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I n t r o d u c t i o n  

In this paper we study spectral properties of self-adjoint Hankel operators. For the last 

years the theory of Hankel operators has been developing very intensively and many 

new applications have been found. Hankel operators are widely used in function theory, 

operator theory, approximation theory, prediction theory, and control theory (see [N], 

[Po], [Pa], [PK], [F]). 

There are many different equivalent ways to define a Hankel operator. By a Hankel 
operator we mean a (bounded) operator F on the sequence space l 2 which has a Hankel 

matrix in the standard basis {ej}j>~0, i.e. (Fej,e~)=c~j+k, j, k>~O, where {~j}j>~0 is a 

sequence of complex numbers. Let S be the shift operator  on 12, i.e. Sej=ej+l, j>/O. 
It is easy to see that  a bounded operator F on l 2 is a Hankel operator if and only if it 

satisfies the commutation relation 

s * r = r s .  

The main aim of this paper is to describe the class of self-adjoint Hankel operators 

in spectral terms. To be more precise we obtain in this paper a characterization of 

those self-adjoint operators that  are unitarily equivalent to a Hankel operator. Clearly 

an operator F is unitarily equivalent to a Hankel operator  if and only if there exists an 

orthonormal basis {e j } j~  0 such that  (Fej, ek)=aj+k, j, k>.O, for a s e q u e n c e  {olj}j~ 0 of 

complex numbers. It is also obvious that  F is self-adjoint if and only if a j  E R for any 

j~>0. 

We arrived at this problem in the following way. In [KP] the following question was 

studied. Let s  K: be subspaces of a Hilbert space 7"/. The  problem was to find out under 

which conditions on s and/C there exists a stationary process {xn}nez in ~/whose past 

span{xj:j <0} 

coincides with s and whose future 

span{xj : j />  0} 

coincides with/C (by "span" we mean "closed linear span"). Here a stationary process 

is a two-sided sequence {xn},~ez of elements of 7~ such that  the inner products (xj,  xk) 

depend only on j - k .  

It was shown in [KP] that  the above problem is equivalent to the following one. Let 

K be a non-negative self-adjoint operator on Hilbert space. Under which conditions does 

there exist a Hankel operator F whose modulus (F 'F )  1/2 is unitarily equivalent to K ?  

The following simple necessary conditions were found in [KP]: 

(i) Ker K is either trivial or infinite-dimensional; 

(ii) K is non-invertible. 
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The condition (i) follows immediately from Beurling's theorem (see [N, Chapter 1]). 

Indeed it is easily seen from (1) that  if F is a Hankel operator,  then K e rF  is an invariant 

subspace of S and so by Beurling's theorem Ker K is either trivial or infinite-dimensional. 

The condition (ii) follows immediately from the fact that  if F is a Hankel operator 

and (Fej, ek)=Olj+k, j, k>~O, then 

j>~k 

A question was posed in [KP] of whether the conditions (i) and (ii) are also sufficient. 
The first step was made in [T1]. It was shown there that  if K satisfies (i) and (ii) and 

in addition has simple discrete spectrum, then K is unitarily equivalent to the modulus 

of a Hankel operator. Then, it was shown in [TV] that  each non-negative operator with 

discrete spectrum that satisfies (i) and (ii) is unitarily equivalent to the modulus of a 

Hankel operator. 

The next step was made by R. Ober in [O1] and [02]. He found a new approach to 

the problem which is based on the so-called balanced realizations with continuous time. 

Using that  approach R. Ober obtained a different proof of the results of [TV] "modulo 

the kernel". However, it turned out that  Ober's approach works in a much more general 

situation and with its help it was proved in [T2] that  the conditions (i) and (ii) are also 

sufficient. 

Let us dwell briefly on the above approach. Let K: be a Hilbert space (state space), A 

an operator on K:, B an operator from C to K: and C an operator from K: to 12. Consider 

the following linear dynamical system with one-dimensional input and one-dimensional 

output: 
x'(t) = Ax(t)+Bu(t), 
y(t) =cx(t).  (2) 

Let b, c be the vectors in K~ such that  Bu=ub, bEC, Cx=(x,c), xEIC. With the above 

linear system one can associate the (formal) Hankel operator Fh: 

fo (rhy)(t) = h(s+t)f(s) ds, .f e L2(R),  

where h(t)=(etAb, c). 
The operator Fh need not be bounded in general but it is bounded under certain 

natural conditions. Note that Fh is not only an analogue of a Hankel matrix but also 

unitarily equivalent to a Hankel operator. It is well known that  the matrix of Fh in the 

basis of Laguerre functions is Hankel. 

The idea behind the approach in question is to choose a triple {A, B, C} so that  the 

modulus of the corresponding operator I'h be unitarily equivalent to the given operator K.  

17-950233 Acta Mathematica 174. lmprim~ le 20juin 1995 
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The solution obtained in [T2] allows one to construct a self-adjoint Hankel operator 

whose modulus is unitarily equivalent to F. Therefore the problem we study in this paper 

is a refinement of the above problem posed in [KP]. Namely, the results of [T2] show that  

the spectral multiplicity function vlr] (a precise definition is given below) of the modulus 

of a self-adjoint Hankel operator F can be an arbitrary function u which satisfies the 

conditions: 

(i) u(0)=0 or u(0)=oc;  

(ii) 0Esupp u. 

Clearly ulrl(t)=~r(t)+vr(-t), t>0 .  So the problem we study in this paper is to inves- 

tigate in which way the value of Ujrf(t) can be distributed between vr( t)  and v r ( - t ) .  

To formulate our main result we need the notion of von Neumann (direct) integral 

(see [BS1, Chapter 7] for more detail). Let it be a finite positive Borel measure on R 

and {~( t )} tcR a measurable family of Hilbert spaces. That  means that  we are given an 

at most countable set ~ of functions f such that f(t)E~(t),  #-a.e., 

span{f  (t): f �9 12} = 7-/(t) for it-almost all t, 

and the function 

t ( / l ( t ) ,  

is #-measurable for any f l , f2E~. A function g with values g(t) in 7-/(t) is called mea- 

surable if the scalar-valued function t~---~(f(t),g(t))7~(t) is measurable for any fEf~. 

The von Neumann integral (direct integral) f (~ 7-l(t)dp(t) consists of measurable 

functions f, f(t)E~(t),  such that  

]]fH = ( f  ]'f(t)H~(t) d#(t)) 1/~ < ~ 

If f, gEf  (~Tl(t)d#(t), then their inner product is defined by 

(f, g) = f (f(t), g(t)) 

By yon Neumann's theorem (see [BS1]) each self-adjoint operator on a separable 

Hilbert space is unitarily equivalent to multiplication by the independent variable on a 

direct integral f ~)  7-/(t) d#(t): 

(Af)(t) = tf(t), f E / ~ Tl(t) d#(t). 

Without loss , f  generality we can assume that  7-/(t)~O, it-almost everywhere. In 

this case it is called a scalar spectral measure of A. The spectral multiplicity function l] A 
of the operator A is defined it-almost everywhere by 

UA (t) = dim T/(t). 
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It is well known (see [BS1]) that  self-adjoint operators A~ and A2 are unitarily equivalent 

if and only if their scalar spectral measures are mutually absolutely continuous and 

/]A1 ----/JA2 almost everywhere. 

If A is a self-adjoint operator with scalar spectral measure # and spectral multiplicity 

function VA, then A is unitarily equivalent to multiplication by the independent variable 

o n  

f (~ ?-l(t) d#(t), 

where p is a scalar spectral measure of A, and the 7-/(t) are embedded in a Hilbert space 

E with basis {ej}j~>l and 

7-/(t) = span{ej : 1 ~< j < vA(t)+ 1}. 

Now we are in a position to formulate our main result. As usual, #a and #8 are the 

absolutely continuous and the singular component, respectively, of #. 

THEOREM 1. Let F be a bounded self-adjoint operator on Hilbert space, # a scalar 

spectral measure of F, and v its spectral multiplicity function. Then F is unitarily equiv- 

alent to a Hankel operator if and only if the following conditions hold: 

(C1) either K e r F = { 0 }  or d i m K e r F = o c ;  

(C2) F is non-invertible; 

(C3) ]u(t)-u(-t)]<~2, #a-a.e., and ]u( t ) -u(- t )]<l ,  #s-a.e. 

Note here that (C3) means in particular that if one of the numbers ~(t) and v ( - t )  

is infinite, then the other one must also be infinite. 

We have to say a few words here to justify the meaning of the inequalities in (C3). 

Let/5 be the measure defined b y / ~ ( A ) = # ( A ) + # ( - A ) .  We can assume that  the function 

v is defined/5-almost everywhere. If 5 is a Borel set such that  #(5) =0, then v(t) =0 on 5, 

/5-almost everywhere. With this convention ~(t)-~,(- t )  is defined/5-almost everywhere 

which makes it possible to justify the left-hand sides of the inequalities in (C3). 

The necessity of the conditions (C1) and (C2) is equivalent to the necessity of the 

above conditions (i) and (ii) for the modulus of a Hankel operator. In Chapter I of this 

paper we prove that  (C3) is also necessary. It is easy to see that  (C3) implies the following 

inequality for the multiplicities of eigenvalues of a self-adjoint Hankel operator F: if A E R,  

then 

] dim K e r ( F -  h i )  - dim Ker(F + hI)[ ~< 1 (3) 

(if one of the dimensions is infinite, then the other one must also be infinite). 

For compact self-adjoint operators (3) was proved in [Pe] by another method. Earlier 

in [C] a weaker inequality was obtained. In [HW] another method was used to prove (3) 
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for compact self-adjoint Hankel operators. V.M. Adamyan told us that  he also obtained 

another proof of (3) in the compact case but had not published the proof. 

In w we obtain a very simple proof of (3) for an arbitrary Hankel operator F (not 

necessarily self-adjoint) and an arbitrary A6 C. 

In Chapter II we use linear systems (2) to construct a Hankel operator with pre- 

scribed spectral properties. We prove that  if F is a self-adjoint operator which satisfies 

(C1), (C2), and the condition 

]u(t)-v(-t)l  ~< 1, p-a.e., 

then there exists a system (2) (in fact a balanced system, see w for a definition) such 

that  the Hankel operator associated with it is unitarily equivalent to F. Explicit formulae 

are obtained for the operators A, B, C in (2). 

However, we also show in Chapter II that  if F is a positive self-adjoint operator with 

multiple spectrum, then there exists no balanced system (2) for which the corresponding 

Hankel operator is unitarily equivalent to F. This shows that  in contrast with the problem 

of the description of possible moduli of Hankel operators, the balanced systems (2) cannot 

produce enough Hankel operators to solve our problem completely. 

Note here that we consider only those linear systems (2) which involve bounded op- 

erators A, B, C. It is also possible to consider linear systems for which A is the generator 

of a contractive semigroup, B is an operator from C to a Hilbert space which is larger 

than /C, and C is a linear functional defined on a dense subset of ~.  Using the results 

of [Y], R. Ober and S. Montgomery-Smith [OM] proved that  for any bounded Hankel 

operator F on L2(R+) there exists a generalized balanced linear system such that the 

Hankel operator associated with it coincides with F (see also [S]). However we do not 

know how to evaluate the spectra of Hankel operators associated with systems that  have 

unbounded B and C. 

Note that positive Hankel operators with multiple spectra do exist. A classical 

example of such an operator is the Carleman operator K defined on L2(R+) by 

[oo f(t) dt 
(Kf) (s)= Jo s+t 

(see [Po, w Other interesting examples of such operators are given by J. Howland 

in [Hol], [Ho2], and [Ho3]. 

In Chapter III, we prove that  the conditions (C1)-(C3) are sufficient. The method of 

the proof is based on linear dynamical systems with discrete time. Let A be an operator 

on a }tilbert space t~ and let Bu=ub, u6C, Cx=(x,c), x6Tl, where b, c67-l. Consider 

the linear system: 
X n +  = Ax,~+Bu,~, 
y,~ ---- Cx,,. (4) 



T H E  I N V E R S E  S P E C T R A L  P R O B L E M  F O R  S E L F - A D J O I N T  H A N K E L  O P E R A T O R S  247 

As in the case of continuous time we can associate with this system the Hankel matrix 

{aj+k}j,k>~o, where aj=(AJb, c), j~>0. N. Young proved in [Y] that  for any bounded 

Hankel matrix {aj+k}j,k~>0 there exists a balanced linear system (4) (see w for a 

definition) such that  a j  = (AJb, c). 

The main result of Chapter III claims that  if F is a self-adjoint operator satisfying 

the conditions (C1)-(C3), then there exists a balanced linear system (4) such that  the 

corresponding Hankel operator is unitarily equivalent to F. 

We can consider also the problem of spectral characterization of self-adjoint block- 

Hankel operators of order n, i.e. block-Hankel matrices of the form {aj+k}j,k>~o, where 

aj  is an n • n matrix for every j .  The following analogue of Theorem 1 holds. 

THEOREM 2. Let F be a bounded self-adjoint operator on Hilbert space, # a scalar 

spectral measure of F, and u its spectral multiplicity function. Then F is unitarily equiv- 

alent to a block-Hankel operator of order n if and only if the following conditions are 

satisfied: 
(C1) either K e r F = { 0 }  or d i m Z e r F = c c ;  

(C2) F is non-invertible; 

(C3n) ]u(t)-u(-t)l<<.2n, #a-a.e., and lu(t)-u(-t)]<~n, #8-a.e. 

The sufficiency follows easily from Theorem 1 and the fact that  if F satisfies (C1)- 

(C3n), then it can be represented as an orthogonal sum of n operators each of which 

satisfies (C1)-(C3). The necessity can be proved by the same method as in the case n = l  

(see Chapter  I). 

In what follows we need a description of the class of bounded operators which inter- 

twine two given self-adjoint operators. Let A1, A2 be self-adjoint operators which are 

given as multiplications by the independent variable on direct integrals 

/ ~7"ll(t)  dttl(t) and ]~7-12(t )d#2(t ) .  

The following result is apparently known to experts, however we were unable to find 

a reference. 

LEMMA 3. Let B be a bounded operator such that BAI=A2B.  Then there is a 

(#1 +#2)-measurable operator-valued function b, 

b(t): 7"ll (t) --* 7"12(t), 

such that 

(Bf)( t)  = b(t)f(t), f E / (~ 7-ll(t) d#l(t) .  (5) 
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We have to say a few words to justify (5). We can assume that  ?-/l(t) and 7-/2(t) 

are defined (#1 +#2)-almost everywhere and if #1(6)=0 (#2(6)=0) for a Borel set 5, then 

7-/1(t)={0} (7-/2(t)={0}) on 5, (#1+#2)-almost everywhere. 

Without loss of generality we can assume that  #j is the Proof. Let ~=# l ' -~ -P2"  

restriction of # to the set 

Let 

{t:~lj(t)~{O}}, j =  1,2. 

?-lj= / ~ ~-lj(t) d#,(t)= f ~ ?-tj(t)d#(t), j =  1,2. 

Put  

n(t)=n,(t)Gn2(t) and 

Then 7-ll and 7"/2 are naturally embedded in 7-/. Define the self-adjoint operator A on 7-/ 

as multiplication by the independent variable. Consider the operator/3 on 7-/defined by 

/ ~ f  ---- B P l f ,  

where 791 is the orthogonal projection from 7-/onto 7-/1. It is easy to see that  Range/~ C 

7-/2, B=/317-/1 and BA=AB. Then (see [BS1, Chapter 7]) there exists a measurable 

operator-valued function b, b(t): 7-/(t)---,~(t), such that  (Bf)(t)=b(t)f(t). It is easy to see 

that  b(t)z=0 for x~7"t2(t) and Rangeb(t)C~2(t) .  We can now define b(t) by b(t)l~l(t ). 
Clearly b(t) is an operator from 7-/1(t) to 7"~2(t) and (Bf)(t)=b(t)f(t). [] 

Concluding the introduction we would like to mention that  in each chapter we use 

separate numeration of theorems, lemmas and displayed formulae. 

We would like to express our deep gratitude to the referee for thoroughly reading 

the manuscript, finding a lot of misprints and making helpful suggestions. 

I. N e c e s s a r y  c o n d i t i o n s  

The main result of this chapter is given in w It will be shown there that  if F is a 

self-adjoint operator on Hilbert space which is unitarily equivalent to a Hankel operator, 

then F satisfies the conditions (C1), (C2), and (C3) in the Introduction. 

In w we consider the problem of comparison of the multiplicities of the eigenval- 

ues A and -A, AcC,  for an arbitrary (not necessarily self-adjoint) Hankel operator F. 

Certainly it follows from the results of w that  if F is a self-adjoint Hankel operator and 

AER, then 

I dim Ker(F- AI) - dim Ker (F § AI) I ~< 1. 

It will be shown in w that the same is true for an arbitrary Hankel operator F and any 

AEC. 
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1.1. S p e c t r a l  mu l t i p l i c i t i e s  o f  se l f - ad jo in t  H a n k e l  o p e r a t o r s  

Let F be a self-adjoint operator on a Hilbert space 7-/. Then (see the Introduction) F 

admits the following realization. There exist a finite Borel measure # on the real line 

and a measurable family of Hilbert spaces ~/(t), t E R ,  such that  T/( t )~{0},  #-almost 

everywhere, 7-/can be identified with the direct integral 

~-I ----/R ~ ~t(t) d#(t), 

and under this identification 

(1.1) 

(rf)(t) = t f ( t ) ,  f e~-t. (1.2) 

The spectral umltiplicity function u is defined by 

u(t) = dim ~/(t). 

As we have mentioned in the Introduction, we can assume that  u is defined/5-almost 

everywhere, where t h ( A ) ~ f # ( A ) + # ( - A )  for any Borel set A. Then if 5 is a Borel set 

such that  #(5)=0,  then u(t)=O on 5, ~-almost everywhere. 

Let # = Pa ~-~s be the Lebesgue decomposition of #, where #a is absolutely continuous 

and #~ is singular with respect to Lebesgue measure. 

The following theorem is the main result of this section. 

THEOREM 1.1. Let F be the self-adjoint operator (1.2) on the space (1.1). If F is 

unitarily equivalent to a Hankel operator, then the following conditions are satisfied: 

(C1) either KerF--{0}  or d i m K e r F = c ~ ;  

(C2) F is non-invertible; 

(C3) lu ( t ) -u( - t ) l~<2,  #a-a.e., and l u ( t ) -u ( - t ) l< . l ,  #s-a.e. 

Remark. If u ( t ) = ~  or u(-t)=cx~, then (C3) has to be understood as u(t)= 

As we have already mentioned in the Introduction, the conditions (C1) and (C2) are 

trivial. Thus we only have to prove (C3). 

Before we proceed to the proof, we adopt the following terminology. If f is a Borel 

function, Q is a Borel measure, and A is a Borel set, we say f is supported on A (Q is 

supported on A) if f is zero almost everywhere outside A (~ is zero outside A). 

Proof of Theorem 1.1. Suppose that  F is unitarily equivalent to a Hankel operator. 

Then ~ /ha s  an orthonormal basis {ej}j~>0 such that  F has Hankel matrix in this basis, 
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i.e. (Fej, ek)=aj+k,  j ,  k~0,  where {aj}j~>o is a sequence of real numbers (aj � 9  since F 

is self-adjoint). 

Consider the shift operator S on 7-/defined by 

S E x , ~ e n = E x n e n + z .  
n>~O n>~O 

Put  a=~,j= o oLjej =Fe0. It is easy to see that  the following commutation relations hold: 

s * r = r s ,  (1.3) 

s r f - r s * f  = (f, e o ) S a -  (f, S~)eo, f �9 7-/. (1.4) 

Let us first prove the inequality lu(t)-u(-t)l<~2, #-a.e. Let f be a function in 7~ 

such that  f( t)•  and f(t)_l_(S(~)(t), #-a.e. Consider the function ( S * - S ) f .  We have 

r ( s*  - s ) f  = r s * y - r s / =  s t y -  s ' r / =  - ( s "  - s ) r y  (1.5) 

by (1.3) and (1.4), since f-Leo and f_l_Sa. 
Let us now make use of Lemma 3 from the Introduction. Put  B = S * - S .  Let Az be 

the restriction of F to 

= { f  �9 ~ :  f( t)  A_ eo(t) and f ( t)  _1_ (S~)(t), #-a.e.}, 

and let A 2 = - F .  We have BAI=A2B by (1.5). Therefore by Lemma 3 there exists a 

bounded weakly measurable function b, b(t): ~l(t)--*7-l(-t), such that 

(Bf)(t)  =b( t ) f ( - t ) ,  

where 

7~(t) = {x �9 H(t) :  x _k eo(t) and x _l_ ( Sa)(t) }. 

Let us show that  Ker b(t)={0}, #-a.e. Indeed, assume that there exists a Borel set 

A, p(A)>0,  such that  Ker b(t)~{0} for any t in A. Let Pt be the orthogonal projection 

of H(t) onto Ker b(t). Then the function t~-*Pt is weakly measurable. This follows from 

the fact that  

Pt =~imoX~(b*(t)b(t)), 

where X~(s)=0 for s > e  and X~(s)=l for 0~s~<e. Therefore (see the Introduction) the 

spaces Ker b(t) form a measurable family in a natural way and we can consider the direct 

integral 

/ ~  Ker b(t) d#(t) {o). 
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It is easy to see that  

{0} r J ~ Ker b(t) d#(t) C Ker B. 

However, it is obvious (and well known) that  Ker(S*-S)- -{0} .  

Thus b(t) is an injective map from ~( t )  to ~ ( - t )  which implies that  

~ ( - t ) = d i m ' H ( - t )  >~dimT~(t) > /v ( t ) -2 ,  p-a.e. 

Interchanging the roles of t and - t ,  we obtain 

Iv( t ) -v(- t ) l  <<. 2. 

Let us now prove that  Iv(t)-v(-t)l<<.l on the singular spectrum. Let A8 be a Borel 

set such that  #8 is supported on As and As has zero Lebesgue measure. 

LEMMA 1.2. Let f be a function supported on As such that for #-almost all t, 
f(t)• and if e0(t)=0, then f( t )•  Then r s * f = S r f .  

Let us first complete the proof of Theorem 1.1 and then prove Lemma 1.2. Put  

~( t )  = {x E 7-((t) : x • eo(t) and if eo(t) = 0, then x _1_ (Sa)(t)}, t E As, 

and 

-- { f :  f is supported on A8 and f(t) E 7:l(t), #-a.e.}. 

As above we put AI=A]~,  Ah=-A ,  B = S * - S .  By Lemma 1.2, BA1--A2B and by 

Lemma 3, 

(Bf) ( t ) - -b( t ) f ( - t ) ,  

where b is a weakly measurable operator-valued function on A8 such that  b(t): ~/(t)--* 

7-/(-t) and Kerb(t)={0}, #-a.e. As above it follows that  

v( - t )  = dim T/( - t )  >~ dim ~( t )  >~ v( t ) -1  

which implies that 

Proof of Lemma 1.2. Put  

lu(t)-u(-t)] <~ 1, #s-a.e. [] 

% = (t e e0(t) # 0 )  

(recall that  {ej}j>~0 is an orthonormal basis in which F has Hankel matrix). If f is 

supported on As\Ao, then f_l_Sa and f •  and it follows from (1.4) that  FS*f=SFf .  
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Clearly Ao=Uk~>l Ak. 

for some k. 

Thus we can assume without loss of generality that  f is supported on A0. Let k be 

a positive integer. Put  

~ k  = {t e ~ :  2 -k  ~< Ileo(0ll ~< 2k}. 

So it is sufficient to consider the case when f is supported on Ak 

Let {Ij} be a covering of Ak by disjoint open intervals. Put  Aj=AknIy (k is fixed), 

fj =xj f ,  gj =xje0 ,  where Xj is the characteristic function of Aj. 

It follows from (1.3) and (1.4) that  

r(s+s*)f- ( s+s*) r f  = c~o (1.6) 

for some cEC. Therefore it is sufficient to show that 

( F ( S + S * ) / - ( S + S * ) r f ,  co) = 0. 

We have 

( r ( s + s * ) f - ( S + s * ) r f ,  co) = ~ ( r ( S + S * ) f j  - ( S + S * ) r f ~ ,  eo) 
j ) l  

1 
= ~ (Co, gj) ( r ( s + S * ) f j  - ( S +  S ' ) r f ~ ,  93) 

j ) l  

in view of (1.6). 

Clearly 

fA -2k (Co, gj) = I]eo(t)ll 2 dp(t) ) 2 #Aj. 
J 

Let )~E Aj. We have 

1 
[(F(S+ S*)f - (S+S*)r f ,  eo)l <<. 22k ~ ~ I((S+ S*)f j, rg j ) -  (F fj, (S+ S*)gj) I. 

j)l 
Put  g(J)=Fgj- )~jgj, f(J) =F f j -  Ajfj. Clearly 

IlgU)ll ~< I/jl'llgjll, Ilf(J)ll ~< Iljl'llfjll, 
where ]Ijl is the length of Ij. Therefore 

I(r(s+ s * ) f -  (s+s*) rL  ~o)1 ~< 2 ~ ~ ~Aj I((S+S*)fj, gU))_ (iU), (S+S*)gr 
j>~l 

~< const. E ~ II fj I1" Ilgj II 
j ) l  

~ const, supj)l #Aj'lj~-]'(E"fJ['2)l/2(j~)l]'gj['2)l/2.j)l 

= const �9 sup ~ .  ]Ifll' Ileol] - 
j />l  P j 
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Clearly the proof will be completed if we establish the following elementary fact. 

LEMMA 1.3. Let it be a singular measure supported on a Borel set ~ of zero Lebesgue 

measure and let e>0 .  Then ~ can be covered by disjoint open intervals { Ij } j>~l such that 

141 ~<e. (1.7) s u p  
j >l It( nIj) 

Proof of Lemma 1.3. Let {Jk}k<~l be a covering of Ft by disjoint open intervals such 

that  ~k>~l IJk]<�89 ~. Let 

IJ l } 
M1 : k: I t ( ~ N j k )  >C . 

Then 
( U 1 It-k  l ) < ; IJkl < �89 

k~M1 

Let ~(1)=UkeMI(~AJk) .  Let us cover f~(1) by a system of disjoint open intervals the 

sum of lengths of which is less than }eitfl (1). Then the intervals J from this system for 

which 
[g[ 

< e  
It(~(1)NJ) 

cover a subset of ~(1) of measure greater than �89 By repeating this procedure, we 

can construct a covering of f~ by disjoint intervals {Ij}j>>.l satisfying (1.7). [] 

1.2. Eigenvalues of  Hankel operators 

As we have already noticed, it follows from Theorem 1.1 that for any self-adjoint Hankel 

operator F and for any )~ER 

[ dim K e r ( F -  h i )  - dim Ker(F + M)[ ~< 1. (2.1) 
The main result of this section shows that  (2.1) is also valid for an arbitrary bounded 

Hankel operator and an arbitrary A E C. The idea of the proof is the same as in Theo- 

rem 1.1, but  to include the non-self-adjoint case, we have to replace the inner product  

by the natural  bilinear form on l 2 and instead of adjoint operators consider transposed 

operators. 

We assume here that  F is a bounded Hankel operator on the Hilbert space 12, {en} 

is the standard orthonormal basis in 12. Then (Fej, ek)mO~j+k, j, k>>.O, where ( a j } j > ~ 0  is 

a sequence of complex numbers. 
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It is convenient to consider the following bilinear form on 12: 

(x, yl-:Zxjy , 
j>~o 

where x=y~j>~o xjej and Y=~j>~o yjej. If B is a bounded operator on l 2, we define its 

transpose B t by 

(Bx,  y> = (x, B~y>, x, y e 12. 

Clearly any Hankel operator F is symmetric: Ft--F.  Let S be the shift operator on  12: 

Se,~=en+l, n~O. Then S*=S t. 

THEOREM 2.1, Let F be a bounded Hankel operator. Then inequality (2.1) holds for 

any AEC. 

Proof. Given # c C ,  we put  E ~ = K e r ( F - # I ) .  Let a=y~j>~0 c~jej. We have 

s * r = r s ,  (2.2) 
S F x -  FS*x = (x, eo>Sa- (x, Sa>eo, x e 12, (2.3) 

(see (1.3) and (1.4)). 
Let AEC. To prove the theorem, we have to show that 

dim E_x >1 dim Ex - 1. (2.4) 

We consider separately two different cases. 

Case 1. There exists a vec tor  a:~j>loaje  j in Ex with ao~0.  Let us show that  if 

xEE~ and (x, e0)=0, then 

S F x  = r S * x ,  (2.5) 

which is equivalent in view of (2.2) to 

r ( s + s * ) x  = ( s + s * ) r x .  

It follows from (2.2) and (2.3) that 

r(s+ s*)~-(s+s*)rx = ceo 

for some cEC.  Since (a, eo)~O and 

( r (S+S*)x- (S+ S * ) r z ,  a> = aoc, 
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it is sufficient to show that 

< r ( s  + s*  ) .  - ( s  + s * ) r . ,  ~> = o. 

We have 

( r ( s + s * ) x -  ( s +  s * ) r ~ ,  a) = ((s+ s*)x, ra) - ( ( s+s*)rx ,  a) 

= ~ ( ( s + s * ) x , a ) - ~ ( ( s + s * ) x , a ) ,  

since both x and a belong to E~. 

Now it is easy to show that  if xEE~ and (x, Sa)=O, then (S-S*)xEE_~. Indeed 

r ( s  - s * ) x  = r s z -  r s *  x -- s*  r z  - s r z  = - ( s  - s * ) r x  = - ~ ( s  - s*  ) z  

by (2.2) and (2.5). Since K e r ( S - S * ) = { 0 } ,  it follows that  S-S* is a one-to-one map of 

{xEE~:(x, Sa)=O} into E_~ which proves (2.4). 

Case 2. For any xEE~, (x, eo)=O. In this case it follows directly from (2.2) and 

(2.3) that  i f xEE~  and (x, Sa)=O, then (2.5) holds. As in Case 1 this implies that  S-S* 
is a one-to-one map of {xeE:~:(x, Sa) =0} into E-,x. [] 

II. Ba lanced  real izat ions  wi th  cont inuous  t ime  

In this chapter we use linear systems with continuous time to construct a Hankel operator 

with prescribed spectral properties. Recall that such linear systems allow one to solve 

the problem of the description of non-negative operators that  are unitarily equivalent to 

the modulus of a Hankel operator IT2]. In this chapter we construct self-adjoint Hankel 

operators with prescribed spectral properties in the case when I v ( t ) - v ( - t ) ]  <~ 1 almost 

everywhere. Moreover we shall find an explicit formula for the symbol of the Hankel 

operator. 

However we shall see that  this approach cannot lead to a complete solution of the 

problem of the description of self-adjoint operators that  are unitarily equivalent to a 

Hankel operator. Namely, if F is a positive operator with spectral multiplicity 2, it 

cannot be obtained from a linear system that  involves bounded operators. 

In w we introduce the balanced systems, define the Hankel operator associated 

with the system and state the main result of the chapter. In w we study the Hankel 

operator associated with a balanced system and describe its spectral type modulo the 

kernel. In w we use Lyapunov's equation to reduce the problem in question to the 
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construction of an asymptotically stable semigroup whose generator satisfies certain com- 

mutation relations. The main construction is given in w which allows us to solve the 

problem modulo the kernel. The main result of the chapter is proved in w where we 

study the kernel of the Hankel operator associated with a balanced system. In w we 

prove auxiliary facts in measure theory. In the final w we show that  positive operators 

with multiple spectrum cannot be constructed with the help of a balanced system with 

continuous time. 

II.1. Hankel operators and balanced realizations 

We consider here linear systems {A, B, C)  with one-dimensionM input and one-dimen- 

sional output: 
x'(t) = Ax(t)+Bu(t), 

(1.1) 
y( t )  = c x ( t ) .  

Here A is a bounded linear operator on a Hilbert space ~ (state space), B: C--*K: and 

C: ~ C  are bounded linear operators defined by 

Bu = ub, u E C, Cx = (x, c), x E t:, 

where c, bEIC. In (1.1) u is interpreted as input and y as output. 

In what follows we shall also denote the system (1.1) by {A, b, c}. 

The system (1.1) is controllable if span{Anb:n~O}=]C and observable if span{A*nc: 

n>~0}--K:. It is called minimal if it is both controllable and observable. 

We can associate with the system (1.1) the controllability Gramian Wc and the 

observability Gramian Wo defined by 

wcde=f f etABB*etA'dt, (1.2) 
J R +  

Wod--e--f f etA.C.CetA dt, (1.3) 
J R +  

if the integrals converge in the weak operator topology. It is easy to see that  if the 

integrals converge, then the system is controllable (observable) if and only if Ker We--{0} 

(Ear Wo = {0}). 

In what follows, an important role will be played by balanced linear systems. A 

minimal system is called balanced (cf. [G], where the case dim IC<cc was considered) if 

the integrals (1.2) and (1.3) converge in the weak operator topology and Wc=Wo. 
We can associate with the system {A, B, C} the following formal Hankel operator 

Fh, where 
h(t) = CetAB = (arAb, c), t > O, 
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which is defined on compactly supported functions by 

(Fhf)(s) = h(t+s)f( t)  dt. 

In general Fh need not be bounded on L2(R+). However we shall see later that  for the 

balanced linear systems the operator Fh is bounded. 

The operator Fh is related to the system (1.1) in a natural way in the case 

supt>0 Iletall <oc. Namely, let vEL2(R+).  Consider the function u on R defined by 

u(t) = v ( - t ) ,  t < o, 

[ O, t>~O. 

It is well known (and it is easy to see) that  under the initial condition l i m t ~ _ ~  x ( t )=0  

the output y of the system (1.1) with input u satisfies 

y ( t )  = (rhv)(t), t/> 0. 

Now we are in a position to formulate the main result of Chapter II. Let F be a self- 

adjoint operator. Then F is unitarily equivalent to multiplication by the independent 

variable on the direct integral 

j ~ Tl(t) d#(t). 

Let u( t )~fdim ?-/(t) be the multiplicity function of F. 

THEOREM 1.1. Let F be a self-adjoint operator such that 

(C1) either KerF={0}  or d i m K e r F = ~ ;  

(C2) F is non-invertible; 

(C3') lu(t)-u(-t)l<, l, #-a.e. 

Then there exists a balanced system {A, B, C} such that the corresponding Hankel oper- 

ator Fh is unitarily equivalent to F. 

The proof of Theorem 1.1 will be given in w 

II.2. Unitary equivalence modulo  the kernel 

In this section we establish useful facts on the unitary equivalence (modulo the kernel) 

of the Hankel operator Fh corresponding to a balanced system {A, B, C} and certain 

operators related to the system. 

The following theorem was proved in [G] in the case dim/C<c~ and IT2] in the 

general case. We prove it here for completeness. We also need the construction used in 

the proof. 
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THEOREM 2.1. Let {A, B, C} be a balanced system, W=Wo=Wc,  and let Fh be the 

Hankel operator associated with it. Then Fh is bounded and the restriction of IFh[ to 

(KerFh) • is unitarily equivalent to W. 

Proof. Consider the operators V~, Vo: K:---~L2(R+) defined by 

(Vcx)(t)=B*etA*x, (Vox)(t)=cetAx, x e ~ .  

V*Vc - - / R  etABB*etA*dt=-Wc=W 
+ 

and 

V'Vow- / etA*C*Ce tA d t=Wo =W. 
J R  + 

Therefore the operators Vc and Vo are bounded. It is also easy to see that  

r h  = VoV:  

which implies that  Fh is also bounded. 

Let 

Vc = UcW 1/2, Vo = UoW 1/~ 

be the polar decompositions of Vc and Vo (IVd=IVoI=W1/2). We have 

Ker V~ = ge r  V*Vc = Zer W~ = {0} = Ker W o = Zer V*V o = Zer V o. 

Therefore the operators U~ and Uo are isometries. Clearly Range Uc=clos Range V~ and 

Range Uo=clos Range Vo. It follows that  

Ir ? = = v V;VoV: = u w u:. 

Since Ker U* = (Range Vc) • = Ker V* = Ker Fh, the operator W 2 is unitarily equivalent to 

]Fh[21(Ker Fh) • which implies that  IFh[[ (Ker Fh) • is unitarily equivalent to W. [] 

Let us consider now linear systems for which the corresponding Hankel operator is 

self-adjoint. 

THEOREM 2.2. Let {A, B, C} be a balanced linear system (1.1) such that Fh is self- 

adjoint, W=Wo=W~.  Then there exists an operator J on ~ which is self-adjoint and 

unitary and such that J W = W J ,  A* = J A J ,  and c=Jb. 

Proof. We have under the above notation Fh=UoWU c. Since Fh is self-adjoint, we 

have 

UoWU* =u wu , 

Clearly 
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hence 

W U = U * W ,  (2.1) 

where U = U* U o. 

We have already shown that  K e r U * = K e r V * = K e r F  h. Since F~=Fh,  it follows 

that  Fh=V~V ~ which implies that  K e r F h = K e r V o = K e r U  o. Therefore U~ and Uo are 

isometric with the same range (Ker I~h) • which implies that  U = U ~ U  o is unitary. Let us 

show that  it is also self-adjoint. 

LEMMA 2.3. Let W be a non-negative operator, K e r W = { 0 }  and let U be a unitary 

operator such that W U = U * W .  Then U is self-adjoint. 

Proof.(4) Multiplying the equality U * W = W U  by U on the left and by U* on the 

right, we obtain the equality U W = W U * .  Hence 

U * W e U  = W U W U  = W2U*U = W 2 

which implies that  W 2 U = U W  2. Since W is positive, it follows that  W U = U W  and so 

U * W  = W U  = UW, 

and since W has dense range, we have U* =U.  [] 

Let us complete the proof of Theorem 2.2. We denote U = U * U  o by J .  It follows 

from (2.1) that W J = J W .  Let us show that A * = J A J .  Indeed by the definition of J ,  

Uo=UcJ  and since J W = W J ,  we have Vo=VcJ.  This means that  

CetAx  = B e t A ' j x ,  x E ]C, 

or which is the same 

(X, e tA* C) = (X, j e t A b )  -- (x, j e t A  J ( Jb)  ) = (x, etJAJ j b ) .  

Hence 

e t A ' c =  e tJAdjb ,  t >. O. (2.2) 

Substituting t=0 ,  we obtain c=Jb .  Differentiating (2.2) we find that  A* and J A J  

coincide on the o r b i t  {etn*c:t  >/0} which is dense since the system is observable. Therefore 

A* = J A J  which completes the proof. [] 

(4) Th i s  proof  was sugges ted  by t he  referee and  is s impler  t h a n  the  original  proof  sugges ted  by the  
au thor s .  

18-950233 Acta Mathematica 174. lmpnm~ 1r 20 juin 1995 
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THEOREM 2.4. Let {A, B ,C}  be a balanced dynamical system (1.1), Wc=Wo=W, 

and let J be an operator which is self-adjoint and unitary and satisfies the equalities 

J W = W J ,  A* = J A J ,  c=Jb. Then the Hankel operator Fh associated with the system is 

self-adjoint and Fhl(KerFh) • is unitarily equivalent to WJ .  

Proof. Since A * = J A J ,  we have e tA* =JetAJ.  The equality c=Jb implies C = B * J  

which in turn leads to the equality Vc=VoJ. Therefore 

Fh = VoJV* -- UoW1/2 jW1/2Uo = UoWJU*, 

which proves the result. [] 

II.3. Lyapunov equations 

We are going to use Theorem 2.4 to construct a Hankel operator with given spectral 

properties modulo the kernel. Namely let F be the self-adjoint operator in Theorem 1.1. 

Put  F=FI (Ker  F) • Let J be the operator on (KerF) • which is self-adjoint and unitary 

and satisfies F = J I F / =  [FIJ. We are going to construct a balanced linear system {A, B, C)  

such that W=IF1, A * = J A J ,  c=Jb, and W J = J W .  Then by Theorem 2.4, Fhl(Ker Fh) • 

is unitarily equivalent to F. Later we shall settle the problem with the kernel. 

It is not easy to verify directly that  W =  IFI. Fortunately, to prove this equality, we 

do not have to evaluate the integrals (1.2) and (1.3). We are going to verify instead the 

corresponding Lyapunov equations. 

Recall that  an operator A is said to be asymptotically stable if 

lim Iletaxll=O 
t----~ O0 

for any x. 

THEOREM 3.1. Let A be an asymptotically stable operator on a Hilbert space 1C and 

let K be a bounded operator on IC. If the integral 

fR etA*KetA dt def W 
+ 

(3.1) 

converges in the weak operator topology, then W is a unique solution of the following 

Lyapunov equation 

A*W+WA = - K .  (3.2) 
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Proof. Let us show that  W satisfies (3.2). We have for x, yE/C 

((A*W +WA)x, y) = / R  ((A* etA*KetA +etA*KetAA)x' y) dt 
+ 

= lim (KetAx, etAy) - (Kx,  y) = - ( K x ,  y) 
t ----* O0  

because of the asymptotic stability of A. 

Let us now establish the uniqueness of the solution. Suppose 

A * X + X A  = - K  

for some operator X. Let A = W - X .  Then 

Clearly 

A * A + A A = O .  

261 

A * W + W A  = - K ,  

then the integral 

R+ etA'KetA dt 

converges in the weak operator topology. 

Proof. Let x, yE)U. We have 

(e tA*KetAx, y) = - (e tA*(A* W + WA)etAx, y) = - d (etA. WetAx, y). 

d (AetAx, etAy) = (AAetAx, AetAy) = ((A*A+AA)etAx,  y) = etAy) +(AetAx, O. 

Since limt-~o~ IietAxi]=O for any xE/C, it follows that (Ax, y ) = 0  for any x, yElC Hence 

A=O. [] 

The following result shows that  if W satisfies the Lyapunov equation (2.2), we can 

obtain the convergence of the integral (3.1) for free. 

THEOREM 3.2. Let A be an operator such that ]letAli~M (o~, t>/O, and let K be a 

non-negative operator. If W is a solution of the Lyapunov equation 
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Therefore 

foT(etA'KetAx, X) dt= (Wx, x)-(e TA. weTAx, X) ~ I IWl l (M+ 1). 

Since (etA*KetAx, X)>~0 for xEIC, it follows that the integral fo(etA*KetAx, X)dt con- 

verges for any xEK:. The result follows from the polarization identity. [] 

Theorems 3.1 and 3.2 show that  to solve the problem modulo the kernel, it is suffi- 

cient to construct a linear system {A, B, C} and an operator j = j . = j - 1  such that  

(i) the operators A and A* are asymptotically stable; 

(ii) the operator W--IF I is a solution of the Lyapunov equations 

A*W+WA=-C*C, AW+WA* =-BB*; 

(iii) A*=JAJ, c=Jb. 
If A*=JAJ, then A* is asymptotically stable if and only if A is. It follows easily 

from (iii) that both Lyapunov equations in (ii) coincide. Therefore it is sufficient to verify 

the following properties: 

(i') A is asymptotically stable; 

(ii') A*W+WA=-C*C; 
(iii') A*=JAJ, c=Jb. 

II.4.  Th e  main  c o n s t r u c t i o n  

Let F be a self-adjoint operator which satisfies the hypotheses of Theorem 1.1 and let 

F : F I ( K e r F )  ~-. Then the operator IFI is unitarily equivalent to the operator W of mul- 

tiplication by t on the von Neumann integral 

tg = J ~f(w)(~ E( t ) dp( t ). (4.1) 

Here 0 is a scalar spectral measure of IFI. We can also assume that  the spaces E(t) 
are imbedded in an infinite-dimensional space E with an orthonormal basis {ej}j>~l and 

E(t)=span{ek :l ~k <~w(t)+l}, E(t)= {O} i f v w ( t ) = O ,  

where uw is the spectral multiplicity function of W, uw(t)=dim E(t). 
Clearly uw(t)=u(t)+u(-t), 0-a.e., where u is the spectral multiplicity function of F. 

Recall that u satisfies the condition (C3 r) of Theorem 1.1. 
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Consider the sets 

o+ = {t e o ( w ) :  . ( t )  > / , ( - t ) } ,  

a_ = {t e ~ ( w ) :  . ( t )  < ~ ( - t ) } .  

We define the operator J on ~ as multiplication by the operator-valued function J: 

/i oo_1 o 
J ( t ) -~ ( t )  0 1 ' 

where ~(t)=l  for tCa+ and ~ ( t ) = - I  for t e a _ .  

Clearly F is unitarily equivalent to J W  and we can assume that F = J W .  
Recall that the scalar spectral measure Q of W is not uniquely defined and we can 

always replace it with a mutually absolutely continuous measure by multiplying it by a 

positive weight w in LI(Q). 

Let/Co be the subspace of K: that consists of functions f of the form 

f ( t )=~( t )e l ,  ~eL2(Lo). 

/Co can be identified naturally with L2(~). Let Ao be the integral operator on ]C0=L2(Q) 

defined by 

(Aof)(s) = J~/(w) k(s, t)f(t)  dQ(t), 

where 
k(s,t)= ~- l / (s+t) '  s, tea+ or s , teo_,  

(4.2) 
[ -1~(s - t ) ,  s ea+,  t e a _  or s e a _ ,  t ea+.  

The operator Ao certainly need not be bounded. However, the following lemma allows 

us to change the measure Lo so that Ao becomes a Hilbert-Schmidt operator. We extend 

Ao to/C by putting Aol/C~=0. 

LEMMA 4.1. There exists weLl(~) ,  w>0, Q-a.e., such that the integral operator 

f ~-~ ~ ( w )  k(s, t)f(t)  d~(t) 

is a Hilbert-Schmidt operator on L2(~), where d~=w d~. 

We postpone the proof of Lemma 4.1 until w 
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Let us define the vectors b and c in ~ by 

c(t) =el ,  b(t) = J(t)c(t)=~(t)c(t) ,  t e a ( W ) .  

It is easy to see that  

A ~ = J A o J  and A ; W + W A o = - C * C .  (4.3) 

However, KerA0=/CJ- is non-trivial except for the case when W has simple spectrum. 

Therefore A0 is not asymptotically stable in general. To overcome this obstacle we 

perturb A0 by an operator D such that  the perturbed operator still satisfies (4.3) and 

becomes asymptotically stable. Of course, to make A asymptotically stable, it is not 

sufficient to kill the kernel. 
la(n)  ~n-1 

Let t k Jk--l' nCNUc~,  be positive numbers such that  

1 
o o  

n E N ,  E (a(~))2 < co. (4.4) E (a~n)) 2 < 2n--~' 
k = l  k = l  

We define D as multiplication by the operator-valued function d: 

0 a~ n) 0 0 ... 

-a~ ~) 0 a~ ~) 0 

d(t) = 0 -a~ ~) 0 a(3 n) (4.5) 
0 0 -a~  '~) 0 

in the basis {ek}l~<k<,~(t)+l, where n = v w ( t ) = d i m E ( t ) .  

THEOREM 4.2. Let A=Ao+D,  where D is defined by (4.5) and suppose that (4.4) 

holds. Then 

A * W + W A = - C * C ,  A* = J A J  

and A is asymptotically stable. 

As we have already observed in w Theorem 4.2 implies the following result which 

solves the problem modulo the kernel. 

COROLLARY. Let Fh be the Hankel operator associated with the linear system con- 

structed above. Then F h l ( K er F h ) is unitarily equivalent to J W  =F. 

Proof of Theorem 4.2. Clearly D commutes with W and D * = - D .  So the operator 

A =A0 + D satisfies the Lyapunov equation 

A * W + W A  = -C*C.  (4.6) 



THE INVERSE SPECTRAL PROBLEM FOR SELF-ADJOINT HANKEL OPERATORS 265  

It is easy to show that  D * - - J D J  which implies A * = J A J .  

It remains to prove that A is asymptotically stable. Let us show first that  A+A* 4 0  

which would imply tha t  {etA}t>/0 is a semigroup of contractions. We need the following 

lemma. 

LEMMA 4.3. Let W be a non-negative self-adjoint operator with trivial kernel and 

let R be a self-adjoint operator such that 

R W + W R < .  O. 

Then R <~ O. 

Proof. Let K = - ( R W + W R ) .  Since -W~<0 and K e r W = { 0 } ,  it follows that  - W  

is asymptotically stable. So we can apply Theorems 3.1 and 3.2 where - W  plays the 

role of A and - R  plays the role of W. Then we find that  R is the unique solution of the 

equation 

X W + W X  = - K  

and the solution is given by 

R = - / R  e- tWKe- tW dt. 

Hence R ~< 0. [] 

It follows from (4.6) and from the identity 

A W + W * A  -- - B B *  (4.7) 

that  

( A + A * ) W + W ( A + A * )  = - C * C - B B *  <. 0 

and so R = A + A *  satisfies the hypotheses of Lemma 4.3. Thus A+A*<.O. 

It is well-known that the above inequality implies that  a(A)C (~ :Re  ~<0}. 

Let us show that A has no eigenvalues on the imaginary axis. Let 

A x = i w x ,  x E t : ,  x # 0 ,  w E R .  

Then 

- (C*Cx ,  x) = (A*Wx, x )+(WAx,  x) 

= (Wx, Ax)+ (Ax, Wx)  = - iw(x ,  Wx)+iw(x ,  Wx)  = O, 
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and so Cx=0 ,  i.e. x_kc. Similarly, if 

A*&=i&&, &EE,  & E R ,  

then B*&=0, i.e. &_l_b. 

Applying equality (4.6) to the eigenvector x and taking into account that  Cx=O, we 

obtain 

A*Wx = -iwWx, 

i.e. Wx is an eigenvector of A*. Now applying equality (4.7) to the eigenvector Wx and 

taking into account that  B*Wx=O, we obtain 

AW2x = iwW2x. 

Repeating this procedure, we obtain 

AW2nx=iwW2~x, n >10. 

It follows that  for any eigenvector x of A with eigenvalue iw and for any bounded mea- 

surable function 

A~(W)x = iw~(W)x. (4.8) 

Consider the representation of x in the direct integral: 

,~(t) 

~(t) = ~ xk(t)ek. 
k = l  

It follows from (4.8) that  ~(W)x is orthogonal to c, i.e. 

for any measurable T. 

Dx=iwx which means 

/ ~(t)xl (t) dQ(t) 0 

It follows that  x l ( t )=0  a.e., i.e. x-l-/Co. Hence Ax=Dx and so 

l0 0 0)(0 -a~") o a(?) o ~ ( t )  
0 -a~ n) 0 a~ n) x3(t) 

o o -a(~ ") o x4(t) 

where x ( t ) = ~ = l  xk(t)ek, n=vw(t)=dim E(t). 

0 
x~(t) 

=i~ | x3(t) , 
[~41t) 
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Performing the multiplication, we obtain 

a~n)x2(t) 
a~n)x3(t) 

-a~ n) x2(t)q-a~ n) x4(t) 

-a~ ~) x3(t)+a ('~) x5(t) 

0 

x2(t) 

xn(t) 

Comparing the components from top to bottom, we see that  xk(t)=O for any k, i.e. x--0. 

To prove that  A is asymptotically stable, we need the following result which follows 

easily from Proposition 6.7 in Chapter II of [SF] by applying the Cayley transform: 

Stability test. Let {etA}t>.o be a strongly continuous semigroup of contractions on a 

Hilbert space K: such that  

(i) the spectrum a(A) of its generator is contained in {~ : R e ~ 0 } ;  

(ii) A has no eigenvalues on the imaginary axis iR; 

(iii) the set a(A)•iR is at most countable. 

Then the semigroup {etA}t>~o is asymptotically stable, i.e. 

lim ]]etAx]] = 0 for any x E K:. 
t---+ O0 

We have already proved that  our operator A satisfies (i) and (ii). It remains to show 

that A satisfies (iii) provided (4.3) holds. 

Let D ,  be the operator on span{ek:l<~k<n+l}, l<~n<~oo, given by the matrix 

D n  

o 4 ~ o o ...) 
-a~ '*) 0 a~ n) 0 

0 -a~  n) 0 a~ n) . 

0 0 -a~  n) 0 

: : : : 

We have D* = - D  (i.e. iD is self-adjoint) and so 

o o  

o-(D) clos o-(Do)) 

Clearly D,~ is a Hilbert-Schmidt operator for l~n~<oo and its Hilbert-Schmidt norm 

JJDn[J2 satisfies []Dn[[2~l/n for n<oc .  

Therefore a(D,~)C[-i/n,i/n], n<oc ,  a(Dn) is finite for any n<oc ,  a(Do~) is count- 

able and can accumulate only at 0. Hence the only possible accumulation point of the 

set ((J,~--1 a(D,~))Ua(Doo) is 0. Consequently, a(D) is at most countable. 
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Since A0 is a Hilbert-Schmidt operator, A is a compact perturbation of D. So 

the essential spectrum a~(A) of A is equal to a~(D) and for any .kCa~(A) we have 

i n d ( A - M ) = 0  (see [D2]). So if )~ea(A)\cr~(A), then A must be an eigenvalue of A. We 

have already proved that  A has no eigenvalues on i R  which implies that 

a ( A ) N i R = a ~ ( A ) N i R = a ~ ( D ) N i R C a ( D ) N i R  

which is at most countable. [] 

I I .5 .  T h e  k e r n e l  o f  Fh 

In this section we shall prove Theorem 1.1. In the previous section we have constructed 

a linear system {A, B, C} such that  the corresponding Hankel operator Fh restricted to 

(KerFh) • is unitarily equivalent to FI (KerF)  • To prove Theorem 1.1 completely we 

have to solve the problem of the description of KerFh.  The solution of this problem 

is given by the following theorem where we consider the Hankel operator Fh associated 

with the system {A, B, C} we have constructed in the previous section. 

THEOREM 5.1. Let 0 be the scalar spectral measure of W in (4.1). Then K e r F h =  

{0} if and only if f~(w)(1/s)do(s)=cc. 

Theorem 1.1 follows now from Theorem 5.1 and the following lemma. 

LEMMA 5.2. Let 0 be a finite positive Borel measure on [0, a], a>0 ,  such that 0E 

supp 0 and 

/ ( k ( s ,  do(t) < ec, (5.1) t ) )  2 do(s) 

where k is defined by (4.2). Then we can change 0 by multiplying it by a positive weight 
in LI(O) so that (5.1) still holds and 

f ~ do(s) = ~. 

Remark. It is obvious that  under the hypotheses of Lemma 5.2 one can change a 

measure 0 (by multiplying it by a positive weight in LI(0)) so that  (5.1) holds and 

f ~do(s)< c<~. 

Indeed it is sufficient to take a weight which is sufficiently small near the origin. 

The proof of Lemma 5.2 will be given in w Let us first derive Theorem 1.1 and 

then prove Theorem 5.1. 
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Proof of Theorem 1.1. Let F be a self-adjoint operator which satisfies the assump- 

tions of Theorem 1.1. Put  F = F I ( K e r F )  • Let W = I F  I and consider the representation 

of W in the form (4.1) where Q is a scalar spectral measure of W. Let A, B, C, J be as 

in w and let I~h be the Hankel operator associated with the system {A, B, C}. 

Suppose that  W is invertible. Since F is non-invertible, the subspace Ker F is infinite- 

dimensional. The operator Fhl(Ker  Fh) • being unitarily equivalent to W J  is also invert- 

ible. So Ker Fh is infinite-dimensional which implies that  rh  is unitarily equivalent to F. 

Suppose now that  W is non-invertible. If Ker F =  {0}, we can choose by Lemma 5.2 

a scalar spectral measure Q of W so that  f(1/s)dQ(s):co. Then by Theorem 5.1, 

Ker Fh = {0} and so Fh is unitarily equivalent to F. 

If F has an infinite-dimensional kernel, then by the remark to Lemma 5.2 we can 

choose Q so that  f(1/s)dQ(s)<co and by Theorem 5.1, Fh has an infinite-dimensional 

kernel and again Fh is unitarily equivalent to F. [] 

Proof of Theorem 5.1. Let us first prove that  KerFh is non-trivial provided 

f (1 /s)  dQ(s) < co. Assume that  Ker Fh ---- {0}. Since F h = VoV* = VoJV* , it follows that  

Ker V*={0} which is equivalent to the fact that Vo has dense range in L2(R+).  

Let {(Ih}t~>o be the semigroup of backward translations on L2(R+),  ( ( Ihf)(s)= 

f (s+t) ,  s, t~O. It is easy to see that  

Voe tA = Ot Vo. (5.2) 

Clearly the condition f(1/s)dQ(s)<co means that  cERangeW 1/2. 

Let Vo=UoW U2 be the polar decomposition at Vo (see the proof of Theorem 2.1). 

Since KerFh={0} ,  it follows that  Uo is unitary. Therefore cERangeV*.  Let c=V*f ,  

f c L 2 ( R ) .  Define the operator F: L2(R)---~C by 

F ~  = (qo, f ) .  

Then obviously FVo=C, where as above Cx=(x,  c). Therefore by (5.2) 

Ce tA = FOtVo 

and so 

which implies 

t A  ~ * t A  * * * e C Ce = V o ~ t F F ~ t V  o 

+ + 
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Since Vo=Uo WU2 and Vo=W1/2Uo, we have 

U~ ( fR~F*F~td t )Uo= I 

and bearing in mind that Uo is unitary, we obtain 

/R O~F*FOt dt = I. 
+ 

Consider the function f , ,  r>>.O, defined by 

f(t--T), t>>.7-, 
f~(t) = 0, t<7", 

and the operators F~: L2(R)--~C defined by 

Frx = (x, f,). 

Since F~=F~,  identity (5.3) can be rewritten as 

(5.3) 

/R F.~Fr dT= I. (5.4) 
+ 

The operator F*Fr is the integral operator with kernel x~(s, t)=f~(s)f~(t). We have 

def f ~  , f0 c~ fmin{s,t} 
x ( s , t )  = Jo .~r(S,t) dT= f r ( s ) f r ( t ) d T = ] o  f (S - -T ) f ( t - -T )dT ,  

hence 

Ix(s ,  t)J ~< [If rig. 

Therefore (5.4) implies that 

/o7; (~, r = x(s, t)~(s)r ds dt 

at least for compactly supported ~ and r in L 2. 

Let now 
{ 1/v~, 0,.< s ~<6, 

~ ( s )  = r  = 0, s > 6. 

(5.5)  

Then (5.5) implies that 

1 = II~llg = (~, ~) < 611xl]o~ < 61]fll 2 < 1 

for a sufficiently small 6. The contradiction obtained proves that Ker Fh r {0}. 

Let us show that if Ker Fh # {0}, then f(1/s) dQ(s)< oo. It is easy to see that the sub- 

space K =  (Ker Fh) • is invariant under the semigroup of backward translations {~s}s~>0. 

Let ~sd----efq~slK. Since KerFh=Ker V*, it follows that K=c los  Range V0* and so by (5.2) 

Voe tA = k~tVo. (5.6) 

We need the following lemma. 
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LEMMA 5.3. The semigroup {k~t}t~>0 has a bounded generator. 

Let us first complete the proof of Theorem 5.1 and then prove Lemma 5.3. 

Lemma 5.3, ~ t = e  to,  t>/O. It follows from (5.6) that 

By 

VoA = GVo 

and so 

G =  Y o A Y o  1 

( V o A V o  I is defined on a dense subset of K and extends by continuity to a bounded 

operator). 

Put 

. l + ( v  o ) A Vo. R = G + G  = V o A V  o -1 �9 �9 �9 

Multiplying this equality by V o on the right and V* on the left and bearing in mind that 

V * V o = W ,  we obtain 

W A + A * W  -- V * R V  o. 

On the other hand, we have from (4.6) 

W A + A * W = - C * C = - ( . , c ) c .  

So V * R V o = - C * C .  Hence cERange Vo* or, which is equivalent, c E R a n g e W  1/2 (see the 

proof of Theorem 2.1). Clearly the last condition exactly means that 

1 do(s)  < oo. [] 
8 

Proof  of  L e m m a  5.3. To show that the generator of our contractive semigroup is 

bounded, we apply inverse Fourier transformation ~--1 which maps L2(R+) onto the 

Hardy class H 2 = H 2 ( C + ) .  Put ~ = ~ - - 1 r  and t ~ = ~ ' - l ~ g r .  Then 

(~ ~f  = P +e_~f  , 

where e_~( t )=e  -i~t and P+ is the orthogonal projection from L 2 onto H 2. Clearly 

where /~=3: -1K.  

Obviously /~ is an invariant subspace of the semigroup {~'s}s>~0 and so by Lax's 

theorem (see e.g. [N, Chapter XI])/~ has the form K o = H 2 0 0 H  2, where 0 is an inner 

function. 
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Let G be the generator of the semigroup {~'s}8~>0. It is sufficient to show that 

is bounded. To this end we consider its Cayley transform T=(G+I)(G-I) -1 which 

is called the cogenerator of the semigroup {~s}8~>0. Since G=(T+I)(T-I) -1, it is 

sufficient to show that l~a(T) .  

The cogenerator T can be found easily. According to a theorem by Sz.-Nagy and 

Foias, see [SF, Chapter III, Theorem 8.1], the cogenerator T of a semigroup of contrac- 

tions {T(s)}~>0 is given by 

T :  lim ~o~(T(s)), 
s -*0+  

where 

Taking into account that 

A - l + s  
q~  s'  

~((~)f=P+~(e_~)f, fEKo, 

we can conclude that the cogenerator T of the semigroup ~ is given by the formula 

Tf ---P+~f, f E K o ,  

where ~(t)=lims__.o+ ~s(e-i't)=(s+i)/(s-i). 
Let w be the conformal map of the unit disc D onto the half-plane t2+ defined by 

l + z  
w(z)=il_---- ~. 

Let 0~f0ow. Note that 0 is an inner function in Ha (D) .  Then the unitary operator/4, 

(Ltf)(t)=Trl/:t_~ fow_ 1 _~7rl/2_..1._1 f ( t - i )  t+i ~ - - ~ ,  t e R ,  

maps unitarily H2(D) onto H2(C+) and K0 onto Ko, and moreover/4-1T/4f=S*IKo, 

where S* is backward shift, 

S*f=P+Sf(z)=f-f(O), fEH~" 
Z 

So, T is unitarily equivalent to S*]Ko. 
To complete the proof we need the notion of the spectrum of an inner function. Let 

7 be an inner function. Then ~'=(~Bs, where aEC,  la]=l ,  B is a Blaschke product with 

zero set A and s is a singular function, i.e. 
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for some positive measure A which is singular with respect to Lebesgue measure. The 

spectrum a ( r )  of T is by definition closAUsuppA. 

It is well known (see [N, Chapter III]) that  the spectrum of S*](H207H 2) is equal 

to cr(~-). Therefore in our case a(T)=a(~). 
If 0 is an inner function in C+, we put  by definition a(~)=w(a(~)), the spectrum 

of ~. Note that  a(0)  can contain c~ (this happens if and only if 1Ea(~)).  

Let us prove that  a(O) C -i  a(A) which would imply that a(vg) is bounded and since 

o ( T )  = : 

it would follow that  l~ta(T) and so G is bounded. 

To this end we need the notion of psendocontinuation. Recall (see [N, Lecture II]) 

that  a function f E H P ( C + ) ,  l<~p<~oo, is said to have a meromorphic psedocontinuation 
(or simply, pseudocontinuation) if there exists a meromorphic function g of Nevanlinna 

def  
class A/(C_)  in C_ (Af(C_) : {g:gl/g2:gl,g2 6 H ~ ( C - ) } )  such that  the boundary 

values of g coincide with the boundary values of f almost everywhere on R. Such a 

function g is called a pseudocontinuation of f .  

Each inner function 0 a can be extended to C_ by 

0 ( r  r 

Such an extension is a meromorphic function with poles at the points conjugate to the 

zeroes of 0 in C+, and clearly it belongs to Af(C_).  It is also easy to see that  this 

extension has non-tangential boundary values almost everywhere and those boundary 

values coincide a.e. with 0 on R,  that  is, each inner function has a pseudocontinuation. 

A function f 6 H 2 ( C + )  belongs to K,~ if and only if f/O6H2(C_). Since H 2 ( C _ ) C  

A/'(C_), it is easy to see that if f6Ko, then f=(f/O)O has a pseudocontinuation. 

We need the following well known facts: 

(i) if a function f E H 2 ( C + )  has a pseudocontinuation and it extends analytically 

across an interval I C R ,  then its extension coincides with its meromorphic pseudocon- 

tinuation; 

(ii) if 0 is an inner function such that R ~ a ( 0 ) ,  then ~) extends analytically to 

C \ ~  

(iii) if R ~ a ( 0 )  and fEK~, then f extends analytically to C\a(O). 
The proofs of (i)-(iii) for H p functions on the unit disc can be found in [N, Lec- 

tures II, III]. It is easy to see that  the case of functions in C+ reduces easily to the case 

of the unit disc. 

Now we are in a position to prove that  a ( 0 ) C - i a ( A ) .  To do that  we need the 

following lemma. Let C denote the Riemann sphere C=CU{c~} .  Till the end of the 

section we assume that  a function f6K~ is extended to C_ as a meromorphic function. 
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LEMMA 5.4. Let 0 be an inner function in C+ and let c~ be a closed subset of 
its spectrum a(O), a~a(~)). Then there exists a non-trivial inner divisor 01 of 0 (i.e. 

v~/01 ~const)  such that every function f E Ko, which extends analytically to C \  ~, belongs 

to Kol.  

Let us first complete the proof of Lemma 5.3. Assume that  a ( 0 ) r  Put  

a = a ( 0 ) M - i  cr(A). Let 01 be an inner function whose existence follows from Lemma 5.4. 

Consider an arbitrary f=Jz-lVox, xEIC. Since 

1/i:t CetAxeiSt (.T'-IVoX)(S)~--~ dt= ((A+isI)- lx ,  c), Ims  >0 ,  (5.7) 

the function f extends analytically outside the set ia(A). On the other hand, f E K ~  
and and by (iii) it extends analytically to C \ a ( 0 ) .  Therefore f extends analytically 

to C \ ~ .  By Lemma 5.4, f E K ~  1 and since {.T-1Vox:XEIC} is dense in K~, it follows 

that  K # c K ~ I  which contradicts the fact that 01 is a non-trivial inner divisor of 0. So 

a(0) c - i  a(A) and as we have already noted, this implies the boundedness of G. [] 

Remark. It can be shown that a(T)=a(O)=w-l( - i  a(A)) and a(T) must be sym- 

metric about the real line: a(T)=a(T). Thus a(A) must be symmetric too: a(A)=a(A*). 

Proof of Lemma 5.4. Note that  gEKe if and only if g E H 2 ( C + )  and g/OEH2(C_). 
Consider first the simplest case. Suppose that  there exists a point )~ in C+ such 

that  )~Ea(O)\a. Then we can define 01 as 01=0/b:~, where b~(z)=(z-)~)/(z-~) is a 

Blaschke factor. 

Suppose that  f E H 2 ( C + ) ,  f /OEH 2_ and f extends analytically to ~. Since the 

pseudocontinuation of 0 has a pole at ~, it follows that  (f/O)(]~)=O. The function 1/bA 

in C_ can be considered as a Blaschke factor with zero at ~. Since the function f /O 
belongs to H2(C_)  and vanishes at ~, it follows that 1/b~ is a divisor of f /O and so 

f /Ol=b~f/OEH2(C_),  which means that  fEKo~. 
Suppose now that C+M(c~(O)\a)=O. Put  fid----efRu{Oc}. Then there exists an open 

connected set I in R such that  IMa(O)~O and I is separated from a. 

Let T be a nontrivial inner divisor of 0 whose spectrum is contained in I and let 

01 =0/~'.  Let us prove that 01 satisfies the conclusion of the lemma. 

Let f be a function in Ko  which extends analytically to C \ a  and so f is holomorphic 

in a neighbourhood of clos I. Since f EAr (c_ ) ,  f can be represented as f =gl/g2, where 

gl ,g2EH~(C_) and gl and g2 have no nontrivial common inner factor. We need the 

following fact. 

LEMMA 5.5. Let ~1 and ~2 be bounded analytic functions in D which have no 

common inner factor. If ~1/~2 extends analytically to a neighbourhood of a closed arc 

J in T,  then the spectra of the inner components of ~1 and ~2 are separated from J. 
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Let us first complete the proof of Lemma  5.4. Applying the conformal map  from 

{2_ onto D,  we find from Lemma 5.5 tha t  the spectra of the inner components  of gl and 

g2 are separated from I.  

Let ~9 # and T # be the inner functions in 12_ defined by v~#(z)=~9(~), T#(z)=7-(~),  

r  We have f/zgEH2(12_) and (f/~))(~)=f(z)zg#(ff), r  Since the spect rum of 

the inner factor of g2 is separated from I ,  it is easy to see that  T # is a divisor of gl. It  

follows that  the function fVg#/T # in 12_ belongs to H 2. Clearly the boundary  values of 

this function coincide with ~/01 which completes the proof. [] 

It  remains to prove Lemma 5.5 which is familiar to experts though we were unable 

to find a reference. The following simple proof is due to D. Marshall. 

Proof of Lemma 5.5. By dividing qol by a polynomial we can assume that  qol has no 

zeroes in a neighbourhood of J .  Clearly the zeroes of q01 and ~2 are separated from 3. 

So we can divide ~1 and q02 by the corresponding Blaschke products  and reduce the 

situation to the case when q01 and qo2 have no zeroes in D. Then log IqOl/qO2t is the 

Poisson integral of a real measure t / o n  T.  Clearly v is the weak limit of vr as r--*l ,  

where du r ( ( )= log  [qol(r()/qo2(r()[ dm((). Since log [qol/q02[ is smooth in a neighbourhood 

of J ,  it follows that  the restrictions of vr to J converge in the norm to the restriction of 

~, to J and so ~, is absolutely continuous on J which means tha t  the singular measures 

of the inner components of qol and qo2 are supported outside J .  [] 

I I . 6 .  E x e r c i s e s  in measure  theory  

The aim of this section is to prove Lemmas 4.1 and 5.2. They will be proved if we 

establish the following facts: 

Let Q be a finite positive Borel measure on [0, a], a > 0 ,  which has no mass at 0 and 

let a+ and a_  be disjoint sets such tha t  a + U a _ = s u p p Q .  Then there exists a weight 

wELl(Q) which is positive Q-a.e. and such that  the measure ~, d~=wdQ, satisfies: 

(a) the integral operator  A0 on L2(~) with kernel (4.2) is Hilbert-Schmidt;  

(b) if 0Esupp Q, then we can find a w so that ,  in addition to (a), f(1/s)db(s)=oo. 

Proof. We begin with (a). In the case when one of the sets a+,a_ is empty  the 

result is trivial. Assume that  both  a+ and a_  have positive measure. Let a (n) and a(~ ) 

be compact  subsets of a+ and a_  such tha t  or(+ n) CO'(+ n+l) , a(_. n) Ca(_ n+l) , n>~n+l, and 

lira Q ( a + \ a ( n ) ) =  lim 0(a_\a(n))=O. 
n---* OC n--'* ~ 

+ (n)_ (n), [a('~)t3a (n)~ is bounded. Clearly the restriction of k to [a+ u a _  ) • ~ + _ j 

19-950233 Acta Mathematica 174, lmprim~ le 20 juin 1995 
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Suppose we have already defined w on a(+ n) UG(_ ~). Let us define it o n  G~ n + l )  Uo'(_ n + l )  . 

We can easily do that so that 

(k(s, t)) 2 d~(s) d~(t) < 2--~, 
n 

where A n = (a(+ n+l) Ua(_ n+l)) • (a(n+ 1)ua(n+l)) \ (a(n)t_ja(n)) x ((r(+ n) Ua(_ n)), d~=w dQ and 

w is positive a.e. on AN. Doing in this way, define w on supp g. Clearly the measure ~, 

d~=w d#, satisfies (a). The above reasoning was suggested by Svante Janson. 

To prove (b) we consider first the simplest case when one of the sets a+, a_  is empty 

and so k(s, t )=- l / ( s+t ) .  Without loss of generality we can assume that supp 0C [0, 1]. 

Let 5n=(2-n ,2-n+1] ,  n~>l. Consider the increasing sequence {nj}j>~ of integers 

such that 0(Sn~)> 0 and O(6n)= 0 if n~nj  for any j .  Since 0 E supp Q, the sequence {nj }j>>.l 
is infinite. We define the weight w by 

2 - ~  
w(s) = O(6n~)j l o g ( j + l )  ' 

Then 

~01 w(s)d~~ --j~/l~nj w(s) dLO(s)s 

So 

On the other hand, 

sE6n~. (6.1) 

2-n, f do(a) 
= ~-~" Q(6nj)jlog(j+l) "J s j ) l  

1 
2- '~ '6 " 2 " ~ - t = l E j l o g ( j + l  ) ) Ej>~I O(6nj)jl~ 'b)" -2j)l 

~ 1 d~(s) _ co. 
8 

(k(s, t)) 2 d~(s) d~(t) = E (s+t)2 dQ(s) dQ(t) 
' �9 n 3 r~l '*3 " 

1 

<<.2 E O(~)O(~n~)jlog(j+l)rlog(r+l) 

X (2_n j +2_n~) 2 d0(a) do(t) 
n j  n r 

1 

< 2  ~ 0 ( %  )O(6~J j log(j + 1) r log(r + 1) l<~j<oo,r<~j 
2n.2--nj 

=21~<j<~x~E l<~<~jjlog(j+l)rlog(r+l)" 
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Since 

we have 

J 2n~ 2nj 

E r l o g ( r + l )  < l o g ( j + l ) '  
r = l  

(k(s,t))2d~(s)d~(t)<~2 j l og2( j+ l )  <o c .  
j = l  

Consider now the general case. Since 0Esupp 0, 0 is an accumulation point of either 

a+ or a_.  To be definite, assume that  0 is an accumulation point of a+. Then we 

can consider the sets 5n=(2 -'~, 2-~+~]Na+, the increasing sequence {nj}j>~l such that  

0(5,~)>0 and O(5~)=0 if nCnj for any j .  We can define w on 5,~j as in (6.1). It follows 

from the above reasonings that  

f w(s) = do(s) 
+ 8 

and 

~+ ~+ (k(s, t)) 2 d~(s) d~(t) < oc. 

We can now define w inductively on (2 -nj  , 2 -n~-I ]fqa_ to be so small that  

~1 ~1 (k(s,t))2w(s)w(t)do(s)do(t) 
- a j  - n j  

2(1- 2 J) 

where Aj = a +  n(2 -nj  , 1]. Obviously this can easily be done. [] 

II.7. Positive Hankel operators with multiple spectrum 

Here we prove that  no positive Hankel operator with multiple spectrum (i.e. the set 

{ t>0:  u(t)> 1} has positive measure) can be realized by a balanced realization {A, B, C} 

with one-dimensional input and one-dimensional output .  Recall that  we consider only 

systems with bounded A, B, and C. 

THEOREM 7.1. Let F be a non-negative self-adjoint operator such that W= 
FI(KerF)  • has multiple spectrum. Then there exists no balanced system { A, B, C} with 
one-dimensional input and one-dimensional output such that Fh I(KerFh) • is unitarily 
equivalent to W. 

Recall that  Fh is the Hankel operator associated with {A, B, C}. 
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Theorem 7.1 shows that  not all self-adjoint Hankel operators (even up to unitary 

equivalence) can be realized by a balanced system with continuous time. 

Proof. Suppose that  W is unitarily equivalent to Fh I(KerFh) • for some balanced 

system {A,B,C}.  Then by Theorems 2.2 and 2.4, J=I ,  A=A*, b=c. We have 

W = etAC*Ce tA dr, 
J0 

the integral being convergent in the weak operator topology. 

Let us show that  Ke rA={0} .  Indeed if x E K e r A ,  then 

~C~(etAC*CetAx,x)dt= ~ , (e tAx ,c) ,2  dt= ~ , ( x , c ) , 2  dt < ~ ,  

so X_l_etAc and since c is a cyclic vector of A, we have x=0 .  

As we have already proved, 

AW+WA = -C*C (7.1) 

(see w Therefore it follows from Lemma 4.3 that  A~<0. Since K e r A = { 0 } ,  A is 

asymptotically stable. 

We can now interchange the roles of A and W in (7.1). Since - W  is self-adjoint and 

asymptotically stable, it follows from Theorems 3.1 and 3.2 that - A  is a unique solution 

of the equation 

Z ( - W ) + ( - W ) X  = -C*C 

and this solution is given by 

~0 ~176 
- A  = e-tW C*Ce -tW dt, (7.2) 

the integral being convergent in the weak operator topology. 

However, it is easy to see from (7.2) that KerA=(span{Wkc:k~O}) • and this 

subspace is non-trivial since W has multiple spectrum. [] 

Remark. We use the definition of balanced systems with K e r W = { 0 } .  One could 

think that if we change the definition to admit a non-trivial kernel of W, then Theorem 7.1 

would not be true anymore. However this is not the case. If we admit Ker W e { 0 }  we 

can consider the s p a c e / C I = ( K e r W )  • Since 

/7 /7 W =  etA'C*CetA dt= etABB* etA'dt, 
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it follows that  

/C1 = (Ker W) • = span{Anb:n >10} = span{(A*)nc: n >/0}, 

so/C1 is a reducing subspace for A and b, cE/C1. Therefore if we consider the operators 

AI=PjclAIIC1 and WI=WIIC1 , then (etAb, c)=(etAlb, c), so the nankel  operator of the 

systems (A, b, c} and {A1, b, c} coincide. But Ker W1 = ( 0 }  and we arrive at our original 

definition. 

III. Ba lanced  real izat ions  w i th  discrete  t ime  

The main aim of this chapter is to prove that  if a bounded self-adjoint operator satisfies 

the conditions (C1)-(C3) in the Introduction, then it is unitarily equivalent to a Hankel 

operator. To construct such a Hankel operator we use linear dynamical systems with 

discrete time. 

The idea of the method can be described briefly as follows. Let F be a Hankel 

operator and let S be the shift operator. Then the operator A--S*F satisfies the equality 

F 2 _ A  2 = ( - ,p)p ,  

where p=Feo and eo is the first basis vector in the basis in which F has a Hankel matrix. 

Suppose now that  F is a self-adjoint operator that  satisfies the conditions (C1)-(C3). 

Assume here for simplicity that  Ker F = ( 0 } .  The problem is to find a vector p in Range F 

such that  F 2 -  ( - ,  p)p>~ 0 and to find a self-adjoint operator A such that  A2=F 2 -  ( - ,  p)p. 
Then we can define a contraction T by A=TF. It is easy to choose a vector p so that  T* 

be an isometry. It can also be seen that  Ker T is one-dimensional. If we could prove that  

T* is unitarily equivalent to the shift operator,  then it would follow from the equality 

TF=FT* that  F is unitarily equivalent to a Hankel operator  (see the Introduction). 

Clearly T is unitarily equivalent to S ~ if and only if 

IIT"xll- 0 

for any vector x. However the verification of the above property (the asymptotic stability 
of T)  is the most difficult problem. We reduce it to the verification of the asymptotic 

stability of another auxiliary operator.  The last problem is much simpler since the 

auxiliary operator has a sparse spectrum on the unit circle. 

In w we introduce linear dynamical systems with discrete time and associate with 

each such system a Hankel operator. In w for a given operator F we construct a linear 

system and we show that  if the state space operator T of that  system is asymptotically 



280 A.V. MEGRETSKII ,  V.V. PELLER AND S.R. TREIL 

stable (T* is an isometry if KerF={0}) then the Hankel operator associated with the 

system is unitarily equivalent to F. Such systems are called output normal. As we have 

already mentioned, it is very difficult to verify the asymptotic stability of T. In w we 

construct another linear system and show that if T is asymptotically stable then it gives 

another (balanced) realization of the same Hankel operator and we reduce the verifica- 

tion of the asymptotic stability of T to that of the state-space operator of the system 

constructed. In w167 III.4-III.9 we choose parameters and prove the asymptotic stability by 

using the Sz.-Nagy-Foias stability test. Note that in our construction we use essentially 

the Kato-Rosenblum theorem which claims that the absolutely continuous spectrum is 

stable under trace class perturbations. In w we discuss connections of our results 

with another theorem in perturbation theory (the Aronszajn-Donoghue theorem) that 

describes the behavior of the singular spectrum under rank one perturbations. 

III .1.  Hankel  opera tors  and l inear systems 

Linear systems with discrete time can be defined by analogy with linear systems with 

continuous time. Let /C be a Hilbert space (the state space of the system), B: C---/C, 

C: K:---C bounded linear operators, 

Bu=ub,  uEC,  Cx=(x,c) ,  xEIC, 

where b, cE/C Consider the dynamical system {A, B, C} with one-dimensional input and 

one-dimensional output: 
{ x,~+l = Axn +Bur, 

(1.1) 
Yn = Cxn. 

In what follows we shall also denote the system (1.1) by (A, b, c}. 

One can associate with the system (1.1) the formal Hankel operator F~ with the 

matrix 

(O~y+k)j,k>~O, aj=(AJb, c), j>~O. 

In general F~ need not be bounded on l 2. However we shall see later that in many 

important cases it is bounded. 

The operator F~ is an analogue of the operator l~h introduced in Chapter II for 

systems with continuous time. In the case sup~>0I[Anl[<oo it is related to the system 

(1.1) in the following way. Let v=(vn}n>~oEl 2. Consider the sequence u=(un}ncz 

defined by 
S V--l--n, n ~ O, 

Un 
I 0, n~>0. 
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Then (as in the case of continuous time) under the initial condition limn~-oo x~--0 the 

output y of the system (1.1) with input u satisfies 

y n  = n >0. 

As in the case of continuous time the system (1.1) is called controllable if span{A"b: 

n~>0}=/C and observable if span{A*nc:n>~O}=~. It is called minimal if it is both 

controllable and observable. 

The controllability and observability Gramians are defined by 

oo 

W c = E A J B B * ( A * ) J  , (1.2) 
j----0 

oo 

Wo = E ( A * ) J C * C A  j (1.3) 
j=O 

if the series converge in the weak operator topology. In this case the system is controllable 

(observable) if and only if Ker We={0} (Ker Wo--{0}). 

A minimal system is called balanced if the series (1.2)-(1.3) converge and Wc-=-Wo. 

We shall also consider the so-called output normal systems, i.e. the systems for which 

the series (1.2)-(1.3) converge and Wo=I.  

The main result of this chapter is the following theorem which together with The- 

orem 1.1 of Chapter I gives a complete solution of the problem of the description of 

self-adjoint operators which are unitarily equivalent to a Hankel operator and proves 

Theorem 1 in the Introduction. 

THEOREM 1.1. Let F be a self-adjoint operator on Hilbert space which satisfies the 

conditions (C1), (C2), and (C3) in the Introduction. Then there exists a balanced system 

{A, b, c} with one-dimensional output and one-dimensional input such that the Hankel 

operator Fa associated with the system is unitarily equivalent to F. 

The proof of Theorem 1.1 will be given in w 

III.2. Output normal realizations of  Hankel operators 

In this section for a given self-adjoint operator we construct a linear system and prove that 

if the state space operator is asymptotically stable then the Hankel operator associated 

with the system is unitarily equivalent to the operator in question. Moreover the system 

constructed is output normal. The main difficulty however consists in the verification of 

the asymptotic stability. 
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Let R be a self-adjoint operator on a Hilbert space ~ with trivial kernel and let 

q be a vector in K: such that  Ilqll~<l. Then R 2 - (  �9 ,p)p~O, where p=Rq. Let A be a 

self-adjoint operator such that  

R 2 = A 2 + (  �9 ,p)p. (2.1) 

Clearly A2~<R ~ and so by the Douglas lemma (see [DI D there exists a contraction T 

(which is unique because of the fact that  KerR={0})  such that  TR=A.  

Consider now the dynamical system {T,p,q}. As above aj=(TJp, q), j~O, and F~ 

is the Hankel operator with matrix (aj+k}j,k~>0. 

We shall call T asymptotically stable if [[Tnx[[--*0 as n- -*~ for any x�9 

THEOREM 2.1. Suppose that T is asymptotically stable. Then 
(i) the system {T,p,q} is output normal; 
(ii) R is unitarily equivalent to F~ I(Ker Fa)• 

(iii) K e r F s = { 0 }  if and only if [[qll=I and q•RangeR. 

Proof. It follows from (2.1) and the definition of T that  

R 2 = R T * T R + ( . ,  Rq)Rq 

and since Ker R={0},  we obtain 

I = T*T+( .  ,q)q. (2.2) 

Therefore 

[[x[[ 2=  IITxll~ +[(x,q)[ ~, x e IC. 

If we apply (2.3) to Tx and use the fact that  T is asymptotically stable, we obtain 

O O  

I IxH2=EI(TJx,  q)] 2, x�9 
j=O 

which means that  the operator V: ~--*l 2 defined by 

(2.3) 

Vx = ( (x, q), (Tx, q), (T2 x, q), ...) (2.4) 

is an isometry. It is easy to see that  the Hankel operator F~ associated with the system 

satisfies the equality F~ = VRV*. Indeed 

V'{yj}j~o = E YJ(T*)Jq, {yj}j~>0 �9 12. (2.5) 
j~>0 
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So if (ej}j>~o is the standard orthonormal basis of 12 then 

( VRV* e j, ek ) = ( R( T* )i q, (T* )k q) 

and since RT* = T R  (this follows from the definition of T), we have 

(VRV*ej ,  ek ) = (TJRq, (T*)k q) = (TJ+kp, q) ---- aj+k. 

Therefore (ii) holds and Ker Fa--Ker  V*. 

It is clear from (2.4) and (2.5) that  the series (1.3) converges in the weak operator 

topology and W o = V * V = I .  On the other hand, since T R = R T * - - A ,  we have 

W~ = ~ TJ ( ( �9 , Rq)Rq)(T* ) j = E TJR( ( " q)q)R(T" )J 
j>~o j>~o 

= ~ R(T*)J ( ( . ,  q)q)TJR = RWoR = R 2 
j>~o 

and so the series (1.2) converges in the weak operator topology. 

Note that  K e r F s = { 0 }  if and only if V is onto which is equivalent to the fact that  

{(T*)Jq}j~>0 is an orthonormal basis in/E. 

Suppose now that  [[q[[ =1 and q~Range R. We have by the definition of A 

A s = R ( I - ( .  ,q)q)R. (2.6) 

Since Ker R= {0}, it is clear that  Ker A= {0}. It follows now from the equality RT* =A 

that  KerT*={0}.  

Applying (2.2) to the vector q, we obtain 

T*Tq+q = q 

and since KerT*={0},  it follows that  Tq=O. 

Multiplying (2.2) by T on the left and by T* on the right, we obtain 

TT*TT* + T(  ( . , q)q)T* = TT* (2.7) 

and since Tq=0,  we have (TT*)~=TT *. Clearly in view of the fact KerT*={0}  this 

means that  TT* =I,  i.e. T* is an isometry. Since T is asymptotically stable, T has no 

unitary part. The condition (2.2) means that  T* has defect 1 and so T* is unitarily 

equivalent to the shift operator S. Therefore the conditions Tq=O and [[q[[=l imply 

that  the system {(T*)Jq}j>~0 forms an orthonormal basis in/E. 
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Suppose now that  {(T*)Jq}j)o is an orthonormal basis in ~.  Then Hqll=l and T* 

is an isometry, i.e. TT* =I .  Therefore we have from (2.7) 

T ( ( . ,  q)q)T* = ( . ,  Tq)Tq = 0 

and so Tq=O. Since T* and R have trivial kernels, the operator A = R T *  also has trivial 

kernel. But it is easy to see that  (2.6) and the fact that  I]qll=l imply that  K e r A = { 0 }  if 

and only if q!t Range R. [~ 

Remark. As we have shown in the proof, in the case Ker F--{0} the operator T 

is unitarily equivalent to the backward shift S*. It is easy to see that otherwise T is 

unitarily equivalent to the restriction of S* to its invariant subspace (Ker F~) • 

Theorem 2.1 gives us a recipe how to construct a Hankel operator which is unitarily 

equivalent to our operator F. We can put  R = F I ( K e r F )  • Then we have to choose a 

vector q such that  R 2 -  ( . ,  Rq)Rq~O.  If Ker F={0} ,  then q must satisfy the conditions 

IIqll=l and qt tRangeR.  If K e r F S { 0 } ,  at least one of the conditions must be violated. 

Next, we have to choose a self-adjoint operator A such that  A 2 = R 2 - (  . ,Rq)Rq.  The 

problem will be solved if we manage to prove that  the operator T uniquely defined by 

the equality T R = A  is asymptotically stable. However this is the most difficult point. 

III.3. Ba lanced  real izat ions  

In this section we construct a balanced system and show that  the verification of the 

asymptotic stability of T can be reduced to the verification of the asymptotic stability 

of the adjoint of the state space operator of the balanced system constructed. It turns 

out that the last problem is considerably simpler. 

LEMMA 3.1. Let T be a contraction and let K,  X be bounded operators on Hilbert 

space such that X has dense range and 

T X  = X K .  

I f  K is asymptotically stable, then so is T. 

Proof. The result follows immediately from the formula T J x - - X K  j, j/> 1, and from 

the facts that  IITII ~< 1 and X has dense range. [] 

Let T, A, R be the operators considered in w Put  W = I R I = ( R * R )  1/2. 



THE INVERSE SPECTRAL PROBLEM FOR SELF-ADJOINT HANKEL OPERATORS 2 8 5  

LEMMA 3.2. There exists a unique contraction A such that 

A w l ~  2 -_ W1 /2T  *. (3.1) 

Proof. The inequality T ' T < .  I implies 

W 2 = R 2 >1 R T * T R  ~- A 2 -= T R 2 T  * = T W 2 T  * >1 T W T * T W T * .  

By the Heinz inequality (see [BS 1, Chapter 10.4]) this implies that  T W T *  <. W .  Applying 

now the Douglas lemma (see [D1]) we find that  there exists a unique contraction A 

satisfying (3.1). [] 

It follows from (3.1) that  
TW1/2  = W1/2A * 

and so by Lemma 3.1 to prove that  T is asymptotically stable, it is sufficient to show 

that  so is A*. 

Let J be the "argument" of R, i.e. 

R = J I R I = J W = W J ,  J = J * = J - 1 .  

Consider now the dynamical system {A, b, c} where the operator A is defined in Lem- 
ma 3.2, b=W1/2q,  c = j W 1 / 2 q .  

Although the following theorem will not be used in the proof of Theorem 1.1, it is of 

independent interest and establishes relations between balanced realizations and output 

normal ones. 

THEOREM 3.3. Let T be asymptotically stable. Then the system {A,b ,c}  is a 

balanced realization of the Hankel operator associated with the output normal system 

{T ,p ,q} .  

In other words the system {A, b, c} is balanced and (AJb, c) = (Tip,  q), j >10. To prove 

Theorem 3.3 we need the following lemma. 

LEMMA 3.4. A * J = J A .  

Proof. Since K e r W = { 0 }  and W has dense range, it is sufficient to show that  

W 1 / 2 A * J W 1 / 2 = W 1 / 2 J A W  1/~. We have by (3.1) 

W1/2 A * J W  1/2 = TW1/2  j W  1/2 = T J W  = T R  = A 

by the definition of T. On the other hand, by (3.1) 

W1/2 j A W  1/2 = W1/2 j W Z / 2 T *  = J W T *  = RT* = A, 
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which proves the result. [] 

Proof of Theorem 3.3. Let us first show that {A, b, c} is a balanced system. We have 

Wc = E AJ(( " W1/2q)W1/2q)(A*)J 
j>~o 

= E AJWW2(("  qlqlW1/2(A*lJ 
j>~o 

~- E wl/2(r*)J ( ( " q)' q)rJwl/2 
j>~o 

by (3.1). Hence 

Wc= W1/2(E( . , (T*)Jq) (T*)Jq)W1/2= W , 
j>~o 

since the operator V defined by (2.4) is an isometry. Clearly the series (1.2) converges 

in the weak operator topology. Next 

Wo = E ( A * ) J  (( �9 , jWW2q)JW1/2q)A j 
j>~o 

= ~-~JA*)JJW1/2((., q)q)W1/2gA j 
j>~o 

= Z JAJ( ("  WW2q)W1/2q)(A*)JJ 
j>~o 

by Lemma 3.4. Hence 

Wo = J W c J  = J W J  = W 

and the series (1.3) converges in the weak operator topology. 

Let us now prove the equality (AJb, c)=(TJp, f) ,  j~O. Bearing in mind (3.1) and 

the equality RT* =TR, we have 

( AJb, c) = ( AJW1/2 q, JW1/2 q) = (W1/2 JAJW1/2q, q) 

= (W1/2jW1/2(T*)Jq, q) = (R(T*)Jq, q) = (TJRq, q) = (Tip, q). [] 

Let `7 be the "argument" of A, i.e. 

h =`71AI = IAI`7, `7 = ` 7 . = j - 1 .  (3.2) 

If KerA~{0}, then ,7 is not uniquely defined, so by J we understand an arbitrary 

operator which satisfies (3.2). 

Note that W2=R 2 ~A 2, and so by the Heintz inequality (see [BS1, w W>~ IAI. 

Hence by the Douglas lemma [D1] there exists a unique contraction Q such that 

QW 1/2 --[A[ 1/2. (3.3) 
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LEMMA 3.5. A*=Q*JQJ.  

Proof. We have by (3.1) 

W1/2 A* J W  1/2 = TW1/2 jW1/2 = TR = A. 

On the other hand, 

So 

A --IAI~/2JIAI1/2 = w~/2Q*jQW 1/2. 

W1/2A* JW1/2 = W1/2Q*JQW1/2. 

Since Ker WU2={0},  we have A*J=Q*JQ which completes the proof. [] 

The following lemma describes the structure of Q. 

LEMMA 3.6. Let ]Co be the smallest invariant subspace of W that contains Jq. Then 
Q has the following structure in the decomposition K:=I~o~K:~: 

( Oo ?) I ,l 
where Qo is a pure contraction (i.e. Ilqohll < Ilhll for h~O). 

Proof. Clearly W 2 and A: coincide on ]CoL and ]Co ~ is a reducing subspace for both 

of them. Therefore the same is true for the operators W 1/2 and IAI 1/2 which together 

with (3.3) proves (3.4). It remains to show that  Qo is a pure contraction. 

By (3.3) 

W1/2Q*QWQ*QW1/~ : A 2 = W 2 _ ( . ,  p)p : W 1 / 2 ( W  _ ( . ,  WW2jq)W1/2Jq)W 1/2 

and so 

Q*QWQ* Q = W - ( . ,  W1/2 jq)W1/2 Jq. 

It follows from (3.5) that  

(3.5) 

(WQ*Qx, Q*Qx)=(Wx, x)+l(x, Wl/2jq)12, x~_~l. (3.6) 

Since Q is a contraction, IIQhll=llhll if and only if Q*Qh=h (i.e. heKer(I-Q*Q)). 
It follows from (3.6) that  if heKer(I-Q*Q) then h• and by (3.5) we obtain 

Q*QWh=Wh. So Ker(I-Q*Q) is an invariant subspace of W which is orthogonal to 

W1/2jq. Therefore Ker(I-Q*Q) is orthogonal to ]Co which proves that  Q0 is a pure 

contraction. [] 
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I I I . 4 .  A s y m p t o t i c  s t a b i l i t y  

The material of the previous section gives us a clear way to construct a Hankel operator 

which is unitarily equivalent to a given operator F. Let K:=(KerF)  • F = F I ~  , and 

W=[F[.  We have to choose a vector q, operators J and ,~" such that  the following 

properties hold: 

(i) J=J* = j - l ,  J W = W J  and Rdefjw is unitarily equivalent to F; 

(ii) R 2 - (  �9 , Rq)Rq~O; 
(iii) ,]=J* = j - l ,  j ( R  2_  ( . ,  Rq)Rq)l/~ = ( R  2 _ ( .  Rq)Rq)l/2ff; 

(iv) the operator A* =Q*JQJ is asymptotically stable, where the contraction Q is 

uniquely defined by (3.3) and 

A = J ( R  - ( . ,  Rq)Rq) 

If Ker F--{0}, we have to impose the following condition: 

(v) Hqll=l and q~RangeR.  

If K e r F # { 0 } ,  we have to make the assumption: 

(v') either [Iq[[ < 1 or qERange R. 

The most difficult problem here is to verify the asymptotic stability of A*. To 

this end we shall use the following stability test which is an immediate consequence of 

Proposition 6.7 in Chapter II of [SF] (in Chapter II of our paper we have used an analogue 

of this test for semigroups of contractions). 

Stability test. Let T be a contraction on Hilbert space. If T has no eigenvalues on 

the unit circle T and the set g ( T ) N T  is at most countable, then T is asymptotically 

stable. 

We define the Fredholm spectrum aF(T) of a bounded linear operator T (see [N]) 

as the set of points ,k in C for which there exists a sequence {Xn}n~>l such that Ilxnll =1,  

w-lim~_~o~ xn=O (i.e. limn__.~ xn=O in the weak topology), and 

lim [ITxn-Axnll  = 0. 
n - - *  o ~  

Clearly it is sufficient to prove that  aF(A*)NT is at most countable and both A and 

A* do not have eigenvMues on T.  It follows easily from Lemma 3.5 that  A* =JAJ and 

so the operators A and A* are unitarily equivalent. Therefore it is sufficient to check 

that  A* has no eigenvalues on T (and certainly that aF(A*)nT is at most countable). 

The following lemma will help us to get rid of eigenvalues on T.  Recall that  K:0 is the 

smallest W-invariant subspace of K: that  contains Jq. 
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LEMMA 4.1. Let I~1=1 and hET-l. Then A*h=~h if and only if h, JhEEo ~ and 
JJh=r  

Proof. Suppose that A*h--~h, I~l=l. Since A*=Q*f fQJ and Q is a contraction, it 

follows that  IIQJhll--IIJhll = Ilhll. 

By Lemma 3.6, JhelCo ~ and Q J h = J h .  Next, the equality IId*hll=llhll implies 

IIQ*ffQghll=llQ*ffJh]l--IlffJhll. So by Lemma 3.6, Q*ffQgh=Q*ffgh=ffJh.  Hence 

J J h = r  and hE/(:~. 

The converse is trivial. If JhEICo l ,  by Lemma 3.6, f fQJh=f f Jh=r  Since hEK:o l ,  

it follows from Lemma 3.6 that  A*h=Q*ffQJh=~h.  [] 

The following lemma will he used to estimate (rF(A*)~T. 

LEMMA 4.2. Suppose that 

lim I](Q*JQ- ff)gnll=O 
~---* OO 

for any sequence {gn}n>>.l such that Ilgnll-=l, l i m n ~  IIQg,~ll=l, and w - l i m n ~  gn=O. 
Then aF(A*)ATCaF(JJ) .  

Proof. Let r Then there exists a sequence {xn}~>l such that  Ilxnll=l, w- 

l i m n ~  x~=0,  and l i m n ~  llA*xn-rlx~ll=O. Let g,~=Jx,~. Then clearly I[g,~ll=l and 

w - l i m , ~ r  gn=0.  We have 

IIA* x~-~x,~II = IIQ* f f  Qg,~-~x,dl ~ o. (4.1) 

Since I~1 = 1, it follows that I IQg~l l - ,1 ,  Therefore by the hypotheses 

IIA*x~ - JJxnll = IIQ* f f  Qg~ - Jgnll --' o, 

which together with (4.1) yields IIJJxn-Cx~ll~O. So Ce~F(JJ) .  [] 

III.5.  T h e  m a i n  c o n s t r u c t i o n  

The operator W admits a representation as multiplication by t on the direct integral 

= [ (~ E(t) dQ(t), (5.1) E 
Ja (w) 

where 0 is a spectral measure of W. Let vw(t)d=efdim E(t) be the spectral multiplicity 

function of W. As we have discussed in the Introduction we can assume that  all spaces 

E(t) are imbedded in a Hilbert space E with an orthonormal basis {ej}j~>l and 

E(t) : span{ej : 1 ~<j < ~w( t )+ l} .  
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Recall that u is the spectral multiplicity function of F. Clearly ~(t)=vR(t)  for t~0 ,  

where un is the multiplicity function of R. Clearly vw(t)=~'R(t )+vR(-- t ) ,  t>0 .  Note 

that  we have not yet defined the operator R. But since R must be unitarily equivalent 

to F = F [ ( K e r F )  1, the above equalities must be satisfied. 

We split the set c,(W) in five disjoint subsets: 

ao = {t e ~ ( w ) :  

~+) ={teo(w): 
~ - ~  = {t e o ( w ) :  

~,~(t) = ~ ,~(-t )} ,  

~'R (t) = ~,~ ( - t )  + 1 }, 

~,R(t) -- v R ( - t ) -  1}, 

~ + )  = {t e o ( w ) :  ~R(t) = ~ R ( - t ) + ~ ) ,  

~ - )  = {t c o ( w ) :  ~R(t) = ~ R ( - t ) - 2 } .  

(+) (-) (+) (-) 
Since F satisfies the condition (C3), it follows that  aoLJa 1 L.Jcr 1 LJa 2 L_Ja 2 =or(W). 

We choose the operator J to be multiplication by the operator-valued function J 

which is defined as follows. For t Eao we put 

J(t)  = 

(i 100 ) 0 0 0 .,. 

0 0 1 . . . .  

0 1 0 ..�9 

�9 i i { ".. 

For t E ~  • we put 

J(t) = 

/01 001} 1 0 ... 0 0 

: : " ' �9  : : i 

0 0 ... 0 1 

0 0 ... 1 0 

~,0 0 ... 0 0 ::1=1] 

(we assume that  J ( t ) = + l  if u w = l ) .  Finally for tEa~ +) we put 

a ( t )  = 

f + l  0 0 .,. 0 0 0 

0 0 1 ... 0 0 0 

0 1 0 ... 0 0 0 
: : : " .  : : : 

0 0 0 ... 0 1 0 

0 0 0 ... 1 0 0 

0 0 0 ... 0 0 : 1 : 1  
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(we assume that  

if uw(t)=2). 
Now we can define R by R=JW. 
Denote by/Co the "first level" of/C, i.e. 

/co = { f  e/C: f ( t )  = qo(t)el, (p E L2(co)}. 

Clearly/Co can naturally be identified with L~(O). 
Let now qo be a vector in/Co that  satisfies the following properties: 

(1) [[qoll=l; 
(2) qo is a cyclic vector of W[/Co (in other words q0(t)r e-a.e.); 

(3) qoERange W if K e r F r  and qo~Range W if Ke r F= {0 }  (in the last case W 

is non-invertible and so such a qo exists). 

We define the vector q by q--Jqo, so qo=Jq and the definition of/Co is consistent 

with that  given in Lemma 3.6. Let p=Rq=RJqo=Wqo and A2=W2-( .,p)p. (Note 

that we do not define the operator A, we define only the operator A s and to define A we 

have to choose a reasonable square root of A 2 which will be done later.) Clearly 

(W2x, x)-(x, p)(p, x) = ]lWxll ~ - I ( x ,  Rq)[2/> iiWxll 2 _  iiRxll 2 iiqll~ = 0, 

since IIRxll=lIWxll and Ilqll=l. So W 2 - (  �9 ,p)p>~O. Obviously/Co is a reducing subspace 

for both W 2 and A 2, and W and IA[~f(A2) 1/2 coincide on/co x. 

By the Kato--Rosenblum theorem (see [Ka, Chapter 10]) the absolutely continuous 

parts of W 2 and A 2 are unitarily equivalent. So if A is a scalar spectral measure of 

IA[ ]/co, then the absolutely continuous components Qa and Aa of the measures O and A 

are mutually absolutely continuous. Therefore there are disjoint Borel sets A,/~g and 5~ 

such that  Q and A are mutually absolutely continuous on A, ~ is supported on 5etAA, A 

is supported on 5xt_JA, and the sets 5g and 5x have zero Lebesgue measure. Clearly we 

can assume that  0 and 3, coincide on A. Put  ~=~+AIS~. Consider the yon Neumann 

integral 

s qe_f[ ~]~ E(t) d~(t), (5.2) 
J .,~U6r A 

where E(t)=span{ek:l<.k<uw(t)+l} for t e A ,  E(t)=span{ek :2<~k<uw(t)+l} for 

tES#, and ~ ' ( t )={~el : r  for tES.~. 
It is easy to see that  p is a cyclic vector of A2[/Co and so JAIl/Co is a cyclic op- 

erator. Therefore there exists a unitary operator Uo from L2(O) onto L2(A) such that  

Uo(IAII/Co)U~ is multiplication by the independent variable on L2(X). 

20-950233 Acta Mathematica 174. lmprimd Ir 20jui~ 1995 
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The operator IA[ can be realized as multiplication on ~. Namely if we define the 
unitary operator U: E = L 2 (Q) @ E~ --* L z ()~) @/CoL by the operator matrix 

then IAI=U*MtU, where Mt is multiplication by t on ~. (Note that IAI coincides with 
W on ~.) 

We define now the operator ,7 (the argument of A) as ff=V*ffV, where ,~ is mul- 
tiplication by an operator-valued function ff  of the following form. 

If t E 5a, we put 
j ( t )  = 1 

(in this case dim/~(t)=l) .  If t ea  (e) (in this case t e A  by (C3)) we put 

[COS lt sin at 0 0 ii!) 
s i n  021 ( t )  - c o s  6Ol ( t )  0 0 

if(t) = 0 0 cos w2 (t) sin w2 (t) . 
0 0 sinw2(t) -cosw2(t) 

For tEa~+)MA we put 

1 i 0 0 ... 0 0 ] 0 cos w,(t) sin wl(t) 0 0 

if(t) = 0 s ino2 l ( t )  --  COS 021 ( t )  0 0 

! ! ! ! 

0 0 cos wk (t) sin wk (t) 
0 0 sin wk(t) - coswk(t) / 

while for tEa~+)Aho we put 

[ coswl(t) sinwl(t) ... 0 ~ ] 
sin 02 1 ( t )  --  COS 021 ( t )  0 

0 coswk(t) sinwk(t) 
0 sin wk(t) -- COSWk(t) ] 

( j ( t )  is defined on E(t)=span{ek :2<.k<uw(t)+l} which has even dimension for tC 
a~ +) Nho; note that in this case we simply delete the first column and the first row from 
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the matrix defined for the previous case tEa~+)MA.) If tEaoMA and d i m E ( t ) < o o ,  we 

put  

Y(t)  = 

(note that  

f l  0 0 ... 0 0 

0 c o s ~ l ( t )  s inwl( t )  ... 0 0 

0 sinwl(t)  - c o s w l ( t )  ... 0 0 
: : : ".. : : 

0 0 0 ... coswk(t)  s inwk(t)  

0 0 0 ... sinwk(t) - coswk(t)  

0 0 0 ... 0 0 

if d i m E ( t ) = 2 ) .  In the case t ea0MA and d i m E ( t ) = o o ,  we define J ( t )  as 

I1 0 

0 coswl(t) 
0 sinwl(t) 

d ( t )  = : : 

0 0 

0 0 
: 

O~ 

0 

0 

: (5�9 

0 

0 

1 

Finally, in the case tEaoM6 e in the definition of J we delete the first row and the first 

column from the matrix (5.4) if dim E( t )<oo  and we delete the first column and the first 

row from the matrix (5.5) if d i m E ( t ) = o o .  

We impose the following assumptions on the functions wj: 

(1') the operator-vMued function J takes at most a countable set of values {J}n>~l 

(the order of the values is insignificant); 

(2') if LT contains an entry coswj(t),  then w j ( t ) < l / 3 n ;  

(3') . ~ ( t ) # o ;  

(4') wj(t)--*0 as j--*oo. 

If in the definition of ,~,~ we replace wj (t) by zero, we obtain a diagonal operator Dn 

whose entries are equal to 1 or - 1 .  It follows from (4') that  D n - j , ~  is compact�9 Note 

that  it follows from (2') that  

l lY~-Dnl l  < 1/n.  

We can now define A by A = J I A  ]. The operators A and Q are defined by (3�9 and 

(3�9149 This completes the construction. Now to prove Theorem 1.1 we have to choose a 

0 ... 0 0 ... 

sin a~l(t) ... 0 0 ... 

- cos , , l ( t )  ... 0 0 ... 
: "�9 : : 

�9 ' .  . (5.5) 

0 ... COSWk(t) sin wk(t) 

0 ... s inwk(t)  -coswk(t) 
: " . .  : : 



294 A.V. MEGRETSKII, V.V. PELLER AND S.R. TREIL 

vector q0 satisfying the above conditions (1)-(3) and functions wj satisfying the above 

conditions (1')-(4') so that  the operator A* be asymptotically stable. 

III.6.  The  po int  s p e c t r u m  of  A* on  th e  uni t  circle 

The aim of this section is to prove the following result. 

LEMMA 6.1. For any choice of qo and wj satisfying the conditions (1)-(3) and 
(1')-(4') of w the operator A* has no eigenvalues on T. 

Proof. The proof is based on the following trivial observation. Let a11, a12, a21, a22, 

dx, d2 be complex numbers such that a12~0 and 

0 (d2)  : ( all a 1 2 ~ f  0 ) 
\ a 2 1  a 2 2 ] ~ , d l /  " 

Then dl =d2=O. 
By Lemma 4.1, A*h=r Ir if and only if helCo ~, JhelCo ~ and JJh--r Put  

g=Jh=r Consider the representations of h and g in the von Neumann integral (5.1): 

h(t) = Z hk(t)ek, g(t) = Z gk(t)ek, (6.1) 
k~l k)l 

where hk and gk are scalar functions. Since h-l-leo and g=Jh-l-lCo, it follows that hl(t)=O 
and gl(t)=O for all t. Let us show that hk and gk are identically zero for k~>2. Suppose 

that we have already proved that for 1 ~< k<.n. 
Note that  since hl(t)=gl(t)=O, the representations of h and g in the yon Neumann 

integral (5.2) coincide with the representations (6.1). 

If n is even and tEa~ +), the equality g=Jh implies 

(gn+:(t))----(~ 10) (hn+O( t ) ) "  (6.2) 

If n is even and t~a (:~), the equality q=r implies 

(g ,+01( t ) )  = ( c o s w j ( t )  s i n w j ( t ) ~ (  0 
(6.3) 

\ sin At) - cos j(t)/\ h.+1(t)/" 

In view of the above observation, in both cases we obtain gn+x(t)=hn+1(t)=O (recall 

that sinwj(t)•O). 
If n is odd and tea~ +), then (6.3) holds, and if n is odd and tCa~ +), then (6.2) holds 

which again proves that gn+l(t)=hn+li t) =O. [] 
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I I I .7 .  H o w  to  c o p e  w i t h  Q 

In this section we reduce the estimation of the Fredholm spectrum of A* on the unit 

circle to that  of f f J .  This would be very easy if we could prove that  I - Q  is compact. 

Indeed in this case A * - , ~ J = Q * f f Q J - J J  is compact and so if AEaF(A*), then )~E 

aF(ffJ). It is easy to see that  I - Q  is compact if W is invertible. Indeed in this case 

Q=(W1/a-IAI1/2)W -1/2 and since W2-1AI 2 is rank one, it follows that  W1/2-1AI1/2 

is compact. We shall see in w that  I - Q  is compact (and even Hilbert-Schmidt) if 

qERangeR (which corresponds to the case when F has a non-trivial kernel). However 

we do not know whether it is possible to choose q i tRangeR so that  I - Q  be compact. 

We also do not know whether it is possible to find q so that  I - Q  be non-compact. Note 

that  I - Q  is not a Hilbert-Schmidt operator in general. 

Nevertheless the following lemmas will allow us to get rid of Q even in the case 

K e r r = { 0 } .  

LEMMA 7.1. There exists a function xeL~ such that x ( t ) > 0 ,  A-a.e., and the 

operator MeUo(I-Q) is a compact operator from L2(0) to L2(A) for any r satisfying 
Ir where Me is multiplication by r on L2()~). 

As before we identify L2(0) with ]Co. The proof of Lemma 7.1 will be given in w 

LEMMA 7.2. Suppose that the function wl in the definition of f f  satisfies the inequal- 
ity Isinwl(t)l•x(t) for tea(+)U0-~ -), where x is the function from Lemma 7.1. Then 

0-F(A*)ATC0"F(ffJ). 

Proof. Let us verify the hypothesis of Lemma 4.2. Let 

~j = { f  E ~: f(t) = ~(t)e j+l ,  ~ E L2(L))}, j /> 0. 

Clearly Ej  can naturally be identified with a subspace of L2(0). Then K:=(~j~> o ~ j .  Let 

{ffjk}j,k>~0 be the block-matrix representation of the operator ff=U*ffU with respect to 

the orthogonal decomposition/C=(~j~> 0 ICj. It follows from the definition of f f  that  

J'oo=U~(I-Mu)Uo, J'ol=U~Mvl~l, fflo=MvUo, 

where M~ and My are multiplications on L2()~) by the functions u and v defined by 

j + l . . j _ )  u(t)= 1-coswl ( t ) ,  tE~2  uv2 , 

0, t it (+) ' '  (-) 0" 2 U 0"2 , 

(+).. (- /  
v ( t ) =  sinwl(t) ,  t60" 2 u0"2,  

0, t it (+) ' '  (-) 0" 2 U 0" 2 . 
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(Note that  in the case u w ( t ) = l  we have v(t)=O and so Range3"1oCIC1.) 

Since lv(t)l<~g(t), it is easy to see that  [u(t)[<<.x(t). 

Consider now the block-matrix representation of the operator  Q*3"Q with respect 

to the same decomposition of/C. It  is easy to see tha t  

Q*JQ = 

QoUf) ( -M~)UoQo QoU~)M.IIC1 Jo2 

M.UoQo 3"11 3"12 

3"20 3"21 ~'22 " 

To verify the hypotheses of Lemma 4.2 it is sufficient to prove tha t  for any g~, h~E/Co 

such that  [[g,~[I=[[h~ll=l, lim,~--.~l[Q0gn[[=l and w - l i m g . = w - l i m h ~ = 0  the following 

equalities hold: 

~ . ~ o o  * * I  M lim { l ( Q o U d (  - ~)UoQo-U~)(I-M~)Vo)g~[[ =o, 

lim [[(M, U o Q o - M ,  Uo)gn[I = O, 
n ---+ 0 0  

lim [I(Q~U~M.-U~Mv)h~[[=O. 
n - - +  OO 

(7.1) 

(7.2) 

(7.3) 

Since [v(t)[~x(t),  it follows from Lemma 7.1 that  the operator  M, UoQo-MvUo= 

~*U,*M rT*M MvUo(Qo- I )  is compact  which implies (7.2). Similarly •o o . - ~ o  . is compact  

and so (7.3) holds. Let us prove (7.1). We have 

Q~ U~) ( I -  M~ )UoQo - U~) ( I -  M~ )Uo 

= Q~)Qo - I - (Q~ - I)U~) M~Uo - U~M~Uo(Qo - I) - (Q~ - I)U~)M~Uo(Qo - I). 

By Lemma 7.1 the operators  

* * I * I (Q~-I)U~)M~Uo, U~)M~Uo(Qo-I), and ( Q 0 - ) U g M ~ U o ( Q o -  ) 

are compact.  Hence it remains to show that  lim~--.o~[[Q~)Qog~-gn[[=O. Since Q0 is a 

contraction and lim~ _~ o~ (Q~ Qog,~, gn) = lim,~ _. oo [I Qog~ [[ 2 = 1, we have 

lim [IQ~Qognll = 1 .  
n - - - o  OO 

I t  follows now from the spectral  theorem for the self-adjoint contraction Q~Qo tha t  

* 0 (7.1) and completes the proof of the lemma. [] lim~-.o~ [[QoQogn-gn[[= which proves 
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III .8.  The  Fredholm spec t rum of  J J  

As we have already mentioned, to prove the main result it is sufficient to show that we 

can choose the functions q0 and wj so that h E ( J  J )  be at most countable. 

Let us briefly explain the idea how to make hE(J J) at most countable. Suppose for 

a while that Q=-A and J is multiplication by J on K. Since both functions J and ,~ take 

at most countably many values, so does J J .  It can easily be shown that if the functions 

wj satisfy the conditions (1')-(4') of w then for each t the operator J(t)J(t) is a 

small perturbation of a block-diagonal operator whose diagonal blocks can be the form 

1 

The spectrum of each such block is contained in the set {1, -1,  i , - i }  and it is easy to see 

from (5.6) that the set Ut a(J(t)J(t)) is at most countable and can have accumulation 

points only in the set { 1 , - 1 , i , - i } .  Since the operator J(t)J(t) is unitary for each t, it 

follows that 

and so a(J3) is at most countable. 

However the operators J and J are multiplications by J and J in different systems 

of coordinates. Nevertheless if these two systems of coordinates are "sufficiently close" to 

each other, we can use similar considerations to prove that a(JJ) is at most countable. 

THEOREM 8.1. There exist a function qo in L2(0) that satisfies the conditions 
(1)-(3) of w and a function ~? in L~(Q), ~(t)>0, Q-a.e., such that if the functions 
wj satisfy the conditions (1')-(4') of w and Iwl(t)l<<.~?(t) for almost all tea(+)Ua~ -), 
then aF(JJ) is at most countable. 

To prove the theorem we represent the operator J as a product of 3 operators. We 

define the operator-valued functions J(+),  J ( - ) ,  and J1 on AUh~Uh~ by 

= { I,J(t)' *) , 

v 2 U ~ 2  ' j~(t) = j ( t ) ,  t ~t-(+)",~(-) 
(+).. (-) 

[ I, t e a  2 UO" 2 . 

Let J~+) ,J~-) ,  and • be multiplications by J2(+), j (-) ,  and s on the yon Neumann 

integral (5.2). Put 3"~• and JI=U*J1U. Clearly J=]2(+)J2(-)J1.  It is 

easy to see that Eo is a reducing subspace for J1 and J l l ~ o  = I. 
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For a Borel subset 3, of a(W) we denote by/(:(9') the subspace of K: that  consists 

of functions supported on "y and by g('y) the orthogonal projection onto 32('1,) (in other 

words E is the spectral measure of W). Put  al =a(W)\(a~ +)Ua~-)). 

We shall call an operator on K: almost block diagonal (with respect to the decompo- 

sition/C : , ~ ( 0 - 1  ) (~)~C(0-(-t-) ) (~ ~(~ (0"((--))) if its block matrix has compact off diagonal entries. 

It is easy to see from the definition of ,9" that  the operator 3"1 is block diagonal. It 

is also easy to show that  the operators J ( + )  and 01'(-) are almost block diagonal if the 

operators 

(J~+) - I)g(0"(W) \ a~• ( 8 .  I) 

are compact. Therefore in this case ,9" is also almost block diagonal. It follows easily 

from the compactness of the operators (8.1) that  the operators 

~[O'(:l:)~'g{O'(:t:)~\2 ) \ 2 1-- ~;O'(-b)~'(• 2 1 2 k 2 1, ~ ( O l ) J ' E ( 0 - 1 ) - ~ ( 0 - 1 ) J ' l g ( O l )  (8 .2 )  

are also compact. 

The following lemma proves the compactness of the operators (8.1). 

LEMMA 8.2. There exists a function qo in L2(g) that satisfies the conditions (1)-(3) 
of w and a function r 1 in L~176 rl(t)>0, o-a.e., such that if the functions wj satisfy 

t -  (+)~ ~ ( - )  the conditions (1')-(4') of w and ]wl(t)l~<~(t) for almost all ~a 2 ,_,a s , then the 

operators (8.1) are compact. 

The proof of Lemma 8.2 will be given in w 

Proof of Theorem 8.1. Let us choose qo, ~?, and wj satisfying the hypotheses of 

Lemma 8.2. Then the operator ,9" is almost block diagonal with respect to the decompo- 

sition gb=K(0-1)@K,(0-~+))~IC(0-(-)). Obviously the operator J is block diagonal. Hence 

J J  is almost block diagonal. Therefore to prove that  0-F(JJ) is at most countable, 

it is sufficient to prove that the Predholm spectrum of each diagonal block is at most 

countable on the unit circle. 

Consider the block 

g(al )3"JI ~(al) = E(a~ )~.'~s (0-1)Yl ~(al ). 

It follows from the compactness of the operators (8.2) that  0"F(~(O'l)J'JI]~(0"1))-- 
aF(g(al)JiJIIC(al)).  But both operators s and ~(0"1)J~(0"1) are multi- 

plications on the von Neumann integral (5.1). So the reasoning in the beginning of this 

section works in this case and hence a(E(aJJJlK~(0"1)) is at most countable. 

The situation with two other blocks is a bit more complicated. Consider for example 

the block 

g(a~ +))JJlr(0"((+)) = E(0"~ +))Jg(a((+))Jlr(0"~+)) �9 
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Again by the compactness of the operators (8.2) we have 

O'F($(a~+))JJ]tg(a2) ) = aF($(a~+))3"2JlE(a2) ). 

Let J(+) be the operator-valued function defined by 

J( t ) ,  t � 9  (+), 

I, § 

and let J~+) be multiplication by J2 (+) on the von Neumann integral (5.1). Obviously 
(+) (+) (+) (+) (+) 

s )JC(a2 )=$(a2 )J~ s ) a n d s o  

EIo.(+) ~(+) jEra(+) I, 2 ] 2 k 2 / = $(a(+)~J(+)C(a(+)~j$[o-(+)~ k 2 ] 2 \ 2 / k 2 ] 

, . . ,  (+), , , (+)~,  (+) , , (+)~ ,  (+), 
= CI, o" 2 ) J 2  el ,  o" 2 ) J 2  5 ( , 6  2 ) 

~ (+) , . , (+) , (+) , - ,  (+), 
= C(O- 2 ) J , j  J2 C(O" 2 ) .  

We have 
* - ( + ) " T ( + )  * - ( + )  ( + ) r r *  ~rr ,~2"r(+)1(+)"2 =U J2 uJ2 --U J2 (UJ~ ~ , ~ .  

Since ]Co is a reducing subspace of J~+), it follows from (5.3) that the operator 

.](2+ ) =U J( + )U * is multiplication on the von Neumann integral (5.2) by the operator- 

valued function J~+) defined by 

J~+)(t)ej = { J(+)(t)ej' 2 <. j < vw + 1, t E 5~ UA, 

el, j = l ,  t E 5euAuS~.  

Now the operators ,~+)  and UJ~+)U * are both multiplications on (5.2) and so the 
- (+) , ,~(+)  . 

reasoning in the beginning of this section works which shows that a ( J  2 ~" 2  U )=  

a ( j 2  J ] is at most countable. 

~q(+)~(+)IK:(a~+)))AT is at most countable we need the To show that a(E(a~(+)]j 2 "2 

following lemma. 

LEMMA 8.3. Let Z be a contraction and V a unitary operator on Hilbert space. 
Then 

a (Z*VZ)nT  C a(V). 

Let us first complete the proof of Theorem 8.1. It follows from Lemma 8.3 that 

(+) (+) (+) (+) _~,r(+)~(+)~ ~(.s'(.~ )3":~ 71 .~(,7~ ) ) n T c u ~ . , ,  ..~ , 
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a s a (+) fl,(+)J(+) /C a (+) NT which implies that  ( ( 2 ) 2 2 [ ( 2 )) is at most countable. In a similar 

way it can be shown that  a(E(a2 -))ffgE(a~ -)))  N T is at most countable which completes 

the proof. [] 

Proof of Lemma 8.3. Suppose that  (Ea(Z*VZ)NT and ~ a ( V ) .  Since Z*VZ i s a  

contraction and [r it follows that  there exists a sequence of vectors {fn}~>0 such 

that  ][f~[[=l and 

f . )  = ((z*vzf., f )-IIf.II 2 0. (8.3) 

Since ~q~a(V), we have l ~ a ( ~ V )  and it follows from the spectral theorem for unitary 

operators that  there exists a positive c such that  

Re(~Vg, g) ~< (1-e)l[g[I 2 

for any g. Hence 

Re( (~Z*VZ-I) fn ,  fn) = Re ~(Z*VZ fn, fn)-[[fn[[ ~ (1-r 2 - 1 ~ -r  

which contradicts (8.3). [] 

Now we are in a position to prove Theorem 1.1. 

Proof of Theorem 1.1. We can choose the functions q0 and wj that  satisfy the hy- 

potheses of Theorem 8.1 and Lemma 7.2. It follows from Lemma 6.1 that  A* has no 

eigenvalues on T. Next it follows from Lemma 7.2 that  aF(A*)NTCaF(ffJ) and so by 

Theorem 8.1 the set hE(A*) is at most countable. Consequently, by the stability test 

(see w the operator A* is asymptotically stable which by Lemmas 3.1 and 3.2 imply 

that  T is asymptotically stable. The result now follows from Theorem 2.1. [] 

III.9. Compact integral operators 

In this section we prove Lemmas 7.1 and 8.2. The following lemma will help us to 

represent the opera tor  Uo(I-Qo) as an integral operator.  

Recall that  the space/Co is reducing for both W 2 and A 2. As usual we identify/Co 

with L2(Q). Clearly Mde=fwI/Co is multiplication by the independent variable on L2(Q). 

Let ~r be multiplication by the independent variable on L2(A). Then IAII/Co=U*~/IU 
and 

(W 2 -A2)I/c0 = M 2 -U~_~I2Uo = (. ,p)p. (9.1) 
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LEMMA 9.1. Let r=UopEL2(~). Then for any continuously differentiable function 
on supp 0 U supp A the following equality holds: 

((Uo~(M2)-~(M2)Uo)f)(t)= f ~ ( t ~  s2) r(t)p(s)f(s)dQ(s). (9.2) 

Clearly 

Proof of Lemma 9.1. It follows from (9.1) that 

U o M  - :Uo = ( .  ,p)r, 

which is equivalent to the equality 

((UM2o -ffl2U)f)(t) = / r(t)-p~f(s)dQ(s). 

UoM a - fflaUo = (UoM 2 - M2Uo)M2 + ~I~(UoM2-~I2Uo) , 

which is equivalent to 

((UoM 4 -ff/14Uo)f)(t) =/(s2+t2)r(t)p(s)f(s) dQ(s). 

Similarly 
f t2n _ s2n 

((UoM2~-M2nUo)f)(t) = t2 _s--------~-r(t)p(s)f(s) dQ(s) 

which proves (9.2) for ~ ( t )= t  2n. The result follows now from the fact that  the set of 

polynomials of t 2 is dense in C 1 [0, [IW[I 2] and the fact that  the Hilbert-Schmidt norm of 

the integral operator on the right-hand side of (9.2) is at most const. [[~[[c 1. [] 

Proof of Lemma 7.1. Let ~(s)-~s 1/4, s>0.  It follows from Lemma 9.1 that  

t l / 2 _ 8 1 / 2  
((UoM 1/2-~/~l/2Uo)f)(t ) = t2_s 2 r(t)p(s)f(s) do(s) (9.3) 

at least in the case when 0~supp f .  Indeed in this case we can change ~ in a small 

neighborhood of 0 to make it continuously differentiable. 

On the other hand, 

I - Q  = I-IAI1/~W -1/~ = ( w  ~ /2-  IAII/2)W -1/2 

Note that  Lemma 9.1 is a consequence of the theory of double operator integrals 

(see [BS2]). We prove it here for the sake of completeness. 
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on the dense subset Range W 1/2 of K:. Therefore 

I -  Qo = (M 1/2 - U~/II/2Uo)M-1/2 

on the range of M 1/2. It follows from (9.3) that  

(Uo(I-Qo)f)(t)  = ((UoM i /2 -~ f l /2Uo) i -1 /2  f)(t) 
21/2_81/2 

= t~ s 2 r ( t )~s -1 /2 f ( s )dQ(s )  

whenever 0 ~ supp f .  Since p= Wqo we have 

21/2_81/2 
(Uo(I-Qo)Y)(t)= t2_s 2 r(t)qo(s)sl/2y(s)dQ(s) (9.4) 

whenever 0~supp f .  

Consider first the case q0 ~ Range W (i.e. Ker F = {0}). In this case p r Range W 2 and 

so KerA={0}.  Therefore A({0})=0. Consequently, for A-almost all t the function 

t l /2  s l /2  
s ~  ~ - - ~  sll2qo(s---) 

belongs to L2(Q). Therefore there exists a function x in L~(A) such that x ( t )>0 ,  A-a.e., 

and 
f /  t l /2-s l /2  s l /2r( t )q-~x( t )  2 

ta --s 2 dQ(s) dA(t) < oo. 

that  the operator M~oU(I-Qo) is Hilbert-Schmidt whenever [qa(t)[~x(t), It follows 

A-a.e. 

Consider now the case qoERangeW. Let us show that  in this case ( I -Qo)  is a 

Hilbert-Schmidt operator. Let q0=Wh, hE L2(•). It follows from (9.4) that  

it 
i128312_82 _ _  

(Uo(I-Qo)f)(t)  = t2_s 2 h(s)r(t)f(s) dp(s) (9.5) 

whenever 0Esupp f .  However it is easy to see that 

t l / 283 /2_s2  
sup < cr 

t,s)O 22--82 

and so the integral operator on the right-hand side of (9.5) is Hilbert-Schmidt. [] 

To prove Lemma 8.2 we need one more lemma. We denote by $0('7) the orthogonal 

projection on L2(~) onto the subspace of functions supported on 3~ and by ~'0('Y) the 

corresponding projection on L2(A). Note that  $o is the spectral measure of WIK:0 and 

~'0 is the spectral measure of U(IAI IK:o)U*. As usual Me denotes multiplication by r 
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LEMMA 9.2. There exist a function qo satisfying the conditions (1)-(3) of w 

and a function ~l which is positive o-a.e, on a~+)Ua~ -) such that 

Me ~'0 (a (+))UoEo(a(W)\a (+)) (9.6) 

are compact operators from L2(~)) to L2(~) for any function r such that Ir ~ ( t )  a.e. 

Proof. Let us first show that  for any disjoint compact sets 71 and 72 

(~o('y2)UEo('h)f)(t) =~1 f(s) r(t)p(s) (9.7) s2_t 2 , ,  , ,dQ(s), tE72. 

Let qo be a continuously differentiable function such that  

1, s 1/2 ETx, 
~ ( S )  = O, 81/2 �9 "'/2" 

Then by Lemma 9.1 

((Uo~(M 2)-~o(~/I2)Uo)f)(t) = / ~~176 r't" ~ s" s2 ~ ( )p( ) dQ(s). 

Clearly (~p(ffl2)Uof)(t)=O for tE3'2. Therefore ~'o(3,2)~(M2)Uo=0. It is also clear 

that  if f is supported on 3~1, then ~p(M2)f=f. It follows that  for f supported on 71 

(Vof)(t)=f - _t r(t)P(S)f(sle0(s), 
which implies (9.7). 

Note that  if 71 and "/2 are arbitrary disjoint Borel subsets, then we can approximate 

them by compact subsets and pass to the limit which proves that  (9.7) holds for f in a 

dense subset of L 2 (~)). 

Therefore to prove the lemma it is sufficient to find a function q0 which satisfies the 

conditions (1)-(3) of w and such that  for almost all tEa~ +) 

(w)\A ~) is=_t= I dQ(s) < or (9.8) 

(Recall that  p=Wqo and so p(s)=sqo(s).) Indeed in this case it follows from (9.7) with 

71 =a~ +) and 72 = a ( W ) \ a ~  +) that  if 7? is a positive function such that  

~(2• ) ,r(t)12(rl(t) )2 ( f~(w)\~(• is 21p(s)12_t2l do(s)) d)~(t) < oo, 
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then the operators (9.6) are Hilbert-Schmidt provided Ir 

Let {f~(+)}n~>l, {/3(-)}n~>1, {%}n~>1 be increasing sequences of compact sets such 

that  

~(:}:) C 0.~ ::k) ' Aku2"[~(-i-)\ f~(:k)~---> 0 , \ ~ ' n  ] '~nC O'1, e(0"1\ ~n) --+ 0, (9.9) 

where  0"1=6r(W)\(0"~+)U0"~-)) �9 Note that  since e and A are mutually absolutely contin- 

uous on A, we have #(0"~+)\~(~:))-+0. 

Consider first the case K e r F S { 0  }. In this case we have to choose qo in Range W 

such that IlqoliL=(e)=l and qo(s)•O, Q-a.e. 

We can easily define a positive function q0 on ~ + ) U ~ - ) U 7 1  so that  

IP(s)} ~ 
~-)uz, Is=-t=l= de(s) 

IP(S)I 2 
~+)o-r, Is2-t=12 de(s) 

]q~ de(s)<l, 

41 ,  tE/3~ +), 

41 ,  tE/3~ -). 

Then we can proceed by induction. On the nth  step we define qo on 

• ( + ) U R ( - ) U •  \ t o ( + )  U ~ ( - )  , ,  
n t-'n l n \ k P n - - 1  P n - l U " [ n - 1 )  

so that 

Iq0(s)l 2 1 1 
(.+)u~(C)u~ (") s2 de(s) <. 1+ ~ + . . . +  2,~-- ~ ,  

Ip(s)l ~ 1 1 
~ - )~ .  1~2_t=l~ de(s) < 2-~7_~ + . . .+  2,_---~, t e/3~+)\/3(k+)t, 1 <k<.n, (9.10) 

f~ >(s)l 2 1 1 
(.+)u~. ]s2-t212 de(s) < 2-~-y_1 +. . .+ 2n_------ ~ ,  t E ~ - ) \ ~ - ~ ,  l <k<n, (9.11) 

(here fl0(+) =/30(-) = %  = O). 

Passing to the limit, we obtain a function q0 such that  qo(s)~tO, e-a.e., q0E 

Range W and (9.8) holds with p(s)=sqo(s). The only condition which can be violated is 

]lq01IL2(o)--1 but obviously we can multiply q0 by a suitable constant to achieve this 

condition. 

Consider now the case KerF={0} .  We have to construct a function qo such that  

IIqOIIL2(~)=l, qo(s)~tO, e-a.e., qo•aangeW, and (9.8) holds. In this case the operator 
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W is non-invertible. Hence 0((0,e))>0 for any e>0.  Therefore the same is true for the 

restriction of 0 to at least one of the sets a~ +), a~ -) ,  El. To be definite suppose that  

0((0, ~)n~ +~) > 0 

for any e>0.  

Clearly we can assume that  0Ea~ +). It is easy to see that  there exists a compact 

subset j3~ +) of a~ +) such that  

0((0, ~)nZ~ +/) > 0 

for any c>0.  We can choose now a positive function q0 on fl~+) such that  

/~ Iq~ do(s) = c~. 
~+) 8 2 

Then we can choose increasing sequences {fl(=L)}n~>l and {Tn}n~>l of compact sets satis- 

fying (9.9) and proceed by induction as in the first case. On the nth  step we can define 

qo on ~(,+) U~(~-) U-y~ so that  (9.10) and (9.11) hold. Passing to the limit and multiplying 

if necessary by a suitable constant, we obtain a function qo with desired properties. [] 

Proof ol Lemma 8.2. Let p and 7/satisfy the assumptions of Lemma 8.2. Suppose 
~ (+), ,a(-) Isinwi(t)l<~(t) for r ~ a  2 u 2 �9 It is easy to see that  1-coswl(t)<.~(t), "- (+)" (-) ~(:=G 2 U G  2 . 

We have to show that  the operators 

:)E(o-(w)\o~ ) 

(J(~) - I)E(~(w)\~ ~))I = o 
for f E/C~, it is sufficient to show that the operators 

(,.7"(2+) - I)eo( a(W) \ 4 • ~ )Po 

are compact where Po is the orthonormal projection onto ]Co. Let us prove that  the 
.n(+) operator [ j~  -I)g(a(W)\a~+))Po is compact. The proof for the other operator is the 

same. It is easy to see from the definition of J (+)  that  for fEK:0 the vector (,7 (+) - I ) f  
can be represented in the decomposition IC=~j~> 0 K:j as 

[U~M~U~ I 

(J(+)-~)f = I M~o1: 

are compact. Since 
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where M~ and My are multiplications on L2(A) by the functions u and v defined by 

u(t)= cos wl (t) - l, tEa~  +) 

o, tr  

[ sin ~21 (t),  t e o~ +) , 
v(t) 

o, 

(+) MvUogo(a(W)\a (+)) are compact By Lemma 9.2 the operators MuUogo(cr(W)\a 2 ) and 

which proves the compactness of ( f f (+ ) - I )g0(a (W) \a~+) )P0 .  [] 

I I I .10 .  A theorem in perturbation theory 

In this section we find a connection between our results on Hankel operators and a 

theorem in perturbation theory. 

In the previous sections, for an operator F satisfying the conditions (C1)-(C3) we 

have constructed an output  normal system {T, p, q} such that  the Hankel operator asso- 

ciated with this system is unitarily equivalent to F. If KerF- -{0} ,  then R = F  and T is 

unitarily equivalent to the backward shift S*. In this case the vectors {(T*)Jq}j~>0 form 

an orthonormal basis in ]C and R has Hankel matrix {aj+k}j,k~>o in this basis. It is easy 

to see that  the operator A also has a Hankel matrix (namely {aj+k+l }j,k~>o) in the same 

basis. So h must satisfy the same conditions (C1)-(C3). 

If K e r F S { 0 } ,  then it follows from the remark to Theorem 2.1 that  T is unitarily 

equivalent to the restriction of S* to (KerF)  • It is easy to see that  in this case A-- 

S*FI(KerF)  • and the operator S*F is a Hankel operator whose kernel is contained 

in Ker F. 

Therefore in both cases the spectral multiplicity function uA of the operator A must 

satisfy the condition (C3). 

A natural question can arise if we look at our definition of A. The operator A was 

defined with the help of multiplication by the function ,~. It is easy to see from (5.4) 

that  for tEaoMA 

~A(t)-  u n ( - t )  = 2. (10.1) 

Hence if the restriction of the measure A to the set a0NA contains a non-zero singular 

component, then (10.1) contradicts the condition (C3). However this can never hap- 

pen: the singular components of the measures 0 and A are mutually singular and so 

the restriction of )~ to aoNA is absolutely continuous. This follows from the following 

Aronszajn-Donoghue theorem (see [RS, w 



T H E  I N V E R S E  S P E C T R A L  P R O B L E M  F O R  S E L F - A D J O I N T  H A N K E L  O P E R A T O R S  307 

THEOREM 10.1. Let K be a self-adjoint operator on Hilbert space and let 

L = K + ( . , r ) r ,  

where r is a cyclic vector of K.  Then the singular components of the spectral measures 

of L and R are mutually singular. 

Theorem 10.1 has an elementary proof. However it is possible to deduce it from our 

results on Hankel operators. 

Proof of Theorem 10.1. Without  loss of generality we can assume that  both L and 

K are positive and invertible. Since K is cyclic, it is unitarily equivalent to multiplication 

by the independent variable on L2(Q), where Q is a positive Borel measure with compact 

support in (0, c~). Let F be the orthogonal sum of K 1/2, - K  1/2 and the zero operator 

on an infinite-dimensional space. Clearly F satisfies the conditions (C1)-(C3). Let R =  

F[(KerF)  • and W=[R[.  Then W is unitaxily equivalent to K1/2~K1/2. We can now 

put p--r, q o = W - l x  (in this case W is invertible). Without loss of generality we can 

assume that  [[q0llL~(~)=l. We can now define the operators J ,  i f ,  A as above. In our 

case a(W)=ao  and so the operator A* defined by (3.1) is asymptotically stable for any 

choice of a cyclic vector q0 of W. (Note that  in our case the proof of the asymptotic 

stability of A* is considerably simpler than in the general case.) 

Assume that  the singular components of the measures • and A are not mutually 

singular. In this case the restriction of )~ to A (see w has a non-zero singular 

component. It follows from (5.4) that  

ux(t)=2,  ux( - t )  = 0 ,  >,8-a.e. on A. (10.2) 

However, as we have already observed, vA must satisfy (C3) and so 

IvA(t)--VA(--t)I ~< 1, As-a.e., 

which contradicts (10.2). [] 

Remark. Note that it is also possible to deduce Theorem 1.1 in Chapter  I from the 

above Theorem 10.1. 
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