Correction to

On the Diophantine equation $1^k+2^k+...+x^k+R(x)=y^z$

by

M. VOORHOEVE, K. GYÖRY and R. TIJDEMAN

Technische Universiteit University of Debrecen Rijksuniversiteit Leiden Eindhoven, Netherlands Debrecen, Hungary Leiden, Netherlands

(Acta Mathematica, 143 (1979), 1-8)

In the above article the authors claim that a polynomial P with rational integer coefficients which is congruent (mod 4) to

$$3x^8 + 2x^6 + x^4 + 2x^2$$

has at least three simple roots. Their argumentation is incorrect. In this corrigendum, they wish to repair this defect by proving claim (i) in case B of Lemma 4 in a correct way.

Suppose P can be written as

$$P(x) \equiv O(x) T^{2}(x), \tag{*}$$

with deg $0 \le 2$.

If $\deg Q=0$, then clearly Q is an odd constant, so $T^2(x)\equiv x^8+x^4\pmod 2$, hence $T(x)\equiv x^4+x^2\pmod 2$ and $T^2(x)\equiv x^8+2x^6+x^4\pmod 4$, which is clearly not the case. If $\deg Q=1$, then either $Q(x)\equiv x$ or $Q(x)\equiv x+1\pmod 2$. In both cases, the quotient of P and Q cannot be written as a square $\pmod 2$. If $\deg Q=2$, then either

$$Q(x) \equiv x^2$$
 or $Q(x) \equiv x^2 + x$ or $Q(x) \equiv x^2 + 1 \pmod{2}$,

since x^2+x+1 does not divide $P \pmod{2}$. In the first case $T(x) \equiv x^3+x \pmod{2}$, hence $T^2(x) \equiv x^6+2x^4+x^2 \pmod{4}$ which does not divide $P \pmod{4}$. In the second case, the

quotient of P and Q is not even a square (mod 2). In the third case $T(x) \equiv x^3 + x^2 \pmod{2}$, hence $T^2(x) \equiv x^6 + 2x^5 + x^4 \pmod{4}$ which does not divide $P \pmod{4}$. We conclude that P cannot be written in the form (*) with deg Q < 3, proving our claim.

Acknowledgements. The authors are indebted to J. Urbanowicz for pointing out the fallacy in the original paper and for showing them a way to repair the defect.

Received February 23, 1987