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Introduction. 

There are no limits known for the boundary conditions under which the Laplace 

equation 
A u = O  

admits a solution for a given region. The very richness of the potential theory and 

the great variety of its applications seem to prohibit general results in this direction. 

There are, however, reasons indicating that  the Laplace equation would permit solu- 

tion under a boundary condition 

, .  , ~  , ~  u, ~x1' ~x~ 0 

that  expresses a relation between u and a given sequence of its partial derivatives 

of a much more general kind than those treated in the classical theory. The present 

paper will deal with the simplest 2-dimensional version of a problem of the indicated 

kind, that  is directly related to the Riemann mapping theorem. 

In this introduction Q and /2 i will denote two entire complex planes and the 

euclidean 4-dimensional space E will be considered as the" product Q•  $2'. A point 

in E will be denoted by (w, w') where 

w = u + i v ,  w '=u '  +iv ' .  

A "surface" S in E will be defined as the boundary of some open pointset K c E .  
To each function ] (z) holomorphic in I z l <  1 we assign the curve Lr described in the 

space E by the point 

(w, w')= (/ (z), /' (z)) ( /"= d~) ' 
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when z runs through the circle ]z ]=  1. In  case f is only regular in the open circle 

[z I < 1, L~ will be defined as the set of points (w, w') for which 

]im inf [[ (f(z), r ( z ) ) -  (w, w ' ) [ [=0  
Iz[~l 

where ][ [[ stands for the euclidean distance. 

Using these concepts the Riemann mapping theorem may  be expressed as follows. 

Let D be a simply-connected bounded region and let K be the product set D x ~2'. 

Let w o be a given point E D and ~ a given real number. Then there exists a uniquely 

determined univalent [unction l (z) in [z I<  1 such that the curve Ls lies on the boundary 

S of K and such that 

f (0 )=wo,  arg f'(O)=?'. 

The content  of this theorem can be considered as a property established for a 

particular kind of product sets K. I t  may, therefore; be of some interest to point 

out tha t  the cited theorem remains true for sets K = D x C ,  where C stands for a 

circle ]w'[< r, 0 < r < co. This statement,  as well as more general propositions of the 

same kind, will not be discussed in this paper  but  is a simple consequence of results 

to be proved here concerning sets K v  defined by  an inequality 

[w'l<'~(w). 
A brief summary  of our main result runs as follows: 

Let  ~ = e v, where U is a real valued continuous super-harmonic function bounded 

from above. Then the boundary surface S of K~ has the p r o p e r t y : F o r  each complex 

w 0 and for each real ~ there exists a unique univalent function f (z) in ]z] < 1, nor- 

malized as in the Riemann theorem, and such tha t  the curve L I lies on S. 

P r e l i m i n a r i e s .  

From now on ~5 (w) will denote an arbi t rary continuous positive bounded func- 

tion defined for I wl < c~, and M will stand for an upper bound of ~b. A function 

/(z) holomorphic in [ z l<  1 will be called normalized if 

(0) 1 (o) = Wo, I' (0) > o, 

w 0 being a given point in the w-plane. The functional equation written as 

(1) ]1' (z)]= q5 (l (z)) (I z l= 1), 

is by  definition satisfied if 

lim (I 1' (z)] - ~ (f (z)))  = 0.  
Iz1r 
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We will be interested in noimalized univalent functions satisfying this relation, and 

such a function will briefly be referred to as a solution of (1). 

Our problem is to decide whether or not (1) has a solution and under what 

conditions on �9 a unique solution exists. If for instance w o = 0 and �9 (w) = ~5 (r) 

is a function of [wl =r, then / ( z ) = Q z  is a solution of our problem for each @>0 

satisfying the equation ~5 (@)- p = 0 .  This shows us tha t  uniqueness requires specific 

additional conditions imposed on ~b. If, on the other hand, log O is harmonic in the 

circle I w -  w0] < M, we easily find that  the problem has a solution which is in fact 

unique. These two examples may serve the purpose of anticipating the result to be 

proved. 

The study of our problem will be based on the following two function classes. 

A~ consists of functions /(z) holomorphic in [z l<  1, satisfying (0) and with the prop- 

erty that 

(2) I / '  (~)1 -< �9 (/(~)) (I ~ I = ]), 

which relation has to be read 

lim sup (I/' (z)] - ~ (/(z))) _< 0. 
Izl4,1 

By B~ we denote the class of univalent and holomorphic functions g (z) in I zl < 1, 

normalized as above, and such that  

(3) I g' (~)l >- �9 (g (~)) (I ~ l = ]), 

in the sense that  

lira inf  C[ g' (z) I - �9 (g (z))) >__ 0. 
Izl~l 

Finally, O~ will denote the class of solutions of (1), and our main problem is of 

course to show that  C~ is not empty. ~ince the function /(z)---w0+ p z will belong 

to A~ for @ positive and sufficiently small, and to B~ for @ sufficiently large, we 

see that  neither of these classes is vacuous. 

A rather complete account of the present s tudy runs as follows: 

T h e o r e m  I, I /  q~ is positive, continuous and bounded, and w is a given point, 

then (1) possesses in general two distinguished solutions /* and g* characterized by the 

/oUowing properties: 

I. The pointset A*, defined as the union o/ values w assumed in I z l< 1 by func- 

tions /E A~, ks a simply-connected region and the normalized univalent/unction/* which 

maps I z l< 1 on~o A* is a solution o/ (1). 
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II .  The pointset B*, defined as the intersection o/ values w assumed in [z I< 1 by 

/unctions g E By, is a simply-connected region and the normalized univalent /unction g* 

which maps I zl < 1 onto B* is a solution o/ (1). 

III .  Any  other solution o/ (1) maps ]z I < 1 onto a region contained in A* and 

containing B*. 
1 

IV. I /  log ~ is subharmonic, A* and B* are identical and (1)has  a unique 

solution. 

Convergence of simply-connected regions. 

In  the sequel we shall assume tha t  all regions considered contain a fixed point 

w 0 and that  they all are contained in a fixed circle I w - w o l <  M. The boundary sets 

of the simply-connected regions R, R ,  shall be denoted by / ' ,  / 'n respectively. The 

notation [w, -Pn] stands for the distance between the point w and the set /'~. 

We define 

[P, r~] = sup [w~ rn]  
w e l "  

and observe that  in general [F, / ' = ]# [F ~ ,  / ' ] .  By /(z), /n(z) we shall mean the 

normalized univalent functions which map I z I <  1 onto R, Rn respectively. 

R ~r The infinite sequence { =}1 is said to converge weakly to R if for any w E R 

there is an integer n (w) such that  w E R~ for n > n (w), and if for any w E / '  

(4) lim [w, / ' , ]  = 0. 

From the inequahty 

we conclude that (4) implies that [w, F~] tends uniformly to 0 on F. Therefore (4) 

may be replaced by 

(5) lim [/1, Fn] = 0. 

We next  list a series of well-known properties tha t  will be used later on. 

a). Rn converges weakly to R if and only if / ,  (z) converges to /(z) in [ z [<  1. 

~). If 

(6) R ,  c R,+I c R (n = 1, 2, . . . )  

then R ,  converges weakly to R if and only if 

(7) ]' (0) = lim 1~ (0). 
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The same conclusion is true under the condition 

(8) RnDRn+IDR ( n = l ,  2, . . .). 

y). A region R shall be called of Schoenfliess' type if the complement of its 

closure is a simply-connected region D with the property that  each boundary point 

of R is also a boundary point of D. If R is bounded by a Jordan curve it has this 

property but  the converse is not true. The proofs of the following two propositions 

will be left to the reader. 

The region R is of Schoenfliess' type if and only if it is the weak limit of a 
R oo strictly shrinking sequence ( =}1 , i.e., such that  the closure of Rn§ is contained in R=. 

R oo Let  R be of Schoenfliess' type and let { n}l satisfy (8). Then the additional 

condition 

(9) lim [ / ' . ,  / ' ] = 0  
n = o o  

implies the weak convergence of R~ to R. 

8). Assume that  U(w) is a continuous function in the circle I w - w o l < M  , and 

let u, u~ denote the solution of the Dirichlet problem for R, Rn respectively with 

boundary values in both cases= U (w). Then the weak convergence of R= to R im- 

plies tha t  

(10) lim un (w) = u (w) (w E R). 
n ~ O O  

C o m p a c t n e s s .  

Any / E A e  is continuous in the closed unit circle and satisfies the inequality 

(11) I/(Zl) - -  f (Z2) [ ~ M [z 1 -- Z S [ (I zl [, [z 2 [__< 1). 

This equicontinuity would permit us to apply to Ae the uniform topology on [ z [ < l ,  

and to establish all statements concerning this class in a rather simple way. Since, 

however, this topology does not  apply to Be  it will not  on the whole offer us any 

great advantage in the proof of Theorem I. 

For reasons that  will be clear later on we can restrict our s tudy of Be  to func- 

tions /(z) subject to the condition 

(]2) l/(z) - I  (0) I-< M (I z I<  1), 

and the weak topology considered in the previous section will be the adequate concept. 
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L e m m a  I. Let {/.}• be a sequence o/ /unctions univalent in ]z ]< 1 and satis- 

/ying (12). Let {/,}]r belong to one o/ the classes A~, B~ or C~. Then {/~}F contains 

a subsequence that converges in [z I< 1 to a univalent / which belongs to the same class 

as does the. original sequence. 

Throughout this paper  U (w) will be defined by the relation 

q~ (w) = e ~ ( ' )  

and Ua (w) will denote the function which outside R coincides with U (w) and in R 

is defined as the solution of the I)irichlet problem for R with boundary values 

= U (w). Since a simply-connected region is regular for the Dirichlet problem and 

U (w) is continuous, it follows that UR (w) is a continuous function. 

Consider now a normalized univalent /(z) which maps Iz]< 1 onto a region R. 

If  / e  A+ we have by definition 

lim sup (log I/' (z)[ - U (/(z))) _< 0. 
I z l §  

(13) 

Consequently, 

(14) lim sup (log ]/' (z) l - U n (/(z))) _< 0. 
I z l ~ l  

In the last formula the function considered is harmonic in [z I< 1, and it follows by 

the maximum principle for harmonic functions that  

(15) log I/' (z) l -< UR (/(z)) (] z] < 1). 

Since (15) implies (13), the truth of (15) is both necessary and sufficient for a uni- 

valent normalized / to belong to A~. 

Using the minimum principle for harmonic functions we find by an analogous 

argument that  / will belong to B~ if and only if 

log l/' (z) I - U ,  (/(z)) (I z ]< 1). (16) 

Finally, the relation 

(17) log I/' (z) l = Un ([ (z)) (I z I < 1) 

is the criterion for I being a solution of (1). 

In the proof of Lemma I we may of course assume that  the original sequence 

converges in I zl < 1 to some univalent 1- Consider first the case {/.}T c A + .  Since 

/n converges to ], Rn will converge weakly to R, and it follows that  UR~ (w) con- 

verges to UR (w) for w fiR. We also recall that  this implies uniform convergence in  

each closed subset of R. Therefore, for any fixed z, ]z]< 1, 
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(18) log ]]'(z)] =l im log I/~ (z)] _<lira UR n (/,  (z)) = UR (/(z)) 

and the conclusion ] E A~ follows. 

For  the class By the proof is analogous, and for C~ obvious, this class being 

the intersection of A~ and B~. 

Unions and intersections of  maps. 

Consider a finite sequence {h}~ c Av, (1 < n < oo), and let S, denote the Riemarm 

surface onto which /, maps I z l <  1. The notation S, stands for the projection of S, 

on the w-plane, i.e. the set of values taken by /, in l z l <  1. The union R 0 of (~}~ 

is a connected open pointset. The extended union of (S,}[, 

R = E U {S,}[ 

is defined as follows: R is the collection of complex numbers w which may be sur- 

rounded by  a Jordan curve y each point of which belongs to the ordinary union R 0. 

The extended union R is a simply-connected region containing w 0. The normalized 

univalent function which maps I zl < 1 onto R will be denoted by  

f = E U {f,}[. 

We next  assume that  {h}[ C By. Each S, is now a simply-connected plane region 

containing w 0 and the reduced intersection 

D = R I 

is defined as the  set of those points w which can be joined with w 0 by a Jordan 

are 7 such that  each w 1E7 is assumed by each h, ( 2 =1 ,  2 . . . .  n ) ,  i n ] z [ < l .  D is a 

simply-connected region, and the normalized / which maps ] z l < l  onto D will be 

denoted by 

1 = R I 

The proof of the statements 1" E A ~, g* E B~ depends essentially on the following 

lemma which is itself a consequence of the maximum-minimum principle. 

L e m m a  I I .  I1 {I,,}~' ~ A~ so does 

1 = E U {I,}5 

Similarly, i/ {g,}~ E B~ so does 

g = R i 
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Consider first the case that  the /, are holomorphic in the closed unit circle. The 

curves described by the points 

w = / , ( e  t~ (0<0<27c, v = l ,  2 . . . .  n) 

are then analytic, and the ordinary union R o of {S,}~ is a finitely-connected region 

bounded by a finite number of analytic arcs. The extended union R is bounded by 

the outer boundary component /1 of R o. / '  itself is composed of a finite number of 

ares /~k, each of which is an are of the boundary of some S~, say for v=  ~ (k). Let  

F,  F~ denote the inverse functions of /, /~ respectively. F~ is defined on S~ and 

is the Green's function of S~, singular at the distinguished point w0=/~ (0). Similarly, 

O=lo  11 
is the Green's function of R. Since the boundary of S~ lies either under R or under 

the boundary of R, we conclude by the minimum principle that  the inequality 

(19)  a - G~ ~ 0 

holds throughout S,, (~= 1, 2 . . . .  n). At a point w which is an inner point of some 

arc F~ we will therefore have 

(20) a a > a a, 
8n - 8n  

where the derivative is taken in the direction of the inner normal. 

are regular at the point considered, (20) implies 

1 
(21) IF' (w)[_> IF: (w) l> r (w-~" 

(v = v (k)),  

Since F and F~ 

This yields 

~2~) I I '  (~)1 -< r (I (~)) (I ~ I = ~), 

except perhaps at a finite number of points which correspond to intersections of 

tlie Fk. However, the regularity of the boundary of R permits us to use the fol- 

lowing Poisson representation 
2 ~  

1 f 1-1 1 , (23) log II' (z)l= ~ [z_e,  Olzmg It' (~'~ (Izl < 1), 
0 
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which combined with (22) yields 

2 g  

1 f , , 1 - ] z [  ~ log I1'(~)1-< ~-~,ol~u(/(a~ 
0 

Therefore / e Av. 

In the general case where the /v are not holomorphic in the closed circle, we set 

h.~  (z) = / ,  ((1 - e) z),  ~ > 0. 

These functions are analytic ill [Z I < 1 and certainly belong to the class At v where t 

stands for a number > 1 which tends to 1 for ~-->0. Therefore 

/~ = E U {/~. ~}~ 

will belong to At~ and map [z I < 1 onto 

R,=EU {&.~}L 

S~. ~ being the map of I z l<  1 -  e. For e-~0, R~ will converge weakly to 

R = E U { & } [  

and h will converge to ] in [ z [ < l .  By Lemma I we finally conclude that  / will 

belong to the class At~ for any t >  1. This proves our statement that  ]EAv.  

For the class By the proof is similar. If {h}[~B~,  we compare the Green's 

function for S~ and for 

D = R I {Z,}~ 

and obtain by the maximum principle 

O-O,<_ O (weD). 

~or the rest the proof is the same as in the previous case and will not be repeated. 

The m a x i m a l  region A * .  

From the equicontinuity expressed by (11) we derive the existence of an enumer- 

h ~ able subset { n)l of A~ having the property that  for any ] E A~ and s any e > 0  

there will exist an integer n such that  

Max ]/(z) - hn (z)] < e. 
Iz 1_.<1 
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The pointset A* is therefore identical with the union of values taken in I zl < 1 by 

h ~ { n}i. Let Sn denote the Riemann surface onto which hn maps the unit circle. By  

Lemma II, 

t . = E u  {h~}~ eAs .  
Consequently, 

Rn = E U { ~ } ~ c A * .  

Hence, {Rn}~ is an increasing sequence of simply-connected regions which exhaust 

A* for n-+oo. Therefore A* is simply-connected and / ,  converges to ]* for n-+oo. 

Finally, by Lemma I, ]*E As. 

Next to be proved is that  ]* is a solution. To this purpose we will profit from 

the following remarkable relation between the given function ~ and the maximal 

region A*=A~. Let v 2 (w) be a positive continuous function which coincides with 

(w), outside A*, whereas in A*, ~o is not subject to any additional condition. Since 

~b=~0 on the boundary of A*, ]* will also belong to the class Av. Therefore A ~ A ~ ,  
and it follows that ~=~0 on the boundary of AS. This implies that  the mapping 

function h* for A~ belongs to As, and it follows that A~=A~. 
In particular, A* is also maximal fo r  the class A~ with 

~o (w)  = e va* (w). 
Since 

(24) log [1" (z)[ - U~, (1" (z)) 

is a non-positive harmonic function in [z I < 1, it is either - 0 ,  or < 0  throughour 

the circle. Under the last alternative 

(25) IF*' (w) l > e- ~ ' (~)  (w e A*), 

F* being the inverse of /*. Let V be the conjugate harmonic function of Ua, in A* 

and let V be normalized by the condition V (Wo)= 0. Define 

By (25) 

and it follows that  

The region R 0 = {w, I H (w) l < %} 

boundary point, say wl, located on the boundary of A*. 

W 

H (w) = f e  -(vA*+t V)dw (w E A*). 
W o 

I H '  (w)[< IF*' (w)[ (w cA*), 

is therefore contained in A* and has at least one 

By H (w) the region R 0 
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is mapped onto the circle I z [ < r  0. 

will satisfy the equation 
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If h is the inverse of t t ,  the function ] ( z )=h  (r o z) 

I/' (~}I = ro ~p (! (~}} (I ~ I = I).  

Without loss of generality we may assume that  wo=O. Since r 0 is <1  and ~ is 

continuous there will exist a positive number e such that  for any complex number 

a = l a l e  ~:" in the circle l a - l l < e ,  the function a [ ( z e  -'~) will belong to the class Av. 

The union of values taken by this family in Iz l<  1 will contain a neighborhood of w 1, 

which is a contradiction since w I is on the boundary of A* and A* is maximal for 

the class A~. Therefore (24) vanishes identically in I z[ < 1 and it is proved that  f '  

is a solution 

T h e  m i n i m a l  r e g i o n  B * .  

The proof of the statement g* E Bo follows the same line as in the previous ease 

and is quite easy. The difficult part  of the theorem is, however, to show tha t  g* 

is a solution. 

We first observe that  [*E Bo. This implies tha t  

(26) m -  inf g' (0) > Min qb (w) > O. 
g~B~ weA* 

In  fact, on defining 
gl = R I (g,/*) (g E Bo), 

we obtain a function gl E Bo which assumes only values in A* and is such that  

g~ (0)<__9' (0). This proves the t ru th  of (26). 

The sequence {hn}F 

Be  and such that  

By Lemma II, 

considered in the previous section will now be chosen in 

m = lira h" (0). 

g~= R I {h,}[ e B o .  

Consequently, if h, maps I z ] <  1 onto S,, the regions 

R ,  = R I {s~}[ 

will have the property 
B* c R.+a c Rn ( n = l ,  2 . . . .  ). 

By definition of the operator R I it follows that  

I �9 gn (o)_< Min h, (0). 
v = l ,  2 . . . .  rl. 
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For  n->cr  Rn will thus converge weakly to some region R D B * ,  and g.  will con- 

verge in ]z] < 1 to g which maps the unit circle onto R. This R is identical with B*, 

since otherwise there would exist an h EB~ which in ] z ] < l  omits some value wER,  

and the function 

k = R I  (g, h ) E B ~  

would have the property k' (0) < g' (0) = m, which is a contradiction. Therefore g = g* E By. 

The proof tha t  g* is a solution of (1) is ra ther  complicated and will first be 

carried through under the assumption tha t  B* is a region of Schoenfliess' type.  To this 

purpose we construct a sequence of continuous functions 

~n ~ eUn 

with the following properties:  each ~bn coincides with �9 in B*, whereas outside the 

closure of B*, 

(27) ~n+l --< ~n ~< ~, 

(28) lim ~5n = 0/  

Let  An and B~ be the maximal  and the minimal region tha t  corresponds to r 

Obviously, Avn+ 1 c Av n ~ Av, Bvn+ 1D B ~  D By, and it follows tha t  

(29) B~ c B* c A~+I c A~ c A*. 

Since ~b~ = ~5 on B*, the minimal function of the class Bv~ takes only values in B*. 

Therefore 

The 

~bn. 

(ao)  

maximal  function /* of A~ n 

Consequently, 

B* = B* (n = 1, 2, . .  ). 

is a solution of equation (1) with �9 replaced by 

log 1"  (0) = U.. 4" (w0) -< UA* (w0). 

I f  g* were not a solution of (1) we would have 

log 9 "  (0) = U . .  (wo) + e, (31) 

Since B* c A*, 
g*' (0) _< 1" (0). 

On combining these relations we obtain 

(32) U~* (wo) > U . ,  (wo) + 

(e > 0). 

(n = 1, 2 . . . .  )~ 



(35) 

which contradict~ (32). 

is a solution of (1). 
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In  case B* is not of Schoenfliess' type we proceed as follows. Instead of the 

class B~ we consider the family of classes Bt = Bt ~ where t is a positive parameter ,  

and we define 
m (t) = inf g' (0). 

g ~ B  t 

For tl<Q, Bt, DBt~ and it follows that  m(tl)<_m(t2) and B ~ c B ~ .  As a monotonic 

function m (t) is continuous excep t  at an enumerable set at  most.  At first sight it 

seems absurd tha t  m (t) could be discontinuous, but  this actually can occur and is 

one of the reasons why the minimal region is hard to deal with. 

We first prove tha t  B~ is a strictly monotonic family of regions, i.e. tha t  the 

* Z closure of B*t~ is contained in B't,. Assume wo=O and let gt~ ( ) be the minimal func- 

tion of the class Bt,. From the continuity of ~b it follows that  a g~2(ze -it) will 

belong to Bt~, provided a = ]a ] e ~" is a complex number  in the circle l a - 1 ] < e, e being 

a positive number depending on tl, t2 and ~b This proves our statement.  

Let now t be a number such that  

m (t) = lira m (s). 
s4t  

This implies that  for s $ t, B* will converge weakly to B~, and this region is there- 

fore of Schoenfliess' type. Accordingly, g~' is a solution of equation (1) with q~ re- 

placed by t O. Let  {t~}T be an infinite sequence of numbers tending increasingly 

to 1 and let m be continuous at  each tn. The previous result then applies to each 

8 ~ -  533806. Acta mathematica. 90. Imprim6 le 29 octobre 1953. 

For the inverse F* of /*~ we have 

(33) 2 r= I n I l d w l =  

where the integral is extended over the boundary of A*~. As n ~  ~ ,  q5= converges 

uniformly to 0 on each closed set contained in the complement of the closure of B*. 

Relation (33) therefore implies tha t  the boundary F~* of A*~ converges to the boundary 

F* of B* in the sense tha t  

(34) lira [F*, F*] = 0. 
n ~ o o  

$ co For a region B* of Schoenfliess' type (34) implies that  the shrinking sequence {An}x 

converges weakly to B*, Hence 

lira Ua* (w0)= UB. (w*) 
n = o o  

Our assumption (31) is therefore false and consequently g* 
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gtn. For n-->oo, Bt,~ will converge weakly to some region BcB*,  and gt* will con- 

verge in ]z I< 1 to some function g, which by Lemma I must belong to B~. Thus 

g=g*, B=B* and a second application of Lemma I proves that  g* is a solution. 

This ends the proof of the two first parts of the theorem. 

Since the third part  is a direct consequence of the definition of the sets A* 
and B* there only remains the uniqueness problem to be discussed. Our assumption 

1 
log ~i subharmonic, i.e. U super-harmonic, is obviously a sufficient condition for 

uniqueness. In fact, since B* cA* and U is super-harmonic it follows that  

(36) U~, (wo):;: UA, (Wo), 

(37) g*' (0 )g /* '  (0), 

where equality in relation (37) implies B*=A*. On the other hand we have 

log g*' (0)= Us. (wo),  log/* '  (0) = UA. (Wo). 

Consequently 

g*' (0) _>/*' (0) 

and the uniqueness is proved. 
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