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1. The following theorem is among the results proved by L. Fejes Té6th?

in a recent paper.

Theorem. Let K, ..., K, be n convex domains, which lie without mutual over-
lapping in a hexagon® H of area a(H), and each of which arises from a given
convexr domain K by an area-preserving affine transformation. Then

nh(K)< a(H), (1)
where h(K) denotes the area of the smallest hexagon circumscribed about K.

Some time ago I obtained a similar result on the restrictive hypothesis that
the domains K, ..., K, are all congruent and similarly situated.® Although my
results are largely superseded by those of Fejes T6th, they are slightly stronger
than his when the above condition is satisfied (especially when the domains do
not have a centre of symmetry), and are obtained by a very different method.
So I hope that the following statements of the results together with indications
of the methods of proof may have some interest.

2. Let a, b, ..., 5 denote the points in two-dimensional space with coordi-
nates (a,, a,), (b, bs), ..., (2,, 25); O being the origin with coordinates (0, 0). Let

! Acta Sci. Math. (Szeged), 12 (1950), 62— 67, see Theorem 1 and the remarks on page 66.

? A convex polygon having at most six sides will be called a hexagon.

* My first result, Theorem 2z, was obtained in 1947, and was described in seminars in London,
Cambridge, Bristol and Princeton in the years 1948—49; its most important consequence was an-
nounced in a paper by J. H. H. CHALK and myself (J. L. M. 8., 23 (1948), 178—187 (179)). Detailed
proofs of the results were given in the version of the present paper originally submitted to
Acta mathematica.
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la + ub denote the point with coordinates {Aa, + ub,, La, + ub,) for all real 1, u.
If 2 is any real number, @ is any point and S is any set, A5 4+ a will denote
the set of points of the form Ax + a with x in S.

Let K and S be any open convex sets. If a,, ..., @, are points such that the
sets K + a,, ..., K + a, lie in § without mutual overlapping, then these sets will be
said to form a non-overlapping packing of »n sets congruent and similarly situated
to K into S, or simply a packing of n sets K into S. If A is a lattice and the
sets K+ x with x in 4 form a packing of an infinite number of sets K into
the whole plane, then these sets will be said to form a lattice packing of Kj;
the determinant d(A) of the lattice will be called the determinant of the lattice
packing. The determinant of the closest lattice packing of K is defined to be
the lower bound of the determinants of the lattice packings of K and will be
denoted by d(K).

Our main results is:

Theorem 1. Let K and S be any open bounded convex sets with areas a(K)
and a(8S). If n sets K can be packed into S (with n = 1), then.

(n—1)d(K)+ a(K)<a(S). (2)

When one restricts oneself to packings of congruent and similarly situated
sets, this theorem is in some ways stronger than the result of Fejes Téth, for
in the first place it applies to packings into a general convex set S and in the
second place we have!

d(K) = h(K), (3)
with striet inequality in the general case. However, when K has a centre of
symmetry, it follows by a result of K. Reinhardt? that d(K)= h(K).

The proof of Theorem 1 depends on the following rather more complicated
theorem (see Fig. 1).

! This inequality is not difficult to prove. By continuity considerations it suffices to prove
the inequality in the case when K is strictly convex. If one considers a lattice 4 with determinant
d(K) giving a lattice packing of strictly convex sets K, it follows from the well known theory of
MixkowskI (Diophantische Approximationen (Teubner, Berlin, 1947), § 4, or see K. MAHLER, Proc.
London Math. Soc. (2) 49 (1946), 158) that each set K + & with » in 4 has a boundary point in
common with the boundaries of just six of the other sets of this form. If taclines are drawn to
K through these six points of contact, care being taken to ensure that opposite tac-lines are
parallel, they bound an open hexagon H circumscribing K, and no two of the hexagons H + &
with ¥ in 4 have common points. Thus we see that A(K) < a{H) < d(4) = d(K).

? Abh. Math. Sem. Hamb. Univ., 10 (1934), 216—230 or see K. MAHLER, Proc. K. Ned. Akad.
v. Wet, (Amsterdam), 50 (1947), 692—703.
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Fig. 1.
Theorem 2. Let K be an open bounded strictly convex' set. Let x,, x,, . .., %y =
= X4, Xn4l, - - -, Xngm be points, such that

(1) the polygon =y %, ... x. is a Jordan polygon bounding a domain II of area
a(Il);

(2) the sets K+ x,—1 and K + x, have a common boundary point, if 1 <r<n;

(3) the points xui1, ..., Zntm lie tn or on the boundary of JI; and

(4) the sets K + x, and K + x; have no points in common if 1 <r <s<mn + m.

Then
(m+in—1)dK)<a(). (4)

While Theorem 2 only applies to strictly convex sets, it is in some respects
more general and more precise than Theorem 1, since it does not assume that
the polygon IT is convex and since the inequality (4) is satisfied with equality
for many configurations of the sets.

3. Throughout this section K will denote an open strictly convex set.
Further C will denote the boundary of K, and K’ will denote the closure of K.
We shall say that two sets touch if their closures have just one point in common,

! An open set K is said to be strictly convex if it is such that, for every pair of distinet

points @ and b on the boundary of K, every inner point ¢ of the line segment joining a to b
is in K, ‘
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the common point shall be called the point of contact. We will say that a systém
of sets K + x,, ..., K + %, is connected if, for any integers », w with 1 <r<<w <mn,
either K + x, touches K + x,, or there is a sequence of positive integers s,¢,...,v
all less than or equal to % such that K + x, touches K + x;, K + x, touches
K+ x, ..., K+ x, touches K + x,.

We first show that Theorem 2 is a consequence of a particular case of the

following lemma.

Lemma 1. Suppose that K has 0 as centre. Let n be an integer with n =3

and let x, ..., x, be points such that:

(1) the polygon x, %, ... xnx, is a Jordan polygon bounding a domain II with
area a(Il);

(2) the sets K + x, and K + x,41 touch for r =1,...,n—1; and

(3) no two of the sets K + x,, ..., K + x, have a common point.

Suppose that for some integer m = 0 there exist poinits 8, Xni1=%y, ..., Bntm =¥m
and a real number ¢ with 0 <¢ <1 such that:

(4) the points y,, ..., ym lie in the closure II' of II;
(5
(6) the system of sets K+ x,, ..., K+ %nim is connected; and
(

)
) nmo two of the sets oK +s, K+ x,, ..., K+ xu4m have a common point;
)
7) the set 6 K + s touches K + x, and K + x.

Suppose further that m is such that:

(8) 4t 7s mot possible to find points =y, ..., zms1 in II') with no two of the sets
K+=x,... K+, K+3,,..., K+ zns1 having a common pont.
Then
a(Il)=(m + 3n—1)d(K). (s)

Reduction of Theorem 2 to the case ¢ = o of Lemma 1. First suppose that
K has the origin 0 as centre. We may also suppose without loss of generality
that it is impossibe to find points z,, z,, ..., #mt1 in the closure IT" of I, such
that no two of thesets K+ x,,..., K + x,, K+ %, ..., K + %41 have a common
point. Also, if we regard the points x, ..., 2, as fixed, we may suppose that
the points x,41, ..., xptm are chosen to make the sum of their second coordinates
minimal subject to the conditions (3) and (4) of Theorem 2. Then it is easy to
verify that the conditions of Lemma I are satisfied if s = } (x, + x,) and o = o.
So Lemma 1 implies the truth of Theorem 2 in this case.
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Now consider the general case when K does not necessarily have a centre.
The difference set D K of K is defined to be the set of all points of the form
x—y with & and y in K. As K is strictly convex it is well known (and easy
to verify) that 2 K is also strictly convex and has 0 as centre of symmetry.
Further, if @ and b are any points, the sets } DK +a and 1 DK + b have a
point in common if and only if the sets A + a and K + b have a point in
common, and the sets 1 DK + a and } D K + b touch if and only if the sets
K + a and K + b touch. Consequently we have d (K) = d (3} D K), and the condi-
tions of Theorem 2 are satisfied by the set } 2 K and the points x,, ..., nim.
Thus the general case of Theorem 2 is a consequence of the special case, when
K has 0 as centre, considered above. This completes the reduction.

The proof of Lemma 1 is inductive; it is based on three lemmas.

Lemma 2. If « and 8 are positive numbers and a and b are points, then the
curves « C+ & and 8 C + b cannot have more than two points of intersection unless
¢a=f and a=b.

Proof. Suppose that the curves had three distinet points z,, #,, 23 in common.

Then, if

(% — a}, yr=;{z,--b}, r=1,23,

the triangles x, x, x, and y,y,y, are in direct similitude and are inscribed in C.

X, =

R I=

Since C is strictly convex it is easy to see that this is impossible unless both

triangles are proper and coincide with each other. In this case ¢ = fand a = b.

Lemma 3. Suppose that K has O as centre. Let o be a number with o <<o<<1,
and let @, b and s be points such that ¢ K + s touches both K + a and K + b. Let
I be a Jordan arc leading from a to b, having no points other than a and b in
or on the boundary of the triangle asb, and having no point in K’ +s. Let IT be
the domain bounded by I’ and the segment ba. Let x, and x, be two points, just
one bezng wn II, such that neither K' + x, nor K' + x, has a point in common with
I'or K+a or K+b, and such that K + x, has no point in common with 6K + s.

Then K' + x, and K + x, have no point in common.

Proof. Suppose, for example, that x, is in IT; the proof is similar when x,
is in II. Then x, is not in II. Let 7 be the set of inner points of the triangle
asb and let 7’ be the closure of 7. Let I, be the contour consisting of the
arc I'" the segment bs and segment sa. Then [, is a Jordan contour bounding
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a domain II,. Since there is no point of K'+ x, in common with K + a or
K + b, the point x, does not lie in the triangle asb. Hence x, lies in I1,.
Similarly x, is not in I1,.

Let y, and y, be the two arcs of ¢C + s leading from the point ¢ of contact
of 0K +s and K+ b to the point r of contact of 0 K + s and K + a, the arc
v, lying in IT; and the arc y, being outside IT,. Then since 6K + s and K + x,
have no point in common the set K + x, lies entirely in the domain II, bounded
by the arc I', the segment bt¢, the arc y,, and the segment ra. Further it
follows by use of Lemma 2 that the set K’ + x, can have no point in I71. Thus

K’ + x, and K’ + x, have no point in common.

Lemma 4. Suppose that K has 0 as centre. Let x,, x,, x, be the vertices of
a triangle T of area a(T), let s be a point and let 6 be a number satisfying
0=o0<1. Suppose that no two of the sets K + x,, » =1, 2, 3 have any common
point, but that 6 K + s touches K + x, for r =1, 2, 3. Then

a(T)=}d(K). (6)

Proof. If (1 + 0 '<A<1 the set {i(1 +6)—1} K+ is touches the sets
K +2Ax,, r=1,2,3. When 1= (1 + ¢)~! the point is is common to the bound-
aries of the three sets; when A = 1 the sets have no common points. So we can
choose such a A so that no two of the sets have a common point, but at least

two of them touch. The area of the triangle Ax,, ix,, 1x; is

AMa(T)<al(l).

Thus it is clear that in proving the lemma we may suppose that two of the
sets K + x,, » =1, 2, 3, touch. '

We suppose that two of the sets K + «x,, » = 1, 2, 3, touch. It is convenient
to rename the points x,, x,, x,, calling them x4, x5, x,, in 2 way which ensures
that K + x4 and K + x,, touch. It is also convenient to suppose that our axes
of coordinates are chosen so that the points x,, x,, and x, have coordinates
(0,0), (1,0) and (o, 1) respectively, this being possible since it is clear that the
three points form a proper triangle.

For any integers », s we use x,; to denote the point, given by

Xrs = x99 + 7 (20— xao) + s{x — xoo))

and having coordinates (r, s). We show that the system of sets K + x,, forms a
lattice packing of K. We first prove inductively that K + «,, and K + x,1 have
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no common point for r <o0. We know that K + x,, and K + x4, have no common
point, so we suppose that, for some n = — 1, the sets K + x, and K + x,; have
no common point for # =%+ 1,...,—1, 0, and prove that K + x, and K + xn1
have no common point. As K + x,, and K + xu411 have no common point it
is clear that K + x,, and K + x,1 have no common point. Also since K + x4
and K + x,y have no common point it is clear that K + x,, and K + x,; have
no common point.

Let the taclines to K parallel to the z,-axis touch K at poihts + z, where
23> 0. Then it is easy to see that we may join the points xy,— % and x5 + z
by a Jordan arc y having no points, other than its end points, in common with
the sets oK +s, K +2x,, K' +x,,, K’ + x5, ..., K'+ x,1, and the triangle
X, 8x,, and such that just one of the points x,,, xx1 lies in the domain I
bounded by the Jordan contour consisting of the segment xy, (x4 — ), the arc y,
the segment (x, + z)x,, and the segment xy, xp,. It now follows from Lemma 3
that K + x,, and K + xz1 have no point in common. Thus K + x;,, and K + x,1
have no point in common if r <o.

A similar argument, in which the roles played by x, and x,, are inter-
changed, shows that K + x, and K + x,1 have no common points for »=o0. So
we see that K + x,0 and K + x;; have no point in common for any integers r, £.
Since the sets K + x,5, =0, + 1, ... form a line of touching sets, it is clear
that no two of the sets K + x,,, 7, s=0, + 1,..., have a point in common. So
in our new coordinate system the lattice of points with integral coordinates
having determinant 1 gives a lattice packing of K. Hence d(K)=1. But
in the new coordinate system «(7)= 4. Consequently we have shown that

a(T)= }d(K).

Proof of Lemma 1. We prove the lemma by induction on (m + n—1). We
suppose that for some N =1 the lemma is trueif m + 1n—1 =N —}; we shall
show that this supposition, which is vacuous when N =}, implies that the
lemma is satisfied when m + }n— 1 = N. Suppose then that the conditions of
the lemma are satisfied by some integers m and n with m + $n— 1 = N and by
some points x;, ..., Xnim.

We may without loss of generality suppose that the axes are chosen so
that 0 is the mid-point of the segment x, x., the x,-axis being along this seg-
ment and the points of the negative x,axis near to 0 being in II.

We consider the points x,, ..., #.4m as fixed but consider the point s and
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the number ¢ to vary subject to the conditions (5) and (7) and the inequality
0=0=1. Suppose s and ¢ are chosen subject to these conditions so that s,
has its least possible value. Then, if ¢ were equal to 1, the points s, ¥, ..., ¥n
would lie in II’ while no two of thesets K +x;, ..., K+ x,, K+ s, K+y,,...,
K + y, would have a common point, contrary to the condition (8). So we have
0=¢<1. Now it follows from the choice of s and ¢ that, for some ¢ with
ts%n and 2 <{¢=n + m, the set ¢ K + s touches K + x; at a point, which either
lies in II, or perhaps lies in the triangle x, sxx. It is not difficult to prove that
the open triangle 7' with vertices x, x:x, lies in IT (see Fig. 2).

By condition (6) it is clear that we can choose points z,, ..., z, with
1 =<7r=<m+1 such that

(a) & =

(b) K + z; touches K + z+1 for 1 <j<r;

(c) for each j with 1 <j <r there is an integer k£ with z; = y; and there is an
integer ! with 1 =</ =% for which z, = a;; and

(d) the points z,, ..., =, are distinct.

It is not difficult to see that II splits up into the triangle 7 with vertices
x, %, %, and the domains IT* and IT** (which will degenerate in some cases) bounded

by the polygons x,z, ...z (=x)x-1... %%, and %, 5, ... 2 (= 2) %41 ... Xn.
Let the points y,,..., ¥m, which are in the interior of II* and II**, be
¥, ... yme and yi* ..., ynis respectively. Then m* + m** + (r — 1) = m, as none
of the points other than z, are in the closure 7" of 7. Denote the vertices of
II" and IT*" by x{ =%, ..., xn+ =z, and 21" = x,, ..., Xn++ = z,. Then we have
m* +3n*—0)+m** +n**—1)+}=m+3n—1) (7)

Thus, as »* =2 and »** =2

b

m*+in* —1=<N—L} m" +in"*—1=<N—1

It is easy to verify that the points 7, ..., xns, s, ¥7, . . ., ¥m+ and the number
o satisfy the conditions of this lemma. It is clear that the conditions (1)—(5)
and (7) are satisfied; that the conditions (6) and (8) are satisfied follows by
straight-forward applications of Lemma 3. So by the hypothesis of our induction

a(IT*) = (m* + §n* — 1) d(K).
Similarly
a(Ill**) = (m** + }n** — 1) d(K).
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Fig. 2.

Also by Lemma 4 we see that

Adding these inequalities and using (7) we obtain (3).

It is easy to check that no difficulty arises in the cases (which we have
tacitly ignored) when one or more of the polygons degenerate. We remark that
in the initial case when m + in—1 =}, we have m =0, n = 3, so that » =1
and %, =x,=x,-1. Thus we obtain (5) from Lemma 4 without use of any in-
ductive hypothesis. This completes the proof of Lemma 1.

4. Throughout this section K will denote an open convex set; we no longer
suppose that K is necessarily strictly convex. Before we prove Theorem 1 we
prove the following lemma.

Lemma 5. Suppose that K ds strictly convex. Let a, b, x,, ..., %nim be points
such. that.

(1) the polygon bax, ... x,b is a Jordan polygon bownding a domain II;
(2) the sets K + xr and K + xr11 touch for r =1, ..., n— 1 and the sets K+ x,
K + x, touch the line ab at the points a, b respectively;
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Fig. 3.
(3) the sets K + xpi1, ..., K + xoyn are contained in II; and
{(4) all the sets K+ x,, ..., K+ xpim lie on the same side of the line ab and

no two of these sets have a common poznt.

Then
(m+ in—3)d(K)< alll) (8)

Proof.! We may without loss of generality take the point }{a + b) to be
the origin. Let ¢ and d be the points of contact of the taclines to K parallel

to the line ab. We may suppose without loss of generality that }{e + d) coin-
cides with 0. Write

Y 1T X, oo Yn =X, Yol ™ X, o Yin T T X Yankl T Xndls -
¥Yantm = Xntmy Yondm4l = T Xatl, - - YVond2m T T Xndm.

Then it is easy to -verify that the sets K+ y, and K + yinsam and the sets
K +y, and K + y,41 touch at the points a and b (see Fig. 3). Further all the
sets K + yns1, ..o, K+ yun, K+ Yangms1, . - o, £ + ¥Yant2m lie on the opposite side
of ab to the sets K +y,,.... K+ ¥, K+ yonst, ... K+ ¥apim. Also we see
that if 1=r=<s=<n+m, the sets K + x,, K + x, have a common poiut or a

! Compare with B. SEGRE and K. MAHLER, Amer. Math. Monthly, 51 (1944), 261—270, § 5.
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common boundary point, if and only if, the sets X — x,, K — x, have a common
point or a common boundary point respectively. Thus the domain X bounded
by the Jordan polygon y,y;...3y:ny, has area 2a(ll), and the points y,, ...,
¥antom satisfy the conditions of Theorem 2, with 2% and 2m in place of » and m.

Hence by Theorem 2,
(zm+n—1)d(K)<z2a(l).
This proves the lemma.

Proof of Theorem 1. Since every convex set K can be approximated arbi-
trarily closely by inscribed strictly convex sets with packing determinants ar-
bitrarily close to d(K), it clearly suffices to prove the theorem on the assumption
that K is strictly convex. So we suppose that K is strictly convex. It is clear
(from Blaschke's selection theorem?) that we may suppose that it is not possible
to pack n sets. K into any open bounded convex set having area less than that
of §. Then, if the sets KX + x,, ..., K + x, form a packing of n sets K into §,
it is clear, from the minimal property of the area of S, that S is the least
convex cover of the union of the sets K + x,, ..., K + xn.

Let =), %, ..., % =23, be those of the points «x,, ..., x,, for which C + a
and the boundary B of S have a proper arc in common; the order being such
that these arcs are in cyclic order on B (see Fig. 4). Let the end-points of the
arc common to (C+z, and B be ¢, and d, for ¢ =0, 1, ..., s, the ends being

named so that B consists of the line segment d,-1¢, and the arc ¢, d, for

e=1,...,s It follows without difficulty from the minimal property of the area
of § that there is a connected sub-system of the sets K + x,, ..., K + x, con-
taining the sets K + z,, ..., K + 2.

Let X, be the domain bounded by the polygon z,d,¢,%,d, ... c;ds. By

the above connectedness property it is possible to make an inductive choice, from

the points x,, ..., x,, of sequences
ol =z, v, .. v =%, 6=1,..,8—1,
such that, for 6=1,...,5s— 1, we have:
(a) the sets K + vg’_)l, K + vé"') touch for ¢ =2, ..., 7(0); and
(b) the broken line v O - 09, (= 3,) is a Jordan arc dividing the set

Z5-1 bounded by the polygon v{"! (= z) vV . .. vlo7Y) (= z-1) dym1 €526

... € & (=5,) [here 7(0) = 1 and v¥ = %) into the domain IT, bounded by

' W. Brascuky, Kreis und Kugel (Leipzig, 1916), § 18.
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Fig. 4.

-1 - —1 1) (=
the Jordan polygon o{%7Y, (= z6—1) ”ﬁa—)1)—1 C v;"(d) ) (= ;"()a)) vg’()a)ﬂ ce

v (= %) €sdo-1 551 [here p(1) =1 and ¥ = 5| and a set X, consisting
of a finite number of domains and bounded by the polygon v{? (= zo) v\ . ..

DLTL) (: za) da Co+1.%g+1 ... Cy z&(: zo)-

We note that the polygon vV (= z) vV ... wl{ 2} (= #5—1) ds—1 €5 2s (= 2)

is a Jordan polygon. Hence Z;—; is a domain; we write Il; = 25_;. Thus we
have found broken lines which split the domain X, up into the domains
II,, ..., II, bounded by the Jordan polygons: v!°71 (= ze_y)olo-t . ... ool

r{o—1) r{o—1)—1 (o)
(= vg’()“)) vg’(lg)ﬂ C v(j()c)(= 25 ¢ dy—13,-1, for 6 =1,..., s, where we take p(s) =
=7(s) =1 and ¥ = z, = z,.
Now the number #(s) of the points x,, ..., x, on the boundary of I, is
given by

nio) = {rlo—1)—plo) + 1} + {r(e) —pla)}.
Let m(s) be the number of the points x,, ..., &, in Il,. It is clear that the

points ¢5, ds—1 and those of the points x,, ..., x, in and on the boundary of
II; satisfy the conditions of Lemma 5. Hence

a(ll.) = {m (o) + $n(0) — 1} d(K) = {m(0) + 470 —1) + §r(0) — p (o)} 4 (K).
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Thus
a(Z)= 3 (mlo) + 4rlo— 1) + 4r(0)—p(0) (K.

But the total number of points x,, ..., x, is %, so that
n=r(1)+ 22{1'(0) —plo)} + X m(o).

Since 7(0) = r(s) = p(o) = 1, it follows that
a(Zy)=(n— 1) d(K).

321

Now the domain S is the union of the domain X, with certain of its

boundary points and the sectorial domains 7, ..., Ts; the domain T, being

bounded by the segments ¢,zs, zsd; and the arc ¢, d, common to C + z, and B.

But it is clear that the domains T, — =z, ¢=1,.. ., s, together with some of

their boundary points fit together to make up K (see Fig. 4). Hence

a(8) = a(Z) + Sa(T) = a(Z) + a(K)
and so "

a(S)=(n—1)d(K) + a(K).

This completes the proof of Theorem 1.
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