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1. I n t r o d u c t i o n  

For any probability measure p on R n with a smooth, strictly positive density, define the 

Dirichlet form operator for # to be the nonnegative self-adjoint operator A u on L 2 (R n, #), 

with core C ~ ( R n ) ,  satisfying 

(A~f ,  g)L2(t~) = / a  (grad f ( x ) ,  grad g(x) ) dp(x) (1.1) 

for f and g in C ~ ( R n ) .  For example, if d,(x)=(27r)-n/2e-lX12/2dx, then an integration 

by parts gives 

A , f ( x )  = - (Lap lac ian ) f ( x )+(x ,  grad f ( x ) ) ,  x �9 R n, 

for fE(7~(R'~).  Define 

1 p-__~l 
tN = tN(p ,q )  = ~log q - - l '  l < q ~ p < e c .  (1.2) 

THEOREM 1.1 (E. Nelson IN2]). Let l<q~<p<oo. Then 

II e-tA~llLq~Lp <. 1 if t >~tg(p,q). (1.3) 

I f  t <tN then e -tA~ is unbounded as an operator from Lq(y) to LP(y). (e -tA" should be 

extended from L 2 to Lq if 1<q<2  or restricted to Lq if q>2 for the proper interpretation 

of this theorem. This comment applies to all following variants of this theorem.) 

This theorem evolved through several stages [N1], [G1], [S], [N2] before reaching 

the definitive form above. Subsequently, the present author introduced the notion of 

logarithmic Sobolev inequality, [G1], and showed that  families of inequalities such as 
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(1.3) are equivalent to a single inequality of the following form. We say that  a probability 

measure # on R n satisfies a logarithmic Sobolev inequality if 

fRn[fJ21og JfJ dp <~ fRnJgrad fJ2 d# + JJfJJ2L2(t,) log JJfJJL2(u) (1.4) 

whenever the weak gradient of f is in L2(p). 

THEOREM 1.2 [G1]. Suppose that It is a smooth probability measure on R n with 
strictly positive density, and that A ,  is its Dirichlet form operator. Then 

JJe-tA"JJLq__+Lv~l forall t>~tN(p,q) and l < q ~ p < o c  (1.5) 

if and only if the logarithmic Sobolev inequality (1.4) holds. 

There are many variants of this theorem that  have been developed and applied in a 

wide variety of contexts. The review papers [B], [G5] survey the state of the art through 

September, 1992. At that  time there were approximately 150 papers dealing with hy- 

percontractivity of semigroups (typically inequalities like (1.5)) and logarithmic Sobolev 

inequalities (typically inequalities like (1.4)) either separately or in combination and ei- 

ther over manifolds (finite- or infinite-dimensional) or over discrete spaces. The range 

of applications has continued to expand rapidly since then. Theorem 1.2 and its proof 

"explains" the particular form of Nelson's shortest time to contractivity tN(p, q). By and 

large, this shortest time lurks in all of the applications, even if only by approximation, or 

as an intermediate step, such as in supercontractivity and ultracontractivity. However, 

there are four notable exceptions. 

Let 
1 

t j (p ,q )=~log  p, 0 < q < ~ p < ~ .  (1.6) 
q 

S. Janson [J1], in a paper aimed at discussing multiplier operators T~ for orthogonal 

functions { ~ } ,  given by ~ ~ n = l  a~n----~-~,~=a anW'~n, where w is a complex number 

with Iw[ ~< 1, discussed an inequality which is in the spirit of (1.3), but operates in spaces of 

holomorphic functions. In Janson's inequality tu(p, q) is replaced by the smaller tj(p, q), 
while p and q are allowed to run even below one. E. Carlen [C] and Z. Zhou [Z] found 

two more distinct proofs of Janson's inequality, and in a recent paper [J2] Janson found 

a fourth distinct proof. The inequality can be phrased in terms of the Gaussian Dirichlet 

form operator A.  defined above. Take n=2m and identify R n with C "~. Denote by 7/p 

the space of holomorphic functions in LP(C '~, u). We have 

THEOREM 1.3 [J1], [J2], [C], [Z]. Let 0<q~<p<oc. Then 

[[e-ta~JlT-tq--+7-/p 4 1  if t>>.td(p,q). (1.7) 

If t<tj(p,q)  then ]]e-tA~[]nq__~np=-oc. 
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In other words, the restriction of the semigroup e -tA~ to the holomorphic subspace 

of L p has greatly improved boundedness behavior, especially for p~< 1. In fact, e - t A €  is 

not even definable on all of LP(C "~, ~,) in a reasonable way if p < l .  (See Example 5.1.) 

The four existing proofs of Theorem 1.3 are quite different from one another. Jan- 

son's original proof of Theorem 1.3 [J1] uses ordinary hypercontractivity (1.3), the spher- 

ical symmetry of the Mehler kernel of e -tA€ (x, dy) around e-tx, and the fact that  If(z)] k 

is subharmonic in z for all k > 0 when f is holomorphic. The proof of Zhou [Z] is based 

on careful estimates of L4(~)-norms of holomorphic polynomials ~ akz k and on deep 

results of Lieb, [Li]. Zhou considers only p ~> 1. The proof of Carlen [C] is based partly on 

use of the logarithmic Sobolev inequality (1.4) (for #=~) ,  and partly on special integral 

identities for holomorphic flmctions on C "~. Janson's second proof [J2] is based on use 

of a Brownian motion in C "~ and is genuinely probabilistic. 

One of the reasons that  Theorem 1.3 is so startling (at least to this writer) is that  

the proof of the inequality (1.3), via its link to logarithmic Sobolev inequalities (i.e., via 

Theorem 1.2), is so simple and seemingly tight. Why should holomorphicity make such 

a difference? The answer lies in a "small" difference between the C ~ -  and holomorphic 

categories in the application of the chain rule. A summary explanation is given in Re- 

mark 4.9. In short, a small modification of this author's proof of Theorem 1.2, [G1], 

yields yet another proof of (1.7). 

The significance of this new proof of (1.7) lies not so much in the fact that  there is 

now a fifth proof, but rather that  the mechanism of proof does not depend on the linear 

structure of C m. It therefore frees one to explore the relation between hypercontractivity 

and logarithmic Sobolev inequalities in the holomorphic category over general complex 

manifolds. The resulting theory has some very interesting features not present in the C m- 

case and raises a large number of compelling questions about an apparently unexplored 

class of Dirichlet form operators. The present paper is devoted to the exploration of 

some of these questions. 

Let M be a complex manifold with Hermitian metric g. Denote by h the dual 

Hermitian metric on the dual spaces T* (M) |  C. Let # be a probability measure on M 

with strictly positive smooth density (in each coordinate chart). For f E C ~ ( M )  define 

d*dfEC~(M) by the identity 

( d* df , ~) L2(~) = / M  h( df , d~) d#, for all ~E C~ ( M). 

An integration by parts in a local coordinate chart, U, shows that  if f E C ~ ( M )  and f 

is holomorphic in U then d*df can be expressed in terms of the first-order derivatives of 

f because the second-order derivatives are zero by the Cauchy-Riemann equations. Put  
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more invariantly, there exists a unique complex vector field Z of type (1, 0) such that  for 

any function rECk(M) one has 

d*df = Z f (1.8) 

in any open set U in M on which f is holomorphic. 

Definition. We will say that  d*d is holomorphic if for any function f cC~(M),  cl*df 
is holomorphic in any open set on which f is holomorphic. This is equivalent to the 

requirement that  Z be a holomorphic vector field. 

The main goal of this paper is to prove a version of the sufficiency portion of Theo- 

rem 1.2, in the holomorphic category, when d*d is holomorphic. The function tN will be 

replaced by t j ,  and p and q will run over (0, oc) as in (1.7). 

Unlike the Gaussian case on C "~ the manifold M will be allowed to be incomplete. 

A self-adjoint version of d*d must be chosen before a holomorphie version of Theorem 1.2 

can be stated. In the present work I have focused on the case of Dirichlet boundary 

conditions. Let Q be the closed quadratic form in L2(M, #) with core C~(M) which is 

given by 

Q ( f , f ) = j l  h(df, df)dp, f~C~(M).  (1.9) 

Let A be the associated nonnegative self-adjoint operator in L2(M, it). Denote by 7i the 

space of holomorphic functions on M. Any complex vector field may be written uniquely 

as Z=�89 where X and Y are real vector fields. Moreover if Z is of type (1,0) 

then Z f = X f  for any flmction f in 7/. So if Z is holomorphic then XkfET/, k=0,  1, 2, ..., 

whenever fE?-t. Therefore if we denote by e x p ( - t X )  the flow of diffeomorphisms of M 

induced by X (assuming that it exists for t>0) ,  the equation (1.8) then suggests that  

e-tnf  = foexp(-tX), f E7/nL2(M,#), (1.10) 

when d*d is holomorphic. Equation (1.10) fails for interesting reasons. Denote by 7/2 the 

L 2 (#)-closure of 7i C~ (domain Q). It will be shown (Theorem 2.11) that  (1.10) holds for f 

in 7/2 when d*d is holomorphic. More generally, e-(t+is)nf=foexp(-tX-sY) for t~>0 

and s real, when lET/2  and d*d is holomorphic. Even though domainQ is dense in L 2, 

7/N (domain Q) need not be dense in 7 / n L  2 because intersection does not commute with 

the operation of taking closure. So in general 7/2 may be a proper subspace of 7/NL 2. 

The distinction between 7/2 and 7/AL 2 relates in part to the completeness of M. Thus 

if M is complete and d*d is holomorphic then 7/2= 7/AL 2 (Theorem 2.14). An example 

will be given in [G7] in which 7/2r  In this example M will be taken to be the 

n-sheeted Riemann surface for z 1/~. 7/2 is then of codimension n - 1  in 7 /~L  2. All 

hypotheses of interest in the present work, including logarithmic Sobolev inequalities, 
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hold in this example. Therefore, the circumstance ~2 # ~ N L  2 should not be regarded as 

pathology. 

In the Gaussian case over C m, discussed in Theorem 1.3, the equation (1.10) re- 

duces to (e -tA f )  (z) = f (e- tz)  for f E 7-/2 and z C C m. This is the identity which underlies 

all four of the works [J1], [J2], [C], [Z]. But in the present work it is the Y-flow that  

plays the key technical role. It happens that  the Y-flow always preserves the measure p. 

Moreover if d*d is holomorphic and (M, g) is K/ihlerian then the Y-flow also preserves 

the metric. It results that  in this case the unitary group, V s f = f o e x p ( s Y ) ,  on L2(M, #) 

preserves Q, preserves 7 / a n d  coincides on 7/2 (and only on 7/2) with the unitary group 

e isA. The unitary group V~ consequently is able to serve as a tool for the global regu- 

larization of holomorphic functions. In nonholomorphic categories, inequalities for such 

second-order differential operators as A are typically proven first for some nice class of 

functions in :D(A), for example for functions in C ~ ( M ) ,  and then extended by closure 

considerations to :D(A) or to all of L 2. But in the holomorphic category one cannot tam- 

per easily with globally holomorphic functions, especially when there are no polynomials 

handy to approximate them by. In the present work the unitary group V~ will play a vi- 

tal role in this regard, producing nice, globally holomorphic approximations to functions 

in 7/2, which will allow computations to be made that  are valid only for especially nice 

holomorphic functions. 

Define 7/P to be the LP-closure of 7/2 for 0 < p < 2 ,  and define 7 / P = 7 / 2 N L p  for 

2 < p < o c .  The inequality (1.7) implies that  e -tA is a contraction on 7/P for all pC(0, co) 

in the Gaussian context of Theorem 1.3. As is well known, e - t A  is a contraction on 

the full LP-space for p~>l because A is a Dirichlet form operator. But in general e -tA 

does not act in the full LP-space for 0 < p < l .  For example, e - t A  is typically given by a 

positive integral kernel, and in the case of Gauss measure it is easy to produce, for any 

pc(0 ,  1), a positive function f in L p such that  e - t A f  is identically +co (Example 5.1). 

But if d*d is holomorphic then e-tA[7/2 extends to a contraction on 7/P for any pE (0, 2) 

(Theorem 2.15). In fact, e -(t+is)A is a contraction in 7/P for all pE (0, oe), for all t~>0 and 

for all real s (Theorem 2.16). Even for p > l  this is false in the full LP-space for Gauss 

measure when s#0 .  (See the discussion after Theorem 2.15.) 

The preceding discussion of the operators e - ( t + i s ) A  and their action on each 7/P- 

space does not depend on the validity of logarithmic Sobolev inequalities but only on 

the fact that  d*d is holomorphic. Proofs of these structure theorems will be given in w 

When d*d is holomorphic, and in addition a logarithmic Sobolev inequality holds, then 

one can say, first of all, that  the space 7/P is dense in 7/q for 0<q~<p<oc (Theorem 2.17). 

In fact, the union of the spectral subspaces for A]7/2, corresponding to bounded in- 

tervals, turns out to be an algebra which is thereby naturally associated to the triple 
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(M,g ,#) .  This algebra is dense in 7/P for 0 < p < o c  (Theorem 2.17). In the absence of 

a logarithmic Sobolev inequality all such density theorems fail. In fact, all 7/P-spaces 

can be finite-dimensional with decreasing dimension as p increases (Example 5.1, finite- 

dimensional case). Second, when d*d is holomorphic and a defective logarithmic Sobolev 

inequality holds (cf. (2.29)), the operators e-(t+is)A: ~t~q_..).~.~p satisfy bounds similar to 

(1.7) (cf. (2.33)) for t>>,tj(p, q) and arbitrary real s (Theorem 2.19 and Corollary 2.20). 

These are the main results of this work. 

Virtually all of the theorems in the present work depend on the condition that  d*d 

be holomorphie: e-tA7/2 need not even be contained in 7/otherwise. In particular, e -tA 

need not leave 7/2 invariant, which it does when d*d is holomorphic (Theorem 2.11). It 

is a strong restriction on the triple (M, g, p) for d*d to be holomorphic. How prevalent 

are such "holomorphic" triples? w is devoted to examples and counterexamples. The 

theory is clearly uninteresting if 7/2 is trivial, that is, consists only of constant flmctions. 

In Example 5.7 it will be shown that  if M and g are given there does not necessarily exist 

a smooth probability measure # on M such that  d*d is holomorphic--even if (M,g) is 

complete and Kghlerian. In Example 5.6 it will be shown that  if M and # are given, there 

does not necessarily exist a Hermitian metric g on M such that d*d is holomorphic--even 

if M = C  and # is Gaussian. w is otherwise devoted to constructing (non-Gaussian) ex- 

amples over C m for which both key conditions of this paper hold: d*d is holomorphic and 

satisfies a logarithmic Sobolev inequality. An extension of E. Carlen's theorem on the 

density of holomorphic polynomials in 7/P is given. The hypothesis that  d*d be holomor- 

phic seems fundamental in all questions concerning the strong form of hypercontractivity 

embodied in the inequality (1.7). In [G7] an example will be given that  provides further 

evidence for the necessity of this condition. 

A part of the motivation in [C] and [Z] for investigating the behavior of the semi- 

group e - t A ~  in 7 /nL2(C m, u) comes from the existence of a natural unitary transform 

(the Segal-Bargmann transform) of L2(R TM) onto 7 /nL2(C TM, u), which intertwines the 

harmonic oscillator Hamiltonian on L2(R TM) with A.IT/nL2(C m, v). An analog of this 

transform, that  applies to functions over a compact Lie group, K,  instead of functions 

over R '~, has been found by B. Hall, [Hall. The transform maps functions on K to 

holomorphic functions over the complexification of K. Recent work on this transform 

may be found in [BSZ], [Dr], [DG], [G2], [G3], [G4], [G6], [GM], [Hal], [Ha2], [Ha3], 

[Hijl], [Hij2], [OO]. The present work is motivated, in part, by the existence of such 

natural unitary transforms from full L2-function spaces to holomorphic function spaces 

over some complex manifolds. 

It is a pleasure to acknowledge useful discussions with B. Driver, C. Earle, M. Gor- 

dina, M. Gross, B. Hall, W. Lewkeeratiyutkul and J. Mitchell. 



HYPERCONTRACTIVITY OVER COMPLEX MANIFOLDS 165 

2. S t a t e m e n t  o f  m a i n  resu l t s  

Notation 2.1. M will denote a complex manifold of complex dimension m. Let g be a 

Hermit ian metric on M, and let p denote a probabili ty measure on M. It  will be assumed 

throughout that  p has a strictly positive C~-dens i ty  with respect to the R iemann-  

Lebesgue measure induced by g. 

Denote by h the dual Hermit ian metric on the complexified dual spaces T~ (M). As 

usual h(u, v) is complex bilinear and symmetr ic  in u and v for u and v in T * |  and if 

O#u  is of type (1, O) then h(u, ~)>0 .  Ca(M) and C~(M) will denote complex-valued 

functions unless reality is specified. If V is a C~-sec t ion  of T~ (M) then the divergence 

d*V is the function on M determined by 

fM( d*V)(z) ~(z) d#(z) = fM h(V(z), d~(z) ) dp(z) for all ~ C C~(M). (2.1) 

If f is in C~(M) then df is a smooth section of T~(M) ,  and d*df: M--+C is therefore 

well defined. We have 

/M( d*df)(z)~(z) d#(z) = / •  h(df(z), d~(z)) d# for all ~E  C~(M). (2.2) 

The operator d'd: C a (M)--+ C ~ (M) is called the Dirichlet form operator associated 

to the Dirichlet form 

Q0(f,  ~) --/M h(df(z), d~(z) ) dtt(z), f c C ~ ( M ) ,  ~ e  C~(M). (2.3) 

Later we will choose a version of d*d which is a positive self-adjoint operator  in L 2. 

Definition 2.2. The Dirichlet form Q0 is holomorphic if for any function f in C~(M), 
d*df is holomorphic in any open set U on which f is holomorphic. 

When Q0 is holomorphic we will also say that  d*d is holomorphic and also say that  

the triple (M, g, #) is holomorphic. 

L2(#)-versions of Q0 and d*d will be the principal objects of interest to us. We 

say that  a locally integrable function f :  M--+C has locally square-integrable weak first 

derivatives if its restriction to each coordinate patch U is a weakly differentiable function 

of the coordinates Xl~ . . . ,  X2m whose first derivatives are in L~oc(U ). Tha t  is, 

s Of 2dx 1 = OXj ... dx2m < (:xD 
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for each compact subset K of U. This class is clearly independent of the choice of local 

coordinate systems. For such f ,  df(z) is a well-defined element of T* ,c(M ) for almost 

all zCM, and we may define 

Q(f)  = fM h(df(z), dr(z))  dp(z). (2.4) 

We restrict the domain of Q to be the form closure of C ~ ( M ) .  Thus 

Definition 2.3. 

lP( Q ) = { f c L 2 ( M, #) with locally square-integrable first 

derivatives such that  Q(f)  < cx~ and for which (2.5) 

3fnE C ~ ( M )  with ]]f~-f[]2L2+Q(fn-f ) -+0}. 

With this domain Q is a closed quadratic form and is densely defined in L 2 (M, #). By the 

standard theory of Dirichlet forms [Da], [F], [MR], [RS] there exists a unique nonnegative 

self-adjoint operator A on L2(M,#) such that  D(A1/2)=D(Q) and ][A1/2f[]2L2=Q(f ). 
In particular, 

(Af,  g)L2 =/Mh(d f ,  dO)d# for f e D ( A )  and 9ED(Q). (2.6) 

Furthermore the semigroup e -tA preserves nonnegativity of functions and 

Ile-tafllp <<. llfllp, l <~p<<. o~, f e L2(M,,) .  (2.7) 

Thus the operators e -tA restrict to contractions on L p for 2~p<~oc, and extend to 

contractions on L p for 1 ~<p~2. The resulting semigroups on L p are strongly continuous 

for l~p<cx~. Ap will denote the infinitesimal generator in L p. 

Notation 2.4. Write 7 / = 7 / ( M )  for the space of holomorphic functions on M. For 

0 < p <  1, fM ]f(x)[PdP(z) is a metric on LP(M, It). Convergence in this space will refer 

to convergence in this metric [Ru, Section 1.47]. Define 

7-/2= L2_closure of 7/ND(Q), 

7/P=-:7/2ALP for 2 < p < o c  

and 

(2.8) 
(2.9) 

7/p = closure of 7,/l 2 in L p for 0 < p < 2. (2.10) 

Remark 2.5. Since closure does not commute with intersection it can happen that  

7-/25 7/NL 2. In [G7] an example will be given, the n-sheeted Riemann surface for z 1/n, in 
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which ~2 detects the highly singular point at the origin. One finds in this case a proper 

containment: 7/2C 7-/nL 2. In this example d*d is holomorphic, but M is not complete. 

On the other hand, if M is complete and d*d is holomorphic one always has the equality 

7-/2=7/NL 2, as will be shown in Theorem 2.14. In general, our theorems will hold in the 

spaces 7-t p rather than in the spaces 7/AL p. If ~162 then 7-/nT)(A) is not even 

dense in 7-/NL2! 

Let us recall that  a complex vector field Z on M of type (1, 0) is holomorphie if in 

any local holomorphic coordinate system zl,..., zm, it is given by 

m 

Z = Z ~,~(z)0~ (2.11) 
'r 1 

with ~1,--., gore holomorphic. 

THEOREM 2.6. Let (M,g,#) 

smooth probability measure as above. There exists a unique vector field Z of type (1, 0) 

such that for any function f EC~(M) ,  

be a complex manifold with Hermitian metric and 

d*df = Z f  (2.12) 

in any open set U in which f is holomorphic. Denote by w the (1, 1)-form associated 

to the Hermitian metric g and let ~ be the density of # with respect to the Riemannian 

volume measure. Then Z is given by 

Z f  : h(Of,-Olog~,+ih.bco), fE  C~176 (2.13) 

where h.Ow is the form of type (0, 1) defined by 

= Z < ' 01 , (2.14) 
8 

and el,..., e~ is an orthonormal basis of T~ (See Lemma 3.1 for the pairing convention 

used in (2.14).) If g is K~ihler then 

Z f = h ( O f , - O l o g v ) ,  f c C ~ ( M ) .  (2.15) 

Furthermore d*d is holomorphic if and only if Z is holomorphic. 

Notation 2.7. Any complex vector field Z can be written uniquely in the form 

I ( X - i Y )  (2.16) Z = ~  
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where X and Y are real vector fields. One has X = Z + Z  and Y = i ( Z - Z ) .  Throughout 

this work Z will denote the complex vector field on M determined by g and ix as in 

(2.12). X and Y will denote the real vector fields defined by (2.16). 

Z is of type (1, 0) in our case. If J denotes the ahnost complex structure associated 

to the given complex structure of M then J Z - - i Z  while J Z - - - i Z .  Hence 

J X  = Y. (2.17) 

In particular, X and Y are mutually orthogonal real vector fields on M. 

COROLLARY 2.8. Z, X and Y are given by 

2 f = h ( O f , - O l o g u + i ( h . O w ) ) ,  f c  C ~ ( M ) ,  

X f = h( df , - d  log u+ i( h. dw) ), 

Y f = ih(df  , - (05-0) log u+ ih. (O-O)w), 

(2.18) 

(2.19) 

(2.20) 

where h.Ow is defined as in (2.14) but with o ~ T  1'~ and h.&o=h.05w+h.Ow. 

In particular, if (M, g) is Kiihler then 

Z f  = h(Of, - 0  log u), 

X f = h(df , - d l o g  u) 

(2.21) 
(2.22) 

and 

Y f = ih( df , - (aS-0) log u). (2.23) 

The flow determined by a vector field Y is the one-parameter group exptY: M--+M 

of diffeomorphisms of M (if they exist) such that  

d f t = y f t  , f e C ~ ( M ) ,  (2.24) 
dt 

where ft  = f ~ exp(tY). If such a diffeomorphism group exists (i.e., if the flow determined 

by (2.24) exists globally), one says that  the vector field Y is complete [KN1]. 

Standing assumption. The vector field Y defined by (2.16) will always be assumed 

to be complete. 

THEOREM 2.9. For any Dirichlet form operator d*d the flow of Y preserves the 

measure ix. 
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THEOREM 2.10. Assume that d*d is holomorphic and that the metric g is Kiihler. 

Then the Y-flow preserves the metric. That is, Y is a Killing vector field. 

Remark. In all of the examples that I have, Kghler or not Kghler, the vector field 

Y is Killing when d*d is holomorphic. See Example 5.1. I conjecture that Theorem 2.10 

holds without the assumption that g is Kghler. 

THEOREM 2.11. Assume that d*d is holomorphic and that Y is Killing. Then: 

(a) 7{ND(A)c7{ 2 and is dense in 7{ 2. Moreover ALE7{ 2 if fE7{ND(A).  

(b) A S = Z I  for IE7{ND(A). 
(c) e-~AT{2CT{2 for Re~>0. 

(d) e i tA f= foexp tY  for SET{ 2 and for all real t. 

(e) If fE7{ 2 then fED(A)  if and only if Z I E L  2. 

It is interesting that the condition "fE 7{2, in part (e) captures the Dirichlet bound- 

ary condition in the holomorphic category. For example, if fE7{NL 2 and Z f E L  2 then 

f need not be in D(A). An example is given in [G7]. 

The previous theorem relates the unitary group eisAIT{2 tO the Y-flow by part (d). 

The next corollary relates the semigroup e-tAIT{2 to the (typically one-sided) flow of X. 

A relevant example of a one-sided flow (in the unit disc) is given in [GT]. There the flow 

exp(- tX) exists for t~>0 but not for t<0. 

COROLLARY 2.12. In addition to the hypotheses of Theorem 2.11 assume that the 

flow exp(-tX) exists globally for t>>.O. Then for all zEM,  

(e-(t+is)A)f(z) = f ( e x p ( - t X )  exp(-sY)z) (2.25) 

= f ( e x p ( - s Y ) e x p ( - t X ) z )  for fE7{  2 , t ) O , s E R .  

If  moreover the diffeomorphism semigroup r-+exp(-r(aX +bY) ) exists globally for 

all r)O, all a>~O and all bER then 

e-(t+~8)Af=foexp(--tX--sY) for fET{ 2, t~>0, sER.  (2.26) 

Remark 2.13. When the vector field Z is holomorphic the real vector fields X and Y 

(cf. equation (2.16)) commute. This follows from a straightforward computation in local 

coordinates. The well-known example of Nelson [RS, p. 273] shows that the flows of 

commuting vector fields need not commute. However, equation (2.25) shows that if 

X and Y arise from a holomorphic Dirichlet form then the diffeomorphism semigroup 

exp(- tX) and the diffeomorphism group exp(-sY) do indeed commute, provided that 

7{2 is ample enough to separate points of M. It is not automatic, however, that 7{z will 

separate points. Example 5.1 (finite-dimensional case) shows that 7{_/2 could consist of 

constants even when d*d is holomorphic. 
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THEOREM 2.14. Assume that d*d is holomorphic and that Y is Killing. If  (M,g)  

is complete then 

7tP = 7-INL p, 2~<p<oc.  (2.27) 

The proofs of the preceeding theorems will be given in w These theorems deal 

almost entirely with the holomorphic L%theory. The main results of this paper are 

the following contractivity and hypercontractivity theorems for the operators e -CA in 

the spaces 7-l p, 0 < p < o c ,  for ReCk>0. The operators e -~A will be defined in 7-/p by 

restriction from 7-/2 when p~>2, and by extension by continuity when 0 < p < 2 .  There is a 

resulting dichotomy in the techniques for the intervals p >  2 or p <  2. Even when 4=  t >0 

is real, e - t A  does not in general act in L p when 0 < p <  1. Restriction to the holomorphic 

category is essential. Example 5.1 (Gaussian case) will illustrate this. The following 

theorems will be proved in w The next theorem contains the basis for the extension of 

e -CA to 7-{ p for 0 < p < 2 .  

THEOREM 2.15. Assume that d*d is holomorphic and that Y is Killing. Then 

Ile-(t§ Ilfllp for  O < p ~ 2 ,  t>~O, s real, f E T t  a. (2.28) 

We wish now to study the operators e -~A in the spaces ?-/P when Re4~>0. Of 

course, e -~A is a bounded operator on L 2, and by Theorem 2.11 it leaves 7-I 2 invariant. 

Theorem 2.15 shows that it can be extended to 7-/p for 0 <p <2 .  It is well known, as 

already meutioned at the beginning of this section, that  e - t A  is a contraction in the 

full LP-space for l~<p~<oc and t>~0. The next theorem shows that  e -(t+is)A leaves the 

subspaces HP invariant for all pE (0, oc) and acts as a contraction in these spaces for 

t~>0 and arbitrary real s. This behavior contrasts with the action of e -(t+is)A in the full 

LP-space. In the classical example ( M = C ,  # =  Gauss measure, A =  Ornstein Uhlenbeck 

operator),  it is known [El, [J1], [J2], [Li], [We] that  if s # 0  then e - ( t + i s ) A  is an unbounded 

operator on L p for sufficiently large p. 

THEOREM 2.16. Suppose that d*d is holomorphic and that Y is Killing. Let Re~>0 .  

Then e -~A has a unique continuous extension to an operator on ~P for 0 < p < 2 .  For 

2~<p<oc the restriction of e -~A to 7-t p takes 7t p into itself. For all p in (0, oc), e -~A 

is a contraction on 7-I p and e-r p is dense in 7-I p. Furthermore, for 0 < p < o c ,  the 

map R ~ s - + e  i'~A is a strongly continuous one-parameter group of isometrics on HP. In 

particular, when l <p<oc, 7-lPND(Ap) is dense in 7-I p, where Ap is the infinitesimal 

generator of e -tA in L p. Finally, the equations (2.25) and (2.26) hold for all f in 7/p, 

0 < p < o c ,  for the extended (or restricted) operators e -~A, under the same hypotheses as 

in Corollary 2.12. 
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Next, assume that there exist constants c>0  and/3~>0 such that the following loga- 

rithmic Sobolev inequality holds: 

/Mlf(z)121og[f(z)ld (z)<<. cQ(f)+31lfll2L~+ 25 IlfllL logllfllL2, f 6 ~ ( Q ) .  (2.29) 

THEOREM 2.17. Assume that d*d is holomorphic, that Y is Killing, and that the 

logarithmic Sobolev inequality (2.29) holds. Let Ha be the spectral subspace for the in- 

terval [0, a] for the self-adjoint operator AIT-I 2. Let TC=Ua<~ Ha. Then, for 0 < q < o c ,  

RCT-lq and Tr is dense in 7-l q. In particular, ~p<oc ~'~P is dense in 7-l q, and each 7-l p 

is also dense in 7-l q for 0<q~<p<oc. Assume further that 7-/2=7-/nL 2. Then 74 is an 

algebra under pointwise multiplication and is dense in ~ for 2~<p<oc. We have 

also 

Ha" Hb C Ha+b. (2.30) 

Let 

~t~= 0 N T~((Ap[nP)~) �9 
2 ~ p < ~  n = l  

Then 7 t~  is also an algebra under pointwise multiplication and is dense in ~ A L  p for 

all p in [2, ~ ) .  

Remark 2.18. If the hypothesis that the logarithmic Sobolev inequality (2.29) holds 

is omitted in Theorem 2.17 then all of the conclusions can fail. An example of this will 

be given in w (cf. Example 5.1, finite-dimensional case). In that example the spaces ~P 

are finite-dimensional, with occasional jumps in dimension as p decreases. In [G7] an 

example will be given in which 74 is an algebra even though 7/2#7-/NL 2. I don't know 

whether the hypothesis that ~z=7-tAL2 is really required to obtain (2.30). 

The main theorem of this paper is the following. 

THEOREM 2.19. Assume that d*d is a holomorphic Dirichlet form operator, that 

Y is Killing, and that the logarithmic Sobotev inequality (2.29) holds. Let 0<qEp<cx~. 

Define 

t j  = t j (p,  q) = ~- c log P- (2.31) 
Z q 

and 

Then 

M(p,  q) = exp[2/3(q -1 _p--l)]. (2.32) 

I]e-tAf[lp~ M(p,q)[lfl[q if t>~tg and f E ~ t  q. (2.33) 

COROLLARY 2.20. Suppose that O< q~p< cx~. Under the hypothesis of Theorem 2.19 

one has 

[ l e - < n l l ~ _ ~  <. M(p,q)  if le-<l ~ (q/pU 2. (2.34) 
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3. P r o o f s  o f  s t r u c t u r e  t h e o r e m s  for  h o l o m o r p h i c  D i r i c h l e t  f o r m  o p e r a t o r s  

The results of the preceding section through Theorem 2.15 are concerned not with hyper- 

contractivity, but rather  with the structure of the Hilbert space 7-/2 of "properly holo- 

morphic" square-integrable functions on .~I, and with the action of e -cA in this subspace 

for Re C ~>0. The proofs of these results will be given in this section. 

Proof of Theorem 2.6. Choose a local holomorphic coordinate system zl,  ..., z,~ in 

a coordinate neighborhood V. Let gij(z)=gz(O/Ozi , O/Ozj) and let h~j(z)=h(dzi, dzj). 
Then hij is the transpose matr ix  of the inverse of {gij(Z)}imj=l. Write zj=xj+iyj,  
j= l ,  . . . ,m, and dx=dxldyl ... dxmdym. Let fi(z) be the density of the measure # with 

respect to dx in V. If f E C ~ ( M )  and ~ c C f ( M )  with s u p p ~ C V  then by (2.2), 

fM fv h(df(z),d~(z) ) fi(z) dx. (3.1) 

Suppose that  f is holomorphic on a set U which intersects V, and that  supp ~ C  U. 

Then (3.1) reduces to 

= fv of 
r,s=l Oz~ OQ 

Writing O~=O/Ozr and O~=O/02r we have, by an integration by parts,  

~M (d*df)(z)(tg(z) d~t: - /v [ ~ t - 1 E  0~{ (0 r f)hrs~t}] @(z)Ftdx. 
r,8 

Since f is holomorphic on supp ~ we have O~O~f=O on supp ~. Hence 

Since ~lunv is arbi t rary in C ~  (UNV) it follows that  

r 8 

when f 6 C ~ ( M )  and is holomorphic on U. We will t ransform (3.2) to a coordinate- 

independent form. But  first observe tha t  the coefficients of the functions O,,f(z) are 

already uniquely determined by (3.2) because one can take f to be a function in C~(M) 
which is equal to z~ in a neighborhood of a point ~ c V .  The right-hand side of (3.2) 
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reduces then at 2 to the coefficient of O,.f(i). The coordinate-dependent form of the 

desired vector field Z is, by (3.2), 

z = -  D(~) -1  o~{h~ .D(z  . 
r ~ l  r 

(3.3) 

Now let G(z)= 2 m det{gij (z)}. Then the Riemannian volume element is d Vol = G dx. 
Since u is the density of # with respect to dVol we have ft(z)dx=udVol=uGdx. So 

/2=uG. Equation (3.2) gives 

= -  E [ Z  hrsu-lo~u+G-1E O~{h~G}]O~f(z) 
7" s 8 

- 

T 8 

(3.4) 

which is valid for fEC~(M) when f is holomorphic in a neighborhood of z, and z is in 

the coordinate patch U. 

We need to transform the last term in (3.4) to a coordinate-independent form. The 

computation is a variant of well-known manipulations. It will be carried out in the 

following lemma. 

LEMMA 3.1. 
m 

s = l  k 

(3.5) 

Z m Proof. Write g(z) for the matrix {g~j( )}i,j=l. The matrix h(z)={hij(z)}~,j= 1 is 

given by h=(9-1) t (transpose of g - l ) .  Therefore 

- -1  

- -1  - -1  = -  E(9 (0~9)9)st 

- -  Z --1 --1 

s , p , k  

= -  Z (g-1)sp(~176176 hrk 
s , p , k  

= -  ~ h~k trace(g-%g)- ~ h~ ~ h,,/o~9,~- o~gp~:~. 
k k p , s  

(3.6) 
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Applying the product rule to the left-hand side of (3.5) and using the identity G-lOnG= 
trace(g-lOng) we see that  the terms }-~.~ h~sG-lO~G cancel with the first sum in the last 

line of (3.6) leaving 

~Tt 

c - '  = - } 2  h,.k Z h,  (3.7) 
s = l  k p,s 

Now the (1, 1)-form c~ associated to the metric g is given by c0=i }-~-~,b=~ gabdZaAdZb 
[GH, p. 107] for the choice of gab made above. We will follow the pairing convention 

(alA...Aak,~l|174 used in [GH]. 

If el, . . . ,  e,~ is an orthonormal basis of TJ '~ then, expanding each er in terms of 

the basis 0~,. . . ,0~, we see that  we can write ~e~|174 ~. Evaluating 

the left-hand side on d%| one gets Y~ d%(e~)dz~(e~) which is h(dzp, dSs)=hps. So 

~ er| hpsOp| Therefore 

(h.OcJ)(O~) (Ow)( ~ ) 

= ~ (O~)(O,| 
p,s 

= i E E (Ocgab)(dz'cAdzaAd~-"b)(OP@Og@Ok)hps" 
p,s a,b c 

Since the only nonzero pairing of 0p is with dz~, for a=p, we have 

(h. O~z)(O~) = -i  Z Z (Oegpb)hps(dhcAd2b)(O~| 
p,s b,c 

p,s b,c 

= -i  Z hp~{O~gpk--Okgp~}. 
p,8 

Thus, multiplying -i(h. Ow)(O~) by hrk and summing over k gives the right-hand side of 

(3.7) and proves the lemma. [] 

We may now complete the proof of Theorem 2.6. The last term in (3.4) may be 

rewritten, in view of Lemma 3.1, as i}-'~r.k(Orf)hrk(h. Ow)(O~) which is ih(Of, h'Ow). 
Defining now a vector field Z of type (1,0) by (2.13), the equation (3.4) shows that  

d*df(z)=Zf(z) if f is holomorphic in a neighborhood of z. Thus (2.12) holds. It is 

clear from (2.12) that  if Z is holomorphic then d*d is holomorphic. Conversely if d*d is 

Z "~ holomorphic and =~k=lCPk(z)O/Ozk in a local chart (V, z) then we may choose f in 
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C~176 such that  f(z)=z~ in a neighborhood of a point ~EV. It  follows that  ~r(z)  is 

holomorphie in a neighborhood of ~. [] 

Proof of Corollary 2.8. It  suffices to prove (2.18) because the formulas for X and Y 

then follow from X=Z+Z and Y=i(Z-Z). If aCTz <~ then 

(h .  = = ]7"  
8 

= _  

8 

= -(h.Ow)(a). 
8 

Hence (h.Ow)=-h. Ow. Therefore, for fcC~(M), 

Z f = Z/= h(Of , -0  log ,+ih. ~ )  

-- h($f, -0  log u-ih-Ow) 

= h(Of, -0  log u+ih. Ow) 

since log u is real. This proves Corollary 2.8. [] 

Proof of Theorem 2.9. Let ~t=exptY. The assertion of the theorem is equivalent 

to the identity fM f~ t dP=fM f dp for all real fcC~(M). This in turn is equivalent to 

the assertion that  the derivative of the left-hand side is zero. But, put t ing f t = f o r  we 

have dft(z)/dt= (Yft)(z). Since ft is just another real-valued function in C~(M) we see 

that  we must prove that  fM(Yf)(z)d#(z)=0 for all real-valued functions fEC~(M). 
By using a parti t ion of unity we may assume that  f is supported in a holomorphic 

coordinate patch and may then use the expression (3.3) for Z. Thus we need to prove 

that  fv (i(Z-2)f) dp= 0 when f is supported in the coordinate neighborhood V. Tha t  is, 

we need to show that  f(Zf)(z)ft dx=f(2f)f~ dx. These integrals are of course extended 

over some open set z(V) in C ' t  Since f and ~ are real the last integral is f(Zf)ftdx. 
Thus we need to show tha t  f(Zf)ytdx is real. But by (3.3) and an integration by parts,  

f (z f)(z)[t(z) dx - dx 
r = l  s=l (3 .8)  

= f E (OrO~{hr=/2}) f ( z )  dx. 

Since 12 is real and h~= is a Hermit ian matrix, the conjugate of &O~{h~=p} is O=O~{hs,.[~}. 
The double sum in the last line of (3.8) is therefore real. [] 

Proof of Theorem 2.10. Y is a Killing vector field if and only if 

Yg(A, B) = g([Y, A], B)+g(A, [Y, B]) (3.9) 
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for all smooth vector fields A and B. It is sufficient to verify (3.9) in a local coordinate 

patch and it is convenient to compute in complex form. Moreover it is sufficient to verify 

(3.9) in case A is one of the local vector fields {O/Ozj}~= 1 or {0/05k}~_l, and B also is 

chosen among these 2m vector fields. 

The proof breaks into two parts. In the first part, A and B will be taken to be of 

the same type and only the holomorphy of Z need be used, not the K~hler property of g. 

In the second part, A and B will be taken to be of opposite type and only the Ks 

hypothesis will be used, not the holomorphy of Z. 

Suppose that  A=O/Ozj and B=O/Ozk. Then g(A,B)=O so the left-hand side of 

(3.9) is zero. Furthermore, using the representation (2.11) of Z we find [Z,O/Ozj]= 
--~-~rmi(O~)r/OZj)O/OZr while [Z,O/Ozj]=O because each function ~ is holomorphic. 

Therefore [Y, O/Ozj] is of type (1, 0), and hence g([Y, O/Ozj], O/Ozk)=0. Similarly 

g(O/Ozj, [1I, O/Ozk])=O. So all three terms in (3.9) are zero. Similarly we have [Y, O/OSj] = 
i ~(O~r/Ozj)O/02,. which is type (0, 1). So the same argument now shows that  (3.9) is 

satisfied if A=O/Ozj and B=O/Osk. 
Next we take A and B to be of opposite type and assume now that  g is K/ihler. 

We will verify (3.9) at a point P in the coordinate chart. We may take the holomor- 

phie coordinate system Zl,... ,zm to be such that  gij(P)=(~ij and such that  the first 

derivatives of gij are zero at P [GH, p. 107]. Since h=(9-1) t we have hij(P)=5~j, and 

the first derivatives of hij are also zero at P.  Now take A=O/Ozj and B=O/O2k in 

(3.9). At P the left-hand side of (3.9) is a combination of first derivatives of 9jk and 

is therefore zero. To evaluate the commutators on the right observe that c~aJ=0 be- 

cause g is K~ihler and (2.13) therefore reduces to Zf  = - ~ h~ (0 log u/Oz~) Of/Oz,. Let 

~ , ~ = - ~  h~0~(log u). In the present coordinate system we then have ~ ( p ) = - 0 ~  log u 

and O~r/Ozjlp=-OjO~ log u because (Ojh~)(P)=O for all j ,  r, s. Z is given by (2.11). So 

[Z,A]=[Z,O/Ozj]=- ~-~,.(Oj~)Or=~(OjOelogu)O,. at P.  Now 

[Z, A] = Z [~r0r, 0y] = -- Z (Oj ~ )  &- 
r r 

is a vector field of type (0, 1). (It is zero if Z is holomorphic, which we are not assuming 

in this part of the proof.) In computing g([Y, Oj],O~) the contribution to [Y, Oj] from 

[Z, 0j] therefore doesn't enter because 0~ is also of type (0, 1). Hence, at P,  

9([II, A], B)=ig([Z, Oj ], 0~ ) = ig ( ~ ( Oj O~ log u)0~, Ok)=iOjO~ logu. 

It remains to show that  g(A, lIT, B]) is the negative of what has just been computed. 
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Since A=Oj is of type (1, 0) we need only compute the part of []I, cgk] of type (0, 1). But 

[II, 0~] = i[Z, 0~] - i[Z, 0~] 

= term of type (1,0) - i[Z, Ok] 

= term of type (1 ,0 )+ i  E (0kp~) 0r. 
r 

Hence, at P, 

g(Oj, [Y, O~]) = ig ( Oj, ~r ~ O~ ) = iOky)j = --iOkO~ log ~= --iO~Oj log ~ 

because log u is real. [] 

The proof of Theorem 2.11 will be broken into its nonholomorphic and holomorphic 

parts. Moreover, in addition to the vector field Y defined in (2.16), there are other 

vector fields in our examples which satisfy the hypotheses of Lemmas 3.2 and 3.3 below. 

Since these vector fields may be useful, the following two lemmas will be stated in more 

generality than needed for the proof of Theorem 2.11. 

LEMMA 3.2. Let Yo be a C ~ real vector field on M. Suppose that Yo is complete 

and that its flow, exptYo, preserves both the measure It and the metric g. For any 
measurable function f on M let 

Then: 
(a) 

(b) 

Vt f=foexp tYo ,  t c R .  (3.10) 

Vt is isometric on LP(#) for 0<p<oo .  

Z)(Q) and Z)(A) are both invariant under Vt. 

(c) is un i taw on in the energy norm, (Q(f)+llfll  )l/2 
(d) The operators Vt form a strongly continuous one-parameter group of isometrics 

in L p (in the LP-metric) for O<p<oo, and in the Hilbert space T~(Q) for the energy 

norm. 

Proof. (a) follows immediately from the assumption that  the diffeomorphism exp tYo 
preserves the measure #. To prove (b) and (c) suppose that  f c C ~ ( M ) .  Then, for fixed 

real t, foexptYo is also in C~(M).  Moreover 

Q(Vtf, ~ f )  = fM hx(d(foexp tYo), d(foexptYo)) d#(x) 

= / h(exp tYo)(x)(dr, dr) dit(x) 
(3.11) 

= j hy(df, dr) dit(y) 

=Q(I , I ) .  
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The second equality uses the assumption that  Y0 is Killing, and the third equality uses 

the assumption that  Y0 preserves #. Now if f is in D(Q) then there is a sequence f~ 

in C ~ ( M )  such that  fn--+f in energy norm. By (3.11), Vtfi~ is Cauchy in Q-norm and 

by (a), Vtf,~-~Vtf in L2-norm. Since Q is closed, VtfED(Q) .  Moreover the equality 

Q ( V t f ) = Q ( f ) ,  f E D ( Q ) ,  (3.12) 

holds. Now suppose that  f c D ( A ) .  This is equivalent to the assertion that  f c D ( Q )  and 

that the map C ~ ( M ) ~ - + Q ( f ,  ~2) is continuous in L2-norm [RS, Theorem VIII.15]. But 

by (3.12), 

iQ(Vtf, ~)t = IQ(Z, V-t~)l  <<. const-IlV-t~I1L2 <<. eonst-[I~llL2- 

Hence VtfED(A).  Since v t -X=v_t  both (b) and (c) follow. 

Now if f c C ~ ( M )  then Vtf converges to f pointwise and boundedly as t--+0. More- 

over d(Vtf) converges to df pointwise and boundedly also. Since C ~ ( M )  is dense in 

all LP-spaces (0<p<oc )  as well as in D(Q) (in energy norm), it follows that  the one- 

parameter group t-+Vt is strongly continuous in all of these spaces. [] 

LEMMA 3.3. In addition to the hypotheses of Lemma 3.2 suppose that Zo = 

�89 is holomorphic, where X o = - J Y o  and J is the almost complex structure 

on M. Then for each real t, Vt leaves invariant 7-I (=7-/(M)), "]-/MD(Q), 7 tn•(A) ,  

7-IAL p and NP for all pE(O, oc). Moreover the one-parameter group t--+ Vt is a strongly 

continuous group of isometrics in 7-/MD(Q) (in energy norm), in 7-IML p and in 7-I p 

(in the LP-metric) for all pE(O, oc). 

Proof. In a local holomorphic coordinate system (z,U) we may write Z0= 

~km__l~k(Z)O/OZk because a vector field of the form � 89  is of type (1,0). 

Moreover, by assumption, the coefficients c2k(zl, ..., zm) are holomorphic. The local flow 

equations for the coodinate functions Zl, ..., zm are dz j ( t ) /d t=Yoz j=i~j (z ( t ) )  because 

Yo=i(Zo-Zo) .  It now follows by a standard argument that  the diffeomorphism group 

exptY0 consists of holomorphic maps of M into M. So if f is holomorphic then so is 

foexptYo. That  is, Vt'HCT/. 

Thus, in view of Lemma 3.2, we see that  Vt leaves invariant 7-/, D(Q) and L p for 

0 < p <  oc, and is isometric in L p and in :D(Q) (energy norm). Therefore Vt leaves invariant 

7iNL p and 7-/riD(Q), and is isometric in these spaces. Moreover, since 7-/2 is the L 2- 

closure of 7-/ND(Q) and Vt is unitary on L 2 it follows that  Vt7-/2C7-/2. Therefore, for 

2~<p<~x~, 

lit/-/p = Vt (7-/2 NL p) C/-/2 N LP = / i  p. 

For 0 < p < 2  we have 

VtT-/p = Vt (LP-closure of 7-/2) = LP-elosure of lit'/-/2 C LP-closure of 7-/2 = 7-/p. 
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Thus Vt leaves invariant all the asserted spaces. Since V(.) forms a strongly continuous 

one-parameter isometry group in each of the ambient spaces L" or ~(Q) (energy norm), 

the same holds in the invariant subspaces. [] 

Most of the proof of Theorem 2.11 follows from the next lemma. The crucial use of 

the Y-flow for regularizing in all three holomorphic function Hilbert spaces, 7-tN:D(Q), 

7{ 2 and 7{ClL 2, bears noticing. 

LEMMA 3.4. Assume the hypotheses of Theorem 2.11. 

(a) If fET{C~7)(A) then A f = Z f .  
(b) If f~7-tnZ~(O,) then fETP(A) if and only if Z IEL  2. 
(c) 7{N:D(A) is dense in 7{ 2. 
(d) ei tAf=foexptY if fET{ 2. 
(e) c~tA7{2=7{ 2. 
(f) eitAT{P=7-I p for 2~<p<oo, and e ira is a strongly continuous one-parameter group 

of isometries in 7{P for 2~<p<oc. 

(g) If Re~>~0 then e-r 2. 

(h) If f is in 7{NZ~(A) then AI  is in 7{2. 

Pro@ Suppose that  fET{NSP(Q). Let pECk(M).  Then 

e ( f '  ~) = fM h(df, d~)dl~= f (d*dy)ed, 
because fEC~(M) .  Since f is also in 7-/, the equation (2.12) shows that  Q ( f , ~ ) =  

fM(Zf)pd#.  Therefore if Z f E L  2 then the map C~(M)~- -~Q( f ,  ~) is continuous in 

L2-norm, and f is consequently in 7P(A). Conversely, if fET{NTP(A) then fET-lnTP(Q), 
and the equation 

(Af,~)=Q(f,~o)= fM(Zf)~d~, for all ~EC~(M) ,  

shows that  Z f = A f  which is in L 2. This proves (a) and (b). 

To prove (c) it suffices to prove that  ~ND(A)  is dense in 7{N:D(Q) in L2-norm 

because 7{N:D(Q) is dense in 7-I 2. (Cf. Notation 2.4.) Define 

VtF = F o exp t Y (3.13) 

for any measurable function F. The hypotheses on Y0 in Lemmas 3.2 and 3.3 are satisfied 

by our present choice Yo=Y. Let uE7{n~P(Q). Choose ~pEC~(R) and define 

f = / R  r ds. (3.14) 
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This exists as a strong integral into NNT)(Q) (in energy norm) because Vs is a strongly 

continuous unitary group in this Hilbert space by Lemma 3.3. Thus f E N N D ( Q ) .  More- 

over foexptY=Vtf=fRr162 By an elementary and stan- 

dard argument the derivative of the right-hand side with respect to t exists in energy 

norm, and therefore in L2-norm. Thus 

F d(foexptY) _ d(Vtf) _ r 
dt dt 

with the derivatives existing in the sense of the L2-norm. But the derivative on the 

left also exists pointwise everywhere on M and is equal to y( fo  exp t Y). Thus, taking 

t = 0  we see that  YfEL  2. Since f E N  we have Y f = i ( Z - Z ) f = i Z f .  Hence ZfEL  2. By 

part (b) it now follows that  f E N N D ( A ) .  To conclude the proof of part (c) choose a 

sequence C n E C ~ ( R )  such that  ~n>~O, f Cn(s)ds=l and supp~nC(-n-l ,n-1) .  Let 

fn be the corresponding sequence constructed from u as in (3.14). Then the inequality 

[[fn-uli=fr ds and the strong continuity of Vs show that  fn--+u in L 2- 

norm (and also in energy norm, actually). This completes the proof of part (c). 

To prove part (d) let us return to the function f defined in (3.14). We saw that  f is 

in both NN/)(A) and in the domain of the infinitesimal generator of the unitary group Vt 

(as a unitary group in L2). So Vtf is also in 7-/and in both domains (e.g., by Lemma 3.3 

or the discussion following (3.14)). Moreover we saw that  dVtf/dt=YVtf=iZVtf ,  which 

equals iAVtf by part (a). Hence 

d(e-~tAvtf) -- {e-itA(-iA) }Vtf +e-~tA {iAVtf } --- 0. (3.15) 
dt 

So e-i tAvtf=f.  Thus e~tAf=vtf for a dense set in 7-I 2. Hence the two unitary groups 

agree on N 2. This proves part (d). Since VtN2=N 2 by Lemma 3.3, part (e) now follows. 

To prove part (f) observe that  NPcN 2 for p~>2. So eitAf=vtf for f E N  p. Thus part 

(f) follows from Lemma 3.3 for p~>2. By part (e) the unitary group e ira leaves N 2 

invariant. By the spectral theorem any bounded function of A also leaves ~.~2 invariant. 

In particular, part (g) holds. To prove part (h) let fENNT)(A) .  Then fET-/2 and 

eitAfEN2 by part (e). Hence (it)-l(eitAf--f)EN2. Let t go to zero to conclude that  

A f E N  2. [] 

Proof of Theorem 2.11. All parts of Theorem 2.11 have been proven in Lemma 3.4 

except part (e). If f E N  2 and f E / ) ( A )  t h e n / E N n / ) ( A ) .  Hence by Lemma 3.4, part (a), 

Z f = A f  which is in L 2. So half of Theorem 2.11 (e) is immediate. Now suppose that  

u E N  2 and ZuEL 2. We will show that  u is in 7)(A). Choose C E C ~ ( R )  and define 

f by (3.14), interpreting the integrand this time as a continuous function into ,].~2 in 
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L2-norm. This is a valid interpretation because V~: 7-/2--+7/2 is strongly continuous by 

Lemma 3.3. By Lemma 3.4 (d) we may replace V~u by ei~Au in (3.14) because u is 

in 7/2. Hence f=far Since ~bECc~(R) a standard argument  shows that  

f is in :D(A) and that  AIET/2. Moreover eitAf=f~(s-t)eiSAuds=f~p(s-t)V~uds. 
Pick zEM. Since pointwise evaluation is a continuous linear functional on 7/2 we may 

evaluate both  sides of the last equality at z and bring the evaluation under the integral 

sign, obtaining (eitAf)(z)=f r Since d(eitAf)/dt exists in the 7-/2- 

sense and pointwise evaluation is continuous on 7/2, we may differentiate the last equality 

at t = 0  and get i(Af)(z) on the left. Thus an integration by parts  on the numerical-valued 

integrand gives 

i(Af)(z) = - / R  r ds= /R r ds 

=i / r / es.  

Now Zu is in 7/NL 2 and 1/8 is a strongly continuous unitary group on 7/NL 2 by 

Lemma 3.3. (We don' t  actually know at this stage that  ZuET/2.) Moreover pointwise 

evaluation is a continuous linear functional on 7 /n  L 2 and these linear functionals separate 

points of 7/NL 2. We may therefore remove the evaluation functional, obtaining 

A f =/~  r Zu) ds. 

The integrand on the right is a continuous function into 7 / n L  2 and the integral should 

be interpreted as a Riemann integral into 7/ML 2. Now replace ~ by a sequence r ~ 
converging to the 5-function. The resulting functions fn are in 7/N:D(A) and converge to 

u in L2-norm by (3.14). Moreover the last displayed equation shows that  Afn converges 

to Zu in L2-norm because Vs is strongly continuous on 7/ML 2. Since A is a closed 

operator  in L 2 it follows that  uE~)(A) and Au=Zu. [] 

Proof of Corollary 2.12. Let t~>0 and let s E R .  Let W = - t X - s Y .  Assume that  

the flow exp(rW) exists for all r ~> 0. Let f E 7/V/:D(A) and define f~ (z) = (e -~(t+~)A f) (z). 
Then f~ET/2 by Theorem 2.11. Since it is also in :D(A) we have f,.ET/M~P(A) for all 

r>~0. Furthermore df~(z)/dr=-(t+is)(Af~)(z). The derivative exists in the strong 

L2(p)-sense. But  since pointwise evaluation of holomorphic functions is a continuous 

linear functional on L 2 the derivative on the left also exists for each z. Now since f~ E 

7/n:D(A) we have Afr=Zf~=(Z+2)f~=Xf~, and similarly Af~=(Z-2)f~=-iYf~. So 

(t+is)Af~ = (tX+sY)f,,=-Wf~. Hence 

Of~(z) -(Wf~)(z) for each zEM and r~>0. 
Or 
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Let p r=exp( rW)  for r~O. Then for 0<r~<l we have 

Ofr(:l-~(z)) 
Or -- (Wf,) (~l- , (z))- (Wf~)(~l-~(z))  = O. 

So f~(~l-r(z)) is constant in r in [0, 1]. That is, fl(z)=f(qo1(z)). So 

(e-(t+is)Af)(z) = f ( e x p ( - t X - s Y ) z ) ,  f CT-lATP(A). (3.16) 

Next, if f is in 7-I 2 then by Theorem 2.11, part (a), there is a sequence fn in 7-lND(A) 
which converges in L2-norm to f .  Applying (3.16) to fn and relying once more on the fact 

that  L2-convergence implies pointwise convergence for holomorphic functions, it follows 

that  both sides of (3.16), for the sequence f,~, converge pointwise to the corresponding 

expression for f .  This proves equation (2.26). Now suppose that we only have separate 

information about the X- and Y-flows. That  is, we assume that  the semigroup exp ( - tX)  

exists globally for t ) 0  and that  Y is complete. We may apply the previous discussion 

to the vector field W = - t X  and s=0.  We may conclude that  

(e-tAf)(z) = f (exp(- tX)z) ,  fC 7{ 2, t ) O. (3.17) 

But by Lemma 3.4, part (d), we may apply e -isA to both sides of this equation to obtain 

e-isA e-tA f = f o exp( - tX)o  exp(-sY) .  (3.18) 

On the other hand, we may apply the equation (3.17) to the function e-isAf to obtain 

(3.18) but with the factors exp( - tX)  and exp( - sY)  reversed. [] 

LEMMA 3.5. Assume that M is complete. If fEC~ and d*dfEL2(#) 
then fED(Q). 

Proof. This proof, for the weighted Laplacian d'd, uses a technique that  is standard 

for the ordinary Laplacian. Because M is complete there exists a sequence Pn c C ~  (M) 

with range in [0, 1] and an increasing sequence Un of open sets such that  U U~=M, 
: ~ [ U ~ = I  and sup~,x [d~n(x)[<~C for some constant C. Suppose that  f c C ~ ( M ) N L  2 
and that  d*df (defined by (2.2)) is in L 2. Let b=l[d*df[[L2[If[[L2. Then 

So 

j ~2 [dr[2 d# <~ b+2 J ~ l f l ' l d f i ' l d ~ I d ~  

.< , 1 . . .  l'fl") t] I:121':'12") " 
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If f Idfl2dpr we obtain for large n, 

s NI/2 \--1/2 \1/2 
.< 

Since I d ~ l  is uniformly bounded and converges to zero everywhere while Ifl 2 is in L 1, 

the last term goes to zero. Applying Fatou's lemma twice gives 

h(df, dp <~ ]ld*dfllL 2 oc. dr) H filL2 < 

This implies that  ~ f  converges to f in energy norm because 

,,1/2 , i /2  
( / I d { ~ n f - f } 1 2 d p )  : ( / , ( ~ n - 1 ) d f  + f d~12dp) 

and each term on the right goes to zero as n--+ec. Of course ~,~f converges to f in 

L2-norm also. So fE~(Q).  [] 

Proof of Theorem 2.14. Let uET-INL e. Define Vtu=uoexptY. By Lemma 3.3, 

lit is a strongly continuous unitary group in 7-/NL 2. Let r  and define f =  

f ~  r Then fETtAL 2. The same argument used in the proof of Lemma 3.4, 

part (c), shows that  Y f E L  2. Since lET-/ we have Yf=iZf=id*df .  So d*dfEL 2. By 

Lemma 3.5, fET-IMTP(Q). Now choose a sequence r  converging as in the proof 

of Lemma 3.4, part (c), to 5(@ The corresponding sequence f ,  is in 7-/M~D(Q) and 

converges in L 2 to u. Hence uET/2. This proves (2.27) in ease p=2.  If o o > p > 2  and 

uEqfinL p then it is in NML 2, hence in N2 and therefore in NP. [] 

4. P r o o f s  o f  h y p e r c o n t r a c t i v i t y  t h e o r e m s  

LEMMA 4.1 (differentiability). Assume that either 0<p~<2 and f is in the L2-domain 
of A, or 2 < p < o o  and f is in the LP-domain of A. Let c > 0  and write 

gt(z) = (e-tAf)(z) (4.1) 

and 
kt (z) = Igt (z)I ~ + c. (4.2) 

Then the map t--+k~/2 is a continuously differentiable function into LI(#) and 

d/MkP/2d#(z)=-pRe/M(Agt)(z)gt(z)kPt/2-1d#' dt 0 < p <  oo. (4.3) 
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Proof. Allowing, for the moment, the validity of differentiating under the integral 

on the left of (4.3), the identity (4.3) follows immediately. Moreover the integrability of 

the integrand on the right can be seen, in case 0<p<~2, by observing that  the first two 

factors are in L2(p) while the third factor kPt/2-1 is bounded by c p/2-1. In case p > 2  

the first two factors are in L p. It suffices, by HSlder's inequality, to show that the third 

factor is in L~(p), where p-1 +p-1  + r - 1  = 1. That  is, r=p/(p-2) .  But (kP/2-1)~-~kp/2 <. 

(]gt]+cl/2) p which is indeed integrable. So the integrand on the right-hand side of (4.3) 

is integrable in all cases. Its continuity as a function of t into L ~ is elementary. 

In order to prove differentiability of the map t--+k p/2 into L 1 and thereby jus- 

tify the preceding computation write ~(u)=([ul2+c) p/2 for complex u and put r  

p(uo+s(u-uo)).  The identity ~(1)=~(O)+r combined with the 

easily established inequality 

I~"(~)1 ~< C~lu-uol21uo+s(~-uo)l p/2-1, 
shows, upon inserting u=gt(z) and uo=gto(Z), that  

II ( ~ ( g , ) -  ~ ( g , o ) ) ( t - t o )  -1 - p  R e ( g , - g , o ) ( t - t o ) - ~ o [ I g ~ o ( Z ) 1 2 + ~ F / 2 - ~ l l ~  

< Cp __~1 ( l - - s )ds  L1 gt(z)--gt~ (gt(z)--gt~ (4.4) 

• [Igt0 + s(g~ - g~o)l 2 + ~]P/~- ~ d~. 

Now if 0<p~<2 then the last factor in the integrand on the right is bounded by s 
the middle factor goes to zero in L2-norm as t-+to, and the first factor converges in L 2 

as t-+to. The right-hand side therefore goes to zero_ The same argument shows that  the 

second term on the left of (4.4) converges in n I to -pRe(-mgto)(z)gto(z)k~/o 2-1. This 

establishes the lemma in case 0<p~<2. For p > 2  the argument is similar: the first factor 

in the integrand on the right-hand side of (4.4) converges in LP-norm as t-+to because 

f is in the LP-domain of A. The second factor goes to zero in LP-norm and the third 

factor remains bounded in L~-norm for r=p / (p -2 )  by the same argument noted in the 

first paragraph of this proof. [] 

PROPOSITION 4.2 (integration by parts). Let f be a holomorphic function on M. 

Choose e>0  and write 

k(z) = [f(z)[2 + ~. (4.5) 

Assume that either 0<p~<2 and f is in the L2-domain of A, or 2 < p < o c  and f is in 

the LP-domain of A. Then 

f (Af)(z) f (z)kP/2-1dp=/Mh(Of(z) ,O{fkP/2-1})dp(z) ,  0 < p <  ec, (4.6) 

and the integrand on the right-hand side is nonnegative. 
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Remark 4.3. In view of the definition (2.6) of A the identity (4.6) seems like little 

more than the definition. Of course, one must verify that  f k  p/2-1 is in D(Q) to use (2.6). 

For p>  2 some approximation scheme must be used. The following method of justification 

of this integration by parts formula relies heavily on the fact that  f is holomorphic. In 

spite of the fact that  f is in the LV-domain of A I do not know, for example, that  Of is 

in L v, for p>2.  Such information might be useful for some more general approach to the 

proof but would probably require detailed knowledge of the "coefficients" of the elliptic 

operator A and the use of some kind of Sobolev coercivity inequalities for the measure #. 

Instead, positivity of the integrands for our approximation will play the key role. Such 

positivity fails in the nonholoInorphic case. 

Notation 4.4. Let e>0 ,  p > 0  and a>0 .  Define a function rp: C--+C by 

rA~)=~(KI2+~) p/2-1, ~ c .  (4.7) 

Then Tp c C ~ (C). The following easily computed derivatives will be used repeatedly: 

Orp = ( l plCi2 + e) (iCi2 + eF/2_2, 
0r 
Orp 
o4 (�89 1) r162 + e)P/2-2 

Let ga be a function in Coo([O, oc)) such that  

(4.8) 

(4.9) 

~b(r)/> 0 for all r C [0, oo), (4.10) 

r  O<.r<<.a, (4.11) 

0 ~< r  ~< 1 for all r, (4.12) 

r  = constant for r>~a+l. (4.13) 

Define 

a( r )  = 1 

Then we clearly have 

for 0 <<. r <<. a, a(r) = r  for r > a. (4.14) 
r 

0~<a(r)~<l forallr~>0 and a(r)~ a+l  forr~>a+l. (4.15) 
r 

Moreover aGC~176 oo)) and a ' ( r ) = r 1 6 2  2. It will be convenient to write this 

in the form 

r~ ' ( r )=~ ' ( r ) -a(r ) ,  r>.O. (4.16) 
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Define ~a: C-+ C by 

~a(w) = w~(Iwl), w e e .  

Then ~ is in C ~ ( C )  and is bounded by (4.15). Moreover 

(4.17) 

~a(w) = w  if Iwl ~<a. (4.18) 

The following derivatives are easily verified, using (4.16): 

0~a  
= ~ (~(Iwl)+~'(lwl)) Ow 
= 1  if [w[ ~<a, 

(4.19) 

O�9 1 ( ~ [ / ~  

--0 if [w[~a.  

(4.20) 

LEMMA 4.5. Suppose that fED(Q). If 0<p<~2 then ~-pofc~(Q). If 0 < p < o c  then 
TpO~aofED(Q) for all a>0.  

Proof. Tp(0)=0. Moreover for 0 < p ~ 2  the first derivatives of ~-p are bounded, as one 

sees from (4.8) and (4.9). An elementary and standard argument shows that if fn is a 

sequence in C~(M) which converges in Q-graph norm to f then Tpofn is a sequence in 

C~(M) which converges in Q-graph norm to %of .  For general p in (0, ~o) the same 

argument applies to Tp~ because ~a ha~s bounded first derivatives by (4.19) and (4.20) 

(O~a/O~ is the conjugate of (4.20)) and Tp has bounded first derivatives on the range 

of  ~)a. [] 

Proof of Proposition 4.2. For 0<p~<2, fkP/2-1=Tpof is in :D(Q) by Lemma 4.5. 

Therefore (4.6) follows from (2.6) in this case. Moreover the positivity of the integrand 

on the right-hand side of (4.6) follows from the following computation which is valid for 

all f in 7-/(M) and all pC(0, oc): 

O{ f(z)k(z) p/2-1 } = (Of) k p/2-1 + f(z) li p-1] kP/2-2 0k 

= k p/2-2 {kOf+ [lp_ 1] f (z ) f (z )Of}  (4.21) 

= k p / e - 2  { Ill 2 + e +  [Xp_ 1] ]f[2 } Of. 

Therefore 

O{f(z)k(z)P/2-1I=kp/2-2{�89 0 < p < o c ,  fET-I(M). (4.22) 
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It seems worth emphasizing at this point that  this computation contains the distinction 

between the holomorphic and nonholomorphic theories. (4.22) now gives 

h(Of(z), O{f(z)kP/2-1 }) = k •/2-2 { lpl f l  2 + e} h(Of, off) 
(4.23) 

~>0, 0 < p < o c ,  fE?i (M) .  

Next, suppose that  p>2.  Suppose that  f is holomorphic and is in the LP-domain 

of A. Then f is also in the L2-domain of A. In order to justify the integration by 

parts (4.6) we will tamper with the factors f k  p/2-1 on both sides of (4.6) while leaving 

the factors A f  and Of unchanged. Note first that  Tpoc2ao f is in D(Q) by Lemma 4.5. 

Therefore, since f is in the L2-domain of A, (2.6) gives 

M(Af)(z) ("FpO~aOf)(z) d~(z) : f h(Of(z), O{(TpO~aOf)(z)) ) dp(z). (4.24) 

Observe next that  as a--+cc, (TpO~aOf)(z) converges to (7pof ) (z ) - fk  p/2-1 for all zEM 
by (4.18). Moreover since I~a(W)i<<.lw I we have I(TpO~aof)(z)l<~lf(z)lkp/2-1 for all a 

and z. We have already seen, in the proof of Lemma 4.1, that  IAf(z)l.lf(z)lkP/2-1 is 

integrable. Hence, by the dominated convergence theorem the left-hand side of (4.24) 

converges to the left-hand side of (4.6) as a--+cc. It therefore suffices to show convergence 

of the right-hand side of (4.24) to the right-hand side of (4.6). As already noted in 

Remark 4.3 the difficulty lies in a lack of knowledge of the LP-behavior of Of. We will 

show and use positivity of the integrand on the right-hand side of (4.24) to show that  the 

integral is well approximated by the integral over {z: If(z)l <a}.  On this set the function 

Pa can be removed. This will allow us to take the limit as a--+ec. 

By the chain rule we have 

0rp 0~a OTp (9 o OTp Ore, 0 ~  Of + ~ . - -  Of O{rpocp~of}: ~ (Cpa f)+--~OCpaof = 0< " 0"--~- O< Ow 

since of=o. Applying equations (4.8) and (4.9) we find 

O{mpo~of)(z) = (1~12+c),/2-2 { [�89 + e] -~w Of + [�89 ~2~--~Of } 
I 

where ~=~a(w)=w~(l~vl) and w=f(z) .  Applying equations (4.19) and (4.20) it follows 

that  

= l p ~ 2  1 O{~-;O~aOf)(~) (ICP+~);/~-~{[~ I I +~]~(~(1~1)+~'(1~1)) 
+ [lp_ 1] ~2.�89 (~/1~1)2 (V'(I~I)--(I~I))} Of(z) 

= (Iw12.(l~l) 2 + c ) , / 2 - 2 {  [�89 2+~] �89 
+[1p_1]G(lwl)21 2 , ~lwl (~-a)}Of(z) 
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where w=f(z). Note that  in spite of the appearance of Iwl -~ at an intermediate step 

in the computation the end result is valid for all w because the term (z~/Iwl) 2 is absent 

for Iwl<a, as we see from the second line in (4.20). The last expression in braces is 

{Iwl2a2[�89189162 Therefore, 

h(Of(z), O{Tpo~aof}(z) ) = h(Of(z), Of(z) )(IwI~o(Iwl)~ +~F/~-~ 
(4.25) 

2 2 1 x {Iwl o(Iwl) +c .  

where w=f(z). Since a and ga' are both nonnegative and p~>l all the terms on the 

right-hand side of (4.25) are nonnegative. Hence the integrand on the right-hand side of 

(4.24) is nonnegative. Since (~-pO~Oaof)(z)=(rpof)(z) when If(z)lKa the nonnegativity 

of the integrand now shows that  

fir h(Of, O(Tpof))dp<~ fMAf(z)(TpO~Oaof)(z)d#(z). 
(~)1<~ 

Letting a-+oo gives 

fMh(Of, O{Tpof} )dp <~ fMAf(z)(rpof)(z)dp. (4.26) 

We have already shown that  the right-hand side is finite. Returning now to (4.25) observe 

that  a(lf(z)l)~l and r  and as a-~oo, a(lf(z)l)-+l and r for all 

z in M. Therefore the right-hand side of (4.25) converges to the right-hand side of (4.23) 

for all z, and moreover is dominated by the right-hand side of (4.23) for all a. In view of 

(4.26) we may now apply the dominated convergence theorem to the right-hand side of 

(4.24) to conclude the proof of Proposition 4.2. [] 

LEMMA 4.6. Let e>O, let fE?-I(M) and write k(z)=[f(z)]2+e. Then 

h(d]~ p/4, die p/4) + �88 Of) = �88 c3(fk p/2-1 } ), (4.27) 

for O<p<ec ,  zEM, f ET-I(M). In particular, 

h(dk p/4, dk p/4) <~ �88 O{fk p/2-~ }), 0 < p < cx~. (4.28) 

Proof. 
dk p/4 = �88 pk p/4-1 dlf] 2 = ~pk p/4-1 ( f  Of + f ~ff). 

Since h(Of(z), Of(z))=h(Of(z), Of(z) )--O we find 

h(dk p/4, dk p/4) = ( �88 2 Ifl2h(Of , ~f  ). 

Multiply (4.23) by ~p,1 and use (4.29) to get (4.27). 

(4.29) 

[] 
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COROLLARY 4.7. Let fET-l(M). Assume that either 0<p~<2 and f is in the L 2- 

domain of A, or p > 2  and f is in the LP-domain of A. Then k p/4 is in D(Q) and 

/Mh(dkp/4,dk p/4) d#(z) <~ 1 fM ~P (Af)(z)f(z)kP/2-1d#(z).  (4.30) 

Proof. Combine (4.28) with (4.6). [] 

The following proposition provides the transition from a logarithmic Sobolev in- 

equality of index 2, namely (2.29), to a logarithmic Sobolev inequality of index p, namely 

(4.32). It is the holomorphic analog of [G1, Lelnma 4.6]. 

PROPOSITION 4.8 (holomorphic transition lemma). Suppose that the logarithmic 

Sobolev inequality (2.29) holds. Let fETt(M) and choose c>0.  Assume that 0<p~<2 

and f is in the L2-domain of A, or that p > 2  and f is in the LP-domain of A. Let 

7(z) = (If(z)12 +e) I/2. (4.31) 

Then 

fM 7p log 7 dp ~ �89 c( A f , f TP- 2) + ~ II~ll~§ II~ll~ log II~ll~, 0 < p < oc. (4.32) 

Proof. Whether 0 < p ~ 2  or 2<p<cx~, 7P/2=_k p/4 is in D(Q) by Corollary 4.7. Re- 

placing f in (2.29) by 7 p/2 and using (4.30) we find, replacing k p/4 by 7 p/2 in all previous 

formulas, 

fM 7p log ~p12 d~ <<. j h( d~ p12, d~ p12) d~ + ~II~,p/211 ~ + II~,P/2 I1~ log II'~P/2112 C 

<<. c. �88 f -F -z) +/311~11~ + �89 I1"~11~ log II'~llp. 

Multiplying by 21p gives (4.32). [] 

Remark 4.9. To understand the distinction between the holomorphic and nonholo- 

morphic cases one should compare (4.32) to [G1, equation (4.9)]. When e =0  in (4.31) 

the function f7  p-2 reduces to f l f l  p-2 which was denoted fp in [G1]. The coefficient 

12 cp/(p-1)  in [G1, equation (4.9)] has been replaced by �89 c in (4.32), allowing the method 

of [G1] to apply to all pE(0, c~) not just pE(1, oc). The origin of the difference in these 

inequalities lies in the difference between the calculus inequality [G1, equation (4.8)] 

(which has best possible coefficient in the Ca-category)  and the laolomorphic calculus 

inequality (4.28) which (if one puts e =0  and stays away from the zeroes of f )  is actu- 

ally an equality, as one sees from (4.27). In one real, respectively complex, variable the 
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distinction derives from the difference between the identities (d /dx) f  p-1 = ( p - 1 ) f p - 2 f  ' 

for 0 < f e R e a l C ~ ( R )  and (O/Oz) ( f l f lP-2 )=�89  ' when ICT-I(C). 

Remark 4.10. There is a seeming self-improvement in (4.32) when p=2  over the 

hypothesized inequality (2.29). Take p=2  and put e=0,  ignoring zeroes of f .  One gets 

the same inequality (2.29) that  one started with but with c replaced by ~c.1 The reason 

for this is that, wherever f(z)7~O, h(dlfl,  d l f l )= �89 if f is holomorphic. 

Proof of Theorem 2.15. Let fE74N:D(A). By Theorem 2.11, e-tAfED(A)NT-I  2= 

"//NTP(A) for all t ) 0 .  Let 0<p~<2. 

Let gt ( z )=(e- tA f ) ( z )  and 

= (Ig (z)l  +c )  (4.33) 

Then by Lemma 4.1 and Corollary 4.7, 

Hence 

d 
Vt (z) p d# = - p  Re fM (Agt)(z) gt (z) ~p-2  d].t ~ O. 

II ,llg< 117011 , t >0. 

We may now let e$0 to obtain 

]le-tAf]]p~]]f]]p, 0<p~<2. 

Since the LP-norm (or metric) is continuous with respect to the L2-norm and since, by 

Theorem 2.11, ~NT~(A) is dense in ~/2, the inequality (2.28) follows for s=0  for all f E  ~/2. 

Applying that  inequality to eisAf with f c ~  2 and using ]]eisAfHp= Ilfoexp sYIIp=l]f[]p 

for 0 < p ~ 2  when fET-L 2 the inequality (2.28) follows for all real s. [] 

Proof of Theorem 2.16. Let 0 < p < 2  and R e ~ ) 0 .  By Theorem 2.15, e - ( A  is a 

contraction in LP-norms on ~/2. Since H2 is by definition dense in HP, it follows that 

e - ( A  has a unique continuous extension to ~P. We continue to denote the extension by 

e -~A. On the imaginary ~-axis we have e i t A f = f o e x p t Y  for fET-I 2 by Theorem 2.11. 

Since the flow exp t Y  preserves the measure # it follows that  IleitAfllLp = IIflIL, for f c  ~_/2 

and 0<p<2.  The continuous extension of e ira to  7-~ p is therefore isometric on 7/p for 

0<p<2 .  The group of maps Vt defined in (3.13) is a strongly continuous isometry group 

in 7-/p by Lemma 3.3. Since Vt and e ira agree on 7-I 2 they also agree on 7-/p. Hence e irA 

is also a strongly continuous isometry group on 7-/p for 0<p<2 .  

Next, let 2<p<eo .  For t~>0, e-tAT-~2CT-~2 by  Theorem 2.11. As already noted 

at the beginning of w e - tA is a contraction on all of L p. In particular, e-tAT-L p-- 
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e-tA(N2NLP)CT-12NLP=~P. Tha t  is, ~-~P is invariant under e -tA. Furthermore e irA is 

a strongly continuous isometry group on 7-/p by Lemma 3.4. Thus e -CA is a contraction 

on 7-/p when Re (>~ 0. 

It  remains to prove tha t  for all pE(O, oc) and R e ~ > 0 ,  e - e A r l {  p is dense in 7-t p. 

This will clearly imply, by general semigroup theory, that  c]{ND(Ap) is dense in 7-/p 

in the Banach space cases l~<p<c~. But e irA is an isometry group in 7-/p for all pE 

(0, oo). Therefore it suffices to prove that  e-tAT{ p is dense in 7-/p. For p~>2, e -tA is a 

strongly continuous semigroup in the ambient spaces L p and therefore also in the invariant 

subspaces ~-~P. Hence e- tA'~ p is dense in 7-/p. For 0 < p < 2  we have e-tA']~PDe-tA']-~ 2, 

which is dense in 7-I 2, which in turn is dense in 7/p. Finally, the equations (2.25) and 

(2.26) hold for fETt  p because 7-/PC7-/2 for p~>2, while for 0 < p < 2  any LP-convergent 

sequence of holomorphic functions converges also pointwise. [] 

Proof of Theorem 2.17. By the spectral theorem for A]?/2, 7~ is dense in 7-I 2. Since 

~2  is dense in 7-/q for 0<q~<2, T~ is also dense in 7-/q for 0<q~<2. Thus for 0<q~<2 we do 

not require the logarithmic Sobolev inequality (2.29). For q>2  we are going to make use 

of the known hypercontractivity of the semigroup e -tA in the full LP-spaces. Fix q>2.  

The inequality (2.29) implies that  for some t>0 ,  depending on c and q, e- tAL2c L q and 

e -tA is bounded from L 2 into L q. A proof of this can be given following the method 

established in [G1]. But the domain considerations that  influence the transition lemma 

arguments in [G1] have been handled bet ter  since then. For an efficient approach, based 

part ly  on work of D. Stroock, see [Gh, Sections 3, 4 and 5, and especially the method 

of proof of Theorem 5.4] or Theorem 6.1.14 in [DES]. Now if fET~ then fEHa for some 

a>0 .  Thus f is in the domain of the unbounded operator etA. Let g=etAf. Then gCHa 

also and f=e-tAg.  So e-tA~=7~. Therefore NCT-I q. Suppose that  7~ is not dense 

in 7-/q. Then there exists a continuous linear functional F: 7 / q - + c  such that  F(7~)=0.  

Thus Foe-tATt=O. Since Foe -tA is continuous on 7-I 2 and 7~ is dense in ~2 ,  we have 

Foe-tA=o on 7t 2 and therefore also on 7-/q. But by Theorem 2.16, e--tA']-{ q is dense 

in 7/q. Hence F = 0 .  Therefore P, is dense in 7/q. The density of N p < ~  ?/P in ~q  now 

follows. 

The fact that  7~ is an algebra is clear at an informal level because if u and v are 

eigenfunctions of AIT-/2 then u and v are in 7-/4. So uv is in 7 - /NL2=~ 2. If Au=,~lu and 

Av=)~2v then, by Theorem 2.11 (b), Z(uv)=(Zu)v+u(Zv)=(A1 +A2)(uv), which is in L 2. 

It  now follows from Theorem 2.11 (e) that  uvED(A), and therefore A(uv)=()~l+)~2)uv. 

This would constitute a proof of (2.30) if one knew that  Al~r{ 2 had compact resolvent. 

I am going to give a different proof, par t ly  because I don ' t  have a proof that  A has 

compact  resolvent (see [DaS, Appendix A]), and part ly  because most of the structures 

and theorems of this paper  are likely to go over to infinite-dimensional M, where discrete 
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spectrum definitely fails in interesting cases, [BSZ]. 

To prove that  7~ is an algebra observe that  since pointwise evaluation is a continuous 

linear functional on 7-/2 there is, for each z C M, a unique vector Wz C 74 2 such that  f ( z )=  
(f, Wz) for all f e 7 4  2. The set {Wz}zcM is fundamental  in 742 because (f, Wz)=O for all 

z �9 M implies f ( z )=0 for all z when f �9 742. Let A =  f o  A dE(A) be the spectral resolution 

of A]74 2. If u �9 74z then u �9 Ha if and only if the complex measure ( E ( . ) u ,  w) is supported 

in [0, hi for all w �9  2. If B is a Borel subset of (a, oc) then (E(B)u,w)=O for all w �9  2 

if and only if (E(B)u, Wz)=O for all zEM.  Thus u�9  if and only if (E(.)U, Wz) is 

supported in [0, a] for all zEM. Now suppose that  uGHa and that  VEHb. Then u and 

v are both in 74AL 4 by the first part  of the theorem. So uvE74ML 2. By assumption, 

74ML2=74 2. So uv�9 2. Thus we have 

fo~eiS~(E(d.~)(uv), Wz) = (e~sA(uv), Wz) 

= (ei~A(uv))(z) = (uv)(exp(sY)z) 

= u(exp(sY) z) v(exp(sY) z) = (ei~Au)(z)(ei~Av)(Z) 

= [fo~ei~:~(E(dA)u, wz)J [fo~eis;~(E(dA)v, wz)] . 

Thus the Fourier transform of (E( - ) (uv) ,  wz) is the product  of the Fourier transforms 

of two measures with respective supports  in [0, a] and [0, b]. Therefore (E( - ) (uv) ,  Wz)is 
supported in [0, a+b]. This proves (2.30) and shows that  ~ is an algebra. 

A function u in 742 is in 7-/oo if and only if eisAu is an infinitely differentiable 

function of s into L p for all p �9  co). Since the L2-norm dominates the LP-norm on 

each subspace Ha, it follows that  7~C74~ and therefore that  7-/oo is dense in 74P for 

2~<p<oc. It remains to show that  74~ is an algebra. Now, if u and v are in 742p then uv 
is in 74NL p by Schwarz' inequality. Since 74ALP=74 p for p in [2, oc), we may conclude 

that  if u and v are in 7-/oo then uv is in 74P for all p � 9  [2, co). By Theorem 2.11 we therefore 

have ei~A(uv)=(ei~Au)(ei~Av). Since both factors are infinitely differentiable functions 

of s into L 2p the product  is an infinitely differentiable function of s into L p. [] 

It  may be useful to note tha t  there are two more natural  algebras similar to ~ and 

7-/oo present in these structures. They may be defined as 7-/oo was, but replacing C a -  

vectors for Ap]74 p by entire vectors, and analytic vectors respectively, for ApI74 p. The 

proof tha t  these spaces are algebras is similar to that  for 74~. Clearly they lie between 

and 74~. 

Proof of Theorem 2.19. Let 0<  q<p< ~ .  Define p(t)=qe 2t/c. Then p' (t)= (2/c)p(t). 
Choose r so that  m a x ( 2 , p ) ~ r < ~ .  74ND(A~) is dense in 74q because it is dense in 74~ 

(by Theorem 2.16) which is dense in 74q by Theorem 2.17. It  suffices therefore to prove 
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(2.33) for fET-/NT:)(A~). Choose fCT/N/)(Ar)  and let gt(z)=(e-tAf)(z). Then gtC 
7tNl)(A~)cT-lnl)(As) for 2<.s<~r and all t~>0. Choose c>0  and define 7t by (4.33). 

Define 

v(t) = ] ~(z) p(~) d# 

and c~(t)=ll~tllp(t). Then, suppressing the t-dependence and denoting d/dt by a prime 

we have, just as in [G1, Section 2], 

dv(t)l/p(t) p' 
d ( t ) -  dt P-lVO/p)-lv'--~ vl/pl~ 

=o~v-l{p-lv'-~vloga}. 

But by Lemma 4.1 and (4.32), 

Hence 

- -  p-1 v' 2vloga=p-1 , ~/P(t)log~ttdp_p(Agt,gt% ) - 2 v l o g a  
C C 

: ~ { / ~ t  p(t) log'yt d#-,]~/tH p log ']~/t']p }-(Agt ,  gt'/p-2) 

~c~ 

~'(t) <<. ~(t) ~(t). 

So (d/dt)log a(t)<~4/~e-:t/C/(cq). This gives upon integration 

a(t) ~ a(O) exp[(2~q-1)(1--e-2t/c)] = a(O) exp[2~(q-l--p(t)-l)]. 

Since fCT-/NT)(A~) this computation is valid at least up to the time t when p(t)=p. 
That  is, up to t=tj. (2.33) now follows for t=tj by letting e$0. For t>tj we have 

Ile-tAflIp=lle-(t-tj)Ae-tjAfllp<.lle-tjAfll p (by Theorem 2.16), which is less than or 

equal to M (p, q) ilfllq. [] 

Proof of Corollary 2.20. If ~=t+is then the inequality ]e -r ~< (q/p)C/2 is equivalent 

to t~tj .  Since e i s A  is an isometry on all 7-/P-spaces the corollary follows from (2.33). [] 

5. Ho lomorph ic  Dirichlet  forms on cm:  examples  and counterexamples  

It is a severe restriction on the triple (M, g, #) that  d*d be holomorphic. In Example 5.1 

we will take M - - C  m and present a class of Hermitian metrics, g, and probability mea- 

sures, p, on C m for which d*d is holomorphic. Some of the examples in this class will 
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be shown to satisfy a logarithmic Sobolev inequality. The main theorem of this paper 

is therefore applicable in these cases. The algebra T~ of Theorem 2.17 will be identified 

(with holomorphic polynomials) and E. Carlen's theorem on the density of holomorphic 

polynomials in 7/p will be extended (Theorem 5.5). 

In order to appreciate how severely the triple (M, g, #) is restricted by the require- 

ment that  d*d be holomorphic, we will take M =  C in Example 5.6 and give a Gaussian 

probability measure # on C for which there exists no Hermitian metric g such that d*d 

is holomorphic and such that 7-I 2 is nontrivial. This example is particularly interest- 

ing because p will be taken to be just the heat kernel for a "slightly wrong" Laplacian 

on C. This example should be regarded as a guide as to where to seek (more precisely, 

where not to seek) measures # in the form of heat kernels on other complex manifolds 

for constructing examples of holomorphic Dirichlet forms. Such heat kernels often satisfy 

logarithmic Sobolev inequalities [DH] and seem, therefore, to offer an interesting source 

of densities for hypercontractivity over other complex manifolds. 

In Example 5.7 a Hermitian metric on C will be given for which 7-I 2 is necessarily 

trivial for any smooth probability measure whose associated Dirichlet form operator d*d 

is holomorphic. 

Thus the condition that d*d be holomorphic imposes constraints on the Hermitian 

metric g and on the measure p separately, as well as a constraint on their relationship. 

All of the examples in this section will have the following structure. Let M =  C m. 

Denote by x l, ..., x2,~ the standard linear coordinates on C m -  R 2"~ with zk = x2k-1 -[-iX2k, 

k = l ,  2, ..., m. Let a be a strictly positive flmction in C~ Define a metric on R 2m 

by 

(0_0x 0 )  ~jk (5.1) gx ' 07k - ~(x)" J 

Then g is a Hermitian metric. That  is, it is invariant under the almost complex structure 

of C m. The dual metric is 

hx(dx j ,dxk )=~jka(x ) ,  j , k =  l , . . . ,2m.  

g extends complex bilinearly to T ( R  2"*) |  and its dual metric satisfies 

h~ (d~,., d ~ )  = 25~.  (5.2) 

Write dx=dXl ... dx2m. # will denote a probability measure on R 2m with a smooth 

positive density. Thus we put 

dp(x ) = ~(x) dx, (5.3) 
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where ~ is a strictly positive function in C ~ ( R  2"~) with integral equal to one. It will be 

convenient to express the Dirichlet form for (C "~, g, #) in terms of 0 and w, where 

w(x) = or(x) ~(x), x �9 R 2m. (5.4) 

The Dirichlet form (2.3) may be written 

=s d~)e(x) dx, f � 9  C~(R2"~), ~ � 9  Q0(f , r  C~(R2m).  

Writing 

_ 2.~ O f  c9~ 
df . de = Oxj 

j .  ~ 

and using (5.1) and (5.4) we may write this as 

/~  ~ � 9  ( R ) .  (5.5) Q 0 ( f , r  :mdf.d~w(x)dx, f c C ~ ( R 2 m ) ,  Cr 2m 

If f is holomorphic then 

Qo(f,~)=/R Of.O~w(x) d x = 2 / ~  Of O~ w(x) dx 
2m j = l  OZj OZj 

_ 

But 02f/Ozj Ozj =0 for each j .  Hence 

Qo(f,~2):__2/R2m~(X)_I[~ 10?.U O~jZj ? _ o~j r  o(x) dx. 

In view of (2.2) one therefore has 

"~ Ow Of 
(d*df)(z) = - 2  E Q(x)-102 j "Ozj' f e n ( e r a ) "  (5.6) 

j = l  

Inserting f(z)=zk one sees that  d*d is holomorphic if and only if each coefficient 

is holomorphic for k = 1, ..., m. (5.7) ~0(X) - 1  

Example 5.1. Here is a class of functions w and ~ satisfying (5.7). Suppose that  ~ is 

a strictly positive function in C~([0, ec)). Assume further that  its derivative ~' satisfies 

~ ' ( s )<0  for 0~s<cx~. Define 

w(z) = ~(Izl2), 

e(z) = -bv'(l~12), 
~(~) = ~(~) 

~(z) 

b = constant > O, 

(5.s) 

(5.9) 

(5.1o) 
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Then Ow/O2k=zk~'(lzl2). So 

Thus (5.7) holds and 

Q(z) -1 ~ = - b - l z k .  

o f  
(d*df)(z) = 2b zk Oz---;' 

k = l  

Hence d*d is holomorphic for (C TM, a, 6). 

and 

f c T-l(Cm). 

The vector fields Z, X and Y (cf. (2.12), (2.16)) are given by 

Z = 2b-l E zk ~z k, 
k = l  

o 
m 0 = 2b -1 rk Ork X = 2 b - 1  _ X k ~ x k + Y k  Y k /  k=l - -  

Y = 2b -1 xk ~ - Yk = 2b-1 OOk' 
k = l  k = l  

(5.11) 

(5.12) 

(5.13) 

Both vector fields X and Y are complete, as is also the sum t X + s Y .  Moreover Y is 

Killing because a(z)  depends only on ]zl 2, which is invariant under the flow e x p ( - s Y ) .  

Note that  if a, given by (5.10), is not constant and m > l  then g is not Kghlerian. 

To see this observe that the Kghler form associated to the metric (5.1) is 

m 

w ~ - a ( x ) - l - l i E d z k A d 2  k. 
k = l  

But (5.10) gives a(z)  -1 = u ( N  2) for some flmction u whose derivative, u', is somewhere 

nonzero. Thus dw = u'(I z 12) ~ j m  1 (2J dzj + zj dz-j) A ~ k "~_ 1 dZk A d2`k and is not identically 

zero. For example, the coefficient of dzlAdz2Ad22 is u'(N2)(21-2,2). Nevertheless Y is 

Killing, as already noted above. So the hypothesis of Theorem 2.10, that  g be Kghler, is 

not a necessary condition. 

e x p ( - t X - s Y ) z = e - 2 ( t + i s ) / b z ,  z E C  m, s, t E R .  

where zk=rke i~ defines polar coordinates in the kth complex variable. So e x p ( - t X ) z =  

e-2t/bz and exp(--sY)z=e-2~s/bz. It follows that  
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Notice that  if w is given by (5.8) then holomorphicity of d*d requires t~ to be given 

by (5.9) because ~(z)-lOw/O2k=b-lzk(~'(N2)/p(z)) can only be holomorphic if the 

(clearly real) coefficient of zk is constant. The constant b may be chosen to normalize Q. 

In this large class of examples the operator d'd, as an operator on 7-/(C'r is the same 

in all cases in spite of the fact that  the Hilbert spaces 7-/NL2(C m, p) (respectively 7-/2) 

may be quite different. The self-adjoint versions, A, of d*d as operators in 7-/NL2(C "~, 0) 

(respectively 7_/2) may not be unitarily equivalent for different ~. For example, 7-/2 may 

be infinite-dimensional as in the Gaussian case below, or finite-dimensional as in the case 

that  follows it. 

Gaussian case. Let c>0 and take ~(s)=(2nc)-me-s/2% Then p'(s)=-p(s) /2c.  
Choose b=2c in (5.9). Then w(z)=Q(z)=(2~c)-me -Izl2/2~ and a ( z ) = l .  Clearly (C'~,g) 

is complete and therefore 7lP=TtNL p for p>~2 by Theorem 2.14. Moreover the expo- 

nentials e ~'* are in 7-I 2 and are fundamental in 7-/p by [Wa, Theorem 3.1] (for 0 < p < l )  

and by [JPR] (for p~>l). Hence 7tP=7-INL p for all pC(0, o~). It is known, [G1], that  the 

logarithmic Sobolev inequality (2.29) holds with this constant c and with/3=0.  

We may apply Corollary 2.20 and Corollary 2.12. This yields, for 0<q<~p<oc, for 

all real s and for fcT-/q, 

IIf(e--(t+is)/Cz)llLP(C,~,~) <~ Ilfl]Lq(C,~,U) if t ~ ~cl log(p/q). (5.14) 

This agrees with [J1, Theorem 11], [C, Theorem 4], [Z, Theorem 1 (for q>~l)] and [J2, 

Theorem 4]. In (5.14) the operator e -(t+is)A has been written in terms of the flow 

e x p ( - t X - s Y ) ,  and in this form the constant c can be omitted in both occurrences in 

(5.14) in this Gaussian case. In all four of the preceding references it is shown that  the 
l log(p/q). map f---+f(e -t .  ) from 7-lnLq to c]--{NLP is unbounded if t <  7 

It is illuminating to compare the holomorphic and nonholomorphic actions of the 

1 and b=l .  Then semigroup e -tA in this Gaussian context. For simplicity take m =  1, c=~  

dp(z)=Tr-le-lZl2dxdy and d*df(z)=2zf'(z) for fET-tnL 2. If f is in L2(#) but is not 

necessarily holomorphic, then (e - tAf ) ( z )=fc  Kt(z,~)f(~)d~ where Kt is the Mehler 

kernel, Kt(z, ~)=(7~(1-e-4t)) - l e x p { - K - e - 2 t z l z / ( 1 - e - 4 t ) } ,  [N1]. Now suppose that  

f is an arbitrary entire function on C. If the last integral is interpreted as an im- 

proper Riemann integral, namely as l i m R ~  flr162 Kt(z, ~)f(~) d~, then the mean 

value property of harmonic functions shows that  the limit exists and equals f(e-2tz), in 

agreement with (5.13) and (2.26). This representation of e -tA is the basis for Janson's 

original proof of (1.7), [J1]. But the integral need not exist as a Lebesgue integral for 

fcT-t p if 0 < p < l .  For example, for fixed pE(0, 1) choose piE(p, 1) and let f ( z )=e z2/pl. 

Then f c  nNLP.  But straightforward estimates show that  f c  Kt(z, ~)If(/)l dr for all 
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zCC if 1 - - e - 4 t > p l .  In particular, since Pl is arbitrary in (p, 1), e - t A  s e e m s  to have no 

reasonable interpretation as an operator on all of LP(p) for any t>0,  when p<  1. 

Case of finite-dimensional 7/2. Take m = l  for simplicity and let ~( s ) =a / ( l + s ) ~ . 
Fix A>O. Then -p ' ( s )=(aA) / ( l+s)  ~+1. Define w, g and a by (5.8), (5.9) and (5.10) 

with b= l .  Then 
aA 

Q(z) = (1+1z[2)~+ 1 (5.15) 

and 

o-(z) = ,~--1 (1 + Iz[2). (5.16) 

Choose a so that  f c  O(x)dx=l. The space 7-IALP(C, g(x)dx) is finite-dimensional for 

all pE(0, c~). It is spanned by 1,Z,  Z2 , . . . .Z  n where n is the largest integer such that  

Izl~p(l+lzl2) -~-1 is integrable. In particular, 7-IAL2(C, O(x)dx) is finite-dimensional 

for all A > 0 and consists precisely of constants if and only if A ~< 1. Now if f = z  n then one 

can compute that  

/ ;  h(df , d f ) d#(z) = / c  ' f '  (z)'22~(z)o(z) dx dy= / c  'f '  (z)'22a(l + 'z'2)-;~ dx dy' 

which is finite if and only if Izl2('*-~)(l+lzl2)-XeL~(C, dzdy). An elementary ap- 

proximation argument now shows that z'*ED(Q) if and only if Izl2(~-l)(l+lzl2)-~ 
Ll(C, dxdy). Since this is equivalent to the condition that  Izl2~(l+lzl2) -x -~  lie in 

L 1 (C, dx dy) it follows that  7/2 = 7/ND(Q) = 7 /nL  2. Hence 

7/P = 7/NL p fo r2~<p<oc .  

For large enough p, 7/P consists only of constants. Therefore if ~ 2 ~  {constants} then 7/P 

is not dense in 7/2. It follows from Theorem 2.17 that a logarithmic Sobolev inequality 

(2.29) cannot hold when 7-I 2 is nontrivial, i.e., when A> 1. Actually the method of Herbst 

inequalities, [GR], shows that  a logarithmic Sobolev inequality (2.29) cannot hold for any 

A> 0: one need only let r  (�89 A) 1/2 log(1 + [z[2), compute that h(d~(z), de(z)) ~ 1 and 

that  f c  e~r dx=eo for all e>0,  in order to conclude from [GR, Equation 4.3] that  

(2.29) cannot hold. Although d*d is given on 7/2 by (5.12), which is the same formula 

as in the Gaussian case, it is clearly not unitarily equivalent to its ~NL2(C,  Gauss)- 

version. However, in both eases the powers z k form an orthogonal basis (finite in the 

present case) of eigenveetors for (the self-adjoint version of) d*d. The spectrum of d*d is 

clearly {2k}~=0 in the present case, where n + 1 = dim 7t n L 2 (C, O(x) dx). 

Perturbed Gaussian ease. There are two kinds of general perturbation theorems for 

logarithmic Sobolev inequalities [A], [as], [Hin], [HS], [Le]. They take the following form. 
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Suppose that  # is a probabili ty measure on a Riemannian manifold (M, g) with dual 

metric h. Write Qu(f)=fM h(df, d f) d#. Let F: M--~R be measurable and suppose that  

the measure d#F=eFd# is normalized. If Q ,  satisfies (2.29) then (2.29) is also satisfied 

if It is replaced in all four terms by ItF, provided the constants c and /~ are suitably 

increased and provided F satisfies suitable conditions. These theorems do not discuss 

explicitly a change of the metric 9, but just a change of the measure It. However, in 

order to maintain holomorphicity of d*d we must also change the metric if we change the 

measure It. Nevertheless both  per turbat ion theorems are applicable in the present setting 

under additional restrictions on F.  Our aim in this example, rather than to achieve 

much generality, is to show the existence of a broad class of non-Gaussian measures 

and corresponding metrics such that  d*d is both  holomorphic and satisfies a logarithmic 

Sobolev inequality. With  this in mind we will make use of the easy-to-state per turbat ion 

theorem of Holley and Stroock. All that  is required for their theorem to apply is that  

F be bounded. So take ~(s)=(2zr)-me -(s+v(s))/2 in (5.8) and (5.9). Assume that  v is 

bounded on [0, oo), is in C~([0 ,  oc)) and o c > a 2  ~> l + v ' ( s ) ) c t l  > 0  for  s o m e  constants 

c~1 and o~2. Then F'(s)=-�89 So w(z)--(27r)-me -(1~1~+~(1~1~)/2 and t)(z)= 

1b(27r)-'~(1+ v'(Iz12) )e -(1~1~+~(1~1~))/2. Therefore cr(z)=2b-l(l + v'(Izl2) ) -1. Since v and 

l + v  ~ are bounded t) is integrable. Choose b so as to normalize Q. a is bounded and 

bounded away from zero. So C "~ is complete in the metric (5.1) and consequently ~ 2 =  

7tNL 2. t)(z) differs from a Gaussian density by a factor eF=lb(l+v'(Izl2))e -~(1~1~)/2. 
Thus F is bounded. The LP-metrics are therefore equivalent to those of the Gaussian 

case. It  follows as in the Gaussian case tha t  

~ P = 7 - t A L  p, 0 ( p < o c .  

Since the metric (5.1) is equivalent to the s tandard metric the per turbat ion theorem of 

Holley and Stroock, [HS], is applicable. One may conclude fl'om their theorem that  (2.29) 

holds for some constant c and for /3=0.  Of course, d*d is also holomorphic because of 

our use of (5.8) to (5.10) to define the metric g and measure #. Thus all the hypotheses 

of Theorem 2.19 and Corollary 2.20 are satisfied in this class of examples. 

Remark 5.2. In any example it is of interest to identify ~ v  explicitly because the 

contractivity theorem, Theorem 2.16, and the strong hypercontractivity theorem, Corol- 

lary 2.20, apply only to 7-/p and not necessarily to 7-/NL p. In particular, it is desirable to 

know whether 7 /v=~C?L p. In Example 5.1 we saw that  7 /P=7/AL p for all pC(0, oc) in 

the Gaussian and per turbed Gaussian cases, and for p~>2 in the finite-dimensional case. 

The equality fails in the finite-dimensional case for small p > 0  because ~2  is not dense 

in 7-/nL p for small p, these spaces being of different (finite) dimensions. The issue of 

equality is related to the question of whether the holomorphic polynomials are dense in 
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7-IAL p. The following theorem is inspired by E. Carlen's density theorem [C, Theorem 5]. 

It should be noted, however, that  the key tool in the proof below is the holomorphicity 

of d*d and the periodicity of the Y-flow, rather than hypercontractivity. 

S m  Notation 5.3. For a nonnegative nmltiindex a = ( a l , . . . , a m )  define zS=z~ 1... z m 

and lal = a l  +...  +am.  A holomorphic polynomial is a function on C m of the form p(z)= 

I~l~ <N as  z s where each as E C. ;o will denote the space of all holomorphic polynomials. 

LEMMA 5.4. Suppose that g and it are given on C m by (5.1), (5.3), (5.8), (5.9) and 

(5.10). Then PNLP(Cr%it) is dense in 7-IAL p for l ~ p < o c .  

Proof. We will make use of the vector field Y associated to g and it. Its flow is given 

by (5.13). Let ( V o f ) ( z ) = f ( e x p ( l b O Y ) z )  for measurable f .  Then (Vof ) (z )=f(e i~  by 

(5.13). We may apply Lemma 3.3 with Yo=�89 Thus Vo, restricted to 7tNL p, is a 

strongly continuous one-parameter group of isometries in this space for 1 ~<p< oc. 

Let ? sin /  0/ einO = 1 F~(O) = ~ ~ 2 ~  ~ ( � 8 9  
j=O = - 3  

denote Fejer's kernel, [T, p. 413]. Then Fk is periodic with period 27r, nonnegative, has 

integral equal to one on [-Tr, 7r], and f_~ Fk (0) ~,(0) dO --+ c2(0 ) for any continuous function 

on [-Tr, Tr]. Thus for l<~p<ec and any function fET-INL p, 

f -  f_~ Fk(O)Vof dO p= f~, Fk(O)(f-Vof)dO 

/; <<. fk(O)llf-VofllpdO--+o as k-+~ 
7T 

because the isometry group Vo is strongly continuous in 7-tNL p. 

Now since f is in 7-/ we may write f ( z ) = ~  a~z ~ with uniform convergence on 

bounded sets in C m. So 

(Vof)(z) = E asei~ 
C~ 

Since pointwise evaluation is a continuous linear functional on 7-~NL p and the preceding 

series converges uniformly on compact sets we have 

) ; fk(z)  -- Fk(O)Vof dO (z) = Fk(O)f(ei~ z) dO 
7r 

(/; ) ) = Z  ~ F~(~ e~~176 ~ =  Z a. F~(O)~~ dO z ~, 
s ~r lal<~k 
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which is in 7). The integral on the left, being the integral of a continuous function into L p, 

is in L p. So f k c P N L  p and converges strongly to f in the LP-norm. [] 

The fimction qo used in (5.8) to define w is strictly decreasing. If it is bounded away 

from zero then equation (5.5) shows that  the only holomorphic functions in the domain 

of Q are constants. Since this is an uninteresting case we will assume that  inf ~ is zero 

in the following theorem. 

THEOREM 5.5. Suppose that g and It are given on C m by (5.1), (5.3), (5.8), (5.9) 

and (5.10), and that l i m s - ~  ~(s )=0 .  If 7)cL2(p) then 

(a) PCTt p, 0 < p < o c ,  

(b) 7 ) is dense in 7{AL p for l<<p<oo, 

(c) 7{P=7-INL p, l~<p<oo, 

(d) 7 ) = ~ ,  the algebra defined in Theorem 2.17, 

(e) the spectrum of A I n  2 is (2/5){0, 1, 2,...}. 

Proof. Since 7)cL2(Q(z)dz) we have fern ]z[2k~(z)dz<oo for k=0,  1, 2, .... Switch- 

ing to polar coordinates r, w in R 2"~ and writing s=r 2, we see that  f ~  sJ(-~'(s)) ds<oc 

for j = m -  1, m, r e + l ,  .... Hence, if 0 < t < u < o c  then, for some constant cj independent of 

t and u, t J (~( t ) -~(u) )=f~  tJ(-~t(s)) ds <. Lusj(-~t(s)) ds<cj. Letting u-+oo we find 

(t) ~ cj t - J .  Switching back from polar coordinates it follows that  fern If (z)] 2 w (z) dz < c~ 

for all fcT). A standard approximation argument now shows that  PcD(Q) ,  and there- 

fore 7)C 7-/2. Hence P C ~  p for 0 <p <2 .  But i f f E P  then f k c P  for all positive integers k. 

So 7)CL p for all p < ~ .  This proves (a). (b) now follows from Lemma 5.4. Thus 7-/p is 

dense in ~-INL p for l~<p<cx~. Since it is closed in L p item (c) follows. Now (5.12) shows 

that  d*dz~=(2/b)]alz ~. Since also z~cD(Q), Theorem 2.11 (e) shows that  z~cD(A).  

But the functions z ~ form an orthogonal and fundamental system in 7-/2. Hence these 

are all the eigenfunctions of A]7-/2. Parts (d) and (e) now follow. [] 

In the following example we will choose the density 0 on R 2 to be a heat kernel for 

the operator a-lO2/Ox2+b-lO2/Oy 2. That  is, exp[lt(a-lO2/Ox 2+b-lO2/Oy2)] is given 

by convolution by ~) when t =  1. It will be shown that  if a#b then there exists no Hermitian 

metric 9 on C such that  (C, g, Q) is holomorphic and nontrivial. 

Example 5.6. Let a > 0  and b>0. Assume that  a#b. Let 

O( x, y) = Ce -(ax2 +by~) /2 (5.17) 

where C is chosen so that  fR20(x, y) dx dy= 1. If g is a C 2 Hermitian metric on C such 

that  the Dirichlet form associated to (C, g, ~)) is holomorphic then 7-/2={constants}. 
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Proof. First observe that the most general Hermitian metric (its dual, actually) on 

C is given by (5.2). What  we will actually show is that if (5.7) holds (with k=m=l)  

for w=aQ and w E C 2 ( R  2) then w is constant. Assume then that  there exists an entire 

flmction G(z)=u(z)+iv(z) on C, with u and v real, such that O-lOw/Oz=G. Since 

0/02= l(O/Ox+iO/Oy) this equation may be written in real form as 

Ow Ow 
- -  = 2 ~ o v .  ( 5 . 1 8 )  Ox = 20u, Oy 

Since w is twice continuously differentiable the compatibility condition O(20u)/Oy= 

O(20v)/Ox nmst hold. That  is, Oyu+ouy=ozv+ov~. But Oy=-byo and &:=-ax& 

Hence compatibility requires 

-byu + uy = -axv  + vx . (5.19) 

Since u, v, Uy and vz are harmonic we may apply 02/Ox2+O2/Oy 2 to (5.19) and obtain 

-2buy=-2avx.  Since vz=-Uy this yields 2(a+b)uy=O. So uy=O and vx=O. u is 

therefore a function of x alone while v depends only on y. Since ux=vy we have Ux= 

vy=rea l  constant, c~, say. So u=ax+/~ and v = a y + 7  with c~, /3 and 7 real. Insert 

these functions into (5.19). We find -by(ax+~)+O=-ax(c~y+7)+O. Comparing the 

coefficients of x, y and xy we obtain c~=0 because a#b, and a l so /3=7=0 .  Thus G=0.  

Equation (5.18) now shows that  w is constant. Thus 7-/•:D(Q) consists of those functions 

fET-/(C) such that  f c  I f'(z)12dx dy<~c. Only constant functions satisfy this. [] 

Example 5.7. Let a and b be distinct strictly positive real numbers. Let U be an 

open disc in C. Suppose that a(z) is a strictly positive function in C2(R ~) and that  

a(x ,y)=l+ax2+by 2, (x,y)EU. (5.20) 

Define a Hermitian metric on C by (5.2). Suppose that 0EC2(R 2) and 0>0 everywhere. 

If the Dirichlet form d*d determined by a and 0 is holomorphic then w-=ag is constant 

and 7-/2 c {constants}. 

Proof. Assume that  d*d is holomorphic for the Hermitian metric (5.1) and density 

with a given in U by (5.20). By (5.7) we must have 

-10w = G(z)= u+iv for some entire function G. (5.21) 

We may write this as Ologw/O2=a-lG. As in Example 5.6 this may be written in real 

form as 
01ogw _ 2 _ l u  ' 01ogw =2cr_lv" (5.22) 

Ox Oy 
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Compatibil i ty of these two equations requires 

( o ' - - l U ) y  = (o ' - - lV)x  . ( 5 . 2 3 )  

The remainder of these computat ions are valid in U. Taking into account (5.20) one 

can compute that  (5.23) is equivalent to (uv-vx)(l+ax2+by2)=2byu-2axu. Using 

vx =-Uy we then find 

Uy (1 + ax 2 + by 2) = byu- axv (5.24) 

to be equivalent to (5.23). Apply the Laplacian 02/0x2+ 02/Oy 2 to (5.24) to find 

uy ( 2a + 2b ) + uux2ax + uyy2by = 2buy- 2avx. 

Using Vx=-Uy again we find 

axu w + byuuv = 0. (5.25) 

Apply the Laplacian to this equation to find 2aUvx~+2buyvy=O. However, Uy is har- 

monic so that  Uy~=-uyyy. Therefore 2(b-a)uyuv=O. Since b-ar  we have uvyv=0. 

As in Example 5.6 it now follows that  the holomorphic function -G"(z)=uyy+ivvy 

is a first-degree polynomial with real leading coefficient. Tha t  is, G"(z)=az+/~ with 

a real. Hence G is cubic: G(z) = lgaz3+ �89  with a real. The cubic terms 

in u are therefore a(x3-3xy2). Thus uxy=-6ay  and uyy=-6ax up to additive con- 

stants. Inserting this in (5.25) one obtains -6aaxy-6c~bxy=linear terms. Therefore 

ct=0. Next, we may rewrite (5.25) in the form aXUxy-byvxy--O since Uyy=-Vxy. That  is, 

Re{(ax+iby)(u~y+ivx~)}=O. But ux~+ivzy=iG"(z)=i~. Hence Re{(ax+iby)i~}=O 

in U. Therefore ,~=0. We now know that  G(z)=7z+5 in U with 7 and ~ complex 

constants. Hence Uy is constant. Observe that  in the polynomial identity (5.24) the only 

constant te rm is Uy. Thus uy=0.  Hence 7 is real. Therefore u = 7 x + ~ l  and v=7y+52 

with 7, (~1 and (~2 real. Inserting this into (5.24), which reads byu-axv=O because uv=0 ,  

we see that  7 = 0  since aCb, and also ~1=52=0. Hence G = 0  in U and therefore G = 0  

everywhere. Equation (5.22) now shows tha t  log w is constant on R 2. As in Exam- 

ple 5.6 it follows that  the only holomorphic functions that  can be in D(Q) are constant 

functions. Moreover if t ) - c o n s t - a  -1 is not integrable then the only constant functions 

in L2(R 2, t)(x)dx) are zero. Hence 7-/ND(Q) is zero- or one-dimensional. So 7-/2 is also 

zero- or one-dimensional. [] 

Remark 5.8. If (M, g) is a complex manifold with Hermit ian metric then the heat 

kernel, gt(x, y), associated to the Laplace Beltrami operator  on M, provides a natural  

source of probabili ty densities t) on M to explore for their possible role in a holomorphic 

triple. One takes t)(Y)--Qt(x, y) with (t, x) fixed in (0, oc) x M.  But if one takes the func- 

tion a in Example  5.7 to be bounded and bounded away from zero then C is complete in 
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the Hermitian metric (5.1) and (C, g) is K~ihlerian, being of two real dimensions. How- 

ever, the function p constructed from the heat kernel as above is a probabili ty density 

on C for the Riemann Lebesgue measure on C, and is therefore integrable with respect 

to Lebesgue measure dy also, which differs from the Riemann-Lebesgue measure only 

by a factor (r. So a(z)~(z)  is not constant. By Example  5.7, (C ,a ,  6 ( ' ) )  is not holo- 

morphic. Therefore even if (M, g) is a complete KShler manifold it does not follow that  

(M,g ,  y t ( x , y ) d y )  is holomorphie, when pt(x, y )dy  is the heat kernel measure. Small- 

t ime asymptotics  suggest tha t  it is necessary in addition tha t  (M, g) be Ricci flat. But 

a global topological constraint is also required, as is shown by the example of a cylinder 

with the fiat metric. In this case (M, g) is Ricci fiat, but the heat kernel does not give a 

holomorphic triple. 
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