
MEAN VALUES OVER THE SPACE OF LATTICES 

BY 

C. A. ROGERS 

in Birmingham 

t .  Various methods have been used for calculating the mean value of a func- 

tion, defined for all lattices of determinant  1, over some or all the lattices of de- 

terminant  1. I t  is accepted tha t  the most natural  way of calculating such an average 

is in terms of the invariant  measure used by  Siegel. 1 However, the averaging methods 

used by  Rogers 2 and by  Cassels a are more convenient to use, while the methods used 

by  Mahler, 4 by  Davenpor t  and Rogers "~ and by  Macbeath and Rogers e are more ap- 

propriate for the special problems considered. The method used recently by  Rogers 7 

has proved to be particularly convenient. The first object of this paper is to establish 

a close connection between this averaging method and Siegel's method, but  while we 

will Confine our at tention to the relationship between this particular averaging method 

and Siegel's method, it will be clear from the nature of our proofs tha t  the averaging 

methods mentioned above, except those used by  Mahler, and by  Davenpor t  and Rogers, 

will s tand in a similar relationship to Siegel's method. 

Let  A = A ( 0 1 ,  02 . . . . .  0~-1, ~o) denote the lattice generated by  the points 

A 1 = ((D, 0 . . . . .  O, 01 co n + l ) ,  

A2 = (0, ~ . . . . .  0, 03 ~o-~+1), 

A ~ - I =  (0, 0 . . . . .  co, 0n 1 ~ n+~), 

A n = (0,  0 . . . . .  0 ,  (L)--n+l). 

1 C. L. SIEGEL, Annals o/ Math., 46 (1945), 340-347. We assume tha t  the reader  is famil iar  at  

least wi th  pages 341 and  342 of Siegel's paper .  
2 C. A. ROGERS, Annals o/ Math., 48 (1947), 994-1002, and  a paper  to be publ ished in the 

Phil. Trans. Royal Soc. (1955). 

a j .  W. S. CASSELS, Proc. Cambridge Phil. Soc., 49 (1953), 165-166. 

4 K. I~AHLER, Duke Math. Jour., 13 (1946), 611 621. 

5 H.  DAVENPORT and  C. A. ROGERS, Duke Math. Jour., 14 (1947), 367-375. 

A. 1~. MACBEATH and C. A. ROGERS, to appear  in the Proc. Cambridge Phil.  Soc. 
7 loc. cir. (1955). 

1 7 -  553810. Acta Mathematica. 94. Imprim6 le 15 d6cembre 1955. 
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Let  ~ (A) be a function defined for all lattices A of determinant  1. Then the mean 

value in question is defined to be the limit 

1 1 
fa ~ 

lim | ... j ~  (A(01 . . . . .  On_l,a)))dO1...dOn_l, (1) 
o J - + + 0  J J 

0 0 

if this limit exists, and will be denoted by  

MA [e (A)]. (2) 

Siegel's mean value for such a function ~ (A) is taken to be 

f ~ (~ i0) d~ (~), 
F 

where A 0 denotes the lattice of points with integral coordinates, ~ denotes a linear 

transformation of determinant  1, F is a certain fundamental  region in the space of 

linear transformations of determinant  1, defined by use of the Minkowski theory of 

the reduction of positive definite quadratic forms, and # (~) is the invariant  measure 

on the space of linear transformations with determinant  1, normalized so tha t  

f d # (~) = 1. (3) 
F 

In  a manuscript  (which I do not intend to publish) I have shown that ,  if ~ (A) 

is a continuous function of A vanishing outside a compact set of lattices, then the 

mean value M A [~ (A)] will exist and will have the value 

f Q (~ A0) d/~ (~)); (4) 
F 

the proof leads to a determination of the normalizing factor for the measure /t (~)) 

independent of Siegel's. But,  in this paper, it is more convenient to confine our 

at tention to non-negative functions Q (A) which can be proved directly to have a cer- 

tain invariance property.  We shall consider a function ~ (A) with the property tha t  

the mean values 

MA [e (~ A)] (5) 

exist and have the same value for all linear transformations g2 of determinant  1. 

I t  will not be difficult to prove that ,  if ~ (A) is such a function and is Borel meas- 

urable in the space of lattices of determinant  1, then 

MA [q (A)] = f e (~  A0) g # ('Q)" (6) 
F 
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Since the mean value (5) is often easier to evaluate than the integral (4), the 

result (6) is useful for evaluating the integral (4). We use this method to evaluate 

the integral (4) when ~ (A) is taken to be a sum of the form 

0 (X, . . . . .  Xm), (7) 
X l ,  ..., X m 

where 1 <_m<_n-1 ,  and X,, X2 . . . . .  X~ are restricted to be linearly independent 

points of A, and perhaps also restricted so that  certain rational linear combination 

of X , ,  X 2 . . . . .  Xm are also points of A. In  the special case, when the only restric- 

tion on X,, X2 . . . . .  Xm is that  they should be linearly independent points of A, the 

result reduces to the formula 

f ~ e ( ~ X l  . . . . .  ~ 2 X m ) d ~ ( ~ ) = f . . . f o ( x l  . . . . .  Xm)dX, . . .dX,~,  (8) 
F x, . . . .  , x  m 

stated by Siegel* without proof. I t  seems likely that  the more general result could 

also be proved by Siegel's methods, but  this is beyond me. 

By taking suitable combinations of sums of the type (7), where X 1 . . . . .  Xm are 

restricted in suitable ways, we can build up a sum of the type (7) where X1 . . . . .  Xm 

run independently over all the points of A. This process enables us to prove the 

following theorem. 

THEOREM 4. Let o ( X ,  . . . . .  Xk)  be a non-negative Borel measurable /unction in 

the n k-dimensional space o/ points ( X  1 . . . . .  Xk).  Then, if 1 <_ k <_ n - l, 

Y~ e (X~ X~) d ~  (~) 
X , ~ A o ,  . . . ,  X k E ~ A  o 

= 0 ( 0  . . . . .  0 ) - ~  f "'" f e  ( X l  . . . . .  X k ) d X  1 ... d X k +  

+ ~ ~ "e--2" em]n ~ d ~ l x i  . . . . .  ~=t P ~ d X ,  ... d X m ,  (9) 
(~;,~)q-i q "'ql "'" ~\~=i q 

both sides perhaps having the value + o~, where on the right the outer sum is over all 

divisions (v; t~)= (v, . . . . .  urn;/~, . . . . .  /~k-m) o/ the numbers 1, 2 . . . . .  lc into two sequences 

v, . . . . .  Vm and /~, . . . . .  /~k-m, with 1 <_m<_k-  1, 

1 - < v , < v 2 < ' "  <vm_<k, 

1-</h </~2 < "" </~k m<--k, (10) 

vi+~as, if l<_i<_m, l < _ j < _ k - m ,  

*loc. cit. (347). 
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where the inner sum is over all m • k matrices D, with integral elements, having highest 

common /actor relatively prime to q, and with 

(11) 
J d~,j=O, if # j<v , ,  i = 1  . . . . .  m , j = l  . . . . .  k - m ,  

and where 

e, = (e~, q), i = 1 . . . . .  m, 

e z . . . . .  em being the elementary divisors o/ the matrix  D. 

I /  in addition o~ (X1 . . . . .  Xk)  is bounded and vanishes outside a bounded region o/ 

space, and i/  also n >_ [1 k 2] § 2, then both sides o/ (9) are /inite. 

This result  is clearly an improvement  on the more restr icted result 1 I obtained 

previously using the mean  value M A. Unfor tuna te ly  the r ight  hand  side of ( 9 ) m a y  

be expected to diverge when n is too small in comparison to  k. I n  par t icular  the  

r ight  hand  side of (9) will diverge when n = 2, k = 2 and ~o (X1, X2) > 1 for all X1, X 2 

sufficiently close to O. I n  this case the divergence can be eliminated if Xx, X 2 are 

restr icted to be primitive points of the lattice ~ A 0. We prove the following result. 

T H E O R E M  5. Let  ~(X1,  X2) be a non-negative Borel measurable /unction in the 

Then, i/ n >_ 2, 2 n-dimensional space o/ points (X1, X2). 

/ 
F 

~ (X1, X2) d ~  (~~) 
X~ E ~ A~ 

&/ &/ -~- 0 (XI '  X1) d X 1 + 0 (Xl ,  - X l )  d X l ,  (12) 

where Ao is the set o/ primitive points o/ A 0. 

We use this result  to  prove the following theorem closely related to well-known 

results due to Khintchine  and others in the metrical  theory  of Diophant ine  ap- 

proximation.  2 We say tha t  a result holds for almost  all linear t ransformat ions  

(now not  necessarily of de te rminant  1), if the corresponding matrices (co, j) form a 

1 loc. cit. (1955), Theorem 3. 
2 See J. K. KOKSiVIA, Diophantische Approximationen (Berlin, 1936), Chapter III ,  30 and Chap- 

ter V, 11; see also J. W. S. CASSELS, Proc. Camb. Phil. Soc., 46 (1950), 209-218, Theorem II.  These 
results may be regarded as modified forms of Theorem 6 where a different measure is used and the 
linear transformation ~ is restricted to be of a special type. 
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set of measure zero, when regarded as points ~ with coordinates (O)11 , 0)12 . . . . .  O)nn) 
in n2-dimensional Eucl idean space. 

T H E O R E M  6. Let ~ (X) be a bounded non-negative Borel measurable /unction de. 

fined /or all points X o/ n-dimensional space (n >_ 2). Then the sum 

e (x) (13) 
X r ~Ao 

is finite /or almost all ~,  i/ the integral 

is finite; and the sum 

f 0 (X) d X (14:) 

Z Q (x), (15) 
X e ~ A ~  

where Ao is the set o/ primitive points o/ A 0, is infinite /or almost all f2, i/ the in- 

tegral (14) is infinite. 

2. E v e r y  lattice A of de terminant  1 can be expressed uniquely in the  form 

~A0 ,  where A 0 is the lattice of points with integral coordinates and ~ is a linear 

t ransformat ion  or mat r ix  ~ =  (0)o) of de te rminant  1 in the fundamenta l  region F .  

I f  G is a ny  set of matr ices ~ with de terminant  1, we use G* to  denote  the corre- 

sponding set of all matrices ~*=~t~2 where ~2 is in G and ~_<~t~< 1. We call G a 

Borel set if G* is a Borel set, regarded as a sub-set of the n%dimensional space of 

points ~* = (o)11, 0)12 . . . . .  0)n n), and in this case, following Siegel, we take  the  measure 

/z (G) to be the product  of the Lebesgue measure of G*, regarded as a sub-set of the 

n%dimensional space, with a normalizing fac tor  ~. We say tha t  a set of latt ice A 

is a Borel set, if the  set of corresponding matrices ~ = ( 0 ) i j ) i n  F is a Borel set 

according to this definition, and we define the concept  o f  a Borel measurable  func- 

t ion in the space of the lattices in the corresponding way. Wi th  these definitions 

and the  nota t ion  in t roduced in w 1, we can prove our  first result. 

T H E  ORE M 1. Let ~ (A) be a non-negative Borel measurable /unction in the space 

o/ lattices o/ determinant 1. Suppose that the mean values 

MA [~ (~ A)] 

exist and have the same (finite) value /or all linear translormations ~ ol determinant 1. 

Then 

f e (~  A0) d/~ (~) = M h [~ (A)]. 
F 
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P R O O F. The assumption tha t  the ~ (A) is a Borel measurable function in the space 

of lattices of determinant  1 means tha t  the function ~ (s is a Borel measurable 

function of ~ defined for ~ in F. The function Q (A) need not  be defined for lat- 

tices A of determinant  other than 1; we can define or re-define ~ (A)for  such A by  

q (A) = q ((d (A)} iln A), 

where d(A) denotes the determinant  of A. Then it is clear tha t  Q (g2A0) will be 

Borel measurable for s in F, if and only if 0 (gs A0) is Borel measurable for ~* 

in F*. Now the set F* of all linear t ransformations s with a positive determinant  

in the closed interval [1, ]] can be expressed as the union 

F * =  U F* ~F, 

where tF runs through all matrices with integral elements and determinant  1. Since 

~F A0 = A0 

for any such ~F, it follows tha t  Q (s Ao) is Borel measurable for s in F*. 

For any fixed positive value of co, consider the function 

e (s A (0, (o)) 

defined on the Cartesian product P*xC where C is the set of all 0= (01  . . . . .  0n 1) 

with 
0_~01_<1 . . . . .  O~--On 1<__1. 

We regard F*• as a subset of the (n 2 + n - 1 ) - d i m e n s i o n a l  space of all points 

(~ '~*,  O )  = (0 )11 ,  012,* �9 . .  , O)n n ,  O1 ' ' .  , On 1).  

Write 

so tha t  

0 = 0 (O, ~o) = l 
os 0 ... 0 0 / 

0 ~o ... 0 0 

0 0 ... e) 0 

(D - n + l  0 1  (.0 n + l  0 2 . .  " O) - n + l  On-1 (-0 - n + i  

A (0, ~o) = 0 (0, o0) A0. 

Now as (g2*, O) varies continuously in F* • C the product s | (0, a)) varies continuously 

in F*. So, if E is a closed sub-set of F*, then the set of points (s O) in F*•  

such tha t  f~*O(0,  w) is in E, is closed. I t  follows that ,  if E is any Borel set of 

points of F*, then the set of points (g2*, 0) of F * •  such tha t  ~ * 0  (0, r is in E 

is a Borel set. Now, as o(~*A0) is a Borel measurable function of s in F*, for 
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each c the set of f~* in F*, for which 

0 (P* Ao) < c, 

is a Borel set. Thus the set of points (s v~) of P*• C, for which 

0 (f~* O (~, ~) Ao) < c, 

is a Borel set. Thus the function 

0 (~* A (e, co)) = 0 (a* 0 (#, ~) Ao) 

is a Borel measurable function in F*• C, regarding this set as a subset of (n 2 + n - 1 ) -  

dimensional space. 

Consider the function 0n (A) defined for all lattices A and for all positive in- 

tegers h by 

t9 (A) '  if o(A)-<h, (a) Oh 
h , if 0(A)>-h" 

As O (~* A (v ~, co)) is Borel measurable in P* • C, it follows that  On (s A (v ~, w)) is also 

Borel measurable in F*• Further  Oh (~*A (v ~, ~o)) is non-negative and bounded in 

F*• Again as F has measure 1 the set F* has Lebesgue measure u -1. Also C 

has Lebesgue measure 1. Thus, by  Fubini's theorem, the set F*•  C has the finite 

Lebesgue measure ~-1. Hence 0 h ( ~ * A ( v  ~, co)) is integrable in the Lebesgue sense 

over the set F*• and, by  Fubini's theorem, the (n2§ - 1)-dimensional integral 

f f  Oh (a* A(v~, co))df~*da 
F * x  C 

* d *  d *  = / . . - f 0 h ( ~ * A ( <  ~ ) ) a ~ l  ~12 ... ~nng0, ... g0n_, 
F * x C  

can be expressed in the alternative forms 

] { / 0h (a*A(<  ~))~e} ~a*, 
F* C 

f { f0n(a*A(< ~))da*} ~e. 
C F* 

Now for any v~ in C, we have 

f 0h (~* A (0, ~)) d~* 
F* 

= f 0h (f~* 0 Ao) d ~2" 
F* 

= f 0n(~*Ao) d~*,  
F* O - I  

(16) 

(17) 
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on changing the variable and remembering that  0 = 0  (0, co) has determinant 1. 

But it follows, from known properties of the fundamental domain F, that  F,  and 

similarly F*, can be split up into a finite number of disjoint Borel measurable sets 

FI, 2'~ . . . . .  Fk, and F~, F2, ..., FT, 
such that  

k 

F O -  I = U F i  KI2i , 

k 

F* O-1= U F:T~, 

where tI~x, tip 2 . . . . .  ~Fk are matrices with integral elements and determinant 1. So 

f o b  (~2" Ao) d 
F * O - 1  

= ~ Oh (f2* Ao) d a*  

/ ~  W i 

= ~ Oh (f~* W, Ao) d ~* 
i = l  . 

e~ 

= ~ Oh (f2* Ao) d ~* 
F~ 

= f Oh (~* Ao) d ~*. 

Combining these results, we see that  

f Oh (~* Ao) d ~* = f Oh (a* A (0, co)) d ~*, 
.F* F*  

for any ~ in C, so tha t  

foh(a*Ao)aa*= f{ fob (a*ao)ea*} ee 
F* C F* 

= f { f o h ( ~ * i ( ~ , c o ) ) d a * } d O  
C F* 

= f (fo (a*A(o, 
F* C 

(is) 

using the equality o f  (16) and (17). 
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This result (18) holds for all o)>0. Also 

0_< f~h ( n ' A @ ,  ~o))d0_< fhdv~=h.  
C C 

f r (~*A(O, co) )d~ [ f e(~2*A(O, (o))d~Jh, 
C C 

where we use the expression on the right hand side to denote 

Since the function 

min (h, f e (~* A (+, ~)) d +}. 
C 

Q (~* A (~, ~o)) 

is Borel measurable in F* x C, it follows that  

c 

is Borel measurable in F*. So 

fo~ (a* Ao) e n* _< f [fe(a*A(O, ~))eo]hea*, 
F* F* C 

for all o) > 0. 

Now, writing 

r~ = (~ (a*)}- , -  ~*, 

where d (~*) is the determinant of ~*, we have 

f ~ ( ~ * h ( 0 ,  (o)) d O= f e (~ i (O, o~)) d O. 
C c 

By hypothesis, the mean value 

M A [~ (~ A)] = lim f e (~ A @, (o)) d 
(a--~+ 0 

exists and has the value 

MA [~ (A)]. 

So, provided h > MA [~ (A)], we have 

[ f ~ (~* A (0, ~)) d OJh -~ MA [~ (h)] 
C 

as (o-~ + 0. By the theorem of bounded convergence, it follows that  

257 

(19) 
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f [ f  e (s A (0, w)) d0]h d s --~ f M A[e (A)] d s 
.F* C F* 

= ~ 1 M A  [q (A)] 

as co-+ +0,  provided h>M A [~ (A)]. I t  follows from (19) that  

f qh (~* Ao) ds __ ~-1MA [q (A)] (20) 
F* 

for all h_> 0. This shows that  the function ~ (~* Ao) is integrable over .F* and that  

f e (s A0) d ~* ~ u 1Ma [~ (A)]. (21) 
F* 

Since this integral is finite, we have, as in proof of (18), 

fQ(s f {fQ(a*A0)ea*} 
av* C F* 

C F* 

As q ( ~ * A ( 0 ,  m)) is Borel measurable over F*xC and is non-negative, it follows 

from l~ubini's theorem that  

f{ fo(a*A(o, 
C F*  

= f 
.F* C 

both integrals being finite. :But 

f e (s A (0, w)) d O~MA [q (A)] 
c 

as ~-+0. So, by 1%tou's lemma, 

~-1MA [~ (A)] = f Ma  [Q (A)] d ~* 
F* 

<o-.+olim ~.f {f ~(a*A(O,~o))dO} da* 

= f q (~* Ao) d ~2". 
F* 

(22) 

Combining the results (21) and (22), we have 

f 0 (~* Ao) d ~* = u ~ MA [~ (A)]. 
F* 
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So, by definition of the measure /z (~), we have 

fe  (~ A0) d # (~) = ~ f e (a* Ao) d ~* 
F F* 

= MA [e (A)], 

as required. 

3. In this section we investigate the mean value J]/A [0 (A)] in the case when 

e (A)= ~ e (X] . . . . .  Xm) 

and X 1 . . . . .  Xm are restricted to be linearly independent points of A, perhaps satis- 

fying certain auxiliary conditions. I t  will be convenient to write conditions of summa- 

tion in brackets to the right of the summation sign, and to use dim (X 1 . . . . .  Xm) 

to denote the dimension of the linear space generated by the points X 1 . . . . .  X~. 

THEOREM 2. Let Q ( ~ ) = ~  (X 1 . . . . .  Xm) be a Riemann integrable /unction over the 

n m-dimensional space o/ points 

: ~ =  (X1 . . . . .  X,O = (xl ~) . . . . .  x ~  ) . . . . .  x(~ ~)  . . . . .  x(nm)), 

where 1 <_ m <_ n -  1. Let q be a positive integer and let C be an integral m • h matrix 

C = (c~j) ,  

where h>_ O. Then the mean value M h [~)(A)] o/ the /unction 

X 1 . . . . .  Xm in A /  

e (A)=Z dim (X1 . . . . .  X~)=m ] q(Xx . . . . .  X~) (23) 

~l(ci j /q)  X ,  in A J 

exists and has the value 

(N<c, q)]~ i A[Q(A)]= \ qm ] e ( ~ ) d  

where N (C, q) is the number o/ sets o/ integers (a 1 . . . . .  am) with 

O < a l  < q . . . . .  O<a,~ <q,  

~ c ~ j a i ~ O ( m o d q ) ,  j = l ,  . . . , h .  
i=1  

Here N (C, q) is to be given the value qm in the case when h ~ O .  
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P R O O F 3  The condi t ion  t h a t  @(~) is a R i e m a n n  in teg rab le  func t ion  over  t he  

whole space implies  t h a t  the re  is a n u m b e r  R so large t h a t  ~ ( : ~ ) = 0  unless  

]x(~)]<R, i = 1  . . . . .  m, r = l  . . . . .  n. 

W e  inves t iga te  t he  mean  va lue  

1 1 

f---  fe  (A(01 . . . . .  0~_1, ~))d01 ... dO~_l 
0 0 

on the  a s sumpt ion  t h a t  ~o is smal l  in compar i son  to  R -~+1. The  genera l  po in t  of 

t he  l a t t i ce  A (01 . . . . .  0~-1, co) has  coord ina tes  

(~Ul . . . . .  o~u~_l ,  o~ n §  ( O l u l  + " "  + 0 ~  lU~-I+U~}) 

where  ul ,  u 2 . . . . .  u~ arc  integers .  I t  is convenien t  to  wr i te  

u = ( u l  . . . . .  u~ 1), 

= (01 . . . . .  0~_1) ,  

zSu=Olul +.. .  +0~ lu~-1, 

so t h a t  the  genera l  po in t  of A (01 . . . . .  0~ 1, co) t akes  the  form 

( ~ u ,  ~ - ~ + l { ~ u + u ~ } )  

where u belongs to  t he  l a t t i ce  L of po in ts  in ( n - 1 ) - d i m e n s i o n a l  space wi th  in t eg ra l  

coordina tes  and  u~ is an  integer .  W i t h  th is  n o t a t i o n  the  con t r ibu t ions  to  the  sum 

(23) m a y  be spl i t  up  in to  two types :  t he  con t r ibu t ions  from poin ts  X1 . . . . .  Xm, such 

t h a t  the  corresponding po in t s  u 1 . . . . .  um are  l inear ly  independen t ;  and  the  contr i -  

bu t ions  f rom poin ts  X 1 . . . . .  X~,  which are  l inear ly  independen t ,  a l t hough  u 1 . . . . .  u~ 

are  l inear ly  dependen t .  Our  f irst  ob jec t  is to  p rove  t h a t  the re  a re  no non-zero  con- 

t r i bu t ions  of t he  second type .  

Suppose  t h a t  X 1 . . . . .  Xm are  po in t s  of the  l a t t i ce  A = A  (01 . . . . .  0 ,-1,  w) such t h a t  

(X1 . . . . .  X m ) # 0 ,  

and  the  corresponding po in t s  u 1 . . . . .  Um are  l inear ly  dependen t .  W e  proceed to  prove  

t h a t  X 1 . . . . .  X~  are  l inear ly  dependen t .  I f  the  r a n k  of the  m a t r i x  

(~ (0~ (24) err ) l < t < m  
l < r < n - 1  

I This  proof  is v e r y  s imi l a r  to  a proof  I h a v e  g iven  before for a s imi l a r  r e su l t  loc. cir. (1955); 

b u t  the re  are  a n u m b e r  of differences wh ich  m a k e  i t  b e s t  to  g ive  all  the  de ta i l s  up  to  a ce r t a in  
poin t .  
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were less t h a n  m -  1, t hen  the  r a n k  of the  m a t r i x  

(D q ~ )  . . .  

. ~ 1 7 6  

0 ~ .  (2) V~ 1 , ~  

U (2) ~ - " + l { ~ u ~ +  . }. . .  

~Im) ) 

. . .  

r U (rim_) 1 

(D - n + l  { 0  U m  q-U(n  m)} 

would  be  less t h a n  m a n d  the  po in ts  X 1 . . . . .  Xm would  be l inear ly  d e p e n d e n t  as 

required .  So we m a y  suppose  t h a t  the  r a n k  of the  m a t r i x  (24) is m - 1 .  W e  m a y  

suppose,  w i thou t  loss of genera l i ty ,  t h a t  the  minor  

(U (i)~ 
r l l < i < _ m - 1  

l < r < m - 1  

is non-s ingular .  

m a t r i x  

Le t  b 1 . . . . .  bm be the  cofactors  of the  e lements  u(r 1) . . . . .  u(r m) in the  

[ ui" ~7) ... ~i ~) ) 

\u(~" uT) . . .  u(~ m) / 

Then,  as 

2 . . . . .  n - 1, i t  follows t h a t  

~ b ~  u(~ ~) = O, 
i = l  

Thus  

b 1 . . . . .  bm are  i n d e p e n d e n t  of r, while this  m a t r i x  is s ingular  for r = l ,  

r = l ,  2, . . . , n - - 1 .  

~ b ~  ui = o .  (25) 
i = 1  

F u r t h e r  b 1 . . . . .  bm are  in tegers  wi th  b~=~0 a n d  using H a d a m a r d ' s  i nequa l i t y  

Ib, I--(m- 1) (m ,)/2 [~<m~mX i~(/)l]m_~. 
l < _ r < _ n - 1  

Since we are  suppos ing  t h a t  

( x1  . . . . .  Xm)+O, 
i t  follows t h a t  

I~(/>l=l~r'>t<R, i = l  . . . . .  m, r = l  . . . . .  ~ -a .  
Thus  

Ib~ l<(m__l ) (m-1) /2Rm- lco  re+l, i = 1  . . . . .  m. 

F u r t h e r  the  in tegers  u(~ ) . . . . .  u(~ m) m u s t  be such t h a t  

I~-"+l{ou,+u~))l<R, i=a . . . . .  m. 
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Consequently, using (25) 

C. A. ROGERS 

im IL I 
< ~ Ib, I co"- 'a 

t=1 

< m (m-- 1)(m-1)/2R m co n m 

< 1, 

provided m < n  and co is sufficiently small. Hence 

b~ u~ ), 
i=l  

being an integer, is zero. This, together with (25), implies tha t  the points X 1 . . . . .  Xm 

are Iinearly dependent. 

I t  follows from the result of the last paragraph that ,  provided o) is sufficiently 

small, 

[Ul . . . . .  Um in L ] ~ rl (1) u(m' in x 
. . . . . .  integers] 

(A) 5 
kdim (u 1 . . . . .  urn) = mJ l ~  (Cis/q) X,  A J 

X e (0) l t i l ,  O) n + l  {~q. U l  -I- U(n l ) )  . . . . .  (,t) H,m, O) - n + l  { I )  q' U m -I- u(nm))). 

I t  is convenient to use 

to denote 

so tha t  

~l<t<m (Xi)  

(x~ . . . . .  X,~) 

Q(~Ux,  co n + ' { ~ u l + u ~ ' }  . . . . .  coup, c o - n + ' { ~ u m + ~ ) } )  

= el_<,_<m (co u~, co-"+1 {a  u, + u~)}). 

The condition tha t  

~2 (c./q) x~ 
i=1 

should be in A for j = l  . . . . .  h is equivalent to the conditions tha t  

~CisU(ro=-----O (mod q) 

for r = l ,  2 . . . . .  n and j = l  . . . . .  h. So we have 
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(A) = 

[ u z, . . . ,U,n in i 

[,~, (c~j/q)u, in L 
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~l<~<m ((D /$i, CO n + l  { 6  tt~ -~-U(in)}).  

Provided eo is sufficiently small, the integrand here will be zero, unless u ~ , . . . ,  u(~ m) 

are the integers chosen so tha t  

- ~ < v ~  u~+u~)_<�89 i = 1  . . . . .  m. 

Using IIxH to denote x + n  (x) where n (x) is the integer such tha t  

-~<x+~(~)-<b 
this implies tha t  

Consequently 

~ ( A ) = ~  

o - , + u ~ ) = l l ~ - , l l ,  i : 1  . . . . .  m. 

--U 1, . . .  ,Urn in L 

dim (uz, . . . ,  u m ) = m  

~ (cij/q)u~ in L 

We now consider the integral 

1 1 

f ~ ( A l d ~ =  f . . .  f q ( A ( 0 z  . . . . .  0,_1, o~)1 dO~ ... dO,_1. 
0 o 

We adopt the convention tha t  conditions 

ets after the integral sign. Since the sum 

terms, we have 

f q ( A )  d v ~ = ~  

where 

of integration m a y  be placed in brack- 

has only a finite number  of non-zero 

U , . . .  , U r n  in L ] 
~ m (ul . . . . .  Urn) = m  

,~z (cis/q)u, in L 

I (uz . . . . .  urn), (26) 

I (U 1 . . . . .  Urn)  = 

f[. o<o<l 
~ ~ ,  {11 ~ ~, II-  ~ ~ , } ~ o  (mod q) 

_ _ Ql<~<m (~0 ui, ~-n+l ll~ u~ H) d ~. (27) 
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We first suppose tha t  u I . . . . .  um are linearly independent points of L and tha t  the 

points 

(c~j/q) u~, i =  1 . . . . .  h, 
i=l 

are points of L; and we prove that ,  provided o~ is sufficiently small, 

I(Ul . . . . .  Um)=O)m(n-1)N(C'q) f ; qm ...  ~l~i~rn ((,0 U~, ~t) d ~1 . . .  d ~m. 

- o o  - o o  

I t  is convenient to write 

(28) 

so tha t  

t~ (~)  = F (01 . . . . .  On-l) 

( Ol<_~<_,n(eOu~, a)-~+~[]vqu~[[), if ~ c~j{[[vqu~[[-vq u~}~-0 (mod q) 

0 , otherwise, 

I(ul . . . . .  U,n)= f F(vq) dv% 
0<0~<1 

Now, if vq = (01 . . . . .  On-l) and vq'= (0'1 . . . . .  0 n - l )  differ by  integers in each coordinate, 

it is clear tha t  

IlO'u~ll=llz~uil[, i = 1  . . . . .  m, 
and also 

} c ,{lle' u ll-e' u,} 

i=1 i 

~-- ~ c,,{[[~u, ll-Ou, } (modq),  
iffil 

as the coordinates of the points 

iffil 

are congruent to zero modulo q. Thus 

F (v q') = F (0). 

This shows tha t  F ( v  q) is periodic in 01 . . . . .  On-1 with period 1. I t  follows tha t  

I (ul . . . . .  urn) is the limit of the mean value of F (v q) taken over any suitable region, 

in the space of points v q, which becomes large in an appropriate way. 
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Since ul . . . . .  U,n are linearly independent, we may suppose that  the determinant 

of the matrix 

(U?) ,<~m 
l<r_~rn 

does not vanish. 

variables 

Consider the transformation from the variables 01 . . . . .  0~-1 to the 

9 ~ = 0 u , ,  i = l , . . . , m ,  

~ =  Oi, i = m + l  . . . . .  n - 1 .  

This is a non-singular transformation. So the region defined by  the inequalities 

I ~ l < O ,  i = 1  . . . . .  n - l ,  

is a parallepiped in the e-space, which becomes large as dp tends to infinity. Also 

where 

a (~1 . . . . .  ~0m) = 

Thus 

F (01 . . . . .  0m) = a (~1 . . . . .  ~m), 

{ Q , _ < , _ < m  
(cou, co-'~+lHg, H), if ~ c , : { ] ]~ ,H-~ ,}~o  (mod q),)  

~=1 

0 , otherwise 

/(Ul . . . . .  u~)= f /~(~)d0 
O_<Oi_<l 

f F(O)dO 

r f d 0 
9~ I-<r 

-- lim 19~ I-< �9 
r f . . .  f d ~ l  . . .  d ~ n - 1  

19~ I<-r 

] . . .  f . . . . .  . . .  
= lira Ir I-<~ 

r f . . .  f d ~ l  . . .  dcpm 
IqJil%0 

(29) 

But,  it is clear from (29) tha t  G (91 . . . . .  ~0m) is periodic in ~01 . . . . .  ~0m with period q. 

Hence 

I (u  1 . . . . .  Urn) = I . . .  G (qh . . . . .  qDm) d q~ . . .  d c:m. (30) qm 
-~ -�89 

1 8 - - 5 5 3 8 1 0 .  Aeta Mathem~ie~. 94. I m p r i m 6  le 15 ddeembre  1955. 
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Now, if a~ . . . . .  am are any  integers and 

% = a , + g , ,  i = l  . . . . .  m,  
where 

- � 8 9 1 8 9  i = 1  . . . . .  m,  
then  

IIm, l l= : , .  ~ , - I I ~ , l l = ~ , ,  i = i  . . . . .  m ,  

so that 
�9 . .  , (D - r * + l  G (~l, ~m) = ~<i<m (co u .  ~),  

if 

~ c i s a i ~ O ( m o d q ) ,  j = l  . . . . .  h, 
t = l  

while 

G (~i . . . . .  ~m) = 0 
otherwise. Hence 

[ a  1 . . . . .  am integers ] ~ f 
O<~a ,<q  I1  !" .. 

1l(2 c o n -  1) 1l(2 m r* - 1) 

I (u,  . . . . .  ~,m) = 5 Ql<~<m (~0 U .  ~0 -r*+~ r dcq  . . .  d~m 

qm . . .  QI~<~ (~0 U,  $~) d $1 "'" d tin, 

_ 1/(2 c o n -  1) 1/(2 ~ n  1) 

where N (C, q) is the  number  of sets of integers a 1 . . . . .  am with 

O<_al < q . . . . .  O<_ am < q ,  

~ c i j a ~ 0  (mod q), 2"=1 . . . . .  h. 
i = 1  

Since 
~l<~<m (co u .  &)= O, 

unless 

I~,l<R, i=1 . . . . .  ~ ,  
it follows t h a t  

I(~1 . . . . .  Urn) =a)m(n 1) N qm .. .  ~l<j<_m(e-OU~, ~i)d~ 1 ... d~m, 

~s required. 

I t  now follows, precisely as in w 5 of m y  previous paper,  1 using the  lemmas of 

w 4 of t h a t  paper,  t h a t  

I loc. cit (1955). 
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converges to 

I 
-Ul, . . . ,Urn  in L 

O (A) d 0 = ~ dim (u i . . . . .  Urn) = m 
tn 

(~./q) ,,~ in L 

qm ! f e(X) 
as co tends  to zero. I t  is perhaps worth  explaining how this  result  is obtained.  I t  

is first shown t h a t  the sum 

I 
-u:, ..., Um in  L ] 
dim (u 1 . . . . .  Um)=m eom(,~ _:)N (C, q) 

qm 
(c~j/q) u~ in L 

-~=i 

may  be completed to the  sum 

:[iUm~_(c~ffq) u~ in (Dm(n 1 ) N ( C ,  q)  
qm -~o "'" ~o@l~m(CO 

with an  error of the  order O (o) n m). The condit ions 

u 1, . . . ,  Um in L, 

Z(c~i/q) u~ in  L, i = l  . . . . .  h 

restr ict  the  point  

I$i, ~i)  d ~1 " ' '  d ~m 

(u:  . . . . .  Urn) : (U lh  , U(.1~1, . ,  U T  ), ('~) ' . . . . . . . .  ~ Un -1] 

in ( n - 1 ) m - d i m e n s i o n a l  space to a cer ta in  sub-lat t ice  of the  lat t ice of points  wi th  

integral  coordinates,  which m a y  be seen to have de t e r mi na n t  

( qm In-1 
N ( ~ ,  q)! " 

I t  follows, by  the theory  of R i e m a n n  in tegra t ion ,  t ha t  the completed sum tends to 

the  l imi t  
oo 

-oo oo 

= (N (c, f \ qm ] _~(~)d3/' 
as eo tends  to zero. This proves the  required result.  
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4. I n  this section we prove a simple lemma, expressing the  number  N (C, q) 

in t roduced  in the  s ta tement  of Theorem 2 in terms of the  e lementary  divisors of 

the  mat r ix  C. 

L E M M A  1. 

where h > O. 

is given by 

Let q be a positive integer and let C be an integral m•  matrix 

C = ( e . )  

Then the number N (C, q) o/ sets o/ integers (a I . . . . .  am) with 

O<_al <q, . . . ,  O<-a,n <q, 

~ e i ~ ' a ~ 0  (mod q), ~'=1 . . . . .  h, 
i = l  

where r= min (m, h) and 

N (C, q)=e le  2 ... erqm-r, 

e~=(ei, q), i = l  . . . . .  r, 

el . . . . .  ~r  being the elementary divisors o] C. 

PROOF.  B y  the theory  of elemelrtary divisors, there are m •  and h• in- 

tegral  un imodular  matr ices S and T such t h a t  

S C T = E ,  (31) 

where E is a diagona] mat r ix  (not in general square) with diagonal elements e I . . . . .  ~ r ,  

where 

r = min (m, h). 

Fur the r  we m a y  suppose tha t  S and T are chosen so t h a t  ~1 . . . . .  er are the  ele- 

me n t a ry  divisors of C. Since T is an integral unimodular  mat r ix  the numbers  

(a 1 . . . . .  am) satisfy the congruences 

~c i ja~ - -O(modq) ,  ~ = 1  . . . . .  h, 
~ - 1  

if and only if t hey  satisfy the congruences 

c~jtj~ a~--=O(modq), / c = l  . . . . .  h. 

So N (C, q) is the  number  of sets of integers (a 1 . . . . .  am) with 
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O<_al< q . . . . .  O ~ a m < q ,  

o,mo  , . . . . .  

i L l - - \ j - - / = l  

Since S is an integral unimodular matrix, the system of congruences 

a ~ - - ~ s o t b g  (modq), i = l  . . . . .  m 
g = l  

establishes a one-one correspondence between the sets of integers (a 1 . . . . .  am) with 

O<_al< q . . . . .  O<_am<q 

and the sets of integers (b 1 . . . . .  bin) with 

O<_bl < q . . . . .  O<_bm <q. 

Thus N (C, q) is the number of sets of integers (b I . . . . .  b~) with 

O<_b~<q . . . . .  O<_bm <q,  

) sgi cij tik bg~0  (rood q), k = l  . . . . .  h. 
g=l i J 

But, by  (31), this system of congruences reduces to the system 

eabg~0 (modq), g = l  . . . . .  r. 

Now it is clear that  N (C, q) is given by 

N (C, q )=e  1 e 2 ... er qm-r, 
where 
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e~=(e ,q) ,  i = 1 , 2  . . . . .  r. 

The aim of this section is to prove Theorem 3 below; we first show that  5 ,  

the result follows from those of sections 2, 3 and 4 in the special case when 

(X1 . . . . .  Xm) is integrable in the Riemann sense, and then show that  this implies 

that  the same result also holds for more general functions Q (X 1 . . . . .  Xm). 

T~EOR]~M 3. Let Q ( ~ ) ~ Q  (X 1 . . . . .  Xm) be a Borel measurable ]unction which is 

integrable in the Lebesgue sense over the whole :~-space. Let q be a positive integer and 

let C be an integral m x h  matrix C ~  (cij), where h>_ O. Then the lattice ]unction 

~ ( A ) ~ Z  dim (X~ . . . . .  X m ) = m  ~(X~ . . . . .  Xm) (32) 

~ (Cij//q) X~ in A 
- i = l  
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is Borel measurable in the space o/ lattices A o/ determinant 1 and 

f Q (~ Ao) d tz (f~) = ~ q q 
F 

where r = min (m, It) and 

e l=(s~, q), i = l  . . . . .  r, 

el . . . . .  sr being the elementary divisors o] C. 

P I~O oF. We first show tha t  the function @ (A) is a Borel measurable function 

in the space of lattices A of determinant  1. We have to show tha t  the function 

I X 1  . . . . .  Xm in ~2A o ] 

e(aAo)= /d]m(Xl ..... Xm)=m,/et, X,1 . . . .  x m /  

k,~l (c,.~/q) X, in ~ A o J 

[ U  1 . . . . .  Um in Ao ] 

= y/dmim (U1, . . . .  U m ) = m  O (f~ U~ . . . . .  •Um), 

L~l  (c~,/q)u~ in A 0 

is Borel measurable in the space of linear transformations f~ of determinant  1. I t  

clearly suffices to prove that ,  for every set of linearly independent points Ui . . . . .  Urn, 

the function @ (f~ U 1 . . . . .  ~) Um) is Borel measurable in this space. Now, as @ (X i . . . . .  Xm) 

in Borel measurable, for each c the set of linear transformations fl* for which 

@ (~-~* U 1 . . . . .  ~2" Um) < e 

is a Borel set n2-dimensional space. Thus the set of all linear t ransformations ~2 of 

determinant  1 with 

@ (~2 U~ . . . . .  f~ Urn) < c (33) 

is a Borel set, when regarded as a subset of n2-dimensional space; and so also is 

the set of all linear t ransformations 

f F  = 2 f2, 

where �89 and g2 is a linear t ransformation of determinant  1 satisfying (33). 

I t  follows, from our definitions, tha t  @ (f2 U i . . . . .  f2 Urn) is a Borel measurable func- 

t ion in the space of all linear t ransformations f2 of determinant  1. So @ (A) is a 

Borel measurable function in the space of lattices of determinant  1. 
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Now, if ~(X 1 . . . . .  Xm) is a Riemann integrable function, so is the function 

(~ X a . . . . .  ~2 Xm) for any linear transformation ~ of determinant 1. So, by Theo- 

rem 2, the mean value M A [p (f2A)] exists and has the value 

where N (C, q) is the number of sets of integers (a 1 . . . . .  am) with 

O<--al < q . . . . .  O<~am <q, 

~ c ,  ja~.~0 (mod q), 7"= 1 . . . . .  h. 
i=1 

Here, by the lemma of section 4, 

where r = rain (m, h) and 

N (C, q) = e  l e  2 . . .  er qm-r,  

e~= (~i, q), i =  l . . . . .  r, 

el . . . . .  sr being the elementary divisors of C. So 

e2 . . .  

Now provided Q (~1 . . . . .  ~m) is non-negative and Borel measurable as well as being 

l~iemann integrable, 1 it follows from Theorem 1 that  

f e (~ A0) # (~2) = MA [~ (A)] d 
F 

as required. 

Now consider a function ~ (~) which is non-negative, bounded, Borel measurable 

and which vanishes outside a bounded region. More explicitly, suppose that  M is a 

constant such that  0 _< ~ (X)-< M for all ~;  and that  a (~) is the characteristic func- 

tion of an open interval I chosen so that  ~ ( ~ ) = 0  for all ~ which are not in a 

1 N o t e  t h a t  a R i e m a n n  i n t e g r a b l e  f u n c t i o n  is n o t  n e c e s s a r i l y  Bo re l  m e a s u r a b l e .  
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Let  ~k (:~) 

teger k, 

closed interval I '  contained in I .  Then, for each positive integer k, it is possible to 

choose a set Ek and a continuous function ~k (~) vanishing outside I ,  such tha t  

(a) I~ ( ~ ) - e ~  (~)] < k  1, if ~ is not in Ek, 

(b) m(Ek)<k -1, and 

(c) 0 _< ~k (~) -< M, for all :~. 

be the characteristic function of the set E~. Then, for each positive in- 

] ~ (:~) - ~k (:~) l < k - ~ a ( ~ )  + 2 M 7:k (:~), 
for all ~ .  

Now Ek can be covered by an infinite sequence of intervals, such that  the sum 

of their measures does not exceed 

m(Ek)+k 1. 

So it is possible to choose continuous non-negative functions ~k~ (:~) each vanishing 

outside a bounded region, and such that  

for all :~, and 

Then 

~ (:~) > ~ (:~) 

f "~ks (~) d~<_m (E,n) + 2 k  -~. 

I e (Y) - e~ (:~)1 -< ~ 1 ~ (~) + 2 M ~ ~ (~) ,  
8 = 1  

for all points (~). 

Define a (A) and Tk~ (A) by analogy with the definition (32) of ~ (A). 

clearly 

I e (A) - ek (A) I_< k-' a (A) + 2 M ~ v~  (A), 

and 

0_<e(A)_<ek(A)+k ~ a ( A ) + 2 M  ~ ~ks (A). 

Then 

(34) 

(35) 

Now the functions qk(~), a(:~), Tks(~) 

functions which are also Borel measurable. 

proved, 

are all non-negative Riemann integrable 

So, by the special result we have already 
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Since 

the function 

f e~ (~ Ao) d ~ (~) = \ q .  ~ .  e~ (~) d ~, 
F 

..... f ~  \q q 
F 

\q q q! d 
F 

~ f "rk8 (:~)d~ <-m(Ek)+ 21c-~<-3]c -1, 
s = l J  

ek (~ Ao) + k- ~ (r (~ Ao) + 2 M ~: zk, (~ Ao) 

will be integrable with respect to the measure ;u (~) over F. As the function Q (~  A0) 

is Borel measurable with respect to the measure /~ (~) over 2' and satisfies 

0 _< ~ (~ Ao) -< ~k (tl Ao) +/c-* a ([1 Ao) + 2 M ~ zk, (s Ao), 
s = l  

it follows that  ~ (~A0) is integrable with respect to # (~) over F. Fur ther  

F 

.F 

f I + \q(~x'~q . . . . .  ~ e ( ~ ) d ~ -  e~Oe)d~r 

< e (~ Ao) - e~ (~2) + ( 5 .  ~ . . . . .  ]e (~) - ek (:~)] d 
\ q  q 

F 

; } =2(~. ~ . . . . .  k-, ~Or ~(~r162 
\q q s=l 

}' ___2( e~.e2 . . . . .  cr (:~) d ~ +  6 M /c" 
\ q  q 
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Since this holds for all positive integers k, it follows tha t  

F 

Finally we consider the general case when @ (~) is a Borel measurable function 

which is integrable in the Lebesgue sense over the whole H-space. Then it is pos- 

sible to express @ (~) in the form 

s - 1  s ~ l  

where each of the functions as (~), 3, (~) are non-negative, bounded, Borel measurable 

functions, which vanish outside bounded regions, and where the sums 

s = l  s=l 

are convergent. Then, using the natural  notation, by  the result we have already proved 

f c;~(~Ao) d#(~)=(~ .eAq ..... f 
F 

( 
F 

for s =  1, 2 . . . . .  Since the functions as (~Ao), T~ ( ~ A 0 ) a r e  Borel measurable and 

non-negative, while the sums 

F F 

are convergent, it follows tha t  the function @ (~A0) is integrable with respect to 

# ( ~ )  over F and tha t  

f e (~A0) d# (~) 
F 

s = l  ~ S = I  
F F 

~s (~ Ao) d~ (~) 

8 = 1  

This completes the proof. 
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COROLLARY. I /  Q(~) is a non-negative Borel measurable /unction, which is not 

integrable in the Lebesgue sense over the whole ~-spaee, then the integral 

f ~ (~ A0) d # (fl) 
F 

diverges. 

P ~ o o ~ .  As Q(:~) is non-negative and Borel measurable but  is not  Lebesgue 

integrable, it follows that  

So it is possible to choose non-negative, Borel measurable, Lebesgue integrable func- 

tions, a (~) with 

for all ~ and with 

arbitarily large. Since, then 

o _< ~ (i~) <_ e (~) 

f e (~ A0) d # (~) _> f e (~ A0) d # (~2) 
F F 

it follows that  

e I e 2 er n 

f Q (a  A0) d ~ (~) = + o0. 
F 

6. In this section we show how results of the type given by  Theorem 3 can 

be combined to give a 

PROO~ OF THEOREM 4. We first prove that  for any lattice the terms of 

the sum 

Q (X 1 . . . . .  Xk) (36) 
X, e A , . . . ,  X k c A  

can be rearranged in the form 

5 ( 0  . . . . .  O ) +  

[Y1 . . . . .  Ym i n A  ] m 

+ x   x/dim (r' . . . . .  rm)=m/ (i= ldilyi, .... ~dikyi ) ~_ 

(v;.) q=l [ i~l  (du/q)Y~ in A j q '=' q 

IX1 . . . . .  X• in A k/ 
+ ~  ldim (X~ . . . . .  Xk)=  r (X1 . . . . .  Xk). (37) 
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Corresponding to each set 

Q(X1 . . . . .  Xk) in the sum 

(X1 . . . . .  Xk) will occur just once in the sum 

IX 1 . . . . .  X k i n A  ] 
[dim (X~ . . . . .  Xk) = kJ 0 (XI . . . . .  Xk), 

and will not oeeur elsewhere in the sum (37), as the points 

~ d~-A Y~ . . . . .  ~ d~-~ Y i 
~=l q ~=1 q 

C. A. R O G E R S  

of points X 1 . . . . .  X~ of A there will be just one te rm 

(36). I f  X1 . . . . .  X~ are linearly independent the term 

(38) 

where 

c~y=0, if v~_>/~j. 

Here the numbers c~. will be uniquely determined rational numbers. 

lowest common denominator of these rational numbers. 

l <_i<m, l < j < k  

by the equations 

where i is chosen so tha t  

So, for each j, the point Xuj can be expressed uniquely in the form 

i = l  

Let q be the 

Define integers d,y for 

will be linearly dependent on the points 

X~ . . . . . .  X~, 

are necessarily linearly dependent since m < k. 

I f  X 1 . . . . .  Xk are linearly dependent but  not all zero, there will be a unique 

division (v; # ) =  (Vl . . . . .  v~; #1 . . . . .  / t~k_m) of the numbers 1, 2 . . . . .  k into two sequences 

~'1 . . . . .  ~'m and /h . . . . .  /~_~,  with l _< m__< k - 1 ,  satisfying the conditions (10)such  

tha t  the points 

X . . . . . . .  X,  m 

are linearly independent, while, for each j, the point X,j is linearly dependent on 

X1, X2 . . . . .  Xlt]-l. 

Then for each ?', the point X~j 
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d~j=q(~j, i = l  . . . . .  m, j = l  . . . . .  m, 

d~,j=qc~s, i= l . . . . .  m, j = l  . . . . .  k - m .  

Then the matrix D =  (d~s) has integral elements having highest common factor rela- 

tively prime to q and satisfying (11). Further, if we take 

YI=X~ . . . . .  Ym=Xv m, 

we see that  Y1 . . . . .  Y~ are linearly independent points of A and that  the points 

X i =  ~ dJA Y~ . . . . .  Xk = ~ dl~ y, (39) 
t=~ q ~=i q 

are points of A. Thus, there is a term 

mdq. md E ) 

in the sum (37) corresponding in this way to the points X1 . . . . .  Xk. Further,  it is 

clear that  the points X1 . . . . .  Xk and the equations (39), together with the conditions 

on the division (v;/z), the matrix D and the points Ira . . . . .  Ym, determine uniquely 

the division (v;/~), the positive integer q, the matrix D and the points Y1 . . . . .  Y~" 

So corresponding to each set of points X 1 . . . . .  Xk, which are linearly dependent but 

not all zero, there will be just one term of the form (40) in the sum (37). Similarly, 

the term ~ (O . . . . .  O) is the only term in the sum (37) corresponding to the set of 

points O . . . . .  O. This shows that  each term in the sum (36) occurs just once in 

the sum (37). 

We now have to show that  each term in the sum (37) corresponds to just one 

term in the sum (36). This is clear for the term Q(O . . . . .  O) and for the terms of 

the sum (38). Consider a term 

from the sum 

m m d~k ) 
. . . . .  , z y  Y, (41) 

\i=i q 

,=~ q , -~ Y Y '  �9 (~;m q=l D L,_~I (dij/q) Y~ in A e - -  , .... 

The condition that  the points 

j =  1, 2 . . . . .  k, 
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should be in A ensures tha t  this te rm (41) corresponds to the unique term in (36) 

where X 1 . . . . .  X~ are defined by  the equations (39). This establishes the required 

one-one correspondence between the terms of the sums (36) and (37). Since ~ (~) is 

non-negative, it follows tha t  

,,~ 0.e (x~ . . . . .  x~) =Q ( o  . . . . .  o )  + 
X~eA, ..., 

"in  ] i  . . . .  

+ ~. ~ ~. ~ m ( Y  1 . . . . .  r , n ) = m  @ d~l y~, . d~ 

L i = l  

+ ~ Ldim (X  1 . . . . .  Xk) = k 0 (XI  . . . .  Xe),  (42) 

with the convention tha t  both sMes may  have the value + oo. 

Now for any division (v; #), positive integer q and matr ix  D we consider the sum 

O ( v ; t t ; q ; D ; A ) =  ~ dim (Y~, Y m ) = m  d~l m . . . .  e - -  Y~ . . . . .  g~ �9 ( 4 3 )  

i (di,/q) Y, in A ~=1 q ,-1 q 
-~=1 

Since Q (:~) is non-negative and Borel measurable, the function 

i i=1 q -  

is a non-negative Borel measurable function of the point (Y1 . . . . .  Y~) in ran-dimen- 

sional space. So, by  Theorem 3 and its Corollary 

f q (v; re; q; D; s d #  (~) 
F 

; ( _  = ( el"e2' . . . .  id'IY, . . . . .  ~ '~ ' kY ,  I d Y 1 .  dYm (44) 
\q q "'" ~ ~=~ q ~=~ q ] "" , 

with the convention tha t  both sides may  have the value + c~, where 

e~=(ei,q) i = l  . . . . .  m, 

and s 1 . . . . .  em are the e lementary divisors of the matr ix  D. Similarly 

f [X1 . . . . .  Xk i n a A  o ] 
~" Ldim (X~ ..... Xk) = kJ @ (xl ..... Xk) d# (~) 

F 

(45) 
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We also have 

r e ( o ,  . . . ,  O) d#  ( ~ ) = ~  (O . . . . .  O). (46) 
F 

Thus, combining the results (44), (45), (46), and using (43) and (42) we obtain the 

required formula (9) with the convention tha t  both  sides may  have the value + c~. 

To complete the proof, it remains to show tha t  the right hand side of (9) is 

finite when Q (X1 . . . . .  Xk) is bounded and vanishes outside a bounded region. But  1 

have shown, in another  paper, 1 using a slightly different notation, and making addi- 

tional assumptions about  the function ~ (X 1 . . . . .  Xk), which are clearly not relevant 

to the proof of convergence, tha t  the sum of the right hand side of (9) is conver- 

gent, in this case, provided 

n >_ max m (/c - m) + 2 = [1 k2] + 2. 
l < r n < k  

7. In  this section we show how results of the type given by Theorem 3, in 

the special case when h = 0  can be combined to give a 

P ~ O O F  OF T ~ E O R E M  5. I f  X 1 and X2 are primitive points of a lattice A 

and X1 and X~ are linearly dependent,  then it is clear tha t  either X 2 = X  ~ or 

X ~ = -  X~. So, if A* is the set of primitive points of a lattice A, then the sum 

( X l ,  X2) (47) 
XIcA*,X~eA *~ 

can be rearranged in the form 

IX 1, X~ in A* ] 
Z Ldim (Xl ,  X2) = 2 e (X~, X2) + ~ [X~ in A*] O (X1, X1) + 

+ Z [X~ in A*] 0 (X~, - X1), (48) 

the rearrangement  being justified since each sum has only a finite number  of non- 

zero terms. 

Let  P denote the product of the first /c primes Px, P~ . . . . .  Pk. Let  A p denote 

the set of all points U = ( u  I . . . . .  u=) of the lattice A 0 with 

(ul . . . . .  Un, P) = 1. 

Then A~ is a subset of A~' which is a subset of A 0. Further,  as 0 (X1, X2)=Q (~) 

vanishes outside a bounded region of :~-space, for each linear fransformation ~) of 

determinant  1, we have 

1 loc. ci t .  (1955), see the footnote in w 9. 
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Z [dim (X~, X2) = 2j 0 (X~, X~) -- Z [dim (X~, X,) = 2] 0 (X~, X2), 

provided k is sufficiently large. Thus 

ix, ,  x~ in ~A;  1 [X,,X~in~" 1 
)i-~m~ Z [dim (X~, X2) = 2J Q (XI' X~) = Z [dim (X1, X2) = 2J 0 (Xx, X~). 

Also the function 

IX1, X, in fl A~ ] 
Ldim (X1, X2) = 2J ~ ( x l '  x2) 

is dominated for all ~ by the function 

ix1, x~ in a ~  ] 
~- [dim (X1, X~) = 2J 0 (X1, X~), 

which is integrable over the region F by Theorem 3. So, by the theory of dominated 

convergence, we have 

[ XI' X '  in ~A~ ] 
f Z [dim (Xx, X2) = 2j 0 (XI, X~) dp (~) 
F 

= lim f~[Xx 'X2in~A~l  
k-~+~ [dim (XI, X~) = 2J ~ (X1, X2} d/z (~). (49) 

F 

If X is any point of Ao, other than O, write 

2 (X) = (z~ . . . . .  z.), 

so that 2(X) is the highest common factor of the coordinates of the point X. Then 

it is easy to verify that, if /~ denotes the M6bius function, 

[riP, s]P] lira, Y~ in ~ A  o ] 
I t>0 ,  s>0J  p(r)#(s) ~ [dim (Y1, Y,) = 2J Q(rYx' sY~) 

= ~ [dim (Xa, X~) = 2J ~ LXx/r, XJs in ~ Ao /z (r)/z (s) 0 (X1, X2) 

[;,, 
-- ~ Ldim (XI, X~) = 2J 

[8[P ] ~(s)} q (x, ,  x,) .  (5o) x {Z bl~.(~_~x,.)j 
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But, if U is 

8o 

any point of Ao, 

LrI)t(U)] [riP l _ _  (1, ff (2(U), P)=I, E #(r)= E p)#(r)= rl(z(v). 0, if (2(U), P )>I .  

[r]P ] {1, i f U i s i n A  P, 
r[2(U) ~ ( r ) =  0, otherwise. 

Thus the sum (50) reduces to 

IX1, X~ in ~A~' ] 
[dim (Xl, X2) = 2J 0 (Xl, X2)" 

Hence, using Theorem 3, 

[ XI'X2il]'~'~A~ l 
f ~  Ldim (X~, X~) = 2] q (X~, X2) d/z (f~) 
F 

[riP, siP ] [Yx, Y~. in a A  o 
= f ~ [r > 0, s > 0J # (r)/t (s) ~ Ldim (Y1, Y~)= 2] e (r Y1, s Y2) d/~ (~) 

F 

I ] f r ] = ~ L r > 0 ,  s>0  tt(r)~(s) ZLdim(Yx, Y2)=2 ~(rYl'SYx) d#(~) 
F 

Here 

[riP, sIP ] 
= ~ Lr>0, s>0J/z(r) #(s)  

[r[P, sip ] 
= ~ Lr>0, s>0J #(r) #(s) 

f f e (r Y~ , s Y2) d Y~ d Y2 

r '8~ x~)dXldX, 

{ [r]P] }~ff : ~ [r>0J tz(r)r-n O(Xl' x2) dXldX~" 

[ r iP  ] ~ 1 
2 Lr>oj ~(r)r-n-~ 5tt(r)  r - n -  , 

r~ r (n) 

as k-->+ ~ .  So, by (49), (51) and (52) 

[Xx,X2inaA~ ] 
f ~  [dim (Xt, X~) = 2J 0 (X~, X2) d# (f2) 
F 

' f f  (~ ( n ) )  2 ~ (Xl,  X 2 )  d X l  d X  2. 

A precisely similar argument shows that 

f ' f  ~ IX1 in ~A~] 0 (Xl, X1) d# (a) = ~ e(Xl,Xl) dXl, 
F 

19--553810.  Acta Mathematica. 94. I m p r i m 6  le 16 d6cembre 1955. 
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(51) 

(52) 

(53) 

(54) 
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f ' f  ~ [ X l  i n ~ ~ i ~ ] o ( X 1 ,  - X l )  d/z(~-~)= ~ )  o (X l ,  - X l )  dX1.  (55 )  

F 

Alternatively these results may be deduced from the result 

Z [X in f~ A~] 0 (X) d #  (f~) = ~(~-) 0 (X) d X  (56) 
F 

proved by Siegel 1 for a Riemann integrable function, first extending the result to 

functions, which are not necessarily Riemann integrable, by the standard method 

used in the proof of Theorem 3. 

Since the sums (4'/) and (48) are equal, the required result (12) follows from (53), 

(54) and (55). 

8. Before we proceed to the proof of Theorem 6, it is convenient to give in 

this section a simple lemma connecting eertain integrals taken over the space of all 

linear transformations and over the space of all linear transformations of determi- 

nant  1. Here it is convenient to use C to denote the eone of all linear transforma- 

tions ~,  such tha t  the transformation {d (g])}-l/ng2 of determinant 1 lies in the 

fundamental region F. 

L v, MMA 2. Let ~ (A) be a non-negative lattice /unction such that the /unction 

(~ A0) is Borel measurable in the space o/ linear trans/ormations g2. Then /or any 

positive number N 

[f~ in C 
f LO<d(~)  < N] ~ ( ~ A ~  

N 

o F 

with the convention that both sides may have the value + ~ .  

PRO Or. We obtain the result, by using the definition for 

f e (v "~ ~A0) d# (~), 
F 

changing the order of integration in the right hand side of (57), making the sub- 

stitution ~ = ~td(~), changing the order of integration, making the substitution 

1 loc. cit. 
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= 2 1/n ~ , ,  and changing the order of integration again. I t  is easy to justify these 

operations as the function 0 (~A0) is non-negative and Borel measurable; in par- 

ticular all the integrals will be properly defined, although they may have the value 

+ oo. Carrying out this programme, we have 

N 

0 F 

N 

L~ < d (n) _< 1] e (v~"~ {d (~ ' -~)}- l /n  a Ao) 
o 

dv 

N 

[ ~ in C 

0 

NId (~)  

0 

2 N  

[ ~ in C 

o 

min {1, N/2}] 2 n - 1  {d (~"])}n q (21In ~2Ao) d~} d2 

2 N  
[~* in C 

0 

(f~* Ao) d~*} d2 

2 d ([l*) 

[~* in C d 2} d ~* 

d (~*) 

f[~ * in C ] e (~*A0) d~*. 
= ~-~{1-@~} [0_<d(a*)<N 

This proves the lemma. 

9. In this section we show how Theorem 5 can be combined with a result of 

Siegel (the special case of Theorem 4 when k =  1) to give a 

P R o o F o F T H v. O R E M 6. First suppose that  the integral 

f e (x) gx 



284 c.A. ROGERS 

is finite. 

we have 

Then, by Siegel's result 1 (which is also the special case k = 1 of Theorem 4), 

e (v1/~ x) d~ (~) 
j X e ~ A o  

= ~ ( 0 )  ~- f e (~lln X )  d X  

= ~ (o )  + ~,-~ f e (x )  , i x ,  

for all v > 0 .  I t  follows, by Lemma 2, tha t  

[ ~ i n C  < N  ] : ~(X) d~ 
f LO--- d(s ax~aao 

n{1-(~)u  } ~ e ( O ) + n - ~  o(X) d X  , 

for each N>O.  So, the right hand side being finite, it follows that  the sum 

e (X) (58) 
X e ~ A  o 

is finite for almost all ~ in C with 

O<_d(~)<N. 

Since this holds for all N > 0 ,  the sum will be finite for almost all ~ in C. But  

every ~ which is not singular is of the form s where ~tz is an integral uni- 

modular matr ix and ~ '  is in C. Since, then 

e(X)= ~ e(X), 
X e s XE ~'Ao 

while there are only a countable number of integral unimodular matrices ~ ,  it follows 

tha t  the sum (58) is finite for almost all s 

Now suppose tha t  the integral 

f e (x) d x  

has the value + oo. Since r (X) is bounded, it is clear from homogeneity considera- 

tions, tha t  we may suppose that  

0 _< e (X) _< 1 (59) 

for all points X. We consider a modified function ~R (X) defined by 

e R ( x ) = e ( x ) ,  if [x,l<_R, i = l  . . . . .  n, 

0n (X) = 0, otherwise. 

1 loc. cit. 
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i) -1  m R . 

Also, by  Theorem 5, 

f XI~A.OqR ( 'l'l/n Xl)  qR (,~lln X2 ) d#  (~"]) 

X~ ~A~ 

(1 ;fy = ~ )  qR (~,~1,~ X1) qR (~,,n X2) dX1 dX2 + 

1 f (,gl/n + ~ )  q~ (v "n X) OR X) d X  + 

if + ~ )  Q~ 0 y n  X)  QR ( -- v 1/'~ X)  d X  

i f  = ~-~ m~ + ~ eR (x) {eR (x) + eR ( -  x)} dX. 

m~ = f ( ~  e~ (x) g x .  

Then, 
mR--->+oo as R - - > + o o .  

For each positive ~ and R we consider the integral 

= f ~ e R o)l/n X1 ) 0 R (~)l/n X2 ) d~  (~-~) - 
F Xxe ~A~ 

X~ ~A~ 

-- 2 72 -1 ?Tt R f ~ eR (~l/n X) dtz (~) + 
F XcDA~ 

+ ~-2m2 R . 

Now, by  the extention of Siegel's result (56), used in the proof of Theorem 5, to the 

case of a Borel measurable function, we have 

f Xe~A;eR (yl/n X) d u (a)  
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Thus, combining these results and using (59), we obtain 

f ( ~ .QR(vl/n x)--v 1 m ~ ) 2 d ] ~ ( s  

F Xe [~Ao 

- ~,r 0n(X){e~(X)+oR(-X)}dX 

<_ 2v-Iron. 

Now, using Lemma 2, we have 

[s in C m . ~ '  

N 

~n~'-l{1--(~'n}-l/yn-1 { / (  ~ .~ dv 
o X~ ~ A  0 

N 

_< n ~  -~ {1 - <1)") -1 [ 2 ~ " - ~  d~ 
t ]  

o 

~Tn - 1  

= 2 n ~-~ {1 - ( ,~?}-~ ~ m ~ ,  

for all N > O. 

Now, suppose that for some positive numbers s, N, M there is a measurable 

subset C, of the intersection of C with the set of s with 

O<_d(~)<_N, 
with measure e and such that 

, e(X) <-M, 
X e [~A 0 

for all ~ in C~. Provided R is so large that 

mR/N > M 

it follows that, for all ~ in C,, 

so that 

mR ~ ~R(X)> mR 
d(~) x~nA~ - ~ - - M > 0 '  

[s in C 
f L 0 < d ( ~ 2 ) < N ]  ( :  ,~R(X)-- mRS2 d-~)l ds 

\ X r  f lA  0 )2 
>_s - M  �9 
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Thus 

- ~2J ) n - l m n "  

But this cannot hold for large values of mR. This contradiction shows that  the set 

of s in C, such that  

0< d(~2)_< N, 

e(X)_<i, 
XE ~A~ 

is of measure zero for all positive numbers N, M. Consequently, the set of all 

in C, for which the sum 

E e (x) 

is finite, is of measure zero. I t  follows, by the argument used before, that  the set 

of all s for which this sum is finite, is of measure zero. This completes the proof. 


