
Acta Math., 177 (1996), 225-273 
(~) 1996 by Institut Mittag-Leffler. All rights reserved 

Algebraicity of holomorphic mappings 
between real algebraic sets in C 

M.S. BAOUENDI 

University of California, San Diego 
La Jolla, CA, U.S.A. 

by 

and 

P. EBENFELT 

Royal Institute of Technology 
Stockholm, Sweden 

L.P. ROTHSCHILD 

University of California, San Diego 
La Jolla, CA, U.S.A. 

C o n ten t s  

0. Introduction 
1. Holomorphic nondegenera~y of real-analytic manifolds 

1.1. Preliminaries on real submanifolds of C N 
1.2. Holomorphic nondegeneracy and its propagation 
1.3. The Levi number and essential finiteness 
1.4. Holomorphic nondegeneracy of real algebraic sets 

2. The Segre sets of a real~analytic CR submanifold 
2.1. Complexification of M, involution, and projections 
2.2. Definition of the Segre sets of M at p0 
2.3. Homogeneous submanifolds of CR dimension 1 
2.4. Homogeneous submanifolds of arbitrary CR dimension 
2.5. Proof of Theorem 2.2.1 

3. Algebraic properties of holomorphic mappings between real 
algebraic sets 
3.1. A generalization of Theorems 1 and 4 
3.2. Propagation of algebralcity 
3.3. Proof of Theorem 3.1.2 
3.4. Proof of Theorem 3.1.8 
3.5. An example 
3.6. Proofs of Theorems 1 through 4 

The first and third authors were partially supported by National Science Foundation Grant DMS 
95-01516. The second author was supported by a grant from the Swedish Natural Science Research 
Council and would like to thank the University of California, San Diego, for its hospitality during the 
preparation of this paper. 



226 M . S .  B A O U E N D I ,  P. E B E N F E L T  A N D  L . P .  R O T H S C H I L D  

0. I n t r o d u c t i o n  

A subset A c C  N is a real algebraic set if it is defined by the vanishing of reM-valued 

polynomials in 2N real variables; we shall always assume that  A is irreducible. By 

Areg we mean the regular points of A (see e.g. [HP] or [BCR]). Recall that  Areg is a 

real submanifold of C N, all points of which have the same dimension. We write dim A-- 

dimR A for the dimension of the real submanifold Areg. A germ of a holomorphic function 

f at a point P0 E C N is called algebraic if it satisfies a polynomial equation of the form 

ag ( Z ) f  K (Z) +... +al ( Z ) f ( Z )  +ao(Z) - 0, 

where the aj(Z) are holomorphic polynomials in N complex variables with aK(Z)~O. 

A real-analytic submanifold in C N is called holomorphicaUy degenerate at P0 E M if there 

exists a germ at Po of a holomorphic vector field, with holomorphic coefficients, tangent 

to  M near P0, but  not vanishing identically on M; otherwise, we say that  M is holomor- 

phically nondegenerate at P0 (see w In this paper, we shall give conditions under which 

a germ of a holomorphic map in C N, mapping an irreducible real algebraic set A into 

another of the same dimension, is actually algebraic. We shall now describe our main 

results. 

THEOREM 1. Let A c C  N be an irreducible real algebraic set, and po a point in Areg, 

the closure of Ar~g in C g. Suppose that the following two conditions hold. 

(1) A is holomorphically nondegenerate at every point of some nonempty relatively 

open subset of A~eg. 

(2) If  f is a germ, at a point in A, of a holomorphic algebraic function in C N such 

that the restriction of f to A is real-valued, then f is constant. 

Then if H is a holomorphic map from an open neighborhood in C g of Po into C N, 

with J a c H ~ 0 ,  and mapping A into another real algebraic set A ~ with d imA '=d imA,  

necessarily the map H is algebraic. 

We shall show that  the conditions (1) and (2) of Theorem 1 are essentially necessary 

by giving a converse to Theorem 1. For this, we need the following definitions. If M is 

a real submanifold of C N and pEM,  let TpM be its real tangent space at p, and let J 

denote the anti-involution of the standard complex structure of C N. We say that  M is 

CR (for Cauchy-Riemann) at p if dimR(TqMAJTqM) is constant for q in a neighborhood 

of p in M. If M is CR at p, then dimR TpMNJTpM=2n  is even and n is called the CR 

dimension of M at p. We shall say that  an algebraic manifold M c C  g is homogeneous 

if it is given by the vanishing of N - d i m  M real-valued polynomials, whose differentials 

are linearly independent at 0, and which are homogeneous with respect to some set of 

weights (see w 
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THEOREM 2. Let A c C  N be an irreducible real algebraic set, and let (1) and (2) be 

the conditions of Theorem 1. Consider the following property. 

(3) For every poEAreg at which A is CR there exists a germ of a nonalgebraic 

biholomorphism H of C g at Po mapping A into itself with H(po)=Po. 

/ f  (1) does not hold then (3) holds. I f  (1) holds, but (2) does not hold, let f be a 

nonconstant holomorphic function whose restriction to A is real-valued. If f vanishes 

identically on A, then (3) holds. I f  f does not vanish identically on A, but A is a 

homogeneous CR submanifold of C y then (3) still holds. 

We shall give another version of conditions (1) and (2) of Theorem 1, which will 

give a reformulation of Theorems 1 and 2. For a CR submanifold M of C N, we say that 

M is minimal at poEM if there is no germ of a CR submanifold in C N through P0 with 

the same CR dimension as M at P0, and properly contained in M. A CR submanifold is 

called generic at p if 

TpM + JTpM = TpC N, (0.1) 

where TpC N is the real tangent space of C N. (See w for more details and equivalent 

formulations.) 

For an irreducible real algebraic subset A of C N, we let AcR be the subset of points 

in Areg at which A is CR. The following contains Theorems 1 and 2. 

THEOREM 3. Let A C C  g be an irreducible real algebraic set, and let (1), (2) and (3) 

be the conditions of Theorems 1 and 2. Consider also the following conditions. 

(i) There exists pEAoR at which A is holomorphically nondegenerate. 

(ii) There exists p E A c a  at which A is generic. 

(iii) There exists pEAcR at which A is minimal. 

Then condition (i) is equivalent to condition (1), and conditions (ii) and (iii) together are 

equivalent to condition (2). In particular, (i), (ii) and (iii) together imply the conclusion 

of Theorem 1. I f  either (i) or (ii) does not hold, then (3) must hold. If (iii) does not 

hold, and A is a homogeneous CR manifold, then (3) must also hold. 

Note that  conditions (i), (ii) and (iii) of Theorem 3 are all independent of each other. 

The following is a corollary of Theorems 1-3. 

COROLLARY. Let M E G  N be a connected real algebraic, holomorphically nondegen- 

erate, generic submanifold. Assume that there exists pE M,  such that M is minimal at p. 

Suppose that A ~ is a real algebraic set in C y '  such that dimR A~=dimR M and that H 

is a holomorphic mapping from an open neighborhood in C N of a point poEM satisfying 

H ( M ) c X  such that the rank of H is equal to N at some point. Then H is algebraic. 
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If M is a real-analytic CR submanifold of C N and poEM (with M not necessar- 

ily minimal at P0), then by Nagano's theorem IN] there exists a real-analytic minimal 

CR submanifold of M through P0 of minimum possible dimension (and the same CR 

dimension as M) contained in M. Such a manifold is called the CR orbit of P0. We call 

the germ of the smallest complex-analytic manifold of C N containing the CR orbit the 

intrinsic complexification of this orbit. 

Note that  if V c C  N is a complex algebraic set, i.e. defined by the vanishing of 

holomorphic polynomials, then one can define the notion of an algebraic holomorphic 

function on an open subset of )2reg (see w 

For CR submanifolds which are nowhere minimal, we have the following. 

THEOREM 4. Let M be a real algebraic CR submanifold of CN and poEM. Then the 

CR orbit of po is a real algebraic submanifold of M and its intrinsic complexification, X,  

is a complex algebraic submanifold of C N. For any germ H of a biholomorphism at Po 

of C N into itself mapping M into another real algebraic manifold of the same dimension 

as that of M, the restriction of H to X is algebraic. 

The algebraicity of the mapping in Theorem 4 follows from Theorem 1, after it is 

shown, in the first part of the theorem, that  the CR orbits are algebraic. (See Theorem 

2.2.1.) We mention here that  the algebraic analog of the Frobenius or Nagano theorem 

does not hold, since the integral curves of a vector field with algebraic coefficients need not 

be algebraic. It is therefore surprising that  the CR orbits of an algebraic CR manifold 

are algebraic. In w we formulate and prove Theorem 3.1.2, a more general result 

containing Theorems 1 and 4, which also applies to points in an algebraic set A at which 

A is not necessarily CR or even regular, and which, in some cases, yields algebraicity on 

a larger submanifold than the one obtained in Theorem 4. (See Example 3.1.5.) 

Note that  if a germ of a holomorphic function is algebraic, it extends as a (multi- 

valued) holomorphic function in all of C N outside a proper complex algebraic subset. 

This may be viewed as one of the motivations for proving algebraicity of functions and 

mappings. 

We give here a brief history of some previous work on the algebralcity of holomorphic 

mappings between real algebraic sets. Early in this century Poincar~ [P] proved that  if a 

biholomorphism defined in an open set in C 2 maps an open piece of a sphere into another, 

it is necessarily a rational map. This result was extended by Tanaka [Ta] to spheres 

in higher dimensions. Webster [W1] proved a far-reaching result for algebraic, Levi- 

nondegenerate real hypersurfaces in ON; he proved that  any biholomorphism mapping 

such a hypersurface into another is algebraic. Later, Webster's result was extended in 

some cases to Levi-nondegenerate hypersurfaces in complex spaces of different dimensions 
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(see e.g. Webster [W2], Forstneri~ [Fo], Huang [H] and their references). See also Bedford- 

Bell [BB] for other results related to this work. We refer the reader in addition to the work 

of Tumanov and Henkin [TH] and Tumanov [Tu2] which contain results on mappings 

of higher-codimensional quadratic manifolds. See also related results of Sharipov and 

Sukhov [SS] using Levi-form criteria; some of these results are special cases of the present 

work. 

I t  should be perhaps mentioned that the algebraicity results here are deduced from 

local analyticity in contrast with the general "G.A.G.A. principle" of Serre [Ser], which 

deals with the algebraicity of global analytic objects. 

The results and techniques in the papers mentioned above have been applied to 

other questions concerning mappings between hypersurfaces and manifolds of higher 

codimension. We mention here, for instance, the classification of ellipsoids in C N proved 

in [Wl] (see also [W3] for related problems). We refer also to the regularity results for 

CR mappings, proved in Huang [H], as well as the recent joint work of Huang with the 

first and third authors [BHR]. Applications of the results and techniques of the present 

paper to CR automorphisms of real-analytic manifolds of higher codimension and other 

related questions will be given in a forthcoming paper of the authors [BER]. 

In [BR3], the first and third authors proved that for real algebraic hypersurfaces 

in C N, N > I ,  holomorphic nondegeneracy is a necessary and sufficient condition for 

algebraicity of all biholomorphisms between such hypersurfaces. It should be noted 

that any real smooth hypersurface M c C  N is CR at all its points, and if such an M is 

real-analytic and holomorphically nondegenerate (and N > 1), it is minimal at all points 

outside a proper analytic subset of M. Hence, the main result of [BR3] is contained 

in Theorem 3 above. (In fact the proofs given in this paper are, for the case of a 

hypersurface, slightly simplified from that in [BR3], see [BR4].) It is easy to check that 

in C, any real algebraic hypersurface (i.e. curve) is holomorphically nondegenerate, but 

never minimal at any point. In fact, by the (algebraic) implicit function theorem, such a 

curve is locally algebraically equivalent to the real line, which is a homogeneous algebraic 

set in the sense of Theorem 3. The conclusion of Theorem 3 agrees with the observation 

that, for instance, the mapping Z~--~e z maps the real line into itself. 

The definition of holomorphic degeneracy was first introduced by Stanton [Stl] for 

the case of a hypersurface. It is proved in [BR3] (see also [St2]) that if M is a connected 

real-analytic hypersurface, then M is holomorphically degenerate at one point if and 

only if M is holomorphically degenerate at all points. This condition is also equivalent 

to the condition that M is nowhere essentially finite (see w In higher codimension 

we show in this paper that holomorphic degeneracy propagates at all CR points (see 

w The definition of minimality given here was first introduced by Tumanov [Tul]. 
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For real-analytic CR manifolds minimality is equivalent (by Nagano's theorem [N]) to 

the finite type condition of Bloom-Graham [BG] (see also [BR1]). Both formulations, 

i.e. minimality and finite type, are used in this paper. 

The main technical novelty of this work is the use of a sequence of sets, called here 

the Segre sets attached to every point in a real-analytic CR manifold. For M algebraic, 

the Segre sets are (pieces of) complex algebraic varieties. Another result of this paper, of 

independent interest, is a new characterization of minimality (or finite type) in terms of 

Segre sets (see Theorem 2.2.1). In fact, it is shown that  the largest Segre set attached to 

a point poEM is the intrinsic complexification of the CR orbit of P0. This in particular 

proves the algebraicity of the CR orbit when M is algebraic. The first Segre set of 

a point coincides with the so-called Segre surface introduced by Segre [Seg] and used 

in the work of Webster [Wl], Diederich-Webster [DW], Diederich-Fornaess [DF] and 

others. Our subsequent Segre sets are all unions of Segre surfaces. The difficulty in the 

present context arises from the fact that  the real algebraic sets considered can be of real 

codimension greater than one. Indeed, in the codimension one case, i.e. hypersurface, 

the Segre sets we construct reduce to either the classical Segre surfaces or to all of C N. 

The paper is organized as follows. In w we recall some of the basic definitions 

concerned with real-analytic manifolds in C N and their CR structures. The other sub- 

sections of w are devoted to proving the main properties of holomorphic nondegeneracy, 

which are crucial for the proofs of the results of this paper. In w we introduce the notion 

of Segre sets, as described above; their basic properties, including the characterization 

of finite type and the algebraicity of the CR orbits, are given in Theorem 2.2.1. In w 

we prove the main results of this paper, of which Theorems 1-4 are consequences. For 

the proof of the most inclusive result, Theorem 3.1.2, a general lemma on propagation 

of algebraicity, which may be new, is needed; it is proved in w The actual proofs of 

Theorems 1-4 are given in w Examples are given throughout the paper. 

1. H o l o m o r p h i c  n o n d e g e n e r a c y  o f  rea l -ana ly t i c  se t s  

1.1. Pre l i mi n ar i e s  o n  real s u b m a n i f o l d s  o f  C N 

Let M be a real-analytic submanifold of C N of codimension d and P0 E M. Then M near 

P0 is given by gj (Z, Z)=0,  j = 1,..., d, where the ~j are real-analytic, real-valued functions 

satisfying 

dQl ( Z, 2) A...Ad~.od( Z, 2) 7s 0 

for Z near P0. It can be easily checked that  the manifold M is CR at P0 if, in addition, the 

rank of (OQI(Z, Z), ..., OQd(Z, 2)) is constant for Z near P0, where Of=~'_,j(Of/OZj)dZj. 
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Also, M is generic at p0 if the stronger condition 

C~01(Z , Z) A...AOOd( Z, Z) #0 (1.1.1) 

holds for Z near Po. 

For pEM, we denote by TpM the real tangent space of M at p and by CTpM its 

complexification. We denote by T~ the complex subspace of CTpM consisting of all 

anti-holomorphic vectors tangent to M at p, and by Tp M =Re  T ~ 1M the complex tangent 

space of M at p considered as a real subspace of TpM. If M is CR, then d ime T~ 
and d imRT~M are constant, i.e. independent of p, and we denote by T~ and T~M 
the associated bundles. The CR dimension of M is then 

CRdim M = dime Tp'M=-~~ 1 1 d ima  TiM. 

If M is generic, then dimcT~ for all p. If M is CR, then by Nagano's 

theorem IN] M is the disjoint union of real-analytic submanifolds, called the CR orbits 
of M. The tangent space of such a submanifold at every point consists of the restrictions 

to that  point of the Lie algebra generated by the sections of TOM. Hence M is of 

finite type (in the sense of Bloom-Graham [BG]) or minimal at p (as defined in the 

introduction) if the codimension of the CR orbit through p is 0, i.e. if the Lie algebra 

generated by the sections of TOM spans the tangent space of M at p. 

Note that  if M is a real-analytic submanifold of C g then there is a proper real- 

analytic subvariety V of M such that  M \ V  is a CR manifold. If M is CR at P0 then we 

may find local coordinates Z=(Z r, Z ~p) such that  near Po, M is generic in the subspace 

Z'=O. Hence, any real-analytic CR manifold M is a generic manifold in a complex 

holomorphic submanifold X of C N, here called the intrinsic complexification of M. We 

call d ime X - C R d i m  M the CR codimension of M. Hence, if M is a generic submanifold 

of C g of codimension d its CR dimension is N - d  and its CR codimension is d. In 

view of the observation above, we shall restrict most of our analysis to that  of generic 

submanifolds of C N. 

For a CR manifold M, we define its HSrmander numbers at P0 E M as follows. We 

let Eo=TpoM and #1 be the smallest integer />2 such that  the sections of TCM and 

their commutators of lengths <~#1 evaluated at Po span a subspace E1 of TpoM strictly 

bigger than E0. The multiplicity of the first HSrmander number #1 is then 11 =dimR E1 - 

dimR E0. Similarly, we define #2 as the smallest integer such that  the sections of of T~M 
and their commutators of lengths ~#2 evaluated at P0 span a subspace E2 of TpoM 
strictly bigger than El ,  and we let 12=dimR E 2 - d i m R  E1 be the multiplicity of #2. We 

continue inductively to find integers 2,.<#1 <#2 < ... <#~, and subspaces T~o M= Eo ~ E1 c 
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... ~ E ,  C TpoM, where E8 is the subspace spanned by the Lie algebra of the sections of 

TOM evaluated at P0. The multiplicity lj of each #j is defined in the obvious way as 

above. It is convenient to denote by ml<~m2~...<<.mr the H6rmander numbers with 
multiplicity by taking m:=m2 . . . . .  rntl =#1, and so on. Note that  if M is generic, then 

r=d if and only if M is of finite type at P0. More generally, if M is CR, then r coincides 

with the CR codimension of M if and only if M is of finite type at Po. 

Now suppose that  M is a real-analytic generic submanifold of codimension d in C g 

and p(Z, Z)=(o:(Z, Z), ..., Qg(Z, 2)) is a defining function for M near poGM. We write 

N=n+d.  We define the germ of an analytic subset ])po c c N  through Po by 

~)p0 = (Z :  o(Z, ~) = 0 for all ( near 10o with ~)(P0, ~) = 0}. (1.1.2) 

Note in fact that  ];po c M .  Then M is called essentially finite at Po if 1)po=(Po }. 
Recall that  by the use of the implicit function theorem (see [CM], [BJT], [BR2]) 

we can find holomorphic coordinates (z,w), z E C  '~, wEC ~, vanishing at Po such that  

near P0, 
0(Z, Z) = Im w - r  5, aew) ,  

where r 2, s )=( r  2, s),..., Cd(z, 2, s)) are real-valued real-analytic functions in 

R 2n+d extending as holomorphic functions r X, a) in C 2n+d with 

r 

Hence, solving in w or ~ we can write the equation of M as 

w=Q(z ,2 ,  ff~) or ~=Q(2 ,  z,w), (1.1.3) 

where Q(z, x, v) is holomorphic in a neighborhood of 0 in C 2n'i'd, valued in C d and 

satisfies 

Q(z,O,r) - Q(0, x, T) --T. (1.1.4) 

It follows from the reality of the •j and (1.1.3) that  the following identity holds for all 

Z, ~, wEC 2n+d near the origin: 

Q(z, x, O(x, z, w)) - (1.1.5) 

Coordinates (z, w) satisfying the above properties are called normal coordinates at Po. 

If Z = (z, w) are normal coordinates at Po, then the analytic variety defined in (1.1.2) 

is given by 

])po = {(z, 0): Q(z, X, O) = 0 for all X e cN}. (1.1.6) 
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Remark 1.1.1. If the generic submanifold M is real algebraic, then after a holomor- 

phic algebraic change of coordinates one can find normal coordinates (z, w) as above such 

that  the function Q in (1.1.3) is algebraic holomorphic in a neighborhood of 0 in C 2~+d, 

and hence Vpo is a complex algebraic manifold. If M is a real algebraic CR submanifold, 

then its intrinsic complexification is a complex algebraic submanifold. Indeed, these are 

obtained by the use of the implicit function theorem, which preserves algebraicity. (See 

[BM] and [BR3] for more details.) 

1.2. Holomorphic nondegeneracy and its propagation 

A real-analytic submanifold M of C N is called holomorphically degenerate at poCM if 
X N there exists a vector field = ~ j = l  aj (Z)O/OZj tangent to M where the aj (Z) are germs 

of holomorphic functions at P0 not all vanishing identically on M. For CR submanifolds, 

we shall show that  holomorphic nondegeneracy is in fact independent of the choice of the 

point P0. 

PROPOSITION 1.2.1. Let M be a connected real-analytic CR submanifold of C N, 

and let pl ,p2EM. Then M is holomorphically degenerate at Pl if and only if it is holo- 

morphically degenerate at P2. 

Proof. Since, as observed in w every CR manifold is a generic submanifold of a 

complex manifold, it suffices to assume that  M is a generic submanifold of C N. We shall 

be brief here, since the proof is very similar to that  of the case where M is a hypersurface, 

i.e. d=l,  given in [BR3]. We start with an arbitrary point poEM and we choose normal 

coordinates (z, w) vanishing at P0. We assume that  M is given by (1.1.3) for (z, w) near 0. 

We write 

(2(x, z, w) = ~ q~( z, w)x% (1.2.1) 
c~ 

for Izl, IXI, Iwl <5. We shall assume that  5 is chosen sufficiently small so that  the right- 

hand side of (1.2.1) is absolutely convergent. Here q~ is a holomorphic function defined 

for M, I w] <5 valued in C d. We leave the proof of the following claim to the reader, since 

it is very similar to the case d=l proved in [BR3]: 

Let ( z l ,w l )EM,  with IzlI ,  I w l I < 5 .  If  X is a germ at (z l ,w 1) of a holomorphic 

vector field in C N, then X is tangent to M if and only if 

and (1.2.2) 
j=l v~3 j=l 

with aj holomorphic in a neighborhood of (z 1, wl), for all multi-indices a, and (z, w) in 

a neighborhood of (zl ,wl),  where the qa,zj are the derivatives with respect to zj of the 

q~ given by (1.2.1). 
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As in ~BR3], it easily follows by linear algebra from (1.2.2) that  if M is holomorphi- 

cally degenerate at a point (zi,w l) as above, then it is holomorphically degenerate at 

any point (z, w) in the local chart of normal coordinates. Proposition 1.2.1 then follows 

by the existence of normal coordinates at every point and the connectedness of M. [] 

In view of Proposition 1.2.1, if M is a connected CR manifold in C N we shall say 

that  M is holomorphicaUy nondegenerate if it is holomorphically nondegenerate at some 

point, and hence at every point, of M. 

1.3. T h e  Levi  n u m b e r  and essent ia l  f in i teness  

Let M be a real-analytic generic manifold in C N, poEM and o(Z, Z) defining functions 

for M near P0 as in (1.1.1). Without loss of generality, we may assume po=O. For Pl 

close to 0 we define the manifold ~"~Pi b y  

Gpl = {~ �9 CN: Q(Pi, ~) =0} .  

(This is the complex conjugate of the classical Segre manifold.) Note that  by (1.1.1), 

Y]Pl is a germ of a smooth holomorphic manifold in C N of codimension d. Let Li ,  ..., L,~, 
N n = N - d ,  given by Lj-=~-~k= 1 adk(Z , Z)O/OZk, be a basis of the CR vector fields on 

M near 0 with the ajk real-analytic (i.e. a basis near 0 of the sections of the bundle 

X g T~ If X1, ..., X,~ are the complex vector fields given by j = ~ k = i  ajk(pl, ~)O/O~k, 
j=l ,  ..., n, then Xj is tangent to Epl and the Xj span the tangent space to E m for ~EEpl 

in a neighborhood of 0, with (Pl, ~)Hajk(Pl, ~) holomorphic near (0, 0) in C 2N. For a 

multi-index a =  (ai ,  ..., an)  and j = l ,  ..., d, we define cj~(Z, pl, ~) in C{Z, Pi, i},  the ring 

of convergent power series in 3N complex variables, by 

cj~(Z, pi ,~)=X~oj(Z+pl,~),  j=l , . . . ,d ,  (1.3.1) 

where X ~ = X ~  1 ... X~ n . 

Note that  since the Xj are tangent to Era, we have cj~(O, pl, ~)=0 for all (Pl, ~) near 

(0, 0) and CEGp~. In particular, cj~(O, pi,Pi)=O for p l E M  close to 0. It can be checked 

that  M is essentially finite at Pi if the functions Z~*cjc~(Z, pl,Pl), l<~j<.d, aEZ~_, have 

only 0 as a common zero near the origin for Pi fixed, small. (See [BR2] or [BHR] for a 

similar argument in the case of a hypersurface.) 

For 1 ~ j  ~d,  c~E Z~, let Vj~ be the real-analytic Cg-valued functions defined near 0 

in C N by 

Via(Z, Z) = L~ Qj,z( Z, Z), (1.3.2) 
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. . .L 1 , where where 0j,z denotes the gradient of 0j with respect to Z and L~=L~ 1 ~ 

L1,  ..., Ln are as above. 

In the sequel we shall say that  a property holds generically on M if it holds in M 

outside a proper real-analytic subset. 

If M is a generic real-analytic submanifold of C y as above, we say that  M is k- 

nondegenerate at Z E M if the linear span of the vectors Vj~ (Z, Z), 1 ~ j  <~ d, [a[ <. k, is all 

of CN. ' This definition is independent of the choice of the defining functions 0 and the 

vector fields Lj. 

We have the following proposition. 

PROPOSITION 1.3.1. Let M be a connected real-analytic generic manifold of co- 

dimension d in C N. Then the following conditions are equivalent. 

(i) M is holomorphically nondegenerate. 

(ii) There exists pl EM and k>0  such that M is k-nondegenerate at Pl. 

(iii) There exists V, a proper real-analytic subset of M and an integer l=l(M), 

l <.l(M)<~N-d, such that M is 1-nondegenerate at every p E M \  V. 

(iv) There exists pl EM such that M is essentially finite at Pl. 

(v) M is essentially finite at all points in a dense open subset of M. 

We shall call the number l(M) given in (iii) above the Levi number of M. 

Proof. We shall first prove the equivalence of (i), (ii) and (iii). It is clear that  (iii) 

implies (ii). We shall now prove that  (ii) implies (i). Assume that  M is k-nondegenerate 

at Pl. We take normal coordinates (z,w) vanishing at Pl, so that  M is given by (1.1.3) 

near (z, w)=(O, 0). We can take for a basis of CR vector fields 

LJ=-6-~z3+~-'Qk'~J(~"z'w)k l , j =  l,.. . ,n, (1.3.3) 

so that  the Vj~ given by (1.3.2) become, with Z=(z,w),  

Vj~(Z, 2) = -Qj,~oz(5", z, w). (1.a.4) 

The hypothesis (ii) implies that  the vectors ~ ( 0 ,  0), j=l , . . . ,  d, I~l~k, span C N. By 

the normality of coordinates, this implies that  the qj~,z(O, 0), I~1 ~k, where the qj~(z, w) 

are the components of the vector q~(z, w) defined in (1.2.1), span C n. This implies, by 

linear algebra, that  the aj(z, w) satisfying (1.2.2) in a neighborhood of 0 must vanish 

identically. Hence M is not holomorphically degenerate at 0, proving (i). 

To show that  ( i ) ~  (iii), we shall need the following two lemmas, whose proofs are 

elementary and left to the reader. 
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LEMMA 1.3.2. Let fl(X),. . . ,fd(X) be d holomorphic functions defined in an open 
set ~ in C p, valued in C y and generically linearly independent in ~. If  the Oafj(x), 
j = l , . . . , d ,  aEZP+, span C g generically in fl, then the O~fj(x), j = l ,  ...,d, l a l < g - d ,  
also span C N generically in ~. 

LEMMA 1.3.3. Let (z, w) be normal coordinates for M as above, and let h(x, z, w) be 
a holomorphic function in 2n+d variables defined in a connected neighborhood in C 2n+d 

of z = z l , w = w l , x = 2 1 ,  with ( z l , w l ) e M ,  and assume that h(2, z,w)=-O, for ( z , w ) e M .  

Then h=-O. 

To prove that  (i) ~ (iii), we again take (z, w) to be normal coordinates around some 

point P0 E M. By the assumption (i) and (1.2.2), it follows that  the qj~,z (z, w), j = 1, ..., d, 

all a, span C n generically. Equivalently, by the normality of the coordinates, we obtain 

that  the Qj,e-z(0, z, w) generically span C N. We claim that  the Qj,~z(z ,  z, w) generi- 

cally span C g for (z, w)EM. Indeed, if the O,j,e-z(~, z, w) do not span, then all N x N 

determinants A(f,, z, w) extracted from the components of these vectors vanish identically 

on M and hence, by Lemma 1.3.3, A(X , z,w)=_O in C 2n+d. In particular, A(0, z, w)--0, 

which would contradict the fact that  the O,j,~,z(O, z, w) generically span C g. This proves 

the claim. 

Now choose (z ~ w~ so that  A(0, z ~ w~ for some determinant A as above. 

We apply Lemma 1.3.2 with f j (x )=Q, j , z (X,z~176 to conclude that  there 

exists l<~N-d such that  in the local chart (z, w), the Vj~(Z, Z) (see (1.3.4)) for lal<~l 

span C N generically for ZEM.  Since this property is independent of the choice of local 

coordinates, condition (iii) follows from the connectedness of M. This completes the 

proof of the equivalence of (i), (ii) and (iii). 

It remains to show that  (i), (ii) and (iii) are equivalent to (iv) and (v). We show first 

that  (iii):=~ (iv). Let Pl EM be any l-nondegenerate point, i.e., the span of Vja(pl , f i ) ,  

l<~j<~d, lal<.l, is C N. On the other hand, it follows from (1.3.1) and (1.3.2) that  

Cjc~,Z (0, P l ,  P l )  = Yj(~ (PI,  P l ) .  (1.3.5) 

Hence by the inverse mapping theorem the only common zero, near 0, of the functions 

Z~-*cj~(Z, pl,Pl) is 0, which proves that  M is essentially finite at Pl, hence (iv). 

Next, assume that  (v) holds. If the rank of the Vj~ (Z, 2) were less than N generically 

on M, then at any point Pl of maximal rank near 0 in M, in view of (1.3.5) and the 

implicit function theorem, there would exist a complex curve Z(t) through 0 such that  

cj~(Z( t ) ,p l ,~)=O for all small t and all j,c~. Hence M would not be essentially finite 

at Pl, contradicting (v), since Pl can be chosen in an open dense set. 

Since (v) :* (iv) is trivial, it remains only to show that  (iv) ::~ (v). For this we need 

the following lemma. 
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LEMMA 1.3.4. Let { f j} jeJ  be holomorphic in a neighborhood of 0 in C N. Suppose 

that Z = 0  is an isolated zero of the functions f j (Z ) - f j (O) ,  j E J .  Then there exists 5>0 

such that for IZol <5, Z = 0  is an isolated zero of the functions f j (  Z + Z o ) - f  j( Zo), j E J. 

Proof. For j E J ,  let Fj (Z ,~ )=f j (Z ) - f j (~ ) ,  which is holomorphic near 0 in C 2N. 

Let V be the variety of zeros of the Fj. We claim that  there exists s:>0 and 5>0 

such that if 1~01<5, then the set VA{(Z,~)Ec2N: IZl<c, ~=~0} is discrete. Indeed, by 

assumption there exists ~>0 such that  VN{IZ I--e, ~=0}=O.  Therefore by compactness, 

there exists 5, 0<5<e ,  such that  VN{IZI=E , 1~1<5}=0. Hence for any 1r the 

set Vn{IZI<s , ~=r is discrete. Hence the zero Z=~0 of F(Z,~o) is isolated, which 

completes the proof of the lemma. [] 

We may now prove that  (iv)::~ (v). Choose normal coordinates Z =  (z, w) around 

p l E M  at which M is essentially finite, and observe that  if p0=(z ~ w ~ is in this local 

chart, we have 

cj,~(Z, po,Po)= -Qj ,xo(2~176176176176176 (1.3.6) 

By Lemma 1.3.4, we conclude from (1.3.6) that  M is essentially finite for any P0 in a 

neighborhood of Pl. Property (v) follows by connectedness of M. This completes the 

proof of Proposition 1.3.1. [] 

1.4. Holomorphic nondegeneracy of real algebraic sets 

Recall that  if A is an irreducible, real algebraic subset of C N, we denote by ACR the set 

of points of Areg at which Areg is CR. In this subsection we prove the following result. 

PROPOSITION 1.4.1. Let A c C N be an irreducible real algebraic set and pl,p2 E AcR. 

Then A is holomorphically degenerate at Pl if and only if it is holomorphically degenerate 

at P2. 

We note that  if AcR is connected then the proposition follows immediately from 

Proposition 1.2.1. However, even if A is irreducible, A, Ares and ACR need not be 

connected. 

Proof. It follows from the proof of Proposition 1.2.1 that  if M is a real algebraic CR 

manifold, holomorphically degenerate at P0 E M, then we can find a holomorphic vector 

field 

N 0 (1.4.1) x= Z aj(Z) OZ3 
j = l  
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tangent to M with aj(Z) algebraic holomorphic near P0 and not all vanishing identically 

on M. Indeed, by Remark 1.1.1, we may assume that  the functions Q and q~ in (1.2.1) 

are algebraic. Since the aj(z,w) in (1.2.2) are obtained by solving a linear system of 

equations, we can find a set of solutions which are algebraic. 

Assume that  AcR is holomorphically degenerate at Pl. By the observation above, 

we can find X of the form (1.4.1), with the aj(Z) holomorphic algebraic, tangent to 

A near Pl. Since the aj(Z) are algebraic, they extend as multi-valued holomorphic 

functions to c N \  V, where V is a proper complex algebraic subvariety of C y with Pl ~ V. 

Hence AnV is a proper real algebraic subvariety of A. Let U be a connected open 

neighborhood of p~ in AcR and let p3EU\V. (If p2~V, we may take p3=p2.) If d =  

codimR A, then by a classical theorem in real algebraic geometry [HP, Chapter 10], there 

exist real-valued polynomials 61(Z, Z), ..., Qd(Z, 2) with 

A= {z  E cN: Qj(Z,Z)=O, j=  I,...,d} 

and dQ1, ..., dLOd generically linearly independent on A. Let `4 be the complexifica- 

tion of A, i.e. the irreducible complex algebraic set in C 2N given by `4={(Z,~)Ec2N: 
pj(Z, ~)----0, j = l ,  ..., d}, and let V = V  • C~ v. We identify C N with a subset of C 2N by the 

diagonal mapping Z~-~ (Z, 2) ,  so that  A and V become subsets of .4 and V, respectively. 

We claim that  Pl and P3 (considered now as points `4) can be connected by a curve 

contained in `4reg\V- The claim follows from the fact that  AregAV is a proper algebraic 

subvariety of `4reg and hence its complement in `4reg is connected, by the irreducibility 

of .4. We conclude that  the holomorphic continuation of the vector field (1.4.1), thought 

of as a vector field in C 2N, is tangent to .4 at every point along this curve, from which 

we conclude that  A is holomorphically degenerate at P3- We may now apply Proposi- 

tion 1.2.1 to the CR manifold U to conclude that A is also holomorphically degenerate 

at P2. [] 

Remark 1.4.2. For a general real algebraic submanifold M C C N, not necessarily CR, 

it can happen that  M is holomorphically degenerate at all CR points, but not holomorphi- 

cally degenerate at points where M is not CR, as is illustrated by the following example. 

Let M c C  4 be the manifold of dimension 5 given by 

Z 3 = Zl 2 , R e  Z 4 ~- Z 1 Z2 '~ Z2 Z l .  

M is a CR manifold away from ZI=Z3=O, and M and McR are connected. At the CR 

points the holomorphic vector fields tangent to M are all holomorphic multiples of the 

vector field X=O/OZ2+2Z13/20/OZ4. (Note that  here Z~/2=Z1 on M.) We conclude 

that  there is no nontrivial germ of a holomorphic vector field tangent to M at a non-CR 

point of M. 



ALGEBRAICITY OF HOLOMORPHIC MAPPINGS 239 

2. The Segre sets o f  a r e a l - a n a l y t i c  C R  s u b m a n i f o l d  

2.1. C o m p l e x i f i c a t i o n  o f  M ,  i n v o l u t i o n  a n d  p r o j e c t i o n s  

Let M denote a generic real-analytic submanifold in some neighborhood U c C  N of 

poEM. Let Q=(Q1, ..., Qd) be defining functions satisfying (1.1.1) and choose holomor- 

phic coordinates Z=(Z1 ,  ..., ZN) vanishing at Po. Embed C N in c 2 N = c N •  v as the 

totally real plane {(Z, ~ ) � 9  r  Let us denote by pr z and prr the projections of 

C 2N onto C N and C~ v, respectively. The natural anti-holomorphic involution ~ in C 2N 

defined by 

= (r z )  (2.1.1) 

leaves the plane {(Z, ~ ) : r  invariant. This involution induces the usual anti-holo- 

morphic involution in C g by 

c N ~  Z ~ prr (Z)) = 2 �9 C N. (2.1.2) 

Given a set S in C N we denote by *S the set in C~ v defined by 

*S = prr (~prz 1 (S)) = {~: ~ �9 S}. (2.1.3) 

By a slight abuse of notation, we use the same notation for the corresponding transforma- 

tion taking sets in C~ v to sets in C N. Note that if X is a complex-analytic set defined near 

Z ~ in some domain f ~ c C  N by hi(Z) . . . . .  hk(Z)=O, then *X is the complex-analytic 

set in * ~t C C~ v defined near C ~ =,~~ by hi (~) . . . . .  /tk (~)--0. Here, given a holomorphic 

function h(Z) we use the notation / t (Z)=h(Z) .  The transformation * also preserves 

algebraicity of sets. 

Denote by A4 C C 2N the complexification Of M given by 

J ~  = {(Z, ~) �9 c 2 N :  Q(Z, ~) = 0}. (2.1.4) 

This is a complex submanifold of codimension d in some neighborhood of 0 in C 2N. 

We choose our neighborhood U in C N so small that  U• 2N is contained in the 

neighborhood where A4 is a manifold. Note that  M is invariant under the involution 

defined in (2,1.1). Indeed all the defining functions ~(Z, ,~) for M are real-valued, which 

implies that  the holomorphic extensions Q(Z, ~) satisfy 

= e(r z ) .  (2.1.5) 

Thus, given ( Z , ~ ) E C  2N we have Q(~(Z,~))=Q(~,Z)=O(~,Z)=Q(Z,~), so ~(Z,~)E.M if 

and only if (Z, ~ )EM.  
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2.2. Def in i t ion  o f  t h e  Segre  se ts  of  M at  Po 

We associate to M at P0 a sequence of germs of sets No, N1, ...,Njo at P0 in C N -  

henceforth called the Segre sets of M at P0 for reasons that  will become apparent--defined 

as follows. Define No={Po} and define the consecutive sets inductively (the number j0 

will be defined later) by 

Nj+I = prz(.MApr~l(*Nj)) = prz(.MA~przl(Nj)). (2.2.1) 

Here, and in what follows, we abuse the notation slightly by identifying a germ Nj with 

some representative of it. These sets are, by definition, invariantly defined and they arise 

naturally in the study of mappings between submanifolds (see w 

Let the defining functions O and the holomorphic coordinates Z be as in w Then 

the sets NA can be described as follows, as is easily verified. For odd j = 2 k + l  (k=0, 1, ...), 

we have 

N2k+l = {Z: : ]Z 1 , ..., Z k, ~1, ..., ~k: ~o(Z, ~k) = Lo(Z k, ~k-1 )  . . . . .  Q(Z 1 , O) = O, 
(2.2.2) ~o(Z k, ~k) ~_ Q(zk-1,  ~ k - 1 )  . . . . .  Lo(Z 1, ~1) = 0}; 

note that  for k=O we have 

N1 = {Z: p(Z, O) = 0}. (2.2.3) 

For even j=2k ( k = l , 2  .... ), we have 

N2k = {Z: 3Z1, ..., Z k-l, ~1,..., ~k: ~o(Z, ~k) -~ Lo(Zk-1 ~k-1 )  . . . . .  ~o(Z 1 ' ~1) = 0, 

~o(Zk-1, ~k) = ~o(Zk-2, c k - 1 )  . . . . .  Lo(0 ' r __- 0}. (2.2.4) 

For k = 1, we have 

N2 = {Z: 3~1: p(Z, ~1) _- 0, p(0, ~1) = 0}. (2.2.5) 

From (2.2.2) and (2.2.4) it is easy to deduce the inclusions 

No c N1 c ... c Nj C .... (2.2.6) 

When d--1 the set N1 is the so-called Segre surface through 0 as introduced by Segre [S], 

and used by Webster [W1], Diederich-Webster [DW], Diederich-Fornaess [DF], Chern- 

Ji [CJ], and others. Here the set N2 is the union of Segre manifolds through points ~1 

such that  ~1 belongs to the Segre surface through 0. Subsequent Nj 's  can be described 

similarily as unions of Segre manifolds. 

In order to simplify the calculations, it is convenient to use normal coordinates 

Z=(z, w) for M as in w Recall that  M is assumed to be generic and of codimension d; 

we write N=n+d. If M is given by (1.1.3), it will be convenient to write 

Q(z, x, T) = T +q(z, X, T), (2.2.7) 
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where 

q(z, O, 7) - q(O, X, 7) - O. (2.2.8) 

In C 2N, we choose coordinates (Z, ~) with Z = ( z , w )  and ~=(X, 7), where z, x e C  n and 

w, T e e  d. Thus, in view of (1.1.3), the complex manifold 2t4 is defined by either of the 

equations 

w = Q(z, X, ~-) or 7 = Q(X, z, w). (2.2.9) 

In normal coordinates, we find that  in the expression (2.2.2) for N2k+l we can solve 

recursively for w I , 71, w 2, 7 2, . . . ,  W k, 7 k and parametrize N2k+~ by 

C ( 2 k + l ) n  ~ (z, z l , . . . ,  z k, ~1, . . . ,  x k )  = A ~ (z, V 2 k + l  (A)) E C N, (2.2.10) 

where 

and recursively 

V 2k+1 (A) = 7 k +q(z, X k, 7k), 

71 =wZ +q(Xl,zl, w l) with W l = { O,71-1+q(zl' xl--l' Tl-1)' l >~ 2,1, 

fo r /=1 ,  2, ..., k; for k=0, we have v l - 0 .  Similarily, we can parametrize N2k by 

(2.2.11) 

(2.2.12) 

C 2kn 9 (z ,  z l ,  ..., z k - '  , ~(1, ..., x k )  = h ~ (z ,  v 2 k ( A ) )  e C N, (2.2.13) 

where 

and recursively 

v2k(h)=~k+q(z, xk,7~), (2.2.14) 

7t+I=wZ +gI(XZ+I,Zl,Wl ) with Wl=TZ +q(zZ,xZ,TZ), (2.2.15) 

for /=1, . . . , k -1  and TI=0. Define dj to be the maximal rank of the mapping (2.2.10) 

or (2.2.13) (depending on whether j is odd or even) near OeC in. It is easy to see that  

do=O and dl=n.  In view of (2.2.6), we have do<d1 <,d2<~d3<~ .... We define the number 

jo/> 1 to be the greatest integer such that  we have strict inequalities 

do < dl < ... < djo. (2.2.16) 

Clearly, j0 is a well-defined finite number because, for all j ,  we have d j < , N = n + d  and 

djo>.n+jo-1 so that  we have j 0 ~ d + l .  The dj's stabilize for j>~jo, i.e. djo=djo+l= 

djo+2 . . . .  , by the definition of the Segre sets. 
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So far we have only considered generic submanifolds. If M is a real-analytic CR 

submanifold of C N, then M is generic as a submanifold of its intrinsic complexification ~' 

(see w If M is real algebraic then X is complex algebraic. The Segre sets of M at a 

point P0 E M can be defined as subsets of C N by the process described at the beginning 

of this subsection (i.e. by (2.2.1)) just as for generic submanifolds or they can be defined 

as subsets of X by identifying X near P0 with C K and considering M as a generic 

submanifold of C K. It is an easy exercise (left to the reader) to show that  these definitions 

are equivalent (i.e. the latter sets are equal to the former when viewed as subsets of c N ) .  

The main result in this section is the following. Let the Hbrmander numbers, with 

multiplicity, be defined as in w 1.1. 

THEOREM 2.2.1. Let M be a real-analytic CR submanifold in C N of CR dimension 

n and of CR codimension d and poEM. Assume that there are r (finite) Hbrmander 

numbers of M at Po, counted with multiplicity. Then the following hold. 

(a) There is a holomorphic manifold X of (complex) dimension n+r  through Po 

containing the maximal Segre set Njo of M at Po (or, more precisely, every sufficiently 

small representative of it) such that Njo contains a relatively open subset of X .  In 

particular, the generic dimension djo of Njo equals n + r. 

(b) The intersection M A X  is the CR orbit of the point Po in M.  

(c) If M is real algebraic then X is complex algebraic, i.e. X extends as an irreducible 

algebraic variety in C N. 

In particular, this theorem gives a new criterion for M to be of finite type (or 

minimal) at P0. The following is an immediate consequence of the theorem. 

COROLLARY 2.2.2. Let M be a real-analytic CR submanifold in C N of CR dimen- 

sion n and of CR codimension d and poEM. Then M is minimal at Po, if and only if 

the generic dimension djo of the maximal Segre set Njo of M at Po is n+d. In particular, 

if M is generic, then M is minimal at Po if and only if djo = N .  

Example 2.2.3. Let M c C  3 be the generic submanifold defined by 

ImWl=lZl  2, Imw2----Izl 4. 

Then M is of finite type at 0 with Hbrmander numbers 2, 4. The Segre sets N1 and N2 

at 0 are given by 

N1 = {(z, Wl, w2): Wl -- 0, w2 = 0}, (2.2.17) 

N2 = {(z, wl, w2): Wl = 2izx, w2 = 2iz2x 2, X �9 C}. (2.2.18) 

Solving for X in (2.1.18) we obtain in this way (outside the plane {z--0}) 

g 2 = { ( z ,  wl ,w2):w2 = - ~$w 1 1 "  2 }. 
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Using the definition (2.2.1), we obtain 

N3-- {(Z, Wl,W2):w2ziwl( lWl-2Z~),  HEC}. 

We have d3=3; N3 contains C 3 minus the planes {z=0} and {W 1 =0}. 

Example 2.2.4. Consider M c C  a defined by 

I m w l  = IzJ Imw2 =aew2fz l  4 

Here 2 is the only H6rmander number at the origin. Again, N1 is given by (2.2.17), and 

N 2={(z,wl,w2):z#O, w2=0}[-){0,0,0}. 

It is easy to see that subsequent Segre sets are equal to N2. Thus, N2 is the maximal 

Segre set of M at 0, d2 =2, and the intersection of (the closure of) N2 with M equals the 

CR orbit of 0. 

Let us also note that  part (c) of Theorem 2.2.1 implies the following. 

COROLLARY 2.2.5. The CR orbits of a real algebraic CR manifold are algebraic. 

The theorem of Nagano (IN]) states that  the integral manifolds of systems of vector 

fields, with real-analytic coefficients, are real-analytic. Thus, the CR orbits of a real- 

analytic CR manifold M are real-analytic submanifolds of M. However, in general the 

integral manifolds of systems of vector fields with real algebraic coefficients are not al- 

gebraic manifolds, as can be readily seen by examples. Hence, one cannot use Nagano's 

theorem to deduce that the orbits of an algebraic CR manifold are algebraic. Corollary 

2.2.5 seems not to have been known before. 

Before we prove Theorem 2.2.1 (in w we first discuss the homogeneous case 

because the proof of the theorem will essentially reduce to this case. We first consider 

the case where the CR dimension is 1 (w and then give the modifications needed to 

consider the general case (w 

2.3. H o m o g e n e o u s  submanifo lds  of  C R  d imens ion  1 

Let Pl~-. .~PN be N positive integers. For t > 0  and Z=(ZI,... ,ZN)EC N, we let ~tZ= 
(tm Z1, . . . , t 'NZN).  A polynomial P(Z, Z) is weighted homogeneous of degree m with 

respect to the weights #1,..., ]-tN if P(~tZ, 5t2) =traP(Z, 2) for t>0 .  
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In this section and the next, we consider submanifolds M in C N, N = n + d ,  of the 

form 
wl = @1+ql (z, 2), 

wj = ~ j  +qj ( z, z, wl  , ..., wj-1) ,  

M :  (2.3.1) 

W r + l  = W r + l ,  

Wd ---- Wd, 

where O<.r<.d is an integer ( r = 0  corresponds to the canonically flat submanifold), and 

each qj, for j = l ,  ..., r, is a weighted homogeneous polynomial of degree mj.  The weight 

of each zj is 1 and the weight of wk, for k = l ,  ..., r, is ink. Since the defining equations 

of M are polynomials, we can, and we will, consider the sets No, ..-, Njo attached to M 

at 0 as globally defined subsets of C y. Each Nj is contained in an irreducible complex 

algebraic variety of dimension dj (here, an algebraic variety of dimension N is the whole 

space c N ) .  The latter follows from the parametric definitions (2.2.10) and (2.2.13) of 

Nj and the algebraic implicit function theorem. 

We let rg, for j = 2 ,  ..., d + l ,  be the projection Irj: c n + d ~ " ~ C  n + j - 1  defined by 

lrj (z, wl,  ..., Wd) = (z, wl ,  ..., w j_  ~ ). (2.3.2) 

We define M J C C  n+j-~ to be 7rj(M). By the form (2.3.1) of M, it follows that each MJ 

is the CR manifold of codimension j - 1  defined by the j - 1  first equations of (2.3.1). 

Throughout  this section and the next, we work under the assumption that  M satifies the 

following. 

CONDITION 2.3.1. The CR manifold MJ, for j=2 ,  . . . , r + l ,  is of finite type at O. 

For clarity, we consider first the case where the CR dimension, n, is one, i.e. zEC.  

The rest of this section is devoted to this case. The purpose of the following proposition 

is to relate the integer jo, defined in (2.2.16), to the integer r in Condition 2.3.1, and to 

give, by induction on j ,  parametrizations of a particular form of open pieces of N1, ..., Njo. 

PROPOSITION 2.3.2. Let M be of the form (2.3.1) with CR dimension n = l  and 

assume that M satisfies Condition 2.3.1. Let No,N1, . . . ,Njo be the Segre sets of M 

at O, and let d0,dl, . . . ,djo be their generic dimensions. Then j o=r  + l and d j = j ,  for 

0~<j~<r+l. Furthermore, for each j = 0 , . . . , r + l ,  there is a proper complex algebraic 

variety Vj C C j such that Nj satisfies 

Nj N ((C j \Vj) • C d - j + l  ) (2.3.3) 

= {(z, wl, ...,wg) �9 ((CJ \Vj) x c d - J + l ) :  wk = f jk(z ,  wl ,  . . . ,wj-1),  k = j ,  ...,d}, 
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where each f jk, for k=j,  ..., r, is a (multi-valued) algebraic function outside Vj and where 

fjk=O for k=r + l, ...,d. We write bjk for the number of holomorphic disjoint branches 

of fjk outside Vj. 

Proof. Clearly, the first statement of the proposition follows from the last one. Thus, 

it suffices to prove that, for each j = 0 ,  ..., r + l ,  there is a proper algebraic variety Vj such 

that  (2.3.3) holds. The proof of this is by induction on j .  

Since No={0} and N1 ={(z,  w): w=0}, (2.3.3) holds for j = 0 ,  1 with Vo =171=O. We 

assume that  there are Vo, ..., Vz-1 such that  (2.3.3) holds for j = 0 ,  ..., l - 1 .  By (2.2.1), we 

have 

Nz = {(z, w): 3(X,T) �9 *Nl-1, (Z,W,X,T) EArl}. (2.3.4) 

ASSERTION 2.3.3. The set of points (z, wl , . . . ,wl_t)EC t such that there exists 

(WL,...,Wd) E C d-~+l and (X, 7) E *(N/_IN(V/_I )<cd-/+2)) 

with the property that (z, w, X, T)E3A is contained in a proper algebraic variety At C C z. 

Proof of Assertion 2.3.3. Let S be the set of points (z, wl, ..., wl -1)EC t described 

in the assertion. Then (z, wl, . . . ,wz-1)EC l is in S if 

Tj = W j - ~ q j ( X , Z , W l , . . . , W j _ I )  , j = l , . . . , l - 1 ,  (2.3.5) 

for some (X, rl ,  ..., rl-1 ) E "(rrt (Nl- 1)N(ld-1 x C)). (Recall the two equivalent sets of defin- 

ing equations, (2.2.9), for 2t4. The operation �9 here is taken in C z, i.e. mapping sets in 
C ~ C l (z,wl ...... ~_~) to (x,~l ...... ~_~).) We claim that the set S is contained in a proper al- 

gebraic variety A l c C  I. To see this, note first that  (2.3.3) (which, by the induction 

hypothesis, holds for Nl-1) implies that 7rl(Nl-1) is contained in a proper irreducible 

algebraic variety in C ~. Let P1 (X, r l ,  ..., rl-2) be a (nontrivial) polynomial that  vanishes 

on * Id-1 C C z- 1, and let P2 (X, T1, ..., TZ-- 1) be a (nontrivial) irreducible polynomial that  

vanishes on *7rl(N1-1). Thus, if (z, Wl, ..., wl-1)ES then there exists a XEC such that  

151 (x,  z,  w l ,  ..., wl-2) :-- P1 (x, wl +ql  (x,  z), . . . ,  w l - 2  +ql-2(x ,  z, wl, . . . ,  w z - 3 ) )  = 0, 

P2(X, z, Wl, ..., wl-1) := P2(X, wl +Oh (X, z), ..., wl-1 +ql-1 (X, z, wl,..., wl-2) ) = O, 
(2.3.6) 

i.e./~(z, Wl, ..., wl-1)=0 if we denote by R the resultant of/51 and t52 as polynomials in X. 

The proof will be complete (with Az=R-I(0))  if we can show that  R is not identically 0, 

i.e. 151 and 152 have no common factors (it is easy to see that  neither 151 nor 152 is 

identically 0). Note that,  for arbitrary vl, ..., Tl-1, we have (ef. (2.2.9)) 

152(X,Z,Tl+ql(Z,X), ...,TZ-I+qz-I(z,x,~h, ..., TZ--2)) ----P2(X, 71, ..., ~-t-1)- (2.3.7) 
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It follows from this that  P2 is irreducible (since P2 is irreducible). Thus, P1 and P2 

cannot have any common factors because P2 itself is the only nontrivial factor of/52 and, 

by the form (2.3.3) of Nt-1, P2 is not independent of wt-1. This completes the proof of 

Assertion 2.3.3. [] 

We proceed with the proof of Proposition 2.3.2. Let us denote by B I c C  t-1 the 

proper algebraic variety with the property that  (z, Wl,..., wt-2)EC t-1 \Bt  implies that  

the polynomial ~51(X, z, wl, ..., wt-2) defined by (2.3.6), considered as a polynomial in X, 

has the maximal number of distinct roots. Let Ct C C t denote the union of At and Bt • C. 

For (z, wl, ..., wt-2) fixed, let ~t(z, Wl, ..., w t - 2 ) c C  be the domain obtained by removing 

from C the roots in X of the polynomial equation 

Pl (X ,Z ,  Wl, ..., w/_2) =O. (2.3.8) 

In view of Assertion 2.3.3 and the inductive hypothesis that  (2.3.3) holds for Nl-1, it 

follows from (2.3.4) that  

Nl N((C z \Cz) x C d-Z+1) = {(z, Wl, ..., Wd) C ((C j \ e l )  x cd - J+ I )  : 
(2.3.9) 

3X E f~(z, Wl, ..., wt-2) C C, wk = gzk(X, z, Wl, ..., Wk-1),  k = 1 -1 ,  ..., d}, 

where 

gMX, z, wl, ..., wk-1) 

= J ~ - 1 , k ( X ,  Wl @ql (X, Z), ..., Wl_ 2 + ( 1 / - 2  ()(', Z, Wl ,  ... , W / _ 3 )  ) (2.3.10) 

+qk(z ,  X, Wl +(tl (X, z),  ..., Wk-1 +qk-1  (X, Z, Wl, ..., wk-2)), 

for k = l - 1 ,  ..., d. Note that  each gzk, for k = l - 1 ,  ..., r, is a (multi-valued) algebraic func- 

tion such that  all branches are holomorphic in a neighborhood of every point (X, z, w) 

considered in (2.3.9), and glk=--O for k = r + l ,  ..., d. 

Now, suppose that  gz,l- l(X, z, Wl, ..., wl-2) actually depends on X, i.e. 

Ogl,z-1 (X, z, Wl, ..., wl-u) ~ 0. (2.3.11) 
0X 

Then, for each (X ~ z ~ w~ .-., w~ w~ such that  one branch g of gz,z-1 is holomorphic 

near (X ~ z ~ w ~ ..., w~ 2) with 

 (xo, z o,wo, wo_ ) o # (2.3.12) Q I D ~ 

and 

w ~  = g(x ~ z ~ w ~ ..., w~ (2.3.13) 
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we may apply the (algebraic) implicit function theorem and deduce that  there is a holo- 

morphia branch 0(z, wl, ..., wz-1) of an algebraic function near (z ~ w ~ ..., w~ such that  

wz-1 - g ( 0 ( z ,  w l ,  ..., wz-1) ,  z, w l ,  ..., w l - 2 )  --- 0. (2.3.14) 

Since gt,t-1 is an algebraic function, which in particular means that  any two choices of 

branches g at (possibly different) points (X ~ z ~ w ~ ..., w~ can be connected via a path 

in (X, z, wl, ..., wl-2)-space avoiding the singularities of gz,t-1 and also avoiding the zeros 

of Ogz,z-1/OX, it follows that  any solution 0 of (2.3.14) near a point (z ~ w ~ ..., w~ can 

be analytically continued to any other solution near a (possibly different) point. Thus, 

M1 solutions t9 are branches of the same algebraic function, and we denote that  algebraic 

function by 0z. As a consequence, there is an irreducible polynomial RI(X, z, wl, ..., wz-1) 

such that  X = ~  (z, wl, . . . ,  wt_ 1) is its root. Let Dt C C z be the zero locus of the discrimi- 

nant of Rz as a polynomial in X.  Outside ( C l U D l ) x c d - l + l c C d + l ,  w e  can, by solving 

for X=Ot(z, wl, ..., wl-1) in the equation 

W l - 1  : g l , l - l ( X ,  Z, Wl,  .. . ,  W / - 2 ) ,  ( 2 . 3 . 1 5 )  

describe Nl as the (multi-sheeted) graph 

Wk = f l k ( Z ,  W l , . . . ,  W l - 1 )  : =  gl&(Ol(Z, W l , - . . ,  W I - 1 ) ,  W l ,  .. . ,  W k -  1), (2.3.16) 

for k=l, . . . ,d .  Clearly, we have flk--=0 for k=r+l , . . . , d .  By taking Vl to be the union 

of CIU Dz and the proper algebraic variety consisting of points where any two distinct 

branches of fzk coincide (for some k=l, . . . ,  d), we have completed the proof of the inductive 

step for j = l  under the assumption that  gl,l-I (X, z, wl, . . . ,  wl-2) actually depends on X. 

Now, we complete the proof of the proposition by showing that  Condition 2.3.1 

forces (2.3.11) to hold as long as I - 1  <~r. Assume, in order to reach a contradiction, that  

gl,l-l(~i,Z, Wl, ...,wl-2) does not depend on X. It is easy to verify from the form (2.3.1) 

of M that  the sets 7rk(Nj), for j=O, ..., k, are the Segre sets of M k at 0. Let us denote 

these sets by Nj(Mk) .  Now, note that if we pick (z~ ~ . . . ,w~ z then 

( ~ O , w O + q l ( ~ O ,  zO ) ,  o - -o  o o w o �9 , z  �9 ( 2 . 3 . 1 7 )  

Thus, if we pick the point (z~176176 such that  it is not on the algebraic 

variety C1 (which is possible since the generic real submanifold M z cannot be contained 

in a proper algebraic variety; CINM z is a proper real algebraic subset of M L) then, by 

construction of Cl, the point 

z 0 ) ,  ' -", t-2) (2.3.18) �9 .., l _ 2 t q l - 2 ~ .  , 
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is not in *Trt(Vt-1). By the induction hypothesis, 7rl(Nl_l)=Nl_l(M ~) consists of a 

bt_l,t_l-sheeted graph (each sheet, disjoint from the other, corresponds to a branch of 

f~-1,~-1) above a neighborhood of the point (z~ ~ .... ,wt~ Since gz,z-1 is assumed 

independent of X, we can, in view of (2.3.18), take 9i=2 in the defining equation 

wz-1 = gl,z-1 (X, z, wl, ..., wl-2) (2.3.19) 

for Nz(Mt), near the point (z ~ w ~ ..., w~ From the definition (2.3.10) of gz,l-1 and 

(2.3.18) it follows that  N~(M l) also consists of a b-sheeted graph, with b<<.bz-l,Z-1 (each 

sheet corresponds to a choice of branch of 3~-1,1-1 at (2 ~ z~ ~ z~ ~ �9 .., t-z)), above aneighbor- 

hood of the point (z ~ Wl ~ ..., w~ Since NI_I(MI)CNz(MZ), we must have b=bl-l , l-1 

and, moreover, for each branch ]k_l,t_ 1 there is possibly another branch fk_'l,Z_ 1 such 

that  for every (z, wl, ..., wt-2) the following holds: 

f L l , Z _ l ( z ,  wl ,  ..., w,_~) 

= ~k-I 1 , / -  1 (Z, Wl "~-ql (2, Z), ..., Wl-  2 -~-q/-2 (Z, Z, W l ,  ... , W / - 3 )  ) ( 2 . 3 . 2 0 )  

+q~-i (z, ~, Wl +ql (~, z), ..., wz_~ +qz-2 (~, z, w~, ..., ~ - 3 ) ) .  
Since all the sheets of the graphs are disjoint, the mapping k---*k' is a permutation. We 

average over k and k ~, restrict to points (z, Wl, ..., wt-2)cM t-l,  and obtain, by (2.3.18) 

and (2.3.20), 
bt - 1 ,t 1 

1 E k z f l - l , l - l (  , W l ' " " W l - 2 )  bt-l,z-1 
k: l  (2.3.21) 

1 ~ fl~l,l_l(e, el,...,ez-2)+ql-l(z,e, wl,...,el-2). 
: b l - l , l -1  k t = l  

Let us denote by f the holomorphic function near (z ~ w ~ w ~ �9 .., 1-2) defined by 
b l - l , l - i  

1 E f~-l,l_l(z, wt,... ,wt-2), (2.3.22) f (z ,  wl,..., wl-2) = bt-l,t-~l k: l  

and by K C C t the CR manifold of CR dimension 1 defined near 

(zO~O ~o S(zO~O wo -.., l -~) )  �9 " ,  1--2, 

by 

g:={(Z,  Wl,. . . ,wl_l):(z, wl , . . . ,wt_~)eMt- l ,  w t_ l= f ( z ,  wl,...,wl_2)}. (2.3.23) 

The equation (2.3.21) immediately implies that  K c M  l. By Condition 2.3.1, M t is of 

finite type near 0. Note that,  by the form (2.3.1) of M, the condition that  M Z is of finite 

type at a point is only a condition on (z, wl, ..., wt-2) (i.e. not on wl-1). Thus, by picking 

the point (z ~ w ~ ..., w~_2)EM 1-1 sufficiently close to 0 (which is possible since, as we 

mentioned above, CtAM ~ is a proper real algebraic subset of Mr), we reach the desired 

contradiction. This completes the proof of Proposition 2.3.2. [] 
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2.4. H o m o g e n e o u s  s u b m a n i f o l d s  o f  a r b i t r a r y  C R  d i m e n s i o n  

We prove here the analog of Proposition 2.3.2 for arbi t rary CR dimension n. 

PROPOSITION 2.4.1. Let M be of the form (2.3.1) and assume that M satisfies Con- 
dition 2.3.1. Let No,N1,...,Njo be the Segre sets of M at O. Then, for each j=l , . . . , jo ,  
there is a partition of the set {1, 2, ..., r} into Ij ={ i l ,  i2, ..., iaj } and Kj ={k i ,  k2, ..., kb~ } 
such that 

0 = I ,  C I2 C I3 C ... ~ Ijo ={1 , 2 ,  ..., r}, (2.4.1) 

and there is a proper algebraic variety Vj c C  n+aj such that Nj satisfies 

Nj n ( ( C  n+aj \ Y j )  x C bj x C d-r )  : {(z,  wl ,  ..., Wd): 
(2.4.2) 

Wk =fjk,(Z,  Wi~,...,wioj), #=l , . . . ,b j ;  w k = 0 ,  k=r+l , . . . , d } .  

Here (z, wil , . . . ,wiaj) �9 n+aj and (Wkt,...,Wkb~)�9 b~. Each f jk, ,  for k=l, . . . ,bj ,  is a 
(multi-valued) algebraic function with bjk, holomorphic, disjoint branches outside Vj and, 

moreover, each fjk,  is independent of wi. for all i , > k , .  

Proof. We emphasize here those aspects of the proof which are different from tha t  

of Proposition 2.3.2. We proceed by induction on j .  The s ta tement  of the proposition 

holds for j = 1 with V1 = O and each f l  k, -- 0. Assume the s ta tement  holds for j = 1, ..., l - 1. 

Let us for simplicity denote the numbers at-1 and bt-1 by a and b, respectively. The 

representation (2.3.4), with z in C ~ rather than C, still holds. Let f~ (z ,w)CC n be the 

complement of the algebraic subset of X such that ,  for fixed (z, w ) � 9  n+d, 

(X, wi, +qi~(X,z, wl,...,wi,-1),...,wi,, +Cti.(X,z, wl,. . . ,wia-1))c*Vt-1. (2.4.3) 

We describe a part /VI of Nl as follows 

= {(z, w) �9 c"+d: �9 a(z,  w) c c" ,  
(2.4.4) 

wk, = gtk, (X, z, Wl, ..., wk,-1) ,  # = 1, ..., b; wk = O, k = r +  1, ..., d}, 

where 

glk, (X, z, Wl, ..., wk,-  1) 
: ~ - l , k t , ( X ,  Wil-[-qi ,(X,Z,  W l , ' " , W Q - 1 ) , " ' , W i ~  q-C]i~(X,Z, W l , ' " , W i  _1) ) 

q-qk, ( Z, X, Wl -t-ql ( X, Z ), ..., Wko_ l q-~lko-1 (X, Z, w l ,  ... , Wk~_2 ) ). 

The fact that  wk=O for k=r+l , . . . ,d  follows from (2.4.2) with j = l - 1  and the form 

(2.3.1) of M. Note also that ,  by the induction hypothesis, fz-l,k, is independent of 
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wi. for i~>k~. Let w'=(w~l , . . . ,w~)  and w"=(Wkl,.. . ,Wk~). Note that,  for generic 

(z, wlt)EC ~+b, the mapping from C '~+~ into itself given by 

(X, ~ ' )  ~ (X,w~l + ~  (X, z, ~ ,  ..., ~ _ ~ ) ,  ..., ~ o  +~o (X, ~, ~ ,  ..., ~o_~))  (2.4.6) 

has generic rank n+a  (indeed, it has rank n + a  near the origin for z=0).  Thus, the set of 

w ' E C  ~ for which (2.4.3) holds (with small z and w" arbitrary) for all x E C  ~ is a proper 

algebraic variety. Restricting (X, w') to the complement of the set where (2.4.3) holds, 

we consider the mapping (2.4.6) with 

Wk, -~ glkl (X, z, Wl , ..., Wkl-1) (2.4.7) 

instead of wk~ fixed. Again, one verifies that  this mapping has generic rank n + a  for 

generic (z, wk2,...,Wkb) (e.g. with z small), and thus the set of w' for which (2.4.3) 

holds (with wk~ given by (2.4.7)) for all X is a proper algebraic variety. By proceeding 

inductively, substituting glk, for Wk~, in the mapping (2.4.6), we find that  we can take 

for N~ (for brevity, we write w"'=(w~+l,  ..., wd)) 

Nl= {(z, wt,w't, wttt) e ( c n q r a \ c l ) x c b x e d - r  : 
(2.4.8) 

3XE~(z ,w ' )  c C  ~, w k , = ~ l k , ( X , z , w ' ) , # = l , . . . , b ;  w'"----0}, 

where Ct C C '~+~ is a proper algebraic variety, ~(z, w') c C n is the complement of a proper 

algebraic variety in C n, and where glk~ =gtk, and subsequent gzk, are obtained from gzk, 

by substituting 

Wk~=~tk~()i,z,w'),  ~/= 1,. . . ,#--1. (2.4.9) 

Thus, each [Ttk, is a function only of those w~,. . . ,  wi~ for which i~ < k , .  

As in the proof of Proposition 2.3.2, we assume first that  the map 

C2'~+~9(X,z,w')~--~([7tk,(X,z ,w') , . . . ,[Ttkb(X,z,w'))=:G(x,z ,w')ECb (2.4.10) 

actually depends on X, i.e. 

OG 
Gx(X, z ,w')  := -~X (X, z ,w')  ~0 .  (2.4.11) 

Denote by m>~l the maximal rank of Gx, and by G'=(Gt~, . . . ,G t~) the m first com- 
! 

portents of G such that  G x has generic rank m (thus, the set {tl, ..., tin) is a subset 

of Kz-1). Note that  this does not necessarily need to be the first m components of G, 

but any component G t, with t~ < t < t ~ + l  for some aE {1, ..., m -  1}, has then the property 

that  c[ 
, , z, w )G• (X, z, w ), (2.4.12) 

j-----1 
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for some functions c1,..., C a .  We may assume, by an algebraic change of coordinates 
! in the X-space if necessary, that  Gx, , where X =(X1, ..., Xm), has generic rank m and 

that  G is independent of the last coordinates X":=(Xm+I, ..., Xn). Now, solve for X~= 

Ol (z, w ~, wt~ , ..., wtm ) in the equations 

wtr162 j = 1,. . . ,m. (2.4.13) 

The solution 0z is a (multi-valued) algebraic function. By substituting 

x '  = el (z, w' ,  w~, . . . ,  wtm) 

in the remaining equations for/Yz (and remembering that,  by the choice of m and X', 

these equations are independent of X") we find, denoting by Kz:={Ul,. . . ,Ub-m} the 

complement of the set {tl, ..., tin} i n / ( / -1 ,  

W \ It Wu~ = ~z~j (Oz(z, w' ,  wt~,..., tm ~, x , z, w' )  

=:f l~(z ,w ' ,wt~ , . . . ,wtm) ,  j = l , . . . , b - m .  
(2.4.14) 

Since/YI is a dense open subset of Nl, the equations (2.4.14) imply that Nt is indeed of 

the form (2.4.2), with K~CKI_I as defined above and Ii={1, . . . , r}\Kz,  and where we 

let Vl C C n+~+m be a suitable proper algebraic variety containing the singularities of the 

algebraic functions f l~  ( j = l ,  ..., b - m ) .  To finish the proof (under the assumption that  

the mapping G actually depends on )/), we need to show that each f l ~  is independent 

of wt for t > u~. Recall that 

f z ~  (z, w',  w, , ,  ..., w,,,, ) = G ~ (el (z, ~ ' ,  w ~ ,  ..., w, , , ) ,  x " ,  z, w') .  (2.4.15) 

Let l < ~ a < m - 1  be the number such that  ta<u~<t~+l (unless there is such a number 

there is nothing to prove), and differentiate (2.4.15) with respect to wt, where t>/u,. 

Using (2.4.12), we obtain (using vector notation; recall that G u" (~, z, w ~) is independent 

of wt ) 
(~ 

uv E tz: flu . . . .  = G X, Ol,wt = cjGx, Ol,w~. (2.4.16) 
j = l  

W \ tt Z W t x -  ~ t j  Now, bythedefinit ionofOi,  GtJ(Oz(z,w',wtl,..., tm),X , , )=wtj andsoGx,0l ,~ ,=0,  

if t>t j .  Thus, since t>t j  for j - -1,  ..., a,  it follows from (2.4.16) that  ftuv,~,=O. This 

proves the induction hypothesis for j = l  under the assumption that  the mapping G ac- 

tually depends on X. 

As in the proof of Proposition 2.3.2, we are left to show that  Condition 2.3.1 implies 

that  G actually depends on X as long as Iz-1 C {1, 2, ..., r}. Assume, in order to reach a 
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contradiction that G does not depend on X. In particular then, the function ~lk~=glk~ 
does not depend on X. Since, by the induction hypothesis, g~k~ (X, z, w') does not depend 

on wj for j/> kl, we can consider the projection ~rk~ and proceed exactly as in the con- 

clusion of the proof of Proposition 2.3.2. We leave the straightforward verification to the 

reader. The proof of Proposition 2.4.1 is now complete. [] 

2.5. P r o o f  of  T h e o r e m  2.2.1 

By the remarks preceding the theorem, we may assume that M is generic throughout 

this proof. We start by proving (a). Since the Segre sets of M at P0 are invariantly 

defined, we may choose any holomorphic coordinates near Po. Let ml<~...<.mr be the 

Hhrmander numbers of M at P0. By [BR1, Theorem 2], there are holomorphic coordinates 

(Z, W) E C n X C d such that the equations of M near P0 are given by 

{ w j = ~ j + q j ( z , z ,  w l , . . . , ~ y - 1 ) + R j ( z , 2 , ~ ) ,  j =  l , . . . ,r ,  (2.5.1) 
- -  d wk = wk + ~ t = r + l  fk~(Z, 5, w)Wz, k = r + l ,  ..., d, 

where, for j=-l , . . . , r ,  q j ( z , 2 , ~ l , . . . , ~ j - 1 )  is weighted homogeneous of degree my, 

Rj(z ,  2, 3)  is a real-analytic function whose Taylor expansion at the origin consists of 

terms of weights at least m y + l ,  and the fkz are real-analytic functions that vanish at 

the origin. Here, z is assigned the weight 1, wy the weight mj for j = l ,  ..., r and weight 

mr + 1 for j = r + 1, ..., d. Moreover, the homogeneous manifold M ~ C C g defined by 

{ w y = ~ j + q j ( z , 2 , ~ l , . . . , ~ y - 1 ) ,  j = l , . . . , r ,  (2.5.2) 

wk = ~k, k = r+ 1, ..., d, 

For ~>0, we introduce the scaled coordinates ( s  n+d satisfies Condition 2.3.1. 

defined by 

z = z(5; E) = 25, (2.5.3) 

w j = w j ( ~ ; e ) = e l ' ~ j ,  j = l , . . . , d ,  

where lj =my for j = l ,  ..., r and l k = m r +  l for k = r +  l, ..., d. We write fkl for the function 

s ~; E) = ~ fkz(z(~; ~), s ~), ~ (~ ;  c)), (2.5.4) 

and similarly, 

Rj(Z, ~ , ~ ; ~ ) -  1 Rj (z(5; ~), 2(~; ~), ~ (~ ;  ~)). (2.5.5) 
E m j +  1 

Note that both fkl(2, ~, z~; ~) and Rj(5,  ~, ~; ~) are real-analytic functions of (5, ~; e) in 

a neighborhood of (0, 0; 0). In the scaled coordinates, M is represented by the equations 

f ~y = ~ j  +qj(2, ~, ~Zl,..., ~vj_l)+cRj(5,  ~, $; ~), j = 1, ..., r, (2.5.6) 

wk = wk +E ~t=r+l  fat (z, z, w; s)wz, k = r+ 1,..., d. 
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Now, let ~J(/~; e) be the mapping cJn-"*C d described in w such that  the Segre set Nj 

of M at Po is parametrized by 

c jn (5, c)) e c N (2.5.7) 

in the scaled coordinates (5 ,~)  (cf. (2.2.10)-(2.2.12) and (2.2.13)-(2.2.15) to see how 

the map (2.5.7) is obtained from the defining equations (2.5.6)). Note that  ~J depends 

real-analytically on the small parameter  e. The generic dimension dj of the Segre set 

Ny is the generic rank of the mapping (2.5.7) with e# 0 ,  and is in fact independent 

of e. By the real-analytic dependence on e there is a neighborhood I of e = 0  such that  

the generic rank of (2.5.7), for all e e I \ { 0 } ,  is at least the generic rank of (2.5.7) with 

e=0.  For e = 0  the mappings (2.5.7) parametrize the Segre sets N ~ of the homogeneous 

manifold M ~ defined by (2.5.2). By Proposition 2.4.1, applied to the Segre sets N ~ of 

M ~ at 0, we deduce that the generic dimension of the maximal Segre set of M ~ at 0 is 

n+r. Thus, djo ~n+r, where djo is the generic dimension of the maximal Segre set of M 

at P0. On the other hand, if we go back to the unscaled cordinates (z,w), we note from 

the construction of the Segre sets that  each Ny is contained in the complex manifold 

X={(z,w):wr+l . . . . .  Wd=0}. Thus djo<~n+r, so that  we obtain the desired equality 

djo =n+r. This proves part (a) of the theorem. 

It follows from (2.5.1) that  the CR vector fields of M are all tangent to MNX= 
{ (z, w) E M: wy =0,  j = r + 1, ..., d}. Thus, the local CR orbit of P0 is contained in M A X. 

Also, since there are r Hhrmander numbers, the CR orbit of P0 has dimension 2n+r. 
Since the dimension of MNX is 2n+r as well, it follows that the local CR orbit of Po is 

MAX. This proves part (b) of the theorem. 

Finally, to prove part (c) of the theorem we note that if M is real algebraic then 

each Segre set Ny is contained in a unique irreducible complex algebraic variety of dimen- 

sion dj. Since Njo contains a relatively open subset of X, this relatively open subset of 

X coincides with a relatively open subset of the unique algebraic variety containing Njo. 
Hence, X is complex algebraic. This completes the proof of Theorem 2.2.1. [] 

3. Algebraic  propert ies  of  ho lomorphic  

mappings  be tween  real algebraic sets  

3.1. A general izat ion of  T h e o r e m s  1 and 4 

We denote by ON(PO) the ring of germs of holomorphic functions in C N at P0, and by 

.AN(Po) the subring of ON(PO) consisting of those germs that are also algebraic, i.e. those 

germs for which there is a nontrivial polynomial P(Z, x ) e C [ Z ,  x] (with ZEC g and x E C )  
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such that  any representative f ( Z )  of the germ satisfies 

P(Z,  f ( Z ) )  - O. (3.1.1) 

In particular, any function in AN(Po) extends as a possibly multi-valued holomorphic 

function in C N \ v ,  where V is a proper algebraic variety in C N. We refer the reader 

to e.g. [BR3, w for some elementary properties of algebraic holomorphic functions that  

will be used in this paper. If U c C  N is a domain we denote by ON(U) the space of 

holomorphic functions in U. 

If X c C  N is an algebraic variety with d i m X = K ,  p0EXreg, and f is a holomor- 

phic function on X defined near P0 then we say that  f is algebraic if, given algebraic 

coordinates 

C K ~ r ~-~ Z(r E C N (3.1.2) 

on X near P0 with Z(O)=po (i.e. each component of (3.1.2) is in .AK(0)), the function 

h = f o Z  is in .AK(0). The transitivity property of algebraic functions (e.g. [BM] or [BR3, 

Lemma 1.8 (ill)f) implies that this definition is independent of the choice of algebraic 

coordinates. If f is algebraic on X near P0 and X is irreducible, then f extends as a 

possibly multi-valued holomorphic function on Xreg\V, where V is a proper algebraic 

subvariety of Xreg .  (Note that  Xreg is a connected manifold.) We denote by Ox(Po) the 

ring of germs of holomorphic functions on X at P0, and by .Ax(Po) the subring of germs 

that  are algebraic. 

Also, given two points poEC g and p~EC g', we denote by Hol(p0,p~) the space of 

germs of holomorphic mappings at P0 from C g into C N' taking P0 to p~. We denote by 

Alg(p0, p~) the subspace of Hol(po, p~) consisting of those germs for which each component 

of the mapping is algebraic. Similarly, given an algebraic variety X in C g with Po E XrCg, 

we denote by Holx(Po,P~o) the space of germs of holomorphic mappings at P0 from X 

into C y' taking P0 to p~, and by Algx(Po,PPo) the subspace of germs with algebraic 

components. 

Before we present the main results, we state the following lemma, whose proof is 

straightforward and left to the reader. 

LEMMA 3.1.1. Let M be a generic real-analytic submanifold in C K and let poEM. 

Suppose that there is h=(h l ,  ..., hq)E(OK(Po)) q such that the following holds. 

(i) h(po)=0 and OhlA...AOhq~O in a neighborhood of Po. 

(ii) hiM is valued in R q. 

Then MnSo ,  where So={Z:h(Z)=O},  is a generic submanifold of So near po. 

We are now in a position to formulate one of the main results in this paper. 
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THEOREM 3.1.2. Let M be a real algebraic, holomorphically nondegenerate, CR 

submanifold in C N, let ]2cC N be the smallest complex algebraic variety containing M, 

and let poEM be a regular point of 12, where M is the closure of M in C N. Assume that 

there is h = (hi, . . . ,  hq) E (.Av (Po ) ) q satisfying the following. 

(i) h(p0)=0 and OvhlA...AOvhqr in a neighborhood of Po. 

(ii) hiM is valued in R q. 

Let U be a sufficiently small neighborhood of Po in C N and denote by Sc, for cEC q with 

Ic] small, the algebraic manifolds 

sc = { z  E v n u :  h ( Z )  = c}. (3.1.3) 

Assume that the generic submanifold MNSh(p) is minimal at p for some pEMMU. Then 

irA'  is a real algebraic set in C N' with dimR A'=dimR M, p'oEA', and HEHolv(po,P'o) 

satisfies H ( M ) c A ' ,  with generic rank equal to dimo 1), there exists 6>0 such that HIs c 

is algebraic for every Icl <6. 

Note that  M is not required to be closed in Theorem 3.1.2. Since M is real algebraic, 

it is contained in a real algebraic set A of the same dimension in C g such that  A, in 

turn, is contained in the complex algebraic variety )2. Thus, the point poEM is a point 

on the real algebraic set A, and the only thing required of P0 is that  it is a smooth point 

of 1); if e.g. M is generic then, of course, 12 is the whole space C g and, hence, nothing 

at all is required of poEM. The point P0 could be a singular point of A, a regular point 

where the CR dimension increases, or a point across which M extends as a CR manifold. 

Specializing Theorem 3.1.2 to the case q=O we obtain the following result. 

COROLLARY 3.1.3. Let M be a real algebraic, holomorphically nondegenerate, CR 

submanifold in C N, let )2 be the smallest complex algebraic variety that contains M, 

and let poEM be a regular point of V. Assume that there exists pEM,  such that M is 

minimal at p. If A ~ is a real algebraic set in C N' such that dimR A'=dimR M, p~oEA ~, 

and HEHolv(po,P'o) satisfies H ( M ) c A '  with generic rank equal to dimo 1), then HE 

Algv(p0,p ). 

Specializing again in Corollary 3.1.3 to the case where M is generic, we obtain the 

corollary announced in the introduction. 

Example 3.1.4. Consider the generic holomorphically nondegenerate submanifold 

M c C 4 given by 
Imwl  = Izl2 + Re w21zl 2, 

Im w2 -= Re w3 IzI a, (3.1.4) 

Im w3 -- 0. 
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The function h,(z, w)--w3 is real on M, and MN{(z, w): w3----c} is clearly minimal near 

(z, wl, w2)=(0, 0, 0) for all real c~0.  Thus, Theorem 3.1.2 implies that any holomorphic 

mapping H: ca- -*C N' near 0, generically of rank 4, such that  H(M) is contained in 

a 5-dimensional real algebraic subset of C g '  is algebraic on the leaves {w3=c}, for all 

sufficiently small cEC.  This result is optimal, because it is easy to verify that  the 

mapping H: c a - * c  4, defined by 

H(z, wl, w2, w3) = (ze ~'3, wl, w2, w3), 

is a biholomorphism near the origin, and maps M into itself. Moreover, H is algebraic 

on each {w3=c} but not in the whole space C 4. 

It is interesting to note that  the only H5rmander number at 0 is 2, and that  the 

maximal Segre set of M at 0 is N2={(z, w) :w2=w3=0}.  Thus, the dimension of the 

maximal Segre set at 0 is smaller than the dimension of the leaves on which H is algebraic. 

For generic points pEM though, the maximal Segre set of M at p coincides with one of 

these leaves. 

Example 3.1.5. Consider the real algebraic subset A c C  4 defined by 

Im wl)2 =Rew2(lzll2+lz2[2)' (3.1.5) 

Im w2 = 0. 

It is singular on {(zl, z~, Wl,W2)=(0, 0, Sl, s2) :s l ,  s2ER},  but outside that  set it is a 

generic holomorphically nondegenerate manifold M. The function hi(z, w)=w2 is real 

on M, and MN{w2=s2} is minimal everywhere for all real s2:fi0. Theorem 3.1.2 implies 

that any holomorphic mapping H:C4--~C N' near 0, generically of rank 4, such that  

H(M) is contained in a 6-dimensional real algebraic subset of C N' is algebraic on the 

leaves {w2=c}, for all sufficiently small cEC.  Again, this result is optimal, because the 

biholomorphism 

H(zl, z2, wl, w2) = (zle iw2, z2, wl, w2) 

maps the set A into itself. This map is only algebraic on the leaves {w2=c} and not in 

the whole space. 

Example 3.1.6. Consider the submanifold of C 4 defined by 

Rewl  = IZll 2, 

Imwl  = ]z212, (3.1.6) 

Im w2 = 0. 

Note that  this submanifold is not generic (nor is it CR!) on the set {(zl,z2,wl,w2)= 
(0,0,0, s2) :s2ER}.  However, outside that  set the manifold (3.1.6) is a generic holo- 

morphically nondegenerate manifold M. The function h(z, w)=w2 is real on M, and 
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MM{w2=s2} is generically minimal for all s2ER.  As above, Theorem 3.1.2 implies tha t  

any holomorphic mapping H:  C4--~C N' near 0, generically of rank 4, such tha t  H(M) 

is contained in a 5-dimensional real algebraic subset of C N' is algebraic on the leaves 

{w2=c}, for all sufficiently small cEC.  We invite the reader to construct an exam- 

ple, e.g. similar to the ones considered above, to show that  one cannot have a stronger 

conclusion. 

We can also formulate a result that  holds at most,  but not necessarily all, points of 

the algebraic set. 

THEOREM 3.1.7. Let A c C N be an irreducible, holomorphically nondegenerate, real 

algebraic set, and let ]; be a complex algebraic variety in C N that contains A. Then either 

of the following holds, for all points pEAreg outside a proper real algebraic subset of A: 

(i) There is hEAr(p) such that h is not constant and hlA i8 real-valued. 

(ii) All mappings HEHolv(p, pr), where ptEcN'  is arbitrary, such that the generic 

rank of H equals d imc  ~; and such that H(A) is contained in a real algebraic set A ~, with 

pt E A t and d i r e r  A = dimR A t, are algebraic in ]2, i.e. H E.Av (p, pt). 

Before we proceed with the proofs of Theorems 3.1.2 and 3.1.7 (w and w we 

need a result on "propagation of algebraicity" that  we establish in the next subsection. 

3.2. Propagation of algebraicity 

We assume that  we have an algebraic foliation of some domain in complex space, and a 

holomorphic function f whose restriction to a certain sufficiently large collection of the 

leaves is algebraic. We shall show that  the restrictions of f to all leaves in the domain 

are also algebraic, provided that  the domain has a nice "product structure" with respect 

to the foliation. This will be essential in the proof of Theorem 3.1.2. This result may 

already be known. 

LEMMA 3.2.1. Let f ( z ,w)  be a holomorphic function in U• where UcC~ and 

V C C  b are domains. Assume that there is a subdomain VoCV and a nontrivial poly- 

nomial P(z,X;w)EOb(Vo)[z,X], i.e. P is a polynomial in z=(zl, . . . ,z~) and X with 

coefficients holomorphic in Vo, such that 

P ( z , f ( z , w ) ; w ) - O ,  zEU, wEVo. (3.2.1) 

Then there is a nontrivial polynomial P(z, X; w)EOb(V)[z, X] such that 

P( z , f ( z ,w) ;w)=O,  zEU, wEV.  (3.2.2) 
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Proof. Pick any point w~ and consider P=P(z,X;w) as an element of 

Ob(W~ X]. We order the monomials z ~ by choosing a bijection i: Z~_--*Z+, and write 

P 

P(z, X; w) = Z pk(z; w)X k, (3.2.3) 
k=O 

where each pk(z; w)EOb(w~ is of the form 

pk(Z;W)= Z ak(w)z~' (3.2.4) 
~(~) <<. qk 

with akaEOb(WO). We choose P, ql, ..., qp minimal such that  P can be written in this 

form with the leading terms in (3.2.3) and (3.2.4) not identically 0. We may assume 

that  the numbers p and qp are minimal in the sense that  if p t  is another polynomial in 

Ob(W~ X], with corresponding numbers p' and qp,, such that  (3.2.1) holds then p<~p' 
and if p=p~ then qp<.qp,. The polynomial P is then unique modulo multiplication by 

elements in Ob(w ~ in the sense that  if P~ is as above with p'=p and qp, =qp then there 

are germs ca(w), c2(w)EOb(W~ not identically 0, such that  

cl (w)P( z, X; w) - e2(w)P' ( z, X; w). (3.2.5) 

Since p is minimal, the function po(z; w) is not identically 0, and thus there is a coefficient 

a~ (w) which is not identically 0. The equation (3.2.1) can then be written in the form 

Q(z, f ( z ,  - "~ (3.2.6) 

with Q(z, X; w)EOb(w~ X]. Now, the uniqueness of P in the sense of (3.2.5) and the 

0 50  imply that  the coefficients of Q(z, X; w) satisfying (3.2.6) are actually fact that  a~0 

unique. After dividing (3.2.6) by -a~ we find Q'(z, X; w)eA4b(W~ X] satisfying 

Q'(z, I(z, w ) ;  w )  - z "~ (3.2.7) 

where ,tCIb(W ~ denotes the field of germs of meromorphic functions at wo. 

We order the set of indices (k, ~), for k=0,  ..., p and i(c~)<~qk, minus the index (0, s0) 

in some way, e.g. the "canonical" way induced by the ordering i=i((~). We hence obtain a 

bijection (k, (~)~-~j(k, ~) from this set of indices to the set of numbers {1, 2, ..., #}, where 

# is the number of elements in this set of indices. We introduce the CU-valued functions 

A(z; w) defined by letting the j t h  component be 

Aj(z;w)=z~f(z,w) k, for j=j(k,~),  (3.2.8) 
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and b(w) defined by 
aka(w) 

bj(w)--_aOo(w), for j= j ( k ,a ) .  (3.2.9) 

Then (3.2.7) can be written 

A(z; w).b(w) = z ~~ (3.2.10) 

whe re ,  denotes the usual dot product of vectors in C t'. Moreover, the vector-valued 

meromorphic function b(w) is the unique meromorphic solution of (3.2.10). Consider the 

( ,  x , )-matr ix-valued holomorphic function S(z l , . . . ,  z , ,  w) (of ap+b variables) defined 

by letting the matrix element Bij(Zl, ..., z~; w), for i , j=l ,  ..., , ,  be 

Bij(zl, ..., z,; w) = Aj(zi; w). (3.2.11) 

We claim that  the determinant of B(zl ,  ..., z~; w) is not identically 0. Indeed, if it were, 

then we could find a vector-valued holomorphic function c(w), not identically 0, such 

that A(z;w).c(w)-O, which would contradict the uniqueness of the solution b(w) of 

0 such that  A(w), the determinant of (3.2.10). Thus, we can find fixed values z ~ ..., z~ 

B(z ~ ..., z~ w) as a function of w, is not identically 0. We can then solve for b(w) as 
the unique solution of the system obtained from (3.2.10) after substituting successively 

0 for z. Since the matrix B(z ~ ..., z~ w) has entries holomorphic in all of V, Zl  0, . . . ,  Ztt 

by Cramer's rule it follows that  the solution b(w) thus obtained is in .A4b(V). Hence 

Q'(z, X; w)E.s Z]. After clearing denominators we obtain (3.2.2) from (3.2.7). 

This completes the proof of Lemma 3.2.1. [] 

3.3.  P r o o f  o f  T h e o r e m  3 .1 .2  

First, since all assumptions and conclusions in the theorem are related to •, and p0E); 

is a regular point of )?, it suffices to consider the case where ~;=C g and M is generic; 

we will assume this for the rest of the proof. By assumption (i) in the theorem, we can 

find algebraic coordinates (u, v)EC N-q x C q, vanishing at P0, in a neighborhood U1 of 

P0 such that  hj=vj for j = l ,  ...,q. We may assume UI=A1 x B i ,  where A1EC N-q and 

B1EC q. It follows from the assumptions that  MNSh(p) is minimal at p for p outside 

a proper real algebraic subset of MNUi. Similarly, M is / (M)-nondegenerate  outside a 

proper real algebraic subset of M, where l(M) is the Levi number defined in w Also, 

the mapping H attains its maximal rank outside a proper complex-analytic subset of (3 g 

near P0, and since M is generic it is not contained in any proper complex-analytic set. 

Thus, H attains its maximal rank at points on M outside a proper real-analytic subset 

of M. Finally, for each j ,  the j t h  Segre set Nj(p) of M at p (defined in w has maximal 
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generic dimension for p outside a proper real algebraic subset of M. Hence we can find 

Pl EMMU1 such that  

(a) MnSh(pl) is minimal at Pl, 

(b) H has rank N at Pl, 

(c) M is / (M)-nondegenerate  at Pl, 

(d) for each j ,  the generic dimension d3 of Nj (Pl) is maximal. 

We will prove Theorem 3.1.2 by first showing that  there is a neighborhood of Pl in C N 

such that Hish(p) is algebraic for every p in that  neighborhood, and then applying Lemma 

3.2.1 to deduce the full s tatement of the theorem. For this, we claim that  we may assume 

that  the target A' is contained in C N and that  H is a mapping into C N. Indeed, there is 

a neighborhood U2cU1 of the point Pl such that  Y'=H(U2) is a complex submanifold 

of dimension N in C N' through the point p~ = H ( p l ) .  Since M is generic and H is a 

biholomorphism of U2 onto Y', it follows that  A' is a generic submanifold of Y'  near p~. 

Denote by M'  a piece of A' near p~ and choose it such that  M '  is a generic submanifold 

of Y'. Then, M'  is real algebraic and its intrinsic complexification Y ' C C  N' is a complex 

algebraic manifold near p~. Since both Y' and V' contain M' ,  and M '  is generic in both 

manifolds, it follows that  Y '=V ' .  We can therefore choose algebraic coordinates in a 

neighborhood U~' of p~ in C N', vanishing at p~, such that  H =  (H, 0) in these coordinates 

and H maps MNU2 into M'f3U~cY'~-C N. In what follows, we assume that  c N ' = c  N 

and we take H as our mapping H.  

Let (z, w) EC  n x c d = c  Iv, where n is the CR dimension and d the codimension of M, 

be (algebraic) normal coordinates for M, vanishing at Pl, i.e. M is defined near Pl 

by (1.1.3) and similarly for the target M ~ (denoting the function defining M' by Q'). 

We write (z, w)=(z(u, v),w(u, v)) to indicate the relationship between the local normal 

coordinates (z,w) near Pl and the coordinates (u,v) in U1. Thus, we can write the 

mapping H as H=(f ,g) ,  where f ( z , w ) e C  '~ and g(z ,w)eC d, such that  

~=O'(y , f ,g )  (3.3.1) 

holds for points (z, w ) E M  near Pl =0. By complexifying, we obtain 

= Q ' ( ] ( x , - ) ,  f(z,w),g(z,w)), (3.3.2) 

for all (z, w, X, T) EA/I near 0. We define the holomorphic vector fields s in C 2N tangent 

to M (and resulting from the complexification of the CR vector fields of M) by 

0 d _ 0 
f~J = OXj + ~  Qk'• j = 1, ...,n. (3.3.3) 

k=l 
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We shall also need the following vector fields tangent to 3 t ,  

d 

s =- ~O--~-+ E Qk,zj (Z, X,T) O@k , j = i, ...,n, 
ozj k=l 

d 

k = l  

d 

V j = s 1 6 2  , j = l , . . . , n .  
k = l  

Note that  the coefficients of all the vector fields given by (3.3.3) and (3.3.4) are algebraic 

functions of (z, w, X, ~-). 

ASSERTION 3.3.1. There is a neighborhood U3cU2 such that, for all ( z ,w,x ,T)E 
A/IN(U3 x *U3) and all multi-indices 7=(~ ' ,  ~"), 

---~j(. . . ,V T s fk(x,~'), V~3TZ2s ), (3.3.5) 
OZ "Y' Ow'~"  "" '  "'" 

where j , k=l , . . . , n ,  l=l, . . . ,d,  lall, l~ll~<l(M), ]a21,1/~21~<l'y"l, la31,1/331<1~/'1, and the 
~ are algebraic holomorphic functions of their arguments. 

Proof. We apply the operators s to the identity (3.3.2), and use the fact that  the 

matrix s  at (z, w, X, T)= (0, 0, 0, 0) is invertible (since H is a biholomorphism at Pl =0) 

to deduce that there are algebraic functions Fj such that, for points on 3,t near 0, 

Q• (f ,  f ,  g) = Fj ( s f , s (3.3.6) 

We repeat this procedure, using in the next step (3.3.6) instead of (3.3.2) and so on. 

Since H is a biholomorphism at Pl, M'  is l(M)-nondegenerate at p~. Hence (see w 

span{Oi,x, (0, 0, 0): lal ~< I(M)} = C n. (3.3.7) 

It follows from the algebraic implicit function theorem and from (3.3.7) that, for all 

(z, w, X, T) E M  near the origin, 

f~(Z,W)=~j(. . . ,s163163 j = 1,...,n, (3.3.8) 

where k=l ,  ...,n, l=l,  ...,d, lal, I~l<~l(M), and the ~ j  are algebraic holomorphic func- 

tions of their arguments (cf. e.g. [BR4, Lemma 2.3]). Now, since f (z ,  w) is a function of 

(z, w) only, we have, for any multi-index 7 = ( ' / ,  7"), 

, ,, O]'~lf j  Y "~ T "~ f(z ,  w) - ~ "y . . . .  (z, w). (3.3.9) 
(T Z O W "f 
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The assertion follows if we apply VV'T  ~" to (3.3.8), which is possible since the Vj and Ti 

are tangent to .M. [] 

We now proceed with the proof of Theorem 3.1.2. From (3.3.2) we have 

gt (z, w) = Q~(f(z, w), f ( x ,  T), g(x, ~') ) (3.3.10) 

for (z, w, X, ~-)EAd and l=1,  ..., d. If we apply V~'T  "y" to this equation we obtain 

Ol~lgl (z,w) 
OZ "/ Ow~" 

.= g2v [~ O'~ f 2 f~l - ~ 1 ) I k'"' ~ (z, w),..., V ~ T f j  (X, ~-),..., V" T "  0k(X, T),... , 

(3.3.11) 

where j = l ,  ...,n, k , l = l ,  ..., d, Iotl[, 1/311, I~Xl<13'"l, 1~21, le21,1~21<13''1, and where ~ are 

algebraic holomorphic functions of their arguments. Using (3.3.5), we obtain 

OI'Y]g l 43 a2 4 1 -  
-z ( . . . ,V T s f j (X ,T) , . . . ,V~aT~C~Ok(X,T) , . . .  ), .y,~, ~,, (z,w) =~'~ 

(JZ OW 
(3.3.12) 

where j = l ,  ...,n, k , l = l ,  ...,d, 10~11, I~II~<I(M), [a2l, 1~21 <13`"1, 1~31,1~31~13''1, and the E~ 
are holomorphic algebraic functions of their arguments. For notational brevity, we use 

the notation Z =  (z, w) and r  (X, T). If we denote by (H1 (Z),..., HN(Z))  the components 

of H in an arbitrary algebraic coordinate system near the point p~ =H(pl )  then it follows 

from (3.3.5) and (3.3.12) that we have 

( ) 0,~, uk (z)  = ~ z ,  ~, (r (3.3.13) 
OZ'r ""' O~ 4 ' 

where j, k = l ,  ..., N, 3' arbitrary, lal ~ 13'1 +l(M),  and O~ are holomorphic algebraic func- 

tions of their arguments for (Z, ~) e Ad near (Pl, Pl). 

ASSERTION 3.3.2. For Z E M  near pl,  let Nj (Z)  denote the j th  Segre set of M at 

Z and d i the generic dimension of Nj(pl) .  For some j ,  l~<j~<j0-1, let 

C dj x C  N ~ ( s , Z ) ~ ( s , Z )  E C N (3.3.14) 

be an algebraic map, holomorphic near (0,pl).  Suppose that s~-~(s, pl) has generic 

rank dj, and ~(s, Z )E*Nj (Z)  for z E M .  Then there is an algebraic map 

C dj+l x C g ~ (t, Z) ~-* (II(t, Z), s(t)) E C N x  C dj , (3.3.15) 
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holomorph ic near ( O, pl ) , such that (n(t ,  Z ) , r ( s( t ), Z ) ) E Ad , the mapping t ~  II ( t, Z) has 
generic rank dj+l, and II(t, Z) e Nj+I (Z), for all Ze  M near Pl. 

Remark. If ~(s, Z) is algebraic anti-holomorphic in Z rather than algebraic holomor- 

phic then the same conclusion holds with "holomorphic" replaced by "anti-holomorphic". 

Proof. Note first that by assumption (d) in the choice of Pl, dj is also the generic 

dimension of Nj(Z) for Z near Pl. We write the map r Z) in the normal coordinates 

as (X(s, Z), T(S, Z)). For Z e M  fixed near Pl consider the map 

C n x C dj ~ (z, 8) ~ (z, Q(z ,  )c(8, Z) ,  T(s, Z ) ) )  �9 C n x C d = C N. (3.3.16) 

Note that  (z, Q(z, x(s, Z), r(s, Z)), X(s, Z), 7(s, Z))eA/[. Since Nj+I (Z), for Z e M ,  is 

defined as {(z, Q(z, x, T)): 3(x, T)e*Nj(Z)}, and the mapping s~-*r Z) �9  (Z) has 
rank dj, which is also the generic dimension of *Nj(Z), it is easy to verify that  the map 

(3.3.16) has generic rank dj+l. Thus, by the rank theorem, there is an algebraic map 

C dj+l-n ~ t t ~ s( t  t) �9 C dj (3.3.17) 

such that 

cn  • cd~+l-n g (z, tt) = t~--+ (z, Q( z, x(s(tt), Z), T(s(tt), Z) ) ) �9 C N (3.3.18) 

has rank dj+l. The proof of Assertion 3.3.2 follows by taking t=(z, t'), s(t)=s(t') and 

H(t, Z) = (z, q(z, x(s(t'), Z), 7(s(t'), Z) ) ). (3.3.19) 

[] 

Now, define the map Ho(Z)=Z and the map ~o(Z)=2. The latter, thought of as a 

map COx cN~---~C N, satisfies the hypothesis of Assertion 3.3.2 above with j = 0  (see the 

remark following the assertion). Thus, we get an algebraic map, anti-holomorphic in Z, 

6 41X C N ~ (t, Z)  ~-~ YI 1 (t, Z)  �9 C N, (3.3.20) 

of rank dl in t for Z near B I � 9  such that (IIl(t, Z), Z)eAd,  and 1-Ii(t, Z)ENI(Z) for 

ZEM. Defining the map ~l(t, Z) by 

 l(t, z)  = nl( , z)  (3.3.21) 

we obtain a map into *NI(Z) that satisfies the hypothesis of the assertion with j = l  
(this time the map is holomorphic in Z). Applying the assertion again and proceeding 

inductively, we obtain a sequence of algebraic maps 

no (Z), Hi (t~, Z), ..., njo (tjo , Z), (o (Z), (1 (sl, Z), ..., (Jo-1 (Sjo- 1, Z) 
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(either holomorphic or anti-holomorphic in Z) with tj EC dj, sj ECaJ, and accompanying 

maps sl(t2),...,Sjo_l(tjo ) such that the maps tj~-~Hj(tj,Z) and sj~-~(j(sj,Z) are of 

rank dj, map into Nj (Z) and* Nj (Z) respectively for Z e M, and satisfy 

(IIj+l (tj+l, Z), Q (sj( tj+l), Z) ) e 34, (3.3.22) 

for j = 0 ,  . - . , jo-1 .  Morever, we have the relation 

(j (sj, Z) = Hj (~j, Z). (3.3.23) 

ASSERTION 3.3.3. For each j= l , - . . , J o ,  

( o l ' ~ l H l ~ ' o l ~ l H l  ) 
Ot'~rHk(1-iy(tj,Z))=F~k t j , Z ,  2 ,  b-~ (~)' (2), (3.3.24) 

OZ~ "'" ""' O(z "'" 

holds for ZEM near Pl, where k , l = l ,  ...,N, t~1, t/3}<<.I'YI+jt(M), and F;k are holomor- 
phic algebraic functions of their arguments. 

Proof. The proof is by induction on j .  For j=l ,  we prove the statement by taking 

Z to be Hl( t l ,  Z) and ( to be ( 0 ( Z ) = Z  in (3.3.13) (using (3.3.22)). Assume now that  

(3.3.24) holds for j = l ,  ..., i (with i<j0) .  By (3.3.23) we have 

o'~',k ( ) - ~  ((i(si,Z))=Y~k sj, Z,Z, O~lHl(2~ OINHI ""' O( '~ ' J ' " "  OZZ (Z) , . . . .  (3.3.25) 

Now (3.3.24) follows for j= i+l  from (3.3.25) by taking Z to be Hi+l(ti+l,Z) and ( to 

be ~(si(t~+l), Z) in (3.3.13). [] 

We now complete the proof of Theorem 3.1.2. For p near Pl it follows from Corollary 

2.2.2, since MNSh(p) is minimal, that  the maximal Segre set Njo (p) is contained in and 

contains an open piece of Sh(v). Since M is generic, it is easy to see that  h(M) contains 

an open neighborhood of cl=h(pl) in R q. Thus, by the rank theorem, and using the 

coordinates (u, v) in U1, there is a real algebraic injective map I:tq 9c~-*(u(c), c)EM, for 

c near c 1, which can be complexified to an algebraic injective map vH(u(v),v), for v 

in a neighborhood of c 1 in C q. Now, let Z be the point Z(c)=(z(u(c),c),w(u(c),c)) 
where cEl:tq is some arbitrary point near c 1. Applying Assertion 3.3.3 with this choice 

of Z, "y--0 and J=Jo, we deduce that  each component lit is algebraic on Sc and satisfies 

there a polynomial equation with coefficients that  depend real-analytically on c (we 

may take tjo as algebraic coordinates on Sc). In terms of the coordinates (u, v) with 

~I(u, v)=H(Z(u, v)), there are polynomials Pt(u, X; c) in (u, X)EC N-q x C, l = l ,  ..., N, 

with coefficients that  are real-analytic functions in c, for c close to c 1, such that  

Pl(u, Hi(u, c); c) --= 0 (3.3.26) 
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(u are also algebraic coordinates on Sc and it is easy to see that  the algebraic change of 

coordinates u~-u(tjo ) o n  S c depends real algebraically on c). Extending the coefficients 

of the polynomials to be complex-analytic functions of v in a neighborhood B2 of c 1 

in Cq, we obtain polynomials Pz (u, X; v) E (gq (B2)[u, X] such that  

(3.3.27) 

holds in A1 • Since Hl(u ,v)  is holomorphic in AI•  there is, by Lemma 3.2.1, 

possibly another polynomial Pl (u, X; v) E Oq (B1)[u, X] such that  

(3.3.2s) 

holds in UI=A1 x B1. This completes the proof of Theorem 3.1.2 with U=Uz, and 5>0  

being any number such that  the ball of radius 6 centered at v = 0  is contained in B1 (recall 

that B1 is a neighborhood of v=O). The proof of Theorem 3.1.2 is now complete. [] 

3.4.  P r o o f  o f  T h e o r e m  3 .1 .7  

Put  M=Areg. First, note that  if M is contained in a proper complex algebraic subvariety 

of • then (i) holds for all points pEM.  If M is not contained in a proper algebraic 

subvariety of %; then M is a generic real algebraic submanifold of 12reg at p, for all p 

outside some proper real algebraic subvariety of M. Thus, as in the proof of Theorem 

3.1.2, we may assume that %)= C g and that  M is a generic holomorphically nondegenerate 

submanifold in C N. Let P0 E M be a point whose CR orbit has maximal dimension. If M 

is minimal at P0 then (ii) holds with P=Po, by Corollary 3.1.4. Moreover, if M is minimal 

at P0 then M is minimal for p outside a real algebraic variety and therefore (ii) holds 

at such p. Thus, the theorem follows if we can show that M is minimal at P0 unless (i) 

holds at P0. The proof of Theorem 3.1.7 will then be completed by the following lemma. 

LEMMA 3.4.1. Let M be a generic real algebraic submanifold in C N, and let Po be a 

point in M with CR orbit of maximal dimension. Then M is minimal at Po if and only 

if there is no nonconstant hEAN(PO) such that him is real-valued. More precisely, if the 

codimension of the local CR orbit of po in M is q then there are hi, ..., hqE.Ag(po) such 

that hjl M is real-valued for j = l ,  ..., q and 

Oh 1 (Po) A... A Ohq (Po) ~ O. (3.4.1) 

Remark. Lemma 3.4.1 implies that  the decomposition of M into CR orbits near P0 

is actually an algebraic foliation, because the CR orbit of a point Pl near P0 must equal 
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{pEM: hj(p)=hj(Pl), j = l ,  ..., q}. If Corollary 2.2.5 is viewed as an algebraic version of 

the Nagano theorem (for the special class of algebraic vector fields that  arise in this 

situation; see the paragraph following Corollary 2.2.5) then this lemma is the algebraic 

version of the Frobenius theorem. 

Proof of Lemma 3.4.1. Assume that  there is a nonconstant hE.AN(po) such that  

hiM is real. Then, by Lemma 3.1.1, MA{Z:h(Z)=h(p)}  is a CR submanifold for all 

pEM near P0 such that  dh(p)~O. Since h is real on M all CR and anti-CR vector fields 

tangent to M annihilate h; hence the submanifold MN{Z:h(Z)=h(p)}  has the same 

CR dimension as M. Thus, M is not minimal at p. Since this is true for all pEM near 

P0 outside a proper real algebraic subset, M is not minimal anywhere. This proves the 

"only if" part  of the first statement of the lemma. The "if" part  will follow from the 

more precise statement at the end of the lemma, which we shall now prove. 

We choose algebraic normal coordinates (z, w)EC N, vanishing at Po, such that M 

is given by (1.1.3) near P0. Denote by W0 the CR orbit of p0=0, and by Xo its intrinsic 

complexification. By Theorem 2.2.1, Njo(P0), the maximal Segre set of M at Po, is 

contained in and contains an open piece of X0. The complex dimension of Xo is dj~ 

the generic dimension of Njo (Po). Since the codimension of W0 in M is q, the complex 

codimension of its intrinsic complexification X0 is also q, i.e. d~o =n+d-q .  Let r=d-q .  
By a linear change of the w coordinates, we may assume that  the tangent plane of X0 

at 0 is {(z,w):w~+l . . . . .  Wd=O }. We decompose w as ( w ' , w " ) E C r x C q = C  d. Note 

that  at the point 15= (0, s) e M, where s = (s', s") e R ~ x R q, (5, ~)  = (z, w -  s) are normal 

coordinates vanishing at 15 and M is given by 

5=Q(~,~,~+s)-s. (3.4.2) 

We denote by Ws,, the local CR orbit of (0, 0, s"), by Xs, its intrinsic complexification, 

and by Njo (s") the maximal Segre set at (0, 0, s"). Since the CR orbit at P0 has maximal 

dimension, all Ws,,, Xs,, and Njo (s") have dimension djo =n+r for s H near 0 in Rq. Using 

the parametrizations (2.2.10), (2.2.13) and writing A--(z, A'), we can express Njo (s") in 

the coordinates (z, w) by 

w = v j~ (z, A'; s"), (3.4.3) 

where MEC(J-1)  n. Since the defining equations (3.4.2) of M at (0,0, s") depend alge- 

braically on s", it follows that  vJ~ �9 ;s")  also does (cf. (2.2.10)-(2.2.12) and (2.2.13)- 

(2.2.15)). At a point (z ,A' ;0)  where OvJ~ ' has maximal rank r=djo-n  , we may 

assume (by a change of coordinates in the M-space if necessary) that  A~=(A1,A2)E 

C r x C  ( j-1)n-r ,  v j~ is independent of A2, and OvJ~ has rank r. Since the tangent 

plane of X0 at 0 equals {w"=O}, it follows from the implicit function theorem that  we 
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can solve for A1 in the first r equations of (3.4.3). We then substitute this into the last 

q equations and find that  we can express Njo(s"), for s" close to 0, as a graph 

w" = f(z,  w'; s") (3.4.4) 

near some point (z 1, w '1, f ( z  1, w'l; s")) with f (z ,  w'; s") holomorphic algebraic in a neigh- 

borhood of (z 1, wl; 0). Now, since all the CR orbits near P0 have the same dimension, it 

follows from the Frobenius theorem that  they form a real-analytic foliation of a neigh- 

borhood of P0 in M (as we have noted before, the Frobenius theorem does not imply 

that  the orbits form a real algebraic foliation even though the vector fields are algebraic). 

Thus, there are q real-valued, real-analytic functions k=(kl ,  ..., kq) on M with linearly 

independent differentials near P0 such that  every local CR orbit near this point is of the 

form {(z ,w)eM: k(z,w)=c} for some small c e R  q (we may assume that  k(0)=0). Since 

(0, O, s") E Ws,,, we have 

Ws,, = {(z, w', w")) E M: k(z, w', w") = k(0, 0, s")}. (3.4.5) 

Clearly, these functions are CR and, hence, they extend, near 0 in C N, as holomorphic 

functions which we again denote by k. It follows that  each Xs,, for real s" close to 0, is 

given by 
Xs, = { ( z, wt, wtt) ) c: cN: k(z, w', w 't) ~- k(0, 0, st')}. (3.4.6) 

Since the tangent plane of X0 at 0 equals {w"=0}, it follows that  there is a holomorphic 

function g(z, w', s") near (0, 0, 0) with g(0, 0, s")=-s '' such that  Xs,,, for real s" close to 0, 

is given by 

w"=g(z ,w' , s") .  (3.4.7) 

The maximal Segre set Njo (s") coincides with Xs,, on a dense open subset of the latter. 

Consequently, the algebraic representation (3.4.4) of Njo(S"), which is valid near the 

point (z 1, w '1, f ( z  1, w'l; s")), implies that  the holomorphic function g(z, w', s") in (3.4.7) 

is in fact algebraic. (The point (z l ,w '1) can be taken arbitrarily close to 0.) Hence 

the algebraic function f (z ,  wt; s") can be continued to an algebraic holomorphic function 

near (0, 0; 0). 

Now, as we noted above, we have the identity f(0, 0; s" ) - s "  and hence 

0 f  ( 0 , 0 ; 0 ) = I .  (3.4.8) 
08  tt 

Hence, we may solve the equation 

w" =f (z ,w ' ; s" )  (3.4.9) 
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for s" near the base point (z, w~,w ", s" )= (0 ,0 ,0 ,  0). We obtain a Ca-valued algebraic 

function h(z, w', w'), holomorphic near (0, 0, 0), satisfying 

w" =-- f(z, w'; h(z, w', w")) (3.4.10) 

with h(0, 0, s ' )=s' .  It follows that  the restriction of h(z, w', w') to Xs,, is constant and 

equals s ' .  In particular, since the CR orbits Ws, =MNX~,, (for s ' E R  q close to 0) cover 

a neighborhood of 0 in M, the restriction of h to M is valued in R q. Indeed, we have 

hiM =stt and, as a consequence, we also have 

Oh1 (0) A...AOhq (0) r O. (3.4.11) 

The proof of Lemma 3.4.1 is complete. [] 

3.5. A n  e x a m p l e  

Consider the 5-dimensional real algebraic submanifold M C C 4 defined by 

R e Z 3 = 0 ,  I m Z 3 = I Z l l  2, ImZ4--[Z212. (3.5.1) 

On the set {(O, Z2,0, X4+ilZzl2):Z2EC, X4eR},  M is neither generic nor CR, but 

outside that  set M is generic and holomorphically nondegenerate. The function hi (Z)=  

-iZ3 is real on M, but MA{Z : hi (Z) =c}, for real c>0, is not minimal anywhere. Indeed, 

MN{Z:hl(Z)=c} is given by 

IZ112=c, Z.~=ic, ImZ4=[Z2I  2, (3.5.2) 

which is not minimal since it is a product of a circle and a 3-dimensional surface. We 

leave it to the reader to check that  there is no germ at 0 of an algebraic holomorphic 

function h which is real on M and such that Oh(O)AOhl(O)r 
Hence, we cannot apply Theorem 3.1.2 with p0=0. However, a straightforward 

calculation reveals that  the function 

h2(Z) = Z~-iZ3 (3.5.3) 
2Z1 

is real on M, since h2(Z)IM=ReZ 1. Near any point pl=(ir, O, ir2,0)EM, with r E R ,  

the leaves {Z: hl(Z)=cl, h2(Z)=c2}, for c=(cl, c2)EC 2 close to (r 2, 0), are equal to 

{Z:  Zx = c2 + V/c22-cl, Z3 = icl }, (3.5.4) 
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where the square root is chosen so that  ~ =i .  Assume now that  there is a holomorphic 

map H: C 4 H C  g '  near 0, generically of rank 4, such that  H(M) is contained in a 5- 

dimensional real algebraic subset of C N'. If we choose the point Pl as above with r # 0  to 

be in the domain of definition of H then we may apply Theorem 3.1.2 in a neighborhood of 

Pl since MN{Z: hl(Z)=cl, h2(Z)-~c2} is minimal for Z near Pl, and c e R  2 near (r 2, 0). 

Theorem 3.1.2 implies that  H is algebraic on the leaves 

{Z: h i (Z)  =Cl, h2(Z) =c2}, (3.5.5) 

which are the same as the leaves defined by (3.5.4). More precisely, the proof of The- 

orem 3.1.2 implies that there are polynomials PI(Z2, Z4, X; Z1, Z3) in (Z2, Z4, X ) E C  3 

with coefficients that  are holomorphic functions of (Z1, Z3) near (ir, ir 2) such that  (with 

H= (Hi,.., HN,)) 
Pl (Z2, Za, Hz(Z); Zl, Z3) --- 0 (3.5.6) 

holds for Z near (ir, O, ir 2, 0), f o r / = 1 ,  ..., N' .  Since H is holomorphic in a neighborhood 

of 0, we can now apply Lemma 3.2.1 to conclude that  H is algebraic on the leaves 

{Z: Z1 = Z  ~ Z 3 = Z  ~ } for all (Z ~ Z ~ in a neighborhood of (0, 0). Note that,  as mentioned 

above, we could not apply Theorem 3.1.2, as it is formulated, directly to this example at 

P0 =0. 

It should be noted that  there exists a nonalgebraic mapping H which is holomorphic 

outside {Z1 =0}, maps M into itself, has generically full rank, and which is algebraic on 

the leaves {Z:ZI=Z ~ Z3=Z~ Indeed, we may take 

H(Z1, Z2, Z3, Z4) ~-- (eih2(Zl'Za)-iZa/2Z1, Z2, e -iZa Z3, Z4) .  (3.5.14) 

3.6. Proofs  of  Theorems  1 th ro u g h  4 

We begin by proving Theorem 1. Since p0EAreg and ACR is dense in Areg, we can 

find a real algebraic CR submanifold M, as an open piece of Acn,  such that  poEM. 
Condition (1) and Proposition 1.4.1 imply that  M is holomorphically nondegenerate, 

and condition (2), together with Lemma 3.4.1 imply that  M is generic and minimal at 

some point. Now Theorem 1 follows from Theorem 3.1.2 by specializing in that  theorem 

to q=O and M generic. 

For Theorem 4, we note first that  Theorem 2.2.1 states that  the CR orbits and their 

intrinsic complexifications are all algebraic. The rest of the proof of the theorem follows 

from Theorem 1, since any biholomorphism must map a CR orbit onto a CR orbit. 

Now we shall prove Theorems 2 and 3. By Proposition 1.4.1, condition (1) of The- 

orem 1 is equivalent to condition (i) of Theorem 3. That  (2) of Theorem 1 is equivalent 

to (i) and (ii) of Theorem 3 follows easily from Lemma 3.4.1. 
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PROPOSITION 3.6.1. Let A be an irreducible real algebraic subset of C N. If  either 

(i) or (ii) of Theorem 3 does not hold, then (3) of Theorem 2 holds. 

Proof. Assume first that  (i) does not hold and let p0EAcR. By Proposition 1.4.1, 

the definition of holomorphic degeneracy, and the observations in the proof of Proposi- 

tion 1.4.1, there exists a nontrivial holomorphic vector field X of the form (1.4.1) tangent 

to A with coefficients algebraic holomorphic near Po. Without  loss of generality, we may 

assume X(po)=0. The proof now is essentially the same as that  of the hypersurface case 

([BR3, Proposition 3.5]). We take the complex flow of the vector field X or, if necessary, 

of f X ,  where f is a germ of a nonalgebraic holomorphic function at P0 to find the desired 

germ of biholomorphism satisfying (3). See [BR3] for details. 

Assume now that  (ii) does not hold, and let poEAcR. Since A is not generic at p0, 

there exists an algebraic holomorphic proper submanifold in C y containing ACR. After 

an algebraic holomorphic change of coordinates, we may assume that  po=O and that  

A is contained in the complex hyperplane ZN=O near 0. To prove that  (3) holds, it 

suffices to take the mapping Hj (Z) = Zj, j = 1, ..., N -  1, and HN ( Z )  = Z N  eZ~ . This proves 

Proposition 3.6.1. [] 

We now prove the last statement of Theorem 3. A homogeneous submanifold M of 

C N of codimension d is given by 

M = {Z e cN: oj(Z, 2)  = O, j = 1, ..., d}, (3.6.1) 

where the 0j are real-valued polynomials weighted homogeneous with respect to the 

weights Ul~<...~<uy (see w Let r l~ . . .~rd  be the degrees of homogeneity of the 

polynomials 01, ..., 04, i.e., for t>0 ,  

oj(t~Z1, ...,t 'NZN) =tTJoj(Z, Z), j = 1, ...,d. (3.6.2) 

We also assume that 

d01 (0) A... A dOd (0) ~ 0. (3.6.3) 

LEMMA 3.6.2. Let M be a homogeneous generic submanifold of C g which is not 

minimal at O. Then there exists a holomorphic polynomial h in C N, with him noncon- 

stant and real-valued. 

Proof. The homogeneous manifold M is generic (at 0 and hence at all points) if, in 

addition to (3.6.3), we have 

001 (0) A... A OOd (0) # 0. (3.6.4) 

The reader can easily check that  if M is a generic homogeneous manifold of codimension d, 

after a linear holmorphic change of coordinates Z--(z ,  w), M can be written in the form 

w = Q ( z ,  2,~), with Qj(z, 2 , ~ ) = ~ j + q j ( z , z ,  wl , . . . ,~ j_ l ) ,  (3.6.5) 
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j = 1, ..., d, with qj a weighted homogeneous polynomial of weight rj .  Here Q is complex- 

valued and satisfies (1.1.5). After a further weighted homogeneous change of holomorphic 

coordinates, we may assume that  the coordinates (z, w) are normal, i.e. (1.1.4) holds. 

As in w we let M k be the projection of M in C ~+k-1, k = 2 , . . . , d + l .  Each M k 

is defined by the first k - 1  equations in (3.6.5). If the hypersurface M 2 c C  n+l is not 

minimal at 0, then necessarily ql(z,2)~O, and we may take h(z ,w)=wl .  If not, we let 

l<<.d be the smallest integer for which M l is minimal at 0, but  M I+1 is not minimal at 0. 

Then the CR orbit W of 0 in the generic manifold M z+l is a proper CR submanifold of 

M l+l of CR dimension n. It  must be a holomorphic graph over M ~ in C n+~. Tha t  is, W 

is given by (3.6.5) for l<<.j<~l-1 and wl+l=f(z ,  wl, . . . ,wl-1). Since W c M  z+l we must 

also have Im f ( z ,  w l, ..., wl-1 )[ M = (1/2i)qz (z, z, wl, ... z~l-1 )[ M. The reader can check that  

this implies tha t  f ( z ,  wl, ...,wz-1) is independent of z and is a weighted homogeneous 

holomorphic polynomial, and the function h(z, w ) = w z - f ( z ,  wl, ..., wl-1) satisfies the 

conclusion of the lemma. The  following proposition concludes the proof of Theorem 3. [] 

PROPOSITION 3.6.3. Let M be a homogeneous generic submanifold of C N which is 

not minimal at O. Then for any poEM, there exists a nonalgebraic holomorphie map H 

from C N into itself with H(po)=Po, H ( M ) c M ,  and J a c H ( p o ) ~ 0 .  

Proof. By Lemma 3.6.2, there exists a nonconstant holomorphic polynomial h with 

hiM real. We may also assume h(po)=0. The reader can easily check that  the map  defined 

by 

Hj(Z)=e'Jh(Z)zj, j = I , . . . , N ,  

satisfies the desired conclusion of the proposition. [] 
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