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Introduction

In this paper we study spectral properties of self-adjoint Hankel operators. For the last
vears the theory of Hankel operators has been developing very intensively and many
new applications have been found. Hankel operators are widely used in function theory,
operator theory, approximation theory, prediction theory, and control theory (see [N],
[Po], [Pa], [PK], [F]).

There are many different equivalent ways to define a Hankel operator. By a Hankel
operator we mean a (bounded) operator I on the sequence space 2 which has a Hankel
matrix in the standard basis {e;};>0, i.e. (Tej,ex)=a;jk, j, k20, where {a;};50 is 2
sequence of complex numbers. Let S be the shift operator on {2, i.e. Se;j=¢;41, j>0.
It is easy to see that a bounded operator I" on I? is a Hankel operator if and only if it
satisfies the commutation relation

S*T=TS. (1)

The main aim of this paper is to describe the class of self-adjoint Hankel operators
in spectral terms. To be more precise we obtain in this paper a characterization of
those self-adjoint operators that are unitarily equivalent to a Hankel operator. Clearly
an operator I' is unitarily equivalent to a Hankel operator if and only if there exists an
orthonormal basis {e;};>0 such that (Te;, ex)=0;+x, j, k>0, for a sequence {a;};>0 of
complex numbers. It is also obvious that I is self-adjoint if and only if a;€R for any
j=0.

We arrived at this problem in the following way. In [KP] the following question was
studied. Let £, be subspaces of a Hilbert space H. The problem was to find out under
which conditions on £ and K there exists a stationary process {z,}ncz in H whose past

span{z;:j <0}
coincides with £ and whose future
span{z;:j >0}

coincides with K (by “span” we mean “closed linear span”). Here a stationary process
is a two-sided sequence {z,}ncz of elements of H such that the inner products (z;, zx)
depend only on j—k.

It was shown in [KP] that the above problem is equivalent to the following one. Let
K be a non-negative self-adjoint operator on Hilbert space. Under which conditions does
there exist a Hankel operator I' whose modulus (I'*I')!/2 is unitarily equivalent to K?
The following simple necessary conditions were found in [KP]:

(i) Ker K is either trivial or infinite-dimensional;

(ii) K is non-invertible.
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The condition (i) follows immediately from Beurling’s theorem (see [N, Chapter 1]).
Indeed it is easily seen from (1) that if I' is a Hankel operator, then Ker I is an invariant
subspace of S and so by Beurling’s theorem Ker K is either trivial or infinite-dimensional.

The condition (ii) follows immediately from the fact that if I' is a Hankel operator
and (Tej, ex)=0aj 4k, J, k=0, then

ITex || = Z loj|* >0 as k— oo.
jzk

A question was posed in [KP] of whether the conditions (i) and (ii) are also sufficient.

The first step was made in [T1]. It was shown there that if K satisfies (i) and (ii) and
in addition has simple discrete spectrum, then K is unitarily equivalent to the modulus
of a Hankel operator. Then, it was shown in [TV] that each non-negative operator with
discrete spectrum that satisfies (i) and (ii) is unitarily equivalent to the modulus of a
Hankel operator.

The next step was made by R. Ober in [O1} and [02]. He found a new approach to
the problem which is based on the so-called balanced realizations with continuous time.
Using that approach R. Ober obtained a different proof of the results of [TV] “modulo
the kernel”. However, it turned out that Ober’s approach works in a much more general
situation and with its help it was proved in [T2] that the conditions (i) and (ii) are also
sufficient.

Let us dwell briefly on the above approach. Let K be a Hilbert space (state space), A
an operator on K, B an operator from C to K and C an operator from K to C. Consider
the following linear dynamical system with one-dimensional input and one-dimensional
output:

{x’(t) = Az(t)+ Bu(t), @

y(t) =Cz(t).
Let b, ¢ be the vectors in K such that Bu=ub, b€ C, Cx=(x,c), x€ K. With the above
linear system one can associate the (formal) Hankel operator I':

(Caf)(t) = / Th(s+0)f(s)ds, feIX(R),

where h(t)=(et*b, c).

The operator 'y, need not be bounded in general but it is bounded under certain
natural conditions. Note that I', is not only an analogue of a Hankel matrix but also
unitarily equivalent to a Hankel operator. It is well known that the matrix of T'; in the
basis of Laguerre functions is Hankel.

The idea behind the approach in question is to choose a triple {4, B, C} so that the
modulus of the corresponding operator I'y, be unitarily equivalent to the given operator K.
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The solution obtained in [T2] allows one to construct a self-adjoint Hankel operator
whose modulus is unitarily equivalent to I". Therefore the problem we study in this paper
is a refinement of the above problem posed in [KP]. Namely, the results of [T2] show that
the spectral multiplicity function v|r| (a precise definition is given below) of the modulus
of a self-adjoint Hankel operator I" can be an arbitrary function v which satisfies the
conditions:

(i) v(0)=0 or v(0)=o0;

(ii) O€suppv.

Clearly vjpi(t)=vr(t)+vp(—t), t>0. So the problem we study in this paper is to inves-
tigate in which way the value of vjp(t) can be distributed between vr(t) and vr(—t).

To formulate our main result we need the notion of von Neumann (direct) integral
(see [BS1, Chapter 7] for more detail). Let 4 be a finite positive Borel measure on R
and {H(¢)}+cr a measurable family of Hilbert spaces. That means that we are given an
at most countable set Q of functions f such that f(¢)eHM(t), p-a.e.,

span{f(t): f€Q}=H(t) for p-almost all ¢,

and the function
te (f1(t), f28))nr)

is p-measurable for any fi, f2€. A function g with values g(¢) in H(t) is called mea-
surable if the scalar-valued function t— (f(t), g(t))#s) is measurable for any feQ.

The von Neumann integral (direct integral) [ €D H(t) du(t) consists of measurable
functions f, f(t)€H(t), such that

1/2
111= ([ 17O du0)  <oc.

If f,g€ [ @ H(t)du(t), then their inner product is defined by

(f.9)= / (F(8), 9(t)) ds(t).

By von Neumann’s theorem (see [BS1]) each self-adjoint operator on a separable
Hilbert space is unitarily equivalent to multiplication by the independent variable on a
direct integral [ @ H(t) du(t):

(Af))=tf(t), fe / @ H(t) dut).

Without loss .f generality we can assume that H(¢)#0, u-almost everywhere. In
this case p is called a scalar spectral measure of A. The spectral multiplicity function v4
of the operator A is defined y-almost everywhere by

va(t) = dim H(2).
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It is well known (see [BS1]) that self-adjoint operators A; and A; are unitarily equivalent
if and only if their scalar spectral measures are mutually absolutely continuous and
V4, =V 4, almost everywhere.

If A is a self-adjoint operator with scalar spectral measure y and spectral multiplicity
function v4, then A is unitarily equivalent to multiplication by the independent variable
on

[ @) dute,

where p is a scalar spectral measure of A, and the H(¢t) are embedded in a Hilbert space
E with basis {e;};>1 and

H(t) =span{e; : 1< j <wa(t)+1}.

Now we are in a position to formulate our main result. As usual, y, and p, are the
absolutely continuous and the singular component, respectively, of u.

THEOREM 1. Let I' be a bounded self-adjoint operator on Hilbert space, u a scalar
spectral measure of T, and v its spectral multiplicity function. Then T' is unitarily equiv-
alent to a Hankel operator if and only if the following conditions hold:

(C1) either KerI'={0} or dim Ker I'=00;

(C2) T is non-invertible;

(C3) |v(t)—v(-t)|<£2, po-a.e., and |v(t)—v(-t)|<1, ps-a.e.

Note here that (C3) means in particular that if one of the numbers v(t) and v(-t)
is infinite, then the other one must also be infinite.

We have to say a few words here to justify the meaning of the inequalities in (C3).
Let i be the measure defined by G(A)=p(A)+p(—A). We can assume that the function
v is defined ji-almost everywhere. If 6 is a Borel set such that p(6)=0, then v(¢)=0 on §,
fi-almost everywhere. With this convention v(t)—v(~t) is defined ji-almost everywhere
which makes it possible to justify the left-hand sides of the inequalities in (C3).

The necessity of the conditions (C1) and (C2) is equivalent to the necessity of the
above conditions (i) and (ii) for the modulus of a Hankel operator. In Chapter I of this
paper we prove that (C3) is also necessary. It is easy to see that (C3) implies the following
inequality for the multiplicities of eigenvalues of a self-adjoint Hankel operator I': if A€ R,,
then

| dim Ker(I'— AI) —dim Ker(T'+ AI)| < 1 (3)

(if one of the dimensions is infinite, then the other one must also be infinite).
For compact self-adjoint operators (3) was proved in [Pe] by another method. Earlier
in [C] a weaker inequality was obtained. In [HW] another method was used to prove (3)
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for compact self-adjoint Hankel operators. V.M. Adamyan told us that he also obtained
another proof of (3) in the compact case but had not published the proof.

In §1.2 we obtain a very simple proof of (3) for an arbitrary Hankel operator I' (not
necessarily self-adjoint) and an arbitrary A€C.

In Chapter II we use linear systems (2) to construct a Hankel operator with pre-
scribed spectral properties. We prove that if T' is a self-adjoint operator which satisfies
(C1), (C2), and the condition

lv(t)—v(-8)I<1, pae,

then there exists a system (2) (in fact a balanced system, see §II.1 for a definition) such
that the Hankel operator associated with it is unitarily equivalent to I". Explicit formulae
are obtained for the operators A, B,C in (2).

However, we also show in Chapter II that if ' is a positive self-adjoint operator with
multiple spectrum, then there exists no balanced system (2) for which the corresponding
Hankel operator is unitarily equivalent to I'. This shows that in contrast with the problem
of the description of possible moduli of Hankel operators, the balanced systems (2) cannot
produce enough Hankel operators to solve our problem completely.

Note here that we consider only those linear systems (2) which involve bounded op-
erators 4, B, C. It is also possible to consider linear systems for which A is the generator
of a contractive semigroup, B is an operator from C to a Hilbert space which is larger
than K, and C is a linear functional defined on a dense subset of K. Using the results
of [Y], R. Ober and S. Montgomery-Smith [OM] proved that for any bounded Hankel
operator T on L?(R) there exists a generalized balanced linear system such that the
Hankel operator associated with it coincides with I' (see also [S]). However we do not
know how to evaluate the spectra of Hankel operators associated with systems that have
unbounded B and C.

Note that positive Hankel operators with multiple spectra do exist. A classical
example of such an operator is the Carleman operator K defined on L%(R) by

kne=[ 4

(see [Po, §2.6]). Other interesting examples of such operators are given by J. Howland
in [Hol], [Ho2], and [Ho3].

In Chapter III, we prove that the conditions (C1)-(C3) are sufficient. The method of
the proof is based on linear dynamical systems with discrete time. Let A be an operator
on a Hilbert space K and let Bu=ub, ueC, Cz=(z,c), €M, where b,ce’H. Consider
the linear system:

Tp+1 = Az + Buy,
{ (4)

Yn =Cp.
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As in the case of continuous time we can associate with this system the Hankel matrix
{@j+k}j k>0, where a;=(A%b,c), 0. N. Young proved in [Y] that for any bounded
Hankel matrix {a;ix}j k>0 there exists a balanced linear system (4) (see §IIL.1 for a
definition) such that a;=(47b,c).

The main result of Chapter I1I claims that if ' is a self-adjoint operator satisfying
the conditions (C1)—(C3), then there exists a balanced linear system (4) such that the
corresponding Hankel operator is unitarily equivalent to I'.

We can consider also the problem of spectral characterization of self-adjoint block-
Hankel operators of order n, i.e. block-Hankel matrices of the form {a;i}; k>0, where
o is an nxn matrix for every j. The following analogue of Theorem 1 holds.

THEOREM 2. Let I be a bounded self-adjoint operator on Hilbert space, 1 a scalar
spectral measure of T, and v its spectral multiplicity function. Then I’ is unitarily equiv-
alent to a block-Hankel operator of order n if and only if the following conditions are
satisfied:

(C1) either KerI'={0} or dimKer I'=00;

(C2) T is non-invertible;

(C3n) |v(t)—v(—t)|<2n, pq-a.e., and |v(t)—v(-t)|<n, ps-a.c.

The sufficiency follows easily from Theorem 1 and the fact that if I satisfies (C1)-
(C3,), then it can be represented as an orthogonal sum of n operators each of which
satisfies (C1)—(C3). The necessity can be proved by the same method as in the case n=1
(see Chapter I).

In what follows we need a description of the class of bounded operators which inter-
twine two given self-adjoint operators. Let A;, As be self-adjoint operators which are
given as multiplications by the independent variable on direct integrals

/ @D Hi(t)dpi(t) and / D Ha(t) dua(t).

The following result is apparently known to experts, however we were unable to find
a reference.

LEMMA 3. Let B be a bounded operator such that BAy=A;B. Then there is a
(p1+ p2)-measurable operator-valued function b,

b(t): Hy (t) — Ho (t),

such that

(BA(®)=bt)f(t), fe / @ Ha (t) dpn (1), (5)
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We have to say a few words to justify (5). We can assume that H;(¢) and Hz(t)
are defined (u; +p2)-almost everywhere and if p11(6)=0 (u2(8)=0) for a Borel set §, then
Hi(t)={0} (H2(¢t)={0}) on 8, (i1 +u2)-almost everywhere.

Proof. Let p=pi+po. Without loss of generality we can assume that p; is the
restriction of y to the set
{t:H;(t) #{0}}, j=1,2.
Let
M= [ @O du 0= [ @M duo, =12
Put
H(t)=Hi () @Ha(t) and H= / B H() dut).

Then H; and H; are naturally embedded in ‘H. Define the self-adjoint operator A on H
as multiplication by the independent variable. Consider the operator B on H defined by

Bf=BP\f,

where P; is the orthogonal projection from H onto H;. It is easy to see that Rangeﬁ C
Ho, B:§|’H1 and BA=AB. Then (see [BS1, Chapter 7]) there exists a measurable
operator-valued function b, b(t): H(t)—H(t), such that (Bf)(¢)=b(t) f(¢). It is easy to see
that b(t)z=0 for z€H,(t) and Range b(t) C Hz(t). We can now define b(t) by b(t)|H;(t).
Clearly b(t) is an operator from H;(t) to Hz(t) and (Bf)(t)=>b(t)f(¢). d

Concluding the introduction we would like to mention that in each chapter we use
separate numeration of theorems, lemmas and displayed formulae.

We would like to express our deep gratitude to the referee for thoroughly reading
the manuscript, finding a lot of misprints and making helpful suggestions.

I. Necessary conditions

The main result of this chapter is given in §I.1. It will be shown there that if " is a
self-adjoint operator on Hilbert space which is unitarily equivalent to a Hankel operator,
then I' satisfies the conditions (C1), (C2), and (C3) in the Introduction.

In §1.2 we consider the problem of comparison of the multiplicities of the eigenval-
ues A and —A, AeC, for an arbitrary (not necessarily self-adjoint) Hankel operator T'.
Certainly it follows from the results of §I.1 that if ' is a self-adjoint Hankel operator and
A€R, then

{dim Ker(I'— AI) —dim Ker(I'+AI)| < 1.

It will be shown in §1.2 that the same is true for an arbitrary Hankel operator I" and any
reC.
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I.1. Spectral multiplicities of self-adjoint Hankel operators

Let T" be a self-adjoint operator on a Hilbert space H. Then (see the Introduction) I'
admits the following realization. There exist a finite Borel measure u on the real line
and a measurable family of Hilbert spaces H(¢), t€R, such that H(t)#{0}, p-almost
everywhere, H can be identified with the direct integral

= | @medut) (1)
and under this identification
THE)=tf(t), feH. (1.2)
The spectral multiplicity function v is defined by
v(t) =dim H(t).

As we have mentioned in the Introduction, we can assume that v is defined f-almost
everywhere, where ﬂ(A)d:Efu(AH- p(—A) for any Borel set A. Then if § is a Borel set
such that u(6)=0, then v(¢)=0 on §, ji-almost everywhere.

Let p=p, + s be the Lebesgue decomposition of u, where y, is absolutely continuous
and p, is singular with respect to Lebesgue measure.

The following theorem is the main result of this section.

THEOREM 1.1. Let T be the self-adjoint operator (1.2) on the space (1.1). If T is
unitarily equivalent to a Hankel operator, then the following conditions are satisfied:

(C1) either KerI'={0} or dim Ker '=00;

(C2) T is non-invertible;

(C3) Ww(t)—v(-1)|<2, pg-a.e., and |v(t)—v(-1)|<1, ps-a.e.

Remark. If v(t)=oco or v(—t)=oco, then (C3) has to be understood as v(t)=

v(—t)=00.

As we have already mentioned in the Introduction, the conditions (C1) and (C2) are
trivial. Thus we only have to prove (C3).

Before we proceed to the proof, we adopt the following terminology. If f is a Borel
function, p is a Borel measure, and A is a Borel set, we say f is supported on A (p is
supported on A) if f is zero almost everywhere outside A (p is zero outside A).

Proof of Theorem 1.1. Suppose that I" is unitarily equivalent to a Hankel operator.
Then H has an orthonormal basis {e;};>0 such that I' has Hankel matrix in this basis,
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ie. (Tej,ex)=ajtk, j, k>0, where {c;};>0 is a sequence of real numbers (a; €R since I'
is self-adjoint).
Consider the shift operator S on H defined by

S Z Tnen = Z Tnent1.

n20 n20

Put a:Z;';O ajej=Teq. It is easy to see that the following commutation relations hold:

S$*T =TS, (1.3)
STf-TS*f=(f,e0)Sa—(f,Sa)ey, feH. (1.4)

Let us first prove the inequality |v(t)—v(—t)|<2, u-a.e. Let f be a function in H
such that f(t) Leo(t) and f(t)L(Sa)(t), p-a.e. Consider the function (S*—S)f. We have

I(8*—8)f=TS*f-TSf=STf-S*Tf=—(S"—8)Lf (1.5)

by (1.3) and (1.4), since f Leg and f1 So.
Let us now make use of Lemma 3 from the Introduction. Put B=S5*—§. Let A; be
the restriction of T" to

H={feH: f(t) Leg(t) and f(t) L(Sa)(t), p-ae.},

and let A;=-T. We have BA;=A42B by (1.5). Therefore by Lemma 3 there exists a
bounded weakly measurable function b, b(t): H(t)—H(—t), such that

(Bf)(t) =b(t) f(-1),

where

H(t)={z € H(t): = Leo(t) and z L (Se)(t)}.

Let us show that Ker b(t)={0}, pu-a.e. Indeed, assume that there exists a Borel set
A, p(A)>0, such that Ker b(t)#{0} for any ¢ in A. Let P, be the orthogonal projection
of H(t) onto Ker b(t). Then the function t— P, is weakly measurable. This follows from
the fact that

Py = lim x. (6" (1)b(1),

where x.(s)=0 for s>¢ and x.(s)=1 for 0<s<e. Therefore (see the Introduction) the
spaces Ker b(t) form a measurable family in a natural way and we can consider the direct
integral

[ @ Kerb(s) dutt) # o3
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It is easy to see that
{0} # / @ Ker b(t) du(t) C Ker B.

However, it is obvious (and well known) that Ker(S*—S)={0}.
Thus b(t) is an injective map from H(t) to H(—t) which implies that

v(—t) =dim H(~t) > dim H(t) > v(t) -2, p-ae.
Interchanging the roles of t and —t, we obtain
l(t)—v(-t) <2.

Let us now prove that |v(t)—v(—t)|<1 on the singular spectrum. Let A be a Borel
set such that y, is supported on A, and A; has zero Lebesgue measure.

LEMMA 1.2. Let f be a function supported on A, such that for p-almost all t,
f(t) Leo(t), and if eo(t)=0, then f(t)L(Sa)(t). Then I'S*f=STf.

Let us first complete the proof of Theorem 1.1 and then prove Lemma 1.2. Put
H(t)={xeH(t): T Leo(t) and if eo(t) =0, then z L (Sa)(t)}, teA,,

and
H ={f:f is supported on A, and f(t) € H(t), u-a.e.}.

As above we put A;=A|H, Ap=—A, B=5*-S. By Lemma 1.2, BA;=A,B and by
Lemma 3,

(BF)(®) =b(t) f(-1),

where b is a weakly measurable operator-valued function on A, such that b(t): H(t)—
H(—t) and Ker b(t)={0}, p-a.e. As above it follows that

v(—t) =dim H(~t) > dim H(t) > v(t) -1

which implies that
[v(t)—v(-t)|<1, p,ae. O

Proof of Lemma 1.2. Put
AO = {t c As : eo(t) -','50}

(recall that {e;};>0 is an orthonormal basis in which I' has Hankel matrix). If f is
supported on A,\Ap, then f1Sa and f Leg, and it follows from (1.4) that I'S*f=STf.
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Thus we can assume without loss of generality that f is supported on Ag. Let & be
a positive integer. Put

Ap={t€A,:27% < leo(t)]] < 2%}.

Clearly Ao=|J;, Ak- So it is sufficient to consider the case when f is supported on Ay
for some k.

Let {I,} be a covering of Ay by disjoint open intervals. Put A;=AxNI; (k is fixed),
fi=x;f, 9;=x;€0, where x; is the characteristic function of A;.

It follows from (1.3) and (1.4) that

L(S+S5*)f—(S+S*)'f =ceq (1.6)

for some c€C. Therefore it is sufficient to show that

(T(5+5%)f = (5+5")Tf,e0) =

We have
(T(S+8*)f~(S+8")Tf,e0) Z(F(S+S* ~(5+8")fj e0)
izl
=Y e NS+ ~(S+5")Thr.5,)
izt

in view of (1.6).
Clearly

(c0,9;) = /A leo(t)]1? du(t) > 2~2* ;.
Let A€A;. We have

(T(S+S*)f— (5+5*)rf,e0)|<22’°2 [((5+5")£;,Tg;)—(Tf,(S+5")g;)l-

st A;
Put ¢ =Tg; - \;g;, fP=Tf;—A;f;. Clearly
L@ <L sl 1SN <ILI50,
where |I;| is the length of I;. Therefore

(D(S+8")f=(S+8")Tf,e0)| <2 Y ﬁl((sw“s*)fj,g(”)—(f(”, (5+57)g,)!

j1 77

< const - Z | ]’ ”f]” llg;|

]>1
1/2 1/2
< const - sup | ’I (Z IIfJHZ) (ZHQ;‘IF)
j21 izl
~ const. snpl ‘ 15 - lleol

izl B
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Clearly the proof will be completed if we establish the following elementary fact.

LEMMA 1.3. Let u be a singular measure supported on a Borel set 2 of zero Lebesgue
measure and let €>0. Then ) can be covered by disjoint open intervals {I;};>1 such that

sup 5] <e. (1.7)

i>1 p(NI;)

Proof of Lemma 1.3. Let {Jx}r<1 be a covering of Q by disjoint open intervals such
that 3,5, |Jk| <3eu€d. Let

| Jk|
M, = P— .
={k e >
Then )
p( U @NJ)) << 3 1kl < Jus
keM, € keM,
Let QM ={J,cpr, (2NJk). Let us cover Q1) by a system of disjoint open intervals the
sum of lengths of which is less than %E,uﬂ(l). Then the intervals J from this system for

which
/|

w@ong) ¢

cover a subset of () of measure greater than 3uQ(!). By repeating this procedure, we
can construct a covering of Q by disjoint intervals {I,},>1 satisfying (1.7). a

I.2. Eigenvalues of Hankel operators

As we have already noticed, it follows from Theorem 1.1 that for any self-adjoint Hankel
operator I" and for any AeR

| dim Ker(' — AT) —dim Ker(T'+ AI| < 1. (2.1)

The main result of this section shows that (2.1) is also valid for an arbitrary bounded
Hankel operator and an arbitrary A€ C. The idea of the proof is the same as in Theo-
rem 1.1, but to include the non-self-adjoint case, we have to replace the inner product
by the natural bilinear form on /2 and instead of adjoint operators consider transposed
operators.

We assume here that I is a bounded Hankel operator on the Hilbert space {2, {e,}
is the standard orthonormal basis in {2. Then ([e;, er)=ajtk, J, k=0, where {a;};>0 is
a sequence of complex numbers.
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It is convenient to consider the following bilinear form on I2:

(w,y>=2$jyj,

Jj=20

where z=3" .. z;e; and y=}_,5,yse;. If B is a bounded operator on I2, we define its
transpose B* by
(Bz,y)=(z,B%), z,yel’.

Clearly any Hankel operator T is symmetric: I'*=I". Let S be the shift operator on %
Sen=ens1, n20. Then S*=S5".

THEOREM 2.1. LetT be a bounded Hankel operator. Then inequality (2.1) holds for
any AeC.

Proof. Given u€C, we put E,=Ker(I'-ul). Let a=3" 5, a;e;. We have

S T=TrS§, (2.2)
STz~T'S*z=(z,e0)Sa—(z,Sa)ey, z€l?, (2.3)

(see (1.3) and (1.4)).
Let AeC. To prove the theorem, we have to show that

dime,\ZdimE,\—l. (24)

We consider separately two different cases.

Case 1. There exists a vector ‘1:2]‘30 aje; in Ey with ag#0. Let us show that if
z€E) and {z,e9)=0, then
STz=IS"z, (2.5)

which is equivalent in view of (2.2) to
I'(S+S5*)z=(S+S5")I'z.
It follows from (2.2) and (2.3) that
[(S+8S")z—(S+S* )Tz =ceoy
for some ceC. Since {a,eg)#0 and

(P(S+5")z—(5+5")T'z,a) =agc,
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it is sufficient to show that
(C(S+S")z—(S+5")'z,a)=0.
We have
(L(S+85")z—(S+S5")z,a) =((S+S5")z,Ta)— ((S+S™)'z,a)
=X(S+85")z,a)—A((S+S5")z,a),

since both = and a belong to E).
Now it is easy to show that if z€ E and (x, Sa)=0, then (S—S*)z€E_ . Indeed

I(S-5%)z=TSz-TS*z=5"Tz—STz=—(S—S*)Tz=-\S—S5")z

by (2.2) and (2.5). Since Ker(S—S8*)={0}, it follows that S—S$* is a one-to-one map of
{z€E):{(z,Sa)=0} into E_j which proves (2.4).

Case 2. For any z€E), (z,e9)=0. In this case it follows directly from (2.2) and
(2.3) that if z€ F and (z, Sa)=0, then (2.5) holds. As in Case 1 this implies that S —5*
is a one-to-one map of {x€Ey:(x, Sa)=0} into E_j. O

I1. Balanced realizations with continuous time

In this chapter we use linear systems with continuous time to construct a Hankel operator
with prescribed spectral properties. Recall that such linear systems allow one to solve
the problem of the description of non-negative operators that are unitarily equivalent to
the modulus of a Hankel operator [T2]. In this chapter we construct self-adjoint Hankel
operators with prescribed spectral properties in the case when |v(t)—v(—t)|<1 almost
everywhere. Moreover we shall find an explicit formula for the symbol of the Hankel
operator.

However we shall see that this approach cannot lead to a complete solution of the
problem of the description of self-adjoint operators that are unitarily equivalent to a
Hankel operator. Namely, if I" is a positive operator with spectral multiplicity 2, it
cannot be obtained from a linear system that involves bounded operators.

In 8I1.1 we introduce the balanced systems, define the Hankel operator associated
with the system and state the main result of the chapter. In §I1.2 we study the Hankel
operator associated with a balanced system and describe its spectral type modulo the
kernel. In §I1.3 we use Lyapunov’s equation to reduce the problem in question to the
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construction of an asymptotically stable semigroup whose generator satisfies certain com-
mutation relations. The main construction is given in §11.4 which allows us to solve the
problem modulo the kernel. The main result of the chapter is proved in §I1.5 where we
study the kernel of the Hankel operator associated with a balanced system. In §I1.6 we
prove auxiliary facts in measure theory. In the final §11.7 we show that positive operators
with multiple spectrum cannot be constructed with the help of a balanced system with

continuous time.

I1.1. Hankel operators and balanced realizations

We consider here linear systems {A, B, C} with one-dimensional input and one-dimen-
sional output:

{:c’(t)=A$(t)+B“(t)’ (1.1)

y(t) = Cx(t).
Here A is a bounded linear operator on a Hilbert space K (state space), B: C—K and
C: K—C are bounded linear operators defined by

Bu=ub, ueC, Cz={(z,c), z€K,

where ¢,b€K. In (1.1) u is interpreted as input and y as output.

In what follows we shall also denote the system (1.1) by {4, b, c}.

The system (1.1) is controllable if span{A™b:n>0}=K and observable if span{A*"c:
n20}=K. It is called minimal if it is both controllable and observable.

We can associate with the system (1.1) the controllability Gramian W, and the
observability Gramian W, defined by

def

W.= | e4BB*e dt, (1.2)

Ry
W, L [ A Ccreett dt, (1.3)
R,
if the integrals converge in the weak operator topology. It is easy to see that if the
integrals converge, then the system is controllable (observable) if and only if Ker W, ={0}
(Ker W,={0}).

In what follows, an important role will be played by balanced linear systems. A
minimal system is called balanced (cf. [G], where the case dim K< oo was considered) if
the integrals (1.2) and (1.3) converge in the weak operator topology and W.=W,,.

We can associate with the system {A, B, C} the following formal Hankel operator
I'y,, where

h(t)=Cet B =(e*4b,c), t>0,
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which is defined on compactly supported functions by
Caf)e)= [ h+s) e
0

In general I';, need not be bounded on L?(R. ). However we shall see later that for the
balanced linear systems the operator I'y is bounded.

The operator T'), is related to the system (1.1) in a natural way in the case
SUp,~ |let4]| <oo. Namely, let ve L2(R, ). Consider the function u on R defined by

w(t)= { v(—t), t<0,

0, t>0.

It is well known (and it is easy to see) that under the initial condition lim;.,_o z(t)=0
the output y of the system (1.1) with input u satisfies

y()=Tav)®), t>0.

Now we are in a position to formulate the main result of Chapter I1. Let T" be a self-
adjoint operator. Then I' is unitarily equivalent to multiplication by the independent
variable on the direct integral

Jonnauo.

Let v(t)%'dim H(t) be the multiplicity function of I'.

THEOREM 1.1. Let T be a self-adjoint operator such that

(C1) either KerT'={0} or dim Ker I'=00;

(C2) T is non-invertible;

(C3) |v(t)—v(-1)|<1, p-a.e.
Then there exists a balanced system {A, B,C} such that the corresponding Hankel oper-
ator T}, is unitarily equivalent to T,

The proof of Theorem 1.1 will be given in §II.5.

11.2. Unitary equivalence modulo the kernel

In this section we establish useful facts on the unitary equivalence (modulo the kernel)
of the Hankel operator I';, corresponding to a balanced system {4, B,C} and certain
operators related to the system.

The following theorem was proved in [G] in the case dim K <oo and [T2] in the
general case. We prove it here for completeness. We also need the construction used in
the proof.
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THEOREM 2.1. Let {A, B,C} be a balanced system, W=W,=W,, and let T}, be the
Hankel operator associated with it. Then T'y, is bounded and the restriction of || to
(Ker )1 is unitarily equivalent to W.

Proof. Consider the operators V., V,: K— L%(R) defined by
(Voz)(t) = B*e 'z,  (Voz)(t)=cel*z, zeH.

Clearly

ViV,= [ e“BB*dt=W,=W
Ry

and
ViV, = / A C* Ceth dt=W,=W.
R,

Therefore the operators V. and V, are bounded. It is also easy to see that
Ty =V,V;

which implies that I'y, is also bounded.
Let
Ve=UWY% V,=U,Ww'/?

be the polar decompositions of V, and V, (|V.|=|V,|=W1/2). We have
KerV =Ker V'V =KerW,={0} =KerW,=Ker V)V, =Ker V,.

Therefore the operators U, and U, are isometries. Clearly Range U.=clos Range V, and
Range U,=clos Range V,. It follows that

ITh2 =T3T, =,V V,V,) =UW2U;.

Since Ker U? =(Range V.)* =Ker V.* =Ker ', the operator W? is unitarily equivalent to
ITh|?|(Ker'y)* which implies that |T's{|(Ker's)* is unitarily equivalent to W. a

Let us consider now linear systems for which the corresponding Hankel operator is
self-adjoint.

THEOREM 2.2. Let {A, B,C} be a balanced linear system (1.1) such that T'y, is self-
adjoint, W=W,=W,.. Then there exists an operator J on K which is self-adjoint and
unitary and such that JW=WJ, A*=JAJ, and c=Jb.

Proof. We have under the above notation I'), =U WU. Since I'j, is self-adjoint, we
have
vwu:=UWwU,,
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hence
WU =U*W, (2.1)

where U=U}U,.

We have already shown that KerU?=KerV*=KerT,. Since I';=I",, it follows
that I, =V_V;" which implies that KerI', =Ker Vy=KerU;. Therefore U, and U, are
isometric with the same range (KerI',)1 which implies that U=U?U, is unitary. Let us
show that it is also self-adjoint.

LEMMA 2.3. Let W be a non-negative operator, Ker W={0} and let U be a unitary
operator such that WU =U*W. Then U is self-adjoint.

Proof.(*) Multiplying the equality U*W =WU by U on the left and by U* on the
right, we obtain the equality UW =WU™*. Hence

U'WU=WUWU =W?U*U =W?
which implies that W2U=UW?. Since W is positive, it follows that WU =UW and so
U'W=WU=UW,

and since W has dense range, we have U*=U. O

Let us complete the proof of Theorem 2.2. We denote U=U}U, by J. It follows
from (2.1) that WJ=JW. Let us show that A*=JAJ. Indeed by the definition of J,
U,=U.J and since JW=WJ, we have V,=V_.J. This means that

Cetz=Be!*' Jz, ze€k,
or which is the same
(z,et4"¢) = (z, Jetb) = (z, JeA T (Tb)) = (z, €47 Tb).

Hence
e e=e4 gp, t20. (2.2)

Substituting t=0, we obtain c=Jb. Differentiating (2.2) we find that A* and JAJ
coincide on the orbit {€!4’c:¢>0} which is dense since the system is observable. Therefore
A*=JAJ which completes the proof. a

(*) This proof was suggested by the referee and is simpler than the original proof suggested by the
authors.

18-950233 Acta Mathematica 174, Imprimé le 20 juin 1995
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THEOREM 2.4. Let {A, B,C} be a balanced dynamical system (1.1), W, =W,=W,
and let J be an operator which is self-adjoint and unitary and satisfies the equalities
JW=WJ, A*=JAJ, c=Jb. Then the Hankel operator I'), associated with the system is
self-adjoint and 'y |(KerT'y)*L is unitarily equivalent to WJ.

Proof. Since A*=JAJ, we have 4" =Jet4J. The equality ¢=Jb implies C=B*J
which in turn leads to the equality V.=V, J. Therefore

T,=V,JV; =UW\2gwUur =U,WJU,

which proves the result. O

I1.3. Lyapunov equations

We are going to use Theorem 2.4 to construct a Hankel operator with given spectral
properties modulo the kernel. Namely let I' be the self-adjoint operator in Theorem 1.1.
Put I=T"|(KerT')*. Let J be the operator on (Ker')* which is self-adjoint and unitary
and satisfies = J|T|=|TJ. We are going to construct a balanced linear system {4, B, C}
such that W =|T), A*=JAJ, c=Jb, and WI=JW. Then by Theorem 2.4, ['y|(Ker ')+
is unitarily equivalent to T. Later we shall settle the problem with the kernel.

It is not easy to verify directly that W:|f‘| Fortunately, to prove this equality, we
do not have to evaluate the integrals (1.2) and (1.3). We are going to verify instead the
corresponding Lyapunov equations.

Recall that an operator A is said to be asymptotically stable if
lim [le!4z]|=0
t—oo

for any .
THEOREM 3.1. Let A be an asymptotically stable operator on a Hilbert space K and
let K be a bounded operator on K. If the integral

/ et KetA dt ' W (3.1)
R,

converges in the weak operator topology, then W is a unique solution of the following
Lyapunov equation
AW+WA=—-K. (3.2)
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Proof. Let us show that W satisfies (3.2). We have for z,yeK

(A*W+WA)z,y) = / (A*eVKeth 4 et Keth A)z, y) dt
Ry

d Ay 14 )
= — (e Ke*x,y) | dt
L (G )

= lim (Ket4z,et4y)— (Kz,y) = —(Kz,y)

t—o0

because of the asymptotic stability of A.

Let us now establish the uniqueness of the solution. Suppose

A*X+XA=-K

for some operator X. Let A=W —X. Then

A*"A+AA=0.

Clearly

%(Aemx, ety) = (AAethz, et y)+(Aetlx, Aetfy) = (A*A+AA)e! z,y) =0.

261

Since lim;_, o, ||e!4z||=0 for any z€K, it follows that (Az,y)=0 for any z,y€X. Hence
A=0.

0

The following result shows that if W satisfies the Lyapunov equation (2.2), we can

obtain the convergence of the integral (3.1) for free.

THEOREM 3.2. Let A be an operator such that ||et4||<M<oo, t20, and let K be a

non-negative operator. If W is a solution of the Lyapunov equation

A'W+WA=-K,

then the integral

/ e KetA dt
Ry

converges in the weak operator topology.

Proof. Let z,yeK. We have

. . d .
(e Kethz,y) = — (e (AW +WA)e Az, y) = —E(em Weltz,y).
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Therefore
T - -
| (@ Keta,0)dt = (Wa,2)— (4 WePAa,0) < [ W] (M +1),
0

Since (e!4"Ket4z,z)>0 for z€K, it follows that the integral [,°(e*A'Ket4z,z)dt con-

verges for any z€ K. The result follows from the polarization identity. d

Theorems 3.1 and 3.2 show that to solve the problem modulo the kernel, it is suffi-
cient to construct a linear system {4, B,C} and an operator J=J*=J~1 such that

(i) the operators A and A* are asymptotically stable;

(i) the operator W=|T| is a solution of the Lyapunov equations

AW+WA=-C*"C, AW+WA'=-BB*,

(iii) A*=JAJ, c=Jb.

If A*=JAJ, then A* is asymptotically stable if and only if A is. It follows easily
from (iii) that both Lyapunov equations in (ii) coincide. Therefore it is sufficient to verify
the following properties:

(i') A is asymptotically stable;

(it') AAW+WA=-C*C;

(iii"y A*=JAJ, c=Jb.

11.4. The main construction

Let T be a self-adjoint operator which satisfies the hypotheses of Theorem 1.1 and let
f‘:I‘|(Ker T')%. Then the operator lf‘l is unitarily equivalent to the operator W of mul-
tiplication by t on the von Neumann integral

k=[ @E®) dot). (4.1)
a(W)

Here o is a scalar spectral measure of |I'|. We can also assume that the spaces E(¢)
are imbedded in an infinite-dimensional space E with an orthonormal basis {e;};>1 and

E(t)=span{ex:1<k<wvw(t)+1}, E(t)={0} if vy (t)=0,

where vy is the spectral multiplicity function of W, vy (¢t)=dim E(t).
Clearly vw (t)=v(t)+v(—t), p-a.e., where v is the spectral multiplicity function of T.
Recall that v satisfies the condition (C3’) of Theorem 1.1.
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Consider the sets

o ={tea(W): v(t) > v(~)},
o ={tea(W): u(t) <v(-t)}.

We define the operator J on K as multiplication by the operator-valued function J:

1 0 O

0 0 .
TO=W o o 1 .|

where £(t)=1 for t€o and £(t)=—1 for tco._.

Clearly Tis unitarily equivalent to JW and we can assume that F=Jw.

Recall that the scalar spectral measure ¢ of W is not uniquely defined and we can
always replace it with a mutually absolutely continuous measure by multiplying it by a
positive weight w in L(p).

Let K¢ be the subspace of K that consists of functions f of the form

f)=p(t)er, ¢eLo).
Ko can be identified naturally with L2(p). Let A be the integral operator on Ko=L2(p)

defined by
(Aof)(s) = / K(s,8)£(t) del(t),
o(W)

where

—1/(s+t), s,t€o, ors,t€o_,
ks, )={ ot ' (42)

-1/(s~t), s€o4,t€Eo_ors€o_,t€0,.

The operator Ay certainly need not be bounded. However, the following lemma allows
us to change the measure g so that Ay becomes a Hilbert-Schmidt operator. We extend
Ay to K by putting Ao|Kg =0.

LEMMA 4.1. There ezists we L'(g), w>0, p-a.e., such that the integral operator
fH/ (5, )£(t) da(t)

is a Hilbert-Schmidt operator on L2(g), where dg=w do.

We postpone the proof of Lemma 4.1 until §I1.6.
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Let us define the vectors b and ¢ in K by
c(t)=ey, bt)=J(t)e(t)=£&(t)c(t), teo(W).
It is easy to see that
Ay=JAJ and AW +WAg=-C"C. (4.3)

However, Ker A=Ky is non-trivial except for the case when W has simple spectrum.
Therefore Ay is not asymptotically stable in general. To overcome this obstacle we
perturb A¢ by an operator D such that the perturbed operator still satisfies (4.3) and
becomes asymptotically stable. Of course, to make A asymptotically stable, it is not
sufficient to kill the kernel.

Let {ai") :;11 , n€NUoo, be positive numbers such that

n—1 1 00
Z (ain))z <gnz M €N, Z:(afccx’))2 < 00. (4.4)
k=1 k=1

We define D as multiplication by the operator-valued function d:

o &Y o o
—aﬁ") 0 ag") 0

dty=| 0 -a” 0o a” .. (4.5)

0 0o -a” o

in the basis {er}1<k<n(t)+1, Where n=vy (t)=dim E(t).

THEOREM 4.2. Let A=A¢+D, where D is defined by (4.5) and suppose that (4.4)
holds. Then
AWH+WA=-C*C, A*=JAJ
and A is asymptotically stable.

As we have already observed in §I1.3, Theorem 4.2 implies the following result which

solves the problem modulo the kernel.

COROLLARY. Let I'y, be the Hankel operator associated with the linear system con-
structed above. Then T'y|(KerTy) is unitarily equivalent to JW =T

Proof of Theorem 4.2. Clearly D commutes with W and D*=-D. So the operator
A=Ao+ D satisfies the Lyapunov equation

AW +WA=-C*C. (4.6)
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It is easy to show that D*=JDJ which implies A*=JAJ.
It remains to prove that A is asymptotically stable. Let us show first that A+ A*<0
which would imply that {etA}t>0 is a semigroup of contractions. We need the following

lemma.

LEMMA 4.3. Let W be a non-negative self-adjoint operator with trivial kernel and
let R be a self-adjoint operator such that

RW4+WR<O.

Then R<O0.

Proof. Let K=—(RW +WR). Since —W <0 and Ker W={0}, it follows that —W
is asymptotically stable. So we can apply Theorems 3.1 and 3.2 where —W plays the
role of A and — R plays the role of W. Then we find that R is the unique solution of the
equation

XW+WX=-K

and the solution is given by
R=- / e"WKe W gt
R

Hence R<O. 0

It follows from (4.6) and from the identity
AW +W*A=-BB* (4.7)

that
(A+AYW+W(A+A*)=-C*C-BB*<0

and so R=A+ A~ satisfies the hypotheses of Lemma 4.3. Thus A+ A*<0.
It is well-known that the above inequality implies that o(A)C{¢:Re(<0}.
Let us show that A has no eigenvalues on the imaginary axis. Let

Az =iwz, z€kK, ¢#0, weR.
Then

—(C*Cz,z)=(A*Wz,z)+(WAZ, 1)
=Wz, Az)+(Az, Wz) = —iw(z, Wz) +iw(z, Wz) =0,
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and so Cz=0, i.e. z1lc. Similarly, if

then B*£=0, i.e. £ 1b.
Applying equality (4.6) to the eigenvector z and taking into account that Cz=0, we

obtain
AWz = —iwWz,

i.e. Wz is an eigenvector of A*. Now applying equality (4.7) to the eigenvector Wz and
taking into account that B*Wxz=0, we obtain

AWz =iwWiz.
Repeating this procedure, we obtain
AWz =Wz, n>0.

It follows that for any eigenvector  of A with eigenvalue iw and for any bounded mea-

surable function ¢
Ap(W)z = iwp(W)z. (4.8)

Consider the representation of z in the direct integral:

n(t)
z(t) = zx(t)ex.
k=1

It follows from (4.8) that (W )z is orthogonal to c, i.e.

/ (1) (t) do(t) =0

for any measurable ¢. It follows that z,(t)=0 a.e., i.e. zLKy. Hence Az=Dz and so

Dz =iwz which means

0o & 0 0 . 0 0
—agn) 0 a.(z") 0 .’Ez(t) xz(t)
0o -a® o o .. z3(t) | = jw | z3(t)
(

0 0 —a” o0 .||z z4(t)

where z(¢)=3%"7_, zx(t)ex, n=vw(t)=dim E(¢).
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Performing the multiplication, we obtain

agn)mg(t) 0
oM zs(t) za(t)
—aM 2y () +alVaa(t) | =40 | z3(2)
(t)

—agn)xg (t)+afl")w5 (t) Z4

Comparing the components from top to bottom, we see that zx(t)=0 for any &, i.e. z=0.
To prove that A is asymptotically stable, we need the following result which follows
easily from Proposition 6.7 in Chapter II of [SF] by applying the Cayley transform:

Stability test. Let {e*4}:>0 be a strongly continuous semigroup of contractions on a
Hilbert space K such that

(i) the spectrum o(A) of its generator is contained in {{:Re (<0},

(ii) A has no eigenvalues on the imaginary axis ‘R,

(iii) the set o(A)NiR is at most countable.
Then the semigroup {e!#};>0 is asymptotically stable, i.e.

lim ||e*4z)| =0 for any z€ K.
t—oo

We have already proved that our operator A satisfies (i) and (ii). It remains to show
that A satisfies (iii) provided (4.3) holds.
Let D, be the operator on span{e,:1<k<n+1}, 1<n< oo, given by the matrix
o & 0o o
- o0 &Y o0

D, = 0 —ag") 0 a&")

0 0 -a{ o

We have D*=-D (i.e. 1D is self-adjoint) and so

a(D)C clos( 61 O'(Dn)) Ua(Dy).
Clearly D, is a Hilbert-Schmidt operator for 1<n<oo and its Hilbert-Schmidt norm
| Dnll2 satisfies || Dy|l2<1/n for n<oo.
Therefore o(D,)C[—i/n,i/n], n< oo, o(Dy,,) is finite for any n<oo, 0{Ds ) is count-
able and can accumulate only at 0. Hence the only possible accumulation point of the
set (Uo>; 0(Dn))Uo(Dy) is 0. Consequently, o(D) is at most countable.
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Since Ag is a Hilbert—Schmidt operator, A is a compact perturbation of D. So
the essential spectrum o.(A4) of A is equal to o.(D) and for any A€o.(A) we have
ind(A—AI)=0 (see [D2]). So if A€o (A)\o.(A), then A\ must be an eigenvalue of A. We
have already proved that A has no eigenvalues on iR which implies that

o(A)NiR=0.(A)NiIR =0.(D)NiR C o(D)NiR

which is at most countable. g

I1.5. The kernel of T,

In this section we shall prove Theorem 1.1. In the previous section we have constructed
a linear system {A, B, C'} such that the corresponding Hankel operator I';, restricted to
(KerT',)* is unitarily equivalent to T'|(KerT')+. To prove Theorem 1.1 completely we
have to solve the problem of the description of KerI'y,. The solution of this problem
is given by the following theorem where we consider the Hankel operator I';, associated
with the system {4, B,C} we have constructed in the previous section.

THEOREM 5.1. Let g be the scalar spectral measure of W in (4.1). Then KerI'p=
{0} if and only if [, (1/s)do(s)=00.
Theorem 1.1 follows now from Theorem 5.1 and the following lemma.

LEMMA 5.2. Let g be a finite positive Borel measure on [0,a], a>0, such that O€
supp ¢ and

//(k(s, t))2 do(s) do(t) < oo, (5.1)

where k is defined by (4.2). Then we can change ¢ by multiplying it by a positive weight
in L'(g) so that (5.1) still holds and

/ % do(s) = oo.

Remark. It is obvious that under the hypotheses of Lemma 5.2 one can change a
measure g (by multiplying it by a positive weight in L(p)) so that (5.1) holds and

/ % do(s) < co.

Indeed it is sufficient to take a weight which is sufficiently small near the origin.

The proof of Lemma §.2 will be given in §I1.6. Let us first derive Theorem 1.1 and
then prove Theorem 5.1.
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Proof of Theorem 1.1. Let T" be a self-adjoint operator which satisfies the assump-
tions of Theorem 1.1. Put I'=I"|(Ker')+. Let W=|T'| and consider the representation
of W in the form (4.1) where g is a scalar spectral measure of W. Let A, B,C,J be as
in §I1.4 and let 'y, be the Hankel operator associated with the system {4, B,C}.

Suppose that W is invertible. Since I is non-invertible, the subspace Ker I is infinite-
dimensional. The operator 'y, |(Ker['y)* being unitarily equivalent to W.J is also invert-
ible. So KerI'}, is infinite-dimensional which implies that I'j, is unitarily equivalent to I.

Suppose now that W is non-invertible. If KerI'={0}, we can choose by Lemma 5.2
a scalar spectral measure ¢ of W so that [(1/s)dg(s)=cc. Then by Theorem 5.1,
KerI',={0} and so I';, is unitarily equivalent to I'.

If T has an infinite-dimensional kernel, then by the remark to Lemma 5.2 we can
choose g so that [(1/s)dp(s)<oc and by Theorem 5.1, I', has an infinite-dimensional
kernel and again I'y, is unitarily equivalent to I'. O

Proof of Theorem 5.1. Let us first prove that KerI', is non-trivial provided
J(1/s)do(s)<oo. Assume that KerI',={0}. Since I'y =V, V=V, JV/, it follows that
Ker V> ={0} which is equivalent to the fact that V, has dense range in L2(R.).

Let {®:};>0 be the semigroup of backward translations on L*(R.y), (®.f)(s)=
f(s+t), s,t20. It is easy to see that

Vet = &, V. (5.2)

Clearly the condition [(1/s)dg(s)<oo means that c€ Range W'/2.

Let V,=U,W'/2 be the polar decomposition at V, (see the proof of Theorem 2.1).
Since Ker ', ={0}, it follows that U, is unitary. Therefore c€RangeV*. Let c=V_f,
feL?(R). Define the operator F: L2(R)—C by

Fo=(p,f).
Then obviously FV,=C, where as above Cz=(z, ¢). Therefore by (5.2)
Ce'4 =F&,V,

and so
e C*CetA =V} O, F*Fd,V,

which implies

/ O Cetrdt=W =V} ( / 3 F*Fo, dt) v,.
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Since V,=U,W/? and V}=W*¥2U*, we have
U, (/ o;FFO, dt) Up=1
and bearing in mind that U, is unit:ry, we obtain
/ B2 FFd, dt=1. (5.3)
Ry

Consider the function f,, 720, defined by

t—T1), t2T,
f,(t):{f( ) T

0, t<,
and the operators F,: L2(R)—C defined by
Fox=(z, ).
Since F'®,.=F;, identity (5.3) can be rewritten as

/ F'F dr=1I. (5.4)
R,

The operator F}F, is the integral operator with kernel s, (s,t)=f.(s)f-(t). We have

00 o0 - min{s,t}
5,0 [Castyar= [p@F@ar= [ fe-nfEan

hence
|>¢(s, ) <1 £13-
Therefore (5.4) implies that

)= °°/0 " oe(s, )i O(E) dis (5.5)

at least for compactly supported ¢ and v in L?.

Let now v
1/\/e, 0<s<e¢,
¢(3)=¢(8):{
0, $§>E.

Then (5.5) implies that

1=|lpll5= (0, p) <ellxllo <ellf3 < 1

for a sufficiently small £. The contradiction obtained proves that Ker ', #{0}.
Let us show that if KerI';, #{0}, then [(1/s) do(s)<ooc. It is easy to see that the sub-
space K=(Ker['y)* is invariant under the semigroup of backward translations {®,}s>0.

Let \Ilsd=ef<I’s|K . Since Ker 'y, =Ker V¥, it follows that K =clos Range V' and so by (5.2)

Voeth =0,V (5.6)

We need the following lemma.
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LEMMA 5.3. The semigroup {¥,}:>0 has a bounded generator.

Let us first complete the proof of Theorem 5.1 and then prove Lemma 5.3. By
Lemma 5.3, ¥;=¢'¢, t>0. It follows from (5.6) that

V,A=GV,
and so
G=V,AV;!
(V,AV;1 is defined on a dense subset of K and extends by continuity to a bounded
operator).
Put

RYG+G" =V, AV, '+ (V) A"V

Multiplying this equality by V, on the right and V* on the left and bearing in mind that
V'V,=W, we obtain
WA+ A*W =V RV,

On the other hand, we have from (4.6)
WA+A'W =-C"C=—(-,c)c.

So VRV, =—C*C. Hence c€Range V* or, which is equivalent, ccRange W'/ (see the
proof of Theorem 2.1). Clearly the last condition exactly means that

/ % do(s) < 0. d

Proof of Lemma 5.3. To show that the generator of our contractive semigroup is
bounded, we apply inverse Fourier transformation F~! which maps L*(R) onto the
Hardy class H2=H?(C,). Put &,=F"1®,F and ¥,=F~'¥,F. Then

\I’sf =P e_,f,

where e_,(t)=e "t and P is the orthogonal projection from L? onto H?. Clearly

b, =9,K,
where K=F"'K.
Obviously K is an invariant subspace of the semigroup {®,}s>0 and so by Lax’s
theorem (see e.g. [N, Chapter XI]) K has the form Ky=H?O9H?, where 9 is an inner
function.
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Let G be the generator of the semigroup {@3}320. It is sufficient to show that G
is bounded. To this end we consider its Cayley transform T=(G+I)(G—1I)~! which
is called the cogenerator of the semigroup {¥,}s>0. Since G=(T+I)(T—1)"!, it is
sufficient to show that 1¢a(T).

The cogenerator T' can be found easily. According to a theorem by Sz.-Nagy and
Foias, see [SF, Chapter 111, Theorem 8.1], the cogenerator T of a semigroup of contrac-
tions {T'(s)}s>0 is given by

T'= lm ¢,(T(s)),
where

A—1+s
#s(A) = A-1-s’

Taking into account that

@(‘i’s)f:P+<P(€—s)fa fEKI%

we can conclude that the cogenerator T of the semigroup ¥, is given by the formula
Tf=Pipf, fe€Koy,

where p(t)=lim,_,o; ps(e™*)=(s+1)/(5—1).
Let w be the conformal map of the unit disc D onto the half-plane C defined by

wiz) =i

Let 9 %'9ow. Note that 9 is an inner function in H®° (D). Then the unitary operator i,

1 1 t—
A= rpl/2_— £, a2 teR
Un®=r gt =mr L (0 em,
maps unitarily H?(D) onto H%(C.) and K onto K4, and moreover U *TU f=5*| K 3,
where S* is backward shift,

si=P.zf(x)=1TO jen

So, T is unitarily equivalent to S*| K.
To complete the proof we need the notion of the spectrum of an inner function. Let
7 be an inner function. Then r=aBs, where a€C, |a|=1, B is a Blaschke product with

zero set A and s is a singular function, i.e.

C+z
T( z

s(2) =exp - ()
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for some positive measure A which is singular with respect to Lebesgue measure. The
spectrum o(7) of 7 is by definition clos AUsupp A.
It is well known (see [N, Chapter III}) that the spectrum of S*|(H?671H?) is equal

to o(7). Therefore in our case o(T)=0(3).
If ¥ is an inner function in C,, we put by definition o(8)=w(c(¥)), the spectrum

of ¥. Note that o(¥) can contain oo (this happens if and only if 1€0()).

Let us prove that 0(9) C —i o(A) which would imply that (%) is bounded and since
o(T)=o(B) =w(o(®)),
it would follow that 1¢c(7) and so G is bounded.

To this end we need the notion of pseudocontinuation. Recall (see [N, Lecture II])
that a function fe HP(C,), 1<p< 0, is said to have a meromorphic psedocontinuation
(or simply, pseudocontinuation) if there exists a meromorphic function g of Nevanlinna
class N(C_) in C_ (N(C_)q—if{g=g1/g2:gl,ggeH‘”(C,)}) such that the boundary
values of g coincide with the boundary values of f almost everywhere on R. Such a
function g is called a pseudocontinuation of f.

Each inner function 4 a can be extended to C_ by

9(¢)=1/9(¢), (eC-.
Such an extension is a meromorphic function with poles at the points conjugate to the
zeroes of ¥ in C, and clearly it belongs to N(C_). It is also easy to see that this
extension has non-tangential boundary values almost everywhere and those boundary
values coincide a.e. with ¥ on R, that is, each inner function has a pseudocontinuation.

A function fe H%(C, ) belongs to Ky if and only if f/9€ H?(C_). Since H*(C_)C
N(C_), it is easy to see that if f€ Ky, then f=(f/9)9 has a pseudocontinuation.

We need the following well known facts:

(i) if a function fe H2(C,) has a pseudocontinuation and it extends analytically
across an interval JCR, then its extension coincides with its meromorphic pseudocon-
tinuation;

(ii) if 9 is an inner function such that R¢o(9), then ¥ extends analytically to
C\o(9);

(i) if RZo(9) and fe Ky, then f extends analytically to C\o(d).

The proofs of (i)—(iii) for H? functions on the unit disc can be found in [N, Lec-
tures 11, ITI]. It is easy to see that the case of functions in C; reduces easily to the case
of the unit disc.

Now we are in a position to prove that o(9)C—ic(A). To do that we need the
following lemma. Let C denote the Riemann sphere a:CU{oo}. Till the end of the

section we assume that a function fe€ Ky is extended to C_ as a meromorphic function.
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LEMMA 5.4. Let ¥ be an inner function in C, and let o be a closed subset of
its spectrum o(9), o#a(9). Then there exists a non-trivial inner divisor ¥, of ¥ (i.e.
¥/91#const) such that every function f € Ky, which extends analytically to C\&, belongs
to Ky, .

Let us first complete the proof of Lemma 5.3. Assume that o(¢)¢Z —io(A4). Put
o=0c(9)N—ic(A). Let ¥, be an inner function whose existence follows from Lemma 5.4.
Consider an arbitrary f=F"1V,z, z€K. Since

1 . 1
FWz)(s) = — Cetze®t dt = ——=((A+isI)"'z,¢), Ims>0, 5.7
Fae =g [ = ((4isD) ) (5.7

the function f extends analytically outside the set io(A). On the other hand, fe Ky
and and by (iii) it extends analytically to C\o(d). Therefore f extends analytically
to C\&. By Lemma 5.4, fe Ky, and since {F~V,z:xe€K} is dense in Ky, it follows
that KyC Ky, which contradicts the fact that ¢, is a non-trivial inner divisor of ¥. So

o(9)C—i0(A) and as we have already noted, this implies the boundedness of G. a
Remark. It can be shown that o(T)=0(9)=w~(—io(A)) and o(T) must be sym-

metric about the real line: o(1")=0(T). Thus o(A) must be symmetric too: o{A)=0(A*).

Proof of Lemma 5.4. Note that g€ K if and only if g€ H?(C, ) and g/d9€ H*(C_).

Consider first the simplest case. Suppose that there exists a point A in C4 such
that A€o(¥)\o. Then we can define ¢, as ¥, =19/by, where by(2)=(z—X)/(2=) is a
Blaschke factor.

Suppose that f€H?(C,), f/9€H? and f extends analytically to X. Since the
pseudocontinuation of ¥ has a pole at }, it follows that (f/9)(A)=0. The function 1/by
in C_ can be considered as a Blaschke factor with zero at . Since the function f/9
belongs to H?(C_) and vanishes at ), it follows that 1/by is a divisor of f/9 and so
f/9:1=bxf/9€ H2(C_), which means that f€ Ky, .

Suppose now that C,N(o(9)\o)=2. Put ﬁ(i—ifRU{oo}. Then there exists an open
connected set I in R such that I No(¥)#£@ and [ is separated from o.

Let 7 be a nontrivial inner divisor of ¥ whose spectrum is contained in 7 and let
91 =9/7. Let us prove that 9, satisfies the conclusion of the lemma.

Let f be a function in Ky which extends analytically to C\ o and so f is holomorphic
in a neighbourhood of clos I. Since feN(C_), f can be represented as f=g;/g2, where
91,92€ H*(C_) and ¢; and g2 have no nontrivial common inner factor. We need the

following fact.
LEMMA 5.5. Let ¢; and pa be bounded analytic functions in D which have no

common inner factor. If p1/pa extends analytically to a neighbourhood of a closed arc
J in T, then the spectra of the inner components of ¢, and @2 are separated from J.
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Let us first complete the proof of Lemma 5.4. Applying the conformal map from
C._ onto D, we find from Lemma 5.5 that the spectra of the inner components of g; and
go are separated from I.

Let 9% and 7# be the inner functions in C_ defined by 9%#(z) =W€), #(2) ::(—(:5,
¢(eC_. We have f/9€ H*(C_) and (f/9)(¢)=f(2)9#(¢), (€C_. Since the spectrum of
the inner factor of g, is separated from I, it is easy to see that 7# is a divisor of g;. It
follows that the function f9#/7# in C_ belongs to H2. Clearly the boundary values of
this function coincide with ¢/9; which completes the proof. O

It remains to prove Lemma 5.5 which is familiar to experts though we were unable
to find a reference. The following simple proof is due to D. Marshall.

Proof of Lemma 5.5. By dividing ¢; by a polynomial we can assume that ¢, has no
zeroes in a neighbourhood of J. Clearly the zeroes of ¢; and ¢, are separated from J.
So we can divide ¢1 and @2 by the corresponding Blaschke products and reduce the
situation to the case when ¢; and @2 have no zeroes in D. Then log |1 /2] is the
Poisson integral of a real measure v on T. Clearly v is the weak limit of v, as r—1,
where dv,(¢)=log |01(r{)/p2(r)| dm({). Since log [¢1/w2]| is smooth in a neighbourhood
of J, it follows that the restrictions of v,. to J converge in the norm to the restriction of
v to J and so v is absolutely continuous on J which means that the singular measures
of the inner components of ¢; and 2 are supported outside J. a

11.6. Exercises in measure theory

The aim of this section is to prove Lemmas 4.1 and 5.2. They will be proved if we
establish the following facts:

Let ¢ be a finite positive Borel measure on [0, a], a>0, which has no mass at 0 and
let 0. and o_ be disjoint sets such that o Uo_=suppg. Then there exists a weight
we LY(p) which is positive g-a.e. and such that the measure g, dg=w dp, satisfies:

(a) the integral operator Ag on L?(g) with kernel (4.2) is Hilbert-Schmidt;

(b) if 0€Esupp o, then we can find a w so that, in addition to (a), f(1/s)da(s)=o00.

Proof. We begin with (a). In the case when one of the sets o;,0_ is empty the
result is trivial. Assume that both o, and o_ have positive measure. Let af,_" (n)
be compact subsets of o, and o_ such that a(+") CUSL"H), o(_") Ca(_"H), n>2n+1, and

)ando

lim_e(0+\o{") = lim e(c-\o)=0.
Clearly the restriction of & to (o&")ua(j)) X (Ug.")Ua(_")) is bounded.

19-950233 Acta Mathematica 174. Imprimé le 20 juin 1995
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Suppose we have already defined w on ai") U™, Let us define it on ag_"ﬂ) uem .

We can easily do that so that

// (k(5,1) dofs) do(t) < o

where An:(oi"H)Ud(_"H)) X (asr"H)Ua(_nH))\(ai" U™y x (ag_")Ucr(_")), dd=w dp and
w is positive a.e. on A,,. Doing in this way, define w on supp ¢. Clearly the measure g,
dg=w dy, satisfies (a). The above reasoning was suggested by Svante Janson.

To prove (b) we consider first the simplest case when one of the sets 0, ,0_ is empty
and so k(s,t)=—1/(s+t). Without loss of generality we can assume that supp oC|0,1].

Let 6,=(2"",27""!], n>1. Consider the increasing sequence {n;};>1 of integers
such that o(6n;)>0 and ¢(6,)=0if n#n; for any j. Since 0€supp g, the sequence {n;};>1
is infinite. We define the weight w by

9-n;5

Q(énj )7 log(j+1) ’

w(s)= 5 € bn;. (6.1)

Then

w(s) do(s)
/O ;/ dgs
—Z bn;) jl:;ﬁl)/JdQs(S)

2-n; 1 1
2 E 6" .271.,'—1__:_ - < = .
o(6n )Jlog(J+1)( ) 2zylog(y+1) *

j21
1 g~
/ da(s) _
o 8
On the other hand,

J[ ks, date /5/ nl)el) dote) datt

2 )
1 e e, O0n;)e(0n,) 5 10g(J+1)1‘10g(r+1)

<. / o gy dele) o)

1
<2 - - 2™ .27 0(6,. Yo,
) TR P A F e ENu e ey o(6n;)e(br.)

So

1) <o0,r <]

gnrg—"s
=2
Z Z jlog(j+1)rlog(r+1)

1<j<oo 1€
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Since

J onr < on;
Z:l rlog(r+1) ~ log(j+1)’
we have
= 1
(k(s,t))? do(s)dp(t) <2y ——F—— <00
// = jlog’(j+1)

Consider now the general case. Since 0&supp g, 0 is an accumulation point of either
o4 or o—. To be definite, assume that 0 is an accumulation point of o. Then we
can consider the sets §,=(27",27"*1)No, the increasing sequence {n;};>1 such that
0(6n;)>0 and 9(6,)=0 if n#n; for any j. We can define w on é,; as in (6.1). It follows
from the above reasonings that

S

[ waddets)

and

/<7+/a+ (k(s,t))? da(s) da(t) < oo.

We can now define w inductively on (27,27 -1]No_ to be so small that

1 m
/2_nj /_”j (k(s,))*w(s)w(t) do(s) do(t)
<2(1"2_j)/A./A.(k(s’t))zw(s)w(t)dg(s)d"(t)’

where A;=0,M(27",1]. Obviously this can easily be done. O

11.7. Positive Hankel operators with multiple spectrum

Here we prove that no positive Hankel operator with multiple spectrum (i.e. the set
{t>0:v(t)>1} has positive measure) can be realized by a balanced realization {4, B,C}
with one-dimensional input and one-dimensional output. Recall that we consider only
systems with bounded A, B, and C.

THEOREM 7.1. Let I' be a non-negative self-adjoint operator such that W=
T'|(KerT)* has multiple spectrum. Then there ezists no balanced system {A, B,C} with
one-dimensional input and one-dimensional output such that T'y|(Kery)t is unitarily
equivalent to W.

Recall that T'j, is the Hankel operator associated with {A, B, C}.
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Theorem 7.1 shows that not all self-adjoint Hankel operators (even up to unitary
equivalence) can be realized by a balanced system with continuous time.

Proof. Suppose that W is unitarily equivalent to I's|(KerI'y)L for some balanced
system {A, B,C}. Then by Theorems 2.2 and 2.4, J=I, A=A*, b=c. We have

x0
W= / etAC*CetA dt,
0

the integral being convergent in the weak operator topology.
Let us show that Ker A={0}. Indeed if z€Ker A, then

oo o0 o0
/ (etAC* Cethz, 2) dt:/ l(etAz, c)|? dt:/ z,c)|? dt < o0,
0 0 0

so r Le*4c and since c is a cyclic vector of A, we have z=0.
As we have already proved,

AW+WA=-C*C (7.1)

(see §I1.3). Therefore it follows from Lemma 4.3 that A<0. Since Ker A={0}, A is
asymptotically stable.

We can now interchange the roles of A and W in (7.1). Since —W is self-adjoint and
asymptotically stable, it follows from Theorems 3.1 and 3.2 that — A is a unique solution

of the equation
X(-W)+(-W)X =-C*C

and this solution is given by
[ ]
—Az/ e WerCe W dt, (7.2)
0

the integral being convergent in the weak operator topology.
However, it is easy to see from (7.2) that Ker A=(span{W¥c:k>0})* and this
subspace is non-trivial since W has multiple spectrum. 0

Remark. We use the definition of balanced systems with Ker W={0}. One could
think that if we change the definition to admit a non-trivial kernel of W, then Theorem 7.1
would not be true anymore. However this is not the case. If we admit Ker W#{0} we
can consider the space K, =(Ker W)L. Since

o0 - o0 *
W= / et Cr Ot dt = / e!ABB*et4" dt,
0 0
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it follows that
K; = (Ker W)L =span{A™b:n >0} =span{(4*)"c:n >0},

so K1 is a reducing subspace for A and b,c€K;. Therefore if we consider the operators
A1=Px,A|K, and W1 =W |K,, then (e!”b,c)=(e*41b,c), so the Hankel operator of the
systems {A,b,c} and {A1,b,c} coincide. But Ker Wy ={0} and we arrive at our original
definition.

II1. Balanced realizations with discrete time

The main aim of this chapter is to prove that if a bounded self-adjoint operator satisfies
the conditions (C1)-(C3) in the Introduction, then it is unitarily equivalent to a Hankel
operator. To construct such a Hankel operator we use linear dynamical systems with
discrete time.

The idea of the method can be described briefly as follows. Let I" be a Hankel
operator and let S be the shift operator. Then the operator A=S5*T" satisfies the equality

L2—A’=(-,p)p,

where p=T'eg and e is the first basis vector in the basis in which I" has a Hankel matrix.

Suppose now that I is a self-adjoint operator that satisfies the conditions (C1)-(C3).
Assume here for simplicity that KerI'={0}. The problem is to find a vector p in Range’
such that I'?— (-, p)p>0 and to find a self-adjoint operator A such that A2=I"2—(-,p)p.
Then we can define a contraction T by A=TT. It is easy to choose a vector p so that T*
be an isometry. It can also be seen that Ker T is one-dimensional. If we could prove that
T* is unitarily equivalent to the shift operator, then it would follow from the equality
TT=IT"* that I is unitarily equivalent to a Hankel operator (see the Introduction).
Clearly T is unitarily equivalent to S* if and only if

T"z|| -0

for any vector z. However the verification of the above property (the asymptotic stability
of T) is the most difficult problem. We reduce it to the verification of the asymptotic
stability of another auxiliary operator. The last problem is much simpler since the
auxiliary operator has a sparse spectrum on the unit circle.

In §I11.1 we introduce linear dynamical systems with discrete time and associate with
each such system a Hankel operator. In §II1.2 for a given operator I' we construct a linear
system and we show that if the state space operator T' of that system is asymptotically
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stable (T is an isometry if KerI'={0}) then the Hankel operator associated with the
system is unitarily equivalent to I'. Such systems are called output normal. As we have
already mentioned, it is very difficult to verify the asymptotic stability of 7. In §IIL.3 we
construct another linear system and show that if T' is asymptotically stable then it gives
another (balanced) realization of the same Hankel operator and we reduce the verifica-
tion of the asymptotic stability of T to that of the state-space operator of the system
constructed. In §§II1.4-1I1.9 we choose parameters and prove the asymptotic stability by
using the Sz.-Nagy-Foias stability test. Note that in our construction we use essentially
the Kato—Rosenblum theorem which claims that the absolutely continuous spectrum is
stable under trace class perturbations. In §III.10 we discuss connections of our results
with another theorem in perturbation theory (the Aronszajn-Donoghue theorem) that
describes the behavior of the singular spectrum under rank one perturbations.

II1.1. Hankel operators and linear systems

Linear systems with discrete time can be defined by analogy with linear systems with
continuous time. Let X be a Hilbert space (the state space of the system), B: C—K,
C: K—C bounded linear operators,

Bu=ub, ueC, Cz=(z,c), z€K,

where b,ce K. Consider the dynamical system {A, B,C} with one-dimensional input and

one-dimensional output:

Tpni1 = Az, +Bug,,
{ * (1.1)

Yn =Cxyp.

In what follows we shall also denote the system (1.1) by {A4,b,c}.

One can associate with the system (1.1) the formal Hankel operator I', with the
matrix

{aj+k}ikz0, @5 =(A%b,¢), j20.

In general T, need not be bounded on [?. However we shall see later that in many
important cases it is bounded.

The operator ', is an analogue of the operator I'y, introduced in Chapter II for

systems with continuous time. In the case sup,.q||A"||<oo it is related to the system
(1.1) in the following way. Let v={vn}n>0€!?. Consider the sequence u={us}nez

defined by
V-1-n, n<0,
u, = 1-n
0, n20.
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Then (as in the case of continuous time) under the initial condition lim,,, _ o £, =0 the
output y of the system (1.1) with input u satisfies

Yn :{Pav}n’ nz0.

As in the case of continuous time the system (1.1) is called controllable if span{A™b:
n20}=K and observable if span{A*"c:n>0}=K. It is called minimal if it is both
controllable and observable.

The controllability and observability Gramians are defined by

oo

W, =Z A’BB*(A*), (1.2)
Jj=0

Wo=)Y (A"YC*C A (1.3)
7=0

if the series converge in the weak operator topology. In this case the system is controllable
(observable) if and only if Ker W.={0} (Ker W,={0}).

A minimal system is called balanced if the series (1.2)-(1.3) converge and W, =W,,.
We shall also consider the so-called output normal systems, i.e. the systems for which
the series (1.2)~(1.3) converge and W,=1I.

The main result of this chapter is the following theorem which together with The-
orem 1.1 of Chapter I gives a complete solution of the problem of the description of
self-adjoint operators which are unitarily equivalent to a Hankel operator and proves
Theorem 1 in the Introduction.

THEOREM 1.1. Let T be a self-adjoint operator on Hilbert space which satisfies the
conditions (C1), (C2), and (C3) in the Introduction. Then there ezists a balanced system
{A,b,c} with one-dimensional output and one-dimensional input such that the Hankel
operator T'y, associated with the system is unitarily equivalent to I'.

The proof of Theorem 1.1 will be given in §III.8.

IT1.2. Qutput normal realizations of Hankel operators

In this section for a given self-adjoint operator we construct a linear system and prove that
if the state space operator is asymptotically stable then the Hankel operator associated
with the system is unitarily equivalent to the operator in question. Moreover the system
constructed is output normal. The main difficulty however consists in the verification of
the asymptotic stability.
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Let R be a self-adjoint operator on a Hilbert space X with trivial kernel and let

g be a vector in K such that ||q|[<1. Then R*—(-,p)p>0, where p=Rq. Let A be a
self-adjoint operator such that

R?=A%+(-,p)p. (2.1)

Clearly A2<R? and so by the Douglas lemma (see [D1]) there exists a contraction T
(which is unique because of the fact that Ker R={0}) such that TR=A.

Consider now the dynamical system {T',p,q}. As above a;=(T7p,q), >0, and I',,
is the Hankel operator with matrix {a;4x}; k>0

We shall call T' asymptotically stable if |T"z||—0 as n— oo for any z€KX.

THEOREM 2.1. Suppose that T is asymptotically stable. Then
(i) the system {T,p,q} is output normal;

(i) R is unitarily equivalent to Ty |(Ker I'p)t;

(iii) KerT'n={0} if and only if |[¢||=1 end g¢ Range R.

Proof. It follows from (2.1) and the definition of T' that
R?>=RT*TR+(-,Rq)Rq
and since Ker R={0}, we obtain
I=T"T+(-,q)q. (2.2)

Therefore
lz)|® =Tzl +|(z, @)1, z€K. (2.3)

If we apply (2.3) to Tz and use the fact that T is asymptotically stable, we obtain

z)* =3 [(T9z,9)?, =€k,

3=0
which means that the operator V: K —1{2? defined by
Vz=((z,q),(Tz,q),(T*z,q),...) (24)

is an isometry. It is easy to see that the Hankel operator I', associated with the system
satisfies the equality ', =V RV™*. Indeed

V*{yj}j>0=zyj(T')jQ» {yi}izo €l (2.5)
720
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So if {€;};>0 is the standard orthonormal basis of {? then
(VRV™ej,ex) = (R(T*) ¢, (T*)*q)
and since RT*=TR (this follows from the definition of T'), we have
(VRV*e;,ex) = (T’Rq, (T*)*q) = (T"**p,q) = aj .

Therefore (ii) holds and Ker ', =Ker V'*.
It is clear from (2.4) and (2.5) that the series (1.3) converges in the weak operator
topology and W,=V*V =1I. On the other hand, since TR=RT™*=A, we have

W= T((-,Rq)Rq)(T*Y =Y _TR((-,q)q)R(T"Y

j=0 320
=Y R(T*Y((-,9)q)T’R=RW,R=R?
j=0

and so the series (1.2) converges in the weak operator topology.

Note that KerI', ={0} if and only if V is onto which is equivalent to the fact that
{(T*) q};>0 is an orthonormal basis in K.

Suppose now that |lg]|=1 and g¢ Range R. We have by the definition of A

A =R(I-(-,q)q)R. (2.6)

Since Ker R={0}, it is clear that Ker A={0}. It follows now from the equality RT*=A
that KerT*={0}.
Applying (2.2) to the vector g, we obtain

T*Tq+q=gq

and since Ker T*={0}, it follows that Tq=0.
Multiplying (2.2) by T on the left and by T on the right, we obtain

TT*TT*+T((-,q)q)T* =TT* (2.7)

and since Tq=0, we have (TT*)?=TT*. Clearly in view of the fact Ker7*={0} this
means that TT*=1, i.e. T™ is an isometry. Since T is asymptotically stable, T' has no
unitary part. The condition (2.2) means that T has defect 1 and so T* is unitarily
equivalent to the shift operator S. Therefore the conditions T¢=0 and ||¢||=1 imply
that the system {(T*)/g};0 forms an orthonormal basis in K.
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Suppose now that {(T*)?q};>0 is an orthonormal basis in K. Then ||g||=1 and T*
is an isometry, i.e. TT*=1. Therefore we have from (2.7)

(99T =(-,Tq)Tqg=0

and so T'g=0. Since T* and R have trivial kernels, the operator A=RT™ also has trivial
kernel. But it is easy to see that (2.6) and the fact that |g]|=1 imply that Ker A={0} if
and only if g¢ Range R. O

Remark. As we have shown in the proof, in the case Ker'={0} the operator T
is unitarily equivalent to the backward shift S*. It is easy to see that otherwise T is
unitarily equivalent to the restriction of §* to its invariant subspace (KerI'y)~.

Theorem 2.1 gives us a recipe how to construct a Hankel operator which is unitarily
equivalent to our operator I We can put R=T|(KerI')*. Then we have to choose a
vector ¢ such that R2— (-, Rg)Rq>0. If KerI'={0}, then ¢ must satisfy the conditions
llgll=1 and q¢Range R. If KerI'#{0}, at least one of the conditions must be violated.
Next, we have to choose a self-adjoint operator A such that A2=R?—(-, Rg)Rq. The
problem will be solved if we manage to prove that the operator T uniquely defined by
the equality TR=A is asymptotically stable. However this is the most difficult point.

I11.3. Balanced realizations

In this section we construct a balanced system and show that the verification of the
asymptotic stability of T can be reduced to the verification of the asymptotic stability
of the adjoint of the state space operator of the balanced system constructed. It turns
out that the last problem is considerably simpler.

LEMMA 3.1. Let T be a contraction and let K, X be bounded operators on Hilbert
space such that X has dense range and

TX =XK.

If K is asymptotically stable, then so is T.

Proof. The result follows immediately from the formula T7"X=XK7, j>1, and from
the facts that ||T||<1 and X has dense range. O

Let T, A, R be the operators considered in §II1.2. Put W=|R|=(R*R)/2.
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LEMMA 3.2. There exists a unique contraction A such that

AW/2 w2, (3.1)

Proof. The inequality T*T'< I implies
W2=R?>RT*TR=AN>=TR*T*=TW?3T* > TWT*TWT*.

By the Heinz inequality (see [BS1, Chapter 10.4]) this implies that TWT*<W. Applying
now the Douglas lemma (see [D1]) we find that there exists a unique contraction A
satisfying (3.1). O
It follows from (3.1) that
Twl/2 — Wl/ZA*

and so by Lemma 3.1 to prove that T is asymptotically stable, it is sufficient to show
that so is A*.
Let J be the “argument” of R, i.e.

R=JIR|=IW=WJ, J=J'=J%

Consider now the dynamical system {A,b,c} where the operator A is defined in Lem-
ma 3.2, b=W1/2q, c=JW?q.

Although the following theorem will not be used in the proof of Theorem 1.1, it is of
independent interest and establishes relations between balanced realizations and output

normal ones.

THEOREM 3.3. Let T be asympiotically stable. Then the system {A,b,c} is a
balanced realization of the Hankel operator associated with the output normal system

{T,p,q}.

In other words the system {4, b, ¢} is balanced and (A7b, c)=(T7p, q), j>0. To prove
Theorem 3.3 we need the following lemma.

LEMMA 3.4. A*J=JA.

Proof. Since Ker W={0} and W has dense range, it is sufficient to show that
W2 A* JW2=W1/2JAW'/2. We have by (3.1)

WY2A*JWY2 =TW12gWl2=TJW =TR=A
by the definition of 7. On the other hand, by (3.1)

W2 JAWY2 = W2 Jwi/2T*= JWT*=RT* = A,
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which proves the result. d

Proof of Theorem 3.3. Let us first show that {A, b, ¢} is a balanced system. We have
We=>_ AI((-,W'2qW'/2q)(A*)

j20

=D AWYA((-,q)q)W2(A*)
j20

=S WA 0, W
j=20

by (3.1). Hence
Wc=WW(Z(-,(T*)jQ)(T*)jQ)Wl/z=W,
j20
since the operator V defined by (2.4) is an isometry. Clearly the series (1.2) converges
in the weak operator topology. Next

Wo =Y (A"Y((-,JW'2q)aw/2q) A7

j=20

=3 (A IWHH(-, q)qW /2T AT
j=20

=D JA((-, W W 2q)(AT) T
j=0

by Lemma 3.4. Hence
Wo=JdW . J=JWI=W

and the series (1.3) converges in the weak operator topology.
Let us now prove the equality (A’b,c)=(T7p, f), j2>0. Bearing in mind (3.1) and
the equality RT*=TR, we have
(Ab,c) = (AW 2q, JW/2q) = (W2 JAI W2, q)
=(W'2IW(T*Yq,q) = (R(T*Y q,9) = (T’Rq,q) = (T’p,q)- O

Let J be the “argument” of A, i.e.
A=J\|=AT, T=T*=T" (3.2)

If Ker A#{0}, then J is not uniquely defined, so by J we understand an arbitrary
operator which satisfies (3.2).

Note that W2=R2>A?, and so by the Heintz inequality (see [BS1, §10.4]), W >|Al.
Hence by the Douglas lemma [D1] there exists a unique contraction @ such that

QW2 =|A|'/2, (3.3)
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LEMMA 3.5. A*=Q*TQJ.
Proof. We have by (3.1)

W12 A*gwi2 =TWw2Jw/? = TR = A.
On the other hand,
A= IA,1/2J|A|1/2 — WI/ZQ*JQWI/Z.

So
WI/ZA*JW1/2 =W1/2Q*JQW1/2.

Since Ker W'/2={0}, we have A*J=Q*JQ which completes the proof. O
The following lemma describes the structure of Q.

LEMMA 3.6. Let Kg be the smallest invariant subspace of W that contains Jq. Then
Q has the following structure in the decomposition K=K, ®Kg :

( %" (I)) , (3.4)

where Qg is a pure contraction (i.e. |Qoh||<||h|| for h#£0).

Proof. Clearly W2 and A? coincide on Kg and K is a reducing subspace for both
of them. Therefore the same is true for the operators W/2 and |A|'/2 which together
with (3.3) proves (3.4). It remains to show that Qy is a pure contraction.

By (3.3)

WI/ZQ*QWQmel/2 — A2 - WZ_( . ,p)p: WI/Z(W__( . Wl/ZJq)Wl/ZJq)W1/2
and so
QRWQ Q=W—(-,W2JqW 2 Jq. (3.5)

It follows from (3.5) that
(WQ*Qz,Q*Qx) = (Wz,z)+|(z, W/2Jg)|?, zeH. (3.6)

Since Q is a contraction, ||Qh||=||k|| if and only if @*Qh=h (i.e. heKer(I-Q*Q)).
1t follows from (3.6) that if heKer(I~Q*Q) then h1W'/2Jq and by (3.5) we obtain
Q*QWh=Wh. So Ker(I—-Q*Q) is an invariant subspace of W which is orthogonal to
W1/2Jq. Therefore Ker(I—Q*Q) is orthogonal to Ky which proves that Qo is a pure
contraction. O
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I11.4. Asymptotic stability

The material of the previous section gives us a clear way to construct a Hankel operator
which is unitarily equivalent to a given operator I'. Let KX=(KerI)*, f‘:I‘IIC, and
W=|[|. We have to choose a vector g, operators J and J such that the following
properties hold:

(i) J=J*=J"1, JW=WJ and REJW is unitarily equivalent to I';

(ii) R*~(-,Rq)Rg>0;

(iii) J=T*=J ", J(R*~(-,Rq)Rq)'*=(R*~ (-, Rq)Rq)"/*T;

{iv) the operator A*=Q*JQJ is asymptotically stable, where the contraction @ is
uniquely defined by (3.3) and

A=J(R*—(-,Rq)Rg)"/*.

If Ker I'={0}, we have to impose the following condition:

(v) |lgll=1 and q¢Range R.

If KerI'#{0}, we have to make the assumption:

(v'} either ||g||<1 or geRange R.

The most difficult problem here is to verify the asymptotic stability of A*. To
this end we shall use the following stability test which is an immediate consequence of
Proposition 6.7 in Chapter II of [SF] (in Chapter II of our paper we have used an analogue
of this test for semigroups of contractions).

Stability test. Let T be a contraction on Hilbert space. If T has no eigenvalues on
the unit circle T and the set o{T)NT is at most countable, then T is asymptotically
stable.

We define the Fredholm spectrum op(T) of a bounded linear operator T (see [N])
as the set of points X in C for which there exists a sequence {z,}n>1 such that ||z,||=1,
w-limy, 00 £ =0 (i.e. lim,_, o, , =0 in the weak topology), and

lim || Txn,—Az,}=0.

Clearly it is sufficient to prove that o7 (A*)NT is at most countable and both A and
A* do not have eigenvalues on T. It follows easily from Lemma 3.5 that A*=JAJ and
so the operators A and A* are unitarily equivalent. Therefore it is sufficient to check
that A* has no eigenvalues on T (and certainly that op(A*)NT is at most countable).
The following lemma will help us to get rid of eigenvalues on T. Recall that Ky is the
smallest W-invariant subspace of K that contains Jgq.
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LEMMA 4.1. Let |{|=1 and heH. Then A*h=Ch if and only if h,JheKg and
JJh=C(h.

Proof. Suppose that A*h=C(h, |(|=1. Since A*=Q*JQJ and @ is a contraction, it
follows that ||QJA||=||Jh[|=]|A].

By Lemma 3.6, JheKg and QJh=Jh. Next, the equality ||A*h|=||k| implies
1Q* TQIR|=||Q*TTh|=||TJk|. So by Lemma 3.6, Q*TQJh=Q*JJh=JJh. Hence
JJh=Ch and heKy.

The converse is trivial. If Jhe X, by Lemma 3.6, JQJh=JJh=C(h. Since he Ky,
it follows from Lemma 3.6 that A*h=Q*TQJh=Ch. O

The following lemma will be used to estimate op(A4*)NT.

LEMMA 4.2. Suppose that
lim Q" TQ-T)gal| =0

for any sequence {gn}n>1 such that ||gn|=1, limp— e ||Qgnll=1, and w-lim,_,o g, =0.
Then op(A*)NT Cor(JJT).

Proof. Let (€or(A*). Then there exists a sequence {Z,}n>1 such that ||z,||=1, w-
limy, 00 2, =0, and lim,_,o ||A*z, — 12, ||=0. Let g,=Jx,. Then clearly ||g,||=1 and
w-lim,,_, o go=0. We have

| A zn —Czn|| = Q" T Qgn~(xnl| — 0. (4.1)
Since |{|=1, it follows that ||Qg,||—1. Therefore by the hypotheses
|A*zn ~TJ 20| = |Q" T Qgn —Tgn| — 0,

which together with (4.1) yields || JJzn—(z,||—0. So (€ap(TT). O

II1.5. The main construction

The operator W admits a representation as multiplication by t on the direct integral
k= @E®de), (5.1)
a(W)

where p is a spectral measure of W. Let I/W(t)d——gfdim E(t) be the spectral multiplicity
function of W. As we have discussed in the Introduction we can assume that all spaces
E(t) are imbedded in a Hilbert space E with an orthonormal basis {e;};>1 and

E(t) =span{e; : 1< j <vw(t)+1}.
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Recall that v is the spectral multiplicity function of I'. Clearly v(t)=vg(t) for t#0,
where vp is the multiplicity function of R. Clearly vw (t)=vg(t)+vr(-t), t>0. Note
that we have not yet defined the operator R. But since R must be unitarily equivalent
to f:I‘|(Ker T')*, the above equalities must be satisfied.

We split the set o(WW) in five disjoint subsets:

00 ={t € o(W): v(t) = vr(~1)},
o\ ={teo(W): va(t) =va(-t)+1},
o\ ={teo(W):va(t)=va(-t)-1},
oit = {t€o(W): vg(t) = vr(-t)+2},
ot = {t€a(W): vr(t) = vr(~t)-2}.
Since I satisfies the condition (C3), it follows that o Ua§+)Uo§_)Uaé+)Uaé_)=a(W).

We choose the operator J to be multiplication by the operator-valued function J
which is defined as follows. For t€ogy we put

01 00

1 0 0 0

J(t) = 0 0 01

0 010

For t€o§i) we put

0 1 0 0 O

0 00
W=lo 06 .01 o
00 .. 1.0 O
0 0 .. 00 #1

(we assume that J(t)==1 if vy =1). Finally for teaéi) we put

(:tl 00 .. 00 o0 \
0 0 ... 000 O
0 10 .. 00 O
o= oo
0 0 01 0
0 0 0 1.0 0
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J(t)=i((1) (1’)
if v (t)=2).

Now we can define R by R=JW.
Denote by Ko the “first level” of K, i.e.

(we assume that

Ko={feK:f(t)=p(t)e1, p€ L*(0)}.

Clearly Ky can naturally be identified with L?(p).

Let now go be a vector in Ky that satisfies the following properties:

(1) llgoll=1;

(2) go is a cyclic vector of W |Kq (in other words go(t)#0, g-a.e.);

(3) go€Range W if KerI'#{0} and gy ¢Range W if KerI'={0} (in the last case W
is non-invertible and so such a ¢o exists).

We define the vector ¢ by g=Jqo, so go=Jq and the definition of K¢ is consistent
with that given in Lemma 3.6. Let p=Rg=RJq=Wgqo and A’=W?2?—(-,p)p. (Note
that we do not define the operator A, we define only the operator A% and to define A we
have to choose a reasonable square root of A? which will be done later.) Clearly

(W?z,2)—(2,p)(p,z) = |Wel* ~|(z, R)|* > |Wz||* ~ || Rz|||q||* =0,

since ||Rz||=||Wz|| and ||g]|=1. So WZ—(-,p)p=0. Obviously K is a reducing subspace
for both W2 and A2, and W and |A|%(A2)!/2 coincide on K.

By the Kato-Rosenblum theorem (see [Ka, Chapter 10]) the absolutely continuous
parts of W? and A? are unitarily equivalent. So if A is a scalar spectral measure of
|A|| Ko, then the absolutely continuous components g, and A, of the measures g and A
are mutually absolutely continuous. Therefore there are disjoint Borel sets A, 6, and 8,
such that ¢ and A are mutually absolutely continuous on A, g is supported on §,UA, A
is supported on 6, UA, and the sets §, and 6, have zero Lebesgue measure. Clearly we
can assume that p and XA coincide on A. Put p=p+A|6x. Consider the von Neumann
integral

K @ E(t) di1), (5.2)
AUSUS
where E(t)=span{es:1<k<vw(t)+1} for teA, E(t)=span{e:2<k<vw(t)+1} for
t€d,, and E(t)={CeI:C€C} for t€éy.

It is easy to see that p is a cyclic vector of A2|Ky and so |A||Kp is a cyclic op-
erator. Therefore there exists a unitary operator Up from L?(p) onto L?()) such that
Uo(|A}|Ko)U3 is multiplication by the independent variable on LZ()).

20-950233 Acta Mathematica 174. Imprimé le 20 juin 1995
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The operator |A| can be realized as multiplication on K. Namely if we define the
unitary operator U: K=L?(9)®Xg — L*(\)®K# by the operator matrix

U=<[{)O ?) (5.3)

then |A|=U*M,U, where M, is multiplication by ¢ on K. (Note that |A| coincides with
W on Kg.)

We define now the operator J (the argument of A) as J=U *JU, where J is mul-
tiplication by an operator-valued function J of the following form.

If te by, we put

Jt)=1
(in this case dim E(t)=1). If teagi) (in this case t€A by (C3)) we put
coswi (t) sinwi (t) 0 0
sinw;(t) —cosw;(t) 0 0
J@t)= 0 0 coswz(t)  sinwa(t)
0 0 sinwa(t) — coswa(t)

For teaii)ﬂA we put

1 0 0 0 0
0 cosw(t) sinwi(t) ... 0 0
- 0 sinwy(t) —coswi(t) ... 0 0
j(t) =1 : : : . : : ’
0 0 0 . COSWi(E) sinwy(t)
0 0 0 o sinwg(t) —coswi(t)

while for t€o§i)ﬂ¢59 we put

cos wn (t) sinwy(t) ... 0 0
sinwy(t) —coswy(t) ... 0 0
J(t)= :
0 0 v coswi(t)  sinwg(t)
0 .. sinwg(t) —coswi(t)

(j(t) is defined on E(t)zspan{ek:2<k<uw(t)+1} which has even dimension for t€

agi)ﬂég; note that in this case we simply delete the first column and the first row from



THE INVERSE SPECTRAL PROBLEM FOR SELF-ADJOINT HANKEL OPERATORS

293

the matrix defined for the previous case teggi)ﬂA.) If teopNA and dim E(t) < oo, we

put
1 0 0 0 0 0
0 cosws(t) sinwi (t) 0 0 0
0 sinwy(t) —coswi(t) 0 0 0
Jt)= : (5.4)
0 0 0 cos wi(t) sinwg(t) 0
0 0 0 sinwg(t) —coswg(t) 0
0 0 0 0 1)
(note that
~ 10
t)=
o=, ;)
if dim E(t)=2). In the case t€ooNA and dim E(t)=00, we define J (t) as
1 0 0 0 0 w
0 cosw(t) sinwy (t) 0 0 .
0 sinwi(t) —coswi(t) 0 0
J(t) = (5.5)
0 0 0 . coswg(t) sin wg(t)
0 0 0 sinwg(t) —coswy(t)

Finally, in the case t€opNé, in the definition of J we delete the first row and the first
column from the matrix (5.4) if dim E(t) <oo and we delete the first column and the first
row from the matrix (5.5) if dim E(t)=o00.

We impose the following assumptions on the functions w;:

(1) the operator-valued function J takes at most a countable set of values {T}nx1
(the order of the values is insignificant);

(2') if J contains an entry cos w;(t), then w;(t)<1/3n;

(3) wy()0;

(4') w;(t)—0 as j—oo.

If in the definition of .J,, we replace w;(t) by zero, we obtain a diagonal operator D,
whose entries are equal to 1 or —1. It follows from (4’) that Dn—jn is compact. Note
that it follows from (2') that

|Jn—Drl < 1/n.

We can now define A by A=J|A|. The operators A and Q are defined by (3.1) and
(3.3). This completes the construction. Now to prove Theorem 1.1 we have to choose a
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vector go satisfying the above conditions (1)-(3) and functions w; satisfying the above
conditions (1')-(4’) so that the operator A* be asymptotically stable.

II1.6. The point spectrum of A* on the unit circle
The aim of this section is to prove the following result.

LEMMA 6.1. For any choice of qo and w; satisfying the conditions (1)~(3) and
(1"Y-(4") of 8IIL5, the operator A* has no eigenvalues on T.

Proof. The proof is based on the following trivial observation. Let a11, ay2, a1, azz,
dy, d2 be complex numbers such that a;2 #0 and

()= (o o )(a)
dy a1 axn/\di/’
Then dl =d2=0

By Lemma 4.1, A*h=(h, |{|=1, if and only if heKg,JheKi and JIJh=Ch. Put
g=Jh=(Th. Consider the representations of h and g in the von Neumann integral (5.1):

W)=Y he(tler, g(t)= gi(t)es, (6.1)
k21 k21
where hj and gi are scalar functions. Since h LKy and g=Jh 1 Ky, it follows that h;(t)=0
and ¢,(t)=0 for all ¢. Let us show that hx and g; are identically zero for k>2. Suppose
that we have already proved that for 1<k<n.
Note that since h;(t)=g;(t)=0, the representations of h and g in the von Neumann
integral (5.2) coincide with the representations (6.1).
If n is even and t€a§i), the equality g=Jh implies

(g,.+01(t)) - <(1) ;)(hnfl(t)) ) (6.2)

If n is even and t¢agi) , the equality ¢=(Jh implies

0 cosw;(t) sinw;(t) 0
={ . . (6.3)
gura(®)) ~ \sinws(t) = coswj(t) )\ hnsa ()
In view of the above observation, in both cases we obtain gn4+1(t)=Hhn41(t)=0 (recall
that sinw;(t)#0).
If n is odd and teol®), then (6.3) holds, and if n is odd and t¢ol®), then (6.2) holds
which again proves that g41(t)=hn+1(¢)=0. O
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I11.7. How to cope with Q

In this section we reduce the estimation of the Fredholm spectrum of A* on the unit
circle to that of JJ. This would be very easy if we could prove that I—Q is compact.
Indeed in this case A*~JJ=Q*TJQJ —JJ is compact and so if A€op(A*), then e
or(JJ). It is easy to see that I—@Q is compact if W is invertible. Indeed in this case
Q=(W/2~|A|¥2)W~1/2 and since W2—|A|? is rank one, it follows that W1/2—|A|1/2
is compact. We shall see in §I11.9 that I—@Q is compact (and even Hilbert-Schmidt) if
g€Range R (which corresponds to the case when I' has a non-trivial kernel). However
we do not know whether it is possible to choose g¢Range R so that I—Q be compact.
We also do not know whether it is possible to find ¢ so that ] —Q be non-compact. Note
that I—Q is not a Hilbert—-Schmidt operator in general.

Nevertheless the following lemmas will allow us to get rid of @ even in the case
KerI'={0}.

LeMMA 7.1, There exists a function € L>(A) such that x(t)>0, A-a.e., and the
operator MyUs(I—Q) is a compact operator from L%(g) to L2()\) for any ¢ satisfying
|Y| <3¢, where My, is multiplication by ¥ on L%()\).

As before we identify L?(g) with Xo. The proof of Lemma 7.1 will be given in §IIL.9.

LEMMA 7.2. Suppose that the function w, in the definition of J satisfies the inequal-
ity |sinw; ()| < 2(t) for t€a£+)Ua(—), where x is the function from Lemma 7.1. Then
UF(A*)OTCUF(JJ).

Proof. Let us verify the hypothesis of Lemma 4.2. Let
Ki={feK:f(t)=v(t)ejr1, 0 € L*(0)}, j20.

Clearly K; can naturally be identified with a subspace of L?(¢). Then K=@,, ;. Let
{Tix}; k>0 be the block-matrix representation of the operator J=U *JU with respect to
the orthogonal decomposition K=, K;. It follows from the definition of J that

Joo =Us(I-M)o, Tor=UsMy|K:1, Jr0=M,U,
where M,, and M, are multiplications on L2()A) by the functions « and v defined by

1—coswi(t), teoiHuol”,
u(t) = (+) ()
0, t¢oy, 'Uoy ',

sinw (t), te 0§+)Ua§—),
v(t)= ()5
0, t¢oy 'Uogy .
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(Note that in the case vy (t)=1 we have v(t)=0 and so Range J10CK;.)

Since |v(t)|<x(t), it is easy to see that |u(t)|<s(t).

Consider now the block-matrix representation of the operator Q"7 Q with respect
to the same decomposition of K. It is easy to see that

QiU (I-M,)UoQo QeUs MKy Jo2
. M,UsQo Ju J12
QIQ= T2 Ja T2z

To verify the hypotheses of Lemma 4.2 it is sufficient to prove that for any g,, €Ky
such that ||gn||=[lhn]l=1, lim,— o ||Qognll=1 and w-lim g, =w-lim h,,=0 the following
equalities hold:

nlgléo |I(Q8U5(I—Mu)UOQO“U(;‘(I"Mu)UO)gn” =0, (71)
HILII;O ”(MvUOQO“MvUO)gn” =0, (7'2)
Jim [[(QoUG My —Ug My )hnl| =0. (7:3)

Since |v(t)|<(t), it follows from Lemma 7.1 that the operator M,UsQo—M,Us=
M,Up(Qo—1I) is compact which implies (7.2). Similarly QaUgM, —UgM, is compact
and so (7.3) holds. Let us prove (7.1). We have

QoUs (I - M,)UsQo—~Ug (I - My)Up
=QpQo—I—(Qy—NUs MUy —Us M, Up(Qo—1)—(Q5 — INUs My Us(Qo—I).

By Lemma 7.1 the operators
(Qo—-DUs MUy, UsgM,Uop(Qo—1I), and (Q5—1)UsM,Uo(Qo~1)

are compact. Hence it remains to show that lim, . [|@§Q09n —gr||=0. Since Qo is a
contraction and limy, o0 (Q§Qogn, gn)=lim, 0 ||Qogn||>=1, we have

Jim Q5Qogn || =1.

It follows now from the spectral theorem for the self-adjoint contraction QG that
limy, 0 || Q4 Qogr — gn||=0 which proves (7.1) and completes the proof of the lemma. O
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II1.8. The Fredholm spectrum of JJ

As we have already mentioned, to prove the main result it is sufficient to show that we
can choose the functions go and w; so that oz (JJ) be at most countable.

Let us briefly explain the idea how to make or(JJ) at most countable. Suppose for
a while that g=A\ and J is multiplication by J on K. Since both functions J and .J take
at most countably many values, so does J J. It can easily be shown that if the functions
w; satisfy the conditions (1')—(4') of §IIL5, then for each ¢ the operator J(£)F(t) is a
small perturbation of a block-diagonal operator whose diagonal blocks can be the form

£1, 4 (0 1) .
1 0
The spectrum of each such block is contained in the set {1, —1,4, —7} and it is easy to see
from (5.6) that the set |J, o(J (t)7(t)) is at most countable and can have accumulation
points only in the set {1, —1,¢,—%}. Since the operator J (t)j (t) is unitary for each ¢, it
follows that

o(JJ) C clos (LtJ a(J(t)j(t)))

and so o(JJ) is at most countable.

However the operators J and [J are multiplications by J and J in different systems
of coordinates. Nevertheless if these two systems of coordinates are “sufficiently close” to
each other, we can use similar considerations to prove that ¢(JJ) is at most countable.

THEOREM 8.1. There ezist a function qo in L2(p) that satisfies the conditions
(1)—-(3) of SIIL5 and a function n in L>(p), n(t)>0, g-a.e., such that if the functions
w; satisfy the conditions (1')—(4") of §I11.5 and |w1(t)|<n(t) for almost all t€a£+)UU§_),
then op(JJ) is at most countable.

To prove the theorem we represent the operator J as a product of 3 operators. We
define the operator-valued functions j2(+), ~2(—), and .71 on AUS U6, by

7 (%)
F® ()= J(t), teoy’,
I, tgol)
%60 J@), te¢oituel™,
T I, t€0§+)Uo(—).

Let j;r),jz(—), and jl be multiplications by ~2(+), ~2(_), and J; on the von Neumann

~(% ~ _
integral (5.2). Put Q(i)=U*J; )U and J1=U*JU. Clearly J=J2(+)J2( )Jl. It is
easy to see that Ky is a reducing subspace for J; and J;|Ko=1.
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For a Borel subset v of o(W) we denote by K(7) the subspace of K that consists
of functions supported on 4 and by £(v) the orthogonal projection onto K(v) (in other
words £ is the spectral measure of W). Put oy =0(W)\(a§+)Ua§_)).

We shall call an operator on K almost block diagonal (with respect to the decompo-
sition IC=IC(01)EBIC(U£+))EBIC (cré_))) if its block matrix has compact off diagonal entries.

It is easy to see from the definition of J that the operator J, is block diagonal. It
is also easy to show that the operators Jéﬂ and ny) are almost block diagonal if the
operators

(T —DE(@(W)\oF™) (8.1)

are compact. Therefore in this case J is also almost block diagonal. It follows easily
from the compactness of the operators (8.1) that the operators

E(osNTES)~E(NTHEGS), E(01)TE()-E(01)T1E(01)  (82)

are also compact.
The following lemma proves the compactness of the operators (8.1).

LEMMA 8.2. There exists a function go in L?(g) that satisfies the conditions (1)~(3)
of §IIL5 and a function n in L*(g), n(t)>0, o-a.e., such that if the functions w; satisfy
the conditions (1')-(4") of §1IL5 and |wi(t)|<n(t) for almost all teag'HUaé_), then the
operators (8.1) are compact.

The proof of Lemma 8.2 will be given in §III.9.

Proof of Theorem 8.1. Let us choose ¢o, 1, and w; satisfying the hypotheses of
Lemma 8.2. Then the operator J is almost block diagonal with respect to the decompo-
sition }C=’C(01)@’C(U£+))@K(Ugﬁ)). Obviously the operator J is block diagonal. Hence
JJ is almost block diagonal. Therefore to prove that op(JJ) is at most countable,
it is sufficient to prove that the Fredholm spectrum of each diagonal block is at most
countable on the unit circle.

Consider the block

g(U[)JJI’C(Ol) =g(0'1).7£(0'1)J|’C(0'1).

It follows from the compactness of the operators (8.2) that op(£(01)JIJ|K(01))=
or(&(01)T1J|K(01)). But both operators £(01)J1€E(01) and E(01)JE(01) are multi-
plications on the von Neumann integral (5.1). So the reasoning in the beginning of this
section works in this case and hence o(£(01)JJ|K(01)) is at most countable.
The situation with two other blocks is a bit more complicated. Consider for example
the block
E@SNTINK(05D) = E(0ST)TE(s V)T IK (05D),
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Again by the compactness of the operators (8.2) we have
£ (+) JIKC _ £ (+) JK
or(E(0§D)TIK(02)) = o (E (0§D )T T 1K (02).
Let J2(+) be the operator-valued function defined by

J(1), teol™,

(+)
J. t)=
2 () {1, tea(W)\as™,

and let J2(+) be multiplication by J2(+) on the von Neumann integral (5.1). Obviously
E(oS)TEST)=E(eS) T E(0{D) and so

E(osINTT TE(ST) = E(0 STV E(0) TE(0ST)
= E(aSINTVEO ) TP E(0ST)
=E(os )TV ITE(0SD).

We have

e ) o) .
TJPIN =g, vIP =v7,” wIlIu.

Since Ky is a reducing subspace of J§+) , it follows from (5.3) that the operator
j§+) =U J2(+)U * is multiplication on the von Neumann integral (5.2) by the operator-
valued function j2(+) defined by

JP(t)e, = I (b)e;, 2<j<vw+1, teb,UA,
i ’ €1, j=1,t€8,UAUS,.
Now the operators 52(+) and UJ§+)U* are both multiplications on (5.2) and so the

reasoning in the beginning of this section works which shows that 0(52(+)U J2(+)U )=
CT(J2(+)J,) is at most countable.

To show that 0(5(0£+)).72(+)J2(+)UC(oré“L)))ﬂT is at most countable we need the
following lemma.

LEMMA 8.3. Let Z be a contraction and V a unitary operator on Hilbert space.
Then
o(Z*VZ)NT Co(V).

Let us first complete the proof of Theorem 8.1. It follows from Lemma 8.3 that

o(E(os T IV EONNT co(TSHILT)
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which implies that o(€ (a§+))J§+)J§+)|IC(0«E,+)))OT is at most countable. In a similar
way it can be shown that o(&(oy ))JJ & (ag_)))ﬂT is at most countable which completes
the proof. a

Proof of Lemma 8.3. Suppose that (€0(Z*VZ)NT and (¢o(V). Since Z*VZ is a
contraction and |¢|=1, it follows that there exists a sequence of vectors {f,}n>0 such
that || f»||=1 and

(CZ*VZ~D)fn, fa) =C(Z*VZ fn, fa) = full®> = 0. (8.3)

Since (¢a(V), we have 1¢o(CV) and it follows from the spectral theorem for unitary
operators that there exists a positive € such that

Re((Vg, 9) < (1-¢)llgl®

for any g. Hence
Re((C_Z*VZ_I)fm fn) :RGE(Z*Vme fn)_”fn” < (1_5)”an“2_1 <€

which contradicts (8.3). O
Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We can choose the functions g and w; that satisfy the hy-
potheses of Theorem 8.1 and Lemma 7.2. It follows from Lemma 6.1 that A* has no
eigenvalues on T. Next it follows from Lemma 7.2 that op(A*)NT Cop(JJ) and so by
Theorem 8.1 the set op(A*) is at most countable. Consequently, by the stability test
(see §II1.4) the operator A* is asymptotically stable which by Lemmas 3.1 and 3.2 imply
that T is asymptotically stable. The result now follows from Theorem 2.1. a

I11.9. Compact integral operators

In this section we prove Lemmas 7.1 and 8.2. The following lemma will help us to
represent the operator Ug(I—Qo) as an integral operator.

Recall that the space Ky is reducing for both W2 and A%. As usual we identify Xq
with L2(p). Clearly M d:efWIICg is multiplication by the independent variable on L?(p).
Let M be multiplication by the independent variable on L%(\). Then |A||Ko=U*MU
and

(W2 = A?)|Ko = M2 ~Us M*Us = (-, p)p. (9.1)
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LEMMA 9.1. Let r=Uype L*()\). Then for any continuously differentiable function
¢ on supp pUsupp A the following equality holds:

e(t?)—o(s*) ==

(Wap M) =)0 = [ LG5 rpGI () dels).  ©02)

Note that Lemma 9.1 is a consequence of the theory of double operator integrals
(see [BS2]). We prove it here for the sake of completeness.

Proof of Lemma 9.1. It follows from (9.1) that
UsM? = MUy =(-,p)r,
which is equivalent to the equality
(M= FBOI(E) = [ 1 (o) des).

Clearly
UoM* = M*Up = (UgM? = M?Uy) M? + M?*(Up M - M2Up),

which is equivalent to
(UoM* ~ FT*U0) F)(8) = / (s2+E)r()2(5) £ (5) do(s)-

Similarly
- t2n _8211 _
(Wabt™ = U0} YO = [ =z O (5) def)
which proves (9.2) for ¢(t)=t?". The result follows now from the fact that the set of

polynomials of ¢ is dense in C'[0, ||W||?] and the fact that the Hilbert-Schmidt norm of
the integral operator on the right-hand side of (9.2) is at most const-||¢| c:. O

Proof of Lemma 7.1. Let ¢(s)=s'/%, s>0. It follows from Lemma 9.1 that

/2 g2 _

(a2 =81 200)1)(0) = [ = (O (5)de) 93)

at least in the case when O¢supp f. Indeed in this case we can change ¢ in a small
neighborhood of 0 to make it continuously differentiable.
On the other hand,

I__Q=I_IA|1/2w—1/2 - (W1/2_lA|1/2)W—1/2
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on the dense subset Range W1/2 of K. Therefore
I-Qo=(MY?—U2 i1 2U) M~ 1/?
on the range of M'/2, It follows from (9.3) that
(Uo(I-Qo))(t) = (UoM* >~ M*2Uo) M~/ f)(2)

1/2_g1/2 —_
:/ =S (P52 (s) dols)

t2_32

whenever 0¢supp f. Since p=Wygy we have

1/2_g1/2
U1 -Qu)1)(0) = [ S r(OR)s () defs) (94)

whenever O¢supp f.
Consider first the case go¢ Range W (i.e. KerI'={0}). In this case p¢ Range W? and
so Ker A={0}. Therefore A\({0})=0. Consequently, for A-almost all ¢ the function

tl/2_31/2

s gz o 0(s)

2

belongs to L?(p). Therefore there exists a function s in L°(\) such that s(t)>0, X-a.e.,
$1/2 _1/2
— do(s) dA(t) < oo.

and // -

It follows that the operator M,U(I—Q) is Hilbert-Schmidt whenever |p(t)|<(t),
A-a.e.

s2r(t)qo(s) »(t)

Consider now the case go€RangeW. Let us show that in this case (I—-Qo) is a
Hilbert-Schmidt operator. Let go=Wh, he L?(p). It follows from (9.4) that

$1/253/2 _ 2

UalT-Qe)1)(0) = [ o= Rr(6)(s) des) (95)
whenever 0€supp f. However it is easy to see that
$1/263/2 _ g2
t?;l>po t2—s? <%
and so the integral operator on the right-hand side of (9.5) is Hilbert—Schmidt. ad

To prove Lemma 8.2 we need one more lemma. We denote by £y(7) the orthogonal
projection on L?(p) onto the subspace of functions supported on v and by Fo(y) the
corresponding projection on L?()). Note that & is the spectral measure of W|K, and
Fo is the spectral measure of U(JA||Ko)U*. As usual M, denotes multiplication by .
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LEMMA 9.2. There exist a function qo satisfying the conditions (1)-(3) of §IIL5

and a function n which is positive p-a.e. on o§+)Uo—(—) such that

My Fo(os2)Uobolo(W)\osE)) (9.6)

are compact operators from L*(p) to L2(\) for any function v such that |¢(t)|<n(t) a.e.

Proof. Let us first show that for any disjoint compact sets y; and 7,

sﬁ_szz r(t)p(s) de(s), t€7a. (9.7)

(FalmUEat)N(E) = [
Y1

Let ¢ be a continuously differentiable function such that

{ 1) 31/26717

p\s)=
() 0, 31/26’)’2.

Then by Lemma 9.1

)0 4yl des).

(oD~ TV N(0) = [
Clearly (cp(]\712)U0f)(t)=O for t€v;. Therefore Fo(72)@(M?)Up=0. 1t is also clear
that if f is supported on 1, then p(M?)f=f. It follows that for f supported on v,

1 ——

Waf)O= [ @RI S(5)dafs), tem

which implies (9.7).

Note that if y; and 4, are arbitrary disjoint Borel subsets, then we can approximate
them by compact subsets and pass to the limit which proves that (9.7) holds for f in a
dense subset of L%(p).

Therefore to prove the lemma it is sufficient to find a function go which satisfies the

conditions (1)—(3) of §IIL1.5 and such that for almost all t& aéi)

/ l_pﬂi do(s) < co. (9.8)

(Wi |2

(Recall that p=Wgo and so p(s)=sqo(s).) Indeed in this case it follows from (9.7) with
" =o§i) and 'ygza(W)\agi) that if n is a positive function such that

[ roror ([, O ) axe <o

wnag® 187 =2
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then the operators (9.6) are Hilbert—Schmidt provided |¢|<7.
Let {B,(f)}n;l, {ﬂ,(,_) }n>1, {¥n}n>1 be increasing sequences of compact sets such
that
BECor?, Mof\BD) =0, 1aCor, oo1\1m) =0, (99

where 01=0(W)\(cr§+)Ua§_)). Note that since g and A are mutually absolutely contin-
uous on A, we have g(agi)\ﬁr(ft))—»O.

Consider first the case KerI'#{0}. In this case we have to choose gy in Range W
such that [|go|{z2(,)=1 and go(s)#0, g-a.e.

We can easily define a positive function gy on ﬁ§+) U,8§")U71 so that

2
/ IQO(‘;)l dQ(S) < 1,
BPus{um S

() +)
——o=do(s) <1, tep’,
/ﬂﬁ"w, |52~ 2|2 h '

p(s)|? (-)
———=dp(s)<1, tepf; .
/ﬂi“wl |82 —12|2 !

Then we can proceed by induction. On the nth step we define go on

BEOUBT Uy \ (85, UB T Uny)

so that
lgo(s)I? 1 1
——d Ll+=-4.4+—
/ﬁf,“uﬁi."uvm s el Sltgteta
Ip(s)|? 1 1 (+)\ g(+)
A(—)U7 Isa—_ﬁl—zdg(s)gyc—_l-l—-{*z—n_—l, teﬂk \'Bk—-l’ 1<k<n, (910)

Ip(s)|? 1 ! (-)y ()
/ﬂ(*’)u,y mdg(s)g2k_l ++2T_'1‘, tG,Bk \’Bk——l’ 1<k<n, (911)

(here ﬂ(()+)= ((,—)=70=Z).

Passing to the limit, we obtain a function ¢o such that go(s)#0, g-a.e., g€
Range W and (9.8) holds with p(s)=sgo(s). The only condition which can be violated is
lgollL2(¢)=1 but obviously we can multiply go by a suitable constant to achieve this
condition.

Consider now the case KerI'={0}. We have to construct a function gy such that
llgollL2(ey=1, qo(s)#0, o-a.e., go¢RangeW, and (9.8) holds. In this case the operator
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W is non-invertible. Hence 9((0,¢))>0 for any £>0. Therefore the same is true for the

restriction of g to at least one of the sets a(+), ag ) , 01. To be definite suppose that

0((0,e)natP) >0

for any £>0.

)

Clearly we can assume that 0€oy’’. It is easy to see that there exists a compact

subset ﬁ1+) of 02+) such that
o((0,9)n81") >0

for any £>0. We can choose now a positive function ¢gg on ﬂiﬂ such that

Jao(5)1
Jo o d0le)=

Then we can choose increasing sequences {ﬂfft)}n;l and {Yn}n>1 of compact sets satis-
fying (9.9) and proceed by induction as in the first case. On the nth step we can define
Go on ﬁﬁf)uﬁ,ﬂ’)wﬂ so that {9.10) and (9.11) hold. Passing to the limit and multiplying
if necessary by a suitable constant, we obtain a function gy with desired properties. O

Proof of Lemma 8.2. Let p and 7 satisfy the assumptions of Lemma 8.2. Suppose
|sinwy (¢)| <n(t) for t€¢7§+)UU2 It is easy to see that 1—cosw; (¢)<7(t), teas T Ual™.
We have to show that the operators

(T —DE(WNos)
are compact. Since
(T3 ~DE((W\os)f =0

for feKg, it is sufficient to show that the operators

(TSE ~DEo(a(W)\o§)) Py

are compact where P, is the orthonormal projection onto Ky. Let us prove that the
operator (J, I e (U(W)\0’§+))PQ is compact. The proof for the other operator is the
same. It is easy to see from the definition of T, ) that for J€Ko the vector (.72(+) -If
can be represented in the decomposition ’C—@j;o K; as

USMquf
MvUOf

(I -1n)f= 0
0



306 A.V. MEGRETSKII, V.V. PELLER AND S.R. TREIL

where M, and M, are multiplications on L2()\) by the functions u and v defined by

(+)
coswi(t)—1, t€ay'’,
u(t) { () ’ 2

0, tgof",
sinwy (t), te o§+),
v(t)= (+)
0, téoy .

By Lemma 9.2 the operators MuUDSO(o(W)\a§+)) and MvUogo(o(W)\ogH) are compact
which proves the compactness of (.72(+)—I )80(0(W)\02(,+))P0. O

II1.10. A theorem in perturbation theory

In this section we find a connection between our results on Hankel operators and a
theorem in perturbation theory.

In the previous sections, for an operator I' satisfying the conditions (C1)-(C3) we
have constructed an output normal system {7, p,q} such that the Hankel operator asso-
ciated with this system is unitarily equivalent to I'. If KerI'={0}, then R=T" and T is
unitarily equivalent to the backward shift S*. In this case the vectors {(T*)?q};30 form
an orthonormal basis in K and R has Hankel matrix {a;«}; k>0 in this basis. It is easy
to see that the operator A also has a Hankel matrix (namely {a;x+1};k>0) in the same
basis. So A must satisfy the same conditions {C1)—(C3).

If Ker'#{0}, then it follows from the remark to Theorem 2.1 that T is unitarily
equivalent to the restriction of S* to (KerT')L. It is easy to see that in this case A=
S*T}|(KerI')* and the operator S*T" is a Hankel operator whose kernel is contained
in KerT'.

Therefore in both cases the spectral multiplicity function vy of the operator A must
satisfy the condition (C3).

A natural question can arise if we look at our definition of A. The operator A was
defined with the help of multiplication by the function J. Itis easy to see from (5.4)
that for t€opNA

VA(t)—l/A(—t)=2. (10.1)

Hence if the restriction of the measure A to the set 0pNA contains a non-zero singular
component, then (10.1) contradicts the condition (C3). However this can never hap-
pen: the singular components of the measures p and A are mutually singular and so
the restriction of \ to ogNA is absolutely continuous. This follows from the following
Aronszajn-Donoghue theorem (see (RS, §XIIL.6]).
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THEOREM 10.1. Let K be a self-adjoint operator on Hilbert space and let
L=K+(-,r)r,

where r is a cyclic vector of K. Then the singular components of the spectral measures

of L and R are mutually singular.

Theorem 10.1 has an elementary proof. However it is possible to deduce it from our

results on Hankel operators.

Proof of Theorem 10.1. Without loss of generality we can assume that both L and
K are positive and invertible. Since K is cyclic, it is unitarily equivalent to multiplication
by the independent variable on L2(g), where g is a positive Borel measure with compact
support in (0,00). Let T' be the orthogonal sum of K'/2, —K'/2 and the zero operator
on an infinite-dimensional space. Clearly I' satisfies the conditions (C1)-(C3). Let R=
I'|(KerT')* and W=|R|. Then W is unitarily equivalent to K'/2¢K'/2. We can now
put p=r, go=W 'z (in this case W is invertible). Without loss of generality we can
assume that ||gol|z2(o)=1. We can now define the operators J, J, A as above. In our
case o(W)=o0¢ and so the operator A* defined by (3.1) is asymptotically stable for any
choice of a cyclic vector go of W. (Note that in our case the proof of the asymptotic
stability of A* is considerably simpler than in the general case.)

Assume that the singular components of the measures ¢ and A are not mutually
singular. In this case the restriction of A to A (see §III.5) has a non-zero singular

component. It follows from (5.4) that
va(t)=2, wa(-t)=0, A,-ae. onA. (10.2)
However, as we have already observed, va must satisfy (C3) and so
lva(t)—va(=t)| <1, As-ae,

which contradicts (10.2). a

Remark. Note that it is also possible to deduce Theorem 1.1 in Chapter I from the
above Theorem 10.1.

21-950233 Acta Mathematica 174. Imprimé le 20 juin 1995
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