1/2+t?/—4->, t>0. (5.40)

On the other hand, for all teR, |f0°°Ar(u+zo)e_““2du| <c||Ar| go.1, and it follows that

= —itu? cllre=rillgr 2
A A'I"(U‘"Z())G du < W, t>=0. (541)

Now consider the second term in II”. Noting that the integration variable v is
negative, this term takes the form

0
‘/_ 8% (y+20) (v +20) (1= [r(y+20)[)2 —1)(Ciy,, _r A{(O+20)e ™) () dy.



236 P. DEIFT AND X. ZHOU

By the proof of (4.51) (here the §2-term is absent),

IC%, p AT(O+20)e ™| 12 < AT 10, ¢30,

c
(1+¢)2/4
and hence the term is bounded by

¢ I0(A=r Q)PP ~Dlzs
T Ty yoma L T

which is bounded in turn by en||Ar||g1.0/(1—0)(14+t)1/4.
Combining the above results, we conclude that

7 <

cA?||Ar|| g enllArfi g <[ 1

(1—o)(1+0)72 " (1—g)(1+)1/4 ~ | 1/4 1]“AT“H11 (5.42)

Similarly we rewrite II"” in the form

1" = (/ Ar# (u4-zp) et du)(/ 82((1—1r|*)? )dz')
2m

+ [ a2l 20) PP - (Clnm, e A O420)e ) ()

oo}

which leads to a similar bound as in (5.42). Here the contour of integration in (5.39)
for G(u), u<0, must be replaced by a=u+e3""/43, 30, and we must again use (4.51).
We obtain

1 2
O o Pl i [ oo P (5.43
2 1
|11’|<[1/4 4] 1Ar| . (5.44)

Finally we consider III', which we again write in the form

. (o] . 20 X
111 P ( / 2r(A6%)e 20 g / zr#(Mf)e‘“(z‘Z"VdO

= % (II1 +111'").

As before,

1’ = — (/Ooor(u+zo)e—““2du> (/_Z;A(éz((l— [7]2)2—1)) %)

~ [ A8 ezl 20) (= lrr+20) PP DIHCE, (O 20)e ")) d.
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By (2.56), for 2z C\(~o00, 29}, 52(z)=e2ffo e , and so
A(SQ_/ d 2]10 log(1— |T1+y(7‘2 UM tirsl dy
dy©
— _4/1[ 2[20 log(1— \1‘1+ygrz—r1)| ) 2,1:1] (545)
0
N /z" Re[(ro—r1)(r1+y(ra—r1))] ds’ dy
. 1—|ri+y(re—ry)|? 2mi(s' —z) ’
which implies the estimate
AS|| 2 < —— || AF| 2. 5.46
“ —“L2 (1_9)2 || THL2 ( )
Hence
#o cA cn
‘/ A ((1=1r)?-1) d2| < =5 ”A7"||L2+ HA7"||L2 S gy 1Arllae,
—00 ( ) ( "9)

and using Lemma 2.48,

1A{82(0)O((A=Ir(O)*)* = 1)}l 2= < |AG2 | 22 [[O((1—[r(O)*)? ~ D e
+102 || | AO((1- IT’(<>)|2)2— Dz

2
<Sa/——3 ( BE AT} e+ 17— ||A7’HH0 !
(1+m)?
< A
c(l 9)2 “ T”Hll
The estimates for II” now imply
cn n c(1+n)? n
| < (TN e ' R
1+1)172 (1—p)2 1- 14¢)1/4
(1+4)1/2 (1-p) (1-9)? (1+¢) (5.47)
1
< A
e |18,
and similarly
cllr# | (—oo, n (1+n)*
)« LRI T e S A o
1 2
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Thus "
I < || A 1 5.49
e | s, (5.49
and combining (5.44) and (5.49),
I +11T'} < ! 2]|[Ar||H11. (5.50)
S l1/4 4 ’

As the (2, 1)-entry of W3 is the negative conjugate of the (1,2)-entry, it follows that
AW =W, +Ws where
Wall L2 (az) < W JAT|j 1

and for any p>2,

1 2 1 1 2
< K. 1,0 Ar||gia+ A 1,1
P | e P I [N P B 2
1 2
< K A .
Finally,
: 20 2 ,,)2
[mlog(l-lr(z)l )dz| < -

and

AT

<io,harhse.

‘A/_z:olog(l —|r(2))?) dz

Hence by Theorem 4.16, for any p>2,

' (Q/ tog(1- lrl)dz) [1/2100+1/4 3] ””Ar”m'o'ln—za
s o) TglArls

<[ 1yaporja 5] Kollorlin

We conclude that Ip=1I,; +132 where

C
<-—=||A 1,1
1121] L2 (dz) e | APl 5
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and for any p>2,

2 2 3
I o (dz) K,|A : K,|A ,
Melimian < |y o] Kobrllat [, %0 5] Kolarhins
<[ lar
x 1/2]) 8 P Tilg1.
Together with the estimate on I, this proves the lemma. O

Remark. Using the fact that z|r(2)|?€ LP for all p>1, more careful estimates show
that Ws in fact falls off like (14-£)~(1/2-9) for any £>0 as t—co, but this extra decay is

clearly only of academic interest as the leading order of decay in I is governed by other
terms.

LEMMA 5.51. For 2<p<oo,

! 1+2
AG| ;2 < K, IlA 1,1,
IAGI L [l/2+1/2p—1/4 5z+5/2] plAria
(5.52)
141
AG|| 1 K, ||Ar| g
18610 < |y 10 a/a a1g | KollOTh
143
AGOI| 2 < K, ||AF|| g,
IAGR 2 < [l/2+1/2p+1/4 5l+15/2] pllArla
(5.53)
1AGQ] [ 2 k)
\ r 15
L l/2+1/2p 1/4 s+ pImTE
! 144
A8, G < K,||A 11,
| oz [l/2+1/2p—1/2 5z+7/2} pl|Arllaa
(5.54)
140,6] <[ l 3 g ar
T 1 X T 1,1.
S \2+1/2p-1 51-1| PNTNH

Proof. For p>2, by Theorem 4.16 and Lemma 5.24,

1AG] 22 < ellalpee llal 22 [ Agll -

g{ul—_l)lm sin) o 132“1/2;11/4 S |lart

[ l I+2

K A 1,1
1/2+1/2p—1/4 5l+5/2] pllArl
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and
IAG| 2 < gz llgll3= | Agll L=

<[(ll—_2)2/2 5(11__22)”; 1‘;2]2[1/2;11/4 ?;}Kp”mnm,l

< [ ! 1+1

K A 1,1.
/2+1/2p—3/4 51—2] pllATlA

The proof for (5.53) is similar, replacing { by [+1.
For (5.54), let Ad,Q=1+11I as in Lemma 5.37 and let p>>2. Then

188:Gllzx < llalf= 18zall s N Agl s + lall =2 gl e 1Tz + lallhee 1102
-1 -1 1 0 0 3

< K A 1,1

[(l-l)/2 5(1—1)”0 1/2”1/2p+1/4 7J pllAT||

+[(11:1;/2 5(11_—11)][(1) 1(/)2”1/12]9 :]KpHArllHI,l

ol S 2
l/2 51 0 2 gLt

[ l l+4
<

Kpl|Ar)gra
1/2+1/2p—1/2 5l+7/2] pllAT g

and

1A8,G|rr < llgl 2 Nl 2 g Nl 2 | Agll zo + gl 52 gl z2 | Xl e + llgll 522 [lgl 22 |1 1T ]| 22

<[(zi;)2/2 5(lz:22)H; 1?2]2[1/2;11/4 ﬂxpumum,l

+[(ll—_2)2/2 5(11_—22)”(1) 1(/)2]2[1/121) :]KP”AT”HIJ

+[(ll—~1)1/2 5(11_—11)”3 1%”8 g]”Ar”Hl»l

< [ ! 1+3

Kpl|AT || g
1/2+1/2p—1 51_1J pll ATl
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6. A priori estimates

Set,

F:Plg/e’wmlem_ dy, (6.1)
where Py denotes the projection of (2x 2)-matrices onto their (1, 2)-entries. More pre-
cisely,

F=F(z,t;r) (6.2)

X
P [ I e 0GR O ) ) (25 ) dy.
-0

Note that in terms of F, (2.46) takes the form

r(t)(z) =?“0(Z)+5/0 F(z,s,1(s))ds. (6.3)

Also note that the term e~% in (6.1) and (6.2) can be replaced by e~*9247. The goal of
this section is to obtain the estimates in the following theorem, which is a combination
of Lemmas 6.27 and 6.51 below.

LEMMA 6.4. For n>3,

I+1 I+5

Fllgis <
1l {1/2—1/271—3/4 51

For n>3, 2<p<4 and p"" >4,

l I+6

AF| g1 <
|AF ] [1/2—1/2p—1/2n—1 51+8/3

:l maX(Kg(n_l),K;//)”AT”HI,I. (66)

Note that for p close to 2, and n sufficiently large,

const

Fllgrs, |AF|gia € ——
Pl 1Pl < S0

(6.7)

for some a>1, as long as I>2 (cf. (3.1)).

Remark 6.8. As noted in §2, uniqueness for solutions of (2.46) follows from the
Lipschitz estimate (6.6). Much of the analysis of this paper is concerned with ensuring
that this estimate has explicit time decay in order to control the long-time behavior of
solutions of (2.46). However, to prove uniqueness, this time decay is clearly not necessary,
and it is possible to give a rather short proof of a version of (6.6) without explicit time
decay that is sufficient for the purposes. We leave the details to the interested reader.
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We decompose F into four terms:
F:Pm/e—“’a dy+P12/e—i9(m:L1)Gdy

Py / e~ ®G(m_—1I)dy+ P / e (m—1)G(m_~T)dy 69

= F(l) +F(2) +F(3) +F(4) .

Notation. In the following, for functions h=h(z, 2), we use the norm

2]l Le(azyoracae) = A Lo @zl Laqazy, 1< p,g< oo
LEMMA 6.10. 11 11
+ +
Fll;2 < 2,
¥l [(1—1)/2 51*3/2] 4

Proof. By the L?-unitarity of the Fourier transform, Theorem 4.16 and Lemma 5.24,

l 1 0 +1 l
D = Ll 2 g < Lo 2 < < }
1Oz an =ellalallzean <elally=lali< |y ol |o 10) < |12 51012
By Minkowski's inequality, Theorem 4.16, Lemmas 5.24 and 5.1,
1D 24z < clllglall o gz M- =T 22 do)@ L% ()
-1 I-1 1[1 0 r[l 0]<[ 142 1—1}
(1-1)/2 s50-1)]l0 1/2] |0 1] [(-1)/2 5I1-3]

+2  1-1
(1-1)/2 51—3]'

Similarly,

TETT [
Finally,

IFDll 24z <elllal'all 22 a) - =T s 42y 10 (az)

<[(ll—_l)l/Z 5(ll——11)H(1J 132J2KZ’\2<[(11_J;;2 ;[_Z}Kg,

where the L%-estimate on m_—1I is given by Lemma 5.24. Thus

P B N e l—1}+[ 1+3 l—lJ 2
LU | o sip1y2) T la-1/2 si-3]7T L@-1)/2 51-4]"*

é[ 1+1 I+1 )
(1-1)/2 51-3/2]° %

where we have again used the fact that (1—9) 7' <cK><cKy. [
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LEMMA 6.11.

1+1 +3
10 F laan < [ } 2

(i-1y/2 51" *

Proof. Again by the unitarity of the Fourier transform,
IOF Ml L2(az) < cll(lal'D)all L2(ae) < cllgl e 190l 22
[ A I 1 [1—1—1 l ]
< < .
12 stllo 1/2 /2 51+1/2
Integration by parts, and using (2.8), we obtain
2F® =_ip, /e_wa(m_ ~Iydy—iPyy / e_me_y dy

=—iPp3 /e—ioGy (m-~I)dy—iPr2 /e_wG(i[a, Zm_—I)]+Qm_)dy (6.12)
=—iPp, / e G, (m_~I)dy—iPis / e PGQ(m_—1I)=1+1I,

as Glo,z(m_—1I)] and GQ are diagonal. Again by Theorem 4.16, Lemma 5.24 and

Lemma 5.1,

(1Tl z2(az) S NGyllLi(aay M- =Tl 22(a2)0 L% (da)

=cf |<I|l~1 | ze=ligll 2 lgzll L2 lm- _I“L2(dz)®L°°(dz)

[ -1 771 0 1%[1 o <[ 1+2 1—1}

S le-1/2 s(i-1)lo 1/2] lo 1] " [@-1)/2 51-3
and

1Tl 22 (d2) < |GRN L1 (d) lm- — I || L2(d2)@ Lo ()

<[y allo wel [o S1<[¥a ae)

Thus )
1+2 [+1

F(g) 2(dz < '
1OF™ || 24z | (1-1)/2 5i+2]

Using (d/dy)m-'=iz[o,m~'|—-m>'Q, we obtain similarly

[ +2 141
F(2) 2(dz < )
IK¢; | 22(a) L(I-1)/2 5142]
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By Lemmas 5.27 and 5.6,

IOF® | Lagaz) < ellGllus 1012 (mZ" =l s amyopoe (amy 1012 (m- =Dl a2y 1.0 ()

g[(ll—+1)1/2 51:4}([3 HK“Tg[alfl;z ;;“_12]1(3.

Hence
I+1 l [+2 I+1 [+3 I+1
Fllrz . < + + K2
IOF Il 2 (az) [1/2 5l+1/2J [(1_1)/2 51+2} [(l~1)/2 51—2] *
I+1  143] ,
< )
(l-1)/2 51| *
again as (1—p0) " '<cKjy. =
LEMMA 6.13.

I+1 1457 4

0:Fl|2(az) < Kj(n—1)-
10:Flz2a2) [1/2——1/271—3/4 51 | 2

Proof. Set A=8,—L, where L=izado—2td, (see (5.13)). Using the derivation
property of ad ¢, and integration once by parts, we obtain

aZF:Pmaz/e—“’adijlam_ dz
=P / e 0o (Am~HYGm_ dx

(6.14)
+P12/e"iead"mle(Am_)da:—Plg/e_iead"mjl(ZG)m_ dx

=r® O L 0O,

Recall from §4 that m_ :ﬂéf%f where
1 -
v#(z):< T) for z> zp

and

1 0
v#(z):(F/(l—er) 1) for z < zp.
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Substituting in F(" we obtain
P — _Pu/e—io ado[(U;#)—l(s:agﬂ-l(EG)ﬁ(;Zg,U;#] de
— P, / e~ 100 (o #)~15-75 (£3) 670

_pu/e—z'e ado[(v;#)—l(s:-as (ﬂ_l—I)(iG)éf%f] dz (6 15)

’P”/ e (ff) 1627 (LG (k=107 v | do

~Pu [0 (@) 5% (i = 1)(EG) - D37 d
= __F(71) _F(72) _F(73) ___F(74) .
The factors §_ and vf depend on x through zg, and hence they cannot simply be removed
from the above integrals. As in the proof of Lemma 5.37, this complicates the estimation

of F(™V in particular.
After some elementary algebra we find

F(71) = /(EG)lge‘w(SjQ dr —/ (IN/G)zl T2€i0(52 dx. (616)

<2tz

Consider functions H(z)= [ h(z)e **67%(2; 29) dz, where he L' L2(R). Clearly

H/h(m)e“ioz dx
On the other hand,

/ vz < / h(z)e= = (6-2(2, ) —1) d:r) dz = / h(z) ( / ¢ilr=0)2(5-2(; 1) 1) dz> dz.

By the analyticity properties of §72(z; 29), feisz(éfQ(z, 20)—1)dz=0 for s<0. For s>0,
use the fact that 6, solve the normalized RHP (2.54) to write

<cllhll 2 az)- (6.17)
L2(dz)

/eisz(6f2—1) dz:/eisz(5:2(1—xz<20|r|2)2—1) dz,

where <., denote the characteristic function of the set {z<z9}. Again by the analyt-
icity of §72(z, z0), we have [€**(672~1)dz=0 for s>0, and so

/eisz(éfg—l) dz=/ €252 (=2|r P +|r]*) dz.

— o0
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Introduce the following auxiliary function (cf. (5.39))

G(s,z,zo):/ e8¢, z0)dC, >0, 2 < 2, (6.18)

+100
with integration along a contour from +¢oc to z in the upper half-plane. Clearly
(i) 9.G(s,2,20)=€"*§72(2, z), 2< 20, and by (2.58), (ii) |G(s, 2, 20)|<c/s(1—p), >0,
z<zg. Here for s>0,

'/eisz(éfz——l) dz

<IG(s, 20, 20)(=2[r(20) * +|r(z0) )]

+

/ G(s, z, zo)(—2821r|2+(92]r|4) dz

On the other hand, for all seR,

¥4 i 0772
[ et it x| < £
o il-p
and we conclude that
sz 5—2 1 d < CT]2 1 (6 19)
/e O =z < T T3 '

for all seR. Thus

: : 2 h{z)|

iyz —tzx(5—2 _ < cn / I

lfe (/h(z)e (67%(2, 20) 1)dx> dz| < 12/ Ta—7] z,
from which it follows that
, 2 |A{z)]
h(z)e 0% (52 O, 20)—1)dz < al / dzx
|[roeseo | | < [ ]
2
cn 1
g T h PUST  OA 3
1_QH Iz 550,
1/g+1/p=3/2, 1<p,q<2, by Young’s inequality. Collecting terms, we find
cn?
IIHHLz(dz)<CllhllL2+—1_glthm, I<p<2. (6.20)

Now consider functions J(2)=r(2)*[ _,., h(z)e**6%(z, z) dz, where he L'NL*(R)
as before. We have

/ e J(2) dz = / h(z) ( / e 50 (2)26(2, 20) dz) da.
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Here we need the auxiliary function for s>0,

G(s,z,20) = €¢6%(C, 20) dC, 2> 20, (6.21)
+ico
with integration again along a contour from +ioo to z in the upper half-plane. Now
(i) 0,G(s,z,20)=€"%6%(2, 2), 2>20, and (i) |G(s, 2z, 20)|<c/s, >0, 2>z. For s<0,
define

z
G(s,2,20) = €¢6%(¢, 20) dC, 2> 20, (6.22)
with integration now along a contour from —ioo to z in the lower half-plane. Again
(i) 0,G(s,2,20)=€"%62(2, 20), 2>20, and (ii) |G(s, 2, 20) <c/|s|(1~0), $<0, z2>2. Thus
for all se R\0,

< IT(ZO)|2 |G(S, Z, ZO)| +2

/ e*5r(2)%6%(2, 20) dz

20

e’} 2
cn
G(s,z,z9)r0,rdz| { ————.
[, etz i=a

But also for all seR,

o 6772
/ e5r(2)20%(2, 29) dz| < )
Zg l—g
and so
/Ooeizsr(z)262( 20)dz| < e 1
z, 2| <
2o 0 1—9 1—|—|S|
for all s€R, and we obtain as before
cn?
]l L2 :1—_§“h||LP for any 1<p<2. (6.23)

Finally, applying these estimates to F(™Y we conclude that for any 1<p<2,

2
c ~ ~
VP g2 < 72 WEGH o+ | EG 22
< cn? [ I+1 I+3-2/p
S1-g |l/2-1/p-1/2n 5l+7/2—9/p] 7Y
(6.24)
+[ I+1 l+2]K
(i-1)/2-1/2n 51—1] Y
I+1 I+5-2/p
< Ko(n-2)-
1/2—1/p—1/2n max(5!14+9/2—9/p,51-1)

The estimates for the remaining terms in F(®) are straightforward. Using once again
the fact that the entries of i='—1I are simply a rearrangement of the entries of f—1I,



248 P. DEIFT AND X. ZHOU

Lemma 5.29 and (4.17), we obtain

1ECD gt |F D g | FOO) 5
C

< - (IZG| 1 gy 1= I | L2 (azyo o0 (o) + I LGN 1 a) 1= T F 4 sy 10w (1))

<Tf_@([(l—2)l/i1/2n 5zl—ﬁ/2]K2("‘”[1}4 gJ (6.25)
+{(z-2)l/;i1/2n 511—1/2]1(2("‘”[1;8 ngZ)

s [1/2—17;—3/4 511:2/2] Kot K.

Combining this estimate with (6.24) and choosing 2>p> %, we obtain for n>3,

[+1 +5-2/p
1/2-3/4—1/2n  51—1/2

1+1 I+4 ] 4
1/2-3/4—1/2n 51—1/2

NFD o) < [ } Kon_1 K2

(6.26)

By Lemmas 5.27, 5.17 and 5.14,

I FON 12042y < Gl () |mT | Loo (azy@ Lo (dy 1AM | L2y @ L% (da)

I+1 -1 0 1+2/n 1 2
< / :l Kon_1) l: } Ka(n-1)
(I-1)/2 5l1-4[[-1/2n 5/n ~1/2n 3

[42 z+2+2/nJ )
< ~
(1-1)/2—1/n  51+1 Hn—1)

for n>3. As A=0,—L is an entrywise operation (cf. Lemma 5.17), F(® satisfies the
same estimate as F'(6),
Combining this estimate with (6.26), we obtain finally for n>3,

10 Fll12(a2) < | F Pl z2(az) + 1 F @l p2(az) HIF Ol £2(a2)

142 l+2+2/n] )
< n—
(1-1)/2—1/n  5l+1 (n-1)

N 1+1 I1+4
1/2-1/2n—3/4 51—1/2

1 l
< I+ +5} K23(n—1)'
1/2—-1/2n—3/4 5l

This completes the proof of Lemma 6.13. O

}K2(n—1)KZ
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From Lemmas 6.10, 6.11 and 6.13, we obtain for n>3,

1+1 41 1., I+1 1431,
||F||H1~1 < 4 4
(iI-1)/2 51-3/2 (i-1)/2 5l
I+1 I+51 4
+ 2(n—1)
1/2—1/2n-3/4 5l
+1 [+5
1/2—1/2n—-3/4 5l
We have proved the following basic result.
LEMMA 6.27. Fornz=3,
I+1 I+5
F 1< 3 .
1E [1/2—1/2n—3/4 5 ] 2(n—1)

We now begin the derivation of a priori estimates for AF.

LEMMA 6.28. For 2<p<4,

l I+3

AF 2(dz <
[AF | r2(az) L/2+1/2p_3/4 514+1/2

:l KZ ”A’I"HHl,l .

Proof. In the notation of (6.2), by Lemma 5.51, for p>2,

l I+2

AF(l) 2(dz) — AG 2(dx S
IAF N es @ = el AGH2@) < | 19\ 19174 51452

]Kp||Ar||H1,1.
By Lemmas 5.51, 5.27 and 5.1, for p>2,

IAF®|| 1242y < el AG | 1 (azy lIm- =T || L2(az)@ Lo (dz) + Gl L1 (do) 1AM || L2(a) @ Low (a)

! I+1 10
< K, | Al gia
[l/2+1/2p—3/4 51—2] plari {o 1]

+[ I+1 1—1Ho 1]”A |
T 1,1
(1-1)/2 51-4||0 2 "

[ I+1 I+1
<

K A 1,1.
1/2+41/2p—3/4 51—1} pllAria

The estimate for AF(® is the same.
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For 2<p<4, by Lemmas 5.1, 5.27 and 5.51,

JAF® | 124z < el AMT Y| La(an @ roc (do) 1G] 11 (d) 1M =T || L ()@ Lo (d)
M= =T pagazy o r (o) IAG | L2 (do) M- = T|| L2 (@2)® Lo (dz)

+lm= =TIl Ls(dzy @ Lo (da) NGl L1 () | AT || L3(d2) @ L% ()

g[0 1]K2“ATHH“[ I+1 1-1H1 0]}{4

0 0 (1-1)/2 51-4]10 0
10 I I+1 10
K K| A7 g1 K
+[0 0} 4[!/2+1/2p—3/4 51—2} pllArlla [o 0} 4
10 41 1-17[0 1
K K2\ Ar)| g
+[o o] 4[(1-1)/2 51—4} [0 0] allarla
1+2 I+1
< l: }KEHAT”Hll
1/2+1/2p—3/4 5I1-2
Thus using (1—p) "' <cKjy, we get
l 142 I+1 I+1
IAF] 2as) < ( { i
1/2+1/2p—1/4 5l+1/2]) " [1/2+1/2p—3/4 513

[ I+1 [+2

K3 Ar| g
1/2+1/2p—3/4 51—2D sllarll

l +3
< K2 |AT|| g1
{l/2+1/2p~3/4 5z+1/2} allar]a

LEMMA 6.29. For p>2,

{ [+4

AOFD | 240 <[
A0 22(az) 1/2+1/2p-1/2 514+7/2

}KPHAT’“HI,I.

Proof. This lemma follows directly from Lemma 5.51 and the fact that

JAOFW || 12y = | A8 G| L2(dz)-

LEMMA 6.30. For 2<p<oo,

[+1 I+3

AOF® NAOF®| 124, <
IACF [ L2(az), |AQEF ™ || 12(az) 1/241/2p—1 51+4

KPHAT”Hl,x.
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Proof. We will only prove the lemma for F(®). Again the estimate for F(2) is similar.
Using the expression (6.12), we have

AZF(a) — *ipm f6—10<AayG>(m___]) dy—— iPlg /e“wayGATTL

—iPyy / e (A(GCQ)m_—T)dy—iPis / e (CQyAm._..
Thus by Lemmas 5.51, 5.1 and 5.27, for any p>2,

JACF N 1242y < ABGH L3 (aey - = T {22 a2y 0 Lo (d2)
+H0G) L1 (amy 1AM N 2 (a2) o L. (a2)
HIAGQ 12 (4w Im- — Tl L2 a2y Lo (di)
HIGQH L1 (az) 1AM 12 (d2) @ Lo (02)

! I+3 10
< K 1,1
[1/2-{—1/217«—1 5%1} plArila [0 1}

+[(llji)1/2 51;14} {g éj}K’ZZHAT”lel

+[1/2+1l/§;—1/4 ;;23“(1) HK””AT”HI’I

+[le; 5111”8 (l)}KQQ”AT”HLl

[ I+1 {+3
<

Kl Arfis. O
1/241/2p~1 5z+4] plary

LEMMA 6.31. For 2<p<4,

I+2 i+3

@,
fAQF ™YL (dz><[1/2+1/gp~3/4 51

} KEHAT“HLI .

Proof.

AP = _ipy, / e~ (m =~ 1) GAm_ dy
—'iPlz/ediyz(Am:l)G(m—‘I)

~iP12/e_iyz(mj1——I)AG(m- ~1}dy

=1+1+11L
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Using Lemmas 5.27 and 5.6, we have

AT 242y < Gl £ty N O1H 2 (M7 = 1)l 4 (asy 1. () || [O1 2 AM_| L4 (@)@ L0 ()

I+41  1-17[1 17, [0 2
< K. K2|| A7 g1,
[(1—1)/2 51—4”0 1J 4[0 1J allArllz

1+2 [+2
< K3A 1.
[(z—n/z 51_2] 2| Arlla

Similarly,
+2 +2

(1-1)/2 51-2
Using Lemma 5.51, we obtain for 2<p<4,
|AOIIT| L2(az) < NAG 12 azy | 1O1M 2 (M —T)| L@y o Lo (dx)

< | |02 (m- =)l L4(az)@ L (dx)

JAOIL L2as) < [ ] K2 Ar] 0.

2

! 1+1 11
< K, | A7 g1 K?
[l/2+1/2p—3/4 51—2] plArla [0 1] 4

1+2 1+3
- Ky K2 | Arfl g
[z/2+1/2p—3/4 51] pKilArla
Finally,
42 142 1+2 I+3
HA<>F<4>HL2(dZ)<([ ] [

(1=1)/2 si-2) ly2+1/2p—-3/4 5

- 1+2 1+3
“l1/24+1/2p-3/4 51

DKZHAruHm

| Ktarin

LEMMA 6.32. For 2<p<4,
l +5

AQF || p2¢4z) <
[AQF L2 (az) [l/2+1/2p_1 5142

:l Kg ”AT‘”HI,I .

Proof.

l +4
1/241/2p—1/2 5l+7/2
+ +1 +3

1/2+1/2p—-1 5144

N 142 143
1/2+1/2p-3/4 5l

JAOF| ey < [ } K [ Arf s
] Ky | Arna

} K2 Ar

l I+5
<| | startn
1/2+1/2p—1 5142
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We now use (6.14) to estimate [|0,AF||2(4z), O AF=AFC) + AF®+AFD. In
turn
AF™ = _AF™) _AF(T2) _AFT) _ AR (6.33)

and from (6.16)
AFT = [(ALG))e 67 o+ [(LG)ae 00" da
—/ (A(LG)a1) 12?62 dx —/ (LG (AT%(2))e?6 2 dx
<2tz <2tz
- / (EG)o1r2e®(AG~2) da
z<2tz

— AF(711) +AF(712) +AF(713) +AF(714) +AF(715).

By (6.20), (6.22) and Lemma 5.36, for any 1<p/<2, p>2, n>3,

2
c - ~
HAFTV) g + AR Loy = 17"9 IALG| L+l ALG 2

2 l I+5-2/p'
< I B v ]Kg(n—l)”Ar”Hlvl
1—0 [1/241/2p—1/2n—~1/4—1/p 51+11/2-9/p’
l I+4
K3 A7 g1 6.34
+[l/2+l/2p—l/2n—3/4 5z+1] 2= 187l (6.34)
l +7-2/p
< . / , :|K22(n—1) [Ar|[ g1
1/24+1/2p—1/2n—1/4—1/p" max(51+13/2—9/p',51+1)

Also from the proof of (6.23), for any 1<p<2, n>3,

cn Ar HLL | =
JAFT 2y < R 7y,

< A I+1 1+3-2/p
S 1-p 1/2—1/p—1/2n 51+7/2-9/p
_{ 1+2 1+3-2/p
CL/2-1/p—1/2n 51+9/2-9/p

] Ko(n-1) (6.35)

] N TN

where we have again used Lemma 5.29.
Now let AH(2)=[ h(z)e ***A§=%(z; z9) dx, where he L'NL%(R), as before, and we

have
/eiyzAH(z) dz:/h(x) (/ei(y_m)zAéjz(z,zo) dz) dx.
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By analyticity, [e***Ad-2dz=0 for s<0. For s>0, [€***Ad;?>dz=0, and so

/eiszAcS:de:/ e A2 (=2)r P +|r|*) dz+/ e 5T (=20 r P+ Alr[*) dz.

As in the proof of (6.19), we conclude that for all s20,

20
iszg—20 2 4 < enl|Arflgre 1 6.36
l[me 0 (2Alr|*+Alr|*) dz| < o Tl (6.36)
On the other hand, from (6.18), we have
AG(s,2,20) :/ e *CASTC, 20)dC, $>0, 2 < 2. (6.37)
+ioco
Hence
(1) BZAG(SaZyzO):eiszA(s—z(z)ZO)v z2<20;
(i) For any 1<a, <00, 1/a+1/8=1, s>0, z< 2,
|AG (3, 2, 20)| < [l€7*C|| La(0.00) 180~ 2(2 40, 20) | 15 (0,00)
¢ _ ,
< ST/—,,HA‘S (2410, 20) 11 4 (0.50)
But from (5.45) (or alternatively, from (the proof of) Lemma 4.32), for 1<3<oo0,
. c cll ATl
|AG™= (240, 20) |l L5 (0,00) < a=or |Ar|lLs < (=07 (6.38)
Hence
¢
|AG(S,Z,20)'< WHAT‘”HLL (639)

Previous calculations now show that for all s>0,

Zo ?
isz -2y _ 2 4 < il ”ATHHH
/_ooe (A 2P+ d= < T gy v

which implies in turn for all s€ R and any 1<a<oo,

isz A 5— en(1+n) [Ar|ga
’/e A(SZdzyg (1-9)? (1+|s|311/a' (6.40)

Hence for 1/g+1/p=3/2, 1<p<2, 1<a<q<2,

1
(1+[0)

cn(l+n
JAH oy < 1D

(1-0)?

cen(l1+
<L Ao,

T (1-p)?

”A’I"”Hl,l
L (6.41)
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Applying this estimate to (IN/G )12, and choosing « and ¢ appropriately, we obtain for any
1<p<2, n=3,

(712) M I+1 14+3-2/p .
TU RS e PPy o LT

- 1+2 1+4-3/p
S 1/2-1/p=1/2n 514+11/2-9/¢

(6.42)
] Kot l|AT|| 11

Similarly, replacing 62 in J(z) by Ad?, and using AG as defined in (6.37) in place of G,
we find for any 1<p<2, n>=3,

2

IAFT| o < OC_LQ) NLGl e | ATl g
1+3 1+3-2/ (643
+ +3-2/p
S [l/p—l/p—l/Qn 5l+7/2—9/p}KQ(n_l)”AT“HLL

Adding up the contributions, we obtain finally for any 1<p'<2, p>2, n>3,

/
INZRTPE ’ e Ko,
1/241/2p—1/2n—1/4—1/p" max(bl+13/2-9/p/,51+1) "

I+2 I+3-2/p
+ / ] 2(n—1)

LI/p—1/p—1/2n 51+9/2-9/p

T 142 I+4-2/p
+ / Ka(n-1) (6.44)
[1/2—1/p—1/2n 51+11/2—9/p

[ 1+3 1+3—2/p )
K n— A 1,1
+_l/2—1/p—1/2n 5l+7/2_g/p] 2(n—1) | |AT || 1

< ! max{l+7-2/p',1+6—2/p)
S L/241/2p—1/2n—1/4—1/p max(514+13/2-9/p,51+9/2—9/p,51+1)

x K22(n—1) ”ArHHlvla

where again we have used (1—0)7'<cKy(,_1).
Now consider AF("3). As

v#(,z)eF(_l’"), e1(v*(2)) "= (1,7) for 2>z

and o#(2)ea— (1>7 er(w#(2))™' = (1,0) for z < 2,
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we see that the factor 7/(1—|r|?) in v#(2) never appears in AF{"). Thus for 2<p<4,
n>3, using (6.38) and its analog for A§*2, we obtain

C

AF(73) <
AP < 1

IALG| 11 aay 12— I 120 1 (a2)

¢ .z N
+ o | LGI| L1 (dz) | ARl L2 (d2) 0 Lo (dx)

C ~ ~
+i——g LGN £ gz 12— Tl 22 (dz)@ Lo (az) 1AT] 12 (6.45)

+l| LGl 1 (az) | (|A82 |+ A2 ) (D) 22 (a) 9 10 (a2)

1 l 1+3 1 0
< K3 Ar|lgia
1—9{1/2+1/2p—1/2n—5/4 51—7/2] 2 AT 1 [1/4 3}
1 +1 I+1 0 2
+ K n— K2 A 1,1
1—9[(1—2)/2—1/271 51—11/2} 2 1>[1/2p 4} plATE
1 I+1 +1 1 0
Koin- A7 g
+1—Q [(1-2)/2—1/211 51—11/2] A 1)[1/4 3]” Tl
+|: I+1 I+1 :l ||A’I“||H1,1|: 1 DJ
(1-2)/2—-1/2n 51—11/2] "V (1=9)? |1/2p 2] *
1+1 1+3
S K2 AT s
[l/2+1/2p_1/2n_1 5l—1/2] 2(n—1)” mlu

The same estimate is clearly true for |AF(?) |24,
Again for p"'>4, n>3, 2<p<4,
C = ~
IAFT) 242 < T IALG L (g 1A= T 174 (d2y0 Lo (a)

C jed ~ o~
+1~—g LG 11 (d) 12— T | L4 (a2) @ Lo (a) | ARl L2 (d2) @ Lo (d)

+—1—f—gnmuwdz)||n—1||%4<dz>®m<dx>uArum.x (6.46)
+ell LGl g any =Tl 24 (a1 amy | (1A62 |+ A2 ) (=T )| L (a2) @ Lo (o)

2
gl%g[l/2+1/2p—ll/2n—5/4 5llj73/2}Kg("—””m”m'l[1}8 g} Ki
+1T1g)|:(l—2)l/;i1/2n 5ll—i/z}K2("‘”[1j8 SJK“{US@’ ﬂKgNHAr”H“

+$ [(z—z)l/;uzn 511—1/2] Kan-1) [1}8 ng‘?”AT”’“’l
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N 1
1-0 | (1-2)/2-1/2n 5I-11/2

[ [+2 [+3
S L1/241/2p-1/2n—1  514-3/2

1+1 1+1 1 0] |Arfmae [ 1 o]
K———— K//
} 2("_1)[1/8 2} Ta-9)2 [1/2p" 2)°7

} maX(Kg(n_l), Kz//) ”AT“Hl,l .

Assembling the above estimates, we have shown that for 2<p<4, p”">4, n>3,
1<p’' <2,

IAF|L2 < [ l max(l+7-2/p', 1+6—2/p) J

1/2+1/2p—1/2n—1/4—1/p’ max(bl+13/2—-9/p/,51+9/2—9/p,51+1)

X K3 1) | ATl e

+1 [+3 3
+L/2+1/2p—1/2n—1 51_1/2]K2<n—1>llATIIH1,1 (6.47)
{(+2 {+3
+ K4 K4// A 1,1
{l/2+1/2p—1/2n—1 51+3/2} max(Ky(n), Kpr) [ Al
2
l max(l+7——,,l+6~g>
< p p
) min(l+1 1 1.1 l+1 ! 1 5l+3
22 2n 4 p’2 2p 2n 2
XmaX(Kg(n_l),K;II)HAT”HIJ.
In other words, we have proved the following lemma.
LEMMA 6.48. For 2<p<4, p"">4, n>3 and 1<p’ <2,
IAFT | 124z
2 2
l . max(l+7——,,l+6——)
p p

<

min(i+1—1—1—l LUNE N 5142
2 2p 2n 4 p’2 2p 2n 2

X max(Ké(n_l), Kg,,) |A7|| g

LEMMA 6.49. For n>3,

I+1 +2/n+4

AF® , AF®) 24, <
I ||L2(dz) I 22 (a2) 1/2—1/2n—-3/4 51+8/3

:l K23(n—1) “A’I"“HJ,J .
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Proof. For n>3 and 2<p<4, we compute using Lemmas 5.17, 5.23, 5.27 and 5.51,

”AF(6) ||L2(dz) =

Pia / e Am=YGAm_+ P2 / e T IGAAm .

+Ppy / e~Wadom—LAG)Am_

L2(dz)
SNAMT Y| oo ()@ 1% () |Gl 1 (d) | AM || L2 (42) g 1% ()
+ImZ | Loe (azyo Lo (d2) |Gl 21 (do) IAAM || L2 (a2)@ Lo (d)

+lImZ l Loc (azy@ Lo (de) | AGH L1 () 1AM || 2 a2y @ Lo (dz)
0 2 +1 - 1 2
< K2 Ar|| g1, Ko
[—1/4 7/3] 2= T”H“[l/2—1/2 51—4”—1/% 3] 2An=1)

0 1+2/n I+1 -1
+ K2(n—1)
~1/2n  5/n 1/2-1/2 5l-4

0 3
Y [ } K2, A

—-1/4 10/3
Kan-
+[‘1/2" 5/n } 2 1)[1/24—1/2;0—3/4 51—2
1 2]
XKPHATHHI’I _1/2n 3 AQ(n—l)
( 1+2 1+3 ]+[ I+1 [+2/n+3 J
1/2-1/2n-3/4 5l1+4/3] [1/2=1/2n-3/4 5l+5/n-2/3
+1 +2/n+4
[ / DKS(n_uHATHHl»l
1/241/2p—1/n—3/4 5l+5/n+1
I+1 1+2/n+4 s
K Ar)|gia.
[l/? 1/2n—3/4 max(51+4/3, 5l+5/n+1):' 2(n—1)” g

The estimate for AF®) is the same. a

LEMMA 6.50. For n>=3, 2<p<4, p"'>4, n>3 and 1<p'<2,

A8 F|| L2 (az)

2 2 2
[ max(l+7——7,l+6———,l+—+5>
p p n
< ! 1 1 1 1171 1 1 8
mn{ —4+-—————-——, - —~——1 5+
2 2p 2n 4 p 2 2p 2n 3

Xma-x(Kg(n_l), K;//) ”AT“HI,I.
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Proof. Combining Lemmas 6.48 and 6.49, we obtain
180 F | 2(a2)

SNAF® || 22 (a0) HIAF @ | 2oy + IAFD || 124z

I+1 14+2/n+4] _, 1A
< _ 7| &
1/2—1/2n—3/4 5l+8/3 | 27V o
2 2
I max(l+7——,,l+6__)
+ ’ ’
minf(lyl 11 111 1 542
i v - - s e A
272 22 4 p'2 2% 2
xmax(Kg(n_l)yK;)IN)HAT”HI’I
2 2 2
I max(l+7—'7,l+6__7l+_+5)
P p n
<
iyl 11111 5140
mn{ -+o——5 - —-——; 9o T o T 3
2 2 2n 4 p’2 2p 2n 3
xmas (K, K 107l g -

LEMMA 6.51. For n=3, 2<p<4 and p"” >4,
l [+6

AF || i<

:| maX(Kg(n_l), K;l//) ||AT||H1,1 .

Proof. Combining Lemmas 6.28, 6.32 and 6.50, we obtain for 1<p'<2,
IAF (| g2 <|AF |22z +IIOF (| p2(az) + | A0: || 2(dz)

<< ! I+3 }j{ ! 145 >K4 1A
S\1/2+1/2p—3/4 5l+1/2] " [1/24+1/2p—1 5i42]) 2= DITTRAEE

2 2 2

+ P P n
(el LAl "
| 2 2p 2n 4 P2 2p 2n 3

X max(K;l(n_l), Ko )| AT i

{ [+6

(1 1 1 11 1 1 8 | max(Ky(, 1y, Kp) | AT]| g1
R R S — | = n P
mm<2+2p 1 75 % o ) Slt3

Taking § <p'<1, the desired estimate follows. O
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