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1. I n t r o d u c t i o n  

In  1844, in a shor t  n o t e  [8] in t h e  C o m p t e s  R e n d u s  de  l ' A c a d ~ m i e  des  Sciences ,  Par i s ,  

A u g u s t i n  C a u c h y  p u b l i s h e d  t h e  first  s t a t e m e n t  of  w h a t  is n o w  k n o w n  as t h e  L iouv i l l e  

t h e o r e m  for b o u n d e d  a n a l y t i c  func t ions :  

Any  bounded entire function of a single complex variable must be constant. 

T h i s  c lass ica l  t h e o r e m  gene ra l i zes  a t  once  to  rea l  h a r m o n i c  f u n c t i o n s  on  R n w h i c h  

a re  b o u n d e d  o n l y  on  one  side:  

Let n ~ 2  and let u be a real harmonic function on R n, bounded either from above 

or below. Then u must be constant. 

W h e n  t h e  d i m e n s i o n  n = 2 ,  one  can  e v e n  cons ide r  s u p e r h a r m o n i c  f u n c t i o n s  (e.g., 

s a t i s fy ing  t h e  i n e q u a l i t y  Au~<0):  
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Let u be a real superharmonic function on R 2, bounded from below. Then u is 

constant. 

Proofs can be found for example in [21, pp. 111 and 130]. More recently, the Liouville 

theorem was further generalized to solutions of quasilinear elliptic equations (Serrin [25]): 

Let u be an entire solution of the equation 

A u T  f (u ,  V u ) = O  in R n. 

Suppose that Of~OntO and that both u and V u  are bounded. Then u must be constant. 

Under further assumptions, it can be shown [20], [26] tha t  Vu is necessarily bounded 

on all R ~. Using this fact, one gets a s tandard Liouville theorem for bounded solutions. 

See also Caffarelli, Garofalo and SegMa [6] and references therein. 

Still other Liouville theorems have been obtained for non-negative solutions of the 

Lane-Emden  equation 

A u + u  p-I  =O, p > l  (1.1) 

(note tha t  the previous result does not cover (1.1), since u p-1 is increasing for u>0) .  

We first s tate a beautiful and deep result of Gidas and Spruck. 

THEOREM 1 (Gidas and Spruck [12]). Assume n > 2 .  Let u be a non-negative solu- 

tion of (1.1) in R n with 2 < p < 2 n / ( n - 2 )  (Sobolev number for R~).  Then u -O .  

A striking fact about  this result is that  it fails for any p ~ 2 n / ( n - 2 ) .  For example, 

when p = 2 n / ( n - 2 ) ,  we have the Emden solution 

( X ) (n-2)/2 
u(x)= cx2+lzl  2 (1.2) 

where g > 0  is a parameter  and C = C ( n ) =  ~ .  This solution also shows tha t  when 

n > 2  there are non-constant bounded superharmonic functions. 

A second marvelous result concerning equation (1.1) is due to Bidaut-Veron. 

THEOREM 2 (Bidaut-Veron [3]). Let n>~2 and let u be a non-negative solution 

of (1.1) on an exterior domain. Suppose 2 < p < 2 ( n - 1 ) / ( n - 2 )  (=cx~ if n = 2 ) .  Then 

U~---0.(1) 
Again this result fails for any p > 2 ( n - 1 ) / ( n - 2 ) .  For example, for p in this range 

we have the singular solution 

u ( • ) : C I x ,  -2/(p-2), C = ( p - 2 ) - 2 / ( p - 2 ) [ 2 ( n - 2 ) ( p  2~--~-21))]1/(P-2) , (1.3) 

(1) In [3] this result was actually given for the more general equation tmU-~-u p-1 =0, under related 
restrictions on the parameters re,p; see also Theorem I below of Bidaut-Veron and Pohozaev. 

The first author to observe the importance of the exponent p=2(n-1)/(n-2)  is R. H. Fowler, this 
exponent being equivalent to the special value a = - 2  in Fowler's work. Cf. Quart. J. Pure Appl. Math., 
45 (1914), 289-350, and Quart. J. Math. Oxford Ser., 2 (1931), 259 288. 
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defined in the exterior domain Rn\{0}. 

The purpose of the present paper is to extend the above considerations to non- 

homogeneous degenerate elliptic equations of the form 

AmuWf(u)----O, u>~0, X ~ ,  (1.4) 

where ~ is a domain (connected open set) in R n, n~>2, and 

Amu = d i v ( I Vu l m- 2 Vu )  

is the well-known m-Laplace operator, m > l .  Equation (1.4) arises in many nonlinear 

phenomena, for instance, in the theory of quasi-regular and quasi-conformal mappings, 

see [17], [22], [29], and in mathematical modeling of non-Newtonian fluids, see [2], [9], 

[14], [15] for a discussion of the physical background. The equation also has a large and 

well-known theoretical literature, some of which will be particularly discussed below. 

A function uECl(t2) is said to be a weak solution of (1.4) if 

for al l  r (1.5) 

We shall assume throughout the paper that  f (u)  is a non-negative function in 

C([0, oo))ACl((0, oo)). Then a strong maximum principle holds for equation (1.4), in the 

sense that  all non-negative non-trivial solutions must be strictly positive, see Lemma 2.1 

below. In what follows we shall always be concerned with weak solutions, without further 

mention.(2) 

The first main goal of the paper is to consider Liouville-type results for the degen- 

erate equation (1.4), and also for continuously differentiable (or even Wllo'~(fi)AC(ft)) 

weak solutions of the differential inequalities 

-Amu>~u p- t ,  u~O,  x C ~ ,  (1.6) 

with p> l, and 

-Amu~>0,  u~>0, xEf t .  (1.6') 

Our second principal purpose is to derive universal a priori estimates for solutions of (1.4) 

and (1.6), including, in particular, the generalized Lane-Emden equation A,~ u + u p - 1 = O, 

that  is, (1.4) with f ( u ) = u  ~-1. By using the word "universal" here, we mean that  our 

bounds are not only independent of any given solution under consideration but also do 

not require, or assume, any boundary conditions whatsoever. We are not aware of any 

previous results of this type for equation (1.4) with f(u)~>0, with the exception of the 

a priori estimates obtained by Gidas and Spruck for solutions of (1.1) in the neighborhood 

of an isolated singularity, and a result of Dancer for the same case. 

(2) It is possible to use an even weaker definition for weak solutions. Tha t  is, one needs to require 
u l~vn oo only tha t  EW]o c (f i)NLloc(~).  By classical results, however, the two definitions are equivalent (see 

the references in w below). 
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THEOREM 3 (Dancer [34, Lemma 1]). Assume n > 2  and 2 < p < 2 n / ( n - 2 ) .  Let u 

be a non-negative solution of the canonical equation (1.1) in a domain f ~ R  n. Then for 

every x C ft we have 

u(x) <<. C(n, p)[dist (x, 0f~)]-2/(P-2). 

In particular, u is bounded on any compact subset f~ of f2, the bound being independent 

of the solution. 

The range 2 < p < 2 n / ( n - 2 )  and the exponent 2 / ( p - 2 )  are both optimal in view of 

the special solutions (1.2) and (1.3). 

The relevance of a universal boundedness theorem can be immediately illustrated by 

Theorem 3. Indeed, Theorem 1 is a direct corollary of Theorem 3, since dist(x, 0f~) can 

be chosen arbitrarily large when the solution is defined on all R n. The relation between 

Theorem 3 and the Liouville Theorem 1 can also be considered in a deeper way. That  

is, they both provide upper bounds for non-negative solutions, with Theorem 1 being 

the extreme case where the domain is all of R n and the upper bound becomes zero, 

the smallest value it could have. In still other terms, Theorem 3 provides a continuous 

embedding of the Liouville theorem for (1.1) in a family of results for an expanding 

sequence of bounded domains. Theorem 3 is a special case of Theorem IV below, which 

in turn is contained in Theorems 4.1 and 4.2. 

Returning to the general equation (1.4), when n > m  we define 

r e ( n - l )  
m.  -- - -  > O, 

n - m  

the lower critical exponent, and 

n m  
m* - -  > O, 

n - - m  

the critical exponent for Sobolev embedding. We say that  f is subcritical if n > m  and 

there exists a number l<c~<m* such that  

f(u)~>O, (oL -1 ) f (u ) -u f ' ( u )> jO ,  f o r u > O .  (1.7) 

Note in particular that  the function f ( u ) - - u  p-]  is subcritical when 1 < p < m * .  A domain 

ft is called exterior if f~ D { Ix I> R> 0} for some R >  0. An important recent Liouville-type 

result is the following 

THEOREM I (Bidaut-Veron and Pohozaev [4, Theorems 3.3 (iii) and 3.4 (ii)]). Let ft 

be an exterior domain. Then the differential inequality (1.6) has only the trivial solution 

u -O ,  provided pC(1, m.] when n > m ,  or pC(l ,  c~) when n = m .  

The result also applies when n < m ,  as follows. 
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THEOREM ][/. Let ~ be an exterior domain and let n<m. Then the differential 

inequality (1.6) has only the trivial solution u=_O, provided pC(l, oc). 

When the domain ~t is the entire space R n, rather than simply an exterior set, 

Theorem I can be extended to a larger range of exponents. The full result is as follows. 

THEOREM II. Let ~ = R  n. Then the following conclusions hold. 

(a) Let u(x) be a non-negative solution of A,~u=O (if n > m ) ,  or of Amu<.O (if 

n~m) .  Then u is constant. 

(b) Suppose either n = 2  and m > � 8 8  or ne[3,2m), m> 3. Assume that f 

is subcritical. Then every solution of (1.4) is constant. 

(c) Assume that f is subcritical and that there exists p>m such that 

f(u) ~ u p-1 (1.8) 

for sufficiently large u. Then (1.4) has only the trivial solution u-O. The same conclu- 

sion holds/fpE(1, m], provided a ~ m  in (1.7). 

(d) If n>m and pe(1,  m.], then the differential inequality (1.6) has only the trivial 

solution u-O. 

Remarks. When n<~m the inequality -Amu>~O has the (bounded) positive non- 

constant solution u = l - 1 ~ I x  ] on the exterior domain {Ix I > 1}, which indicates the ne- 

cessity of considering (a) on the entire space R n. Notice also that  the result of (b), when 

it is applicable, is stronger than (c), and that  (d) overlaps with (b) and (c), both cases 

being of independent interest. 

Case (d) is of course an immediate consequence of Theorem I; it was first proved by 

Mitidieri and Pokhozhaev [18]. 

The special case m = 2  of Theorem II (Laplace operator) is important enough to be 

stated as a separate result, especially in order to compare our results with those of Gidas 

and Spruck. We consider particularly the cases (b), (c), since for the Laplacian case (a) is 

classical while (d) is a special case of the Mitidieri Pokhozhaev theorem. 

THEOREM 4. Let m = 2  and ~=-R n. Then the following conclusions hold. 

(b) Let n = 3  and assume that f is subcritical. Then every solution of (1.4) is 

constant. 

(c) Suppose n~4. Assume that f is subcritical and that (1.8) holds with p>2.  Then 

(1.4) has only the trivial solution u=-O. The same conclusion holds if pE(1, 2], provided 

a<~2 in (1.7). 

Case (b) is due to Gidas and Spruck [12] under the additional assumption f (u)>0 

for u>O, the conclusion then of course being that  u--0. The first statement of case (c) is 
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similarly due to Gidas and Spruck, see [12, Theorem 6.1]. The  second s ta tement  of case 

(c) is new. 

Gidas and Spruck have conjectured (in view of case (b)) tha t  the  extra  condit ion 

(1.8) in case (e) may  be unnecessary. We are inclined to  doubt  this, since even in the  

more general case of Theorem II, case (b), the required condit ion is n < 2 m ,  tha t  is, n < 4  

when m- -2 .  If, however, one t reats  solutions which are also bounded  above, then  their 

conjecture is essentially true. 

THEOREM I I I .  Let ~ = R  n with n>m.  Assume that f is suberitical and that f ( u ) > 0  

for all u>O. Then every bounded solution of (1.4) is trivial. 

Theorems I - I I I  are sharp, in the sense of the following corollaries.(3) 

COROLLARY I. Let ~ be an exterior domain. Then the differential inequality (1.6) 

has a non-trivial solution if and only if m E ( l ,  n) and p > m . .  

The "only if" par t  follows from Theorem I. On the other  hand, for ~ : R n \ { 0 } ,  one 

readily verifies when p > m .  t ha t  (1.6) has a positive singular solution C'[xl -m/(p-m), 

where 

C' ( m ~ m / ( p - m ) [ n - m  ]]/(p-m) 

k p - m /  

this being the exact  analogue of the solution (1.3) when m = 2 .  

COROLLARY II .  Let f~ be the entire space R n. Then: 

(i) The inequality --A~u>~O has a non-constant positive solution in R n if and only 

if n>m.  

(ii) Assume n>m.  Then the generalized Lane-Emden equation AInu+uP-1:0  has 

a positive solution in R n if and only if p~m* .  

(iii) Assume n>m.  Then the differential inequality -Amu~UP-1  has a positive 

solution in R u if and only if p > m . .  

The "only if" par t  of (i) and of (iii) are an immedia te  consequence of Theorem II  (a) 

and II  (d), respectively. Similarly, (b), (c) of Theorem II  imply tha t  when n > m  and 

p<m* all solutions of the generalized L a n e - E m d e n  equat ion in a n must  be constant ,  

and hence zero, which is the "only if" par t  of (ii). 

(3) Some of the above Liouville theorems have previously been established in [19] for radially 
symmetric solutions. If one knew a priori that solutions of (1.4) when ~ = R  ~ were necessarily radially 
symmetric, then of course Theorem II would follow at once. Such an approach, however, seems an 
unlikely possibility in any kind of generality; moreover when p>~m* it is not even true that all solutions 
are radially symmetric (see [32]). 
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On the other hand, direct calculation shows that  the inequality -A,~u~>0 has a 

(bounded) positive non-constant solution in R n of the form 

C(l+lxlm/(m-1)D-(n-m)/r , 

which gives the "if" part for (i). For (ii), existence is a special case of Theorem 6.4 

of [19]. 

Finally, by direct calculation, the differential inequality (1.6) has a (bounded) posi- 

tive solution in R n of the form (see Remark 4 in Mitidieri and Pokhozhaev [18]) 

u(x) = C(x+lx l '~ / ( '~ - l ) )  -(r"-l)/(p-m), 

where C'  is the coefficient given in the proof of Corollary I. (In fact, one finds explicitly 
that  - A m u : u p - l - ~ - x c u  (rnp-2rn+l)/(rn-1) for an appropriate constant c=c(n, m,p)>0.)  

This yields existence for (iii), and the proof is complete. 

COROLLARY III. Let f t = R  n. Assume n>m.  Then the generalized Lane &mden 

equation has a bounded positive solution on f~ if and only if p>>.m*, and (1.6) has a 

bounded positive solution if and only if p>rn. .  

This is a special case of Corollary II. Two model nonlinearities may be noticed here, 

up- -  1 

f ( u ) = u P - l + u  s - l ,  f ( u ) - - l + u t ,  

where 1 < s <<.p<rn* and t > 0. Both nonlinearities are subcritical as one easily checks. For 

the first, Theorem II shows that  the only solution of (1.4) on R n is u - 0 .  For the second, 

Theorem II (b) applies, but not Theorem II (c). Nevertheless, since f ( u ) > 0  for u>0,  by 

Theorem III the only bounded solution of (1.4) for this nonlinearity on R '~ is again u---0. 

Turning to the second principal goal of the paper, we have the following universal 

a priori estimate (see w for other related results). 

THEOREM IV. Let f ~ c R  ~ and assume n>m.  Then the following conclusions hold. 

(a) Let u be a non-negative weak solution of the two-sided differential inequality 

u P - l - u  rn-1 ~ . -A,~u~<A(uP-I+I) ,  xCf~, (1.9) 

where A > I  and m < p < m . .  Then there exists a constant C=C(n ,  rn, p,A)>O such that 

for all x Eft 

u(x) cR -m/(p-m), (1.10) 

where R=min(1,  dist(x, Oft)). If  the additive terms u m-1 and 1 are dropped from (1.9), 

then (1.10) is satisfied with R=dis t (x ,  0D). 
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(b) Let u be a solution of (1.4). Suppose that f is subcritical and that, for some 

A > I  and p>m,  it satisfies the power-like condition 

U p -1  ~ f (u )  <. A(u p-1 + 1). (1.11) 

Then (1.10) holds with C = C ( n , m , p , a , t ) > O  and R=min(1,  dist(x, Of~)). If, instead 

of (1.11), 

u p-] <~ f (u)  ~ Au p- l ,  (1.12) 

then (1.10) holds with R=dis t (x ,  Oft). 

The inequality (1.10) yields absolute bounds for non-negative solutions on any com- 

pact subdomain of their domain ~ of definition, the constant C being independent of 

any particular solution under consideration. We note also that  the range m < p < m ,  for 

case (a) and m<p<m* for case (b), and the exponent m / ( p - m )  in (1.10), are each 

optimal; see the discussion in w 

It is interesting to ask about the size of the singular set of a solution u which 

is defined over some domain Q. Certainly it cannot consist of the entire boundary 

of f~, since u is superharmonic. On the other hand, can one estimate in some way the 

Hausdorff dimension or the Hausdorff measure of this set? Here, a tentative conjecture 

is that  the Hausdorff dimension of a singular set on 0f~ must be less than or equal to 

n - m ( p - 1 ) / ( p - m ) ;  see Mazzeo and Pacard [16] for the case m =2 ,  and also Veron [31, 

pp. 242 254]. 

Remark. In (1.9), one might wish to study the apparently more general left-hand 

side, A u P - l - # u  m-1. The constants A and # can however be reduced to 1 by simple 

rescMing; thus the special form of the left-hand side of (1.9) involves no loss of generality. 

The same remark obviously applies to later formulations of the principal conditions on f .  

Theorem IV has useful implications for the asymptotic behavior of solutions near 

isolated singularities, see the corollary below. 

COROLLARY IV. Let u be a solution of (1.4), where f is subcritical. Then: 

(i) Suppose that (1.11) holds, and let f~=BI(0)\{0}.  Then there exists a constant 

C=C(n ,  re, p, A)>0 such that 

u(x) <<. Clxl -m/(p-m) (1.13) 

for all xcf~. 

(ii) Suppose that (1.12) is satisfied, and let Q be an exterior domain. Then (1.13) 

holds for all sufficiently large Ixl. (Note that if p<<. m,  then Theorem I gives a stronger 

result.) 
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The asymptotic behavior (1.13) near an isolated singularity (and further extensions 

of this) were established for the Laplace operator (m=2)  by Gidas and Spruck [12] and 

by Bidaut-Veron and Veron [5]. 

Theorem IV also implies the following non-existence theorem. 

COROLLARY IV r Let the hypotheses of Theorem IV (a), or (b), hold. Then the 

Dirichlet problem for (1.9), or (1.4), with data u ) M  on Oft has no solution if  M is 

sufficiently large. 

Proof. The result follows at once from from (1.10) together with the fact that solu- 

tions are m-superharmonic and so satisfy u ) M  in ft. 

The a priori estimates given in Theorem IV are obtained from the following Harnack- 

type theorem, itself of independent interest, which will be proved in w see Theorems 4.1 

and 4.2. 

THEOREM V. Let R and Xo be such that B R ~ B R ( x o ) C B 2 R ( X O ) C ~  , and assume 

n > m .  Then we have the following conclusions. 

(a) Let u be a non-negative weak solution of the differential inequality (1.9). Then 

for  every R0>0  there exists C = C ( n ,  m,p ,  A, Ro)>0  such that 

supu ~< C i n f u  (1.14) 
BR BR 

provided R ~ Ro. 

I f  the terms u m-1 and 1 are dropped in (1.9), then (1.14) holds with C = C ( n ,  re,p, A) 

and with no further restriction on R.  

(b) Let u be a solution of (1.4), where f is suberitical. Suppose either n = 2  and 

m > � 8 8  or ne[3 ,2m) ,  m >  3. Then (1.14) holds with C = C ( n , m , a ) > O .  

(c) Let u be a solution of (1.4), where f is subcritical, and suppose that (1.12) is 

satisfied for some p > m .  Then (1.14) holds with C = C ( n ,  re, p, a, A). 

The case n ~ m  can also be treated, see Theorem 4.3. 

Some remarks on the proof methods are worthwhile. First, Theorems I ~, II (a) and 

IV (a) are relatively elementary, with the exception that the last two cases require an 

application of the classical Harnack inequality for quasilinear equations (Serrin [23]). 

The proofs for Theorem II (b), (c), Theorem IV (b) and Theorem V (b), (c) ad- 

ditionally rely on an important integral inequality for solutions of equation (1.4), see 

Proposition 6.1. For the Laplace case m = 2  this result is (essentially) due to Gidas and 

Spruck [12]. When m~>2, Proposition 6.1 is proved by direct calculation, using as a key 

element an unusual nonlinear vector field w, see (6.10), and also, at one point, a delicate 

interchange of order of differentiation. (For m = 2  the interchange is elementary because 
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of the smoothness of solutions of (1.4) in this case; the loss of C 2 regularity is at the 

heart  of the difficulty otherwise.) 

When l < m  < 2 the proof of the inequality is still more technical, the difficulty again 

being due to the degeneracy of the m-Laplace operator  and the loss of smoothness of 

solutions. As part  of the derivation, we have been led to an improved regularity result 

for solutions of (1.4), extending the "classical" theory of [10], etc. This result is of 

independent interest and is, to the best of the authors '  knowledge, new. I t  is worth 

remarking as well that ,  when 1 < m < 2 ,  it appears  to be impossible to obtain a strict 

analogue of the Gidas-Spruck identity for the case m = 2 .  Rather,  we employ related 

integral inequalities, which, fortunately, seem at least as useful as the identity itself. 

The paper  is organized as follows. Chapter  I contains the proofs of Theorems I - V  

and of several further results of a more special nature; see the Table of Contents for the 

specific content of these sections. Chapter  II  is devoted to the proof of Proposit ion 6.1, 

tha t  is, the general integral inequality (6.1). In particular, in w167 6 and 7 we prove the 

inequality respectively for the case m/> 2 and for the more delicate range 1 < m < 2. Finally 

w contains our regularity results for solutions of (1.4); see the main Proposition 8.1. 

It  may seem paradoxical that  so much effort must be devoted to the integral in- 

equality for (1.4), in view of the fact tha t  it is applied only at one point in Chapter  I. On 

the other hand, on this application alone stands or falls the entire structure for functions 

f(u) whose growth rate in the variable u exceeds the power m . - 1  (=n(m-1)/(n-m)); 
for the case of the Laplace operator,  in particular, a growth rate exceeding the "classi- 

cal" power n/(n-2). This being the case, the further effort seems more than  worthwhile, 

even if it is lengthy and difficult. Moreover, this aspect of the theory makes abundant ly  

clear the great difference between the ranges (1 ,m.]  and ( m . , m * )  of the variable p in 

the equation Amu+u p-1 =0.  

It  almost goes without saying that  much of the work in the paper  can be expected 

to carry over to more general operators and to nonlinearities f depending on x and Vu 

as well as on u. 

The second author wishes to thank E. DiBenedetto and D. Andreucci for useful 

discussions at the beginning of this work. The authors also wish to thank the referee for 

carefully reading the manuscript  and, in particular, for pointing out to us the importance 

of reference [16]. 
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Chapter  I 

2. Liouvil le  theorems  I 

In this section, we prove the Liouville Theorem I p, and also, for completeness, Theorem I. 

Our proof of the latter result was obtained independently of the work of Bidaut-Veron 

and Pohozaev, and in some respects depends on different ideas. 

The letter C will be used throughout to denote a generic positive constant, which 

may vary from line to line and only depends on arguments inside the parentheses or 

which are otherwise clear from the context. 

We begin with a series of lemmas. The first is the well-known strong max imum 

principle. 

LEMMA 2.1. Let u be a weak solution of (1.60. Then either u=_O or u > 0  on ~. 

Lemma 2.1 is a consequence of the weak Harnack inequality (see Lemma 3.2 below). 

1,m 
LEMMA 2.2. Let u and v be continuous functions in the Sobolev space Wlo c (~) 

which satisfy the distribution inequality 

A m u - A m v  <~ 0 (2.1) 

in a domain ~ of R n. Suppose that u>~v on 0~,  in the sense that the set { u - v + s ~ < 0 }  

has compact support in ~ for every s > 0 .  Then u>~v in ~.  

Lemma 2.2 is a well-known comparison lemma; its proof can be omitted. 

LEMMA 2.3. Suppose { I x l > R > 0 } C ~ .  Let u be a positive weak solution of the 

inequality 

Amu<~O, x E ~ .  (2.2) 

Then there exists a constant C = C ( m ,  n, u, R ) > 0  such that 

u(x) >~ Clxl -(n- '~)/(m-1) (2.3) 

provided n > rn, while 

lira inf u(x) > 0 
X --~  OO 

i f  n ~ m .  

Proof. First assume n > m. Define 

(2.4) 

K :  R (n-m)/(m-1) rain u(x) > 0 
Ixl=sn 
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and 

v(x) =Klx] -(~-m)/(m-1) 

Then v is a fundamental solution of - A m y = 0 ,  so by applying Lemma 2.2 in the domain 

[xl>2R we get (2.3). 

To prove (2.4), let S > R  and define 

v(x) = ln(4S/ixl) 
ln(2S/R) 

for x in Ft. Observe that  

- div(IVv]m-2Vv) ~< 0, xEf l ,  

1 when [xI=2(2RS)l/2; and ]vl=0 when [x[=4S. while also v = l  when Ixl=2R; v=~  

Since u>0  in F/, we have e~_inflxl=2R u>0.  Hence by the weak comparison principle, 

we get u>>.ev for 2R<lxI<4S. But then u(x)>>. ~el for ]xL<.2(2RS) 1/2. Letting S tend to 

infinity now yields lim i n f z - ~  u(x) >>. 1r as required. 

We next give an integral estimate for solutions of (1.6) in a domain f~ of R n. Here 

and in the sequel, by BR=BR(xo) we shall mean a ball of radius R and center x0, such 

that  the corresponding ball B2R(XO) of radius 2R is contained in the domain ft. 

LEMMA 2.4. Let u be a weak solution of (1.6) in ~ for some p > m  and let R>0.  

Then for all 7 E ( 0 , p - 1 )  there exists a constant C=C(n,m,p,'~)>O such that 

BRU ~ <. CR ~-m~/r, (2.5) 

where r=p-m>O.  Similarly, for all #E(O,m(p-1)/p)  there exists C(n,m,p,#)>O such 

that 

BR[VUI" <<. CRn-P"/L (2.6) 

Remark. The inequality (2.5) is due (in a slightly different form) to Bidaut-Veron 

and Pohozaev [4, Lemma 2.5]; see also Mitidieri and Pokhozhaev [18]. We include the 

proof for completeness and also for later reference. 

Proof. It can be assumed without loss of generality that  u > 0  in 12, since otherwise 

u ~ 0  by the strong maximum principle, and (2.5) and (2.6) are trivially satisfied. 

Now let ~ be a radially symmetric C 2 cut-off function on the double unit ball B2(0), 

namely, 

(1) ~=1 for Ix[<l;  0~<~<1 for [ x l ) l  , 

(2) ~ has compact support in B2(0), 
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and, without loss of generality, 

(3) tV~l~<2, Iv2~l~<e, where c is a suitable constant, e.g., C = 4 v ~  suffices. 

For k>m to be determined later and d = p - l - 7 > 0 ,  take r 
as a test function in the weak form of (1.6). (Test functions involving negative powers 

of the solution have been classically used at least since the work of Moser in the 1950's.) 

This gives at once 

d f r f r < f u-du.Vr k, (2.7) 

where u= lVulm-2Vu.  Write 

[V~k[ = k~ k-1 ]V~[ ~< ~k(1.2k/R~) 

and l = U - ( m - 1 ) / r a ' u ( m - 1 ) / m .  Then by Young's inequality with the exponent pair 

m/(m-1) ,  m (and the usual trick(4)) one finds 

where r=p-m>O. In turn, by (2.7), 

d CR -m f ~k-mu~-r,  (2.8) 

the constant C depending on m, k,p, 7. 
We can now prove (2.5). First suppose v > r .  Letting 

k = m 2 > m  
r 

and applying the Young inequality to the right side of (2.8), using the exponent pair 

7 3 
" / - - r  ' r '  

we obtain (again with the usual trick) 

cR-m/ k-mu'r-r << f f o. 
(4) Namely, to  use a small coefficient multiplying one of the terms of the inequality at the expense 

of a larger coefficient for the other, tha t  is, 

1 
ab <. ca q ~- - -  b q/(q-  1) 

el / (q-1)  

for any a, b>0  and exponents  q, q / (q -1 ) />  1. 
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Consequently, (2.8) yields 

~ ~ku.~_PlVulm+12 / ~ku" <~ C(n, m ,  p , q ' ) R  n - m 3 ' / r  . (2.9) 

Condition (2.5) now follows at once. The special case " /=r ,  on the other hand, is imme- 

diately obvious from (2.8). 

Finally, if "y<r we apply HSlder's inequality with exponents r/~/ and r/(r-')') to 

obtain 

SB I r \'y/r u'Y~. C ( s  u r) R n ( i - ~ ' / r ) .  

R R 

Since (2.5) is already known to hold for the exponent "y=r, this gives the required con- 

clusion for all % 

To get (2.6), note that  # < m ,  and write 

{, f xca/m/ f .,1--,/m / ]~U'" ~ (k]~t"/-P'~u' m) (kJU ~/) , 

where "ye ( 0 , p -  1) and #=(p-~)#/(m-#). Since #E(0,  m(p-1)/p), we have ~ C ( 0 , p - 1 )  

provided -y is suitably near p -  1. Hence one can apply (2.5) to the second integral on the 

right. On the other hand, by (2.9) the first integral is bounded by CR n-m~/r. Combining 

these estimates and simplifying then gives (2.6). This completes the proof of the lemma. 

Remark. For l < p < m ,  one can give an improved version of (2.5), see Lemma 4.1. 

Now we are ready to prove the first Liouville theorem. 

Proof of Theorem I. Let u be a positive weak solution of (1.6), where ~ is an exterior 

domain containing { Ix l > R}. Take a sequence of points {xJ } C R n such that  IxJl > 3R and 

x j --+oo. 
Consider first the case n<<.m, p > m .  In (2.5), take ~/=r=p-m<p-1 to obtain 

s u r < . C l x J  I . . . .  j = 1,2,..., 

where B=Blxq/4(xJ ) (note tha t  BlxJl/2(xa)Cf~ ) and C=C(n,m,p). Then 

m i n u r  < 1 /B B ~1 u~ <<" clxJl-m" (2.10) 

But this contradicts (2.4) as xJ-+oc. Hence there are no everywhere positive solutions u, 

so from the strong maximum principle we get u - 0 ,  as required. 
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Next suppose n > m  and pE(m, m,). Let u be a positive weak solution of (1.6). As 

in the previous ease the inequality (2.10) is valid. Consequently there exists yJEB such 

that  

uT(y j) = minu  T ~< cIx~l-~ < (~)~clyJf - ~  
B 

(since ~lxJl<lyJl<~l~Jl). On the other hand, recalling that  n>rn and using (2.3), we 

have 
u(y j) >~ ClyJ]-(n-m)/(m-l) 

for some C > 0 .  This yields an immediate contradiction, since yJ--+oe and 

~t  n - - m  
> - -  w h e n p < m , .  

r r n - 1  

It  now follows as before that  u=0 ,  as required. 

For the case n>rn, p=m, ,  we need an auxiliary lemma. 

LEMMA 2.5. Let u be a weak solution of (1.6) on ~ D { I x ] > R o > 0 } ,  with p>m. Also 
let # E (0, re(p-  1)/p). Then there exist a constant C= C (m, n, p, #) >0  and an increasing 
sequence {Rj}-+ec  as i-+c% such that 

~ _IIVu(Rj,O)I"dO<<.CR~P"/r, j = 1,2,..., (2.11) 

where dO is the surface area differential on S ~-1 and r = p - m .  

Pro@ We first show that  for R > R0 

s aR(0)\B~R(0) IVUl/~ ~ cRn-Ptt/r" (2 .12)  

To see this, notice that  one can cover the set BaR(O)\B2R(O) by a finite number of 

balls B2•(Yj) with ly~l=3R. Thus (2.12) follows immediately from (2.6) by a covering 

argument.  

Now take a sequence of positive integers { K j } ~ e c  such that  2Kj+I>3Kj. Then 

(2.12) implies 

~aKJtn-~ /S~_l[Vu(t,O)]~ dOdt= ~ ,Vu, ~' <<. C K ~ - ~ / L  
~:j BaKj (0) \B2Kj (0) 

Hence by the mean-value theorem for integrals, there exists RjE(2Kj,  3Kj)--~cc such 

that  
[~jlr~ -1 [ [Vu(Rj,O)IPdO<CK; "-pit/r, 

jSn-1 
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and (2.11) follows immediately. 

We can now finish the proof for the case p = m . .  Integrate (1.6) over BRj\BRo to 

obtain 

<,.,,<,o-/ (2.13) 
Rj\BR o J OBRj J OBR 0 

where /21 and /22 are the unit outer normal vectors (this is easily justified for the weak 

form of (1.6)). The left-hand side of (2.13) tends logarithmically to infinity as j--+cc 

since 

urn. -~ >1 Clxl- (n-~)(- , . -~) l ( . , -~)  = Clxl -n ,  

by (2.3). Clearly 

OBRo u- dO ~ C /2 2 

for some C>0.  Using (2.11) with # = m - 1  and p = m .  >m,  one can also bound the first 

term on the right-hand side of (2.13) as follows: 

oBRU'/21 dO ~ C(n)R~  -1 / s~_  11Vu(Rj, O)I m-1 dO 

<<. C R ~ - l  R~(m-1) . . / (m . -m)  = C 

for some C > 0  independent of j as j--+cx~. This contradicts (2.13), and the proof is 

complete. 

It remains to take up the case l<p<~m. This will be done with the help of three 

lemmas. 

LEMMA 2.6. Let n> l, m > l .  There exists Rm>O such that the equation 

A m v + v  m-1 = 0  (2.14) 

has a positive radial solution Vm(iXl) in the ball Ixl<R,~, with v,~=0 on Ixl=Rm and 

vm(o) =1. 

Lemma 2.6 is well-known. A proof can for example be given by the shooting method 

and use of Theorem 6.2 (i) of Ni and Serrin [19]. 

The function Vm plays the role of an "eigenfunction" for equation (2.14). Since 

(2.14) is homogeneous in v, clearly any multiple of vm is also a solution in Ixl <R,~ with 

zero boundary data, while moreover any translation of Vm is equally a solution. 
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LEMMA 2.7. Let g(s), s>O, be a positive function, with inf~>~og(S)>0 for any 

s0>0. Suppose that u is a non-negative solution of the inequality 

(2.15) 

in an exterior domain ~. Then l i m i n f x - ~  u (x )=0 .  

Proof. An easy calculation shows that  the function 

1 m - 1  ixlm/(m_l) 
W(X) = nl/(m_l) m 

satisfies A,~w = 1. 

Now suppose for contradiction that  lim i n f x _ ~  u ( x ) = ~ > 0 ,  and let yJ be a sequence 

in ~ tending to cc as j--+oc, such that  limj__~oo u(yJ)=c .  Define ~/=inf~>e/2 g(s), so by 

(2.15) and the conditions on g, 

g(u(x)) > 7 

whenever Ixl is suitably large. The function 

we(x) = 2 -vw(x-yJ) 

is positive and satisfies - -Amwe=~ when xcBR~(yJ), with we=O when Ix-yJl=Re for 

some appropriate constant Re. Clearly BR~(yJ)Cf~ if lyJ[ is large enough. Hence by 

the weak comparison principle we get u~we in Bn~(y j) for all suitably large j .  In turn 

u(yi)>~we(yJ)=2c~ an obvious contradiction if lyJl is sufficiently large. The lemma is 

proved. 

Remark. An immediate consequence of Lemma 2.3 and Lemma 2.7 is that  if n ~ m ,  

then the only possible solution of (2.15) in an exterior domain is u - 0 .  

LEMMA 2.8. If l <p<~m, then the only solution of (1.6) in an exterior domain 
is u--O. 

Proof. Suppose for contradiction that  u ~ 0  is a solution of (1.6) in ~t. Then u > 0  

in gt by Lemma 2.1. Let yEl2 be such that  the ball BRm(Y) is contained in gt and u(y)~<l. 

(The second condition is possible because of Lemma 2.7.) 

Clearly there is some constant cE(0, 1] such that  u>~cvm>O in BRm(Y) while also 

u=cv,~ at some point in BRm(y). In turn it is not hard to see that ,  for any sufficiently 

small constant s>0 ,  there exists a (non-empty) domain DE strictly contained in BR.~(y), 
such that  

CVm > U-~ i n D e  
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and 

cvm in 

Obviously for x E De, 

 m(evm)-- Am(u-- = 
(2.16) --(CVm)m-I ~-uP--1 ~ --(CVm)P--I-~-U p-1 ~ O, 

since l<p~<m, CVm~Vm~l and ev,~<~u. By the weak comparison principle Lemma 2.2 

we then find CVm~U-C in D~, a contradiction. 

This proves Lemma 2.8, and so completes the proof of Theorem I. 

Remark. Lemma 2.8 applies also to the more general inequality 

- A , ~ u  = min(u p-l ,  urn-l),  

the proof being essentially the same, up to a simple and easily seen modification of the 

second line of (2.16). 

The argument used to prove Theorem I no longer works when p>m..  In fact, when 

pE(m.,  oc), n>m, it is easy to verify directly that the equation 

Amu+u p-1 = 0  

(and accordingly also (1.6)) has solutions of the form CIx-xo] -m/(p-m) in exterior do- 

mains. 

3. L iouv i l l e  t h e o r e m s  I I  

In this section we shall prove the (more difficult) results of Theorem II. To this end, it 

will be critically important to use the generalized Gidas-Spruck inequality (Theorem 6.1 

below) together with the assumption that  f is "subcritical", in the sense that  (1.7) holds 

for some c ~  (1, m*). The following lemma, extending the range of Lemma 2.4, is the key 

to the discussion. 

LEMMA 3.1. Let u be a positive weak solution of (1.4) with n>m, and let 

R > 0 ,  dE(0,1),  k>2m.  

Suppose also that f is subcritical, with 

m * - l d .  l < a < m * - - -  (3.1) 
m .  

Then there exists a positive constant C=C(n, m, ~, d, k) such that 

/~kf2(u)u2-d-m" ~ CR-2m/~k-2mua-d, (3.2) 

where ( r=2m-m.  and ~=~(IX-Xo[/R) is a scaled cut-off function on the ball B2R, as 

in the proof of Lemma 2.4. 
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Pro@ 
we have B > 0 and 

Let A, A, B, D , / )  be the coefficients in (6.2). By our assumptions on d and c~ 

5 : n - l (  
- l F t *  - - O Z  

n 

m* - 1 d~ > 0. 
m ,  ] 

Af(u) + fluf'(u) = 6f(u) + 22~ [ ( a -  1)f(u) -uf'(u)] >1 6f(u). 

Taking r k, one readily sees from (6.1) that  

5 f  kf(u) l-d-m*,VU,m+B f 
(3.3) 

Using Young's inequality with the respective exponent pairs 

we may bound the terms on the right side of (3.3) as follows: 

f u2-d-m*{UV2(~k)u} <~ B / ~ku-d-'~*,VU[2m + C f u~'-d~(~-'~)k,V2~k['~, 

IWl~u.V(~ ~) 

f Df(u)u2-d-'~*u.V((k) <~ 

cf  f(u) u 1-e+m-~* {(~-r~)k ]V~k Lm, + 

where B = ( 1 - d ) ( m -  1)d/m and C=C(n, m, d, 6). Hence, with the help of the estimates 

1~1<~1, IV{t<<.2/R and 1V2~I~<c/R 2, we get from (3.3) 

f (kf(u) ul-d . . . .  ]Vu,-~ .< a ~k-'~f(u)ul+m-d-m*), 
(3.4) 

where the coefficient a depends only on n, m, d, 6, k. 

Note that  the condition k>2m is used here to make the integrals in (3.4) well-defined. 

With the crucial estimate (3.4) in hand, we can now turn to the main conclu- 

sion (3.2). The first step in its derivation is to take ~=~kf(u)u 2-d-'~* as a test function 

In turn, by (1.7), 
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in the weak form of (1.4); this is allowable since u is assumed to be positive. One thereby 

obtains 

/~k f2(u)u2-d-m*=i~k( f (u)u2-d-m*) ' ,Vu[m+k f ~k-lf(u)u2-d-'~*U.V ~. (3.5) 

The Young inequality with exponents m / ( m - 1 )  and m yields the following estimate for 

the second integral on the right of (3.5): 

Moreover, the first integral can be controlled with the help of (1.7), namely 

( f  (u) u2-d-m* ) ' = U 1-d-m• [(2-- d -  m. ) f (u) + u f '  (u)] 

<~ul_d_m.[a+l_d_m.]f(u)<~ n f(u)ul_d_m. 
II,-- T~ 

since a<m*. Thus (3.5) gives 

+2mkR-m f ~k-mf(u)ul+m-d-m* " 

Eliminating the first integral on the right by using (3.4) now gives 

a R -2m f~k -2mua-a-a  R -m fck-mrCu~u l+m-d-m* S~kf2(u)u2-d-m*<~ l j q  7- 2 j q  J r )  , (3.6) 

where al=(k+n/ (n-m))a ,  a2=al +2mk. 
On the other hand, by the Cauchy inequality, 

1 f 1 2 n - - 2 m  f*k--2m o'--d j~k f2(u)u2-d- '~*+-~a~ j r  u . a'S~-mf r < 7 

Using this to eliminate the second integral on the right in (3.6) then yields (3.2), with 

the constant C=2al +a~. 

We also need the following weak Harnack inequality, due to Trudinger [28]. 

LEMMA 3.2. Let --Amu>~O and u>~O in 12. Then for all 7E(0, m . - 1 )  and R>0,  

there exists a constant C=C(n, m, ~/)>0 such that 

min u(x) >~ CR -'~/~ ][U[[L,(S2n). (3.7) 
xEBR 
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Proof. The function u satisfies the hypotheses of Theorem 1.2 of [27], with 

a 0 = l ,  b0=0;  ai(x)=bi(x)-O, i~>1, 

and (3.7) then follows immediately from Theorem 1.2 of [28].( 5 ) 

The following estimate is a consequence of Lemmas 3.1 and 3.2. 

LEMMA 3.3. Let u be a positive weak solution of (1.4) in ~. Assume that f is 
suberitical and nE (m, 2m 2 - m ) .  Let 

~ : min(2 ,  2 n ( m -  1) 
2m 2 - m - n ] "  

Then for all qC(0, 4) there exists C=C(n, m, ~, q) >0 such that 

j._m (3.8) [[fu [[Lq(BR) <<- C Rn/q-m, 

where BR =BR(X)  C B4R C ~ .  

Proof. Choose d so small that (3.1) is valid. Then using Hhlder's inequality with 

exponents 2/q and 2 / (2 -q ) ,  together with (3.2), we bound 

/. /. 
/ f \ q / 2 /  I" \ (2--q) /2  

<~ ( ]  f2(u)u2-d-m*) ( I  uq(d-a)/(2--q)) (3.9) 
\ J B R  / k J B n  / 

q/2 

\ JB2R / \jBnUq(d-a)/(2-q)/ m 

There are now two cases. 

(i) nE(m, 2m-1] .  Because n ~ 2 m - 1  one sees at once that 

2 n ( m - 1 )  
a~<0 and ~ = 2 m  2 - m - n "  

(5) The  weak Harnack inequality is also a direct  consequence of earlier a rguments  in [23]. In par- 
ticular, one may apply the  proof  given in w of [23], restr ict ing however to  the  case ~ 0  because u 
obeys only the  super-solution inequality - d i v ( I V u I m - 2 V u ) ~ > 0 .  This  means  tha t  Case I (p. 265 of [23]) 
can be omit ted ,  and the  i terat ion of (35) in Case II must  be t e rmina ted  at  the  first point  p~ where 
Pv = r n + ~ v  -- l~>m-- 1. But  t hen  P ~ - I  < r n -  1, while p~ = x p v -  1, where >r 

In turn,  by adjust ing p~ appropria te ly  (see [23, top  of p. 268]), we can take P . - 1  arbi trar i ly near 
m - 1 .  Thus  the  relation (40), p. 268, holds wi th  m a x u  replaced by (I)(%2), where y is any exponent  
less t h a n  ( m - 1 ) > c = r n . - 1 .  The  remainder  of the  argument  on p. 268 of [23] ( tha t  is, Case III wi th  
fi~< l - m < 0 )  continues to apply, and accordingly we reach the  display line immediately  after (41), wi th  
m a x u  replaced by ~(~,  2), exactly the  conclusion (3.7) of Lemma 3.2. 
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Then, using the fact that  q < ~ < 2 ,  we obtain by direct calculation 

aq e [0, m . - 1 ) .  
2 - q  

Choose d > 0  so small that  
q(d-a) ,~- - -  c ( o , . . - 1 ) .  

2--q 

Since o - d < O ,  by Lemma 3.2 we have 

JB U.--a</B2R[CR--n/~( f "r 
(3.10) 

Combining (3.9) and (3.10) yields (3.8). 

(ii) n E ( 2 m - l , 2 m 2 - m ) .  For this case one checks in a straightforward way that  

aE(0 ,  m , - 1 ) .  Choose d > 0  so small that  

•=a-dc (0, m.-1). 

Since q(d-cr)/(2-q)<O, we may now (symmetrically) apply the argument  of (3.10) to 

the second integral in (3.9), and the conclusion follows as before. 

Now we are ready to prove our second Liouville theorem. 

Proof of Theorem II. (a) First part.  Let u be a non-negative solution of AmU=0 

in R n. By subtracting an appropriate  constant, we can assume without loss of generality 

that  infRn u=0.  We must show that  u--0.  

By the Harnack inequality, Theorem 5 of [23],(6) we have 

Letting R--+c~ we get 

max u ~ C(n. m) min u. 
B R ( x o )  ~ BR(XO) 

sup u ~ C(n, m) inf u = 0, 
R n  R '~ 

which is the required conclusion. 

Second part.  As before, we can assume that  infR~u=0,  and must show u=-0. But 

if u~0 ,  then by the strong maximum principle u is everywhere positive in R n. Hence 

(2.4) gives i n f z ~  u (x )>0 ,  so u must have a zero minimum at some finite point y, an 

immediate contradiction. Case (a) is proved. 

(6) See also Lemma 4.2 below, in the special case 5=d=]=O. 
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Remark. The Liouville theorem of the first part  of case (a) is probably known, but 

we do not have a direct reference. 

(b) By the second part  of case (a), we can assume without loss of generality that  

n>m. Also, as previously, it is enough to consider positive solutions u. I t  is not hard to 

check tha t  the hypothesis n < 2m 2 - m  of Lemma 3.3 holds in the present case, hence (3.8) 

is valid for any qC(0, 6). A short calculation verifies that  n / m < o  (recall that  1<n/m<2  

by assumption). Thus there exists an exponent qE (n/m, 0). With such a choice of q, by 

letting R-+oc  in (3.8) we get 

[[ful-m]]Lq(Rn ) = 0 .  

I t  follows that  f ( s ) = O  for all values s in the range of the solution u(x). Thus in 

turn A,~u--O in R n, whence by the Liouville theorem for the m-Laplaeian (first part  

of case (a)) we get u ( x ) - e o n s t . ,  as required. 

Before proving ease (e) it is convenient to give a simple lemma. (Recall tha t  a =  

2m-re . . )  

LEMMA 3.4. If  either 

4 n = 2 ,  l < m <  5 or n~>3, n>~2m-�89 (3.11) 

then 

(i) a > m / n ,  

(ii) ( a - m ) n < ( 2 a - m , - m / n ) m  for all ae[m, m*]. 

Proof. It  is easy to check that  (i) is equivalent to ( n - m )  2 > m  2 - m ,  which is satisfied 

in either case of (3.11). Similarly, (ii) is equivalent to 

n ( n - m ) ( n -  2m)a < m(n 3 -  2mn2 +m2). (3.12) 

If n>~2m it is enough to verify (3.12) when (~=m*=mn/ (n -m) ,  as is easily done. On 

the other hand, if n = 2  or n<2m then the worst case of (3.12) occurs when c~=m, tha t  

is, we must verify 

nm( -m) ( n -  < m ( n  3 - 2ran 2 +m2) .  

This reduces to ( n - m )  ~ > m  2 - m ,  and as before is satisfied in either case of (3.11). This 

completes the proof. 

We can now return to the proof of the theorem. 

(c) If either n = 2 ,  m ~  4 or nE [ 3 , 2 m - � 8 9  then the result of case (b) applies, so we 

are done. Thus without loss of generality we can assume that  either 

4 n = 2, m <  5 or n~>3, n >~ 2m - 1 .  
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Now suppose for contradiction that  u is a positive solution of (1.4) on R n, with 

f being subcritical. By (1.8) there is some uo>0 such that  f(u)>~u p-1 for u>~uo. By 

integrating (1.7) we get, for U)Uo, 

U0 

Comparing the last lines it follows that  p~<c~. Again by integrating (1.7), we find for 

~ U 0  

f(u) >~ f(-ff=~ AuC'-l, (3.13) 
,aO --1 

where A ~> u~- ~ > O. 

Consider first the case when p>rn, so that  rn<p<~o~<m*. Define 

Then clearly 

c r : 2 m - m , ,  T=2p--m., u = 2 a - - m , .  

T - - a = 2 ( p - - m ) > 0 ,  u - - a = 2 ( ~ - - m ) ~ > 2 ( p - - m ) > 0 .  

Also by Lemma 3.4 (i), 

a - d >  0, ~ - - d >  0 (3.14) 

provided d is fixed less than m/n. 
Let k>2m. From (3.2), with the positive constant C rewritten as C1, we have 

f ~kf2(u) u2-m*-d~ C1R-2mf ~k--2mua--d 

(since c~<m*, the hypothesis (3.1) of Lemma 3.1 is satisfied if d is made even smaller, 

if necessary). 

Now, for u>~uo, by Young's inequality with the exponent pair 

T--d T--d 
o-_d ~ T_O ~ 

we get (since f(u) ~U p-l) 

(~R)-2mu a-d <~ ~-~C--[f2(u)u2-m*-dd-c2(~R)-m(r-d)/(P-m); (3.15) 

while for u<~uo, similarly (since f(u)>~Au ~-1) 

(~R)-2mu ~-d <~ 2@lf2(u)u2-m*-d+ca(~R) -mO'-d)/(~-m) (3.16) 
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for appropriate constants C2 and C3. Combining the previous lines yields (with the 

constant C=2C1 max(C2, C3)) 

UJ2(u)u 2-m*-d <<. Cmax[R n-'~(~-d)/(p-m) , R n-m(€ (3.17) 

provided that  k is taken suitably large (greater than both m(~- -d ) / (p -m)  and 

m(u-d ) / ( (~ -m) ;  in fact k = 2 m p / ( p - m )  suffices for all purposes.(7)) 

We assert that  
~--d ~ - d  

n - m  <~ n - m  <0.  (3.18) 
p - m  ~ - m  

Indeed the first inequality can be rewritten in the form ( a - p ) ( a - d ) > ~ 0 ,  which is clearly 

satisfied in view of (3.14). The second (strict) inequality, on the other hand, follows at 

once from Lemma 3.4 (ii), since d<m/n.  

Let R-+oc in the inequality (3.17). In view of (3.18) there results 

R f2(ze)U - m * - d  = O. 

But this is impossible because, as we have seen, f ( u ) > 0  for all u>0.  

There remains the case p<<.m. Here by assumption also a<~m. Now by hypothesis 

f(u)>~u p-1 for u~uo. Also (3.13) gives f (u )~Au ~-1 for u<~uo. Hence 

--Amu ~ min(Au c~-1, u p-l)  j- I min(u m-l ,  uP--l), 

where l=min(A, 1). After a trivial change of scale, it now follows from the remark after 

the proof of Lemma 2.8 that  u---0. 

(d) This is an immediate consequence of Theorem I. 

Remark. The proof of parts (b), (c) give upper bounds for various norms of u in 

terms of the radius of the ball BR, see (3.8) and (3.17); these can be considered as 

another type of universal a priori estimate. 

Proof of Theorem III. Let M be the upper bound for the solution u, that  is, 

O < u ( x ) < M  i n  R n. A s  in (3.13), there holds 

f ,  ~ >~ f ( M )  u~_ 1 ~u~_ 1 

(7) For i ts  interest ,  one m a y  note  that 

C2 : ( 2 C 1 )  ( a - d ) / ( ' r - d )  , C3  : ( 2 C 1 / ) ~ 2 )  ( a - d ) / ( v - d )  �9 



104 J. S E R R I N  AND H. ZOU 

for u ~ M .  Here it should be noted that  ~>0, since by assumption f ( u ) > 0  for all u>0.  

Arguing as in the proof of case (c), but without the necessity for introducing the 

constant ~- or deriving the inequality (3.15), we obtain (3.16), this now being valid for 

all x in R n. Inequality (3.17) is therefore replaced simply by 

BRf 2(u) u 2-m*-d ~< 2C1C3R n-m(v-d)/(a-rn), 

and the proof is completed with the help of (3.18) exactly as before. 

4. The  Harnack inequal i ty  

Here we establish Harnack inequalities for weak solutions of the equation (1.4) and the 

inequality (1.6), see Theorems 4.1-4.3. 

As previously, BR=BR(Xo) denotes a ball centered at xo with radius R, such that  

the corresponding ball B2R(Xo) of radius 2R is contained in ~. Our arguments will be 

restricted throughout to such "admissible" balls BR. Moreover, the letter C denotes a 

generic positive constant, which may vary from line to line and only depends on the 

arguments inside the parenthesis. 

The following result is an extension and generalization of Lemma 2.4. 

LEMMA 4.1. (i) Assume that m < p < m ,  in Lemma 2.4. Then (2.5) holds for all 

~/G(0, m . - 1 ) ,  and (2.6) for all # e ( O , n ( m - 1 ) / ( n - 1 ) ) .  
(ii) Assume p>m,  and let u be a non-negative weak solution of the differential 

inequality 

- A m u ~ U  p - I - u  m - l - I V u l  m-1 in ~. 

Then there exists a constant C=C(n,  m,p,~/)>0 such that 

/B  u'~ <~ CR'~-m'~/r +CR n, 
R 

(4.1) 

for all 7E(0, m . - 1 )  provided m < p < m . ,  and for all ~ E ( 0 , p - 1 )  provided m . ~ p < m * .  

Proof. (i) We proceed as in the proof of Lemma 2.4. To begin with, for k > m  we 

have 

~(~klmu(~-r)lm ) = ~klm ~/--r U(.~_p)lm Vu-t- k---~klm-lu (~-r)/m ~ .  
m m 

With the help of the elementary inequality Ix+yl m ~< 2 m- I (ixl m + lylm), an easy ealcula- 
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tion then leads to (recall IVSI <~2/R) 

2 ( ~ , - r )  m ~o'~ d/lV(r -~ ) S ~= 
( 2 ( 7 - r ) ' ~ m [  d f f ]  /4k'~mn--.~ f-k-mu~-r ~< 
t m / k2JCm-'iv r"+Jr165 7 

C(m, k,p, V) R-m [ ~k-mu "~-~ 
J 

by virtue of (2.8). Then exactly as in the derivation of (2.9) from (2.8), we find that  

/ IV(r162 <~ CR n-mV/r 

for v E ( r , p - 1 ) .  Then by the Sobolev inequality, 

/ [~k/,%(~-r)/,~]m*<< CR(n-m~/~),~*/m. 

Rewriting this by setting ~/=m*(v-r)/m, we obtain exactly (2.5) with "y replaced by ~. 

But from the condition V E (r, p - 1 )  then follows ~C (0, m , -  1), which is the first result. 

The second is then obtained by following the derivation of (2.6), but using at the 

final step the result just shown. 

Remark. We have not in fact used the condition p<m, in this argument. However, 

if p>~m, then the original restriction V < p - 1  is weaker than or equivalent to ~ / < m , - 1 .  

This can be restated alternately, that  (2.5) holds for any "y E (0, m a x ( p - 1 ,  m , -  1)). 

(ii) The proof of Lemma 2.4 carries over without difficulty, once one notes that  the 

inequality (2.7) continues to hold, but with the addition of two further terms 

I Cu~-r +Scu-~[Vur~-I 

on the right side. In turn, we derive (2.8) essentially as before, but  now with an added 

term 

on the right-hand side. Finally, again essentially as before, by Young's inequality one 

gets (2.9) with an additional term CR n on the right side. The rest of the proof then 

follows exactly as in Lemma 2.4 and the previous case (i). 
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LEMMA 4.2. Assume f ~ c R  '~ and n > m .  Let u be a non-negative weak solution (in 
1,m 

Wlo c N C) of the two-sided inequality 

IArnUl ~ (~urn-l ~- ], ( 4 . 2 )  

where d and f are non-negative measurable functions on f~. Let q e ( n / m , n / ( m - 1 ) ) .  

Then for every R > 0  for which BR is admissible, there exists a constant C, depending 

only on the parameters 

n, m, q, nm-n/ql][lllLq(B~,), 

such that 

sup u c( f u + R m-n/q II]lliq(B R))" (4.3) 
B R R 

With slight change of notation, this is exactly the special case c=0  of Theorem 5 

of [23], after restriction to the operator .A(p)= Iplm-2p, see w of [23]. The factor R m-n/q 

is just that  required to rescale to the unit ball B1 in the proof of Theorem 5; see p. 263 

of [231. 

Remark. Lemma 4.2 also holds when n=m,  and even when n<rn provided q = l ;  

see w relation (8), and w of [23]. 

We can now prove our first Harnack inequality. It will be assumed unless otherwise 

stated that  n>m.  All balls BR are assumed to be admissible, in the sense noted at the 

beginning of the section. 

THEOREM 4.1. (a) Suppose n > m  and pC(ra, rn,). Let u be a non-negative weak 

solution of the differential inequality 

u p-1 <.-Amu<~Au p-1 in ~, (4.4) 

for some constant A > I .  Then there is a constant C = C ( n , m , p ,  A)>0 such that 

sup u(x) ~< C inf u(x). (4.5) 
xEBa xcBR 

(b) If  m < p ~ s < m ,  and (4.4) is replaced by 

uP-I--um-I--1~ZUl m-1 ~ - A m u ~ A ( u S - l ~ - u r n - l - ~ l V u l m - 1  ) in f~, (4.6) 

then (4.5) holds with C=C(n ,  m,p,  s, A, R) >0. The constant C may become arbitrarily 

large if R-+O (when p<s) or if R--+oz. 
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Pro@ (a) First a s s u m e  B4R C f~. We shall apply the Harnack inequality, Lemma 4.2. 

In the present case, in view of (4.2) and (4.4) we can take g := ]=0  and 

d = d(~) = A~ '~-'~ 

We require an estimate of the norm/-=IId(x)IILq(B2R) for some qE (n/m, n / (m- i ) ) .  
By the left side of (4.4) and by (2.5) with B• replaced by B2R, we get 

I q ~ A q f  ?g (p-m)q ~ C A q R  n- rnq(p -m) / (p -m)  = C R n - m q  
J B2R 

provided q satisfies the principal condition 7=(p-m)q<p-1 .  Since p<m., however, 

it is easy to see that  one can choose (and fix) a value qE(n/m,n/ (m-1))  so that  this 

condition holds. Hence I<<.CAR '~/q-~ and in turn R'~-*~/qI<~CA. 
Lemma 4.2 now gives the conclusion (4.5), but under the additional assumption 

BaR C~. By a chaining argument, increasing C appropriately, but still dependent only 

on n, re,p, A, one can replace B4R by B2R. This finishes the proof for case (a). 

(b) Again it will be assumed to begin with that  /34R C Q. From (4.2) and (4.6) we 

have ] = 0  and 

a=A, d= t(u~-'~+l). 

Therefore, besides an estimate for the norm I we shall also need to bound the norm 

J=II~IIL~'(B2~) for some q'E(n, oc). First, 

IV<~Aq~ (u*-ro+l)q~<2V-'Avf ( u ( ~ - ' ~ / q + l ) = 2 q - l a q f  ( ~ " + l ) ,  (4.7) 
2R J B2R J B2R 

where 7 - ( s - m ) q .  By choosing q near enough to n/m, and recalling that  s < m . ,  we have 

7<  s - 1  < m , -  1. Hence, with the help of Lemma 4.1 (ii) and the left-hand inequality 

of (4.6), it follows that  

I q < C A q ( R  n - m ' / / ( p - m )  AwR n) = C A q ( R n - m q ( s - r n ) / ( p  -m)  ~-Rn) ,  

1/q' 
where C=C(n,m,p, s). Moreover, J=A(fB~R) =CAR ~/q'. In turn (with the appro- 

priate rescaling factors) 

Rm-n/qI <~ CA(R-(S-P)/(P-m) +R) m, Rl-n/q,J = CAR. (4.8) 
Lemma 4.2 now yields the required conclusion, since the ball B4R c a n  always be replaced 

by B~R. The proof is complete. 

Remark. When s=p the first estimate of (4.8) reduces to R'~-n/qI<.CA(I+R) m. In 

turn the coefficient C=C(n, re, p, s, A, R) in (4.5) becomes C=C(n, re,p, A, R), of course 

remaining bounded as R--+0. 
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THEOREM 4.2. Let u be a solution of (1.4), with n > m .  Then: 

(a) If  f is subcritical and either n = 2  and m > ( l + l v / ~ )  or ne[3 ,2m) ,  m >  3, 

then 

sup u ~< C inf u (4.9) 
BR BR 

for some constant C= C(n, m, a). 

(b) Suppose that f is subcritical, and that for some p > m  

u p-1 <~ f (u)  <<. Au v-1 for all u > O. (4.10) 

Then (4.9) holds with C= C(n, m, p, a, A). 

(e) Let the conditions of case (b) hold, but with (4.10) replaced by 

up-l ~ f ( u ) ~ A ( u p - l q - u  m-l )  for all u > 0 .  (4.11) 

Then (4.9) is satisfied with C = C ( n , m , p , a , A , R ) .  The constant C remains bounded as 

R--+O. 

Proof. (a) As in the proof of Theorem 4.1 we shall apply Lemma 4.2. By (1.4) and 

(4.2) one can take ~ = ] = 0  and 

d - -  d ( x )  = u l - m f ( u ) .  

We must estimate the norm I-[Id(x)llLq(S2R ) for some qE(n /m,  n / ( m - 1 ) ) .  

As in the proof of Theorem II(b)  we can choose q so that  qE(n /m,o) ,  and even 

more so that  q c ( n / m , n / ( m - 1 ) ) .  Then by Lemma 3.3, we find 

I <<. CR n/q-m, 

and the Harnack inequality follows exactly as in Theorem 4.1 (a). 

(b) Before proceeding with the main proof, we note that  necessarily p~<a, as follows 

by integration of (1.7); see (3.13). 

Now utilizing the left side of (4.10) in (3.2) gives 

] '~kuT-d . . . .  2m f~k-2rn a-d (4.12) 

where T = 2 p - m . ,  a = 2 m - m ,  and d is chosen so that  (3.1) is satisfied. 

If n = 2  andm~>4 5, or if n~>3 and n<~2m-�89 the previous case (a) applies and we 
1 4 and n~>3, n > 2 m -  2" are done. It is therefore enough to consider the ranges n=2 ,  m <  5 
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Lemma 3.4 shows that  cr>m/n in both. We may of course suppose that  d<m/2n, 
so that  a-d>m/2n. Clearly ~--d>(~-d since p>m. Then from the Young inequality 

with exponents 
T - d  T--d 

o - - d '  T--O'' 
we find (with the usual trick) 

CR_2m / ~k_2rnuo__ d ~ -21 ./~kU'r-d + cRn-(r-d)m/(p-m), 

since ~ - - a = 2 ( p - m ) .  Note also that  we must take k suitably large, say k=2pm/(p-m); 
see the analogous derivation of (3.17) in the previous section. In turn, with the aid 

of (4.12), 

B U~'--d <~ cRn- ( r -d )m/ (p -m) '  (4.13) 
2R 

where we have replaced BR by B2n and used the fact that  B4n C ft. 

We assert that  
(p-m) n m (4.14) - -  < T - - - - .  

m n 

In fact, since m<p<~c~, therefore also pE(m,m*). Hence (4.14) is exactly the result of 

Lemma 3.4 (ii) with c~ replaced by p. 

We are now able to estimate the norm I. First, by the right side of (4.10) there 

results 

Iq <~ Aq f U( p-m)q" 
J B2R 

By (4.14) and the fact that one can choose so that 

( p -  m) q < ~-- d. Then by Hhlder's inequality, 

/ I" \(p-m)q/(v-d) 
I q ~ CAqR n(1-(p-rn)q/(T-d)) ( /  u T -d )  < ChqR n-~cr~q 

kJB2n / 

by (4.13). The rest of the proof is as before. 

(c) The inequality (4.13) follows exactly as in case (b). On the other hand, by the 

right side of (4.11), 

Iq<~Aq[ (up-m+i)q<~2q-lAq f (u(P-m)q+l). 
J B2 R J B2 n 

Hence, exactly as in case (b), one gets I<~CA(Rn/q-m+Rn/q). With the rescaling factor 

of Lemma 4.2, we then find 

Rm-n/qI <~ CA(1 +Rm). 

The Harnack inequality (4.9) now follows as previously, except of course the coefficient C 

now depends on R. 

Harnack inequalities can also be given when n<<.m, the case earlier left aside. 
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THEOREM 4.3. Let n<~m. Then: 

(a) Assume the hypotheses of Theorem 4.1 (a), except that the condition p E ( m, m.  ) 

is replaced by pE(1, oe), that is, rn,=cx~. Then (4.5) is valid with C=C(n ,m,p ,A) .  

(b) Assume the hypotheses of Theorem 4.1 (b), with m<pEs<oe.  Then (4.5) holds 

with C=C(n,  re, p, s, A, R). 

Proof. Everything is the same as in the proof of Theorem 4.1, with the exception 

that  the exponents q, q~ must be chosen as in the remark after the proof of Lemma 4.2. 

Such a choice is obviously possible, and the proof is complete. 

Remark. Since q is here subject to a weaker condition than in the previous case 

n>m, it is no longer necessary to have the upper bound p<m.  or a < m * .  

Comment on the form of the coefficient C in (4.9). This constant arises in a com- 

plicated way, depending on Lemmas 3.1, 3.2, 3.3, 4.2, as well as on the coefficient on 

the right side of (4.13). By following the proof, however, it is not hard to see that  the 

corresponding coefficients C can become unbounded only when one or another of the 

following limits occur: 

d-+0;  m--+ n; q--+ Q; q-+ n/m; 2m2-m--+ n; p--+ m 

(omitting the trivial limits m, n--+l, m, n--+oc and A-+oc). Moreover, d-+0 only when 

a-+m*;  q--+Q or q-+n/m only when m--+n or m--~�89 (in the proof of Theorem 4.2 (a)); 

and 2m2-m--+n only when n = 2  and m - - + � 8 8  

In turn, the coefficient C = C ( n , m , a )  in case (a) can become unbounded only if 
1 a-+m*, or n = 2  and m--+�88 ( l + v Z ~ ) ,  or n>~3 and m approaches either n or ~n. 

Similarly, the coefficient C =  C(n, m, p, ~, A) in case (b) can become unbounded only 

if (~--+m*, or p--+m, or m--+n (and of course A--+oc). 

5. U n i v e r s a l  a pr ior i  e s t i m a t e s  

In this section, we shall establish the universal a priori estimate Theorem IV, as well 

as several other related conclusions. The notation will be adapted from the previous 

section, in particular, BR---- BR(xo) C B2R =B2R(xo) C ~. 

Proof of Theorem IV. (a) By (1.9), Lemma 4.1 (ii) implies that  there exists a con- 

stant C= C(m, n, p) > 0 such that  

fBR U r <<- C ( R n - m + R  n) 
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where r = p - m .  Therefore 

inf u r ~< - -  
Be  

In turn, 

1 f 
l ur <~ C( l+R-m)  �9 JBR(x)J j . ~  

infu ~ C(l+R-m/r) .  (5.1) 
BR 

On the other hand, again by (1.9), a simple modification of Theorem V (a) implies 

that ,  for R ~< 1, there exists a constant C = C(m, n, p, A) > 0 such that  for x C BR, 

u(x) < sup u < C ( ~ f  u + l ) .  (5.2) 
B R t5R 

The conclusion (1.10) now follows at once from (5.1) and (5.2). 

To prove the second part of Theorem IV (a), note first that  in this case (5.1) is 

now valid without the additional term R - m / r  and also without the restriction R~<I. 

Similarly, in view of the second part of Theorem V (a), the inequality (5.2) holds with no 

restriction on R and without the additive term 1. The required conclusion then follows 

as before. 

Remark. A similar result can also be given for the differential inequality (4.6). 

(b) We first prove (1.10) under the assumption (1.11). This being the case, we need 

to apply Lemma 4.2 with 

~-0 ,  d=Au "-m, ]=-A. 

Proceeding exactly as in Theorem 4.2 (b), we deduce that  there exists C = C ( n ,  re ,p )>0  

such that  

II31ln.(B2~) ~< CAR n/"-m 

for some q e ( n / m ,  n / ( m - 1 ) ) .  Therefore, by (4.3), since $1]IILq(B2R)=CARn/q we get 

sup u ~< C( inf  u + R "~) (5.3) 
B R  B R  

for some C = C ( n , m , p , A ) > O .  

On the other hand, by (1.11) and Lemma 2.4, we have 

inf u p-'~ ~ - -  
Be  

for some C = C ( n , m , p ) > O ,  that  is, 

1 f 
] u p-'~ <~ C R  - m  

JBR(x)I J-R 

inf u <. C R  -m/(p-m).  (5.4) 
B n  
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Now (1.10) follows immediately from (5.3) and (5.4). 

Next suppose that  (1.12) holds in place of (1.11). Then (5.3) is valid without the 

additional term AR TM since ]--0.  Therefore in (1.10) one has R=min(x ,0 f l ) ,  and the 

proof is complete. 

We say that  the exponent m / ( p - m )  in (1.10) is optimum, if for any (~>0 there exist 

a domain ~ and a solution u of (1.4) in ~ such that  

u(x) >1 c ~  T M  (5.5) 

for some x E ~ satisfying dist(x, 0fl)=(~, where the constant C =  C(n, m, p) is independent 

of the solution as well as the domain gt. 

When f=u  p-1 and pE(m. ,  m*), the singular solution of (1.4) defined in the proof 

of Corollary I (see the Introduction) immediately reveals that  m / ( p - m )  is optimum, 

by placing the singularity x = 0  on the boundary. In fact, we have the following more 

complete result. 

PROPOSITION 5.1. Assume that n>m, pE(m,m*) and f =u p-1. Then the exponent 

m / ( p - m )  is optimum for (1.10). 

Proof. Let m > l  and p>m. Consider the initial value problem 

{ ( l u ' l m - 2 u ' ) l + u p - l = O ,  u>0, t>0, 

u(0) = uo > 0, (IVP) 

~'(0) =0. 

Local existence and uniqueness are well known, with u~<0 for t>0.  Furthermore, since 

(lu ' l '~-2u') '<0, it is easy to see that  the solution can be continued, still with u '<0 ,  as 

long as u>0;  see for example the Appendix of [19]. Define 

To=sup{T>Olu(t)>O for tE[0, T)}. 

Then since p<m* we get from [16, Theorem 6.2] 

To < ~ ,  u(To) = O. 

Therefore 

((-u')m-l(t)) '=uP-l(t),  t E (0, To]. 

Multiply (5.6) by u / and integrate from 0 to tE(0, T0] to obtain 

r n - l ( _ u , ) m  1 
- - ~  = ~ (up (t) - u ~ )  

(5.6) 



CAUCHY LIOUVILLE AND UNIVERSAL BOUNDEDNESS THEOREMS 113 

It follows that  

where 

- - c  Ul " (1 uP(t) YUm=u(oP-m)/m , (5.7) 
UO \ ---7-0] 

c = ( P ( m - 1 ) )  1/m. 

Integrating (5.7) once more from 0 to t, we get 

that  is, 

In particular, 

~u 1 
tu(oP-m)/m = (1-sp)- l /mds,  

(t)/uo 

u o =  C (1-sp)- l /m ds .t -m/(p-m). 
(t)/~o 

uo = K ~ o  ~/(p-m),  (5.s) 

where 
( ~01 )m/(p--m) 

K - - - - / ~ ( m , p )  ---- C (1-sp)-l/mds > 0 .  

For 5>0, let B=Ba be the ball centered at 0 with radius 5, and let u=u(t) be the 

unique solution of (IVP) with uo=Ka-m/(v -m) >0. By (5.8), for this solution we have 

To=5. It follows that  

v ( x )  = v ( x l ,  x2,  ..., x n )  = u ( , 1 )  

is a solution of (1.4) which is defined and positive in B, and of course depends only 

on the variable X=Xl. Clearly dist(0, OB)=5, while u(O)=uo=K5 -'~/(p-m) >0. This is 

just (5.5), and the proof is complete. 

It is also interesting to know for what values of p the estimate (1.10) holds at all. 

Again, we consider the pure power f = u  p-1 for simplicity. 

PROPOSITION 5.2. Let n>m. Then (1.10) fails to hold for (1.4) if p=m or p>/m*. 
Similarly (1.10) fails for (1.6) if p=m or p>m..  

Proof. For p=m, the equation (1.4) is homogeneous. Clearly a multiple of a non- 

trivial non-negative solution is still a solution, which can have an arbitrarily large maxi- 

mum value, whence (1.10) cannot hold. On the other hand, when p>~ m*, it is well-known 

(e.g., Theorem 6.4 of [19]) that  (1.4) has positive entire solutions on the entire space a n, 

whose maximum value can be arbitrarily large. Again, (1.10) cannot hold. 
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For (1.6), we observe that  when p>m. the solution given in the proof of Corol- 

lary II (iii) takes arbitrarily large values C'x -(m-1)/(p-m) when x=0 ,  so again (1.10) 

fails. The proof is complete. 

Remarks for the supercritical range p>~mn/(m-n). Proposition 5.2 indicates that  

the optimum range of p for the global estimate (1.10) to hold for (1.1) is (re, m*). Yet 

a corresponding local version (1.13) near an isolated singularity may continue to hold 

outside this range. Indeed, for m = 2  and p=2n/(n-2) ,  the estimate (1.13) was estab- 

lished for solutions of (1.1) by Caffarelli, Gidas and Spruck, see [6, Theorem 1.1, p. 272], 

though there the constant C might depend on the solution itself. 

For a non-removable singularity at the origin, the estimate can be strengthened to 

show that  C is independent of the solution for sufficiently small Ixl (see [6, Theorem 1.2, 

p. 273]). Of course, similar estimates hold on exterior domains via the Kelvin transform 

(always assuming m=2) .  

On the other hand, when n > m + l  and p>.m(n-1)~(n-m-1) ,  (1.13) need not hold 

for an exterior domain, in contrast to case (ii) of Corollary IV. To see this, we observe 

that  u p- 1 is supercritical for the dimension n - 1  if n > m +  1 and p >~ ( n - 1 ) m / ( n - m - 1 ) .  

Thus (1.1) has a positive radial solution uo(r) on R n-1 (e.g., Theorem 6.4 of [19]). Pu t  

u(x)  = xn)  = uo(lx' l) .  

Obviously u is also a solution of (1.1) on R n, but (1.13) does not hold in an exterior 

domain since u is constant (>0) along the direction xn. 

Whether  the local estimate (1.13) holds for (1.4) in BI(0)\{0} remains open even 

for the pure power f=u  p-1 when pe[m*,  ( n - 1 ) m / ( n - m - 1 ) ) ,  except m=2 and p= 
2n/(n-2) .  

Finally, it is interesting to note that,  for a positive solution u of (1.4) on R n, the 

estimate (1.13) for large Ix] is equivalent to the radial symmetry of u, provided m = 2  

and pC(2n/ (n-2) ,2 (n-1) / (n-3) ) .  In fact, (1.13) plainly holds if u is radially sym- 

metric. On the other hand, (1.13) for large ix] implies that  u must be radially sym- 

metric with respect to some point xoCR n by Theorem 1.1, p. 48, of [33], provided 

pc 2), 2(n-  3)). 

Chapter I I  

6. A g e n e r a l  i n t eg r a l  i n e q u a l i t y  I 

In this section we shall establish an important  integral inequality for solutions u of (1.4), 

generalizing the Gidas-Spruck identity for solutions of (1.4) in the case m =2 .  The 
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following agreements will be used throughout. Boldface lower and upper case letters 

respectively denote vector and matrix quantities; when x is a vector and A a matrix, 

by {xAx} we mean the quadratic form x. (Ax),  where standard matrix multiplication is 

always understood and x . y  means the inner product of the vectors x and y. 

For a weak solution u E C ] ( ~ )  of (1.4), we introduce the centrally important vector 

field 

u = IVulm-2Vu,  (6.1) 

where in the usual way it is understood that  u = 0  when V u = 0  (recall m > l ) .  (The 

simple notation u in (6.1) may not carry a clear indication of the meaning of this vector; 

alternative notations suggest themselves but all seem cumbersome in view of the many 

appearances of this vector in later places. Consequently we retain the indicated notation, 

and simply remind the reader again of the central importance of the vector u.) Recall 

that  
r e ( n - l )  m* mn 

n - - ? T t  n - - ? n  

Then we have the following principal result. 

PROPOSITION 6.1. Suppose mE(1,n) .  Let u be a positive weak solution of (1.4) 

and C E C ~ ( ~ )  a non-negative test function. 

Then for any d E R  we have 

, /  J 

(6.2) 

where V2r is the Hessian of r and 

A = n - l ( 1 - ~ . )  ( m * - l ) ' n  ~ -  n-____~ln ' B = m - l d ( 1 - d ) ' m  

(6.3) 

The vector u is nonlinear in Vu when rnr  this makes the proof of Proposition 6.1 

more delicate than that  for the linear case treated by Gidas and Spruck. In addition, the 

proofs when m~> 2 and 1 < m <  2 are distinctly different, with the latter requiring extreme 

care. 

Before turning to the main proof, it is convenient to introduce some further notation. 

Let 

~cr ~ {x ~ ~ [ Vu(x) ~ 0} 
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be the critical set of the solution u in ~. Moreover, by ~c we mean the complement of 

the set ~ in ~2, that  is, ~ c = ~ \ ~ .  In particular, V u r  on ~ r "  

Now by the standard regularity theory for quasilinear elliptic operators, one has 

uEC2(~cCr) for all m > l .  For xE~cCr we can thus introduce the important  Jacobian 

matrix 

U = V u ,  ( V u )  j = OuJ/Ox~ = O(IVulm-2uj)/Ox~. (6.4) 

It is easy to see that,  for x E ~ r ,  

U = IVul m-2 [ I + ( m - 2 ) w |  (6.5) 

where w=Vu/[Vu[ ,  H = V 2 u  is the Hessian of u, and (notation) a |  denotes the dyadic 

matrix with components aib j .  
2,2 By virtue of Theorem 8.1 we have UEWlo c (12), and so also HELI2oc(~). Thus when 

ra~>2 the three factors on the right side of (6.5) are respectively in C ~ L ~ and L 2, locally 

on ft (when m > 2  the definition of w on ~cr is unessential since the first factor vanishes 
1,2 

there!); hence in this case U=27u  is in fact well defined on all 12, with uCWlo c (~) and 

UEL12oc(~). When m > 2  it is clear that  U = 0  on ~cr, but in fact also U = 0  a.e. on Qcr 

even when m = 2  since ~r is a level set of u). 

The derivation of Proposition 6.1 involves, at the beginning, several easy lemmas. 

We first have the following simple result. 

LEMMA 6.1. For all m > l  and all X E ~ r ,  

min(1, m -  1)IWl m-2  IV2ul <~ IUI ~< max(l ,  m -  1)IWl m-2  IV2~l, x E ~cCr �9 

Proof. For x E f ~  we have by (6.5) 

u = I V u l m - 2 A H ,  (6.6) 

where 

A = I + ( m - 2 ) w |  (6.7) 

Clearly A is symmetric with eigenvalues A1 = m - 1 ,  A2 . . . . .  An = 1. 

Now using the fact that  H is also symmetric, and that  t r a c e ( M N ) = t r a c e ( N M )  for 

any pair of square matrices, we get 

[U[ 2 -- t r ace(UU T) = [Vu[ 2m-4 trace(A2H2). 

Diagonalizing A and recalling the form of its eigenvalues, we easily obtain 

min(1, (.~- 1) ~) IHI: < trace(h:H 2) < m~x0, (m- 1) ~) IHIL 

and Lemma 6.1 follows at once. 

The following elementary result in linear algebra is preparatory for the crucial 

Lemma 6.3 below. 
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LEMMA 6.2 .  

Proof. 

Let S be a real symmetric (n• Then 

trace S 2 ~> 1 (trace S) 2. 
n 

Let al , . . . ,  ~r~ be the eigenvalues of S. Then by diagonalization of S we have 

trace S2 = E ~ _1 ~i 2 =-1 (trace S) 2 
i ~ r t  

1 

by the Cauchy-Schwarz inequality. 

LEMMA 6.3. For m > l  and xEf~r we have 

trace(U2 ) _ 1 (trace U) 2 ~> 0. 
'/t 

(6.8) 

Proof. Recall from (6.6) that  U=IVulm-2AH,  where A is given by (6.7). Since A 

is symmetric and positive definite (all eigenvalues positive), we can write B =  x/A.  But 

then 

trace[(AH) 2] = trace[B(BHB2H)] = t race[(BHB2H) B] = trace[(BnB)2].  

Moreover B and H are symmetric, so that  also B H B  is. Hence by Lemma 6.2 we find 

trace[(BHB)2] >~ 1 [trace(BHB)]2 = l[ traee(B2H)]2 = -ln [trace(AH)]2. 

Combining the above relations we get 

trace(U2 ) = 1~7ul2,~_4 traee[(AH)~ ] ~> _1 iVul2m_4[traee(AH)] 2 = 1 (trace U)2 
n 

completing the proof. 

Remark. When m~>2 we have U=~Ju,  so that  trace U = d i v  u = - f ( u )  (a.e.) by (1.4). 

But U = 0  a.e. on ftcr, which thus implies 

f (u)  = 0  a.e. on ~cr. 

If u~O, then u is positive by the strong maximum principle. This gives the following 

regularity result. 

COROLLARY. Suppose that f ( u ) > 0  for u>0.  Then ] ~ c r l = 0  when m>~2. 

That  this corollary may not hold when 1 < m < 2  makes many of our later proofs 

more difficult for this case, see w167 7 and 8. 

The following standard result in the calculus of weak derivatives will be used repeat- 

edly in what follows, frequently without explicit mention. 
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12 LEMMA 6.4. Suppose that a, bEWlo' c (~), where a is scalar and b is either scalar or 

vector. Then 

abVr = - / ( a V b +  (Va)b)r  

for any test function C E C ~ ( ~ ) .  

For the remainder of the section we shall assume that u is a positive solution of (1.4), 

with m ) 2 .  (The case 1 < m < 2  will be deferred until the next section.) 

Put  

v = u a u, (6.9) 

where a E R  is a constant to be determined later, and u is the principal vector (6.1). By 
1 2 1,2 the assumption m>~2 we have uEWlo' ~ (fl), as already noticed. Hence also vEWlo c (~t). 

LEMMA 6.5. Suppose m>~2, and let u be a positive weak solution of (1.4). Then 

u . V u = l V u I  m, v . V u = u a l V u ]  m, d i v u = - f ( u ) .  (6.10) 

Moreover v E Wllo'~ ( a ) and 

V v = a u a - I I V u I m - 2 V u Q V u + u a V u  , d i v v = u a - l ( a i V u i m - u f ( u ) ) ,  (6.11) 

where U = V u ,  V = V v  are the Jacobian matrices of u, v. Finally, with standard matrix 

multiplication notation, 

m - 1  
U V u  = (Vu)Vu = - -  V(lVulm). (6.12) 

m 

Proof. The identities (6.10), (6.11) follow by direct verification with the aid of the 

fundamental equation (1.4) and Lemma 6.4. For the final relation (6.12) we use the 

calculation 

Now define 

(Vu)Vu : IVuj2-m (Vu)u  : ~11Vu 12-m V(Jul 2 ) 

1 2-m 2m-2 m - 1 V ( l V u l m ) .  =  lVul v ( I v u l  ) = 
m 

1 
I (x)  = traee(V 2) - n (div V) 2. 

Note that  I(x)ELloc(~) (for m ) 2 )  since VEL~oc(f~ ). 
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LEMMA 6.6. Suppose m~2 .  Then I(x)>~O a.e. 

Proof. Observe that  

v = u a u  = s - 2  I V ( u S ) I r a - 2  V ( u 0  - f i ,  

where s= l + a / ( m - 1 )  , a r l - m, while 

v = u ~ u :  [V(lnu)lm-2V(ln u) 

if a =  1 -  m. For points x E ~cCr the conclusion now follows directly from Lemma 6.3 applied 

to fi and U = V f i  rather than to u and U, with the obvious changes if a = l - m .  (Note 

here that  d i v f l = t r a c e U  a.e. on ft~r. ) When XEftcr, then U = V = 0  a.e., and again the 

conclusion holds. 

Let bER. Consider the vector field 

(v (6.13) 

(the expression v . V v  is interpreted as the vector (v .V)v  or equally as the matrix prod- 

uct vV). Also put 

= u b+2~-1 {Af (u)  +Auf ' (u ) }  IVul m 

-~-Su b+2a-2 [VUl 2m ~- C div (u bW2a-11VUl m U) 
(6.14) 

where 

A = ( 1 - ~ . ) b ,  A - n - 1  B - m - l ( b + 2 a - 1 ) b - n - 1  - -  ~ - -  a 2 ' 

n m n 

c = n - l a + m - l b .  
n m 

( 6 . 1 5 )  

Clearly w and r are in L2oc (in fact, the first three terms in r are continuous). The coeffi- 

cients A, .~, B in (6.15) are the same as in (6.3) provided b and a are chosen appropriately, 

see (6.26) below. 

The next result is the key to Proposition 6.1 in the case m~>2. 

PROPOSITION 6.2. Suppose m>~2 and let w and ~ be given as above. Then d i v w =  

ubI (x )+r  in the sense of distributions, that is, 

- - / w - v r 1 6 2 1 6 2  for all C E C ~ ( R n ) .  (6.16) 
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Pro@ 

So--fu (divv)v-Vr 

- i V[ a- ' (alvur'-  f )] r 

= -  f ub(div v)2r + iub+2a-l(Aof(u)+uf'(u))[Vu]mr 

+ Boi.,+,~176 

By virtue of the identities (6.10) and (6.11), and Lemma 6.4, we have 

(6.17) 

where 

Ao =a+b, Bo=-ab, Co=-a.  (6.18) 

We have next, by (6.10) and (6.11), 

-- /ub(v.Vv).VC------a/ub+a-l(v.Vu)(u. VC)-- f ub+a(v.Vu).VC 
-- 11+12. 

With the help of (6.10) one finds that 

div(ub+a - 1 (V" ~TU) U) : d iv(ub+2a-11 ~Ul TM U) 

= ub+2o-1 u .  v ( i v u l m )  _ub+2a-lf(~)iV~l.~ 
+ ( b + 2 a -  1)u b+2~-2 [Vu[ 2"~. 

This gives the evaluation 

Ii : Al i ub+2a-l f(u)[vu[m-~ Bl i ub+2a-2[Vu[2m+ cl  iub+2a-lu'~7(iV~t[ TM) (6.19) 

where 

A l = - a ,  B1 = (b+2a-1)a, C1 =a. (6.20) 

The integral/2 is more difficult, involving a delicate interchange of order of differen- 

tiation. That is, in rewriting/2 we should like to use the relation (in an obvious subscript 

notation) 

ViVju i = VjViu i = f '(u)Vju. 
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This is only a formal calculation, however, except in the regular case m=2,  and con- 

sequently it is necessary to follow a somewhat roundabout procedure. For h>0  and 

hi=hei, i=1,  ..., n, let Uh be the matrix with components 

{Uh} j =h-l{IVu(x+hi)[m-2Vju(x+hi)-lVu(x)]m-2Vju(x)}. (6.21) 

Since ueWllo'~(ft), as noted just after (6.5), it is standard that  Uh--+Vu in n~o c as 

h--+0, see (6.1). Hence we can write 

f 
/2 = -  lim lub+~(VUh).Vr 

h--+0 J 

In turn, by Lemma 6.4, 

I2 =li+m ~ {f(vUh)'V(ub+a)r ]"  ub+~ trace(V. Uh) ~b + fub+av'(divUT)r 

the last term understood in the distribution sense. Now by (6.10)-(6.12), with conver- 

gence in the sense of L~oc(ft), 

(VUh) .V(u b+a) -+ (b+a)ub+a-lv " ((Vu)Vu) = - ~  (b+a)u b+2a-lu.v(Ivul m) 

and 

trace(VUh) -+ t race(VVu) = u -a traee(V 2) -au- lu  �9 (VVu) 

=u_atrace(V2)_a2ua_21Vu[2 m m-1  aua_lu.V(Ivulm). 
m 

Finally, for the third term in the limit, we assert that  (uniformly on compact subsets 

of ~t) 
div Uh T -+ -f'(u)Vu. (6.22) 

Assuming (6.22) for the moment and then combining the previous four lines, we get 

[2 = / u-a trace(V2)-- ] ub+2a ft(u)[Vulmr 
(6.23) 

Jr- 8 2 / ?~b+2a-21VU[2m~-C2 / ub+2a-lu'V(Ivulm)o' 

where 
m - 1  

B2 = - a  2, C2 = b. (6.24) 
m 

It is clear that  the left side of (6.16) has the form 

/~ +I1+I2 ,  
n 
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where Io,Ii,I2 have been calculated above, see (6.17), (6.19), (6.23). The terms in 

Io, /1, /2 with coefficients Co, C1, C~ can be put in pure divergence form, as required for 

the function r In particular, making use of (6.10) we have the following identity for 

rewriting the indicated term in I0: 

div(u  b+2a-1 IWlm u) = ubWau. V (u a-1 IWl m) -- ub+ 2a- l f (u) IXT~l-~ 

+ (b+a)u b+2~-1 IVul 2m, 

while, for the corresponding terms in I1,/2, 

div(u  b+2a-1 IX7ulm u) = Ub+2a-1 U. V(IV~I TM) --ub+2~-lf(u)IV~l TM 

+ (b+ 2 a -  1)u b+2~-2 IVul 2m. 

With the help of these identities and the previous calculations for Io,11,I2 we are 

lead to the main formula for r with coefficients 

A=A~176 A = - I +  1 
n n n 

B= B~ +Bl+B2-(b+a)~ 

c =  c~ +c~+c2, 
n 

or equivalently, for A and B, 

A = A--2-~ +A1 +C,  
?2 

B = B~ 

Using (6.18), (6.20) and (6.24) together with a little arithmetic, we then obtain the 

claimed values (6.15) for the coefficients A, A, B, C. This completes the proof of Propo- 

sition 6.2, once we have shown (6.22). 

Proof of (6.22). Apply finite differences to (1.5) to obtain 

d i v U T = y ,  (6.25) 

where y is the vector with components 

yj = cJ(x ) u(x+h j) -u(x) h , j = 1,2, . . . ,n,  
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and 

cJ(x) = - f ' ( u ( x ) + t ( u ( x + h  j ) - u ( x ) ) )  dt. 

The result now follows at once since h - l ( u ( x + M ) - u ( x ) ) ~ V u  and c J ~ - f ' ( u )  as h ~ 0 ,  

uniformly on compact  subsets of f~. 

We now determine the parameters  a and b. To motivate our choice, let us first seek 

the maximum value of b, and hence A, subject to the condition B = 0 .  Writing b=b(a) 

and differentiating the relation 

B(a, b) = 0 

with respect to a, we obtain, when b~(a)=0, 

2a n - 1  +2b  m - 1  = 0 .  
m 

Solving the last two equations for a and b gives 

m - 1  . n - 1  m* 
a - -  - - m  , b =  

m n 

where the critical exponent m* was defined at the beginning of the section. In fact, these 

values for a and b are not optimal, since in w we need to have B > 0 .  Thus we make the 

modified choice 
m - 1  n - 1  

a =  - - m * ,  b = - - m * - d ,  (6.26) 
m n 

where d is a given parameter  which will eventually be chosen small and positive. With  

these values for a and b, the constants A, / i ,  B in (6.15) take the final form given in (6.3), 

while 
C = "-'t~O+cl+c2 = n - 1  a+ m - 1  b 

?~ m 

by (6.18), (6.20), (6.24). 

We can now complete the proof of Proposition 6.1 for the case m~>2. First, from 

(6.13) and (6.11), 

cO = ub+2au .VuWa n -  1 ub+2a_ 1 Ivulmu_t - lub+2af(u)u"  
n 

By means of (reverse) integration by parts  and (6.10), one gets 

- - / u b + 2 a ( u ' ~ u ) ' ~ - / ( U ' ~ ( u b - t - 2 a ) ) u ' ~ ) J F / u b + 2 a d i v u u ' ~ ' ~ - / u b + 2 a u ~ 2 ~ U  

= (b+2a) f u  b+2a-1 IVul  u.Vr (6.27) 
J 
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(in a corresponding calculation at this stage of the proof Gidas and Spruck use a different 

partial integration). In turn 

-/w.Vr (-~a+b) /ub+2a-l[Vu,mu.Vr 

n+l f 

By Proposition 6.2 and Lemma 6.6 the left side of the previous relation is greater 

than or equal to f r 1 6 2  for all non-negative test functions 0. Moreover the integral of 

the last term in the expression (6.14) for g? can be rewritten using integration by parts, 

namely 

C/div(u~+~~ l"~u)O=-C/~+~a-~lW, l~u.Vr (6.2s) 

The required conclusion (6.2), (6.3) now follows, with 

D=C+(n+la+b) 
n 

and b+2a=2-m.-d. 

2 m - 1  ( m . )  ( 1 )  
= 2 a +  b =  2 -  m - 2 - - ~  d 

m 

Remarks. It is obviously possible to state Proposition 6.1 in a slightly more general 

form, without specifying a and b. 

In the present case m~>2, equality can be attained in (6.2) by adding the term 

fu~I(x)r to the left-hand side. Whether  equality can hold in (6.2) itself is an open 

question. 

7. A general integral inequality I I  

The proof for Proposition 6.1 given in w for the case m~>2 fails when l < m < 2 ,  since the 

Jacobian matrices Vu  and Vv  are singular on the critical set 

ac ,  = {* e a I w ( z )  = 0}. 

Because we cannot be assured that  this set is empty when l < m <  2, or even of measure 

zero, the previous proof becomes only formal. Moreover when 1 < m < 2 the function I(x) 
in Lemma 6.6 cannot be defined on the critical set f2cr, creating a further complication. 

All this forces us, when 1 < m < 2 ,  to modify the previous argument in essential ways. 

As in w definitions (6.1) and (6.9), we continue to write 

u = I V u l m - 2 V U ,  v = u a u .  
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The matrices Vu, Vv, though now having no meaning o n  ~cr, are of course well defined 

and continuous on Q~r" It is then convenient to redefine U and V, for l < m < 2 ,  as 

VH, X ~ ~Cr, V~--- (7.1) 
U = ( O ,  X ~ c r  , O, x ~  tier. 

With these redefinitions, Lemma 6.5 continues to hold, with the first relation of (6.11) 

and also (6.12) in the slightly modified form 

V = a u ~ - l l V u l ' * - 2 V u |  , U V u =  m-lv(IVul~); (7.2) 
m 

the second relation of (6.11), however, remains unchanged in view of the calculation 

/V'~7~=/uau'~r 
= f( af(u)--au 

For fixed 0 <r < 1 we put 

u~ = ]Vu]y-2Vu, [Vu]~ =max{IVu[ ,~  }. 

Clearly u ,  is in C(~t) and ~u~ in L2o~(~) by Proposition 8.1. The following technical 

lemma will be important  in the sequel. Its proof will be deferred until w Lemma 8.4. 

LEMMA 7.1. Let Uh be the (matrix) difference quotient introduced in the previous 

section, see (6.21). Then as h--+O, 

UvUh -+ u ~ C  

Vu~U~ --+ Vu~U 

weakly in L~o~(~), 

weakly in L~oc(~ ). 

Remark. These relations are obvious when m/> 2, since Uh--+ •U in L2oc and V u = U .  

They are far from trivial when m <  2. 

Now proceeding in analogy with the demonstration in w we set 

and 

Vc ~a = u~, V~ = Vv~ 

I~(x) = t r ace (V~V)-  1 div v~ div v. (7.3) 
n 

From Proposition 8.1 it is evident that  V, V~ and divv~ are in L2oc(D). Hence I~(x)e 

Lloc(D). The proof of the next result will be deferred until the end of the section. 
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LEMMA 7.2. Let ~ = { x E ~ 1 0 < l V u [ < e } .  Then, for all suitably small e>0, 

{ -u2a-2( l+uf (u) )2 /8(m-1) ,  xC~e,  
Se(x) >1 O, x e ~ .  

Now let bcR,  and consider the vector and scalar fields we=w~(x) and Ce=r 
given by 

and 
Ce -~- ub+2a--1 {~Z~f(u) +A~f'(u)} r~ + s i u  b+2a-1 IVul TM div ue  

+Bu b+2~-2 [Vulm Fe + C div(u b+2=-I [Vu['~ ue), 

where Fe =ue.Vu=lVul'~ -2 IVul 2, 

(7.5) 

.7t=A_7i, ~:_a m-1 b (7.6) 
/Z m 

and A, A, B, C are given by (6.15). 

PROPOSITION 7.1. Let we be defined by (7.4). Then 

divwe = ~e +ub le(x)+O(e 2('~-1)) 

in the sense o] distributions, that is, 

(7.7) 

Proof. By virtue of (1.4), the identities (7.2) and (6.12), and Lemma 6.5, we have 

Io = / ub(div v) v~. Vr 

= -  j ' ub (d i v , ) (d i vv ) r162162  

=-/ub(divv~)(divv)r176 
-- / ~b+all.__c. v[ua--l(alVulm--uf (~) )] ~) 

= - / ub (div v~)(div v ) r  / ub+a•-i(Aof(u)+ uf'  (u))F.r 

+.o /.'+'o-'lv.i-r.,+Co /.'+Ou..V(..-liv.I-),, 

(7.s) 
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where 

Ao =a+b, Bo =-ab ,  Co = - a .  (7.9) 

Next, by (7.2) again, 

-- f ub(ve V) V*=--a f ub+~ VU)(U Vr f ub+2aVeU V* 

=-- 11+12. 

With the help of (1.4) one finds that  

div(ub+~-l(v~ �9 Vu) u) = div(u b+2a- 1F~ u) 

= ub+2a- lu .  V r e  -ub+2~-lf(u)Fe+(b+2a - 1)U b+2a-2 [V~t[m re. 

This gives the evaluation 

I 1 / : d  1 ub+2a-lf(u)Fe+B1 / ub+2a-2[VulmFe+C1 / ub+2a-lU'VFe, (7.10) 

where 

d l = - a ,  B l = ( b + 2 a - 1 ) a ,  C l=a .  (7.11) 

The te rm/2  is more difficult, involving a delicate limit calculation. By Lemma 7.1 (i), 

12 = lim f ub+aveVh �9 V r  
h--+0 J 

= hliIm{/(VeVh)" ~(ub+a) r - /ub+at race(Ve Vh) r  A-/~tb+ave'div(VTh)~)}. 

We deal separately with the three terms on the right. By Lemma 7.1 (i) and (7.2) we get 

- b+a~ (v~Uh)'~'[u ] = ( b A - a ) u b + a - l v e U h . V U  -~ 

weakly in L 2. 

Next, 

m - 1 (b+a)ub+2a_ 1 ue-V(IVul m) 
m 

Ve = Vve = aua- l Vu|  + ua Vu~ , 

where we note that V~=0 a.e. on ~cr since V 2 u = 0  a.e. on this set (that is, V ( V u ) = 0  

a.e. on the level set ~cr)- Therefore, again using Lemma 7.1 and (7.2), we find as h-+0 

trace(VsUh) --+ trace(VeU) 
a 1 = u -  t r a c e ( V ~ V ) - a u -  u-(Vv~Vu) 

= u -a t race(V~V)-a2ua-2F~ [Vul m -  m -  1 a u a _ l u .  V([Vu[m) 
m 

+ O(e2(m-1)V2u) 
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weakly in L1; the last step arises from direct differentiation together with the observation 

that  
{ m-laua-lu~.V([Vu[m), xEQ c, 

u. Vu~Vu = m 

O(~m-2]VU[m V2U) = O(c2(m-~) V2U), X E Q~. 

Finally, for the third term in the limit we have, exactly as in (6.22), 

div U T -4 -f'(u)Vu. (7.12) 

Combining the previous lines yields 

I2 = / ub trace(V~V) - /  ub+2a f' (u) FE~ 
(7.13) 

+ B2 f ~b+ ~a-2r~ iwlm ~ + c2 / ~b+ 2~ V (IWl m), + O(~2( m- 1)) 

(since V2u �9 L2oc (•)), where 

B2=-a 2, c 2 = m - l b .  (7.14) 
m 

It is clear that  the left side of (7.7) has the form 

I0 
- -  +I1+I2 ,  
n 

where Io, I t ,  12 have been calculated above, see (7.8), (7.10), (7.13). The terms in Io, 11, I2 

with coefficients Co, C1, C2 can be rewritten in pure divergence form, as required for the 

function ~pe. In particular, making use of (1.4) and differentiation, we have the following 

identity for rewriting the indicated term in I0: 

div(u b+2a-1 [Vu[mue) ---- ub+aur a-1 [Vu[m)~-U bT2a-1 div u~ [Vu[ m 

+(b+a)ub+2a-lF~ JVu[ m, 

while for the corresponding terms in Ix and/2 ,  we have 

div(u b+2~-1 [Vu[ TM u~) = div(u b+2~- 1F~ u) 

= ub+2~-1 u-VF~ -ub+2a-lf(u)F~ + (b+ 2 a -  1)U b+2a-2 [Vu[mre 

and 

div(u b+2a-1 [Vu[mu~) = ub+2a-lu~.~([vu[rn)-~U b+2a-1 div u~ [Vu[ m 

+ (b+ 2a- 1)u b+2a-2 F~ [Vu[ m. 

With the help of these identities and the previous calculations for I0, It, I2 we are 

lead (after a little arithmetic) to the main formula for r with coefficients given in (7.6) 

and (6.15). This completes the proof of Proposition 7.1. 
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PROPOSITION 7.2. Suppose mE( l ,  2). Let u be a positive weak solution f of (1.4) 

and r  a non-negative cut-off function. Then 

/ u b+2~-I {Af(u) +Auf'(u)} IvulmO +B f ~b+2~--2 IVUl2~O 

1 <~ /ub+2a-I{Duf(u)+~)]Vulm}u'Vr f ub+~a{uV~Ou}, 
(7.15) 

where A, .21 and B are given in (6.15) and 

D -  n + l ,  D=2a+2m-___~lb. (7.16) 
n m 

Pro@ We shall obtain (7.15) by letting e + 0  in (7.7). In preparation for this limit 

process, observe first by (7.2) that 

b+2a. TT-- n--1 ~ b + 2 a - - i  O./e : t t  U e  t.A T a  Ivu[mue~-!ub+2af(u)Ue. 
n n 

(7.17) 

As in w equation (6.27), we evaluate the first term on the right in (7.17): 

-- / ub+2aU~U. Vr = (b+ 2a) / ub+2a-I lVU[m U~. V r 

+fub+~~ U~U vr162 
(7.18) 

This cannot, however, be obtained as in w by a direct integration by parts, since the 

matrix U is not a true gradient. Nevertheless, by approximating U by Uh and using 

Lemma 7.1 (i) it is clear that  (7.18) is valid. 

Finally, a transformation of the last term in the formula for r see the corresponding 

'relation (6.28), gives 

C/div(ub+2a--IIvulmU~)O=--c/ub+2a-I[vu[mU~'Vr (7.19) 

With the help of (7.17)-(7.19) one may now carry out the limit as r approaches zero 

in (7.5), (7.7). Since u~ goes to u pointwise and boundedly, and similarly F~ goes to 

[Vul "~, the only difficulty then resides in the limiting value for the quantity div u~, which 

appears both in (7.5) and (7.18). Corresponding to the term in (7.5), however, we have 

IVulmdiv u~ = ~ - IVulmf(u) ,  z e a l ,  
[ e m-21VulmAu, :r Ea~,  

(7.20) 
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while for the term in (7.18), 

~ - u f ( u ) ,  xE f~,  (7.21) 
u d i v u ~ = [ ~ m _ 2 V u [ V u l  m-2Au, x E ~ .  

Letting ~--+0, and using the fact that  f~e then converges to the empty set, we see 

that  the right side of (7.20) converges pointwise in f~ to -IVu[mf(u). Moreover, by 

Proposition 8.1, it is uniformly bounded in L~or ). Hence the convergence also holds 

weakly in L2oc(f~); see the remark after Lemma 8.3. 

For the second term on the right side of (7.21) we have the estimate 

lem-2VufVu[.~-2Aul < ~m-1 iVulm-2 iV2ulx ~ ~ .  

By the second part of Proposition 8.1, it now follows as for (7.20) that  the right side of 

(7.21) converges weakly in L~oc(ft ) to - u f ( u ) .  

In summary, both the quantities [Vu[mdivu~ and ud ivu~  converge weakly in 

L~oc(f~ ), respectively to -[Vu[mf(u) and - u f ( u ) .  

The resulting limit (7.15) is now easily obtained with the help of a little arithmetic, 

provided that the term ubI~ in (7.7) is non-negative, or at least non-negative in the limit 
as 6--+0. Indeed by Lemma 7.2 we have 

limi~f f ube~(x)r >1 lira inf [ ubZe(x)r 
e-~0 aa~ (7.22) 

1 lim [ ub+2a-2(I+uI(u))2~)--+O 
~> 4(m-- l )  ~-.0jn~ 

since [ f~n (supp r and the integrand in (7.22) is bounded. Proposition 7.2 is there- 

fore proved. 

Proposition 6.1 for the case 1 < m < 2  now follows by setting, as in (6.26), 

m - 1  n - 1  
a = - ~ m  , b= m*-d. 

m n 

It remains to prove Lemma 7.2. 

Proof of Lemma 7.2. For [Vu[<~ one has v~=~m-2uaVu and 

Ve = cm-2ua-l(aVu| W uH), 

with H=V2u .  Since H = V 2 u = 0  a.e. on f~cr, one has as well that  V~=0, d ivvy=0 a.e. 

on ftcr. On the other hand, v~=v, V ~ V  and I~=I when [Vu[~>c. 
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Therefore, as in the proof of Lemma 6.6 we get I~(x))O (a.e.) on f~ (note that 

Ie=O a.e. on f~cr). 

Next consider the remaining case x e f ~ .  Here one finds by (7.2) and (6.5) that 

V : ,//a--11V~tlrn--2 [aVu|174 
where w=Vu/[Vu[.  Thus, recalling that 1 < m < 2, 

trace V~V = em-2u 2(~- l) [vu[m-2 

• {a ~ IW14 + a . ~ l W l ~ { w n w }  + ~2(Inl2 + ( .~ -2 ) Iwnl~)}  

>/em-2u2(~-1) ivur~-2. {a 2 ]Vul4+ahVu[2.mu{wHw}+(m - 1)u 2 DH[ 2 } 

= e'~-2u e(~-1) IVu] "~-2. {Q + �89 ( m -  1)u 2 ]HI 2 }, 

defining Q. By the Cauchy Schwarz inequality (and the usual trick), 

( 2 ( m - 1 )  m2 ) 1 a2[Vu'4" Q>~ 1 a2[Vul4>~-m_ 1 

Noticing that IVu[m+e~<r m+2 and IVu[m-2>~e m-e since l < m < 2 ,  we then get by com- 

bining the previous lines, 

traceV~V>~- 1 aZe2.~uaa_l)+~(m_l)eam_2)u2alHi2. (7.23) 
m - 1  2 

On the other hand, 

1 1 
divv~ divv = traceV~ divv = --em-2u2(a-1){a[Vul2-Fu/ku}.{alVu[m-uf(~)} 

n n n 

using the second equation in (6.11) at the last step. Then, by the Cauchy-Schwarz 

inequality again, 

1 divv~ divv ~< l(m--1)~2(m-2)u2a[Au[2 
n 2 

(7.24) 
+u2(~_l) la[ em{lalem+uf(u)}_t 1 

n 2n2(m-1){[alem+uf(u)}2" 

Hence finally, by (7.23) and (7.24), 

I~ = trace V~V-  1 div v~ div v 
n 

1 l t2(a_ 1 ) [ a 2 E 2 m + 2 ( m _ l ) ~ e m ( [ a , e m + u f ( u ) ) +  _~ff ([alem+uf(u))2] 
>/ 2 ( m - l )  

- 2(.~-1------~ ~2(a-1~ 1+ l a l ~ +  ~I(u)) 

The required result now follows from the fact that n>~2. 
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8. Regularity theory 

In this section, we consider the regularity of weak solutions of (1.4). We shall require 

only that u CC 1(~) and f c C  l (Rn) ,  rather than the more specialized conditions which 

were assumed for the earlier work. 

The following fundamental result is well-known, see [1], [10], [11], [13], [27], [29], [30]. 

Let u be a weak solution of (1.4). Then there exists /3E(0, 1) such THEOREM 8.1. 

that 

Moreover, 

2,2 u e  Wlo ~ (ft). (8.1) 

u (8.2) 

2 2  The embedding uE W~o' ~ (12) for 1 < m  < 2 in particular is due to Acerbi and Fusco [1], 

though the result is essentially contained in earlier work; we give a separate proof below 

as a corollary of Lemma 8.2. 

Our main regularity theorem improves (8.1) in the case l < m <  2, by introducing an 

important weighting factor. 

PROPOSITION 8.1. Let u be a weak solution of (1.4), with l < m < 2 .  Then 

IVulm-aV2u C LX(Q'\f~cr) (8.3) 

where f~l is any compact subset of ft and 

acr={xe lV =0} 

is the critical set of the solution u. 

Condition (8.3) implies that the "natural" Jacobian matrix U = V u ,  see (6.5), is in 

L12oc(f~'\f~cr). This fact is crucial for the proof of Proposition 6.1 in the ease m<2 ,  see 

the discussion of (7.21) in w 

The proof of Proposition 8.1 requires a series of lemmas. The first is elementary. 

LEMMA 8.1. Let a , b  be vectors in R n with la l+]bl>0,  and suppose m > l .  Then 

] l a lm-2a- ib im-2b]  ~< C l ( l a [+ lb [ )m-2 [a -b l  (8.4) 

and 

where 

( la l~-2a  - Iblm-2 b ) ( a -  b)/> C2(lal + Ibl) m-2 ] a -  bl 2, (8.5) 

C1 =2 ,  C~ = 2 2 - " ~ m i n ( m - 1 ,  1). 
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Remarks. The  r ight -hand sides of (8.4) and  (8.5) are undef ined when a = b = 0  and  

m < 2 ;  in this case we unde r s t and  them to have the value 0. The  same agreement  will of 

course apply in later  appl icat ions  of these inequalit ies.  

The  actual  forms of C1 and  C2 are not  impor t an t ,  only the simpler fact tha t  they 

depend  only on the exponent  m.(s)  

Let {ei}~ ~ be an or thonormal  basis of R n. For h > 0  and  hi=hei, put  

Uh,(X)=h-l(u(x+hi)-u(x)), i=l ,2 , . . . ,n ,  

and  in t roduce the mat r ix  field Uh  with components  

{uh}~ = h -1 { IVu(,  + h~)l ~-~  V, ~ (x+h  ~ ) - IVu(x)I  ~-~ Vj u(x)} 

(8.6) 

(8.7) 

where Vj u=Ou/Oxj. For simplici ty we shall also write (8.6) and  (8.7) in the abbrev ia ted  

forms 

Uh = h -1 ( u ( x + h ) - u ( x ) )  

and  

V h ~-~ h -1 { [~u(x-I- h)I rn-2 Vu(x@h) -IVu(x)I m-2 Vu(x)}, 

with similar simplifications in subsequent  formulas. Of course, we shall always suppose 

tha t  h is so small  tha t  these formulas are meaningful  for a given x in ft. 

Here and  in the sequel, by BR=BR(xo) we shall mean  a ball  of radius  R and  cen- 

ter xo, such tha t  the corresponding ball  B4R(xo) of radius  4R is in ft. 

LEMMA 8.2. There exists a constant C=C(x,R,n ,  rn)>O such that (when h<R) 

BR{IVu(x +h) l+ IVu(x)I}  " - 2  [Vuhl 2 dx < C, (8.8) 

the integrand being assigned the value 0 when Vu(x+h)=Vu(x)=O. 

Proof. Take differences in (1.4), resul t ing in 

T (8.9) div U h = y, 

where y=f'(~)Uh and  ( is an  in te rmedia te  value, see (6.25). 

(8) To obtain (8.4) and (8.5) one can proceed as follows. By direct calculus we see that for fixed 
lal, Iblr the ratio of the two sides of (8.4) attains its maximum when cos0=l if rn>2, and when 
cos0=-1  if m<2; and conversely for (8.5) the ratio assumes its minimum when c o s 0 = - i  if m>2, and 
when cos 0 = 1 if m < 2, where 0 is the angle between the vectors a and b; in all cases, then, the extremum 
is reached when a and b are parallel. Once this is shown, it is easy (again using elementary calculus) to 
estimate the maximum and minimum of these ratios as lal and Ibl vary. (In fact, C2 can be taken to be 
1 when m=2 or m>~3.) 
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Let ~ be a standard cut-off function on the ball B2RC~; see Lemma 2.4. 

(8.9) by the test function ~2uh(x) and integrate over B to obtain 

] c,~. ~.~ § J.~ u~. ~(c)--cy (~) I.~ t ~ 

Observe by (8.5) and (8.7) that  (for each fixed direction e~) 

Uh'VUh >~ C2{IVu(x+h)l+{Vu(x){} m-2 IVuhl 2. 

Also when mE (1, 2), we can bound(9) 

= folJ[,vu]m-2Vju](x+sh~)Vi[uh~Vj~2]dsdx 

/o'J [~U(X-[-sh)[m-l {l~Uh[ [V~2]+IUh[ [V2~21} dsdx 

4R-1 j~o  1 / [V?s  dsdx+CR -2 

<~ --~ {[Vu(x+h)[+lVu(x)[}m-2]~TUh[2~2 dx 

Multiply 

(8.10) 

(8.11) 

(8.12) 

+CR-2 f ( foltw(x+sh)l'~-l ds)~{IV~(~+h)l+lW(x)t}~-'~a~ 
+ CR -~ 

y {[Vu(x+h)]+[Vu(x)[}m-2fVuh[ 2~2dx+CR-2" 

The constants C in the above calculation clearly depend only on n, m and bounds on Vu 

in the ball B3R(X0). The estimate (8.8) now foIlows at once with the help of (8.10)-(8.12). 

For m>~2, we have by (8.4), 

fu~vh .v (~  ~1 <~8R -1 j{lvu(x+h~)L+lW(x)l}m-~lvu~l.L~L~ dx 

V {IVu(x+h)l+lVu(x)I}m-21VUhl2~2dx+CR-2' 

(0) At the first and second steps of the calculation, we use summed index notation to avoid con- 
fusion. At the fourth step take tV~t~2R - I ,  and at the second to last step use the Cauchy-Schwarz 
inequality. 
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and again (8.8) follows immediately. 

Proof of (8.1) when l < m < 2 .  By (8.8), 

BRIVUhL2 dx <<. C 

since uECI(~).  Because Uh--+Vu as h--~O (uniformly on compact subsets), it is now 

a standard result of the calculus of distribution derivatives (using the weak sequential 
2,2 compactness of L~oc(~t)) that  uEWlo c (~), as asserted. 

The rest of the section is devoted to proving the important embedding (8.3). We 

first need two technical lemmas. Here it is convenient to define 

l =  - m ) = 1 -  �89 1 . ~yn,  

note particularly that  l>O when 1 < m < 2 .  

LEMMA 8.3. The function 

{D VuU Iv2ul, x e ~ r ,  
z = (8.13) 

O, x E f~cr, 

is in L~oc(~ ). 

Proof. By (8.8) the quantity 

Kh = ( I V u ( x  +hOI  + IVu(x)l) -~ [VUhl 

is uniformly in L~o~(~ ) (use the Heine-Borel theorem). Clearly Kh-+2-tz pointwise in ~. 

Hence by the weak sequential compactness of L2oc (~), Kh--+ 2-~z weakly in L~o ~ (~t), which 

at once yields the required result. 

Remark. Here (and also below) we use the fact that  weak convergence and pointwise 

convergence are consistent, that  is, if ~h-+r  weakly in L p, p~>l, and ~/;h---+~ pointwise 

(almost everywhere) then r  a.e. This result is apparently well-known but it seems 

difficult to find a proof in standard texts. An easy demonstration can be given using 

Egoroff's theorem. Indeed, suppose that  r 1 6 2  on some set of positive measure, say, e.g., 

r = {x c ~ I ~(x) > ~(x)} 

with IFI >0. By Egoroff's theorem, there exists r l c r  such that  IFll = �89 IFI >0 and ~h--+~ 

uniformly on F1 (up to a subsequence). Put  r  Then by weak convergence, 

while by uniform convergence, 

a contradiction. 
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LEMMA 8.4. 

Then as h--+O, 

and 

Let l < m < 2 .  Let U be given by (7.1), and u ~ = ] V u l ~ - 2 V u  as in w 

u e U  h ---} u e U  

Vu~Uh -+ Vu~U 

weakly in L~or ) 

weakly in L~or ), 

where Uh is the (matrix) difference quotient (8.8). 

Remark. This is exactly Lemma 7.1, whose proof was previously deferred. 

Proof. (i) For fixed e > 0, we write 

u~Uh = IVul-lu~ - IVulZUh. 

Clearly 
{ e  "~/2-21 if m ~ 4 

[Vu[ - lu~<  lvul m/2-2z if m >  4, 

so ]Vu[-Zu~EL~oc(f2). On the other hand, by (8.4) and (8.7), one verifies since m < 2  and 

l > 0 that 

IWl t IVhl ~< 2(IVu(x+h)l+lVu(x)lV ~lwhl, 

which is uniformly bounded in L~oc(~2 ) by (8.8). 

Now observe that  outside the critical set the expression u~Uh-+u~U pointwise as 

h--+0, while on the critical set both sides are zero. The first conclusion now follows as 

previously, in view of the weak sequential compactness of L~oc(f/). 

(ii) By the definition of ~Tu~, we have 

{ c m-2 IV2ul if [Vu I < e, 
IVu, l~< [V?~Im-2IV2ul if IVul>~e, 

where, for the set {]Vul~>e}, we have used the equality Vu~=XTu--U together with 

Lemma 6.1 and the fact that m<2 .  Therefore 

IVu~I~Em-21V2ul for x E ~ .  (8.14) 

Now write 

Then by (8.13)-(8.15), 

{ IVul-~Vu~, X E ~-~Cr, 
Y = (8.15) 

0, x E 12r 

IY[ = I V u l  - t  IVu~ I ~< em-2 IVul-; IV2ur = cm--2Z, X C ~r" 
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Thus YCL~oc(f~ ) by Lemma 8.3. 

As in (i), the quantity IVultUh is uniformly bounded in L~oc(f~ ). But also [VultUh--+ 
[VulZU pointwise as h--+0. Therefore as in earlier arguments, the convergence is also 

in L2oc(f~). Consequently, noting that 

Vu~ = IVullY, 

we see that  (with weak convergence in L~o~(f2)) 

Vu~Uh = Y [VullUh --+ YIVul IU  = Vu~U. 

This completes the proof. 

Finally, we can prove the embedding (8.3). By (6.25), since UhEC(f~), we can write 

f uh.vv = fyv, 
for any r We take r to be the vector 

r  2, ~c(0,1), 

where ~ is a standard cut-off function in B2R, see Lemma 2.3; actuMly r Then 

one obtains easily, after contracting against u~, 

/ ~2trace(VuEUh) + / 2~(U~Uh)-V~ = / ~2y'uE. 

Let h--+0. Using Lemma 8.4 and the definition of y (see (6.25)), we get 

f ~2trace(Vu~U)+/2~(u~U).V~=- f ~f'(u)u~.Vu. (8.16) 

Now from Lemma 6.1, 

t race(Vu~U) >~ ( m -  1)s m-2 IVul m-2 IV2ul 2 

when 0< IVul <~, and similarly 

t race(Vu~U) = trace(V 2) ~> ( m -  1) 2 IVuI 2m-4 IV%l 2 

if [~Tu[>~z. In turn, one checks without difficulty that 

t race(Vu~U) > / (m-1 )2 lVu l~ -Z z  2 for x~f~. 
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On the other hand, from (8.13) and another use of Lemma 6.1, we get [Ul~<[Vul-lz. 

Consequently, by the Cauchy-Schwarz inequality and (8.13), 

-~(u~U) ,v~ ~< ~(IVul~ IVul) -~ IuI. [u~ I(IVu[~ IVul/IV~l 
1 1 iVul~(,~_l) [vr ~< ~ ( m -  1)~r ~ I vu lY -2z  2 + 

2 ( m -  1) 2 

Thus by (8.16), 

2 ( m - 1 ) 2 f f  ~2 [V~t[2-2Z2 ~ / A(x)[V~I2 + / B ( x ) ~  2 , 

where 
1 [Vu[~(m_l) ' B(x)=]f,(u)[.[Vu[m 

A(x) 2 ( m _  1) 2 

oo are in Lloc(12 ). In turn 

B [VU[y-2Z2 <~ Const., 
R 

the constant being independent of c (since [Vu]~ ~<l+[Vu I in the expression for A(x)). 
By the Lebesgue monotone convergence theorem, we now get 

/B [Vu[m-2z2 ~ Const., 
R 

which by (8.13) is exactly the statement that [Vu[m-2[V2u] is in L2(Q\~cr).  This 

completes the proof of Proposition 8.1. 

9. Historical note: Cauchy and Liouville, a question of  priority 

Augustin Cauchy was the first person to publish the result now known as Liouville's 

theorem (see [8]). The contribution of Joseph Liouville is an interesting and tangled 

story, worth recounting in some detail. A few weeks before Cauchy's note appeared, 

Liouville announced to the academy his first results for doubly-periodic functions, for 

which he is justly famous (C. R. Acad. Sci. Paris, 19 (1844), 1262). This announcement 

includes, without proof, a weak version of Cauchy's theorem, namely the statement that 

a doubly-periodic holomorphic function must be constant. Cauchy was entirely aware 

of the relation of his result to that of Liouville, as he writes (C. R. Acad. Sci. Paris, 
19 (1844), 1379), "If one considers separately the case of doubly-periodic functions, one 

recovers the special theorem regarded with reason, by one of our honorable associates, 

as particularly applicable to the theory of elliptic functions." 
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Three years later, Liouville gave a series of informal lectures on his theory for 

F. Joachimsthal and C.W. Borchardt; these lectures, containing the previously cited 

weak version of Cauchy's result, but  with no reference to Cauchy, were transcribed and 

edited by Borchardt and (much later) published in J. Reine Angew. Math., 88 (1880), 

277-310. Outside of the first announcement and one later note (see below), this is the 

entire published record of Liouville's work; surprisingly it does not contain Liouville's 

own proof, but instead an alternate discussion due to Borchardt. 

In 1851 Cauchy again wrote explicitly that  his work of 1844 "furnished the fun- 

damental principle invoked by M. Liouville for doubly-periodic functions" and went on 

to restate his result of 1844 (see C. R. Acad. Sci. Paris, 32 (1851), 452-454; (Euvres 

completes, I re s4rie, tome XI, 373 376). At about the same time, Liouville delivered a 

carefully written course of lectures at the Coll~ge de France on doubly-periodic functions, 

containing a relatively simple proof of his doubly-periodic theorem, but again not citing 

Cauchy's contribution. 

Liouville was clearly much concerned with what he considered his priority to the 

doubly-periodic result, for in 1855 (J. Math. Pures Appl., 20, 201-208) he republished his 

1844 remarks together with a later comment of 1851 containing much the same material; 

indeed he even went on to refer explicitly to his lectures at the Coll~ge de France "in the 

second semester of the year 1850 1851". This degree of concern almost certainly stems 

from the remarkable fact that  near the end of his mathematical notebook for the year 

1844 he had written the following "Remarque d'analyse': 

Soit f ( z )  une fonction bien ddterminde de z. Si le module de f ( z )  ne ddpasse 

jamais M, on a f ( z )=Cons t an t e .  

Since it is evident that  he understood the function f ( z )  to be given on the entire 

complex plane, this is clearly the general result! There follows a one-line proof sketch, 

which however can only be considered tentative. From internal evidence it seems highly 

likely that  these words were written prior to the announcement of 1844, that  Liouville 

then devoted his effort to finding a proof of the doubly-periodic result, and, upon finding 

a (difficult) demonstration, then reported this (but only this) result to the academy. He 

never afterwards referred to the "Remarque". 

Liouville saw the utility and centrality of the doubly-periodic theorem for elliptic 

function theory, but in his preoccupation with this he missed the elegance and beauty of 

the main result. Cauchy on the other hand immediately understood its importance, as 

have all subsequent writers. Clearly disappointed at the turn of events, Liouville at no 

time thereafter ever made reference to Cauchy's theorem. The irony is that  nevertheless 

it is Liouville's name which has become attached to the theorem. 

The first modern proof of the main theorem (still found in texts today, based on 
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the Taylor expansion) is apparently due to Briot and Bouquet in the first edition of 

their monograph Thdorie des fonctions elliptiques, Paris, 1859. They refer neither to 

Cauchy nor to Liouville for the result. Very curiously, the first published attribution of 

the theorem to Liouville (to our knowledge) occurs in the second edition, Paris, 1875, 

pp. 202-203. In the preface (p. iv) they cite Liouville's lectures of 1851 as the source 

for their attribution, though as we have noted above, their proof is neither Cauchy's nor 

Liouville's but essentially the modern one based on Taylor's series. 

A few years later, E. Borel, Lefons sur les fonctions enti~res, Paris, 1900, p. 2, gives 

the result back to Cauchy, though without citing a source. Finally, Whittaker and Watson 

in A Course of Modern Analysis, Cambridge, 1902, explicitly call the result "Liouville's 

theorem", again without citation; in their second edition, however, Cambridge, 1915, 

while still naming the result Liouville's theorem, they specifically at tr ibute it to Cauchy 

and cite the 1844 reference at the beginning of this note. On rare occasions a more 

modern treatise on complex analysis still refers to Cauchy, e.g., works of Copson, 1935; 

Dinghas, 1961; Sansone and Gerretson, 1962. But by this time the die has been cast. 

For simplicity throughout the present work, we have continued the customary prac- 

tice of attaching Liouville's name to results in which a non-negative solution of an elliptic 

equation is shown to be constant. 

(We are indebted to Professor Edgar Reich for his aid in locating some of the sources 

cited above, and for helpful discussions of the various historical issues involved. We 

also thank Fabienne Queyroux of the Biblioth@que, Institut de France, for her help in 

locating Liouville's notebooks and manuscripts. We cite also J. Lfitzen's Joseph Liouville 

1809 1882: Master of Pure and Applied Mathematics, Springer-Verlag, 1990, where there 

is an extended and interesting discussion of some of the material above, though the 

presentation is partly marred by championship of Liouville's priority claims.) 
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