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1. Various methods have heen used for calculating the mean value of a func-
tion, defined for all lattices of determinant 1, over some or all the lattices of de-
terminant 1. It is accepted that the most natural way of calculating such an average
is in terms of the invariant measure used by Siegel.! However, the averaging methods
used by Rogers? and by Cassels® are more convenient to use, while the methods used
by Mahler,* by Davenport and Rogers® and by Macbeath and Rogers® are more ap-
propriate for the special problems considered. The method used recently by Rogers?
has proved to be particularly convenient. The first object of this paper is to establish
a close connection between this averaging method and Siegel’s method, but while we
will confine our attention to the relationship between this particular averaging method
and Siegel’s method, it will be clear from the nature of our proofs that the averaging
methods mentioned above, except those used by Mahler, and by Davenport and Rogers,
will stand in a similar relationship to Siegel’s method.

Let A=A(6,, 8, ..., 6,1, w) denote the lattice generated by the points

A, =(w,0,..,0, 0,0 ™",
A,=(0, w, ..., 0, 0,0 "),

An—lz(oa O, ceny @y en—l w—n+1),
A, =(0,0,...,0, 0",
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Let g (A) be a function defined for all lattices A of determinant 1. Then the mean

value in question is defined to be the limit

1 1
lim J\J\Q(A(el, ooy 071—1, w))del... den—l: (1)
w—>+00 3
if this limit exists, and will be denoted by
M5 lo (M) 2

Siegel’s mean value for such a function g (A) is taken to be

where A, denotes the lattice of points with integral coordinates, ) denotes a linear
transformation of determinant 1, F is a certain fundamental region in the space of
linear transformations of determinant 1, defined by use of the Minkowski theory of
the reduction of positive definite quadratic forms, and u (Q) is the invariant measure

on the space of linear transformations with determinant 1, normalized so that
[du@=1. 3)
F

In a manuscript (which I do not intend to publish) I have shown that, if p (A)
is a continuous function of A vanishing outside a compact set of lattices, then the

mean value M, fo (A)] will exist and will have the value

J 0 (Q Ag)d u (Q); (4)

the proof leads to a determination of the normalizing factor for the measure g (£2)
independent of Siegel’s. But, in this paper, it is more convenient to confine our
attention to non-negative functions p (A) which can be proved directly to have a cer-
tain invariance property. We shall consider a function p (A) with the property that
the mean values

MpTo(QA)] )

exist and have the same value for all linear transformations Q of determinant 1.
It will not be difficult to prove that, if p (A) is such a function and is Borel meas-

urable in the space of lattices of determinant 1, then

Malo(M)]= [0 (QA)du(Q). (6)
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Since the mean value (5) is often easier to evaluate than the integral (4), the
result (6) is useful for evaluating the integral (4). We use this method to evaluate
the integral (4) when p{A) is taken to be a sum of the form

20Xy ooy Xu)s (7)

X,

Xy oo n Xy,

where 1<m=<n—1, and X, X,, ..., X;» are restricted to be linearly independent
points of A, and perhaps also restricted so that certain rational linear combination
of X, X,,..., X are also points of A. In the special case, when the only restric-
tion on X, X, ..., X, is that they should be linearly independent points of A, the

result reduces to the formula

[ 3 oe@Xy...0Xn)dp@=[..[0Xy ..., Xa)dX; ... dXp,  (8)

F Xy, Xy,

-y

stated by Siegel' without proof. It seems likely that the more general result could
also be proved by Siegel’s methods, but this is beyond me.

By taking suitable combinations of sums of the type (7), where X, ..., X, are
restricted in suitable ways, we can build up a sum of the type (7) where Xl, vy X
run independently over all the points of A. This process enables us to prove the

following theorem.

THEOREM 4. Let o(X,, ..., Xi) be a non-negative Borel measurable function in
the nk-dimensional space of points (X, ..., Xi). Then, if 1<k<n-—1,

0 Xy, o Xi)d u(Q)

F X:1eQA,, ..., XpeQA,

=00, ..., 00+ [ [o(Xy, ..., X)X, ... d X+

B3 S o

both sides perhaps having the value + co, where on the right the outer sum is over all
divisions (v; u)=(¥y, <., Vi3 fhys --v» i-m) Of the numbers 1,2, ..., k into two sequences
Vis vevs Ym ORA Uy, ooy Uk—m, With 1<m<k-—1,

1<y, <y, <o <y, <k,

L=spy <pa<- <pp-m=k, (10)

vikp;, f 1<i<m, 1<j<k—m,

t Joc. cit. (347).
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where the inmer sum is over all mxk matrices D, with ntegral elements, having highest

common factor relotively prime to q, and with

divi:qéij’ 7’:1’ e, My 7:19 ey M,
. . . (11)
di:“j:O’ if /,Lj<’l/i, z=1,...,m,7:1,. ,k—m,
and where
ei:(si, q), 7:]., ce. g, m,
&1y ... Em Deing the elementary divisors of the matrixz D.
If in addition o (X,, ..., Xi) is bounded and vanishes outside a bounded region of

space, and if also n=[Lk*]+2, then both sides of (9) are finite.

This result is clearly an improvement on the more restricted result! I obtained
previously using the mean value M,. Unfortunately the right hand side of (9) may
be expected to diverge when n is too small in comparison to k. In particular the
right hand side of (9) will diverge when n=2, k=2 and o (X, X,)=1 for all X, X,
sufficiently close to O. In this case the divergence can be eliminated if X, X, are

restricted to be primitive points of the lattice Q A,. We prove the following result.

TurorEM 5. Let o (X, X,) be a non-negative Borel measurable function in the

2 n-dimensional space of points (X;, X,). Then, if n=2,

20Xy, X du(Q)
7 X,eQAp
X, e Q A}
1

T (Cm)?

fo(Xla X, dX,dX,+

1 1
+ X, X dX+—f X, —X))dX,, (12
C(W)J‘Q( v Xy) 17 () 0 (X 1) 1 )
where Ag is the set of primitive points of A,
We use this result to prove the following theorem closely related to well-known
results due to Xhintchine and others in the metrical theory of Diophantine ap-
proximation.2 We say that a result holds for almost all linear transformations Q

(now not necessarily of determinant 1), if the corresponding matrices (w;;) form a

1 loc. cit. (1955), Theorem 3.

2 See J. K. Kogsma, Diophantische Approximationen (Berlin, 1936), Chapter ILI, 30 and Chap-
ter V, 11; see also J. W. S. CassELs, Proc. Camb. Phil. Soc., 46 (1950), 209-218, Theorem II. These
results may be regarded as modified forms of Theorem 6 where a different measure is used and the
linear transformation € is restricted to be of a special type.
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set of measure zero, when regarded as points  with coordinates (wq;, wys, ..., Wnn)

in n’-dimensional Euclidean space.

TrErOREM 6. Let o (X) be a bounded non-negative Borel measurable function de-

fined for all points X of n-dimensional space (n=>2). Then the sum

o (X) (13)
XeQA,

is finite for almost all Q, if the integral

Jox)dX (14)
is finite; and the sum
2, e(X), (15)
XeQAQ

where Ag is the set of primitive points of A, is infinite for almost all Q, if the in-

tegral (14) s infinite.

2. Every lattice A of determinant 1 can be expressed uniquely in the form
QA,, where A, is the lattice of points with integral coordinates and € is a linear
transformation or matrix Q= (w;;) of determinant 1 in the fundamental region F.
If G is any set of matrices Q with determinant 1, we use G* to denote the corre-
sponding set of all matrices Q*=21Q where Q is in @ and {<A<1. We call G a
Borel set if G* is a Borel set, regarded as a sub-set of the n’-dimensional space of
points Q*= (w11, wis, ..., Wna), and in this case, following Siegel, we take the measure
u (@) to be the product of the Lebesgue measure of G*, regarded as a sub-set of the
n®-dimensional space, with a normalizing factor . We say that a set of lattice A
is a Borel set, if the set of corresponding matrices Q= (w;) in F is a Borel set
according to this definition, and we define the concept of a Borel measurable func-
tion in the space of the lattices in the corresponding way. With these definitions

and the notation introduced in § 1, we can prove our first result.

THEOREM 1. Let 9(A) be a non-negative Borel measurable function in the space

of lattices of determinant 1. Suppose that the mean values
MATo (QA)]

exist and have the same (finite) value for all linear transformations Q of determinant 1.
Then

Ff 0 (QAy)dp(Q)=M,[o (AL
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ProoF. The assumption that the g (A) is a Borel measurable function in the space
of lattices of determinant 1 means that the function p (QA,) is a Borel measurable
function of Q defined for  in F. The function p(A) need not be defined for lat-
tices A of determinant other than 1; we can define or re-define g (A) for such A by

o (A)=0({d(A)} " A),

where d(A) denotes the determinant of A. Then it is clear that g (Q2A,) will be
Borel measurable for Q in F, if and only if ¢ (Q*A,) is Borel measurable for Q*
in F*. Now the set I'* of all linear transformations Q* with a positive determinant

in the closed interval [§, 1] can be expressed as the union
=y rvy,
where ¥ runs through all matrices with integral elements and determinant 1. Since
Y Ag=A,

for any such ¥, it follows that o (Q* A,) is Borel measurable for Q* in I'*.

For any fixed positive value of w, consider the function
0 (Q*A (¥, w))

defined on the Cartesian product I'™*x(C where C' is the set of all 9=(0,, ..., 0, 1)
with

We regard T*xC as a subset of the (n*+n—1)-dimensional space of all points

(QF, 9) = (i1, Wizs +orr Onns Oy ooy Ony).

Write
w 0 ... 0 0
0 ) ... O 0
O=0 (% w)=
0 0 e @ 0
w—»n+1 01 w—n+1 02 w‘n+1 GnAl w—n+1 s
so that

A@, 0)=0 (&, w) A,

Now as (QF, 9) varies continuously in I'™ x € the product Q* ® (9, w) varies continuously
in T*. So, if E is a closed sub-set of I'*, then the set of points (Q% &) in I'*xC,
such that Q*@® (9, ) is in E, is closed. It follows that, if E is any Borel set of
points of T'*, then the set of points (Q*, 9) of I'*xC such that Q* 0 (¢, w) is in B

is a Borel set. Now, as o(Q*A,) is a Borel measurable function of Q¥ in I™*, for
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each ¢ the set of Q* in I'*, for which
o (T Ay <e,
is a Borel set. Thus the set of points (Q* &) of ' x(, for which
0 (Q* 0O (@, w)Ay) <c,
is a Borel set. Thus the function
0 (Q*A (9, 0))=p (Q* O (&, ©) Ay)

is a Borel measurable function in I'*x(, regarding this set as a subset of (n®-+n—1)-
dimensional space.

Consider the function g, (A) defined for all lattices A and for all positive in-
tegers & by
e(A), if o(A)=h,

e 0 (A)=h.

As ¢ (Q* A (¥, w)) is Borel measurable in [ xC, it follows that g, (Q* A (¥, w)) is also
Borel measurable in I x (. Further g, (Q* A (9, w)) is non-negative and bounded in
[*xC. Again as F has measure 1 the set F* has Lebesgue measure »~'. Also C
has Lebesgue measure 1. Thus, by Fubini’s theorem, the set F*xC has the finite

1

Lebesgue measure » '. Hence g, (Q* A (9, w)) is integrable in the Lebesgue sense

over the set F*x(, and, by Fubini’s theorem, the (n?+n— 1)-dimensional integral

[] en(Q* AW, 0)dQ*d o

FxxC

=J‘ th (Q*A @, w)dwy; dws ... dwnnd0; ... d0, ¢

F*xC

can be expressed in the alternative forms

/ {lgh (QF A (9, w)dd) dQ*, (16)
[{[en(@Q*A®, w)dQ*}do. a7)

Now for any ¢ in C, we have
[ on (Q* A (9, w))dQ*
F*

= [on (Q* O A)dQ*
F*

= [ 0n(Q*A)dQ*,

Frg-1
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on changing the variable and remembering that ©=0 (9, w) has determinant 1.
But it follows, from known properties of the fundamental domain F, that F, and

similarly F*, can be split up into a finite number of disjoint Borel measurable sets

F, F,, ..., Fy, and F;, Fs, ..., F;,
such that

k
F*G)_l: U-Fl*‘P'l;
i=1
where W', W, ..., ¥, are matrices with integral elements and determinant 1. So

f on (Q* A dOQ*

Frg—1

I
LM =

f On (Q* 1?1 AO) d Q*
7

On (Q* AO) d Q*

1
LM =

"y
-3

= f On (Q* AO) d Q*.

F*

Combining these results, we see that

[on(Q* A dQ* = [ 04 (Q* A (9, 0))dQ",
F* F*

for any ¢ in C, so that

[on (Q*A)dQ*= [ { [on (Q*A)dQ*) d O

C  F*

[{[on(@* AW, w)d Q¥ dv

C F*

[ {[en (@ A, w)d9) dQ*, (18)

Fx C

I

I

using the equality of (16) and (17).
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This result (18) holds for all w>0. Also
osc[gh (Q* A (9, w))dﬁsihdﬂzh.
So
(,[9" (Q*A (9, w)do< [Cfg(Q*Aw, @)) d]n,
where we use the expression on the right hand side to denote
min (%, ! e (A9, w)dd).

Since the function

e (Q* A (3, w))
is Borel measurable in F*x(, it follows that
[[o©@ A®, @)ds]
is Borel measurable in F*. So
F{ on (Q* A)dQ*< Fj [cfg (Q*A (8, 0)d8],dQ", (19)

for all w>0.
Now, writing

Q={d@Q"} " Q,
where d(Q*) is the determinant of Q*, we have

[e(Q*A@, w)dd=[o(QA (9, w)d?d.
C C

By hypothesis, the mean value
Mlo (QA)]= lim [e(QA®, w)dd
w—>+0 &

exists and has the value
MpTe (M)]

So, provided k> M, [o (A)], we have

[cj 0 (Q* A (9, ) d8]n— My [0 (A)]

as w—>+0. By the theorem of bounded convergence, it follows that
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[[[o@ A@, 0)d8]sdQ" > [Mslo(M]4Q"

Fx C
=x " Mplo(A)]
as w—+0, provided > M, [p(A)]. It follows from (19) that

[on (Q* Ag)dQ* <% Mp o (A)] (20)
Fx

for all 2>0. This shows that the function g (Q* A,) is integrable over F* and that

[o(Q*A)dQ*<a ' MATo (A)L. 1)

Since this integral is finite, we have, as in proof of (I18),

FJQ(Q*AO)dQ*:f{jQ(g* 0)dQ* dd

¢ B
=[{[o@*A®, w)dQ* d¥.
C F*
As ¢ (Q* A (9, w)) is Borel measurable over F*x( and is non-negative, it follows
from Fubini’s theorem that
[{[e@ AW, w)dQ* d9
C F*
= [{[o(@* A8, w)d9) dQ¥,
Fx C

both integrals being finite. But

[0 (Q* A8, w)) dd—>M,[o (A)]

C

as w—>0. So, by Fatou’s lemma,
xt MpTo (A)]= [ Mple (M)]2Q*
< lim f{fg(Q* (8, »)d 9] dQ*
:F[ 0 (Q" Ay)dQ*. (22)
Combining the results (21) and (22), we have

[o(Q*Ag)dQ*=x"" My [o (AL
F*
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So, by definition of the measure y (), we have
[e @A) du(Q=x[0(Q*Ay)dQ*
F Fx

as required.

3. In this section we investigate the mean value M, [p (A)] in the case when

X, T Xy,
and X, ..., X, are restricted to be linearly independent points of A, perhaps satis-

fying certain auxiliary conditions. It will be convenient to write conditions of summa-
tion in brackets to the right of the summation sign, and to use dim (X,,..., Xx»)

to denote the dimension of the linear space generated by the points X, ..., X,.

THEOREM 2. Let o (X)=0(X,, ..., Xn) be a Riemann integrable function over the

nm-dimensional space of points
X=Xy, ..., Xo)=@P, ..., 20, ..., 2™, ..., ™),
where 1 <m<n—1. Let q be a positive integer and let C' be an integral mxh matriz
C=(cis)s
where h=0. Then the mean value My [p (A)] of the function

Xy ooy X in A
dim (X, ..., Xpn)=m

e(A)=2 -
gl(cij/ ) X; in A

0(Xy, ooos Xim) (23)

exists and has the value

aare = (Y52) [oowax

q
where N (C, q) is the number of sets of integers (ay, ..., an) with
0<a,<gq,...,0=5a,<q,

> e =0 (mod q), =1, ..., h.
ic1

Here N (C, q) is to be given the value q™ in the case when h=0.
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Proor! The condition that g(X) is a Riemann integrable function over the

whole space implies that there is a number R so large that g (X)=0 unless
|aP| <R, i=1,...,m, r=1,..,n.

We investigate the mean value

St—
Oft—

(o (A By, ..., Ou_y, @) 30, ... d0,_,

on the assumption that o is small in comparison to B "*'. The general point of
the lattice A (0, ..., 0,_1, ®) has coordinates

— 1
(g, ooy @Unq, @ " uy+ o+ O Uy g+ us))
where u,, 4,, ..., %, are integers. It is convenient to write
= (Uy, ..., Un_1)s

D=0, ..., On-1),
du=0,u, 4+ +0, 141,
so that the general point of A (0, ..., 0, , w) takes the form
(wu, 0 " {Su+un})

where u belongs to the lattice L of points in (n—1)-dimensional space with integral
coordinates and w, is an integer. With this notation the contributions to the sum
(23) may be split up into two types: the contributions from points X, ..., X, such
that the corresponding points wu, ..., u, are linearly independent; and the contri-
butions from points X, ..., X,,, which are linearly independent, although u,, ..., un
are linearly dependent. Our first object is to prove that there are no non-zero con-
tributions of the second type.

Suppose that X, ..., X, are points of the lattice A=A (6,, ..., 0,_;, @) such that

o (Xy, ..., Xn)=F0,

and the corresponding points u,, ..., u, are linearly dependent. We proceed to prove
that X, ..., X, are linearly dependent. If the rank of the matrix

(P)1<i<m (24)

1<r<n-—-1

! This proof is very similar to a proof I have given before for a similar result loc. cit. (1955);
but there are a number of differences which make it best to give all the details up to a certain
point.
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were less than m —1, then the rank of the matrix

wud wu® w u{™
o
(xr 1<i<m =
higtem ou®, w0u®, ... o Ul
o " {Gu, P} o {Buy+uPt.. o VTH{G -+ ulP}

would be less than m and the points X, ..., X, would be linearly dependent as
required. So we may suppose that the rank of the matrix (24) is m—1. We may

suppose, without loss of generality, that the minor

(“g))lsismq
1<r

<r<m-1
is non-singular. Let b,, ..., b be the cofactors of the elements «%, ..., u{™ in the
1 b r bl

matrix

u® u® o u™

ey 2 m

wP ., W2, L ud,

uf‘l) u;?) u;m)
Then, as by, ..., b, are independent of r, while this matrix is singular for r=1,

2,...,n—1, it follows that

m
ShuP=0, r=1,2,...,n—1.
o1

Thus
2 biui=o. (25)
i=1

Further b, ..., b,, are integers with 5,0 and using Hadamard’s inequality

|5 < (m—1)™ V21 max ‘ui“[]""l.
1<1l<m
1<r<n-1

Since we are supposing that

0(Xy ...y Xn)=*F0,
it follows that

|2®|=|wuP|<R, i=1,...,m, r=1,...,n—1.
Thus
|bi]< (m—1)" PER™ 1o ™ i=1, ..., m.
Further the integers %, ..., 4% must be such that

|w—n+l{ﬂui+u(rf)}|<R, i=1, ..., m.
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Consequently, using (25)

m
2 biuy
i-1

m
> b {dui+uP
i1

<< z lbil(})n‘lR
i=1

<m (m_ 1)(”:—1)/2 Rm wn—m

<1,

provided m <n and  is sufficiently small. Hence

@)
bi Un',

Livs

1

being an integer, is zero. This, together with (25), implies that the points X, ..., X
are linearly dependent.
It follows from the result of the last paragraph that, provided  is sufficiently

small,

m

> (ei/q) Xy in A

i=1

e(A)=Z[

) ud, ..., uy” integers
Wy, oo Uy In L ]
dim (w;, ..., un)=m

xp(wuy, " {Gu,+ul}, ..., 0um, 0 " wn +uiP}).

It is convenient to use

Q1<i<m (Xi)
to denote
o ( Xy vois Xim)
so that
o(wuy, o " H{Ou+uP}, ..., 0 um 0 D un 4+ ulM})

=01<i<m (O @i, @ " {O u;+ul}).
The condition that

M3

(c:3/9) Xi

i=1

i

should be in A for =1, ..., k is equivalent to the conditions that

¢i;ud’=0 (mod g)

it

i

for r=1,2, ..., n and j=1, ..., k. So we have
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o(A)=
Uy, ..,u, in L uP, ..., uy” integers

Z dim (uv vees Um):m z Dizizm (w ui, w7n+1{0 u, _‘_ug) )

> (cij/q)wi in L S ¢juP=0 (mod q)
i=1 i=1
Provided o is sufficiently small, the integrand here will be zero, unless »y’, ..., ud™

are the integers chosen so that
—l<fw+ul <} i=1,..,m.
Using ||z|| to denote z-n (x) where » (z) is the integer such that

—i<xt+n @<y
this implies that
du+ul=|9wl, i=1, ..., m.
Consequently

uy, ... .Uy in L

dim (u,, ..., un)=m

o(A)=2, > (cij/q)w; in L O1<i<m (W, w’anﬁui“)-
=1

3

21 o {|[9 i || = 9w} =0 (mod q)

We now consider the integral

Jer)yao= oAy, ooy Ony, @) dB, ... dO, 1.

Oy
O

We adopt the convention that conditions of integration may be placed in brack-
ets after the integral sign. Since the sum has only a finite number of non-zero

terms, we have

Uy, ..., Uy in L
dim (u,, ..., un)=m
feydo=3|" I(uy, ..., tn), (26)
121(6”/Q) w; in L
where
I{u,, ..., um)=
0<0,=<1
< cicm (@, 0 "D ui|) 29 (27)
J[Elcii{”ﬁui”—ﬁui}g() (mod ¢) | 17w
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We first suppose that u,, ..., un are linearly independent points of L and that the

points

M3

(Cij/q) w;, 7=1, ceny h,

i=1

I

are points of L; and we prove that, provided o is sufficiently small,

I, ..., um)=w'"<"‘1>—zv—(q%@ f fgli"s’" (wus, E)AE ... d&n. (28)

It is convenient to write
FH=F(b,, ..., 0,1)

Q1<izm (@ s, @ " |G wi)), if 12 e {19 il — 9 wi} =0 (mod ¢)
== =1

0 R otherwise,
so that
I(u, ..., un)= [ F@)dd
0<B;<1
Now, if #=(0,, ..., 0,_1) and & =0y, ..., 0,_,) differ by integers in each coordinate,

it is clear that
|9 w|=|?uw|, i=1,...,m,

and also
21 cr {19 w| -9 w}

s {10 ]| — B e} + (9— 0 - (z u)
1 i=1

VB

1

ci{[dui|]—9w} (mod g),

N
hWY%E]

i

1

as the coordinates of the points

m
Z Cij Wi
i=1
are congruent to zero modulo ¢. Thus
F@)=F(9)

This shows that F(J) is periodic in 0y, ..., 0., with period 1. It follows that
I(uy, ..., uy) is the limit of the mean value of F (J) taken over any suitable region,

in the space of points ¢, which becomes large in an appropriate way.
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Since u,, ..., u, are linearly independent, we may suppose that the determinant

of the matrix

(ug))lgi <m
1€r<m

does not vanish. Consider the transformation from the variables 0, ..., 0,_, to the
variables
(Pi=0ui, i=1,...,m,
@1 =0, t=m+1, ..., n—1
This is a non-singular transformation. So the region defined by the inequalities
|<pil<(I), i=1,...,n—1,

is a parallepiped in the @-space, which becomes large as ® tends to infinity. Also

F0,,...,0.)=CG(py, ..., @),

where
m “nrt i |y, if i - —o da,
G (g ... )= | DS OB e it 3 cos el — @3 =0 (mod g), | )
0 > otherwise
Thus
I(uy, ..., un)= [ F(®)dd
0<6;<1
F @) dd
— lp; <@
>0 ad
lg <@
f f G((pl’ rees Wm)dfpl d(pn,l
= lim lg;I<®
P—>o0 f... f d(pl - d(Pn—l
lp; <@
f G((pl’ vees (pm)d(pl vee d(pm
=lim lg; I<@
D>oo f f de, ... don

But, it is clear from (29) that G (¢, ..., pn) is periodic in ¢, ..., pm with period g.
Hence

1

a3 7}
I(uy, ..., up)= ;,7, f f Gy coes Pn)d @, ... dpp.
L

(30)

18— 553810. Acta Mathematica. 94. Imprimé le 15 décembre 1955.
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Now, if a,, ..., a, are any integers and

q)i=di+0€i, 7;21, PR (S

where
"%<‘xz<%: 7’:1: > m,
then
”(Pi“=0€i, <Pi—”90i”=az, =1, ..,m,
so that
G (@15 oo s Pm)=01<izm (0 Wi, 0" ),
if
m
Zcija,-—:‘o (mod g), j=1, ...,}I;,
i=1
while

G(py ooy Pn)=0
otherwise. Hence

ay, ..., Oy, integers

3 3
< a; 1
I(uy, ooy um)=2, n O=a<g o f f@ISiSm (ww, o " a)do, ... dan
Seya=0(modg)| -t -3%
i=1
e o™ Y 1Eo" Y
N (C,
=™ l)v(q—m*i f Q1<i<m (0) u;, fi)dfl dfm,
~UCe™ ™ —12e D
where N (C, g) is the number of sets of integers a,, ..., a, with
0<a,<gq,...,0Za,<gq,

m
.210”‘ ;=0 (mod ¢), j=1, ...,k

Since
O1<i<m (0 1y, &)=0,
unless
|&|<R, i=1,...,m,
it follows that

N C’ ) ©
Iu,..., um)=a)m("’1)~—(q,7;—q~) f f@]siSm (wu;, &) dE ... d&n,

as required.
It now follows, precisely as in § 5 of my previous paper,! using the lemmas of
§ 4 of that paper, that

1 loc. cit (1955).
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Uy, ..., Uy in L

Jowyap=y | O s BT L
Z (C”/q) u; in L

(S famar

converges to

as w tends to zero. It is perhaps worth explaining how this result is obtained.

is first shown that the sum

Uy, ..., Uy in L - -
i = N
Z d;m (ul, e um) m a)mm«l)—w——(qo,,: Q) f J\ngigm (CU u;, gz)dfl dfm
Z (Ci]’/q) u; in L —® -
n=1

may be completed to the sum

Uy, ..., Unm in L 0o -

s N(C, ) f J‘

m m(n—1) =7 N2 47 ~i<m i id d "

E[Z(Cii/q)ui inL:l60 q" Oi<izm (wuy, &)YdE, £
i=1 KA

with an error of the order O (w” ™). The conditions
wy, ..., Uy in L,
> (e;/q)w in L, j=1,..,h
i=1

restrict the point

(g ees wr) =@, o, uwL o, uw{™, L, ul™)

267

It

in (n—1)m-dimensional space to a certain sub-lattice of the lattice of points with

integral coordinates, which may be seen to have determinant

( qm )n-—l‘
N(C, q)

It follows, by the theory of Riemann integration, that the completed sum tends to

the limit

(N(qC'm, q))"ff{ f f@xgigm (%1, £)dE, ... d&pidx; ... dxp

_ N(O,q)‘"f P
( p ) e (X)d X,

as o tends to zero. This proves the required result.
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4. In this section we prove a simple lemma, expressing the number N (C, ¢)
introduced in the statement of Theorem 2 in terms of the elementary divisors of

the matrix C.
Lrevmma 1. Let q be a positive integer and let C be an integral mxh matrix
C=(ci5)
where h>0. Then the number N (C, q) of sets of integers (a,, ..., an) with

0<a,<gq, ..., 0<an<g,

LM s

¢j,=0 (mod ¢), j=1, ..., 5,

is given by
N(C, q)=e,e5... e.q" ",

where r= min (m, h) and
ei:(ai’ Q), 7:21, ceny 1y
&1 -.. s & being the elementary divisors of C.

Proor. By the theory of elementary divisors, there are mxm and Axh in-

tegral unimodular matrices § and 7' such that
SCT=E, (31)

where E is a diagonal matrix (not in general square) with diagonal elements ¢,, ..., &,
where
7= min (m, h).

Further we may suppose that § and 7 are chosen so that g, ..., & are the ele-
mentary divisors of C. Since T is an integral unimodular matrix the numbers

(ay, ..., ay) satisfy the congruences

M3

¢;=0 (mod ¢), j=1, ..., 4,

i=1

if and only if they satisfy the congruences

m h
> (Z Cij t,-,c) a;=0 (mod ¢q), k=1, ..., h.
j

i=1 \j=1

So N (C, q) is the number of sets of integers (a,, ..., an) with
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0<qa,<gq, ..., 05a,<g,
m h
> (Z cij t,k) ;=0 (mod ¢), k=1, ..., k.
i=1 /=1
Since § is an integral unimodular matrix, the system of congruences
a;= > 8,;b, (mod ¢}, i=1,...,m
g=1

establishes a one.one correspondence between the sets of integers (a,, ..., a,) with
0<a;<q,...,05a,<gqg
and the sets of integers (b, ..., b,) with
0<b,<q, ..., 05b, <q.
Thus N (C, ¢) is the number of sets of integers (b, ..., b,) with
0<b,<q,...,0<b,<gq,
m m m
> (Z 2 g1 Ci tf’f) by=0 (mod ¢), k=1, ..., A
g=1 \i=15=1
But, by (31), this system of congruences reduces to the system
g 0,=0 (mod ¢), g=1, ...,
Now it is clear that N (C, ¢) is given by

N(Oy q)=€1 €y ... e,q"‘",
where
e=(e, q), 1=1,2,..,n

5. The aim of this section is to prove Theorem 3 below; we first show that
the result follows from those of sections 2, 3 and 4 in the special case when
¢ (Xy, ..., Xn) is integrable in the Riemann sense, and then show that this implies
that the same result also holds for more general functions p (X, ..., Xu).

TarorEM 3. Let g(X)=0(X,, ..., Xu) be a Borel measurable function which is
integrable in the Lebesque sense over the whole X-space. Let q be a positive integer and
let C be an integral mxh matriz C=(ci;;), where h>0. Then the lottice function
Xy, oo X in A
dim (X, ..., Xn)=m
m

i;1(c”/Q) X{ in A

e(N)=2 o (Xp ooy Xim) (32)
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is Borel measurable in the space of laitices A of determinant 1 and

[e@apan@- (g;;)f@(%)d%

where r= min (m, h) and

61'_“(61'5 q), i::l:---»rg
£, ..., & being the elementary divisors of C.

Proor. We first show that the function g (A) is a Borel measurable function

in the space of lattices A of determinant 1. We have to show that the function
Xy, ooy X in QA T
dim (X, ..., Xpn)=m

m o Xy, oo, Xi)
| 2 (/D) Xi in QA |

Q(QA0)=Z
PUl, cees Um in AO T
=3 |4m U s Un)=m )y Qu, ..., QU
Li; (ei;/9) Ui in A,

is Borel measurable in the space of linear transformations  of determinant 1. It
clearly suffices to prove that, for every set of linearly independent points U, ..., Up,
the function ¢ (Q Uy, ..., Q U,) is Borel measurable in this space. Now, as (X3, ..., Xn)

in Borel measurable, for each ¢ the set of linear transformations Q* for which
e (Q*U,, ..., Q" Uy <c

is a Borel set n’-dimensional space. Thus the set of all linear transformations Q of

determinant 1 with

0 QU,, ..., QU <c (33)

is a Borel set, when regarded as a subset of n’-dimensional space; and so also is

the set of all linear transformations
O*=21Q,

where 1<A<1 and Q is a linear transformation of determinant 1 satisfying (33).
It follows, from our definitions, that o (Q U,, ..., Q U,) is a Borel measurable func-
tion in the space of all linear transformations Q of determinant 1. So g(A) is a

Borel measurable function in the space of lattices of determinant 1.
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Now, if po(X;, ..., X,) is a Riemann integrable function, so is the function
0(QX,, ..., Q2X,) for any linear transformation Q of determinant 1. So, by Theo-

rem 2, the mean value M, [p (2 A)] exists and has the value

N (C, "
Myl0 (@A) (—;T‘-”) fe(modx,

(G T

where N (C, q) is the number of sets of integers (a,, ..., a,) with

0<a,<gq, ..., 0=5a,<gq,
D=0 (mod q), j=1,..,5%
i1

Here, by the lemma of section 4,

N(C,q)=e ey ... e, q" ",
where r= min (m, k) and

ei=(&,9), t=1,...,7r,
£y, ..., & being the elementary divisors of C. So

% AV — e_e_e_) aX.
Ale (QA)] (q I fg(ao ¥

Now provided ¢ (¥,, ..., X,) is non-negative and Borel measurable as well as being

Riemann integrable,! it follows from Theorem 1 that
[e@Ayan@ - an

F
e ey e\"
= (2.2 ... dX,
(G5 3) ez

as required.

Now consider a function g (X} which is non-negative, bounded, Borel measurable
and which vanishes outside a bounded region. More explicitly, suppose that M is a
constant such that 0<p (X)< M for all ¥; and that ¢ (X) is the characteristic func-
tion of an open interval I chosen so that o (X)=0 for all X which are not in a

1 Note that a Riemann integrable function is not necessarily Borel measurable.
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closed interval I’ contained in I. Then, for each positive integer k, it is possible to

choose a set E; and a continuous function g (X) vanishing outside I, such that
(@) |o(X)—ox (X)| <k, if X is not in E,,
(b) m(EBy)<k™', and
() 0<p,(X)<M, for all X.
Let 7,(X) be the characteristic function of the set Ej. Then, for each positive in-
teger k,
le (¥)—ox (X)[<E7 0 (X)+2 M v (%),
for all X.

Now E, can be covered by an infinite sequence of intervals, such that the sum

of their measures does not exceed
m(Ey)+ kL

So it is possible to choose continuous non-negative functions 7, (¥) each vanishing

outside a bounded region, and such that

S Bz
for all ¥, and
%ffks(X)d%Sm(Em)+2k‘l.
Then ”
| (%)~ ox (%)lgk*a(X)MMém(x),

for all points (X).
Define o¢(A) and 7,,(A) by analogy with the definition (32) of g (A). Then
clearly

o (A)—ox (A)|<k ' (A)+2 M glrks (A), (34)
and
OSQ(A)SQk(A)—Fk’la(A)—i-ZMgrks(A). (35)

Now the functions g, (X), o(X), 7us(X) are all non-negative Riemann integrable
functions which are also Borel measurable. So, by the special result we have already

proved,
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f@lc QA du (Q)= (e_l.e_z_ %) fek(%)d%,

P 9 9
fo(QAo)d,u(Q)= (e—ql‘%; .%’)"fa(x)dx,

kaS(QAo)d,u Q)= ("‘ql :2 -%)"fzks(x)d‘x.

Since
Z Trs (X)dX<m(By)+2k <3k,

the function

0c QA +5 10 (QA)+2 M 3 1is (QA)
s=1

will be integrable with respect to the measure u ({2) over F. As the function g (QA,)

is Borel measurable with respect to the measure y () over F and satisfies
Se(QA) =0 (QA)+E 10 (QA)+2 M 3 s (QA),
s=1
it follows that ¢ (QA,) is integrable with respect to u(Q) over F. Further
e, € e\”
Q d (1 22, _T) f 3€d3€‘
. f Ag)d u(Q g g) ] e&®
e, €y e \"
Sl e@A)dp@Q)— (=2 = o (X)d X |+

¢ 97 q
(el e, .. )

2 (QAq) — 0k (QAy)

X)dxX— f@k (%)d%‘

d‘u(Q)—{-(el €. .. e’) flg —or(X)|d %

< f{k“o(QAo)+2M E Tks (QAO)} dup(Q)+
s=1

+

ee o\ [ S
(q : q) f{k a(3€)+2Ms§11k3(3€)}d3€

=2(e_.e_z. .e_r)"{k—lfg(x)dwa% rks(%)d%}
99 q =1
52(

--e—;)n{fa(%)dx-{—GM;]%-

»:zl.é‘
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Since this holds for all positive integers k, it follows that

fg(QAo>du(Q>=(‘i;-%----%) fe(xwx

Finally we consider the general case when g(X) is a Borel measurable function
which is integrable in the Lebesgue sense over the whole X-space. Then it is pos-

sible to express g (X) in the form

0 (¥)= 3 0.0~ 3 n(X),

where each of the functions o; (X), 7; (X) are non-negative, bounded, Borel measurable

functions, which vanish outside bounded regions, and where the sums

S [amax 3 [nonax

are convergent. Then, using the natural notation, by the result we have already proved

fas QA d u (Q)= (%1?; %)nfos(X)dx,

frs QA d p ()= (%167; %)nfr (X)d X,

for s=1,2,.... Since the functions o;(QA,), 7 (Q2A,) are Borel measurable and

non-negative, while the sums
; f o5 (Q Ag) d e (), Zx f‘ts (QAG)dp ()
F - F

are convergent, it follows that the function g (2 A,) is integrable with respect to

#(Q) over F and that

f@(QAo)dM(Q)

F

- sgl fas QA u(Q)— 2:1 75 (Q Ag) d 11 ()

F

"e—l-e—z....,gn z —oo
_(q q q) {sglfas(%)d% glrs(X)dx}

e €y e\"
= (2.2 ... b dX.
(q q !l) fQ(X) X

This completes the proof.
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CoroLLARY. If p(X) is a non-negative Borel measurable function, which is not

integrable in the Lebesque sense over the whole X-space, then the integral

[e@A)du(@)
F
diverges.

Proor. As o(X) is non-negative and Borel measurable but is not Lebesgue
integrable, it follows that

fg(%)d%= + oo,

So it is possible to choose non-negative, Borel measurable, Lebesgue integrable func-
tions, ¢ (X) with
0<6(X)<0(X)
for all X and with
f c(X)dX

arbitarily large. Since, then

[0 @QA)Ep Q)= [0 (QA)du(Q)

it follows that
[0 Q) dp @)=+ oo
F

6. In this section we show how results of the type given by Theorem 3 can

be combined to give a

Proor oF THEOREM 4. We first prove that for any lattice the terms of
the sum

0 (Xy, oons X)) (36)
XeA, ..., XpeA
can be rearranged in the form
(0, ..., O)+
Y, ....Y, in A

v @= . i= =
> (/9 Yo in A

-{-Z[Xl’ ...,Xk in A

dlm (X X}c):k] Q (le cery Xk). (37)
15 ese
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Corresponding to each set of points X, ..., X; of A there will be just one term
o{Xy, ..., Xz) in the sum (36). If X,, ..., X, are linearly independent the term

o(X;, ..., Xz) will occur just once in the sum

[xl, vy X in A

Xy, ..., Xi), 38
dim (Xl,...,Xk)=k]@( ! o 38)

and will not occur elsewhere in the sum (37), as the points
< & dix
—Y, .., 22— Y,
1;1 q t 21 q

are necessarily linearly dependent since m <k.

If X,,..., X, are linearly dependent but not all zero, there will be a unique
division (»; u)=(y, ..., ¥m; gy, +-.» Ux—m) of the numbers 1, 2, ..., k into two sequences
Vis oees Vmo80A py, oo, pkem, with 1<m<k—1, satisfying the conditions (10) such
that the points

Xop ooos Xy,

are linearly independent, while, for each j, the point X, is linearly dependent on

Xl’ Xz, ceay X‘ui_l'
Then for each j, the point X, will be linearly dependent on the points

X oo Xopy
where ¢ is chosen so that

Vi< <Viyy-

So, for each j, the point X, can be expressed uniquely in the form

m
Xf‘f = Z Cij X"i
i=1
where

Cu=0, if 1«'12/,(,-.

Here the numbers c¢;; will be uniquely determined rational numbers. Let ¢ be the

lowest common denominator of these rational numbers. Define integers d;; for

1<i<m, 1<j<k

by the equations
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di,,;.=q6i;, ’lz=1, vee sy M, 7=1, cee s M,
diuj=qci,-, 7:=1, R (S f= 1, vees k—m.
Then the matrix D= (d;;) has integral elements having highest common factor rela-
tively prime to ¢ and satisfying (11). Further, if we take
Y,=X,, ..., Yp=X

l'mi
we see that Y,, ..., Y, are linearly independent points of A and that the points

=2£E,...,X,c—zd—“€n (39)

i-1 49 i=1 q

are points of A. Thus, there is a term

i - di
(z 2y, ..., z—kY,)=g(X1,...,xk) (40)
i-1 4. =1 4
in the sum (37) corresponding in this way to the points X, ..., X;. Further, it is

clear that the points X, ..., X, and the equations (39), together with the conditions
on the division (v; u), the matrix D and the points Y, ..., Y, determine uniquely
the division (v; u), the positive integer ¢, the matrix D and the points Y}, ..., Yn.
So corresponding to each set of points X, ..., X, which are linearly dependent but
not all zero, there will be just one term of the form (40) in the sum (37). Similarly,
the term ¢ (O, ..., O) is the only term in the sum (37) corresponding to the set of
points O, ..., O. This shows that each term in the sum (36) occurs just once in
the sum (37).

We now have to show that each term in the sum (37) corresponds to just one
term in the sum (36). This is clear for the term p (O, ..., O) and for the terms of
the sum (38). Consider a term

Q(IZI%Y“.. g% ) (41)

from the sum

Y,,..Y,in A

di e Yo)= " d, m g
(D] q=1% z ”tm(Yl, Y ) " Q(IZ'q—IE,’ Z le)
(dis/q) Yy in A

The condition that the points

igl(dif/Q) Y, =1,2,...,k,
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should be in A ensures that this term (41) corresponds to the unique term in (36)
where X, ..., X, are defined by the equations (39). This establishes the required
one-one correspondence between the terms of the sums (36) and (37). Since p (X) is

non-negative, it follows that
X, ..., Xp)=01(0,...,0)+
X eA, ... XkeAQ( 1 k) Q( )
Y,,...Y,inA

dim(Y,, ..., Y,)= T d; Zod
+@Zﬂ)glgz ':m( 1 y=m Q('z?lYi,...,E?"Yi)Jr
Zl (di;/q) Y:in A
Z[XI’M’XIC in A

dim (X, ... Xk)zk] 0 (Xy e Xu), (42)

with the convention that both sfdes may have the value + co.

Now for any division (v; u), positive integer ¢ and matrix D we consider the sum
Y,,...,Y,in A
: — m A m di
oW u; q; D; Ay=72 d,:m Yy, oo, ¥)=m ) (21% Y, ..., 21_; Yi) . (43)
igl (di;/q) Y: in A

Since g (X) is non-negative and Borel measurable, the function

d 1
Q(Z—EYi, Z—kYi)

=1 i=1

is a non-negative Borel measurable function of the point (Y, ..., Y,) in mn-dimen-

sional space. So, by Theorem 3 and its Corollary

f@(v; # ¢; D; QAg) dp (Q)

’ _(; o )f f(»q_ly ﬁ%) L dY,,  (44)

with the convention that both sides may have the value + oo, where
e=(&,q) 1=1,...,m,

and &, ..., &, are the elementary divisors of the matrix D. Similarly

X, ..., Xxin QA :l
X, du(Q
!z[dim(xp-..,xk)=k o (X, Xi)du(Q)

f f@(Xl,-.., )dX, ... dX. (45)
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We also have
{0(0, ..., 0)du(Q)=0(0, ..., 0). (46)
F
Thus, combining the results (44), (45), (46), and using (43) and (42) we obtain the
required formula (9) with the convention that both sides may have the value + co.
To complete the proof, it remains to show that the right hand side of (9) is
finite when g (Xj, ..., Xx) is bounded and vanishes outside a bounded region. But 1
have shown, in another paper,! using a slightly different notation, and making addi-
tional assumptions about the function g (X, ..., Xx), which are clearly not relevant
to the proof of convergence, that the sum of the right hand side of (9) is conver-
gent, in this case, provided

n>= max m (k—m)+2=[1k*}+ 2.

1<m<k

7. In this section we show how results of the type given by Theorem 3, in

the special case when A=0 can be combined to give a

Proor or THEorEM 5. If X, and X, are primitive points of a lattice A
and X; and X, are linearly dependent, then it is clear that either X,=X, or
X,=—X,;. So, if A* is the set of primitive points of a lattice A, then the sum

e (Xy, Xy) (47)

X,e A% X, e A*
can be rearranged in the form
X;, X, in A* ]
X, Xo) 2 [X;in A%l o (X;, X,) +
Z[dim(Xl,X2)=2 0 (Xy, Xo) +2,[X, le (X4, Xy)
+2[X, in Ao (X,, — X)), (48)
the rearrangement being justified since each sum has only a finite number of non-
zero terms,
Let P denote the product of the first k primes p,, p,, ..., px. Let A{ denote
the set of all points U= (uy, ..., us) of the lattice A, with

(uys oo upn, P)=1.

Then Aj is a subset of A{ which is a subset of A,. Further, as o (X;, X,)=p¢ (X)
vanishes outside a bounded region of X-space, for each linear fransformation Q of

determinant 1, we have

1 Joc. cit. (1955), see the footnote in § 9.
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X,, X, in QA

X, X, in QA§ ]
2 { dim (X,, X, =2} ¢ Ko %o

dim (xl,x2)=2] 0 Xy, X)) = 2 [

provided k is sufficiently large. Thus

X,, X, in QA*

lim .
dim (X,, X,)=2

k—>+o0

[Xl, X, in QAf

dim (X, , X,) = ] ¢ (i, X)

2] g (Xqs Xz) = 2[

Also the function

X, X, in QA(I;]
2 [dim (X,, X)=2 e (X;, Xz)

is dominated for all Q by the function

s [xl, X, in QA,

X,, X,),
dim(Xl,X2)=2]Q( 1 X3)

which is integrable over the region F by Theorem 3. So, by the theory of dominated

convergence, we have
Xl’ X2 in QAO ]
X X)) du(Q
fz[dlm AN I NE AP

[Xl, X, in QAJ

e xan@. o
15 o)™

= lim
k—>+00

If X is any point of A,, other than O, write
AX)=(2y, ... Ta)y

so that A(X) is the highest common factor of the coordinates of the point X. Then
it is easy to verify that, if x4 denotes the Méobius function,

r| P, s| P Y, ¥, in QA, ]
2 [r>0,s>o]”(’)”(s)z[dim (Y, ¥y —2) ¢ Yoot

.3 [Xl,XginQAo ] [r]P,sIP
dim (X;, X,)=2 X,/r, X/sin QA,

A [ T B

]M(T)#(S)Q(prz)

dim (X, X,)= TIZ QX))
s|P
x {2 [SM(Q Xz)] M(s)}e(xu X,). {50)
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But, if U is any point of A,

r| P
2 [r[l(U)} pi) =r|<z<%), P)’u(r)

r| P 1, if Uisin A{,
2 [ ]/»(r) = { :
r|A(U) 0, otherwise.

B {1, it (A(U), P)=1,
o, if (A(U), P)>1.
So

Thus the sum (50) reduces to

s [XI,X2 in QAf

X,, X,).
dim(Xl,X2)=2]Q( 1 Xs)

Hence, using Theorem 3,

X1, X, in QA(I; ]
fz [dim Xy, X,) =2 0 (X;, Xp) dp(Q)

TIP SIP YlszinQAo
fz[r>0 s>0] (T)M(S)Z[dim (Yy, Yz)=2]g(rY1’8Y2)d’u(Q)

P, s|P Y,,Y,in QA
_3 [Pl ] ") p(s) fz[ " ](rYl,sn)du(@)

[r>0,5>0 dim (Y, Y,)
rr| P, s| P
=2 r=0 8>0]“(r)ﬂ(s)ff@(le,sYg)dYIde
rrIP,SIP -
=z LT>0 8>0]‘u(r)‘u(s)r 8 ffg(xl,XZ) d.deX2
r]P . 2
- Zl:fr>0:|’u(r)r } J\JVQ(XI’ X2)dX1dX2.
Here I
L PETEIG ae
Z[r>0]y(r)r —>r§1,u(r)r @)’
as k— 4+ oo. So, by (49), (51) and (52)
X,, X, in QA ] f
fz[dlm (X, Xp)=2 (X1, Xp) dp(Q) = (C(n f 0(X;, X,)dX,dX,.

A precisely similar argument shows that

fz [X, in QA¥] o (X;, X;) dp(Q) = 4%,) fe(xl,xl)dxl,

19— 553810. Acta Mathematica. 94. Imprimé le 16 décembre 1955.
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(51)

(52)

(53)

(54)
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fZ[Xl in QA:]@(X17 - X)) du(Q)= %n) f@(xp -X,)dX;. (55)

Alternatively these results may be deduced from the result

JZ[XinQA(’f]g(X)d‘u(Q)=%n)fg(X)dX (56)
F
proved by Siegel' for a Riemann integrable function, first extending the result to
functions, which are not necessarily Riemann integrable, by the standard method
used in the proof of Theorem 3.
Since the sums (47) and (48) are equal, the required result (12) follows from (53),
(64) and (55).

8. Before we proceed to the proof of Theorem 6, it is convenient to give in
this section a simple lemma connecting certain integrals taken over the space of all
linear transformations and over the space of all linear transformations of determi-
nant 1. Here it is convenient to use C to denote the cone of all linear transforma-
tions €, such that the transformation {d(Q)} """ Q of determinant 1 lies in the

fundamental region F.

Lemma 2. Let g(A) be a non-negative lattice function such that the function
o (QA,) is Borel measurable in the space of linear transformations Q. Then for any

positive number N

Qin C
f[OSd(Q)SN]Q(QAO)dQ

w1 ) fv"-l { f Q" QA dp (@) dr, D)

with the convention that both sides may have the value + oo,

Proor. We obtain the result, by using the definition for

[e0M" QA du(Q),

changing the order of integration in the right hand side of (57), making the sub-
stitution » = 14 (), changing the order of integration, making the substitution

1 loc. cit.
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Q=2"Y"Q* and changing the order of integration again. It is easy to justify these
operations as the function g (QA,) is non-negative and Borel measurable; in par-
ticular all the integrals will be properly defined, although they may have the value

+ oco. Carrying out this programme, we have

N
fv"_l {fg " Q Ag) d,u,(Q)} dy
0

F

_ i o [ [EC 0 M {A( QY " QA 40! dv
flrseffoe, ) |

1<d@<1
.
=xf [?sn;(iz)g 1] {Of”n_l@(”l’" {d(Q)}‘l’”QAo)dv}dQ
QinC e
=”f [%Sd(Q)Sl] { Of lnfl{d(Q)}"e(ll’”QAo)dz}dQ
2y
- xof U [?siz(g)s min {1, N/A}] A} 0 A" QA) dQ} da
ex L
B %of {f [?}.SH; (OQ*)Smin 0, N}] ATTHAQN)" 0 QT A) dQ*} i
Q*inC 2o
- ”J [0 <d(Q%)< N] {d(fm amrHd @y da} 0 (Q* Ag) Q¥

—{1 ® }f[0<1;1(§02* <N] (Q* A,) dQ*.

This proves the lemma.

9. In this section we show how Theorem 5 can be combined with a result of

Siegel (the special case of Theorem 4 when k=1) to give a

Proor or THEOREM 6. First suppose that the integral

[ex)ax
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is finite. Then, by Siegel’s result! (which is also the special case k=1 of Theorem 4),

we have
[ 2,0 X dn@
=0(0)+ [o (" X)dX
=0(0)+v*[o(X)dX,

for all »>0. It follows, by Lemma 2, that

f[g in ¢ ] X140
0<d(Q)<N XE%A..Q( )

n ni1 Nn Nn—l
= - {1-07 {—n*@(O)Jrn_lfe(X)dX}’

for each N>0. So, the right hand side being finite, it follows that the sum
0 (X) (58)

XQA,
is finite for almost all Q in ¢ with
0=<d(Q)<N.
Since this holds for all N >0, the sum will be finite for almost all Q in C. But

every () which is not singular is of the form Q'Y where ¥ is an integral uni-

modular matrix and Q' is in C. Since, then
2 eX)=_2 e(X)
X0, XeQ' Ay

while there are only a countable number of integral unimodular matrices ¥, it follows
that the sum (58) is finite for almost all Q.
Now suppose that the integral

Je(Xx)dx

has the value + co. Since g (X) is bounded, it is clear from homogeneity considera-

tions, that we may suppose that
0=p(X)=<1 (69)

for all points X. We consider a modified function gz (X) defined by
er(X)=p0(X), if |x|=R, i=1,...,n,

or {X)=0, otherwise.

1 Joc. cit.
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Write
1
mp = C——(n) fQR (X)dX.

mp—>+oco as RB—+ oo,

Then,

For each positive » and R we consider the integral

[CS ent™X) =y ma) dp(Q)

F XeQAO

= [ 3 00" Xy)er (" Xy) dp(Q) -

F X eQAg
X;e QA(‘;

— 29~ mR_]’ > er("X)du(Q)+
FXeQAO
+ v m%.

Now, by the extention of Siegel’s result (56), used in the proof of Theorem 5, to the

case of a Borel measurable function, we have

> Jon r (" X)du(Q)

XeQA

- C_<17z) or V" X) dX

= 'V_l mpg.

Also, by Theorem 5,

> Lor (Y " X1) 0 (0" X,) du (Q)
XleQAO

X;e QAO

(c:(n) HQ 0" X1) 0r (017 Xp) X, d X, +
+ f W X) g (" X) dX +

C_l— 05 (/" X) g (—¥'" X) dX

b, 1 o
. 2mn+meR(X){gn(X)+Qn( X)} dX.
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Thus, combining these results and using (59), we obtain

( 2 er0™X)—y 'mp) du(Q)
J XeQA]

=;Z%JQR(X){QR(X)+@R(—X)}‘1X
< 2y tmg.

Now, using Lemma 2, we have
Qin C mp )2
X) - dQ
f[OSd(Q)SN] (xE%A;QR( ) a(Q2)

r Rt
=nx’{l—(%)}16fv I{J( > er("X)—v ’ma) d,u(Q)}dv

XeQAa
N
Sax ' {1-@)"} f2v"’2mR dv
o

Nn—l

=2nx (1=

Mg,

for all N>0.
Now, suppose that for some positive numbers ¢, N, M there is a measurable
subset C, of the intersection of ¢ with the set of Q with
0<d()<N,

with measure £ and such that

2 e(X)sM,
XeQAy

for all Q in C,. Provided R is so large that

mp / N > M
it follows that, for all Q in C,,

meg mp
— XV> — —-M>0,
TR i

Qin ¢ mp \®
f[OSd(Q)SN] (xe%ASQR(X)_ 3@) 42

so that
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Thus
m 2 B B Nn~1
s(f—ll[) < 2nx ' {1- )"} ln—lmR'

But this cannot hold for large values of mp. This contradiction shows that the set
of Q in C, such that
0<d(Q)<N,

2 eX)=M,
XeQAy
is of measure zero for all positive numbers N, M. Consequently, the set of all Q

in C, for which the sum

2 e(X)

XeQAg

is finite, is of measure zero. It follows, by the argument used before, that the set

of all Q, for which this sum is finite, is of measure zero. This completes the proof.



