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The theory of value distribution of functions of one complex variable is well developed
and has yielded beautiful results and applications. An important aspect is that a non-
constant meromorphic function can be considered as an open map into the Riemann
sphere P, so providing a ramified covering of an open subset of P.

Compared to the theory for one variable, the theory of value distribution for functions
of several complex variables is still in its infant stage. The dual aspect seems to be lost.
One way is to study the value distribution of a holomorphic function. Here H. Kneser
[7] (1936) and [8] (1938) initiated a theory of value distribution for a meromorphic function
of finite order in C*. This theory was later completed in [19] (1953) and gave an analogon
to the theory of functions of finite order of one variable. The Kneser integral(?) substituted
for the Weierstrass-product. In [20] (1953), these results were applied to construct Jaco-
bian and abelian functions similar to the construction of the ¢, { and p function in one
variable. Also the Kneser integral was extended to functions of infinite order in [19]
(1953) and was applied in [14] (1964) to the theory of normal families of divisors in C".

Ablfors, H. Weyl and J. Weyl developed a theory of value distribution of a holo-
morphic map f: M —P" of a Riemann surface M into the n-dimensional, complex projec-
tive space P*. They were able to prove both Main Theorems and the Defect Relation.
These results can be found in [29] (1943). In [21] (1953) and [22] (1954), this theory was
united with the theory of Kneser to a value distribution of meromorphic maps f: M —P"
where M is a pure m-dimensional complex manifold. Both Main Theorems and the Defect

(*) This research was partially supported by the National Science Foundation under grant NSF
GP-3988.

(3) A different integral representation was used by Lelong [9], [10] and [11], which ensbles him
to give a new proof of the Cousin IT Theorem for positive divisors of finite order.
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Relation could be proved. In [25] (1964) and [26] (1964), the First Main Theorem was
extended to the case, where M is a pure m-dimensional analytic set in a complex manifold.
An application showed, that an analytic set M of pure dimension m in C" is algebraic if
and only if the 2m-dimensional Hausdorff measure of M N {z| |z| <7} is O(r*") for r—>oo.

The other aspect of value distribution in one variable leads to the study of open,
holomorphic maps f: M —>C™ where M is a pure m-dimensional complex manifold. The
fibers are discrete. Fatou [4] (1922) and Bieberbach [1] (1933) found a biholomorphic
map of C™ onto an open, non-dense subset of €™, whose Jacobian was constant. This
discouraged the “map” approach. However, Schwartz [15] (1954) and [16] (1954) used
topological methods to study this case and generalized the Ahlfors theory of covering
spaces. Levine [12] (1960) found an unintegrated First Main Theorem.

Chern [3] (1960) integrated this theorem and obtained a result (Chern-Picard Theorem)
which assures that an open holomorphic map f:C"—>P™ assumes almost every point in
P if the characteristic of f grows stronger than the new “deficit” term which appeared
in his First Main Theorem. Hence, the difficulties which the Bieberbach map posed were
overcome. '

Recently, Bott and Chern [2] (1965) have extended these methods to the study of
sections in fiber bundles and obtained deep results.

Comparing the formulas in Levine [12] and Chern [3] with the formulas in [21], [22]
and Kneser [8], a great similarity becomes apparent. Therefore, the question of an united
theory arises. Such an unification will be provided here.

Let M and P be connected complex manifolds with dim M =m and dim P =n. Let
» be a family of pure p-dimensional analytic subsets of P. Let f: M —P be an holomorphie
map. Suppose that f is general of order r=n—p in respect to y, that means, that f-1(S)
is empty or analytic of pure dimension ¢=m —r for every S €y. The theory of value distri-
bution is concerned with the size of f1(S) for S€y. A typical statement would be: If f
“grows” strongly enough, f(M) intersects “most” elements of y. Usually, the “most”
which results from a “First Main Theorem” would be in the Lebesgue measure sense,
where upon the “most” which results from a “Second Main Theorem” would mean “all up
to finitely many”. The theory of Kneser and Stoll belong to the codimension r=1, the
theory of Chern and Levine belong to the codimension r=n. Here, both theories will be
special case of an unified theory for codimension r where 1 <r<Min (m, n), at least so far
the “First Main Theorem” is concerned. P will be the n-dimensional complex projective
space, and y will be the Grassmann manifold of all p-dimensional complex planes in P.

Let V be an (n+1)-dimensional complex vector space with a given Hermitian pro-
duct (|). On every exterior product V[p]=V A..AV (p-times) an associated Hermitian
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product is induced if 0<p<n+1. It defines a norm on V[p]. For a€V —{0}, define
o(a)={za|2€C}. Then
B(V) = {e(a)|a€ ¥ — {0}}

is the complex projective space of V and ¢:V — {0}—~P(V) is the natural projection. De-
note the natural projection of V[p]— {0} onto P(V[p]) also by g. Define
BPOV) = {co Ao Ay, EVIS Vp+1].

Then &(V) =o(& (V) - {0})
is the Grassmann manifold of the p-dimensional complex planes in P(¥V). Of course GO(V)=
P(V). If a€@?(V), then E(x) and E(x) are well defined by

E(@) = {3|3Aa=0}, where a€gp~(a)

B(e) = o(B(x) - {0}).
If x€@?(V) and BEGY(V), then ||a:f] are well defined by

AD
[le: 8]l = fsl—IJ, where a €97 (), DEQ I(f).
Moreover, 0< [loc: 8| <1.
On any complex manifold, let d =+ be the exterior derivative with @ as the com-
plex component and & as the conjugate complex component. Define dt=i(¢—38). On

V — {0}, define the non-negative “projective” form w by

w(3) = 3d*dlog |3].
Then one and only one positive “projective” form  of bidegree (1, 1) exists on P(V) such
that ¢*(w) =w. Here o is the exterior form of a Kaehler metric on P(V). Define the pro-
jective forms of bidegree (p, p) by

. 1. .
wp=;!w/\.../\w; wp=aw/\.../\w (p-times).

Define the “‘euclidean’ forms on V by
=136l v= ti
'0—‘2 (3 3)’ ’Up—ﬁv/\.../\v (p- lmes)

Let 0<p<n and 2€®*(V). On V—E(x), a form ®{x) of bidegree (1, 1) is well-
defined by ;
®(«) (3) = 3d*d log |ar3],
8 — 662905 Acta mathematica. 118. Imprimé le 12 avril 1967,
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where a€p~'(x). One and only one non-negative form ®(x) of bidegree (1, 1) exists on
P(V) — E(a) such that N
0*(®()) = O().

Define r=n—p. On P(V)— E(a), define the Levine form of order r by

1
A(“)=(_TT)!,‘§=:0(D(“) N

The form A(x) is non-negative and has bidegree (r —1, r —1). For r=1 is A(x)=1. Define

W(s) =g

if s€EN.
Let M be a complex manifold of pure dimension m. Let y be a differential form of
bidegree (g, ¢) and class C* on M with dy=0. Suppose that

0<m—g=n—p=r<Min (m, n).

Let f: M—~N be a holomorphic map, which is general of order r (in respect to &?(V)).
For every z€f-1(#(a)), an intersection multiplicity v,(2; «) is defined, which is a positive
integer. The function v,(z; a) of z is constant on every connectivity component of the set
of simple points of f~1(#(c)). As a consequence of a residue formula (Theorem 4.4) the
following result is obtained.

THE UNINTEGRATED FIRST MAIN THEOREM (}). Let H be an open, relative com-
pact subset of M whose boundary S is either empty or a smooth, (2m —1)-dimensional sub-
manifold of M which is oriented to the exterior of H. Take a€&*(V). Suppose that

&) = dlog ||f || A FHA()) A g
s integrable over 8. Then

11 1 G
50 159 i 7597 5 [ 60

For r=m (ie., ¢=0) and y =1, this is the First Main Theorem of Levine [12]. If M
is compact and H =M, then §=0 and

1 . -
J.f_l(i'(az)) v )2 _W L{f (@) A2

is constant on &*(V). If r=n (i.e., p=0), then &(V)=P(V) and f: M —P(V) is an open

(1) See Theorem 4.5.
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holomorphic map of pure fiber dimension ¢(1). In 17,(2) the continuity of the fiber integral

n (G &) = f ve(z o) X

Y E@»

was proved. Here, it turns out that n,(G; «) is constant, if dy =0 and if the image mani-
fold is P(V).

Now, suppose that y is non-negative on M. Let G and g be non-empty, open, relative
compact subsets of M with smooth C®-boundaries I' of @ and y of g, both of which are
oriented to the exterior. Assume that g < @. Let ¢ be any continuous, non-negative func-
tion on G, such that ¢|I'=0 and y|§=R>0 are constant, such that y is of class C® on
G —g and such that 0<y(z) <R for z€G. Define the characteristic of f by

1
T,(6) = W)L‘” (@) A L.

For z € &P(V), define the compensation functions by

11 . .
m, (I oc)=2—7; Wor=1) frlog "f:oc”f (Ala)) Adyp AL,

. —_1_ 1 1 * 1
my(y; o) TR Wr—1) fylog 7ol FFA@)Adryp A X,

Define the valence function by(3)

N (G, oc)=f ve(z: o) pX.

Y E @

The integrands of these integrals are non-negative. This is not true for the deficit
A(G; o) = : L f lo 1 FA@)Addty A X
3 0t) = o s T % .
d 22 Wir—1) Jo "8 I7:a] v

These assumptions imply the First Main Theorem(%)
NG5 o) +my(['; &) —my{y; a) = T (@) +A,(G; o).

The theory of [21] and [22] is obtained by choosing r=1(¢=m—1) and dd*p A =0

(*) Such a map is also called g-fibering.

(%) Stoll [27] is denoted by I and Stoll [28] is denoted by II, because these papers are necessary
preparations for this paper and were written simultaneously.

(3) If ¢ =0, the integral is a finite sum.

(4) See Theorem 4.8.
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on G—§g. The theory of H. Weyl and J. Weyl [29] is obtained by choosing m=r=1 and
x=1 with dd*yp=0 on G—g. The theory of H. Kneser [8] is obtained by choosing 7=
1=n(g=m—1,p=0) and M =C" with y =v,_,, where G={3| |3| <r} and g={3] |3 <ro}
with 0 <ry<r and

1 1 1 _
v(3) “m_2 (|3|2m_1_72m_2) on G—j.

The theory of Chern [3] is obtained by choosing r =m =n(g=0=p) and M =C" with y=1.
Moreover, G, g and y are chosen as in the theory of H. Kneser. However Theorem 5.12
shows that the Chern—Picard Theorem can be obtained for other choices of .

If /:M—-P(V) is an open map, then f is general of order s for every s in 0 <s<un.
In addition suppose that M is a connected, non-compact, pseudoconvex manifold, where
pseudoconvex means, that a non-negative function k of class C*® exists on M such that

dtdh >0 and such that
Q(r) = {z| h(z) <r}

is a relative compact subset of M if » >0.(*) Choose any such a plurisubharmonic function .

Define

to=didh A . AdAdh  (s-times)

Take r,>0 such that g =G(r,) =@ and such that dk +0 on G(ry) —G{r,) =y. For r >r,, define
0 if z€M—GQ(r),
p(R)=1r—h(z) if z€Q(r)—y,
r—1, if z€g4.

The characteristic of f for the order s is

1 Y
Ts.f(r) = WS) jG(r) "pr]‘ (ws) A Xm—s

if r=7,. The function 7', ,is differentiable for r >r, and its derivative is

1

A, (r) ==~ *(0s) A Xp—s-
=3 ) @
) . . Ap1,:(7)
Define 6,= lim sup ————,

! r—>co up Tn,f(r)

1 .
e ) fm @

(*) M is a Stein manifold if and only if such a function h with the stronger condition d'dh>0
exists. See Grauert [5], {6] and Narasimhan [13].
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Then b(M) is the normalized measure of the image of f in P(¥). Obviously 0<b(M)<1.
Then the following generalization of the Chern—Picard Theorem [3] holds:()

THEOREM. Suppose that T, ,(r)~>oco for r—oco. Then

m—n+172 1

0<(1=b(M) <=~ EMH 8.

Especially, if 6,=0, then | assumes almost every “value” of P(V).

As a preparation for the proof of the First Main Theorem, the limit of certain integrals
is obtained in section 1. The intersection number v,(z; ) is introduced and studied in
section 2. Its definition is reduced to the multiplicity of a certain open holomorphic map
7,. In section 3, the Levine form is studied. In section 4, two integral theorems are proved
which yield the First Main Theorem in its unintegrated and its integrated form. In section
5, the “spherical” representation (Theorem 5.8) of the characteristic and of the deficit is
proved for open maps. The Chern-Picard Theorem [3] is extended to open maps.

The results of Bott and Chern [2] have not been considered in this paper, because
almost all of this research had been done as [2] became available to me.

§ 1. The existence and the limit of certain integrals

The proof of the First Main Theorem requires some highly technical results about
the existence and the limit of certain integrals. The proof of these results shall be given
here to avoid an undue interruption of the later representation.

The concepts and notations of I and 7 shall be used. For convenience sake, some
are recalled here.

1. Let V be a complex vector space of dimension m. Define V"=V x ... x V (m-times).
Then the general linear groups

GL(V) = {(C1, .0 Cp) | L A . A€ £0}

which is the set of all bases of ¥, is open and dense in V™.

2. A function (|):V x V—C is a Hermitian product on V, if and only if it is linear
in the first variable, if (r|9)=(y|r) for all f€ ¥ and y€V and if (r|r)>0 if 0= € V. De-
note |g|= V@) Then V becomes a complex Hilbert space. An element (cy, ..., ¢,,) € V™
is said to be an orthonormal base if and only if (c,|c,) =0 for all u=» as |c,| =1 for all u.
The set 1I(V) of all orthonormal bases of V is a non-empty, connected, real analytic sub-
manifold of GL(V).

(*) See Theorem 5.13.
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3. If not otherwise directed, the space C™=C x ... x C is thought to be endowed with
the Hermitian product defined by

(EI t)) =”§1xﬂgﬂ lf E= (xlr "':xm)’ t) = (yla ---’ym)'

Then the base (e,, ..., e,) is orthonormal, where e,=(d
8uu=1.

4. The group &(m) of all permutations z of {1, ..., m} operates effectively on V™,
GL(V) and 1I(V) by setting

1o +++s Omy) 80d 6, =0 if u+v» and

ﬂ(cl, seey cm) = (cn(l)a eeey c:n(m))-

Let I(g, m) be the set of all injective and increasing maps

e:{L, .., g}~ {1, .., m}

Then ¢ €%(g, m) defines one and only one permutation ge@(m) such that @(v)=g(») for
v=1,..,qgand p(») <g(v +1) for =g +1, ..., m—1.

5. Let M be a pure m-dimensional complex manifold. The set &, of all biholomorphic
map o:U,— U, of an open subset U, of M onto an open subset U, of C™ is the complex

structure of M. Then a=(zf, ..., z5), where z, =z are holomorphic functions on U,. Let

"
d be the exterior derivative on M. For ¢ €T(g, m) and p €X(g, m) define

{o=Co=dzgay A ... A d2gq),

\? - _
Now = Nop = (5) dzpa) A @Zpay A - A d2ggy A BZygq)

on U,. Then Lo=Co=Zpm A .- N dZpq),
e [*)? z
Nop =Tjgp = (— 1)7@ 7P (5) Lo A Cyr

6. If y is a differential form of bidegree (g, ¢) on a subset A of M, if x€S) with

ANnU,+D, then
X= 2 2 Xy
peZ(a.m) yel(a.m)

on ANU,, where y;, are uniquely defined functions on ANU,. y is said to be real, if
% =7; this is the case, if and only if y7,=x7, for all 9, @, «. If ¥ has bidegree (m, m) on
A, then {1} =T(m, m), where ¢ is the identity and y=yxi#n.. The set of all real forms of
bidegree (m,m) on A is ordered at a €A such that y <& at a if and only if yi(a) <&i(a)
when ever « €S, with a€U,.
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7. Let M and N be complex manifolds. Let f: N—M be holomorphic. Then, every
form y on M induces a form f*(y) on N. The map ¢* is a homomorphism, which preserves
degrees, bidegrees and conjugation and commutes with d, 8, @ and d*, where 8 is the com-

plex component and @ is the conjugate complex component of d, and where
d*+ =i(2—-9).

8. Let M be a pure m-dimensional complex manifold. Let 0<g<m. Let y and £ be
real differential forms of bidegree (g, ¢) on M. Then y<¢ at a €M, if and only if for every
smooth, pure ¢g-dimensional complex submanifold N of M with inclusion jy:N—M, the
inequality jy(y) <jx(£) holds at a. (Observe, that 6. applies, because j¥(x) and jx(£) are
again real and of bidegree (g, ¢).) A partial order on the set of all real differential forms
of bidegree (g, ¢) on M is defined, especially, the concept of positive, negative, non-negative
and non-positive forms at a are defined. If Ac M then y<E (resp. y<€) on A if y<¢&
(resp. x <{) at every a€.A. Hence y is positive (negative, non-negative or non-positive
on A) if this is true at every point of 4. The forms 75, are non-negative on U,.

9. Let M be a pure m-dimensional complex manifold. Let y and 4 be forms of bide-
gree (g, q) on M with 0<g<m. Let y be non-negative on M. Then |p| <y means, that
for every smooth, pure g-dimensional, complex submanifold N of M with inclusion jy: N—M,
the inequality |jy(y)| <j¥(x) holds.

10. Let V be a complex vector space of dimension m with a Hermitian product (| ).
For 3€V, define _

(d3]5) =213 (1d3)=3(3]3)
(d3]d3) = o(3|d3) = —a(d3|3)

i
v=75 (d3|d3)

1
v,,=17 VA ... Av (p-times).

Then v is the associated form of the Kéhler metric defined by (|). Moreover, v, is positive
if 0<p<m. The forms v and v, are called the euclidean forms to (|). If c=(cy, ..., ¢,)) is &
base of V, define «:V—C" by «(c,)=e, for u=1, ..., m.(*) Then 7,:C"—C is defined by

74(215 s Zm) =2,. Then z,=m,0a:V—C are the coordinates associated to ¢. It is
' 3=,Z12"(3) ¢, for 3€V.

For p€I(p, m) and p€I(p, m), define (5=C_5 and 55, =n}y,; if tlear, write {,={; and
7gp =" and call these the forms associated to ¢. Define g,,=(c,|c,) then

() Here ey =(6‘u1, ces 6/”,,) where 6lw=0 if x4 and where 6”” =1.
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i = =
v=g ; Gu 2y A dZ,.
If and only if ¢€11(V) is orthonormal, then g,,=4,, and

=% g dz, A d3,

w3 .2
2 peT(D. rn)

11. Let V be a complex vector space of dimension #+1 with a Hermitian product
(]). Let P(V) be the associated projective space and let g: ¥ — {0}>P(¥) be the residual
map. Then p~Y{g(a)) = {za|0 +2€C}, where a 0. On V — {0}, define

dd log| ' 26810g 313)-
Then do —0 and w=%‘ (313) (dslda)l—ﬂ(flals)/\ (3]d3)

This form is non-negative and called the projective form to (|) on V. Define

w,,=l oA ...Now (p-times)
p!
Then w, is non-negative and called the projective form of bidegree (p, p) on V. On P(V),
one and only one exterior form @ of bidegree (1, 1) exists such that ¢*(®w)=w on V — {0}
The form e is real analytic, positive definit and dw=0. It is the exterior form associated
to a Kaehler metric on P(V). Define
- 1. ANG .
w,,—;)—! wA...ANw (p-times)
Then g*(w,) =w, on ¥ —{0}.
12. Let M be an oriented, real manifold of class C®. Let N be an oriented, real sub-
manifold of pure dimension n and class C* with k>1. Let j5: N—M be the inclusion map.

Let y be a form of degree n on a subset 4 of M such that jy(y) is integrable over 4 N N.

Define
f w=f in(w), f le=f li%@w)]-
ANN ANN ANN AQN

13. Let M be a complex manifold. Let N be a pure n-dimensional analytic subset of
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M. Let N be the set of simple points of M. Let p be a form of bidegree (n, n) on a subset
A of M, which is integrable over A N.N. Define

[ o] v [ twl=] vl
ANN ANN ANN ANN

If 4 is compact and if ¢ is continuous on A, these integrals exist.
In the following lemmata, the spaces C™ and C” with 0<p<m appear often. The
forms v,, @y, 4, and , are formed for the natural coordinates. Those on €™ shall be dis-

tinguished from those on C” by a lower bar: vy, @, 75 and {,.

LemMa 1.1, Let M be an open, non-emply subset of C™. Let f: M —C® be a holomorphic,
q-fibering map.(*) Let s€N. Suppose that 1 <s<p=m—q<m. Let » be a non-negative integer.
Let y be a differential form of bidegree (m—s, m —s) on a compact subset K of M. Suppose
that the coefficients of y are measurable and bounded on K. Take ¢ €X(s, p). For g €ER with

0<p <1, define
Lig)={z|3e<|f()| <g with z€ K},

1(9)=[

o L@

1\* 1
log i) —=|* .
(Oglfl) Iflzslf (ﬂw)/\xl
Then I(g)->0 for g—0.

Proof. Without loss of generality, p(v)=v for v=1,2,...,s can be assumed. Now,
f={f1, --- f), where f, is holomorphic on M. Then

Fee) = G0 dfy Adf A .. A dfy A dfs.
An open neighborhood H of K exists, such that H is compact and contained in M and such
that H is a finite union of balls. On M —K, define 4 by setting y(z) =0. Then

x= 2 2 Xap Nap-

ae I(m—s,m) BeT(m—s.m)
A constant B> 0 exists such that |y,4(3)] <Bif €M for all x and 8 in T (m —s, m). Define

[ pe— 1)

= for o€ T(m —s, m).
a(zai(m—s+l)» '--,zg(m)) (

Then o) N 2= 3 > signasign fF. FysXe|vn
a€Z(m—s,m) BeIT(m—s,m)

B
gé Z z (lFaI2+lFﬂ|2)Qm

xeF(m—s,m) BeT(m—s, m)

(*) A holomorphic map f: M~ N is said to be g-fibering if and only if /~*(f(a)) is & pure g-dimen-
sionsal analytic set for every ¢ € M,
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(m)B AR
8 zeT(m—s, m) -

(m) B (%)sdfl NFA oo Nfy A Gy A O

8

= (m) B/*(nw) AUy

8
For p€R with 0<g <1 define

o= {lses

f T@ (log | fl) [ F*(Mep) A Vese

I(@)<( )BJ ), if 0<p<l.

<|f3)l <9}

Mifb

Then L(g)< T(o) and

Therefore, it suffices to prove
J(e)=>0 for p—0.

Define 7:CP—C* by n(zy, ..., 2,) =(2y, ---» 2,). On C° distinguish the standard forms by a
dash: v,, w,, 74y and {,. Then g=nof: M~C’ is a map of pure fiber dimension g+p—s=
m—s, hence (m—s)-fibering. Moreover, 74, =n*(v;) and f*(,,) =g*(v;). According to II
Proposition 2.9 is

1\* 1 .
0=, (o) o e

- fmec' (L‘l(m)nr(e) ( |f|)”| f1|28 om- s) v

If 3€971(w) N T'(p), then |w]| =]9(3)| <|f(3)| <e. Hence

1\* 1
0<J =f (f v (lo —) v _)v'
(o) Iml<e\J o tmnTe) * g|f| V1 i
48 1\* ,
<5 v, |lo; ——) U )v
ez’ﬁmm (fa_l(m)nT(e) '( g!fl =n)

1\* p
=4 (f v(lo —)v_)v
flmlsl emare *\ o [f]) B
for 0<p<1.

Because g-1(0)= /-1(0) with dim ¢g-1(0) =m —s and dim f~1(0) =m —p and m —p<m —s,

*)
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f does not vanish identically on any branch of g-1(iv) if jv €C*. A constant F > 1 exists such
that |f(3)| <F if 3€ H. According to Theorem 4.9, the integral

F »
Glw) = log .
= . (oe ) 7e0m

is a continuous function on C°. Therefore, a constant C'>0 exists such that 0 <G(iw)<C
if [w| <1. Let 0<¢<1 and w €C° with |tv| <1. Then

1\* F\*
f 1 Vs (log —) Vs S f -1 Vs (log ——) Upes S G(Qm) <C.
i emnTie) H s~ New)nT(e) H

l L4
Now, f v, (log ——-) V>0
9 HewInT(0) I71/ =
for p—0 shall be proved.
Take &>0. Define
A= U {3llz—vl<eh
peAns~(0)

Because H is compact and contained in M, an open neighborhood H, of H exists such that
H, is compact and contained in M. Then &,>0 exists such that

A(e)c A(g )< Hy if 0<e<eg,.

Therefore A(e) is compact if 0<e<g,. Take 3€A(}e). A sequence {3,},en of points in
A(}e) converges to 3. Hence 1),EH Af~1(0) exists such that |3 — 1| <3e. Because His
compact, a convergent subsequence {1),,}aeN exists, where ;oo for A—~co and where
p=lim;_, . 1), €H N 1(0). Then |3—Yy|<}e<e. Hence 3€A(e). Therefore A(}c)< A(e).
Take a continuous function A, on C” with 0<A,<1 such that A, has compact support in
A(e) and such that 4.(3) =1 if 3€ A(3¢).

Suppose, that a sequence {p,},en of real numbers with 0<g, <1 converges to zero
such that T(g,) —A(}€) =D for each »EN. Pick 3,€ T'(g,) — A(3¢) for each y€N. Then 3,€H.
A subsequence {5,,1},1EN, with »;—cc for A—> oo, converges to a point t)EI? —A(%¢). More-
over, |f(3,)| <o, for AEN. Hence f(y)=0. Therefore, y€H N f-1(0)— A(}¢) =D. Contra-
diction! Hence, for each ¢ in 0<e<g,; a number gy(s) with 0<gy(e)<1 exists such that
T(o)= A(de) if 0<p<p (). Consequently,

f (10 L )“v <f (lo F)”}. v
v, I —_s = v 121 s Um—
Hamnze * \ S IF) T Jortamng P\ S]] e

if || <1 and 0<g <gy(e).
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Because A, is continuous, because H is the union of balls and because f is not iden-
tically zero on any branch of ¢g-1(0), II Theorem 4.9 implies

Tim “ (l l)x <f 2 (log F)”v
v 0g 177 V-5 Vale i m—
om0 Jatomar@ N E1f]) BT Jovann® ) ="

F o
< f v, (log —) Vs
0O N TN A(e) |£]

If 0<¢'<e, then A(¢')< A(e). Moreover, () g<e<e. A(€)=H Nf-1(0), which is a subset of

measure zero on g—(0). Hence

J (oe )
Vs IOg— Qm's—)o
g~ W(0)nFEN A If |

for e—>0. Hence

— 1 *

lim Y (lo —) Vp-s=0.
00 Jo emnT(@) © g 1) ="

Because the integral is non-negative, 131_1,_,_,0 can be replaced by lim,.,. Because the

integral is uniformly bounded, the theorem of bounded convergence implies in (*) that

J(p)—>0 for p—0, q.e.d.

LeMMA 1.2. Let M +@ be an open subset of C™. Let {: M —C® be a holomorphic, q-fibering
map with g=m —p and 0<p<m. Let K be a compact subset of M. Let y be a differential
form of bidegree (q, q) on K with bounded and measurable coefficients on K. For 0<p <1,
define ‘

L(e)={a|3€K, §<l/(5)| <e}:

1
=| =& XA )]
T fL(e)lflzplx Fes)
Then a constant D> 0 exists such that | I(p)| <D if 0<p<L.

Proof. At first, consider the case ¢>0. Let ¢ €I(p, p) be the identity. Continue y
onto M by setting y(z) =0 if zE M — K. Denote f=(f,, ..., f,). Construct H, B, T(g), J(o),
Npp=Yp F>1, 7=1d:€°>C” and g=f as in the proof of Lemma 1.1, where s=p and
#=0. Then

I(e)< (";) BJ(o) if0<p<1
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1
and J(o)= J‘T(e) W, f* () Ay,

; (f )
B PV, 0.
felZslm]gg | w2\ ) 1wynm 12¢ |V
< 4”J‘ (f » _ v,z_)q) vy
1<w)<1 \Jr Yew)nE

Because H is the union of finitely many balls, vV, is continuous on C”, hence

T wng
bounded by a constant Dy>>0 on the unit ball. Hence

0< f Y9,<D,
FHomnE

if [tn| <1 and 0 < g <1. Therefore

nﬂ
0<J(g)<4’-ED0=D1

and I(g)<(’:)BDI=D if 0<p<L.

As the second case, consider ¢=0. Then p=m. The map f is light. According to I
Lemma 2.5 a constant D, >0 exists such that

n(K; wy= > v,(3; ) <D, if weC.
3eK

Because ¢=0, the form y is a function, which is bounded and measurable on K. Hence
B>0 exists such that |y(3)| <B if 3€K. Therefore

2.21(3 W) [2(3)| < Do B.
According to IT Lemma 2.8 is

L[ 26 e
1= [, 1xlmlien = [ (w26 e o

2<|ml<e 3e&

<—=-D,B =4"D,B—=D
e e J;wléevm o m!
if 0<p <1, q.e.d.

LemMma 1.3. Let M +@ be open in C™. Let f: M—+CP be a holomorphic, g-fibering map
with ¢ =m —p. Let »%, s and t non-negative integers such that

I<s<p<sm, 1<i<p<m, s+t<2p.
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Let @ be in I(s, p) and let p be in T(t, p). Let K be a compact subset of M. Let y be a differen-
tal form on K with bounded and measurable coefficients on K. Define o =m —s and t=m —1,
Suppose that y has the bidegree (o, 7). For 0<p<1, define

={s|3€K,§<|f(s)l<e},

1y 1, .
10 [, (vs ) o on
Then I(p)~0 for o—O0.

Proof. Without loss of generality, it can be assumed, that 1 <s<p and 1<i¢<p. Then,
holomorphic function f, exist such that f=(f,, ..., f,). Then
f*(é.w) = de(l) A A df¢(s) a:nd f‘(z‘w) = dfv’(l) A A df'l’(t)'

Bounded and measurable function y, 4 exist on K such that

= 2 > XapluAlp

aeT(o,m) Bel(r,m)

A constant B>0 exists such that |y,s(3)| <B for 36K and «€Z(s, m) and BEI(r, m).
Define

F= Wows rfow) 4 e (o, m),

O{2a@+1)s ++ 5 Zatm))

- a(f’ﬂ(l)a""fw(l))
8(2é(1+1), ...,z_ﬂ(m))

Then [1*Co A &) A x| =] g L, IZ )sign a sign fF.GsXup| v
xeT(o.m) Bel(z.m

SB 3 3 |F.||Gslvm
xe€T(o,m) Bei(r.m)

1
Define I,(o)= fL(Q)(log|f|) |”2le lzvm

1 22 1 .
=L@ (l"g m) [/t e

1 1
Jsl0)= L@Wlaﬁlzym = L@Wf*(ﬂw) A 1gp-

if g€z, m).

1 M
Then 0<I@)<B S > f (log ) 77 [Pl 1G] vm
«eT(a.m) BeS(z.m) J L@ V‘ Ifl

<B > 2 I(e)* Ta(e)*-

«eF(a.m) BeT(z.,m)
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According to Lemma 1.1, I,(0)—~>0 for p—0. If t<p, then J4(p)—>0 for o >0 according to
Lemma 1.1. If t=p, then J4(p) is bounded on 0<g<1. Hence I(g)—~>0 for p>0 in both
cases; q.e.d.

LeEMMA 1.4. Under the same assumptions as in Lemma 1.3, the integral

| (108 ﬁ)ml— PEAE) AT

exists.

Proof. Without loss of generality, 0 <s<p can be assumed. Define L{g), I(p), F,, Gy,
I,(0), J4(p) as in Lemma 1.3. Then J4(p)—>0 for g—0 or J4(g) is bounded in 0<g<1. In
either case, a constant D, >0 exists such that |J4g)| <D, for 0<p<1 and B€I(r, m).
Moreover,

N R
oc(Q)"' L(g)(oglfl |f|23f (nw) Nea

1 l 1 2k+4 1
< — — T o * [ 2]
(log 1/9)4fL(g)( o8 |f|) |f|28f (pe) Aﬂ
2x+4 1
where L= | (1og ) 1l ) A a0
o\ - ) I

for p—0 according to Lemma 1.1. Hence a constant D,>0 exists such that I, (o) <D, if
0<p<1 and «€%(c, m). Hence I,(g) <(log 1/p) *D, for 0<p<1. Then

0<I(e)<B 2> > IL(o)*Js(e)}?
ae€3(a.m) BeL(r.m)

s (7:) (7:) BYD, VD (log 11/ 0? (IOgBII/e)2

for 0 <p <1, where B, is a positive constant. If 1 <n €N, then

I(ﬂl)gBl ! —];2=B2$§,

where B, is constant. Define K,={3|3€K and |f(3)| <}} and K; =K —K,. Then K,=
Ui L(1/2") where L(1/2*"")nL(1/2")={3| |f3)]|=1/2"""} NK is a set of measure
zero. Hence

1\* 1 . 2 (1 21
f (108—) el e N ) A X= 2 1(—,.)<322“z<°°-
FAN 1YY n=1 \2

n=1M
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Hence (log 1/|f])* 1/|f]*** f*(&, A Cy) Ay is integrable over K,. Clearly, it is integrable
over K,. Hence, it is integrable over K, q.e.d.
Now, the case s=0 has to be treated.

LeMmA 1.5. Let M =@ be open in C™. Let f:M —CP be a holomorphic, g-fibering map.
Let 0<p=m—q<m. Let x be a non-negative inieger. Let y be bounded measurable form of
bidegree (m, m) on a compact subset K of M. For o €R with 0<p <1, define

L(e)={5|3€K, §< |13)] <9},

Io)= f L@(log r}—l)xlxl-

Then I(p)—~0 for o—>0. Moreover, the integral
1 X
lo ——) X
Jo s i

Proof. If #(3)+0 for all €K, the lemma is trivial. Suppose that 4 =K n{7(0)+Q.
A constant B>0 exists such that |y| <Buv, on K. Define E = {w| |w| <1}. Define
@: M xC—C and 7w: M x C—> M as the natural projections. Then »,(3, 0)=1 for 3€ M. More-
over, p~1(0)=M x {0} and ¢~2(0) N (K x E)=K x {0}. Define j: M—~M xC by j(3)=(3, 0).
Then moj=1Id: M~ M is the identity. Define g=foxn. Then goj=f. Moreover,

exists.

K, =¢1(0)Ng(0) N (K x E) = A x {0} +2.
Apply II Lemma 4.8 using the table

There | M (m |[N|plglf|®|glb]|x K K,

Here |MXClm+1[C|1|m|@|x]g| 0| nrxvs | KXE |K,

Hence J =f . ve |log |g| [ 7* (vm)
»~ {(OIN(EXE)
exists. Because j: M M x {0} is biholomorphic,
7= pogrite,
K

exists. Because y is measurable and |g| <Bv, The functions [(log1/[f|)[*|x] and

(log 1/|f])*x are integrable over K.
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Define A(p)={3|3€K, |/(3)| <o} for 0<p<1. Define

sw-], (e

Because o<1 A(0) =4 is a set of measure zero, and because A(p’)< A(g) if 0<p'<p<1,
the integral 8(p)~0 for p—0. Because 0<I(g)<8(p), also I(g)—0 for g0, q.e.d.
Of course, this lemma can also be proved diregtly.

LeMMA 1.6. Let M 4@ be open in C™. Let f: M—C? be a holomorphic, g-fibering map
with q=m —p. Let » be a non-negative integer. Let t EN such that t <p <m. Take p in I(t, m).
Define v=m—t. Let x be a differential form on the compact subset K of M with bounded
and measurable coefﬁcients on K. Suppose that x has bidegree (m, t). For 0<g<1, define

L(e) ={3I3€K, 2 <ltwl< e},

10 | L@(log IITI)”HLI"*‘Z"’ AT

Then I(p)—>0 for o—~0. Moreover,

fx(log I—;*l)xl—;_lgf*(fw) AX and fx(log ﬁ)”ﬁ PN T

exist.

Proof. Let t€Z(m, m) be the identity ¢((v)=» for =1, ..., m. Bounded and measurable
funection y, exist on K such that

1= 2 XL A
BeZ(z.m) ﬁc Zﬁ

A constant B>0 exists such that |y4| <B on K. Holomorphic functions f, exist such
that f=(fy, ..., f,). Then
o) =dloy A - A dfyry-

Define G, = Mo afod) e sy
’ O(2p+1ys -+ Zpem)) peltnm)
Then IFEHAx|=] 3 sign BGs2slva<B 3 |Gs|vn
pel(z.m) pe(r.m)

81 — 662905 Acta mathematica. 118. Imprimé le 12 avril 1967,
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. 1 1
Define Jslo) = f i | Gs [ v = f 772t [ (M) A ns85
L(Q)I.fl L(Q)l/l -

[ e

I ; 1 2x+4
0=, (o) e

Then 1,(¢)~>0 and I,(0)—>0 for o—0.

If t<p, then J4(0)—>0 for o—0; if t=p, then J4(p) is bounded in 0 <g <1. In either case,
a constant D, >0 exists such that J(p) <D, for 0<p<1. A constant D,>0 exists such
that I,(0) <D, if 0<g<1. Then

1\* 1
0<I(p)<B f (lo —) =1 | Gs| v
o ﬂﬁz(r.m) L@ g|f| Ifl‘l ﬂl_

<B 2 L(@Wsle}.
BeI(z.m)

Hence, I(g)->0 for g—> co. Moreover,

1 D,

< log g 1@<

Il (Q) = (lOg 1/9)4

for 0<g<1. Hence

m — 1 B
o)< ( t ) BVD, VD, (log 1/g)* ~ (log 11/e)2

for 0<g@ <1, where B is constant. If 1 <n€N, then

1
I(l)<31 1 —2=§§

where B, is constant. Define K,={3|3€K and |f(3)| <4} and K,=K—K, Then K,=
U%-1 L(1/2") where L(1/2") N L(1/2™) is a set of measure zero if n +m. Hence

o0

fx.(log r;‘l)ul—fl‘l‘t |7* (o) A Z|=§11(%) <B, > ;:—2< oo,

n=1

Therefore (log |1/f])*|1/f|f*(Ev)} Ay and its conjugate are integrable over K,. Clearly,
they are integrable over K,. Hence, they are integrable over K =K, U K,, q.e.d.

ProrosiTioN 1.7. Let M be a complex manifold of pure dimension m. Let f: M —C?
be a holomorphic, g-fibering map with g=m—p, where 0<p<m. Let x, s, t be non-negative
inlegers such that
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0<s<p, O<i<p, s+t<2p.

Define 6 =m—s and t=m—t. Let K be a compact subset of M. Let y be a differential form
on K whose coefficients are measurable and locally bounded. Suppose that y has bidegree
(0, 7). Let @ be a differential form of bidegree (s, £) on C° with measurable and locally bounded
coefficients. Suppose that for every 9>0 a measurable function h, is given on M. Suppose
that these functions are uniformly bounded by a constant B on K, that is |h,(z)| <B if 0>0
and 2€K. For >0, define

L(p) ={ZIz€ K, —g< |/(2)] <9},

1\ 1
=1 |n e Py .
I(Q) fL(Q)I Ql(log |fl) |”s+t lf ((P)/\XI

Then I(g)—0 for ¢—0 and
- 1\* 1
x= (10 ~—) e @AY
glfl If|s+tf (9)
is integrable over K.
Proof. The form y is integrable over K, if and only if every point z,€ K has a compact

neighborhood U such that y is integrable over K N U. Therefore, it can be assumed that
M +@ is open in C™.

1. Case: s=t=0. Then ¢ is a function and f*(p)=@of is a function on M, which is
bounded and measurable on K. Hence y is integrable over K according to Lemma 1.5.

2. Case: 0=s<t. Then measurable and locally bounded function ¢, exist on C? such
that "

= > @pls
BeX(t.p)

Then @4of is a measurable and bounded function on K and
)= 2 (psof) *(Zs)-
pei(E.n)
According to Lemma 1.6, the differential
) 1\ 1
Xp= (log m) 7 (psof) 1*(Ce)

is integrable over K. Hence ¥ = Dgeqt.p) X5 is integrable over K.

3. Case: 0=t <s. By conjugation, this follows from case 2. -
9 — 662905 Acta mathematica. 118. Imprimé le 12 avril 1967.
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4. Case: 0<s and 0<¢: Measurable and locally bounded function ¢,s exist on C?

such that

o= 2 2 @uplaNp
xeI(s.p) BeX(t.p)

Then Fo= 33 @D Cnl),

where each ¢,z0f is bounded and measurable on K. According to Lemma 1.4 is
" 1\* 1 . s
Xep=|\log i1 T (@apof) - [*(La0lp)0X

integrable over K. Hence X =2 sex(s.0) 2pext.p) Xap I8 integrable over K.
Return to the original assumptions that K is a compact subset of a complex mani-

fold M. Define
A(e) = {e|z€ K with |f(2)| <e}.

If 0 <p<1, then S(g)=f |Z|
A@

exists. Because A(p')< A(g) if 0<p’<p<1 and because MNo<o<1 A{p)=F10)NK is a set

of measure zero. S(g)->0 for ¢—>0. Because

1@< [ ihlldl<B] [7=se@

also I{p)—0 for p—~0; q.e.d.

Now, a type of residue formula shall be proved, which will be very helpful later on.
Let V be a complex vector space of dimension m with an Hermitian product (|). Then
the projective forms w and w, are defined on ¥V —{0}. On P(V) the forms » and o, are
defined. Let g:V ~{0}—~P(V) be the residual map. Then w,=p*(w,). Because degree

w,=2p, for p>m is w,=0. Therefore,

w,=0o0n V-—{0}if p=>m.

On V—-{0}is
_ ;1
a*log 5| =i(2=) 4 log 6l3) = 5 [ (@sl3) — Gl
Moreover,
» =(£)'"" 1 ((dslds)_(dala)/\(alda))'"‘l
m-1 9 (m_1)| |5l2 |a|4

A (d3]3) A (3]d3)

=(i)’"“ 1 (dalda)’"‘l_(i)'"“ 1 (d3|ds)™*

2] m-1! "2 \2) m—-2)1 [3P"

=3 om-1— 372" (d313) A 3|d3) A V2.
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Hence d* log |3| A wm—r=|3[2"*"d* log [3| A vim-1-

Lremma 1.8. Let M be a complex manifold of pure dimension m. Let f: M —CP be a
holomorphic, q fibering map with g=m—p and 0<p<m. Let H be an open subset of M
with compact closure H. Let y be a continuous differential form of bidegree (q, q) on M. Let
T be the support of y in H—H. Suppose that {-10)N T is a set of measure zero on [~1(0)
if ¢>0 and that {H0)N T =0 if ¢=0. Suppose that a constant B>0 and for every ¢ in
0<9<1 a function g, of class C® on R are given such that

1. For z€R and 0<p<11is |g,(x)] <L
2. For z€R and 0<p <1 is |ag,(x)| <B.
3. For x<}p is g,(x)=0.

4. For x>p is g (x)=1.

For weC? and 0<p <1, define 4,(1v) =g,(|w|). Define

I(p)= fHdl log |f] A d(A,0) A f*(ewp-1) A X.

2n?
(p—D! fHﬂf’l(O) vk for e=0,

where, in the case g=0, y is a function and the integral means a sum:

Then I(g)—~

f X =2 v,(z; 0) X(2).
HOF~1(0) zeH

Proof. If ¢>0, then define J by

J(w)= f v X
rYwng

According to II Theorem 3.9, J is continuous at 0€CP. If ¢=0, then define J by
)= 3 v, 10) £(e)-

€H

According to T Proposition 3.2, J is continuous at 0€CP. For 0<p<1 is(})
I(p)= prJ(m) d* log | 0] A d2,(10) A @,-1(10).

(dw i) + (v |di)

Then 2= g o)) LG

(") For ¢>0, see II, Proposition 2.9. For ¢ =0, see 1T, Proposition 2.8.
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Hence d* log 10| A dA,(10) A w,-1(10) =d* log |10] A dA,(0) A

) 1
Z !m!2p+1

ge(|]) A ((dw|10) = (w]dw)) A (@]t + (0] d)) A v, _1(W0)
1 , ) -
= o 7¢I 5 (@w]10) A (1) A vy ).

Define I(0)= fc’ (J (0) — J (0)) d* log | w] A d4,(10) A w,_1(1W),

v

10)= |, 2 10g 0] A @A) -0

Then I(p)=1Iy(p)+ J{0)I,(p) for 0<p<1. It is

1 , )
Io(e) =Ll2<,m (T 60) = J(0)) o (Gel[0]) [w0]) 5 (@]10) A (10]di0) A v, (10)
1 , %
= f«m;g“”@m) =IO [z Ge(Iwl@) |l @) 5 (@) A (w]d1) A vy

1 4
Detin D= i~ s A (dw|w) A (]dw) A v,_1 (D).
o f&<|m|<1|m|2“12 ( | )A( | ) A vp_1 (1)

Then 0<.D < oo. For every ¢>0, a number g,() exists in 0 <g,(¢) <1 such that || <g(e)
implies |J(1v) —J(0)| <e. Therefore |J(gw)~—J(0)| <e if |w]|<1 and 0<g<g,(e). Hence
| Zo(e)| < BDe if 0 < <g,(e). Hence

I0)>0 for p—0.

For 1, is L(o) =f dt log || A dA, A wp-1(10)
ef2<{wl<e

= f d(4,d* log |1‘U| A wp-1(10))
Iml<e

because dd*log || Aw,_y(10) = —20 Awy_y = —2pw, =0.

Let Sp be the sphere of radius p with center at 0 €C? oriented to the exterior of {3] |3| <e}.
Stokes’ Theorem implies
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Ii(g)=— f d* log |[w| A w,-1(tv)
Se
= — f d" log || A wp-1(10)
5

- —f d log [10] A vp_1(0).
$1

If j:8,—C” is the inclusion map, the j*(d' log 1/|1w| Av,_;(v)) is the euclidean volume
element of S,. Hence

2
Il(g)=zﬁm if 0<g<l.
2n°
Hence I(o) = Io(e) +J(0) Iy(0) > p-D1 J(0)

for p—»0; q.e.d.

2. The intersection number

Let V be a complex vector space of dimension n+1. Let P(V) be the associated
projective space and let g,: V — {0}—>P(V) be the associated projection such that

07 (ov(a) = {za|0+2€C}.
Let V[p] be the p-folded exterior product of V. Define
GHUT) = {eoA . A6y, EVIS VD +1].
Then the Grassmann-manifold
(V) = vip+n(@+1(V) — {0})

is a smooth, connected, compact submanifold of P(V[p+1)),

If ¢, ..., C, are linearly independent vectors of ¥, then
E(co, er ¢) = {3|3 A Co A ... Ac, =0}

is the (p +1)-dimensional complex subspace of ¥ which is spanned by (cq, ..., ¢,). If y EG?(V)
then E(y)=E(c,, ..., ¢,) is well-defined by y=pypin(coA ... A¢,). This map E of &*(V)
onto the set of all (p+1)-dimensional complex subspaces of V is bijective. For y €@ (V)
define E(y)=E(cy, ..., ¢,) =ov(E(y) - {0}), where ¥ =pyips11(Co A ... Ac,). Then K defines a
bijective map of &*(V) onto the set of p-dimensional complex planes of V.

GL(V) ={(cg> -» C) [ Co A ... A, 0}
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is the set of all bases of V. It is the general linear group of V and is the complement of a
thin analytic subset of V x... x V (n-times).
Now, a local coordinate system of (V) shall be introduced:

LemmMa 2.1, Let a=(qag, ..., 0,) EGL(V) be a base of V. Let 0<p<n. Define
o= QV[IH'I](aO A A ap) E@N(V).
Define
Zy = {w|WweG*(V) with wAa, 4 A ... Na, +0},
Z = pvip+1(Zy)-
Then Z is an open neighborhood of a. A holomorphic map
Lo: CR-PHP+D) _>@~jﬂ+l( V)~ {0}

is defined in the following way: Take 3€C™2P+V) then 3, = (24,5415 - 2un) €O exists with
5=(30’ hhietd 31’)'

Define = O Zw0, for u=0,...,p.
y=p+1

Set Co(3) = (ag+Co) A oo A0y +6y).

Then £ = pyipsn0Le: O PP+ 5 Z

s a biholomorphic map onto the open neighborhood Z of o.={(0) in &G(V).

Proof. 1. Denote g =gy, +1;. Clearly, ag+cy, ..., 0,+¢, are linearly independent. Hence
&, and ¢ (into GP(V)) are well-defined and holomorphic. Obviously, Z; is an open neigh-
borhood of ayA ... Aa, in @ +(V). Hence Z is an open neighborhood of «a={(0) in G*(V).

2. T 3= (30, ---» 3,) €GP 4D with 3,EC™?, then

Co3) A Oppa A e Ay = (Gg+Co) A eoe A (Bp+ ) A Gpyg A cee Ay = Bp A oo A G 50
Therefore, {, maps into Z, and { maps into Z.

3. The map { is surjective: Take S€Z. Then f=p(b) with b=0byA...AD,+0 and

b,EV and
By A AB A Gy A Ay =0,

Now, the following statement Sg shall be proved by induction for ¢ in 0<g¢g<p+1:
S, “vectors Cug= 2 Cuqu Oy and a number b, € C exist such that
v=q

b=bg(ag+ o) A oo A(Bg-1F Ca1,0) A Cquq A eee Ao o
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If g=0, choose ¢,y=b, for =0, ..., p and by=1. Then 8, is true. Suppose that S, is true.
Then 8,,, shall be proved if ¢+1<p+1. Then

0kbA G, A Aa, =bjAagA ... Ady,

where A is computed that way: Let E, be the unit matrix with » rows and columns. Let

£, be the zero matrix with s rows and ¢ columns. Define
Crqos +++s Craq
W0 | ceieearsorsnnes
0#9 - .
Cugos +++>Cuqo

E, 0% » (oL
Then A=det (D,_qﬂ, « 0% C’Z;f,“) =det C%3.
Dn—p.a ‘Dn—p.p—qﬂ E"P

Hence ¢, ¢,,+0 for some y in ¢<u<p. By changing the enumeration of ¢, g, ..., €5, ¢ it
can be assumed that ¢, , ,<+0. Hence ¢, ,=c¢, 4. {0+ ¢4, 441) Where

n

Coqt1= 2, Cq,q+1,s 0y
v=g+1

Define b,,; =¢;, 4.,04 Then

b =0g,1(00+Co,q) A ve A (Agoy +Co1,6) A (Ag+Cq,q41) A Cara g N eoe A Cpge

For p ==q define
n
Cua+1=Cu ¢ = Cu,q,q (A F Cq, q41) = %1 Cp, q+1,v 0e
Then b =bg11(ag+Co,q41) A e ABg+Ca,041) A Caa,an A oo A Cona e

Hence S,., is proved. Especially S,,,, is true

b =b,11(a9+Co,p41) A e A (Bp+Cp, 1)

n

with Cup+1= Z Cup+1v (ye
v=p+1

Define 3,=(C,,ps1.p415 +++s Cupi1.n) fOr =0, ..., p and 3=(3¢, ..., 3,) EC"P@+V, Then b=
by1180(3) and £(3) =0(8o(3)) =0(b) =p. Hence { is surjective.

4. The map ( is injective: Let

for =0, ..., p and 3= Zup1s s Zun)  BDA D, = (Wppy1, ey Vp)
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5= (ao’ eees 51:)’ b= (bo, ceey np)
such that {(3) ={(v). Define

= leuva and I,= Zﬂvitva"

vt v=p
for 4 =0, ..., p. A number u =0 exists such that
b= (ap+o) A v A (0 +65) = ulAg + o) A voe A (8 FTp)-

Then BAG A e Ay =0gA . Ay = UG A .. A 0, 0.
Hence v =1. Take y with 0 <x <p. Then

(A, +T) A(ag+Co) A A (a,+¢,) = 0.
Because (ag+¢o) A ... A (@, +¢,) +0, numbers a,, exist such that

»
a,‘+g,,=ego @ (0 + Cp)-

Then
00N e Ay =0gA e Al A L) A Qg A e A= @00 Ao Ay

Hence a,,=1 if 0<u<p. Take A+p in 0<A<p. Then
O=a,¢/\a0/\.../\a,\_1/\a,\+1/\.../\a,,=(a,,+g,,)/\aoA.../\a,\_ll\aMlA.../\a,,
=a,‘AaA/\aoA---AaA_IAa,\+lA.-.Aan.

Hence a,,=0 if p=+A. Therefore a,+1,=a,+c, or r,=¢, Which implies v,=3, for p=
0, ..., p. Hence v =3. Therefore { is injective; q.e.d.

Let M be a pure m-dimensional complex manifold. Let ¥ be a complex vector space
of dimension 7 +1. Suppose that 0<p<n. Let f: M —~P(V) be a holomorphic map. Then

F,=F(f) = {(z, )| () EB(cr), where (2, x)€M x&*(V)}
is said to be the graph of order p of f. Obviously, F(f) is the usual graph of f. Define

i F(f)>@(V) bymz, 0) =«

R F(f)~M by #,(z, &) = 2.
If «€@?(V), then

w7 @) = {(z, ) |2€ M, f(z) € Ei(o)} = f*(B(a)) x {a}.

Hence
(1) iy o) = (B (@) x {a}
2) Ryl (@) = (B ()
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LeMma 2.2, Let M be a pure m-dimensional complex manifold. Let V be a complex
vector space of dimension n+1. Suppose that 0<p<n. Let f: M—P(V) be a holomorphic
map. Then the graph F,(f) of order p of f is a smooth complex submanifold of M x &*(V)
with pure dimension m -+ p(n —p).

Remark: A local “coordinate system” at (@, a) € Fy{f) can be obtained the following way:

1. Step. Let
p: V—{0}=P(V) ¢:Vip+11—-{0}=P(V[p+1])

be the natural projections. Pick any base (ag, ..., 0,) EGL(V) such that o(ag A ... A a,) =o and
flay=p(a,).
2. Step. Define
Vo=0,+E(ay, ..., a,) = {a, +ﬂ§lz,‘a,‘|z,,e c}

Then 170=Q(V0) is an open neighborhood of f(a) in P(V). The map g,=0|V,y:V,~ I;o is
bikolomorphic.
3. Step. Pick any open neighborhood A of a such that f(4)< Vo.
4. Step. Define a holomorphic map
&: 4 x PP G V)
by the following construction: Take (z, ) €A x C*") then =3, ..., 3,) with

30 = (24,0415 +es Z4,n) EC™2,

Define 6 () =00+ 3 1) 0y

G=00G)= 2 2,0, for u=1,...,p,
y=p+1

n

o=l 3)=, 3 le) 0= 3 1ule) o
&z, 3) = g(a0+ Co) A oo A (0, €p))s
5. Step. For (z, 3) €A x C*"—2), define
a(z, 8) = (Z, E(z’ 3))€M X @p( V)

Then B=c(AxC"" ") is an open neighborhood of (a, x)=a(a,0) in F,(f). Moreover,
a:4 x C*" > B is biholomorphic. Moreover, if Z is the neighborhood of o which was intro-

duced in Lemma 2.1, then
B = (A4 xZ) 0 Fyf).
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Proof. Clearly, if the statements of the Remark are proved, the Lemma 2.2 is also
proved. Take (@, «) € F,, then the Remark shall be proved. Now, a,€ V — {0} with p(a,) =f(a)
exists where f(a)€E(x) and E(x)=o(E(x)—{0}). Hence a,€ E(a). Therefore, a base a=
(ag, ..., ;) EGL(V) can be picked such that g(ag A ... A a,) =c. This completes Step 1. Step 2,
Step 3 and Step 4 are trivial and & is holomorphie.

For Step 5, define B=(A4 xZ) n F,(f), where Z is the neighborhood of o which was
defined in Lemma 2.1. Then B is an open neighborhood of (a, &) in F,(f). Holomorphic
functions f, exist on A4 such that

& @) =0+ 3 ule) 0

Here is g '(f(@)) =g («) +a,. Hence ful@)=0 for u=1, ..., n. Now, define f:4 x (*"-9—
C#+1(-1) by the following procedure: Take (z, 3) €4 x C*—?, Then

3= - 3p) With 3, = (Zupsg, -ors Zun) €O
Define 34=34(2, 3) =(2¢.p+15 --+» Zo.0) BY
o =20(2s3) = 15) = 3 )
Set f(z, 3) =(2, 3g» +-» 3p) €A x CPHVI-P) Obviously 8 is a holomorphie, injective map with
an Jacobian of rank m +p(n —p). Hence §(4 x C°*-?) =B’ is a smooth complex submani-

fold of 4 x C#+L*?) with dim B’ =m +p(n —p).
Now, {:C®+"-P 7 ig biholomorphic. Hence

£=Td,x¢: A xCE+O-9 > 4 x 7

is a biholomorphic map onto an open subset of M x &*(V). Hence E of:AxCM-N~>A xZ
is a holomorphie, injective map of rank m +p(z—p) and its image ¢ (B')=B" is a smooth
complex submanifold of A xZ with pure dimension m +p(n —p). Now, Lof—=c and B"=B
is claimed:

For (2,3) €A x CP® P ig 3=(3,, ..., 3p) With 3,= (24, p+1, -+, Zun). Define

n

= 2 2Zwa, for u=0,1,...,p.

v=p+1

Then 3= (20, p+1, -+, 20,n) With 2o, = f,(2) = 2 5-1fu(2) 2. Hence

n }J n n
0= 2 Mo —212) 2 zwa,= 2 20,
v=p+1 u=1 y=p+1 v=p+1
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Therefore 0(2, 3) = (2, £z, 3)) = (2, @((ap+ o) A ... A (0 +))

) = (2, 30r - 30) = (B 3))-
Hence ¢={of.

Using the same notation, it is
00 (f(2)) A (B0 + Co) A oo A (8 )

ao"'an 2) () A ao+ Z f,,Z)a,, Zf/t 2) C) A (A ) AL A+ )

i 2) (A, ) A(agt e Ao+ o)A Afa,+¢,)=0.
Hence f(z) € E(&(z, 3)), which implies

0(z,3) = (2, &(z, 3))EF,.

Hence, ¢ ={ of is an injective, holomorphic map into B; hence B"< B.
Take any (z, 7)€ B. Then 3=(3, ..., 3,) ECP+V"? with 3,=(2,p41, ---» 2,n) €Xists such
that {(3) =n. Define ¢, =271 2,0, for u=0, ..., p. Then

o(ag+ o) Ao Ay +5)) =7.

Hence 00 (1(2)) € B(n) = E(g+Coy s Qp+Cp)-
n ¥4
Hence o +”;1f,,(z)a,4 =,Z:og"(a" + &),

which implies g,=1 and g,=f,(z) for u=1, ..., p and

Z fu z)a,‘—c0+2f,‘

p=p+
or 0=, 3 ho=3hE@o= 3 (- z 12) )
Hence 200 = [»(2) -—éof,,(z) 2w
Therefore B2, 315+ 0s30) = (25 305 o+ 0r30) = (2, 3)
and O, 15 +os 35) = LB 31y wenr 3) = (2, £(3)) = (2, ).

Therefore, ¢ is surjective. Hence ¢:4 x (""#) > B=B" is a biholomorphic map. Now,
fu(@)=0 for u=1, ..., p, implies

o(a, 0) = (a, &(a, 0)) = (a, @(a, A ... A ap)) = (@, @),
q.ed.
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If M and N are complex manifolds and if »:N—>M and f: M —P(V) are holomorphic
maps, define g =hof. Then a holomorphic map 4: F,(g)— F,(f) is defined by hiz, @) = (B(z), ).
Then ﬁ,oﬁ:hoyi,. Especially, the identity map j:P(V)—>P(V) is defined. Then F,(j)~B(V}
is a fiber bundle over P(V) with general fiber &*-1(C"). Moreover, F,(f) is the bqndle
induced by f and f is the induced bundle map:

Fy(h—L F,5)

17i, o lﬁ,

M —L.pw)

However, this interpretation will not be needed now. Of importance is the local coordinate
system introduced in Lemma 2.2.

DEFINITION 2.3. (General maps of order r.) Let M be a pure m-dimensional complex
manifold. Let V be a complex vector space of dimension n+1. Let r be an integer such that
0<r<n and 0<r<m. Define

p=n—r and g=m-—r.

Let f: M—>P(V) be a holomorphic map. Then f is general of order r for « €&*(V) if and only
if an open neighborhood U of « exists such that f-1(E(L)) is empty or an analytic set of pure
dimension q whenever L€ U. The map f is said to be general of order r if and only if f is general
for every 0 € (V).

Obviously, if r=n, then f is general of order r if and only if f is g-fibering, i.e. if f has
pure rank r.

LeMMA 24. Let M be a pure m-dimensional complex manifold. Let V be a complex
vector space of dimension n4-1. Let r€N with p=n—r>0 and g=m —r=>0. Let f: M >P(V)
be holomorphic. Then the following statements are equivalent

1. f is general of order r.

2. For every a€&?(V), the set f-L(E(a)) is empty or has pure fiber dimension gq.

3. The map mt,: Fy(f)—>&?(V) is g-fibering.

4. The map ;. Fo(f)—>&P(V) is open.

Proof. 2) is only a reformulation of the definition of 1). Because 77 '(«) = FUE () x {a},

the statements 2 and 3 are equivalent. Because
dim Fy(f) —dim & (V) = m+p(n—p)—(p+1)(n—p) =¢

conditions 3 and 4 are equivalent, g.e.d.
Obviously, f is general for «€®?(V), if and only if an open neighborhood U of
exists such that f|f~(U) is general of order r. Suppose, that f: M—~P(V) is general of
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order r for x €®?(V) where m, n, p, g, r are as before. Then an open neighborhood U of «
exists such that

7|y (U) 207 /(U) > U
is a g-fibering map. If z€f-(E(x)), define(!) v,(z; «) =7a(2, @) a8 the multiplicity of z, at
(2, ©) EF,(f). If 2¢f(E(x)), define v/(2; ) =0. The number »/(z; @) does not depend on
the choice of U and is called the infersection number of f with « at z. Moreover,(2)

F = f1(B(2)) = {z]v;(2; @) >0}
is called the intersection of f with «. According to I Theorem 5.6 the function v,(z; )
of z is locally constant on the set F of simple points of F=f-1(%(«)). If B is branch of
F, then y4(z; «) is constant on BN F as a function of 2.

Another representation of the intersection number will be obtained in Lemma 2.5
for later use.

LemmA 2.5. Let M be a pure m-dimensional complex manifold. Let V be a complex vector
space of dimension n+1>1 with an Hermitian product (|). Let r €N with g=m —r>0 and
p=n—r=>0. Let 0: V—{0}=>P(V) and ¢:V[p+1]—{0}>P(V[p+1]) be the natural projec-
trons. Let f: M—>P(V) be a holomorphic-map which is general of order r for a €&P(V). Let
a€fY(E(a)). Then an orthonormal base a=(qy, ..., a,) of V exists such that o(a,) =f(a) and
o(ag A ... A ay)=ot. For any such a base a of V an open neighborhood A of a and holomorphic

functions f,, ..., f, on A exist such that

1' FOT ZGA iS f(z) =Q(ao+23=1 fv(z)av)'
2. It is
Anfrde)= 0 e =0ze4}.

3. The map ¢=(fpsq, - [n): A—CP is open and q-fibering. Moreover, if z is a simple

point of p~1(0) = A N f~1(H(x)), then
ve(2; o) =v,(2) =ve(z; 0).

Proof. An open neighborhood U of a€&?(V) exists such that for U =7z;'(U) the map
7| U:0—U is g-fibering.

Pick ag€pY(f(a)) with |a,|=1. Then ap €0~ ())<= E(a). Hence an orthonormal
base (ag, ..., a,)=a of V exists such that ay, ..., a, span E(«), i.e.: g(agA ... /\d,,)=ac. Let
a be any such a base. Define

() Actually, v,,f(z, a) ought to be written as ‘u,,,((z, «)). Obviously, if =0, then .(z; ) is the
o-multiplicity of f at z as defined in I § 4, because 7, is biholomorphic.
(%) Observe that F x {a} =77 Ya).
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V,={a, +,le" a,|w,€C}.

Then o(V,) =V, is open in P(V) and gy=p| V,: Vo~ ¥, is biholomorphic. An open neigh-
borhood A4, of a exists such that f(4,)< V,. For 2€4, is

00 (fE) = a0+ 2 fu(2) O
where f,, ..., f, are holomorphic on A,. Define 7:4,x C”"~C" by

"7(2’ 8) = (hp+l(z: 3): sy hn(z’ a))’

if 2€ Ay and 3=(3y, ..., 3,) €C*" With 3,=(2,541, ---» 2,») €C" and where

hv(zs 3) = fv(z) _/4=§1 f#(z) 2.

Obviously, 4,4, ..., b, and 7 are holomorphic on 4, x C*". Define
7j: Ay x C7—>C" x O = CP+17

by setting #(z, 3) =(%(2, 3), 3). Using this base a, construct Z,, Z, {,, ¢, and { as in Lemma
2.1. Because g5 (f(a)) =0y, it is f,(a) =0 for u =1, ..., n. Therefore, 7(a, 0) =0 and 4j(a, 0) =0.

Hence
L(7i(a, 0)) =(0) =a€ZN U.

Open, connected neighborhoods A of @ and  of 0 exist such that A< 4, and such that
Lof(AxQ)=Zn U.

Because f(4)<f(4,)S V,y, Lemma 2.2 can be applied using the same a, f,, 4 and
obtaining £, o, B. Then n,(B)<Z. Define n=mn,|B: B—~>Z. Hence, the following diagram

is defined

Axe . ¢rxor

X &

14

B — Z

where ¢ and { are biholomorphic.
Now, it shall be proved, that the diagram is commutative. Take (z, 3)€A4 x C”". Then

3="(1> -» 3p) With 3, =(2,541, --s 24n). Define

= le,‘,,a,, for u=1,...,p,

y=p+
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Co =v=§+1fv(z) a, —élfu(z)c/t-

Then (0 3) = £, 3) = 0((Gg+ ) A ... A (3,+ ).

Deﬁne 30 = ’)7(2, (’5) = (th'l(zs 3): vy hn(z, 3))
Then (2, 3) = (30 31, - +» 3) EC?*P7 and

n n

Co =v=§+1f,,(z) t -ﬂélf”(z) 2 Zwly= v=§+1(f"(z) _’élfu(z) Zun) Oy = ys'Z-f-lh"(z, 3) 0.

v=p+1
Hence LGz ) = 0((Gg+Co) A wre A (@ + ) =7(0(, 3)-

Therefore, the diagram is commutative.
Now, Z, =(C" x @) is an open neighborhood of x=¢(0). The map

N =n]4d%xQ:AxQ~>C"

is holomorphic. Define #;:4 xQ—>C"xQ by setting 7,(2, 3) =(m(2, 3), 3) if (2,3)€4 xQ.
Then 7, =4| 4 x Q. Moreover, B, =o(4 x @) is an open neighborhood of (a, a) =a(a, 0) with
B,< B. Because the diagram is commutative, 7(B,)<Z,. Define &, =x| B, as a map into
Z,. Define 0, =0| A xQ and {; =C|€" x @. Then the restricted diagram

is commutative and o; and {, are biholomorphic. Now 7,(B;) =m,(B;) =1(71(4 X Q)=
LA x Q))<= U. Hence, B,=x;'(Y) and m, =n,| B, is g-fibering. Moreover, the map 7, is

¢-fibering and
vf(z; /3) = Vn, (=, ﬂ) = vnl(za ﬁ) = vﬁl(o'l_l(z’ ﬂ))
if (z, B)€B,.

For 3€Q, define 7,;:4—C" by 5,,(2) =1,(2, 3) if 2€ 4. According to I Proposition 5.7

73 is & g-fibering map; moreover, for every 3€Q and every simple point z of 73, (77,,(2)) is
vy (z,3) = v,m(z).
Now, take 3=0€Q. Then &,(2, 0)=f,(2) for 2€4 and v=p+1, ..., n. Hence
M10(2) = (fp41(2)s -, fa(2)) = @(z) if 2€4,

which means 7,o=¢:4~->C". Therefore, ¢ is a g-fibering map. Because dim 4 —dim "=
m —r =g, the map ¢ is open.
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If 2z€4 N Y (H(x)), then f(z)€ E(x) which implies gg'(f(z)) € Vo N E(ay, ..., 0,). Hence

fu2) = (@0 (f2)]a,) =0 for pu=p+1, .., 2

Hence g(2) =0. If p(2) =0, then f,(z) =0for u=p+1, ..., n. Hence g5 '(f(2)) € VN E(ay, ..., @)
which implies f(z) € B(«), or z€ 4 n f~1(E(«)). Therefore

A0 B =70 =nidtnela) = N {z]z€4 with () =0}

If z€ANf(E(x), then ofz,0)=(2,&(z, 0)) where &(z, 0)=g(ay+Co) A ... A0y +¢5))
with ¢,=0for u=1, ..., p and

Co =v=§+lﬂ(z) a —él fu(z) c.=0.

Hence &(z,0)=g(apA ... Aay) =, which implies ¢(z, 0) =(z, «). If 2 is a simple point of
A 0 2 (E(«)), then
V(23 0) = 9,(2) = ¥,y (2) = v5,(2, 0) =, (04(2, 0))
=7 (0(z, 0)) = va (2, &) = (2 @),
q.ed.
The question, if this equality holds for all z€4 N f1(E(«)), is open. However, for
integration purposes, the Lemma, 2.5 is sufficient.



