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This note is to announce an error in the statement (and proof) of Theorem 4 in [2],
namely the equality of the Fredholm index of the variable coefficient elliptic system A
and the constant coefficient elliptic system is false. Thus Theorem 4 should read

THEOREM 4. If (1.7) and (1.8) hold with C“’;ﬁ=0 for all Ialsg—s, Bl<s;, and
i,j=1, ...,k then (1) is Fredholm if and only if (1.9) holds.

The error in the proof occurs on page 135 where the homotopy A, is discontinuous
at t=0. To complete the proof it is necessary to construct a Fredholm inverse for
Ax+@rQ which may be done by patching together a parametrix in |x|<3R with a
Fredholm inverse for A in [x|>2R, thereby showing that (4.5) is finite.

The error was carried over from [1] where the same homotopy was used to assert
the equality of the indices for scalar operators A and A.. (as in theorem 2). Though the
proof in [1] also fails, the result for scalars can be proved by studying the symbol
homomorphism as in [4], so Theorem 2 is true.

For the special case of classically elliptic systems (as in [4]) the symbol homomor-
phism may also be used to compute index (4)—index (A..), and in particular to obtain a
counterexample to index (A)=index (A.). In fact, in R? consider the 2X2 system

A—(l 0)_@_+(icosr e"’sinr)_a_
0 1/ 3x \—esinr —icosr/ 9y
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where 0<r=V x’+y?* <z, 0<f=arctany/x<2m, and extend A to r>x by the constant

coefficient operator
1 0\ 3 (—i 0) 8
= —4 —_—
A= (0 1) dx 0 i/ ay

Let us fix —2/p<d<—14+2/p' and observe that
AW > WE 5, (M)

1

is an isomorphism. We may realize H=AA_" as an elliptic singular integral operator

and
H:WE 51— WG 511 @

AW 5> WE s 3)

have the same Fredholm index. But using the results of [4], [5], and [6] we find that the
index of (2) is given by the degree of the mapping p 0 o5: $2x8'—S> (where pooy is
the 1st column vector of og) which is 2. So index (A)=Findex (A.).

In the general case of Douglis-Nirenberg ellipticity a little more can be said than
Theorem 4, namely in [3] it is shown that the Fredholm index of (1) and that of (1)«
differ by a constant which is independent of 6 ER.

Finally, the authors wish to acknowledge M. Murata for pointing out the error in
the proof of Theorem 4, and C. Taubes for suggesting the above counterexample.
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