
Actions of compact abelian groups on 
semifinite injective factors 

by 

V. F. R. JONES and M. TAKESAKI(t) 

University of California 
Los Angeles, CA, U.S.A. 

Introduction 

The Clifford algebra construction allows one to associate with any unitary representa- 

tion of a group an action of the group on an algebra in a functorial way. If the 

representation is infinite dimensional one must allow infinite dimensional algebras and 

one is led immediately to consider actions of groups on factors not of type I. Using this 

approach, Blattner showed in [1] that any separable locally compact group has a 

faithful action, by outer automorphisms and the identity, on the hyperfinite type II~ 

factor ~.  It was certainly not obvious at the time that one might hope to say much more 

about the actions even of finite cyclic groups on ~ ,  but largely thanks to work of 

Connes, much progress has been made. This paper adds another step in a continuing 

project by giving a detailed description of all actions of a compact abelian group on 

semifinite injective factors. 

The most general results on actions of abelian groups on von Neumann algebras 

appear in [10], where Connes and the second author established the relationship 

between their discrete and continuous decompositions of type III von Neumann 

algebras using the flow of weights, itself an action of R on an abelian von Neumann 

algebra. 

The results of [10], powerful as they are, give precious little information on the 

(1) This research was supported in part by NSF Grant no. MCS79-03041. 
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classification of actions of a given group on avon Neumann algebra, even in the case of 

actions of Zz on ~ .  Indeed there would be no such classification available were it not 

for the idea of Connes in [7] to look at the action on central sequences and then use 

McDuff's result in [21] to split off explicitly controlled model actions in some tensor 

product factorization ~ |  With this idea all actions of finite cyclic groups on 

were classified up to conjugacy. The next step was taken by Connes himself in [4] 

where he classified actions of Z on ~ up to outer conjugacy and extended his central 

sequence technique to make it work for all separable factors d~ satisfying d ~ d ~ |  

An important contribution of [7] was the appearance of two algebraic invariants 

associated with actions. For a cyclic group they take a particularly simple form, one 

being a pair (p, 7) where p E N and 7 is a pth root of unity, the other being a probability 

measure on a finite cyclic group, defined up to translation. The first of these invariants 

was generalized to arbitrary (discrete) group actions by the first author in [14, 15]. It 

becomes the characteristic invariant, an element of a relative cohomology group. In 

[14] the first author extended Connes' classification to actions of an arbitrary finite 

group on ~ .  For this a generalization of the second invariant was required. The 

definition of this invariant in [14] was not optimal but it will be clear from this paper 

that it may be defined for any compact group action as a naturally occurring projection 

in the crossed product, modulo a certain equivalence relation. 

The next step in the group action program was taken by Ocneanu in [23] where he 

shows that Connes' result on outer conjugacy of Z actions extends to arbitrary actions 

of amenable discrete groups, provided due consideration is given to the characteristic 

invariant. Since abelian groups are amenable, Ocneanu's result opens the way for a 

classification of actions of compact abelian groups on ~ via the duality result of [28]. A 

special case of this (when the crossed product is a factor) was done in [16]. The 

question of ergodic actions had already been solved by Olesen, Pedersen and the 

second author in [24]. This is somewhat simpler as the spectral subspace technique is 

all that is needed to obtain the result. 

In this paper the authors consider the general question of actions of compact 

abelian groups on ~ .  In the course of the investigation it soon became apparent that the 

restriction to ~ was artificial and constraining so the setting was extended to actions on 

semifinite injective (separable) factors. We obtain a classification of such actions up to 

conjugacy though the sense in which it is a complete classification will be discussed in 

w 

The authors would like to thank O. Bratelli and N. Munch for pointing out a 

serious error in a previous version of this paper. 
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Chapter 1. Preliminaries 

w 1.1. Notation. Statement of the main theorem 

Throughout this paper ~ and 2( will be separable yon Neumann algebras with centers 

~ (~)  and ~(~0, and ~ will be an abelian yon Neumann algebra. The unitary group of 

will he written q/(.//). For each u E q/(~0, Adu  will denote the inner automorphism: 

x ~ u x u * ,  f lu/ / is  a factor, q/(~(2d)) may be identified with {zEC[ Izl=l} and this group 

will be denoted T. The automorphism group of ~ will be written Aut (rid and Int (u//) 

will denote the normal subgroup of inner automorphisms. If ~ i s  a Hilbert space, ~(0~) 

will denote the algebra of all bounded operators on ~. 

The symbols ~ and ~o, 1 will denote the injective factors of type II~ and II= 

respectively. 

Compact  abelian groups will be written A and B and the letters G, H and N will 

denote discrete abelian groups. The duality between A and G=A will be written (g, a) .  

All groups will be written multiplicatively except when they appear as coefficients for 

some cohomology group. L2(A) will be the Hilbert space of square-integrable functions 

with respect to Haar measure da. (Similarly for G.) An action a of A (or G) on d/t will be 

a homomorphism a: A--~AutM,  a~--~a~, which is pointwise strongly continuous. The 

crossed product  of M by an action a of A will be written .,r (similarly for G). The 

dual action of/~ on M>~aA will be written d. 

If a: A---~Aut M is an action, a (unitary) cocycle for a will be a strongly continuous 

family {va} of unitaries of M such that OaCta(Ob)=Oab. TWO actions a and fl of A on 

and 2( will be called conjugate if there is an isomorphism 0: Y---~M such that Cta= 

O~a 0--1 for all a E A. They will, be called cocycle conjugate if there is 0 and a unitary 

cocycle {v,,} for a such that Ad voa~=Ofl~ 0 -1 (similarly for G). 

If a is an action of G and N = a  -~ (Int d0, the characteristic inoariant of a will be 

the pair (2,/~), modulo coboundaries, defined by the following conditions 

ct h = Ad Wh for h E N, 

Wh Wk = Iz(h, k) Whk , h, k E N,  

ag(Wh) = ]t(g, h) w h, g E G, h E N.  

Thus 2: GXN--->q/(Z(./D) and/t:  NxN--->q/(Z(&r We denote the characteristic invar- 

iant of a by X~- The characteristic invariant is a cocycle conjugacy invariant in the 

sense that if {dr, a} and {2(, fl} are cocycle conjugate covariant systems over G, and if 0 

is an isomorphism of ~ onto 2( and {vg} is an a-cocycle such that Ad vg o as= Oflg 0 -1, 
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then 0 maps naturally Za into Z~. On the other hand, if we consider actions of G on a 

fixed ~ ,  then the characteristic invariant Za is no longer invariant under conjugacy of 

a. Namely, if 0 is an automorphism of ~ and if flg=OagO -~, then we have Za=0(Z~) 

as mentioned above. As seen later, 0 (~)  need not be equal to Za. Therefore, in this 

case, the true cocycle conjugacy invariant is the orbit [X~] of Z~ under the group 

Auto(~(~/) of automorphisms of ~(d~) commuting with the restriction of a to ~(2/). 

We call this orbit [~]  the characteristic orbit. 

The regular representation a---~oa on L2(A) gives an action e: A~Aut(~(L2(A))) ,  

(~a=Ad 0~. Two actions a and fl of A on ~ and Nwill  be called stably conjugate if a |  

and fl |  are conjugate. If the actions a and fl are stably conjugate, ~t| and 

N| may be identified via an isomorphism 0 conjugating a g o  and fl |  The 

actions a and fl will be said to have the same inner invariant if O(l| 

o(l| for some 0 commuting with a| (see w 

We now state the main theorem of this paper. 

THEOREM 1. Let a and fl be two actions o f  A on the semifinite injective factors ~t 

and ~c. Then 

(a) a and fl are stably conjugate iff  the dual actions are cocycle conjugate. 

(b) The dual actions 6t and fl are cocycle conjugate iff  

(i) The crossed products are isomorphic; 

(ii) ti and fl have conjugate (ergodic) actions on ~(~t)~aA) and ~(,N~#A); 

(iii) There exists an isomorphism 0 o f  ~(~)~aA) onto ~(~'AaA), which conju- 

gates {a, ~ ( ~ ) ~ A ) }  and (fl, ~(.A~#A)}, such that 0(Za)=Z#. 

(c) Two stably conjugate actions are conjugate iff they have the same inner 

invariant. 

w 1.2. Outline of the proof 

The proof of Theorem 1 is somewhat involved and appeals to several results which are 

themselves rather difficult. We take this opportunity to outline the proof, stating clearly 

the main results which will be used. 

The first assertion of Theorem 1 follows from the following theorem. 

THEOREM 1.2.1 ([28]). Let a be an action o f  the separable locally compact abelian 

group F on d~. Then (~t:MaF) ;MaF is isomorphic to d~| under an isomor- 

phism which carries & onto a| 
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The last assertion of Theorem 1 is almost obvious. Thus we are reduced to proving 

assertion (b). 

The first thing to note is that by the following result d~)~A is injective. 

THEOREM 1.2.2 (Connes [5]). Let d~ be an injective yon Neumann algebra and G 

be a group with a countable amenable dense subgroup, acting on d~. Then the crossed 

product dl)~G is injective. 

Also by Theorem 1.2.1 we know that the action ~ must leave invariant a fatihful 

normal semifinite trace on d ~ A  and that d is ergodic on ~(d,t~aA). Writing 

d l )~A=Se) ( (x )dg(x )  with )r factors, it follows that all the )((x) may be supposed 

semifinite. The next result shows that all the Affx) may be supposed injective. 

THEOREM 1.2.3 (Connes [5]). S~ )((x)dl~(x) is injective iff l~-almost all algebras 

)((x) are injective. The only semifinite injective factors are ~ ,  ~o, 1 and type I factors. 

The second half of Theorem 1.2.3 allows us to assert that d~ )~A=~ |162  for an 

injective semifinite factor ~. By hypotheses (i) and (ii) of Theorem 1 we may, after a 

first conjugation of the form id| suppose that t~ and fl are equal on ~ ( ~ A )  and 

that d ~ > ~ A = ~ A = ~ |  

At this stage we may change our point of view and think of the actions t~ and fl as 

actions of the groupoids G• (where G=A, ~t=L~(X,g)) on the factor ~. If H is the 

kernel of the action of G on ~(~tx~A)=CQM, the groupoid (G/H)xX is principal. In 

the measure-preserving case the next result was proved by Dye [1 I] and in the general 

case by Feldman and Lind, [18]: 

THEOREM 1.2.4. Let Q be a freely acting abelian countable discrete group o f  non- 

singular transformations o f  a standard measure space {X,#). Then the principal 

measured groupoid Q x X  is hyperfinite, or equivalently is generated by a single 

transformation. 

This result was further generalized recently to the case where Q is amenable by 

Connes, Feldman and Weiss [9]. 

From this result it also follows that the second cohomology of (G/H)xX vanishes 

(see [12]) so we may split the groupoid G x X as a product H x ((G/H)• This splits the 

problem as well. First one obtains a field of actions of H on the algebras N(x). By 

ergodicity they all have the same characteristic invariant, determined by those of a and 

fl, so we may use the following result. 

15-848283 Acta Mathematica 153. ImprimF. le 14 D~cembre 1984 
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THEOREM 1.2.5 (Ocneanu [23]). Let 71 and 72 be two approximately inner actions 

o f  an amenable discrete group H on At=~ or ~to,1 then if7i-l(Int g)=7~l( In t  At), 71 

and 72 are cocycle conjugate iff  they have the same characteristic inoariant. 

Thus after a second conjugation we may suppose the fields of actions of H on At(x) 

to be all equal to the same action or of  H with given Characteristic invariant. 

The actions (coming from a and fl) of the groupoid H x ( ( G / H ) x X )  now give rise to 

homomorphisms of the hyperfinite principal measured groupoid (G /H)xX  into the 

group K of automorphisms of At commuting up to cocycles with a. Given the appropri- 

ate topology this group is Polish and inner automorphisms are a normal dense Borel 

subgroup. To prove this density result one uses the following result. 

THEOREM 1.2.6 (Ocneanu [23]). l f  H is a countable amenable discrete group and 

h~--WhEAUtAt is a map which gives a free action on the algebra No, o f  w-centralizing 

sequences, then this action is stable, i.e. i f  h~-->Uh E vii(No,) is a cocycle then there is a 

WE ~ such that W*yh(W)= Uh. 

So we may apply the following theorem due to Bures, Connes, Krieger and 

Sutherland, a proof of which is given in the appendix. 

THEOREM 1.2.7. Let ~ be a hyperfinite measured groupoid, G a Polish group and 

01,02 be Borel homomorphisms o f  ~g into G such that 

01 "~ 02  mod/-/, 

where H is a normal Borei subgroup o f  G and 1=1 means the closure o f  H. Then there 

exist Borel maps h: ~--->H and P: X= ~~ such that 

02(7) = h(7)P(r(7))Ol(7)P(s(7)) -~, 7E ~, 

where r and s denote the range and the source maps o f  ~ onto X, respectively. 

After applying Theorem 1.2.7 to the two homomorphisms of (G/H)xX  into K, and 

a further application of the vanishing 2-cohomology, we find that if :~ and v are 

homomorphisms we may suppose :r(h, 7)=Ad wh, ev(h, 7), where wh, y are unitaries in 

At which are cocycles in each variable separately. We want wh, y to be a cocycle for all 

of Hx( (G/H)xX) .  There is one last obstruction in HI(H)|  which we 

remove by using a special model action. The cocycle property for wh, y "integrates" to 

give the cocycle conjugacy of the actions fi and fl and we are through. 
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w 1.3. The meaning of the result 

In what sense is Theorem 1 a classification of actions of compact abelian groups on 

injective semifinite factors? It is certainly not as complete a classification as that of [14] 

where, given a finite group, one can completely parametrize its actions on ~ by 

algorithmicaUy calculable spaces. Indeed one of the invariants of our theorem is a non- 

singular ergodic action of a countable discrete group on a measurable space, defined up 

to conjugacy. All actions can occur, even the type III ones, but even in the case where 

the group is Z and the actions preserve a probability measure it is well known that there 

is no smooth parametrization of the actions. For more complicated abelian groups than 

Z the structure can only be worse. 

If one accepts ergodic actions of A as parameters, then one has to work with the 

characteristic invariant first, which is at least as complicated as the first cohomology of 

an ergodic hyperfinite principal measured groupoid (see our Proposition 

2.3.18)--known to be somewhat pathological (see [25]). Then one must find out the 

orbit structure of characteristic invariants under the action of the group S of automor- 

phisms of the center g=~(d~)qaA) commuting with the restriction of c~ to ~. Very little 

is known about this space of characteristic orbits. Here a number of questions arise 

immediately. When does S act non-trivially on the space of characteristic invariants? 

Can the space of characteristic orbits be countable? For some examples see the end of 

w 2.1. We will pick up this topic elsewhere. Finally, the inner invariant is not particu- 

larly easy to tie down. For each stable conjugacy class one must determine the action 

of the group commuting with the second dual action on the space of projections 

equivalent (via automorphisms) to l(~fA vada in ~(~(L2(A)), which necessitates a 

different space for each conjugacy class. (Actually the situation here is not as hopeless 

as it might seemmthe authors intend to say more about the inner invariant in a future 

publication.) 

On the other hand, Theorem 1 does describe all actions of compact abelian groups 

on injective semifinite factors in terms of invariants which are drawn from ergodic 

theory and cohomology. So the situation is roughly the same as it is in the classification 

of injective type III0 factors: the flow of weights is a complete but ill understood 

invariant from ergodic theory. 

If other conditions (such as factoriality of the crossed product or ergodicity of the 

action) are imposed, the classifying spaces become much easier to handle than in the 

general case. We have described several such situations in w 3.2. 

To conclude, Theorem 1 should be thought of as a structure theorem rather than as 

a classification in the sense of an enumeration of all possible actions. 
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Chapter 2. Discrete Abelian groups 

w 2.1. The characteristic invariant 

Let  G be a countable discrete abelian group, written multiplicatively, and N a subgroup 

of  G. If  A is a G-module on which N acts trivially, the group A(G, N, A) is defined as 

follows, see [13, 14, 15]. Let  Z(G, N,A) be the abelian group of  all pairs 0.,/t) where 

2: G •  and k*: NxN~-->A satisfying the conditions: 

/~(g, h) = 0 = 2(g, h) whenever g or h = 1 (normalization); (2.1.1) 

/~(f, h)+it(fh, k) = lu(h, k)+l~(f, hk); (2.1.2) 

2(g, hk)-2(g, h)-2(g ,  k) = ~(h, k)-gkt(h, k); (2.1.3) 

2(gg', h) = 2(g, h)+g2(g', h); (2.1.4) 

;t(h, k) = ~,(h, k)-~(k, h), (2.1.5)  

for every g, g '  E G, f ,  h, k E N. If  a: N ~ A  is any function with o(1)=0, define the pair 

6o=(61 o, 620) by 
(6~ a) (g, h) = o(h)-gcr(h), g E G, h e N; (2.1.6) 

(6zo)(h,k)=o(hk)-o(h)-o(k), h, kEN.  (2.1.7) 

It follows that 6oEZ(G,N,A).  We define B(G,N,A) to be the set of all such 6o's,  

which is a subgroup of  Z(G, N, A). We set 

A(G, N, A) = Z(G, N, A)/B(G, N, A). 

Now suppose that M is a v o n  Neumann algebra with center ~r If  a is an action of  

G on e//, we set 

N~ = {gEG: a g e  Int (M)}. (2.1.8) 

Clearly, Na acts trivially on the unitary group a//(M) and we may consider the group 

A(G,N~,qI(M)). The characteristic invariant X~ is defined as the class in 

A(G, N~, ~ of  the pair (2, kt) defined by the following: 

ah = A d u h ,  hENa, U 1 = 1; (2.1.9) 

ag(Uh)=2(g,h)uh, gEG, hENa; (2.1.10) 

UhUk =~(h,k) Uhk, h, kEN~. (2.1.11) 
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(Note the changes from additive to multiplicative notations in the coefficient 

group.) 

Remark 2.1.12. It is instructive to consider the case where d~ is a factor, i.e., ~t=C 

and ~ The conditions (2.1.1)-(2.1.5) may be reduced to saying that 2: GxN---~T 

is a bicharacter and /~ is a normalized 2-cocycle with 2(h,k)=l~(h,k)l~(k,h) - l ,  

h, k E N~. This relation in fact implies that 2 determines the cohomology class of~.  For 

2-cocycles ~, the antisymmetrization map determines an isomorphism between 

H2(N, T) and A2(N, T), the group of all antisymmetric bicharacters on N x N ,  [14], [24]. 

In particular, if 21NxN----0, then/~ is a coboundary. The map: [2,/~]~2 thus gives an 

isomorphism of A(G, N, T) onto the group of all bicharacters on G x N whose restriction 

to N x N  is antisymmetric. We shall think of elements of A(G, N, T) as bicharacters via 

this isomorphism. An important conclusion of this observation is that A(G, N, T) is a 

compact abelian group with respect to the pointwise convergence topology on G x N .  

A centrally ergodic action a of G on d~ means, by definition, that {~t, G, a} is 

ergodic. In this case, the characteristic invariant X~ determines the center of the 

crossed product ~ a G .  To see this, introduce, for any (2,1~)EZ(G,N, q/(M)), the 

algebra ~t>4~, N, the twisted crossed product of ~d by N with respect to the trivial action 

of N and the 2 cocycle/~. A typical element may be written 

X = ~d Xh Wh' Xh ~ S~, 
hEN 

where Wh and ~d commute and 

Wh Wk = I~(h, k) Whk, h, k E N. 

Thus ~t>~,N is not abelian unless/t  is a coboundary. Now, G acts on gt)4uN by the 

following: 

O g ( ~  ahWh) = ~ hEN 

That the fixed point algebra (M)~/,N) ~ for a is isomorphic to the center of the crossed 

product M)4a G follows from the next result: 

PROPOSITION 2.1.13. Let ~=dt)~aG and consider the dual action ti o f  G. 

(i) The dual action ~t is centrally ergodic if  and only i f  a is. 

Assume that a is centrally ergodic. 
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(ii) The relatioe commutant d/l' f) ~ is anti-isomorphic to M>~,N~. 

(iii) The center o f  ~ is precisely the image o f  (~>4~ N~) ~ under the anti-isomor- 

phism in (ii). 

Thus, ~ is a factor i f  and only i f  a is centrally ergodic and o is ergodic. 

Proof. (i) It follows immediately from [28]. 

(ii) Let y=~gEGagugE~ be an element of the relative commutant ./it'. Then 

Xag=t~g(X)ag for every x E ~ .  But if g E G \ N ~ ,  then ag is free since G is abelian and 

the action is ergodic. Hencey=EheNahv h. Now, choose VhE~(~t) with Cth=Ad(Oh) 

for h E Na, and write 

y = ~ bh o~u h. 
he~v~ 

Since y commutes with ~ ,  each bh belongs to ~ .  But the algebra ~ of all such y's is 

anti-isomorphic to ~t>~, N~. Conversely, every y of the above form commutes with ~ .  

(iii) In the previous arguments Adug on ~ corresponds to the action ag on 

~>~,N~. The center cr of ~ is precisely {Ug}'n~, which is the image of 

( ~t>~t, N~) ~ Q.E.D. 

Note that the conditions in Proposition 2.1.13 are determined entirely by {~t, G, a) 

and the corresponding characteristic invariant. 

We can now state our main result and the rest of this chapter will be devoted to its 

proof. 

THEOREM 2.1.14. Let  a and fl be two centrally ergodic actions o f  a countable 

discrete abelian group G, preseroing some faithful semifinite normal trace on a semi- 

finite injective yon Neumann algebra ~ .  Then a and fl are cocycle conjugate i f  and 

only i f  

(i) {~t, a} and {~t, fl} are conjugate; 

(ii) N~=N~ and there exists an automorphism 0 o f  ~ such that OagO-l=flg, 

g E G, on ~ and 0(Z~)=Zfl. 

The necessity of these conditions is immediate. The sufficiency will be proved in 

w 

Thus cocycle conjugacy classes of actions a of G with N ~ = N  and {~t, a} fixed are 

parameterized by orbits of the action of Aut6(~/) on A(G, N, ~ But how does 

Aut~(~t) act? This is not an orbit equivalence invariant and must be determined for 
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each conjugacy class of ergodic actions of G on ,d. This is an invariant which has not 

been previously encountered, a fact which is explained by the following two results. 

LEMMA 2.1.15. Let A be a G-module on which N acts trivially. Since G is abe- 

lian, each element g E G belongs to Auto(A). Then the induced map 

g*: A(G, N, A)~--,A(G, N, A) is the identity. 

Proof. If (2 ,#)EZ(G,N,A) ,  we must show that ( 2 -gA,# -g# )  is a coboundary. 

One easily checks that with o(g)=2(g, h) 

(61 o, 62o) = (;~-gL #-g#) .  Q.E.D. 

(This is a special case of a general result of the type "inner automorphisms do not 

act on cohomology" which could be established in the framework of [29].) 

COROLLARY 2.1.16. / f  M=L| and G acts transitively on X, then Auto(M) 

acts trivially on A(G, N, a//(M)). 

Proof. This follows from the last lemma and the fact that Autc (~)=a(G) .  Q.E.D. 

Thus, in the study of finite group actions on factors, the characteristic invariant of 

the dual action is a well-defined cocycle conjugacy invariant. This explains why the 

action of AutG(~) does not occur in [14]. 

But if the action of G on {X, #} is properly ergodic, then the group AutG (sit) may 

act non-trivially on A(G, N, ~ as we will show now. Ornstein's example in [30] 

shows that there are also cases where Auto (~t) acts trivially on A(G, N, q/(~r)). 

It will be established in the next section that an element of A(G, N, q/(~)) has two 

parts, one of which is an element of H~(G/H, H~(N, 0//(~))), so it suffices to show that 

there is a non-trivial action on H~(G/H, H~(N, q/(~0)). For this, we choose N - Z ,  so 

Hi(N, 9/(,~t))= q/(~), and also choose G/H=Z. Then we are in the simple situation of a 

single ergodic transformation T of a measure space {X,#} and we want to find a 

transformation S on X commuting with T such that S acts on H~(Z, ~(L| 

where Z acts via T. Let {T, X, #} be the irrational rotation transformation by angle 0 on 

the unit circle X with the Lebesgue measure #. Any transformation S commuting with T 

must be a rotation of  angle q0. Let a (resp. fl) be the automorphism of M=L| 

corresponding to T (resp. S). Let 2 E Sp (S). Then there exists u E q/(s~) such that 

2=u*fl(u). Now, u and fl(u) are cohomologous in Z(Z, q/(~t)) if and only if there exists 
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v E ~ such that f l(u)=v*ua(v)=uv*a(u),  which is then equivalent to saying that 

2=u*fl(u)=v*a(u). This means that fl acts trivially only if Sp(fl)cSp(a). But we have 

Sp (a) = {eE~in~ n 6 Z} and Sp (fl) = {e2~ing: n E Z}. 

Thus, Sp (fl)cSp (a) implies that f l=a n for some n. Therefore, we conclude that for the 

irrational rotation system {T,X,~}, an element fl of Auta(sl0 acts on A(G, N, ~ 

trivially if and only i f f l=a"  for some n. 

In general, we do not know the size of the space A(G, N, q/(M))/Aut6(~ of 

characteristic orbits. It is conceivable at this stage that there may be examples where 

there are only countably many orbits although A(G, N, q/(M)) is uncountable. (t) 

w 2.2. The groupoid approach 

Let H=ker  (al~) and K=G/H.  The commutativity of G together with ergodicity implies 

that the action a gives rise naturally to a free ergodic action of K on M. The injectivity 

of ~ together with ergodicity implies the decomposition of ~ :  

~ t = N @ s /  

with JV a semi-finite injective factor, [5]. Representing M on a standard measure space 

{X,/~} as M=L~176 i~), one can "spli t"  the action a of G on 5t as a field of actions of H 

on N and a free ergodic action of K on {X, a}. Since G need not be the direct sum of H 

and K, this type of decomposition of a does not make complete sense. However, the  

commutativity of K implies the hyperfiniteness of the ergodic transformation group 

{M, K, a} [11], [18], which yields a principal hyperfinite measured groupoid. Further- 

more, our problem is by its nature cohomological. It is well-known that the cohomolo- 

gical behavior of ergodic transformation groups depends only on the orbit structure of 

the system, i.e. the measured groupoid. These general observations motivate us to look 

at the groupoid associated to the system {M, G, a}. As will be seen in the next section, 

the above "splitting" of the action a becomes real on the groupoid level, which enables 

us to handle successfully the linking of "H-part"  and "K-part"  in the later sections. 

Let us begin by recalling some of the definitions from the theory of measured 

groupoids [8], [20]. Since we handle only those measured groupoids coming from 

(1) K. Schmidt showed in a private conversation that this never happen. Namely A(G, Nall(M)/ 
Autc(~/(M) is not countably separated if A(G, N, r is not. 
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ergodic actions of  a countable discrete group on a standard measure space, we resl~rict 

ourselves to the following type of  measured groupoids. 

is a small category with inverses where the source and range maps 

are denoted by s and r; 
(2.2.1) 

(//is equipped with a standard Borel  structure with respect  to which 

all relevant maps and sets are Borel;  
(2.2.2) 

The objects X = ~  ~ carry a o-finite Borel  measure p. (2.2.3) 

For  each xEX ,  r- l(x)=~d ~ is countable; (2.2.4) 

The measure m on ~ obtained by integrating the counting measure on 

(~x with respect  to/~ is quasi-invariant under  the map: (2.2.5) 

~E %--W -I  E ~. 

When 7 E ~ has s(7) =x  and r (?)=y,  we will write this as 7: x---~y. 

When we say that a s tatement  is true almost everywhere in ~, we refer  to the 

measure m on ~. By the countabili ty condition for ~ ,  (2.2.4), this means that one can 

find a saturated Borel  conuU set X'  in X such that the statement is true for every 

~'~ c4d'=r-l(x')=s-l(x'). We shall then work with this smaller measured groupoid ~ '  

instead of  ~, which will not affect the rest of  the discussion. We shall make use of  this 

replacement  freely without any further  comment  whenever  almost everywhere equa- 

tions arise in ~/. 

Definition 2.2.6. An action a of  ~ on a von Neumann algebra N is a Borel  

homomorphism: 7 E ,~--~ae E Aut G~r from ~ into Aut (Jr), i.e., arly2=ay~ a~2 whenever  

s(~0=r(72). Two actions a and fl of  ~/on N are called conjugate if there exists a Bore l  

map O:xEX~OxEAut(Jr such that 

-1  
ay = 0,(y) fly 0s(y ) 

for almost every ? E ~. 

Remark. We could have used the terminology " c o c y c l e "  and " co h o m o lo g o u s"  for 

action and conjugate,  respectively.  We use these words because of  our  intention to 

associate actions of  groupoids with actions of  groups. Hence  the following: 
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Definition 2.2.7. Le t  a be an action of  ~ on N. A unitary cocycle for a is a Borel 

map u: TE ~g~-~uyE all(Jr such that 

u~2 = uy~ ct~ (uy 2) 

whenever s0,0=r(~2). If  this is the case, the map: ~E ~-~Ad (u~).ay defines a new 

action of ~ on Jr', called the perturbed action of  a by u. Two actions a and fl of  (g on 

are cocyle conjugate if there is a unitary cocycle u for a such that fl is conjugate to the 

perturbed action of  a by u. 

Now, if N is a factor, let 

~ =  2(| ~t, ~t= L| iz), 

with {X,/z} a standard measure space. Le t  a be an action of  a countable discrete 

abelian group G on ~ .  The restriction of a to ~t gives rise to an action of G on {X,/z} as 

a non-singular transformation group such that 

(agf)(x) =f(g- lx) ,  f E M ,  gEG,  xEX.  

We assume ergodicity for {M, G, a}. 

Definition 2.2.8. The auxiliary groupoid for the action a is the groupoid ~ a = G x X  

where ~~ s(g,x)=x, r(g,x)=gx and (g, hx)(h,x)=(gh, x), g, hEG, xEX.  The Borel 

structure in ~a is the product Borel structure and the measure on ~ is the product of 

the counting measure on G and the original measure/~ on X. The auxiliary action, 

modulo G-automorphisms of  {X,/z} of  (g~ on A r is defined by: 

at#, x)(a(x)) = (ag(a)) (gx), a E d~ = L| .A r,/~). (2.2.9) 

By changing on sets of  measure zero, we may assume that 

~(g, hx)' t~(h,x ) = a(gh, x) , g, h EG, xEX .  

Properties of  actions can now be phrased in terms of  properties of  their auxiliary 

actions. We establish a dictionary: 

PROPOSITION 2.2.10. Let a and fl be two actions of  G on d~ such that { ~d, G, 5}= 

{~t, G, fl}. The auxiliary groupoids may then be identified and the actions are: 

(i) Conjugate under Aut (d~/M), the group of  center fixing automorphisms, if  and 

only if  their auxiliary actions are, 
(ii) Cocycle conjugate under Aut (d~/M) if  and only if their auxiliary actions are. 
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Proof. (i) Suppose the two actions are conjugate under Aut(M/~t), say 

OagO-l=flg. We may suppose that 0 is of the form: 

O(a) (x) = Ox(a(x)), a E ~ ,  

with xEX---,OxEAut(J~) a Borel map. Writing out OagO-~=flg in terms of the auxil- 

iary actions, one sees that they are conjugate. 

The converse is now clear. 

(ii) If a and fl are cocycle conjugate, say Ad (Ug). ag= Oflg O- 1 for some cocycle u 

for a and 0EAut(~l/s~), then we set ue=ug(x) for ~,=(g,x)E ~d~. The cocycle identity 

for {ug) implies (2.2.7) for {uy} for almost every ~. The cocycle conjugacy of the 

auxiliary actions follows immediately. The converse is also easy. Q.E.D. 

Thus, actions of groups may be classified by classifying actions of groupoids. This 

gives a heuristic proof that the characteristic invariant space depends only on the 

groupoind. This will be taken up in the next section. For the moment, we want to show 

one great advantage of the groupoid approach, on which we commented in Chapter 1. 

In general, if G is an abelian group and H is a subgroup, we don't have a splitting 

G=HxG/H.  But if fl is an ergodic action of G on a measure space {X,/~}(1), and 

H=kerf l ,  we can write the groupoid ~#=GxX as Hx(G/HxX) ,  and now K=G/H acts 

freely on X, so the groupoid ~ = K x X ,  K=G/H, is a principal groupoid, i.e. the graph of 

an equivalence relation. 

LEMMA 2.2.11 (Splitting lemma for groupoids). Let fl be an ergodic action o f  a 

countable discrete abelian group G on a measure space {X,/t}. / f  H=kerf l  and 

K=G/H, then there is an isomorphism o f  measured groupoids: 

M: ~# = GXX~-~ H x ( K x X ) ,  

where K acts on X freely via fl and 

M(h,x)=(h,  1,x), hEH,  xEX .  

Furthermore, K x X  is a principal ergodic hyperfinite measured groupoid, henceforth 

written ~.  

Proof. That K=G/H acts freely on X follows from ergodicity and commutativity. 

Thus we identify K x X = ~  with the equivalence relation induced on X by ft. The map 

(J) We mean by a measure  space always a standard measure space. 
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~: (g, x) E ~ga=GxX~(p,, x) E ~=  K x X, with g=gH E K, is a Borel groupoid homomor- 

phism with "kernel"  H. We shall construct a section for it. 

First, let k E K~g(k)  E G be a section of the quotient map: g E G,-->g E K=G/H. For 

each )'=(k, x) E ~ set g~,=g(k) E G and 

- I  
h()'l' )'2) = gy~ gy2 gr, • 

for every composable pair () '1,) '2) ~ ~(2).  Writing )'1 =(kb k2x) and ) '2=(k2,  x) ,  w e  have 

h()'l, )'2) = g(kl) g(k2) g(kl k2)- 1 E H. 

Therefore, the function h: fft't2)~-->H is a measurable 2-cocycle on the hyperfinite ergodic 

principal groupoid Y(, whose second cohomology is trivial for any coefficient group, 

[12]. Hence h is a coboundary, i.e. there is a Borel function k: )'E Y(~k:,EH such that 

h0q, )'2) = ky, ky 2 k~-Iy,, a.e. ()'l,)'2) E yg~2). 

We then set ~y=gyk~ l, 9; E if{, and obtain a Borel homomorphism: )'E ~-->~, E G such 

that 

~(gy, s(y)) = 7, y E ~, 

Now, the map M defined by 

M(g, x) = (g~-~l, )') E H x  ~ ,  )' = :t(g, x), 

is an isomorphism of ~,  onto H x  X. 

It is easy to show that this map M maps the measure class of (ginto the class of the 

product measure on H x X .  Q.E.D. 

In the principal groupoid X = K x X ,  a K-automorphism of Xmeans,  by definition, a 

non-singular transformation T of {X,/z} commuting with the action of K. Let Aut r  (~') 

denote the group of K-automorphisms of X. Now, putting the previous discussion, 

Proposition 2.2.10 and Lemma 2.2.11, together, we have proved the following: 

THEOREM 2.2.12. Every centrally ergodic action o f  G on M=~d| M determines, up 

to Autr(~) ,  an action o f  H •  r on ./f. Two actions a and fl o f  G with the same action 

on M are conjugate (resp. cocycle conjugate) i f  and only if  the corresponding actions 

and fl o f  H• are also up to the action of  Autr(gt0 on HxS(.  

Note that X = ~  (~ can be either {1,2, ...,n} for n = l , 2  .. . . .  0o or [0, 1]. 
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Let us not forget that the groupoid ~f itself depends on the actions of G on the 

center ~.  All hyperfinite ergodic principal groupoids, including type III cases, occur 

from trace preserving actions of G as will be shown in the next section. 

w 2.3. The characteristic invariant for groulmids 

We saw in the last section that centrally ergodic actions of groups correspond to 

actions of groupoids on factors. This implies that the cohomological formalism for the 

characteristic invariant in the groupoid language must be worked out. 

Let ~ be a measured groupoid described by (2.2.1)-(2.2.5). We assume ergodicity 

for ~, i.e. all saturated subsets in X= ~(o~ are either null or conull. A Borel subgroupoid 

92 of ~ is said to be normal if 

The set 92<o~ of units of 92 coincides with X; (2.3.1) 

s(r/) = r(r/) for every r/E 92; (2.3.2) 

For every pair (7, r/)E ~X92N ~2~, 7r/7-1 E92. (2.3.3) 

The first condition (2.3.1) follows from (2.3.2) and (2.3.3) by the ergodicity of ~. Once 

again, we will freely alter sets of measure zero. 

A normal subgroupoid 92 of ~ is then nothing but a measurable field: 

x E X ~ N ( x ) c  ~x= {7 E ~: x=s(7)=r(y)} of subgroups such that 

)• N(y), ),:x---~ y. 

We fix a normal subgroupoid 92 of ~ and a Polish abelian group A, written 

additively. We denote by Z(~, 92, A) the abelian group of all classes, modulo null sets, 

of pairs (2, p) of Borel functions, )L: {0,, r/) E ~x  92: (r/,),) E ~(2)}-----~A and p: 92(2)----~A 
such that 

207, r/) = 0 = PO,, r/) if either 7 or r/E ~0~; (2.3.4) 

~/Z(/~l' ~]2)-[-~/~(/~1 ~]2'/~3) =/s ~]2/~3)'~/U(712, ~3), (~]l' 772' ~]3 ) E 92(3); (2.3.5) 

~,(~, r]l r]2)-)],( ~, r/l)-,~.(),, r]2) = ~(r/i, r/2)-/t(y- Ir/l ),, ),-It/2 )• (2.3.6) 

(/71,/72) ~ 92(2) and (r/l,),) E ~2); 

)'t(71 )'2 ~) ---- ,~,O'l, r])-I-A(T2, 7/IrD, I), (),1, ~2) ~ C~ (2), (r/,),l) E ~2);  (2.3.7) 

2(r/1, r/E) =/~(r/i, r/~-lr/2 rh)-/~(r h, rh), (r h , r h) E 92(2). (2.3.8) 
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If o: ~ -~A is a Borel function with o(X)={0}, we define 

(61 o) (y, 7) = o(7)-o(Y-17~'); 
(2.3.9) 

(62 o)(71, 72) = a(T172)-o(rh)-o(72). 

Then the pair c~o=(dl o, 62 (7) satisfies (2.3.4)-(2.3.8) and we let B(Cg, 92, A) be the image 

{6o} in Z(~3, 9LA). (Note that (2.3.4)-(2.3.8) are formally identical to (1.2.1)-(1.2.5) of 

[14].) We then define 

A(~, ~,  A) = Z(~, 92, A)/B(~, ~ ,  A). 

Since it is tedious to check all the formulas (2.3.4)-(2.3.8), it is desirable to identify 

a member of A(~, ~ ,A)  with a mathematical object which is more conceptually 

manageable. Let (2,/~) E Z(~, ~ ,  A). Consider ~ = A  x 92 with the cartesian product 

Borel structure. Let 

~(2) = {((a, 7), (b, ~)): (a, b) E A x A ,  (7, ~) E ~(2)} 

and set 

(a ,7) (b ,~)=(a+b+#(7 ,~) ,7~) ,  (7, ~) E ~ (2) , (a,b)EA 2. (2.3.10) 

We then obtain an exact sequence of standard Borel groupoids: 

X---> A x X--> ~ --> ~ ---> X. (2.3.1 l) 

Furthermore, the above exact sequence can be viewed as a functor from the category 

of ~ with Ad as morphisms into the measurable category of exact sequences: 

O--~ A---> N(x)---> N(x)--> 1, xEX.  

The function 2 then gives rise to a functor from ~ to  ~ which extends the above functor 

from ~ to ~ by the following: 

ay((a, ~-17),)) = (a+2(y, 7), 7), (7, ~) E ~(2). (2.3.12) 

Conversely, any measurable functor from (g to an exact sequence of standard Borel 

groupoids ~ ,  (2.3.11), extedning the natural functor from 92 to ~ ,  corresponds uniquely 

to the cohomology class of (2,/z) in A((g,~,A). Note that this corresponds to the 

"crossed module formulation" in [13], [15]. 

PROPOSITION 2.3.13. Let fl be an ergodic action o f  the countable discrete abelian 

group G on ,~t=L~(X,/z) coming from a non-singular action o f  G on X: x E X~->gx E X 
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and NcH=kerf l .  Let ~ - -GxX be the auxiliary groupoid and 92=NxXc  (g. Then 92 is a 

normal subgroupoid o f  (g and there is a natural isomorphism between A(~d, 92, T) and 

A(G, N, ~/(M)). 

Proof. Given 4: GxN---~~ and/~: NxN--~all(M) with (2,/1) E Z(G, N, ~ we 

represent them by Borel functions 2(g, h, .) and /~(h, k, .) on X = ~  ~ with values 

in T. For each y=(g,g-lx) and ~7=(h,x), we set 2(y, rl)=2(g,h,x), and 

/~(rh, r/2)=/~(hl, h2,x) for rh=(hl,x) and r/2=(h2,x). Then (2.3.4)-(2.3.9) follow imme- 

diately almost everywhere from (2.1.1)-(2.1.5). The groups B(G,N, aII(M)) and 

B(@, 92, T) correspond in a similar way. The rest of the discussion is just routine, so we 

leave it to the reader. Q.E.D 

Let Arbe a factor. The group Aut (A0 is a Polish group with respect to the pointwise 

convergence topology on the predual. The unitary group ~ is also a Polish group 

with respect to the strong operator topology. The map: u E ~(.~r (u) E Int O0 is a 

continuous homomorphism with kernel T. The quotient group q/(.V)/T is then a Polish 

group which is continuously and bijectively mapped to Int (.IV). Therefore, Int (.A c) is a 

Borel subgroup of Aut (N) even if it is not closed. By definition, an action of ~ on N is a 

Borel homomorphism a of  ~ into Aut (At). We set 92a=a-I(lnt./O0 {yE ~. s(y)=r(y)}. 

It follows that 92~ is a normal subgroupoid of ~. Since the quotient map: u E 0-//(jr 

k E ~ admits a Borel cross-section, we may choose a Borel function: r/E 92~-, 

u,~ E 0//(92) such that 

a, 1 = Ad (u,1), r/E 92, u, 1 = 1 if r/E 92(0). 

the characteristic invariant X,, is defined as the class in A(@, 92~, T) of the pair (2,/z) 

determined by the following: 

%(uy-,.r) = 2(r. 7) u.. 

Ur/1 Ur/2 = ~'/(~1' ~2) Ur/I r/2, 

(~/, y) E ~2); (2.3.14) 

(/71, ?]2) ~ 92(2). (2.3.15) 

Proof. Note first that 92a=N~xX. A choice Uh with Aduh=cth, hEN~, gives a 

choice u~ for r/E 92~. The rest is just a formal calculation, which we leave to the 

reader. Q.E.D. 

PROPOSITION 2.3.16. Let 2( be a factor and /d=X|  with M=L~(X, bt). I f  

a: G~->Aut (.//0 is a centrally ergodic action o f  the abelian group G, then the character- 

istic invariant g~ o f  a corresponds to the characteristic invariant o f  the auxiliary action 

o f  fga under the isomorphism of(2.3.13). 
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The following result corresponds to the splitting lemma for groupoids at the 

cohomology level. 

LEMMA 2.3.17 (Cohomolgy splitting lemma). I f  3( is an ergodic principal measured 

groupoid, H is a countable discrete abelian group, N a subgroup and if ~ - -Hx3(  and 

92=NxX with X = ~  ~ then there exists an isomorphism: 

H~(Y/",/q) ~ A(H, N, T) ~ A(~, 92, T), 

which is given on cocycles by 

e ~ ~ ~ (2,#) E Z(~, 92, T), 

where e: ~(~--~IQ is a homomorphism, i.e. a cocycle, ~ E A(H, N, T), (see Remark 2.1.12), 

and 

X((h, 7) ,(k,y))= (e(y),k}2(h,k), y=r(7) ,  hEH, kEN;  

fi((h, x), (k, x)) =/~(h, k), h, k E N, x E X, 

/~ being determined by 2 as in Remark 2.1.12. 

Proof. Each )!. E Z(H, N, T) determines a group extension: 

I ---~ T---~/#--* N--* 1 (*) 

such that if k EN,-~u(k)Elq is a cross-section of the above extension, then 

u(kO u(k2)=/~(kl, k2) u(kl k2) and 2(ki, k2)=/~(kl, k2)~(k2, kl)  -1.  Furthermore, 2 speci- 

fies an action of H on N by h. u(k)=2(h, k) u(k), h E H, k E N. The cohomology class [2] 

of 2 in A(H, N, T) is in one-to-one correspondence, up to conjugacy equivalence, with 

the above extension (*) equipped with an action of H, which extends the natural action 

of N on N. 

Now, let e E HI(X,?~/) and 2 E A(H, N, T). We then have a short exact sequence (*). 

We let ~ act on (*) as follows: 

a(h, y)(u(k)) = ( e(7), k) 2(h, k) u(k). 

Viewing ~/(x)=~/ and N(x)=N, x ~ X ,  we see immediately that xEX~l~(X)  and 

(h, y)E H•  ffg~-->Ct(h ' ~,) is a functor; hence it gives a member (;t, 9) of A(~, 92, T). 

Conversely, suppose (,(, ~i)E Z(~, 92, T). We then have an exact sequence of stand- 

ard Borel groupoids associated with (;[,/~): 

X---~ T X X--~ ~--~ 92---, X, 
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on which cg acts, extending the natural action of 92 on ~ .  Since 92=NxY(, the above 

exact sequence can be viewed as a measurable field of exact sequences: 

1 --~ T-->/V(x)--> N---> 1, 

on which the groupoid c~ acts. If  7 E Y(: x ~ y ,  then we have a commutative diagram: 

- 

Therefore, the cohomology class Lux] of {fi((h, x), (k, x)): h, k E N} and LUy] of {fi((h, y), 

(k,y)):h, k E N )  must agree whenever x - y .  Thus the associated antisymmetric bi- 

character {2x} on N x N  is constant  on X-orbits in X. By ergodicity, one has ;tx=ity for 

every x, y 6X. Let  2 be this common bicharacter on N x N  and/~ be a 2-cocycle on N 

whose corresponding bicharacter is 2. Since ,uT~/uEB2(N,T) andx~/Ux~a is a 

Borel function, and 62 is an open homomorphism from the compact group 

CI(N, T)= {ti E TN: tr(1)= I } onto B2(N, T), there exists a Borel function: 

xEX~,axEC1(N, T) such that lu=lux62(Ox), xEX .  We consider e as a T-valued Borel 

function on 92. Replacing (/(, ki) by (X,/~) 6(o), we may assume that 

xEX,-.--~ft((h,x),(k,x))ET, h, kEN,  

is constant. Therefore, the groupoid ~3=HxY( acts on the constant exact sequence 

1 --0 T---~/V---, N---~ 1 

determined by kt. Hence,  if {u(k): k 6 N} is a cross-section of  the above exact sequence, 

then 

a~h, ~,)(u(k)) = f~((h, ~), (k, y)) u(k), 

for y=r(7),  h E H, k E N  and ~ E Y{ is indeed the action of ~d on the exact sequence: 

X--~ T X X---~ ~---~ ~---~ 1. 

If  y=x E c#o), then 

a(h, x)(u(k)) = f~((h, x), (k, x)) u(k), h E H, k E N. 

16-848283 Acta Mathematica 153. Irnprim~ le 14 D~cembre 1984 
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I fy=(y,  x) E ~ ,  then 

ao,r)a(h.x)a~Ir)= a(h,y ), hEH;  (2.3.18) 

ao, y)(u(k)) = 2((1, y), (k, y)) u(k), k E N. (2.3.19) 

Therefore, it is now easy to see that the map: (k, y) E N x  ~--~((1, y), (k, r(y)) E T is a 

bicharacter, which determines a Borel homomorphism e: y E JC~N such that 

X((I, ~,), (k, r(r)) -- (e(y), k). 

Furthermore, (2.3.18) implies that if ),: x--->y, then 

2((h, x), (k, x)) = 2((h, y), (k, y)). 

By ergodicity, x EX~;(((h, x), (k, x)) is a constant ;t(h, k). Now, we have 

/(((h, ~), (k, r(y))) = (e(y), h) 2(h, k) 

and (2,/~) EZ(H, N, T). Q.E.D. 

The above cohomology splitting lemma, Lemma 2.3.17, and Proposition 2.3.13, 

together with the groupoid splitting lemma (2.2.11) allow us to decompose 

A(G, N, q/(s~)) into a direct sum of HI(G/H, HI(N, q/(~)) and A(H, N, T) as follows: 

PROPOSITION 2.3.18. Let  fl be an ergodic action o f  the discrete abelian group G 

on ~=L~(X,/~) and H=kerf l .  I f  N is a subgroup o f  H, then there are natural maps 

i: HI(G/H, Hi(N, ~ N, q/(s~)) and ~r: A(G, N, ~162 N, T) such that 

the sequence: 

1 ~ H~(G/H, H~(N, ~ A(G, N, o//(~g))..~ A(H, N, T)---~ 1 

is exact. The sequence is also split. 

We leave the proof to the reader. 
The natural question is then: What is the size of A(G, N, 0//(.~g))? The group 

A(G, N, T) is a (separable) compact abelian group, so it is certainly possible to compute 
in a given situation. On the other hand, HI(G/H, HI(N, q/(~r))) presents non-type I 

phenomena. This group is often the quotient of a Polish group by a dense subgroup and 

is studied in [25]. In the special case where ~ is atomic, Shapiro's lemma proves that 

HI(G/H, HI(N, q/(~g))) vanishes. 
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We are now in a position to show that all values of the characteristic invariant are 

realized by the kind of actions we are interested in. Let • be a semi-finite injective 

factor, (type I or type II), and let M=L~(X,/~) where {X,/~} is a standard o-finite 

measure space, and fl be an ergodic action of G on M. Let N c H = k e r f l  be a subgroup. 

THEOREM 2.3.19. For every x E A ( G , N ,  ali(s~)) there is an action a o f  G on 

d~=2r174 which admits an invariant faithful semi-finite normal trace z on ~ ,  such that 

al~= fl, Na=N and xa=X. The restrictions on fl and Z are the following: i f  ~C is o f  type 

I then H = N a n d  {M, fl} is not o f  type III andif,/?isfinite then {M, fl} is not o f  type III. 

Proof. The necessity of the above restriction for the type I case follows from 

Aut (JV)=Int (N) if 3 c is of type I. 

To prove the theorem, we will use the description of the A group given in (2.3.13) 

and (2.3.17) together with (2.2.11). So let us first see what the characteristic invariant 

means in these terms: 

Let ~ = K x X ,  K=G/H, be the hyperfinite groupoid. If a: ~ - H x ~ A u t  (~r is an 

action and 92~=NxX, we may choose, by (2.3.17), a 2-cocycle/z: N x N - - . T  and a Borel 

map: x E X~-->Ux( k ) E all(A/), k E N ,  such that 

a(k,x)= Ad(ux(k)), kEN,  xEX;  (2.3.20) 

ux(kO ux(k2) =/Z(kl, k2) ux(kl k2), kl, k2 E N. (2.3.21) 

One may also suppose that there exist 2 E Z(H, N, T) and e E HI(X,/V) such that 

a(h,e)(Ux(k)) = (e(y), k) 2(h, k) uy(k), y: X-" y. (2.3.22) 

The characteristic invariant of the action a corresponds to the pair (e, 2) under the 

isomorphism of (2.3.17). For future reference, we note here that simply by changing the 

choice of ux(k) appropriately we may suppose that/~ takes any value in its cohomology 

class, as does e. 

From the point of view of this theorem, e, 2 and g are given and we must construct 

the action a and {ux(k): kEN} .  

By [16], i f N i s  of type II, there is a trace preserving action 0 of H on Nwi th  Xo=2. 

If ,Y is of type I, this is also true via a projective representation since N=H, [24]. We 

choose {Wk: kEN}cq/(,~r such that 

wk, Wk2 =/~(k l, k2) w(k I k2), k l, k 2 E N; 

On(wk) = 2(h, k) wk, h E H, k E N. 
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By a crossed product construction, we choose a unitary representation: 

k E N ~ o ,  E N and an action a of ~r on .Ac such that os(vD = (s, k) ok for (s, k) E/r  By 

[2, Lemma 2.3.12], the representation v can be extended to a unitary representation of 

H into N which we denote again by v. 

Since N----N| c in all cases, it suffices to define an action on N| Define 

a('h,~, ) = O h | o~(y)Ad v,, h EH, yE ~. (2.3.23) 

Clearly, 92a = N x X  and for (k, x) E 9~a we set 

u x ( k ) = w k |  k, k E N ,  x E X .  

With {a', ux(')}, (2.3.21) and (2.3.22) are satisfied. 

Finally, we must fix up the action of H x : g  so that the corresponding action of G 

preserves a faithful semi-finite normal trace on ~ .  Note that there is a homomorphism 

Q:~---~R* defined by the Radon-Nikodym derivative, so that if y=(gH, x) then 

Q(y)=(d/~ og/dl~)(x), where/~ is the measure on X fixed to give ~ = L ~ ( X ,  I~). If N is of 

type I or of type II~, then the only way for the action of G to preserve a measure is for p 

to be a coboundary, i.e. there is a measure equivalent to/~ which is invariant under ft. 

In this case, the model action a '  already constructed will do for a. 

If N is of type II| then it is possible for p to be non-trivial. Let {Ot} be a one 

parameter automorphism group of N such that r .  O t = e - t z  " for a faithful semi-finite 

normal trace r on N, [28]. We then define the action a of H x  Yf on N| by 

a~h,~ ) = a~h,y ) | 01ogo~y ), h EH, yE ~/'. (2.3.24) 

The resulting action of G will preserve the trace on ~ given by integrating the trace r on 

~c with respect to the measure/~, and of course it has the same characteristic invariant 

as a ' .  Q.E.D. 

Remark. If N is of type I,,, n< + o% the proof of Theorem 2.3.19 shows there is an 

action of G on N|162 with characteristic invariant represented by the pair (e,2.) 

whenever 

(i) There is a projective unitary representation of H in N~ whose 2-cocycle/~ 

satisfies 2(h, k)=/~(h, k)l~(k, h)-l ;  

(ii) There is a unitary representation: h---~Vh of H in ~c2 and an action o of H on N2 

such that Os(Vh) = ( S, h) Oh; 

(iii) N=NI | 

These conditions may be relaxed somewhat to obtain necessary and sufficient 
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conditions but we shall not be too much concerned with this case, as it does not arise as 

the crossed product of a type II factor by a compact abelian group. 

w 2.4. Model actions with a specified property 

We now come to what is probably the most subtle point of this paper. To ease the 

reader's task in following the argument, we shall make a digression to explain what is 

going on in a much simpler context, that of outer actions of discrete groups on factors. 

Suppose ~ is a factor and G is a group, and suppose we could show that any two 

actions a and fl of G on ~ are conjugate modulo Int (~). How might one show that any 

two actions are cocycle conjugate? Certainly we know that, after conjugation, there are 

unitaries (Ue} such that ag=Ad Uefl e. The problem is that {Ug} is not necessarily a fl- 

cocycle. Indeed, Ueflg(Uh)=/~(g, h) Ugh for some T-valued 2-cocycle/~ and the cohomo- 

logy class of/~ is an obstruction to any further attempts to make a and fl cocyclr 

conjugate involving only inner automorphisms. There is, however, a method in some 

cases to overcome these difficulties. Suppose that for some explicitly constructed 

model action m: G-->Aut (~) we could exhibit, for any 2-cocycle/z, an automorphism 0 

of ~ with 

Omg 0-1 = Ad Vg mg; 

Vg mg(Vh) = tz(g, h) Veh. 

Now we can compare an arbitrary action a to the model action m. We know that, 

after a preliminary conjugation of a, there are unitaries Ug with ag=Adugmg and 

Ugmg(Uh)=lZ(g, h) Ugh. But we may conjugate by the above 0 to obtain OagO -l= 
Ad (O(ug)Vg)mg. But now g~-,O(ug)vg is indeed a cocycle and we are through. (This 

technique was used in w 6.3 of [14] to solve a similar problem.) 

In the context of this paper, the group " G "  of the previous discussion has been 

replaced by the groupoid ~-~=Hx:~, so we expect to have to deal with its second 

cohomology. The Ktinneth formula suggests that this will have three parts: He(~), 

H2(H) and HI(~')| The first two will be dealt with in w 2.5 using the Bures- 

Connes-Krieger-Sutherland cohomology lemma, Appendix, and Ocneanu's theorem, 

[23], respectively. To handle the last part, we will follow the procedure outlined above 

and in this section we shall construct the model actions m with given characteristic 

invariant. We begin by treating the case where the subgroup N of H is trivial. This is, of  

course, only relevant when X is of type II. 

So let a: Hx:~->Aut (~)  be an action on the factor ~ with ~ ={1} •  X=~ '~~ 
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We define ~r to be the set of all Borel bicharacters q0: H x  X~--~T, i.e. Borel homomor- 

phisms in both variables, and for which there is a Borel map: xEX~- .O~EAut(~)  such 

that 

OyaLrO-~ 1 =AduyaL~,  (y:x--~y, y ~ u y  a cocycle); 

Oxah, xOx I = Ad(Oh,x)ah, x, (xF.X, h~-->Vh, x a cocycle); 

U~, a l, ?(Oh, x) = q~(h, y) vh, y ah, r(uy), y: x--~ y.  

(2.4.1) 

(2.4.2) 

(2.4.3) 

PROPOSITION 2.4.4. The set qg~ is a group and a cocycle conjugacy inoariant for  

the action a, i.e. i f  fl is cocycle conjugate to a then %~=~.  

Proof. Let q0 iE ~ ,  i= I, 2, and {0ix, i i u?, Vh, x} be 

(2.4.1)-(2.4.3). Set 

1 - 1  2 , I ox = (o~)-~o~, u~ = (o r) (u~) u?, 

i - I  2 , I 
Vh. x = (0") (Oh.x) Oh.x, 

the associated 

~: x---~ y 

r y) = q0,(h, y) 992(h, y). 

objects in 

It is a straightforward calculation to check (2.4.1)-(2.4.3) for cp, O, u and o. Hence 

q0 E %~. Thus cr is a group. 

Suppose that there is a Borel map o : x E X ~ o ~ E A u t ( ~ )  such that 

or(Ad(wh, r)ah, y)Oxl=flh,?, y:x--~ y. 

with an a-cocycle w. Let CE cr with associated {0, u, v). Set 

0 x = OxOxOx 1, •y= (Ty(Oy(WI,y) UyWI~,y), 

Oh, x = ox(Ox(Wh, x) VS, x W~,x), 

where y E ~(: x---~y. We then have 

Oyfll,v 0~-'= (% Oy orl) (% Ad (wl, ?) cq, v cr-~ l) (o x 0 x a'~l) -1 

= or Ad (Oy(Wl, y)) Ad (u r) al, y O'x I 

= Ad (or(Oy(wl, y) uy w~, ?)) o r (Ad (wl, y) al, y) 0 ;  1 

= A d  ( a t ) i l l , e ;  

(2.4.5) 

similarly 
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Oxflh, x O~ I = Ad(Oh, x)flh, x; 

arfll, y(Oh,~) = cp(h, ~) Oh,~ flh,x(ay). 

The cocycle properties of ~ and 0 are also easily checked. Hence tp E cr with associat- 

ed {0, ti, 0}. By symmetry, we get qg:ccr so that cg =qg:. Q.E.D. 

We now define our first model action u on an injective factor ~ of type 111 by 

~r on ~ |  (2.4.6) 

where a is an outer action of H,  specified by the next theorem: 

THEOREM 2.4.7. There exists a properly outer action a o f  H such that qg,, contains 

all bicharacters on H x  fir. 

Proof. Let q0 be an arbitrary Borel bicharacter on H x  ~.  We note first that tp may 

be regarded as a cocycle on ~(taking values in / t .  The first step of the proof for tp E ~,, 

will be to reduce to the case where ~p takes values in some countable dense subgroup 

Ho of/-I.  The effect of perturbing q9 by a coboundary as a member of Z(~, ~ is 

absorbed by the perturbation of u and v by the coboundary of the cochain which is used 

to perturb tp. Thus q0 belongs to qg,, if and only if any of its perturbations by coboundar- 

ies belongs to qg,,. Hence it suffices to show that any Borel cocycle on 5(with values in 

/ t  is cohomologous to one with values in Ho. This is, however, an immediate conse- 

quence of the Bures-Connes-Krieger-Sutherland cohomology lemma for hyperfinite 

ergodic groupoids, see Appendix. 

Now, suppose that q: ~-->H0 is a Borel homomorphism of ~ into the discrete 

countable group Ho. We shall construct an action z of H x ~  on ~ with q-1E ~, and 

then show that r is cocycle conjugate to u. This is sufficient by (2.4.4). 

Begin by choosing an outer action of H0 on ~ ,  [1, 22, 27], and let Q be the dual 

action restricted to H on the crossed product ~>4H0 which is isomorphic to ~ by [5]. 

Let p E Ho~--~ap E q/(~)CHo) be the unitary representation of Ho in the crossed product 

so that Oh(ap)=(h,p) ap, p E H o ,  hEHcl : lo .  Now, set up the following system: 

| 

nEZ 

| 

O~h-~" l - I  ~h, n, Oh, n = Oh'~ 
nEZ 
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| 

tip = i d |  1-I Ad (a)n,  
n~l 

Up=(n<~ltn)(~ap(~(n>>.~_lln ) ' I n = l "  

e = shift to the left on )(. 

The following properties of the above system are easily verified: 

ah~ p =~p(Zh, hEH, pEHo; (2.4.8) 

Cthfl p is outer except when h = 1 and p = 1; (2.4.9) 

ah(Vp) = (h, p) vo; (2.4.10) 

OCth t7 - I  = a t , ;  (2.4.11) 

eflp 0 -1 = Ad (vp)flp. (2.4.12) 

Now define the action r of  H x X o n  N(----Q) by ~h,y=ahflq(y). Then r is an action 

since a and fl commute and q is a homomorphism. Moreover, if we set Ox=e for all 

x E X =  ~t ~~ then 

Oyrl,yO-~ l =Ad(vq~))rl,y by (2.4.12); 

Oxvh, xo-~l=vh, x by (2.4.11), 

and 7 E ~r~-~Vq(r) is a cocycle since p~-~vp is a cocycle for ft. By (2.4.10), we have 

rh,y(O q(7) ) = ah(OqO,) ) = ( h, q(~) ) V q~y). 

Hence by the definition of  cr if we set 

9(h, V) = ((h, q(y)), 

then q0 E qg~. 
Now, we want to show that r is cocycle conjugate to the action x defined by 

(2.4.6). By (2.4.8) and (2.4.9), we may apply Ocneanu's  theorem [23] to conclude that 

the action of HXHo defined by a and fl is cocycle conjugate to the action: 

(h,p) EHXHo~-',ah| on N|162 This immediately shows that the action r is cocycle 

conjugate to the action: (h,v): H• on a~q~)X. Since Int(W) is a dense 
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Borel subgroup of the Polish group Aut (~0, the cohomology lemma Appendix, implies 

that there exist Borel function: x E X ~ t l x  E Aut (.A0 and 7E ~ u ~ , E  0//(~r such that 

(7y~q(v) OX l = Ad (ue). 

Since the second cohomology of ~ in T vanishes (a fact we already used in w 2.2), u~, 

may be supposed to be a homomorphism of X into 0-//(o~. Thus, finally the action r is 

cocycle conjugate to ~. Q.E.D. 

We can now define the model action with arbitrary characteristic invariant. Let 

Z E A( Hx~r, N x ~ ~  T) be given. Let 6 be the model action with %=X6 defined in 

(2.3.19). Then define the action rn of H x  ~( by 

(a) m=6 i f N i s  of type I; 

(b) m = 6 |  otherwise, 

where ~ is the action of H / N x ~ d e f i n e d  by (2.4.6) on ~.  Since N--- -N|  x is a 

trace preserving action on N, so that m gives rise to a trace preserving action of G on 

~ = ~ t |  M=L~(X,/t). Moreover, by (2.4.7) and (2.4.4), m has the property that if q 

is any homomorphism from ~ to N •  there is a Borel function: x E X ~  

0~ E Aut (~r such that 

Or ml,~, 0x 1 = Ad (u~,) ml. e 

0 x mh, x Ox I ---- A d  (Oh, x) mh, x 

u~,ml,~,(Vh, x) = ( h, q(y) ) vh, r rnh, r(u~,), 

for a cocycle uy; (2,4.13) 

for a cocycle Uh, x'~ (2.4.14) 

where y: x--~ y. (2.4.15) 

w 2.5. Proof of Theorem 2.1.14 

By (ii) of (2. I. 14), there is an automorphism 0 of s~ which ties up the characteristic 

invariants Za of a and Xa of ft. By central ergodicity and semi-finiteness, J/----JV| 

with ~c a factor, so Q extends to an automorphism (also called •) of ~ .  The auxiliary 

actions of a and QflQ-1 have the same characteristic invariant by (2.3.16). By (2.2.12) it 

suffices to show that these two groupoid actions are cocycle conjugate. We shall do this 

by showing that any two actions a and fl of H x ~  on N with ~ a = 9 2 ~ = N x ~  ~ and 

Xa--X# are cocycle conjugate to the model actions of w 2.4 with the same characteristic 

invariant. 

To begin, note that to each x E X = ~  r~~ there corresponds, in a Borel measurable 

fashion, an action ax of H on N and by (2.3.22) they are almost all cocycle conjugate to 
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the restriction of the model action. Furthermore, this restriction does not depend on x, 

and we shall write it simply h,--,mn. By the von Neumann measurable cross sec- 

tion theorem, we may choose a Borel function: x---~rxEAut(d~c) such that 

r x ah, x r~-l=Ad (Oh, x) m h for almost every x and a Borel family {Oh, x} of m-cocycles. Set 

for (h, ~,) E H x  

oh, r=  rrah,~,r-~ 1, y:x-.--~ y. (2.5.1) 

It suffices to show that o and m are cocycle conjugate, and we already know that their 

restrictions to H x X  differ by a cocycle. 

Now, let o~,=ol,y and m~,=ml,y. By the above, we have Oh,x=Ad(oh,x)mh, SO 

a v m h or;  i = Ad (o~,(v'~, x) Oh,y ) mh, (2.5.2) 

and for each y: x - . y ,  the map: h--*o~,(V$,x) Uh,y is a cocycle for the action m of H on N. 

Thus the map: y E X---~o~, defines a homomorphism of the principal hyperfinite ergodic 

groupoid X into the group of all automorphisms which commute, up to a cocycle, with 

m. We would like to apply the cohomology lemma again here, so we must construct a 

complete metric for this group. It is no use taking the metric it inherits as a subgroup of 

Aut (dD as it is not complete in this metric. For these reasons, we make the following 

definitions. 

Let/5 be an action of the countable discrete group F on the separable factor ~. Let 

AutF(~) be the set of all pairs (0, {Ut} ) where 0EAut (~ )  and tEF~--~utEall(~) is a 

cocycle for/5 such that 

O/st 0 -1  = Ad(ut)/st, t E F .  (2.5.3) 

With multiplication: 

(Ol, (u,))(02, {v,}) = (ol 02, (Ol(v,)u,}), (2.5.4) 

AutF(~) is a group. Also, Aut r (~)  is a closed subgroup of the Polish group Aut(~) .  

q/(~)F, where Aut (~). q/(~)r is the semi-direct product of Aut(~)  and q/(~)F, the 

group of all functions of F into ~ equipped with the product topology. With this 

relative topology Aute(~)  is a Polish group and the natural projection: (0, {ut))~--~0 is 

continuous. The group AutF(~) may appear artificial with the above definition. But, if 

F is abelian, then it is just  the group of all automorphisms of the crossed product 

~>~a F which commute with the dual action. 

Now, suppose F is abelian. Then # sits in a natural way inside AutF(~) as 

elements of the form: (id, {p(t)}), p E #. (This corresponds to the dual action.) Thus # is 
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a closed central subgroup of AutF(~), and the quotient group, which we shall write 

AutF(~), is Polish. Let at: AutF(~),-->AutF(~) be the quotient map. 

Another normal subgroup of AutF(~) is Int (~), where Ad (u) defines the element 

(Ad(u), {uft(u*)}) of AutF(~). We want to apply the cohomology lemma, Appendix, 

to this subgroup, so we need the next result, which follows from Ocneanu's stability 

theorem [23]. For it we specialize to the case ~ = N ,  a semi-finite injective factor. We 

recall that 0E Aut (dr) is approximately inner if and only if it preserves a semi-finite 

normal trace on N. Set 

Inte(dV ") = the closure of Int (.IV') in Aut F (dr) (2.5.5) 

Int F ()r = at(Int F (At)). 

LEMMA 2.5.6. Let P be the closed subgroup of  AutF(A r) consisting o f  pairs 

(0, {Uh}) such that 0 preserves the trace on N. Then ~t(Int (.g)) is a dense normal Borel 

subgroup o f  the closed subgroup at(P). 

Proof. The normality of at(Int(.Ar)) is immediate. The group ~ is a Polish 

group and the map: k E ~ (u), {uft(u*)}) is a continuous injective homomor- 

phism into Aute (.N), whose image is at(Int (dr)), so at(Int (~r is Borel. Also at(Int (.N) is 

a subgroup of P, so at(Int(Ar))c:t(P). Since P contains/~, :t(P) is closed. Thus there 

only remains the density of at(Int (.N)) in at(P). 

We will show that for any zEst(P) there is a (0, {ut}) in ~t-l(z) and a sequence of 

elements of Int (N) converging to (0, {ut}) in AutF(.N). 

For this let N=f-l(IntJO~_F and choose for each hEN,  a unitary ah with 

fh=Ad (ah). Let/~: NxN-->T be the 2-cocycle defined by 

ahak=lz(h,k)ahk, h, kEN.  

If (0, {vt}) is an arbitrary element of at-l(z) then Ofn O-I=Ad vn Bin, h E N, so 

O(ah) = C h Vh ah  

for some function c: N-->T. Moreover 

c h c k ~ ( h ,  k )  v ~  ahk --- C h C k V h f h ( V  k) a h a t 

~. c h v h c k o k v k 

= O(ah) O(a k) 

= O(a h a k) 
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= O(u(h, k) ahk) 

= chklz(h, k) Vh, ahk 

so that Chk=ChC, for h, kEN.  Therefore c is a character of N which may be extended 

to a character ~ o fF .  If Ut=CtD t then 

(0, {ut}) E Jr- l(z) and 

O(ah)=ghah, hEN.  (2.5.7) 

Our next task is to find a sequence yn in q/()r such that 0=limAd(yn) and 

ut=limy~flt(y *) for all t EF. 

Let w be a free ultrafilter on N, Ao, the subalgebra of F~ ag) of all w-centralizing 

sequences and 5o, the ideal of Ao, of all sequences tending -x--strongly to zero along the 

ultrafilter w. Let No, be the von Neumann algebra Ao,/50,, see [3]. 

By hypothesis 0 preserves the trace on N so 0EIntA c and we may choose a 

sequence (wn} of unitaries with O=lim,~| Then since OfltO-l=Adutflt w e  

have 

lim Ad(wnflt(wn*))flt= Ad utfl t, tEF, 
n - - ~  oo 

so that the sequence {u*w,,l~t(w*)} is centralizing. Let Xt be the unitary in No, given 

by {u?w,,flt(w*)}. Then a calculation, using the fact that {ut*w~flt(w*)} is central, 

shows that t~'->Xt is a cocycle for the action fl on No,. But if h E N, 

uS w~/$h(w~*) = u~ wn ah w* a~ 

which tends o-strongly* to u$O(ah)a~=l by (2.5.7). Thus Xh=l for hEN.  But the 

action ~ o f F  on No, factors through an action of Q=F/N and the above condition shows 

precisely that {Xt} defines a cocycle for this action of Q. Moreover, we know, by [7] 

and [4], that the action of Q is free on No,. Thus, by [23], {Xt) is a coboundary, i.e., 

there exists a unitary YE)C'w such that Xt=Z*flt(Z), tEF. This means that if {z~} is a 

representing sequence of Z which consists of unitaries, then {z~} is ~o-centralizing and 

lim {z*flt(z.)- u* w. flt(w~} = 0 
n- - -~ to  

in the o-strong* topology. Hence, if we set yn=zn wn, then 

0 = lim Ad (y.), 
/ I  -.->r 
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u t = lim Yn flh(Y~ in the o-strong topology, 
n- - -*O 

where to conclude the last equality one uses the fact that lim,__,o,[ut, z*]=O. By 

choosing a subsequence of {y,) ,  one can conclude the existence of  a sequence {y,} in 

q/()r such that 

0 = lim Ad(y,) ,  u t = lim Ynflt(Y*n), t E F ,  
tl.---~ oo tl -.--~ oo 

as required. Q.E.D. 

Having proved L e m m a  2.5.6, we pick up the proof of 2.1.14. By formula (2.5.2), 

we define a map: 

I~.lO: 3, E ff{l'--)'~'t(Oy, O),(I.)~, x) Oh, y) ~ AutH (,Af), 3 , :  x - - - >  y. 

If 3,1E X: y--->z and 3,2E 5~: x->y ,  then 

(2.5.8) 

(%,, %, (Vh*~) Vh,~) ( %  O~(VL) Vh, r) = % ,  ~, O~, ~ (V~,~) Vh,~), 

so that cI, o is a homomorphism of  X into Autn  (2r 

The model action m also defines a homomorphism ~m:fff'-->AUtH(,A') via 

q)m(7,)=:r((ml,~,, 1)). By assumption, both the model action m and o transform the 

trace on 2r in exactly the same way, because both of them preserve a trace on 

d~=)C'| The two actions o r and mn,y are thus equal modulo Int(N). Therefore, we 

have, by (2.5.6), 

q~o(3,) - q~m0') mod n(Int  (Ag). (2.5.9) 

Thus, the cohomology lemma, Appendix, yields that there exist Borel maps 

W: 3' E 5g---> Wy E :r(Int (,/r and O: x E X = ~ ~  E :r(P) such that 

Let  

We then have 

W~, r = Or ~o(3,) 0"~ 1, 3,: X---> y. 

W~, = z((Ad (we),  { w r mh(w~,) } )) E :r(Int (if)), 

Ox = zt(Ox, {Uh,x}) E n(P).  

Ad(w~,)ml,~,= OyOyOff 1, 3,:X"->y; 

0 r m h 0~ -J = Ad (uh,~,) m h 
(2.5.10) 
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for a measureable field {Uh, x} of cocycles. By the hyperfiniteness of ~,  one can 

readjust {we} so that yE ~--~weE ~ becomes a cocycle for {me}. 

We set 

6h,~,=OyOh, yOx I, y:X.---~ y, h E H .  (2.5.11) 

It follows that the action b of H x  ~r is conjugate to the original action a and that 

Oi,y = Ad(wy)ml,e, y E X  
(2.5.12) 

r Ad(Wh,x)mh, h E H ,  x E X ,  

with 

Wh. ~ = Ox(Vh, x) Uh, ~. (2.5.13) 

It is easy to show that {Wh, x) is a cocycle for (mh}. The problem remaining is that the 

pair {wy, Wh,x} does not necessarily extend to an m-cocycle of H x ~ .  Note, however, 

that it does modulo scalars. In fact, since 

we have 

6l,vbh, xbi,y-- cSh, y, y:x--> y, 

(Ad (wy) m l, y) (Ad (Wh, x) m h) (m ~,1.~ Ad (w~) = Ad (Wh, y) m h, 

and since ~ is a factor, there exist scalars q~(h, y) such that 

wy mr(Wh, x) = q)(h, y) Wh,y mh(wr). (2.5.14) 

LEMMA 2.5.15. The funct ion  q~ on H x  Yf is a bicharacter on H•  :~, and hence gives 

rise to a Borel homomorphism p o f  Y~ into I:I such that q)(h, y) = (h, p(y) ). The cohomo- 

logy class o f  q) is independent  o f  the choice o f  the cocycles {wr} and {Wh,x}. In 

particular, it is an obstruction to the inner conjugacy o f  ~ and m. 

The proof is a straightforward calculation, so we leave it to the reader. 

LEMMA 2.5.16. One may choose the {Wh, x} in such a way that q)(h, y)= 1 i f  h E N.  

Proof. L e t e  and # be as in (2.3.17), i.e. mh=mh,x=Adah for hEN and 

my(ah) = (h, e(y)) ah, h E N ;  

ah ak = #(h, k) ahk, h, k E N.  

(2.5. tT) 

(2.5.18) 
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Since m and 6 have the same characteristic invariant, one may choose unitaries bh, x 
with 6h, x=Ad (bh, x), h 6_. N,  such that 

61,y(bh, x) = (h,e(~)) bh, y, y:x.--.* y; (2.5.19) 

bh, x bk, x - - I x (h ,  k )  bhk, x. (2.5.20) 

But Oh, x=Ad (Wh, x ah) , SO there are scalars {ch,x} with 

bh, x = Ch, x Wh,x ah. 

Since {Wh,x} is a cocycle, (2.5.18) and (2.5.20) imply that hv--->Ch,x is a character of N. 

Since lq=l?-I/N • one can choose a Borel map: xEX--->dxEI:I so that Ch, x=(h,  ex), 
h EN. Replacing wh,~ by (h, Px) Wh,x, which continues to be a cocycle, we will have 

bh, x =  Wh, x a h ,  h E N .  (2.5.21) 

We now have, for h E N, 

wym~,(Wh,x)  = wymr(bh,xah*) by (2.5.21) 

= wr mr(bh, x) w*w~, my(ah*) 

=61,y(bh, x) ~ w~,a'~ 

=bh, ywra '  ~ by (2.5.19) 

= (bh, yah*) (ah w~ah*) = bh, r a'~mh(wr) 

=Wh, ymh(Wy) by (2.5.21). 

SO, we have qg(h, ~')= 1, h E N. 

by (2.5.17), (2.5.12), 

Q.E.D. 

Lemma 2.5.16 shows that there exists a homomorphism p: yEX,--~N• such 

that 

q0(h,v)= (h,p(~,)), hEH,  VE~K. 

We now apply Theorem 2.4.7 in the form (2.4.13)--(2.4.15). Thus, we may choose a 

Borel function: X~Vx E Aut (~:) such that 

vyml,rVx t = Ad(zr)mi,  r, ~:x--~ y; 
V x mh,  x Vx I = Ad (Zh, x) mh,x, (2.5.22) 
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for cocycles {zy} and {Zh, x} such that 

z e ml, y(Zh,~) = ~ Zh,y mh, y(Zy). (2.5.24) 

We then set 

f w y -  vy(wy) zy, ~.x  y; 
[ W'h,.~ = Vx(Wh,~,) Zh,~,. (2.5.23) 

We are now ready to complete the proof of Theorem 2.1.14 as follows. First, (2.5.12) 

and (2.5.22) together yield 

Ivy ~l, Vx I = Ad (w'y) m~,; Y (2.5 . 2 4 )  
v~Oh,~uj -~ Ad(w~,~)mh, ~. 

Secondly, {w~, w~,.x} satisfies the formula: 

' ' ' (2.5.25) W e me(Wh, x) = Wh,y mh, y(WPe) 

by the following calculation: 

t n t 
W e my(wh, x) = W e mr(Vx(Wh,x) Zh,x) 

t t ! 
= [We me(vx(Wh, x)) we*'] [we me(Zh,x)] 

---- Vy(W r m l ,  e(Wh, x) W e We) Z r my(Zh,x) 

= cp(h, y) Vy(Wh, y mh, y(We) ) ( ~  Zh, y mh, y(Ze) (2.5.24) 

= "Vy(Wh,y mh, y(Wy)) Zh,y mh,y(Zy) 

= Vy(Wh, y )zh,y mh.y(i,'y(Wy)) mh, y(Zr) ( 2 . 5 .22 )  

= W'h, r mh, y(W'~,). 

W ~ Since {w~,} and { h.x} are both cocycles respectively for {mr} and {mh,x}, formula 

(2.5.25) finally shows that 
t t w'h,y = wymy(wh,x), ~: x--* y, (2.5.26) 

defines a cocycle for the action m of H•  ~.  Furthermore, (2.5.24) and (2.5.26) together 

yield the final conjugation 

'Vy 6 h ,  y 1 /x  i = Ad (w'h, e) mh, y. 

This completes the proof of Theorem 2.1.14. Q.E.D. 
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Chapter 3. Compact abelian groups 

w 3.1. Stable conjugacy 

As stated in Chapter 1, the problem of deciding when two actions of a compact abelian 

group A are conjugate will be broken into two parts, the first of which will be stable 

conjugacy: two actions ct and fl of A on the von Neumann algebras d~l and ~z  are 

called stably conjugate when the actions a| and fl| are conjugate on 

d~l| and d~2| respectively, where Q is the action t ~ A d u t  on 

~(L2(A)), {ut} being the regular representation of A, (ut ~) (s) =~(st) for ~ E L2(A). 

From now on G will be the dual of A, so that G is a countable discrete abelian 

group. 

PROPOSITION 3.1.1. Actions a and fl of  A o n  d~ 1 and gt2 are stably conjugate iff 

the dual actions ~t and fl of  G on JglXaA and ~2)<flA are cocycle conjugate. 

Proof. Suppose ct and fl are stably conjugate. Then there is an isomor- 

phism O:d/t1|174 such that O(tIt(~Qt) o - l = f l t @ Q t  �9 B u t  by [28] 

we know that a| and fl| are conjugate to the second dual actions of ct 

and fl respectively. Thus we may view 0 as an isomorphism 

O: (d~l)~A)>~ ~ G~--~(d~aA)>~G such that O~t t 0-1=/~r But this means that 0 sends 

the spectral subspaces of f onto those of/~ and we deduce the existence of an 

isomorphism O':d/tl)q~A~-~dt2)qaA and a fl cocycle {Vg} such that O'Ctg=Advg~gO', 

i.e. t~ and fl are cocycle conjugate. 

If c~ and fl are cocycle conjugate, it is easy to construct an explicit isomorphism of 

(d~ l ~aA)>qa G onto (d~2>q/~A))qgG conjugating the second dual actions. As above this 

means that a| and fl| are conjugate. Q.E.D. 

Definition 3.1.2. Let ~ be the set of all stable conjugacy classes of actions of A on 

von Neumann algebras ~ .  We define the dual invariant a(a) for an action a to be its 

stable conjugacy class. 

We want to use the results of Chapter 2 to parametrize ~ for actions of A on 

injective semifinite factors. For this we need to know two things. First that the crossed 

product is semifmite and injective, and second that the dual action of G on ~(~>~aA) 

is ergodic. The first fact follows from [5] and the compactness of A. The second follows 

from duality. 

We summarize with a theorem. 

17-848283 Acta Mathematica 153. lmpritn~ le 14 D6cembre 1984 
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THEOREM 3.1.3. Two centrally ergodic actions a and fl o f  A on semifinite injective 

yon Neumann algebras ~tl and ~2 are stably conjugate/ff0(a)=0(fl).  This condition is 

equivalent to 

(a) The actions ~ and ~ o f  G on :Z(./gl)~A) and Z(Jt2)4aA) are conjugate. 

(b) The characteristic invariants o f  ~ and fl are the same. 

Proof. This follows immediately from (2.1.11) and Proposition 3.1.1. Q.E.D. 

To enumerate all the cases covered by Theorem 3.I.3 would be tedious. So we 

shall make several comments. 

(3.1.4) Since the action of G on ~(./~)<laA) is ergodic, and by the classification in 

[5] of injective factors, g,t)4aA must be L|174 r where ~r is an injective semifinite 

factor and either 

(a) X = { I , 2  .. . . .  m}, 

(b) X=N 
(c) X=[0, 1]. 

m = l , 2  ....  

The possibilities for 2( are similar: either 

(i) Ac--'M,,(C), n= 1,2 ....  

(ii) Ac= ~(12(N)) 

(iii) 2r 

(iv) 2r (=~@~(12(N)). 

Any combination of X and 2r may be obtained by an appropriate choice of rig, A 

and the action a. If A is fixed there are restrictions. It is easy to imagine, but hard to 

spell out, what happens in the type In case. As Katayama noted in [17], cases (i) and 

(iii) are excluded if there is a sequence {t,} in A, t,--*id, such that at. is outer. 

(3.1.5) It should not be forgotten that the principal hyperfinite groupoid Y(can be 

of type III. This can only ocur in the combination (c), (iv) of (3.1.4). Even for actions of 

T on ~ the action of Z on the center of the crossed product can be of type IIIa for any 

2 E [0, 1] and any type IIIo action can occur. To explicitly construct such an example, 

take an arbitrary non-singular transformation T. The Radon-Nikodym derivative gives 

a homomorphism from the associated principal groupoid into R + whose effect may be 

neutralized by baking the appropriate trace scaling action of the groupoid on ~o, 1. This 

gives an action of Z on an algebra of the form M=L| 1])| i which preserves a 

faithful normal semifinite trace. The crossed product M>~Z is thus of type II= and 
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reducing the dual action by a finite projection in d~ gives the appropriate action of T on 

(3.1.6) There is already a well known invariant for abelian group actions: Connes' 

F-spectrum defined in [2]. It must appear somewhere in our scheme. Indeed by 

Theorem 3.2 of [2] the F-spectrum is the subgroup H of G defined in Chapter 2. It is 

thus part of the action of G on ~Z(d~;MaA). 
(3.1.7) Two actions may easily be stably conjugate without acting on the same 

algebra. For instance the action on ~ described in (3.1.5) is stably conjugate to the non- 

reduced dual action on ~0,1. 

(3.1.8) There are reasons for being interested in actions on factors. Here central 

ergodicity always holds but not all values of the characteristic invariant can occur. For 

d~ to be a factor is the same as for d~| to be one so by duality, those 

characteristic invariants occurring for actions on factors are determined by (2.1.10). 

That is the action tr described on M~, N must be ergodic. In general this condition is not 

easy to handle but in the case where H=G (the prime case of [24]), this condition 

corresponds simply to the non-degeneracy of the map defined by 2 from G to ]Q. 

(3.1.9) Closely related to stable conjugacy of actions of compact groups is cocycle 

conjugacy. The definition is the same as for discrete groups except that cocycles are 

continuous. Cocycle conjugacy implies conjugacy of the dual actions and hence stable 

conjugacy. The converse implication does not always hold. For instance, an ergodic 

action may have the same characteristic invariant as a non-ergodic one which implies 

stable conjugacy. But they cannot be cocycle conjugate since ergodic actions are stable 

([24]) and cocycle conjugate actions are actually conjugate. Stable conjugacy and 

cocycle conjugacy coincide when the fixed point algebra is large enough, e.g. for finite 

groups on ~ .  

(3.1.10) It may seem unsatisfactory that the invariants of the classification are 

only defined after forming the crossed product. In fact it is possible to define them by a 

close examination of  the spectral subspaces of the original action. One uses the Anzai 

skew product construction [20] to reconstruct the center of the crossed product and 

once this is done the characteristic invariant may be identified by examining the action 

of A on the relative commutant of  the fixed point algebra ~ a .  

(3.1.11) If A is finite, both A and fi, are discrete and we know by [14] that the 

characteristic invariant of the action itself is a complete invariant for stable conjugacy. 

This implies that in this case the characteristic invariant for the action and its dual 

determine each other. We leave it to the reader to work out the details. 

(3.1.12) The group structure of the characteristic invariant is reflected by the fact 
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that one may define an operation on stable conjugacy classes of actions, using the 

tensor product of two actions. If one restricts to actions having conjugate actions on 

the center ~ of the crossed product, and the same subgroup N as defined in w 2.1, this 

9roduct defines a group structure isomorphic to A(G, N, q/(M)). 

(3. I. 13) The ergodic case (Ata=C) was treated in [24]. In terms of the possibilities 

of (3.1.4), the only cases that can occur are (a) with (i) and (ii). The invariant of [24] is 

of course the characteristic invariant. When possibility (ii) occurs, the algebra At can 

actually be of type II. This is the case for some ergodic T 2 actions, e.g. the "irrational 

rotation algebra." 

(3.1.14) It is possible to identify the subgroup of A acting by inner automorphisms. 

It is related to the point spectrum of the action ~r of  A on ~ N defined in w 2.1. Indeed 

for actions on factors (i.e., o is ergodic) the subgroup is exactly the point spectrum for 

o. Typically it is not a closed subgroup of A, which is not too surprising since Int ~ is 

not a closed subgroup of Aut ~ .  

w 3.2. The inner invariant 

As in Definition 3.1.2 let ~ be the set of all stable conjugacy classes of centrally ergodic 

actions of A on injective semifinite von Neumann algebras. For each s E ~ consider the 

set of all von Neumann algebras At which admit actions a with a(a)=s.  For each such 

pair (s, d,t) choose some (model) action m of A on At with 0(m)=s. Let p be the 

projection fA 1 @utdt in Att~)~i3(L2(A)) where t~--~ut is the regular representation and dt 

is Haar measure on A. Let ~s,~ be the set of all projections in At~mA (which will be 

identified with the fixed point algebra for the action m |  on At| gt=Ad ut) 

of the form 0(p) where 0 E Aut At| The group of all such 0 which commute 

with m |  acts on ~s,~t. Let ~s,~ be the orbit space for this action. 

If  a is an action of A on At with a(a)=s,  there is an automorphism 0 of  

At~)~(L2(A)) with O(at(~ot)o-l=mt(~Qt . Since p is fixed by a| O(p)EJI~>~mA. 

Moreover if 0' is any other automorphism conjugating a| and m |  then 0-10 ' 

commutes with m| Thus the orbit of 0(p) in ~s,~ is well defined. 

Definition 3.2. l, If a: A-->Aut At is a centrally ergodic action of A on the semifinite 

von Neumann algebra At with O(a)=s, the inner invariant t(a) is the orbit of 0(p) in 

~s,~ where 0 is some automorphism conjugating aGO and m| 

PROPOSITION 3.2.2. Let a and fl be two actions o f  A on At. Then a and fl are 

conjugate i f f  a(a)=a(fl) and t(a)=t(fl). 
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Proof. The necessity of the conditions is obvious. 

Suppose c~(a)=a(fl)=s. Since p is a minimal projection in the relative commutant of 

~/|  a and fl are conjugate to the restrictions of a |  and fl |  to p~t| 
respectively (note that at| for tEA). But by the definition of t(ct), ff e and f a r e  

projections in ~s ,~  representing t(a) and t(fl) then ct and fl are conjugate to the 

restrictions of m|  to ed, t| and fd,~| respectively. Q.E.D. 

Theorem 3.1.3 and Proposition 3.2.2 together prove Theorem 1. 

In the spirit of  w 3.1, rather than trying to give an exhaustive list of  all cases, we 

shall make some illustrative comments. 

(3.2.3) If A is finite and M = ~ ,  we ought to retrieve the space of [14]. Let us 

describe how this happens. Let m be a model action of A on ~ and let w-~,Ua be the 

implementing unitary representation in the crossed product so that elements of ~)4mA 
are sums Et~AXtUt, xtE~. Then p=(1/IAI)~teaut and s is given by some element of 

A(A, N, T) for some subgroup N of A. The space ~p, m is the set of all projections in 

~)4mA which are equivalent to p via automorphisms of ~| Also if tr is the 

trace on ~ ,  the restriction of the normalized trace on ~i~| to ~)~,~A is given 

by Tr(EteAatut)=tr(ai). Thus ~v,,,, is the set of all projections q in ~)4,~A which 

satisfy Tr(q)= 1/I,4 I. We must decide when two projections e and f a r e  in the same orbit 

under the action of the group of automorphisms of ~ |  ~(LZ(A)) which commute with 

m| An obvious (normal) subgroup of this group is the group of inner automorphisms 

of  ~ , , , A .  Thus ~s.~ will be a quotient of the set of  equivalence classes of projec- 

tions e E ~)4,nA with Tr(e)=[a1-1. This set is a simplex whose vertices are indexed by 

minimal projections in the center of  ~ , , , A .  Other automorphisms of  ~ m A  are 

given by the dual action. Since the center of ~)4,~A can be identified with (C~,N) 6 

(see [14]), we conclude that ~s,~ is the quotient of a simplex by an action of Hi(N, T) 

coming from permutations of  the vertices. This ties up with [14]. 

(3.2.4) It can easily happen that the space ~s.a~ is reduced to a point. This is the 

case in the examples of (3.2.3) when (C~,N)~=C and more generally for prime actions 

with large fixed point algebras (see [16]). 

Appendix: Bures-Connes-Krieger-Sutherland cohomology theorem 

In his lecture notes, Sutherland states the following important result attributing to 

Connes and Krieger: 
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THEOREM. Let ~ be a hyperfinite measured groupoid, G a Polish group and Ol, Q2 

be Borel homomorphisms o f  ~ into G such that 

O~=Q2 modH, 

where H is a normal Borel subgroup o f  G and l;I means the closure o f  H. Then there 

exist Borel measurable maps h: ~,~--~H, P: X= ~~165 such that 

P2(Y) = h(v)P(r(Y))Pl(V)P(s(~/)) -I ,  yE ~, 

where r and s denote the range and the source maps o f  ~ onto X, respectively. 

Note, by definition a hyperfinite measured groupoid means a Borel equivalence 

relation @cX• where ~(~Uk~176 1 (4~ k and each (a k is a finite equivalence relation of type 

Ink in the sense that every orbit has precisely nk points. 

His proof uses however a lemma which requires a two sided invariant complete 

metric on the group G. Since we do not want to have such a restriction, we present a 

modified version of the proof. In fact, we do not need to change it a lot. Simply, we 

replace small positive numbers e and 6 by small measurable functions e(-) and 6(.) in 

Sutherland's proof. 

LEMMA 1. Let ~ (=~k) be a type In equivalence relation on X, and 01,02, G, and 

H be as above. Let  d be a complete metric on G compatible with the topology. I f  

x EX,--~e(x)>O is a Borel measurable function, then there are Borel measurable func- 

tions h: %->H, P: X.-->H such that 

(a) 02(~/)=h(y)P(r(~/))Ol(~)P(s(~/)) - l ,  ~E ~; 

(b) d(P(x), l)<e(x), xEX;  

(c) P--1 on some section for  (~. 

Proof. By assumption, we can choose measurable sets {A(j): O<<.j<~n - 1} such that 

X= O~._~ 1 A(j~ and each A(j) is a section for @. 

Set P(x)= 1 for every x EA(0). We then define h on s-l(A(O)) as follows: 

For 3,=(y,x)E @, xEA(0), consider 

H0') = {h EH: d(h-lp2(~)Ol(~) -1, I) < e(x)}. 

By assumption, H0') is a non-empty Borel subset of H for each 7,Es-I(A(0)). By the 

von Neumann measurable cross-section theorem, there exists a measurable function 

h: 3/Es-l(A(O))~-~h(7,). We remove a null set N from A(0) so that h is Borel measurable 
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on s - I (A(0) \N) .  Remove the saturation ~(N) of N from X and replace ~0 by 

~gN ( X \ N ) •  (X',,,N). Furthermore, if ~=(x, x), x E A(0), then we can choose h(y)= 1. We 

then have a Borel function h on s-~(A(O)). We set: 

P(y)= hOp)-tO2(~)Ql(~) -1, y=r(~) ,  ~/Es-I(A(O)). 

Now, P is defined everywhere in X and h is defined on s-l(A(O)) and 

P2(?) = h(?) P(r(?)) 01(~) P(s(7))-', ~ E s-I(A(0)). 

We then extend h to all of ~ in two stages: First, if ~,Er-I(A(0)), then 

?,-1Es-l(A(0)), so we set 

h(~) = P(r(e) ) O,(~) P(s(y) )- l h ( ~ -  1 ) - ' P ( s ( y ) )  e,(Y)- 1e(r(?) )- 1. 

Second, every y E ~  admits a unique decomposition y=~'1~2 where ~1Er-1(A(0)), 

~,2Es-l(A(0)). So we set 

h(~') = h(yl) P(r(~q) ) 01(~1) P(s(~q) )- 1 h(~z) P(s(~q)) 01(~')- 1p(r(~)) - 1. 

It is now routine to check that h and P have the required property. 

LEMMA 2. Let ~, X, QI, •2, G, N and e(.)>O be as in the previous lemma, and let h 

and P be as in the conclusion of  Lemma 1. Suppose that ~ (=~3k+1)~3 is a type Im 

equivalence relation. I f  6>0 is given, then there exist Borel maps k: ~->H, Q: X~-->l:l 

such that 

(a) Qz(y)=k(y) Q(r(y))ol(~,) Q(s(y)) -1, ~ E ~,  

(b) ~y)=h(y), ~,E~, 
(c) d(Q(x),e(x))<~, x E X .  

Proof. Let {A(j):O<~j<.n-1} be as in the proof of Lemma 1; we assume that 

P(x)---1, xEA(0). 

Let ~o=~klA(O)=~N[A(O)xA(O)]. For each xoEA(0), we have only finitely many 

x's such that (x, Xo) E ~g. Set 

B(xo) = {g E G: sup d(P(x) pl( X, Xo) gOl(X, Xo)-I ; P(x)) ~ ~ } 
( x,x o) E 

eo(X) = dist (1, B(xo)) > O. 
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It follows that eo(" ) is a measurable function on X. Throwing a saturated null set away 

from X, we may assume that eo is a Borel function on X. We apply Lemma 1 to ~o and 

eo to find Borel functions Qo: A(0)~/9 and ko: ~go~H such that 

O2(Y) = ko(y) Qo(r0')) 010') Qo(s(y))- 1, ~ E ~o; 

d(Qo(y), 1) < eo(y), y EA(0). 

For every (y,x) E ~,  there exist uniquely yo, xoEA(O) such that (Y, yo), (X, Xo) E ~d 
and (yo, Xo) ~ ~ we then set, for every (y, x) E ~,  

k(y, x) = h(y, Yo) P(Y) OI(Y' Yo) ko(Yo, Xo) el(Y, Yo)-IP(Y) -I 

XP(y) Ol(y, Yo) Qo(yo) Ql(yo, xo) Qo(xo) -~ h(xo, x) 

XQo(xo) ol(Yo, Xo) -1 Qo(Yo)-lol(Y, Y0)-IP(Y)- I ; 

Q(x) = e(x) ol(x, x o) Q0(xo)Ql(x, Xo) -Z . 

We note that Q(xo)=Qo(xo) for xoEA(O). Furthermore, (y,x)E ~ if and only if yo=xo, 

so that we have, by a direct computation, h(y, x)=k(y, x) for every (y, x) E ~. Hence k 

extends h. Also, another direct computation shows that 

~)20 p) = k(y) Q(r(7)) O ~(7) Q(s(y))- 1, y E ffC. 

Finally, we have, since d(Qo(xo), 1)<e(xo), 

d(Q(x), P(x) ) = d(P(x) Ol(x, Xo) Qo(xo) pl(X, xo) -1, P(x) ) < 6 

as required. Q.E.D. 

Proof of  the theorem. Let ~=Uk~lc~k, 01,Q2, G and H be as in the theorem. 

Applying Lemma 1 first and then Lemma 2 inductively, we find sequences of Borel 

maps hk: ~k~H, Pk: X~-->/-it such that 

(a) O2(Y) = hk(y) Pk(r(7)) P l0') P,(sO'))-l, 7 E ~3k; 
(b) hk+l(~)  = hk(~), ~E ~gk; 

(c) d(Pk(x),Pk+l(x))<2 -k, xEX.  

Set h(7)=hk(~) for 7E (gt,. By (b), h is well-defined and a Borel function. Set 

P(x)=limk_.o~Pk(x), which exists by (c). Again P is a Borel map. From (a), we get 

~)2(~) = h(~}) P(r(~,)) O ~(~) P(sO'))- 1, ~ ~ q~. 
Q.E.D. 
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