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1. Introduction

Let g, be a semisimple Lie algebra over the real numbers. Let g,=f,® D, be a Cartan
decomposition. Suppose that f, contains a Cartan subalgebra of g,. In [7], [18] a family of
representations Wp , of g, was constructed. These representations were shown to be in-
timately related with Harish-Chandra’s discrete series [10] for connected Lie groups with
Lie algebra g, in [16], [18] (see also [4]). In this paper we extend the construction of the
W5, a to the case when f, does not necessarily contain a Cartan subalgebra of g,. The Wp 4
constitute the fundamental series of the title of this paper. We then begin an analysis of
these representations and give two different characterizations of them. In [5] a criterion
for the irreducibility of these representations will be given. Using the irreducibility criterion
and a certain exact sequence (generalizing the Bernstein, Gelfand, Gelfand resolution of a
finite dimensional representation), a new proof of Blattner’s conjecture for the discrete
series will be given in [6]. In [8] we will show that the representations W;_, are equivalent
to the analytic continuation of the fundamental series of representations as defined in [11].
Using the irreducibility criterion of [5] a new proof of the irreducibility of the fundamental
series (in the sense of Harish—Chandra) will be given. In [8] we will also lay the ground-
work for the determination of the composition series for the analytic continuation of the
fundamental series (cf. also [17]).

We now give a more detailed description of the contents of this paper. Let g and f

denote respectively the complexifications of g, and f,. In sections 2 and 3 the results of

(*) Research partially supported by the Institute for Advanced Study and NSF grant
MPS 72-05055 A03.
(2) Research partially supported by NSF Grant MPS 71-02650.

1—772907 Acta mathematica 140. Imprimé le 10 Février 1978



2 T. J. ENRIGHT AND N. R. WALLACH

[7] and [18] are extended to the case where g and f do not necessarily have the same rank.
Actually, just as in [18], only certain properties of the pair (g, ) are necessary for the
construction of sections 2 and 3 (these are given in section 1).

The main result in sections 2 and 3 is given in Theorems 3.2 and 3.3 and is described
as follows: Let [, (resp. §j) be a Cartan subalgebra of f (resp. g). We may assume that
§,<=h. Let Af (resp. A) denote the roots of (f, ;) (resp. (g, §)) and fix an admissible positive
system P of roots for A (see § 2 for the definition of admissible). Let P¢ be the corresponding
positive system of roots for A¢ obtained from P and let ¢y denote the unique element of the
Weyl group of Ag such that £,- Py= —P;. For each dominant integral u in §) (the dual of
§y), let V# denote the irreducible f-module with highest weight u. We can now define the
fundamental series of representations. Assume that A€Y* (dual of §) is such that A=
to{A]g, +0f) —0¢ is Ps-dominant integral. Then there exists an admissible g-module Wp

with the following properties:

(i) dim Homg (VA, W, 5)=1

(ii) If w€hy is Prdominant integral and if Hom (VE, Wp A)=3={0}, then g =21--Q]g,
where @ is a sum of elements of P.

(iii) The f-component of W, , corresponding to V4 is g-cyclic for Wy A

(iv) @', the centralizer of f in the universal enveloping algebra of g, acts on the V-
component by the scalar action: x+>np A()Id for x€(f, where 7, o is a homo-
morphism of G into the complex numbers (see Theorem 3.2 for the definition of 7, A).
The modules Wj , all contain unique maximal proper submodules M, A and we set Dy 4
equalto Wy A/Mp . The modules W,  are called the fundamental series of representations.
The dependence is on two parameters, the admissible positive system P and the linear
functional A in §* subject to the condition that 4 =£y(A |5, +0¢) — 0t is Pr-dominant integral.
The first characterization theorem is actually a theorem about the unique maximal quo-
tients Dy 4. This result (Theorem 3.3) asserts that within the set of equivalence classes of
admissible irreducible g-modules the equivalence class of D; 4 is uniquely determined by
the condition:

If M is an element of the equivalence class, then there exists a nonzero element 4 in
Hom; (V#, M) such that G acts on A(V2) by the formula

x| avhy =np, a(2)Id, 2€G' and 7, 4 as defined in Theorem 3.2.

In section 4 a resolution of g-Verma modules is given in terms of certain modules in-
duced up from ¥ to g. This resolution is then used in sections 5 and 6 to prove two results.

The first asserts that most of the modules Wj 5 possess a certain universal mapping prop
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erty. In order to be precise, more notation is necessary. Let p be the orthogonal comple-
ment to fin g with respect to the Killing form of g, and let P be an admissible positive
system for A which gives Py. §j, acts semisimply on p and thus for any u €§7 let p[u] denote
the p weight subspace of p. Set p+ =2 g P[f|5.]. Now if 1€y, then 1 is said to be strongly
Pr-dominant integral relative to P, if A and Ay are Pr-dominant integral for all weights
nof Apt (A denotes the exterior algebra). Note that this condition is a type of “sufficiently”’
regular condition with respect to the compact roots and also that it depends on the choice
of P. Let M be an admissible g-module, and let A€§} be Pr-dominant integral, then M is

said to have V* as a weak minimal f-type relative to P if

(i) There is an element A in Homg (V24, M) such that M = G- A(V*).

(i) If B€P and p=p|p, then Homy(V4i-k, p-A(V4)){0} (here p-A(V?*) denotes
the f-submodule of M spanned by elements of the form z-a, x€p and a € A(V4)).

(iii) dim Homys (V4, A(VA) +p- A(V4))=1.

The universal mapping property (Theorem 6.2) asserts that if M is an admissible
g-module with weak minimal f-type V2relative to P and if A is strongly Ps-dominant integral
relative to P then there exists A€f* such that 2=f,(A|y, +8;) —0: and a surjective g-
module homomorphism from W, , onto M.

The second result in section 6 (Theorem 6.3) gives a classification of the modules
Dp A in terms of a somewhat different minimal f-type criterion. Let P be an admissible
positive system giving Ps and let A€} be strongly Ps-dominant integral relative to P.
Assume that M is an admissible irreducible g-module such that Homg (¥4, M)=={0} and
Homy(V4~#, M) =0 where u = |y, for all € P with p[u]=4={0}. Then there exists A €}j* such
that y(A |y, +06) —d¢=A and D, , is isomorphic to M. An obvious corollary worth stating is
the following multiplicity-one theorem: Assume that 4 is strongly Pr-dominant integral
relative to the admissible positive system P. If M is an admissible irreducible g-module
such that Homg (V2, M)=={0} and Homy (Vi~#, M)={0} where u=§|y, for all B€P with
p[p]=={0}, then dim Home (V4, M)=1 (i.e. ¥* occurs with multiplicity one in M).

Although the intent of this paper is to construct and study the properties of certain
admissible g-modules, one. interesting result about g-Verma modules naturally emerges.
For a€P; let f, denote the a weight space in f relative to f), and set ne=2.cp f,. If L is
any ty-module set L' equal to the submodule of L of elements u such that 1y-u = {0}. L't
is called the subspace of nginvariants. Assume as above that P is an admissible positive
system of roots for A which gives Ps. Set p~=2,cp [ —a|p] and let S(p~) denote the
symmetric tensor algebra of p—. For any A€h* let Vy p o denote the g-Verma module
with P-highest weight A. In section 5 (Theorem. 5.15), we obtain the following result:
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Assume that A=ty(A|g +0r)—0¢ is strongly Pr-dominant integral, that u €hY is Py
dominant integral and that r is an element of the Weyl group of Ay, then

dim (Vg, p, )" [r(u +06¢) —8¢] = dim S(p~) [7(p +0¢) — (A |5, +64)].

2. Structural preliminaries

In this section, we introduce a class of pairs (g, f), where g is a semi-simple Lie algebra
over € (the complex numbers) and f<g a reductive subalgebra, which will be studied
throughout this paper. The pairs (g, ¥) will include the pairs of the introduction (see Lemma
2.2).

Definition 2.1. Let g be a semi-simple Lie algebra over C. Let < g be a reductive sub-
algebra of g. Then { is said to be regular in g ((g, f) is said to be a regular pair) if the follow-

ing two conditions are satisfied:

(a) Let =¥ be a Cartan subalgebra of f. Then Cy(f,) ={X€g|(X, §;]=0}=bh is a
Cartan subalgebra of g.

(b) Let §;, ) be as in (a) and let A be the root system of (g, §). If hr={H €h|a(H)ER
for all €A}, then hr N f; =(h;)r is a real form of §,.

LeMwma 2.2. Let g, be a semi-simple Lie algebra over R. Let g,=f,®y, be a Cartan
decomposition of gy with Cartan involution 6. Let my® a,®n, be a parabolic subalgebra of g,
with Langlands decomposition as indicated (in particular, 0y< Py, Omy=11y and 1, s the
unipotent radical). Set ug=(my N ) Da,. If g is the complexification of g, and if 1 s the

complexification of u, then (g, u) is a reqular patr.

Notes. 1. gg=11,, ag=(0), 11y=(0) is a parabolic subalgebra of g,.
2. If w; < u,< g, g a semi-simple Lie algebra over € and u;, j =1, 2 reductive subalgebras
and if (g, 11;) is a regular pair, then if rank 1, =rank 1u,, it is clear that (g, 1) is a regular

pair.

Proof. Let §, be a Cartan subalgebra of m, so that §, N ¥, is maximal abelian in m, N f,
and 00, =0,. Let §, =0, Nf, by =0, N po. Now, §, =0, +a, is a Cartan subalgebra of g,
and §),=Y, ®Y; D ay. Also, if ), is the complexification of ), @ a,, then ¥ is a Cartan sub-
algebra of u. Let §j be the complexification of §,. Let A be the root system of (g, §). Clearly
hr N B, =1h, @ a,. Since i), @ q, is clearly a real form of §;, it is enough to show that Cy(h,;) =
§. For €A, let g, < g be the root space. If X €g, then X =h+J,en X,, X, €g,, h€DH. If X
is also in Cy(B,) then if X, ==0, «(f);) =0. Thus it is enough to show that if « €A, then «|5,+0.
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If a|g, =0, then g, <m (m is the complexification of 11,). Since a(}) +=0, we see that a(f;)=+-0.
Hence g,<[m, m]. Since «();) =0, we may choose Y €g, N my, ¥Y==0. Now Y +0Y €m,nt
and [h,, Y +0Y)=0 (this is because 6Y €g_,). But then ¥ +6Y =0 and §, +R(Y +07)
is an abelian subalgebra contained in i, 0 f,. Since §, is maximal abelian in my N f,, we
have a contradiction. This completes the proof of the lemma.

For the remainder of this section, we fix g a complex semi-simple Lie algebra and
fc g a reductive Lie subalgebra of g so that (g, f) is a regular pair. Fix §j; <f a Cartan sub-
algebra of f and set §j=Cy(l),), a Cartan subalgebra of g (see Definition 2.1). Let hr and
(h1)r be as in Definition 2.1.

Let A be the root system of (g, 1)) and let A be the root system of (£, §);). Set W =W(A)
(resp. W= W(Ay)) the Weyl group of A (resp. Ay).

Definition 2.3. A system of positive roots, P, for A is said to be admissible if (f,)5; =
{h€(b,)r|B(R)>0 for all BEP} =D,

Lrmma 2.4. (i) There exists an admissible system of positive roots for A.

(ii) If P is an admissible system of positive roots for A and if Py={a€A¢|a=p]q, for
some BEP} then Py is a system of positive roots for Ay Furthermore, all systems of positive
roots for Ay can be obtained in this manner.

(iii) If s€ Wy, then there exists a unique €W so that 5, =1, and §|p, =s. We will abuse
notation and identify Wy with a subgrowp of W. That is, we write s for §.

Proof. Let (§,)r=10, N fr as usual. Set () ={h€(f;)r|x(h) =0 for all x€A}. (a) and
(b) of Definition 2.1 easily imply that (f,)g is open and dense in (§;)r. Let k€ (§,;)g. Set
P={B€A|B(h)>0}. Then P is a system of positive roots for A and %€ ()} (see Definition
2.3). This proves (i).

To prove (ii), we fix P an admissible system of positive roots for A. Let 2 € ()5, (see
Definition 2.3). If Pr={a€A¢| there is fEP, B|s,=a} then Pr={x€A|a(h)>0}. If
« €Ay and a(h)>0, then if BEA is such that |y =«, then B(h) >0, hence SEP. This says
Py={a€As| a(h) > 0}. Therefore, we see that Py is a system of positive roots for As.

If P; is a system of positive roots for Ay, let C'={h€(f),)r|a(h) >0 for all € P¢}. Then
C is open in (§;)r. Since (f;) is open and dense in (f),)r, we see that (f,)x N C=+D. Fix
he(®)rNC. Let P={a€A|a(h)>0}. Then Ps={a€As| there exists fEP so that |5 =o}.
This completes the proof of (ii).

Let Adg (g) (resp. Adg (f)) be the group of automorphisms of g generated by the
automorphisms of the form exp (ad X), X €g (resp. X €f). The map Ad, (f)—~Ad; (¥) given
by g+>g]: is clearly surjective. Thus if s€ Wy, there exists g € Ad, (f) so that gh, =0, and
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glp.=s. Now, C4(h;)=1. Set §=g|g. Clearly g-h<l). Then §EW and 3|y =s. If s}, s,€ W
are such that s;|p,=s, i=1, 2, then s3's, |y, =I. But then if P is an admissible system of
positive roots for A, s;'s; P=P. Hence s;'s, = I. This proves (iii).

If M is a g-module (resp. N a f-module) and if w€§* (vesp. »€5T) set M(u) (resp. N[»])
equal to the u (resp. v) weight space for M (resp. N) relative to § (resp. §j,). If M is a g-
module, it.is clearly a f-module by restriction and we have:

Myl= > M(u) (2.1)

uep*
#lg, =

If A€l* we denote by Vy p, o the g-Verma module with highest weight A relative to P.

Lemma 2.5. Set V="V, p 5. Suppose that P is admissible.

(i) If v€T, then dim V[y] <co.
(ii) If v=Alg,, then dim V[»]=1.

Proof. Let hy€(h,)r be such that «(h,) =1 for all « €P; this is possible since P is admis-
sible (see Definition 2.3). By (2.1) we know dim V[v]=uep« dim V(u). Since dim V(u) <
=

oo, we need only show that there are only a finite number of y€§* so that V(u)=30 and
ulp,=v. If V(u)=+0, then g=A —@Q with @ a sum of elements of P. Thus, if V(u)=40 and
plo,=v, then A(hy) —u(hg)=A(hg) —v(hy) and A(hg) —u(ho) =Q(ko). This says that the
number of elements of P in the expression of @ must be bounded by A(h,) — (k). This
implies that there are only a finite number of such Q. If »=A |5, and if g €)* is such that
u=A—-Q, @ a sum of elements of P and y|p, =», then Q(hy) =0. Hence @ =0. We have thus
proved the lemma.

Let ¢ denote the universal enveloping algebra of g (we will also sometimes use the
notation U(g)). Let G% denote the subalgebra of elements of G that commute with §,.

Let P be an admissible system of positive roots for A. Set tt=1=>4ep g, Set 1~ =n_p.
The Poincare-Birkhoff-Witt theorem (P-B-W) implies that if U(})) denotes the universal
enveloping algebra of f) then G=U(})® (n=G + Gn). Let @ G— U(}) be the corresponding
projection. Since P is admissible, it is easy to see that @p: G"—U(}) is an algebra homo-
morphism (argue as in, e.g., [3], 7.4.2 Lemme). If A€fj* we can thus define @y o: GH—0C
by @p . 4(9) =A(@(g)). (Here A also denotes the extension of A to U(f).)

LemMaA 2.6. Let P be an admissible system of positive roots for A. Set V=V, p 5. If
g€ Gh, then 9| v =@p, alg) Id.

Proof. The result is obvious if we note that G"< U(§)@® Gn (cf. [3], 7.4.2 Lemme).
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The following lemma will be quite useful in the next section. The argument used in
its proof is due to Nasaki Kashiwara. It was used in the context of the next section by
Donald King in a seminar at M.I.T. We are grateful to Michele Vergne for having pointed
it out to us. A simple proof of this lemma has also been given by Kostant using the Ore
condition satisfied by universal enveloping algebras. We give the Kashiwara proof since

it is quite elementary.

Lemma 2.7. Let a be a Lie algebra over C, and let b < q be a subalgebra of a. Let M be an
a-module. Set M, = {m€M | there exists b€ U(b), b4=0 and b-m=0}. Then M, is an a-sub-
module of M.

Proof. Let {Uy(b)} denote the standard filtration of U(b) (that is, Uy(b) is the sub-
space of U(b) spanned by m-fold products of elements of § with m < N).

(a) dim Uy(b) = (N:_ T) where r=dim b. This is a simple consequence of the Poincare—

Birkhoff-Witt theorem.

(b) Uy (b)a—aU(b).

We prove (b) by induction on N. It is clear if ¥ =0. Suppose true for 0 <N —1. Let
Xy oo Xy€b and let Y€q. Then X, ... X, Y =YX, ... X,—>F, X, ... [Y, X} ... Xp. Now
by the induction hypothesis X, ... X, ,[Y, X,]€aU,_;(b). Thus X, ... X, ,[Y, X;] X, ...
Xy€alU,; 4(b). Uy_y(b)<aUy_,(b). This proves (b).

Using (a), (b), we prove the lemma. We note that it is enough to show that if X €aq,
m€M, and N is large, then dim Uy(b) Xm, <dim U (b). But dim Uy(b) Xm <dim Uy(b)a-
m=dim a-Uy(bym. Since m€MY, there exists u,€U,(b) so that wu,==0 and wu,-m=0.
If N>j, then Upy_;(0)-uecUy(d) and Uy ;(b)uy-m=0. Hence dim Uy(b)Xm<

dim q-(dim Uy(b)—dim Uy_;(6)). But dim UN(E)):(N ;”’) @) (N 7). (N+1)=

1/r! N"+lower order terms in N. dim Uy_;(b)=(1/r!) (N —j,)" +(lower order terms in

N —jo)=(1/r!) N"+-lower order terms in N. This implies that dim Uy(b) Xm is dominated

by a polynomial of degree at most+ —1 in N. Thus, if N is sufficiently large dim U, (b) x Xm <

dim U (b). Q.E.D.
3. The modules W, ,

In this section we extend the construction of the modules of [7], [18] to the case where
the ranks of f and g are not necessarily the same. Many details are proved in exactly the
same way as the equal rank case. For these details the reader is referred to [18].

Let (g, f) be a regular pair (see Definition 2.1). Let §j,<¥ be a Cartan subalgebra of
£, [ =04(h,) is then a Cartan subalgebra of g. Let A and Ay be respectively the root systems
of (g, 5), (£, §). We fix P A an admissible system of positive roots (see Definition 2.3).
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Let P; be as in Lemma 2.4 (ii). Then Pt is a system of positive roots for ¥. Set 8¢ =32 ye Py O
If sE Wy, AEHT set s'A=s(A+Jf) —&r. We also recall (see Lemma 2.4 (iii)) that Wy can (and
will) be identified with a subgroup of W. Let t,€ Wy be such that t,Py= —Pr. Then —t,P
is an admissible system of positive roots for A.

If uehi (resp. A€Y*) and Qs Ay, (resp. Q< A) is a system of positive roots for A;
{resp. A). Then Vy, opu (resp. Vg o, 5) denotes the Verma module for f (resp. g) with highest
weight 4 (resp. A) relative to Q¢ (vesp. Q).

Returning to Py and P, we will use the notation Vy, Pn= V,oand Vg _ip a=M4.

As is well known (see [3], Theorémé 7.6.6, p. 237), dim Homy (V,,,, V,,}=0 or 1, and
if A€Homy(V,,, V,,) then A is either zero or injective. If A€} and A is Pr-dominant
integral, then Homjg (Vy;, V;)==(0) for each s€ Wy Furthermore, there is a partial order
on the Weyl group, Wy, (depending only on P) so that Homg (Vg s, Vi1)==(0) if and only
if s, <s, (see [3], § 7.7 and Theoréms 7.7.7, p. 253). We recall the definition of the order on

Wy 1f s€ Wy we define I(s) as the minimal number, #, of Py-simple reflections, s,,, ..., s;

4
so that s=s; ... s,. If 5, t€ Wyand y €P¢ then we say s — ¢ if s=s,¢ and I(s)=I(t) +1.
We say that s <t if there exist s,, ..., s,€ Wyand y,, ..., 7, € P so that

§=8, e $ Ve Vs S,=t.

We make our first notational convention:

Convention 1. If  is in B} and if there exists s € Wy so that §'4 is Pi-dominant integral,
then the notation V, will denote the subspace {Av|A4 €Home (V;, V1), vEV,}.

With this convention we see that if 4 is Pi-dominant integral and if s;, s, € Wy, V< Vi
if and only if s, <s, (the inclusion is both set theoretic and module theoretic).

Let G (resp. X) denote the universal enveloping algebra of g (resp. f). Let
A€YT be Pe-dominant integral. Then V,.,= ¥, for each s€ Wy. Set U, ;=(G®xV;. Let
1:GQuVy1>G®xV;=U, ,; be the canonical inclusion corresponding to V.,=V,. Set
U, =i(GRxVs )< Uy ;. Then we see that Uy, ;< Us, 5 if 8 <s,.

Fix A €%* so that A g, =t1. There is a canonical, surjective, g-module homomorphism
GRxViai>Mpo=V, _ira given by extending the isomorphism between Vi, and the
X-cyclic space of the highest weight vector of M. Let I’y be the kernel of this homo-
morphism. Set I, =j(I})< Uy, ,< U, ; for all s€ Wy

Set M, o =U, /15 for each s€ Wy. Then we have:

(I) If s, <s, then M, <M, 5. (Notice: all our inclusions are set theoretic and module

theoretic.)
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(II) j(l@ Vs'},) +IAC MS,A is f~isom0rphic with Vs'l' Set Bs=](l® Vs’l) —I—IAC MS.A'
Hs,€Wy, i=1, 2 and s; <s, then B, < B,,. Finally, M, ,=G- B,.

This is proved in exactly the same way as the analogous result in [18].

Set M, p={m€M, 5| there exists u € U(n-), w0 so that u-m =0}. Here 1= = ,¢t, G-
Then M; , is a g-submodule of M 4 (Lemma 2.7). Set W, A =M, »/M;, . From the defini-
tions, we see that if &1 M; o~ W, , is the canonical map, then Ker ¢| M, A =M. +. A. Thus we
can (and do) identify W, 5 with &(M, 5)= W, 5. We have

(TIT) If s, <8, then W, 2= W, 4.

1t is not hard to see that if A;=¢(B,), then

(IV) A, is isomorphic to V. ;. If s, <s,, 8,, 5,€ Wy then 4, < 4,,. Finally, W, , = G- 4..
The following are also clear.

(VY HweW, 5 and u€U{n~)—{0} then u-w=0 implies w=0.
(VI) W,, o is G-isomorphic with M 4. (This follows since M,, o =M , hence M, , =(0)).

The next result shows that properties (III), (IV), (V), (VI) of the W, 5 completely

characterize the Wy 4.

TrEoREM 3.1. Let A €4* be such that to(A |y,) =2 is Pr-dominant integral. Let {Z};ew, be
a family of g-modules satisfying the following four properties:

(i} For each s€ Wy there exists an injective homomorphism oy Vg ,->Z, so that Z =
G-V

(ii) If x€Py i3 Pr-simple and if s€ Wy is such that s,s <s then Z; < Z (as a submodule)
and o, Visgora) < ag( V)

(iii) If a€Pyts Pesimple and of X €t_, (the —o root space for (£, 0,)), X =0, then the
action of X on Z, is injective.

(iv) Zy,=MA=Vg _tr. 5

Then there exist bijective g-module isomorphisms g W a—Z,, s€ Wy such that if s and

a are as in (ii), then B, ,=B,] Wy, A" In particular, B,=p|w, ,-

Proof. Using (i) and the universal mapping property of the tensor product we see
that there is a surjective homomorphism 7: G®xV,—>Z, given by t(g®v) =g, (v). Since
Uy2=G®xV; we have v: U, ;—~Z, a surjective homomorphism. Using (i1}, we see that
©(Us,5) =Z, for each s € We. In particular, 1(Uy, o) =Z;,. Since Z,, = M 5 we see that Kerz> 1.
We, therefore, find that we have a surjective homomorphism, u: M, ,--Z,. Furthermore,

w(M; A)=Z for each s, and u: M, 52, is bijective.
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Set for each s€ Wy, Z;={z €Z,| there exists u € U(n~) —{0} so that u-z=0}.

(A) Z;=(0) for each s€ Wy,

To prove this result we need a bit of notation. Fix for each a€P, X__€f_, X _,=-0.
Set z,=a,(vy;) where v, is a non-zero highest weight vector for ¥V ;. If s€ Wy and if
a € Py is Py-simple and if I(s,s) =I(s) +1 set 2{s'A+ 8, o [{x, &) =7, then n.>0 and X" v, ;=
2 for some constant ¢, é==0. (Here we use our convention.) Thus X’imzs:czsas, for
some constant, ¢, c30. This implies

(a) If o and s are as above and if z€Z,, there exists m >0 so that X",2€Z, ;.

(iii) implies that if 2==0, then 2”,2==0. We prove (A) by induction on I(t,) —I(s).

If Uty) —Us)=0, then Z,=Z, =M ,. Hence Z;=(0). Suppose that we have proved (A)
for all s€ W with 0<I(t,) —I(s) <m and that l(t,) —I(s) =m. Then there exists « € Py, with o
Prsimple so that I(s,s)=I(s)+1. Thus I(¢,) —I(s,s)=m 1. If 2€Z; then Xﬁazez%s for
some p=0, p€Z. Hence X? 2 EZ;"‘S (Lemma 2.7). But the inductive hypothesis implies
that Z; ;= (0). Thus X7,z =0. Hence z=0. We have proved (A).

(A) implies that Ker 4> M, 5. Hence u induces a surjective g-module homomorphism
p: Wy a—Z, and as before we see that (W, ,)=Z,.

To complete the proof of the theorem we need only show that f is injective. We prove
that B|ys o is injective by induction on I(t,) —I(s). If I(t,) —I(s) =0, then s =ty and W, o=
Z;,,=M 5, and since S(W,, A)=Z,,, we see that /3|Wta. , is injective. Suppose that we have
shown that f|y, , is injective for 0 <I(ty) —I(s) <m. If I(ty) —I(s) =m, choose a € Py, o simaple
in Pgso that (s, s) =I(s) +1. Let z€ W _,, suppose f(z) =0. Let p >0, p €Z be so that X .z€
W;_s, a (this is possible since the W, A satisfy (i), (ii), (iii), (iv)). Then p(X?.2) = X", f(z) =0.
But then the inductive hypothesis implies X? ,2z=0. Hence z =0. The proof of the theorem
is now complete.

If p€f} is Pi-dominant integral, set V# equal to the irreducible f-module with highest
weight u. (The realization we use of Vuis V,/>cc1 Vo) If m is a non-negative integer,
we use the notation m V# for any f-module isomorphic with the direct sum of m copies of V.

In light of the results of this section and those of § 1, the following theorem is proved

in exactly the same way as Theorem 2.4 of [18].

TaeorEM 3.2. Let A€Y* be such that A =1t(A|y,) is Pr-dominant integral. Set Wp s =
Wl,A/Z$<1 Ws,A‘

(i) As a f-module Wp o =2, ma(u) V , with 0 <my(u) <o and mx(u) €Z, the sum taken

over all Pr-dominant integral u. Furthermore,

(a) ma(d) =1



REPRESENTATIONS OF A REAL SEMISIMPLE LIE ALGEBRA 11

(b) If my(u)3=0 and pu==A, then there exist B, ..., §,€EP (not necessarily distinct) so that
pu=2A+plo+ . +Buls.

(ii) Let G denote the centralizer of Yin G. Let jp, o =Q_¢,p. 5| gt (GI< G%, see Lemma 2.6).
Then looking upon V* as a t-submodule of Wp 4 (see (i) (a)), the action of Gt on V* is given by

glvt =np, alg)1d
for g€ Gt
In general, the modules W 4 are not irreducible. Let My o be the sum of all g-sub-
modules M < W, 5 such that Homg (V4 M)={0} and set Dp 5 =Wp o/Mp . The argu-
ment which yields Theorem 2 in [7] now proves:

THEOREM 3.3. Let A€G* be such that 2 =1y(Aly,) is Pi-dominant integral, then Mp, 5
18 the unique maximal proper submodule of Wp 5 and thus Dp 5 is @ non-zero irreducible
g-module. Within the set of equivalence classes of ¥-finite trreducible g-modules, the equivalence
class containing D, A is uniquely determined by the condition:

If M s an element of the equivalence class, then there exists a mon-zero element A in
Homy (V2, M) such that Gt acts on A(V?) by the formula

| acvty = 17p, A (%) Id
for x€ G

4. Resolutions of Verma modules

The purpose of this section is to prove the existence of an exact sequence of g-modules
whose last term is a g-Verma module and whose other terms are induced modules from a
Borel subalgebra of f. We will use this exact sequence in § 5 to give an analogous resolution
for most W, . In particular, we will see in § 6 that for A “sufficiently regular”, W, , has
a universal mapping property.

We will use the following lemma several times in this section.

LemMa 4.1. Let a be a Lie algebra over C and let b< o be a subalgebra. Let M be an a-
module and let N be a b-module. Let M’ denote M as a b-module. Define j: U(a) ® pg(M' Q@ N)—
M (U(a)DueN) by

jla®@men)) =a (me(1Qn))

fora€U(a), meM =M’', n€N. Then j is a surjective isomorphism of a-modules.

This lemma seems to be well known. However, the only proof of it in the literature is

in [9], Proposition 1.7.
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We now use Lemma 4.1 to give a slight generalization of the relative homology resolu-
tion of € (see B-G-G [1)]).

LemMA 4.2. Let a be a Lie algebra over C and let m<a be a subalgebra. Let P: a—a/m
be the natural m-module projection (m acts on a and a/m by the restriction of ad). If A€a*
and Alg,q=0, let C; denote the corresponding one-dimensional a-module. Let A|y—=2 and
let €, denote the corresponding one-dimensional m-module. We define

&a: U(@) @ (Ma/m)®C) — Ula) @ (A (a/m)@C;z)

) v
as follows: If a€U(a), Xy, ..., X;€a/m Y, €a so that PY ;= X, then
A@RX; AL AXRT)
i

i

(- D)"Y, — AT)DRX, A AX AL A XL

1

+ 3 (—1*aQP[Y, YIAX A AX A A XA L A XL

1<r<sgj

Then 8, is a well defined a-module homomorphism. Furthermore, if g=dim a/m, then the

following sequence of a-module homomorphisms is exact

0—— U(@) ® (A(am)@C;) —2 U(a) ® (1 am)@C)

uam vem
6A 8A 6A €
—— ... — U(0) ® (a/m@C;) —— U(a) ® C;——>C,——0 (4.1)
uam) uany
here e(a®1)=A(a).
For each non-negative integer j, set U,(a) equal to the subspace of U(a) spanned by 1
and all i-fold products of elements of 6 where ¢ <j. For negative infegers j, set U a)={0}. Then

or any integer j = —g, the following sequence is exact:
ger ) ng seq

oA
0 —— Uj(0) ® (A(a/m)QC;) ——

o)

1 aA aA €
Ujri(0) ® (AT Ham)Q@Cy) —— ... —— Ujpola) ® G ——Cp ——0 (4.2)
Um) e
Proof. In [1] it was observed that the sequence (4.1) with A =0 and hence 4=0 is
exact. The same technique also shows that sequence (4.2) is exact when A =0. Now for
0<i<g, let J;, » be the bijective homomorphism from U(a)® yam(A}(a/m)®C;) onto
(U(a) ® gy (a/m)) ®CA given by Lemma 4.1. Now tensoring an exact sequence with the
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finite-dimensional module €, yield another exact sequence. Thus for any integer = —g,
we obtain the exact sequence:

J_;_ll' 3@1 ng_
0—— U,(0) @ ( A(afm)@C;) a2 0D don |

uam

Jo a0 (0,&@1) 0y, 5

P
Uyolt) G ——CL ——0

U

Set 94 equal to J; 4 40(8,®1)0d; o. A straightforward computation shows that ¢, is
given by the formula in the lemma {(note that it is sufficient to check the formula on the
subspaces 1® Al(a/m)®C;).

We now return to the notation of § 3. That is, (g, f} is a regular pair. Let §j;, § =Cy(b,),
A, A; be as in § 3, and let P be an admissible system of positive roots for A, Let P; be the
corresponding positive roots for As. Set be=0;, + > .. Py b

Set p=F* relative to the Killing form of g-¥ N f=(0) by the definition of regular pair.
Set hy={X€p|[h;, X]1=0}. Then H=0, @b, As an f)-module p=[,@®> 1.0 P[Al, (P[A]=
{X€p|[H, X]=MH)X for HENR}). Set Pi=Duec_sr ] hil®hs Set 1=1nc t,p Gu-
Hence by=0; ®ne (ne=2ser L) and let b=h@n. Then b=0r@p;,. Clearly [by, p;]1< by,
Let 7i: b—;, be the corresponding be-module projection.

LEMMa 4.3. Let A€l and st Mp=Vg _ypa. Let A=to(Alg). Define 0,:
GR uwp(N i ®@C52) — GOuap(N ™' P, @Cy2) as follows: Eaxtend A to b by A(n)=0.
If g€ G, X,, ..., X;€p;, then

IAgRX, A ... A X,R1)

i

(—D"M g X~ AXNRX A AKX AL AKX

1

+ > (—1" 9@ X, XA X A LLAXA L AKX AL AXRL
1gr<s<sy

Then 0 is a well defined g-module homomorphism. Furthermore

(i) M, is g-isomorphic with
G ® C;2/05(G © (p, ®Cy2)),
Ty

Udp
(ii) The following sequence of g-module homomorphisms is exact (m=dim Jy,)

B 8A 8A 6A €
0——=GO(A"P;,®C3) —— ... — G ® (P, ®Cy) —— G Cyy—— M ——0,
Ulbp Ubp) U(bf)

here & is the projection onto M 5 identified as in (i).
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Proof. We note that as a bg-module p,, =0b/br. Let @: b—1b/bs be the corresponding
projection.
Let m =dim ; =dim b/b; and let

8A aA
0 ——U(b) ® (A™(b/b)®C;2) — U(6) ® (A" (b/b) @ Cyz) — ...

U(ﬁf) U(Bf)
o
—— U() @ (5/6® ;1) —— U () ® €5 —— Cx——0 4.3)
Uty Uthp)

be as in Lemma 4.2. (Here b plays the role of a and b that of m.)
Tensoring (4.3) with G=U(g) over U(b) and “‘cancelling” the U(b)’s which appear

twice gives

R R
0——G @ (A™b/b)®RCyp) — ... —— G ® ((b/b)®Cy;3)

U(bf) U(bf)
Oa
—GR®CH——GRC=M,——0 (4.4)
Ubp U

The formulas for the @, are as before (with the obvious change of coefficients from
U(b) to G).

Now identify b/by with p; as a bp-module and note that (4.4) remains exact since
G is a free U(by)-module under right multiplication. This completes the proof.

For 0<i¢<m set N, ;= J{@U(bf)( A ps, ®Cyz). (Here K =U(f) the universal enveloping
algebra of {.)

Then G® vep(A' s, ®C57) = G x Ny,,i. We can rephrase Lemma 4.3 as:

LeMMma 4.4, There exists an exact sequence

on N an R
0- Q®Nt.,‘m ’g@Nt.,,m—l"‘_ ’---”—’Q®Ntu,1 >
x x x

GRVys——>Mpy——0 (here V= Vi pptia=Ni0)-
X

Let Gy=Clc G, < G, < ... be the canonical filiration of G (G, is the subspace of ¢ spanned
by § or less products of elements of g). The following lemma is an easy consequence of the
definition of the 0.

LeMMA 4.5,
(1) 0A(G; (1®N,i) < G1f(1® Ny, i1) for j=0,1, ...
(ll) aAZ 1®Nto.i—> gl.(l ®Ntn’ikl) 18 injecti'ue.

Note. Gy (1®Ny, ;-1) as a I-module is isomorphic with N¢ ;1 & (MW ®Ny,.:-1) f acting on
p by ad.
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5. Resolutions for the W ,

In this section we show that if A is sufficiently regular, the resolution of Wy, 5 can
be lifted to a resolution of W o for each s€ Wy This in particular will give a new defini-
tion of the W, 4. In order to carry out the lifting of resolutions, we need a few more results
about f-Verma modules (g, f, §;, § as in §4).

If M is a f-module and v €0 set M[v]={w€M |h-w=v(h)w for all E€Y,}. Set M=
{w€M|ny-w=0} and set M [y]=M"tn M[p). Set as usual V, = Verua

LEMMA 5.1. Let v €BY and suppose that V, is irreducible (this is equivalent to dim V,i=1 ).
Let F be a finite dimensional t-module. If €07 then

dim (V,® F).}[u] < dim F[y—v].

Proof. Put a lexicographic order on (fj,)i which gives Pr as the positive roots. Let
f1s s 1 be a basis of F so that f,€F[£,] and & >&,> ... &, If v€(V,® F) t[u] then v=
>iiv,0f; and v, €V [u—&] Let iy be the largest ¢ so that v;4=0. If «€P¢ and X, €f,,
then

0=X,v=3 X,v,@fi+2 v,@Xsf

We note that for each i, X,f,€>,<; Cf; where i’ <7 and &, >&;+a.
Let A€ V. Then

0= (A®I) (Xzzv) :Z A(Xavi)fi_l_z }‘(vi)XaLfi'

Therefore, we see that if J is the set of indices j so that &,=&,, then 2, ; A(X,v,)f;=0.
Since the f, are linearly independent, we see that A(X,v;)=0 for j€J, A€ V;\. This implies
that for each j€J, «€Ps, X, v;=0. Let 1, be the fundamental generator of V,. The ir-
reducibility of V, now implies that v;=c;(v)1,. This implies that &,=u —». Set ¢q(v) =
Dtimuy GO) fi=2jer¢5(¥) f;. Then ¢: (V,® F)nf[,u]—>F[y —v] is linear and injective.

Set 1y =2 e Py o

LemvMma 5.2, Let 2 Ef)f be Py-dominant integral. If s € Wy we have by convention Vo ., S V5.

Let F be a finite dimensional f-module and assume that u €Yy is Py-dominant integral. Then

(@) dim (F® Vy.;) s p] =dim (F® V)" [u] =dim Flu—1]

(i) If r, s€ Wy with r>s, then there exists an element d, () in U(ng ) depending only on
i, 7 and s which induces a bijection from (F@ Vy.) [ -] onto (F@ Vy.;) s ), and

({iii) If r, s€ Wy with r>s, then dy-1,1(u) induces a bijection from (F® V,,.,l)nf[lu] onto
(F& V1) [(sr1) - w). Also the dimension o these spaces is dim Flu—r'-1].
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Proof. We first note that if s€ Wy, if « is a Py-simple element of Py and if I(s,s) =
I(s) +1, then there is n >0, n €Z so that X2, 1., =cl o1, 40 (here 1, denotes the canonical
generator for V,). Thus under this condition if w€E F® V.;, then there is m€Z, m=>0 so
that X", wE€F Q@ Vs, oya-

Using this observation we see that if s, s, s are as above, and g is as in the statement
of the lemma and if » =2{s'u+ &, o> /{a, &) then

X (FQVea)t[sul > (F® Vs, s2) "t [(525) 1]
is injective. We, therefore, see (by recurrance on this result) that
dim (F@V,)"t[u] < dim (FQ V)" [s'u] < dim (F® V)"t [fo u] (6.1)

for all s€ W and u€Yf, Pr-dominant integral.

Now Vg, is irreducible. Thus Lemma 5.1 implies dim (F® Viz)"(fopul<
dim Flty(u —A)] =dim F[y —A]. Also dim (F® V,)"[u] =dim F[yu — 4] since u is Pi-dominant
integral (we leave this to the reader, it follows easily from 7.6.14, p. 241 of [3] and infinites-
imal character considerations). But then dim F[u —A]<dim (FQ V. ;)"t[s'u] <dim Flu ~1]
for all s€ W¢ by (5.1). We have thus proven (i).

To prove (ii), we choose for r>s and u Pydominant integral the unique ele-
ment (up to scalar multiple) of U(ny), d; ,(u), so that d; ,(u)-1.,=1s, Then d, (u)
(F@V, )" u]< (F & Vy 1) .

Now it is clear by the proof of (i) that

i) (F @V )t p] = (F@ Vi)t )

It is also easily seen that d, (u)d, (u)=cdy, (u) for some ¢==0. Thus if W=d, (u)(F®
Vo)t r'ul, we see that dy, (u)(W)=(F® V)"t u]. But then d;, (u)(FOV1)"t[s'ul=
dy,. () (W). Since dy, () acts injectively on F®V,, we see that

W = (F@Vya)"t[su).

This proves (ii). A similar dimension argument proves (iii).

LeMmaA 5.3. Let N be a finite dimensional by-module which is semi-simple as an b,-
module. Let N =3, N{u] (N[u]is as usual the u-weight space for N relativeto ;). Set =42 ze py o
Suppose that there is a system of positive roots Q¢ for As so that if N[u]=0, then {u+ 8, oy >0
for all w€Qs (@ vs not mecessarily Pr). Then K@ vy N splits into a direct sum of Verma mo-
dules V, each counted with multiplicity equal to dim N{u].
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Proof. Using the exactness of the tensor product over U(b) we see that X® viopV
has a composition series
XRXIN=M,>M,>...o5M;>Ms,,=(0)
U(bf)
where M/M; =V, i=1,..,d and the number of ¢ such that u,~pu is exactly equal
to dim N[u]. Let 7, be the infinitesimal character of ¥, for u€h7. Then we see that

K®uvwpN=M,=2 (M,),, the sum over all w€h} so that N[u]=+0. Here (M), is the
subspace of M, where if 2 € Zy, the center of X, z—7,(2) acts nilpotently. Next we show:

(@) If py, pa€BF if N[uJ=0, i=1,2 and if u,=Fu,, then 5, +7,,. If 7, =7, then
fo =51, for some s€ Wy Thus p,+0=s(u, +0J;). But y,+J; and p, +J¢ are Qe-dominant.
This implies p, =u,.

(a) implies:

(b) If y;=u, then (Mj)n,,=(Mj+1)ﬂ,"
() If p;==p for j=>1, then (M), =0.

Using (b) and (c), we see that (M,),, has a composition series H; > Hy> .2 H,2 Hyiy =
(0) with H,/H,; ,=V , and ¢ =dim N[u]. But then dim H,[y] =g, and u is the highest weight
of H,. Hence 1y H,[u] =0. But then X-H,[u] is a sum of q copies of V, since H,/H;,, =V,
1<i<q, X-H,u]=H, and H,[u] contains a basis of vectors which are linearly independent
over the ring U(n; ). From this we see that the sum mentioned above must be direct. The
lemma now follows.

We now assume that (g, f) is a regular pair. We let ), ), A and As have their usual
meaning. Fix P< A an admissible system of positive roots. Let Pt be the corresponding
system of positive roots for As.

Let p be the orthogonal complement to f in g relative to the Killing form of g. If
wE€DY let plu]={X€p|ad h-X =u(h) X, h€l,;}. Then p[0]=Y, in the notation of § 4 and
5 =0,®0,. Let P, be the set of w€YY, u=PB|s, BEP and p[u]=0 counted with multi-
plicity equal to dim p[u]. Set p+ =2 p[u] the sum over all §|g,, BEP.

Let A €h* and suppose that fo(A |5,) =2 is Pr-dominant integral.

Definition 5.4. 1 is said to be strongly P-dominant integral relative to Pif A and A —p
are Pr-dominant integral for all weights y of Ap+=>, AV p+.

Lrmma 5.5. Let Ny, ; be defined as in the material preceding Lemma 4.4. Suppose that

A is strongly Py-dominant integral. Then
2 — 772907 Acta mathematica 140. Imprimé le 10 Février 1978
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Nit=2®Vio-w

»

the sum over all weights, u, of A'(§,®p+) with u multiplicity equal to dim A{(H, @ p+) [u].

Proof. This is an immediate consequence of Lemma 5.3 (use Qs =1tyP;= —P).
In what follows, we will use two more notational conventions in addition to Conven-
tion 1 of § 3.

Convention 2. If N is a fmodule and M <N is a f-submodule, then we identify
G®xM with its image inG® 4 N.

Convention 3. When an arrow is not labeled it will be an inclusion in the sense of
Convention 1 or 2. (In particular, it corresponds to a set theoretic inclusion.)

Let yy, -, ftr, 0<i<m equal to the weights of A*(h,@p*) counting multiplicity (in
particular, r;=dim A*(f),@p*)). Then Lemma 5.5 says that

T
N 2 @ Vi
i=1

We assume that A€§*, and 1=to(A|g,) is strongly Pr-dominant integral. We then have
for each s€ Wg, 1 <t <r,,

Via-uy < Veti-py-

Set N, ,=>:1® Vyu_uy. We identify Ny, with 3 %; Vio uy. Then we have N, ;< N,
for each s€ Wy Also if 7, s€ Wrand r<s, then N, ,c N, ..

LreMMA 5.6. For each s€ Wy and 1 <i<m, there exists a unique Y-module homomorphism
dp: Ny =Gy (1QN, ; )SG®xN, ;_y so that if r<s, r, s€ Wy the following diagram com-

mules

da
Ny, —— g1 “(1®N,,;-1)

| W]

Nr.i ? gl‘(1®Nr.i—1)
(see Convention 3).

Proof. Set dy,,(v)=0,(1®v) for vEN,, ;. Using Lemma 4.5 (and the note after it)

and Lemma 5.2, we have for each 1<j <,
iy, sA—p7) (G Q@ N, 1))t [s' (A — )] = (G A @ Nip1-1)) " [t0(A —))-

In fact dy, (1 —u;) gives a bijection between these two sets.
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Let dy o Vsu_,ly.)-* Gi1-(1®N, ;_,) be defined so that

(@) diy,s(A— ;) d.o Vs'(/'l—/ui))“f ["(A—p)l=da,4( Vt;(/l—uj))nt [to(A —u;)] and
(b) The restriction of dy s from Vya_, to Via-pp is the original d, ,, restricted to

Vt;(1~u,->-

From this we get

dA,s: Ns,i g gl' (1 ®Ns,l—1)

and (a) and (b) guarantee that

dA,s
() Ny —— G- (1N, 1)
1\ dA,to ]

Nt.,,i I Ql ‘ (1®Nto,i—1)

commutes for all s € Wy, and the maps d, ; are injections.
Suppose now that r <s, s€ Wy. Using the fact that d;, (A —u,) =cds, (A —1))* d,. (A — i),
¢==0, we see that

dp,s(Ns ;) 2 dp, o(Ny ) 2 dp(Ny,,5).

If veN, ;, there is u€U(ny), u=+0 so that u-v€N, ;. Thus if vEN, ; then dy s(u-v)=
dp.i{u-v) by (c) and dp,(u-v)=da ¢ (u-v) by (c). Hence u-dy, (v) =u-d,. .(v). But u acts
injectively on G®xN,,:2 GROxN:,;® GOxN, ;2 GOxNy,; for each ¢. Thus dj 4(v)=
d.{v). An identical argument shows that d,,, is unique.

We can thus set dy =dj,,, and dj | N5 ;=@A.s- The lemma now follows.

Define for each 1<¢<m, a g-homomorphism 0,:
o7 GOxN,, i ——GOxNsi-1
by letting 8, be the canonical extension from N, ; to G®yN, ; of the {-homomorphism
da:Ne i~ Gy (1®N, ;).

Set B, ; 3=G®RxN, ;. We can now state the main result of this section.

THEOREM 5.7. Let A€W, A=t(Alg,), and assume A is strongly Py-dominant integral.
Then
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(i) W, A ts equivalent as a g-module with

Es.o,i/aA(Es.l,i)
for each s€ Wy
(ii) Identifying E; g ;/05(E;q.2) with W, A then the following sequence is exact

8A BA aA &
O—HE&,,,_# > L, 1,4 ES,O.A Ws,A 0

Here e: By ;> H, o 1/0A(E; 4 ;) 15 the canonical map.

(iii) For each ¢, 1 <i<m, r <s, the following diagram is commutative

oa
Es.i.l > g 1,2
{ [ (5.2)
o

Er,i,/l > dy,-1,2
and this diagram induces the inclusions among the W 4.

Note. The E, , ; depend only on 4, the 8, depend on A.

We will need two simple lemmas for the proof of Theorem 5.7.

Levmma 5.8. Let V be a d-dimensional vector space over C (d < <o), and let A€End (V) be
nilpotent. Let W be a vector space over C, and let BE€End (W) be surjective. Define C: V@ W—
VW by Clo@w)=Av @w-+v® Bw. Then C is surjective.

Proof. By induction on d. If d=1, then 4 =0, and the result is clear. Suppose that
d>1, and that the result is true for d — 1. Then AV == V. Hence there is a subspace V;
of V so that V> AV and dim V,=d—1.

AV,< V,. Hence the inductive hypothesis implies that (V@ W)V, W. If v€V
and w€W, then w=Bu, u€W. Clr®@u) =Av®@u+vQ@w. Since 4vEV,, v@w€Im C. Since
the v@w, v€TV, wEW span V@ W, the lemma follows.

LEMMA 5.9. If 2€0T and if «€Ps is such that 2{4, «p[{x, &) = —n, n>0 n€ZL, and if
Xef,, X0, then X is surjective on G®uwyCa-

Proof. Let v,=1®1€ G®u@,Cs. Let Y €L, be so that [X, Y]=H, a(H)=2. If a=
CH+€CX 4 CY then U(a)vy=W is the Verma module for q with highest weight —=. It is
easy to see that X acts surjectively on W. Let U (g)< U,,4(g) be the standard filtration of
U{g). Let X act on U(g) by X -u=[X, u]. Then X-U,(g)< U,(g) for all j and X is a nil-
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potent transformation. Clearly U;(g) v,< U;1(g)ve and UjZe Uy(g)vy=G®uey €y Let X
act on U,;{g)® W by the tensor product action. Then Lemma 5.8 implies that X - (U,(g)®
W)=U,(3)® W.Butify(g@w)=gw,g € U(g), wE W, thenp(X - (§@w)) =Xgw. If w € G& vvp C;,
then w€U;(g)v, for some j. Hence u=y(h), h€U,(g)@W. h=X hh,€U,;(g)®@W. Thus
u=p(X-hy) =Xy(h,). Hence u€Im X. Q.ED.

We now begin the proof of Theorem 5.7. We note that the first part of (iii) is obvious
from the definitions. If v€E,  ;, then there is w€U{ny), »==0 so that w-v€ K, ; ;. The.
sequence at the f, level is exact, hence if { >2, 0= &3 (u-v) =u- 84 (v). Now u acts injectively,
hence &% (v) =0. This implies that the sequence

oA on oA
0 Es.m,i. Es.m~1,1—“" _‘—"Es_g,/l (53)

is a complex.
Let my=I(t,) = | Pt]. We prove the exactness of (5.3) by induction on I'(s) =mq—1(s).
If I'(s) =0, then s=¢;, and the sequence is exact by Lemma 4.4. Suppose that (5.3)
has been shown to be exact for 0 <I'(s) <p. Let s€ Wy, I'(s) =p. Let « be a Pg-simple root
so that I(s,s) =I(s)+1. Thus I'(s,s) =p ~1. We have the following commutative diagram

61\ 3A aA
O—— Egmy ——Esp 11— —...— By
[ ] (5.4)
6A 6A aA
O—“—>Es“s,m,l——_‘> SeSMA T e, T Esas,o,/l

with the bottom row exact.

Let a=f,+f ,+[f,, t,). Then E,;;/E, ;2 consists of a-finite vectors. Fix X, €¥,,
X_,€t , so that [X,, X_1=H, and «(H,)=2. Set L=a+br. Then & is a parabolic sub-
algebra of f. Let N, ; be the 8-submodule of N, ; generated over £ by the canonical genera-
tors of the Verma modules Vyu-uy, ¢S 1, ..., #; (see the definition of N, ;). Then N, ,isa
direct sum of g-Verma modules.

There is a natural isomorphism as g-modules between
GRuplN,,; and GRul,;=Es;,
Set M ;= G, U(L). Then as an g-module
M; Qug Ny =88/DRF,

(here S*(V) is the ith homogeneous component of the symmetric algebra on V and S,(V) =
Zi<i SHV)).
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From this we see, using Lemma 5.2, that

(@) If v€E ;; and Hyo=—(n+2)v, X,v=0 for some n=>0, n€Z, then there is
v, €E, ; ; so that X" 1o, —=v and H, v, =nv,, X, v, =0.

Using the a-finiteness of any element of K, ;;/E; s ; 1, the top sequence in (5.3) will
be exact if we can show that if v€E, ; ;, H,v=nv, n20, n€Z, X,v=0 and 9,v=0, then
v=20w for some W€K, , , ;.

To prove this, we note that if X"}'v —u then H,u= — (n+2)u, X,u=0and u€ B i
Furthermore, 9,4 =0. The exactness of the bottom sequence of (5.4) implies that u=
Oawy, wi€E 5541, We may assume H,w;= —(n+2)w;. Now 0p(X,w,)=X,0,(w;)=
X,u=0. Thus X, w,=0,z, 2€E, 50,2 Lemma 5.9 implies that X, acts surjectively on
Esas,i+2,l- Hence z=X,2,, 2, € ES“S.Hz.z- We may assume H z=—nzand H,z; = —(n+2)z,.
Set wy=w; —952;. Then X, wo=X, w, —X, 042 =X, w; — 0, X2z =X, w, —042=0. Thus
H,wy= —(n+2)w,, X,w,=0. But then (a) implies w,—X"%'w with w€ K, ;. ; Hw=
2w, X,w=0. But now we see X"3'ow=X"'». Hence X" (8w —v)=0. Since X_, acts
injectively, ow—=v. We have, therefore, proved the exactness of (5.3).

We next prove that if W, 5 =E; o 1/07(Es1.2) then W, 4 is isomorphic with W, ,; in
the course of the proof of this, we will also prove the last part of (iii).

We note that W, ,=M,=W,, . We prove by induction on ¥'(s)=I(t,) —¥(s) that
Woa={w€W, | there exists u€U(ny)—{0}, u-w=0} is (0). If I'(s) =0, then s=t, and
the result is proved. Suppose that s€ Wy I'(s)=p and the result is known for 0 <I'(f) <p.
Let o be a Pg-simple root so that I(s,s)=1I(s) +1. Then I'(s,s)=p —1. The commutivity of
the diagram (5.2) implies that there is a homomorphism

Y Wsas,A s A

so that
aA 3A &
> Alg1,3 Es,o,i. WS.A 0
A
- Esas, [ R Eszs, 0,2 Wsas,A 0 (55)
0 0

commutes, the rows are exact, the unlabeled arrows are (as per our conventions) inclusions.

If weW, . 4 and p(w) =0, then w=s(w,), w, € By s 0,1 and w, = (w,), w, € By ; ;. There is
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n>0, n€Z, so that X", w,€H, ;;; Hence 9,(X”,w,)=X", 0 wy=X",w,. But then
0=¢(X2,w,) =X",w. The inductive hypothesis implies w=0. We, therefore, see

(b) y: W5 o> W, 4 is injective.

Using the fact that every element of ;g ;/E; s.0.1is a=F,+F o +[f, f_] finite, we
see that W o/p(W, s A) consists of a-finite vectors. Let X,, X_,, H, be as above.
Suppose that w€ Wi A, w0, We may assume H,w=mw. Let Xlw=0, X% =0,
Set wy=Xiw, n=(m+2g). Then H,w,=nw, and X,w,=0. Then wy€ W; 5. If = is not a
non-negative integer then w,€p(W._, »). But y is injective. Hence wy €p(Ws s a) (Ws. 4 is
a g-submodule of W, ,). But then w,=0. Hence we may assume n>0, n€Z. There exists
w € B, ; s0 that How,=nw,, X,w,—0 and g(w,) =w,. X5 w, € B, 0.2 and (X2 w,) €
ta5. 2 ={0}. Using (5.5) we see that X" w; =0, (w,), w, € By s,1.2. We may assume H,w, =
—(n+2)wy. Now 95(X,wy) =X, 05(wy) =X, X5 w; =0. Thus X, w,=04(ws), ws€ B 52,2
and H,w,= —nw;. Using Lemma 5.9, we see that w; = X, w, with w,€ H; ;2 1 and H,w,=
—(n+2)wy. Set ws=wy—0Os(w,). Then X, ws-—=X,wy—X,05(w,) =X, w,—24(Xwy) =
X, wy—Op(w,)=0. Using (a) above, we see that wy=X"1'w;, w;€W,,,; and H,w;=
nws, X,ws;=0. But then 2,(wp)=X"%'w, and 0,(ws) =X"1'0a(w;). This implies that
X2 wy —0x(w;)) =0. Since X_, acts injectively on E,,; we see w,=0d,(w;). Hence
&(w,) =wy=0. This contradiction completes the induction.

We have proven

(¢) M u€U(n;)— {0} then u acts injectively on each W , and if s€ Wy, 2 € Py, o simple
in Prand if I(s,s)=1(s) +1, then the natural g-module homomorphism 4: Ws“ wAa>Ws s

injective.

Set Z, =Wy, 5 and for s€ Wy let 9 W, o~ W, A be the homomorphism coming from
the commutative diagram 3. Using the fact that if v€ B, , , then there exists w € U(ng ) — {0}
80 that u-v€E,,; and the fact that W 5 —(0) for all t€ W we see that v, is injective. Set
Zy=yp(W,,). If r, s€Wy and r<s then arguing as above, there is a g-module homo-

morphism y, ,: W, A~ W, . Using the commutativity of the following diagram

8A €
B B0 Wia 0
.
8A &
Es,l,/'l Es,o.l Ws.l O

T

Er.l.i. ET,O,}. Wr,l 0




24 T. J. ENRIGHT AND N. R. WALLACH

we see that y,oy, , =y, Hence if r<s, Z,=Z, It is now clear that the family {Zs}SEWt
satisfies (i), (ii), (iii), (iv) of Theorem 3.1. This completes the proof of Theorem 5.7.

The result stated as Theorem 5.7 is not the strongest possible. Since the fj, weight
spaces of the modules E ; ;, $€ W, 0<¢ <m are infinite dimensional, in order to compute
the dimensions of any special subspaces of W;, 4, it will be useful to have a filtered version
of Theorem 5.7. For any non-negative integer j set §, equal to the subspace of § spanned
by 1 and all ¢-fold products of elements in g with ¢ <j. For negative integers j set G,={0}.
G,< G4, and this family of subspaces will be called the standard filtration of §. For any
integers ¢, j with 0<¢<m and any s€ Wy, set E., =G, X®xN, ;. Let 1 denote the
symmetrizer map and if 4 is a vector space set S(4) equal to the symmetric tensor algebra
of 4. For any integer k set S,(4) equal to the subspace of 8(4) of all homogeneous tensors
of degree k and then set S%(4)=>o<;<i S;(4). Since G; X=XG,, El.1is a f-module
and in fact A®1 gives a f-module isomorphism from $/(p)® N ; onto E; ;. We now prove
the filtered version of Theorem 5.7 for s =¢,.

LemMmA 5.10. Let A€Y*, A=ty(Aly,) and assume that 1 is strongly Pe-dominant integral.

Let § be an integer with § > —m. Then the following sequence of T-modules is exact:

7 A i+ 1 aA aA i+m ¢ j+m
O—— K, p1— Bl 1.2 Eiros Wi A >0

where Wi is by definition the tmage of EL'G ;.

Proof. Set i, =0o3® Jactor PL— 5], Dty =2wetr Ploc|s]. As usual for any integer
1, 1<i<m=dim p;, let Ai{(p;) denote the elements in the exterior algebra A(p;) of
degree 1. For ¢=0set A'(pg, ) =C, the trivial b-module. For ¢ =1 define a map 2 from S(p)®
AY(pi,) into S(p) by extending linearly the map f®x+—> -, with - denoting multiplication
of symmetric tensors. If m >¢>2, then define a map also called @ from S(p)® A'(py) to
S(p)® A'"X(pz) by extending linearly the map f@x, A ... A x> D1 cii =1 2,02, A L.
A& A ... Nz, where fES(D), z;€p;; and " denotes omission of the term. It is well-known,
[2], that the maps 0 are all br-module homomorphisms, 62=0, and the following sequence

is exact for any integer j, j = —m:

) 7 17 i 0 £
0 —— S(H)® A™(pg) —— ... —— 85" () O, 877(p) 87 "(py,) ——0

where we identify b, with p/b; and ¢ is the algebra map which extends the bi-module
projection p—p/p;. If v€Y, then let C, be the one-dimensional module for b corresponding

to v. Now tensoring C, with the above exact sequence yields another exact sequence of
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br-modules., Now tensor the resulting sequence on the left by X over the ring U(by) and
note that since X is a free U(bg)-module under right multiplication, we obtain the exact

sequence:

1®e ) 1®e
0—— K& 8P A"(p) R0, —— K & § (D) A" (b ) QC,—— ...

Utbyp) U(bp)

1®¢
—— K Q8PRC,—— KR §"(p,)®C,— 0

Uity Uty

For any integer 4 with 0 <i <m let @ be the f-module homomorphism from X ® U(Bt)Sj PM®
A(pi)®C;. o into B} ;; which extends the br-homomorphism of S(pY® AHby)®Cea
into B2 given by f@e®@1—Af)®uppe®1€G;X@uey N(Pa)©Cq.2. Now Lemma 4.1
asserts that K@ uvepS'(P)® A'(pg) ®Cs.a is f-isomorphic with (b)) ® K@ vep A'(P) ©Cs.2
and hence isomorphic with Ej ;; From the definition of the map we see easily that ® is
surjective and hence in fact an isomorphism since the [}, weight spaces of both image and
range are finite dimensijonal and these dimensious are equal.

For integers i, j with 0<:i:<m set Dj;— K@ uppS(P)® A(py)© 0.2 and Uy=
J{@U(bf)S’(pto)@)Ct'. 1 We now have the following diagram which does not commute:

A 0 0 , e )
0 Bl —s =2 g, wisn 0
® @
] 0 0 ! )
0——> Dl ; ——...—— DI Ui 0

By comparing the definitions of &, and @ on generators, we find that the following diagram
is commutative
i j—1 §A EA i+m i+m—1 3 j+m j+m—1
0 —— Bl m il Bloms— .. —— B S B G ——— Wi WERT ——0

1] P

0 DLlDh} — o s DEPIDEF —— UEUES ——0
(here the — denotes the induced map). The lower sequence is an exact complex and all the
maps D are f-module isomorphisms which implies that there exists a f-module isomorphism
from UF™UF™ ' to WiR/Wim 1 which gives an equivalence between these two
sequences and thus the top sequence is exact. It now follows easily that the sequence of
the EJ, i 2 must itself be an exact complex. This completes the proof.

Using Lemma 5.10 as the starting point then the arguments which prove Theorem 5.7
give the following filtered version of that theorem.
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Lemma 5.11. Let A€l*, 1=ty(A|y,) and assume that A is strongly Py-dominant integral.
Let s€ Wy and let § be an integer with j=> -—-m, then the following sequence of f-modules is an

exact complex:

0N ier 2 on ., 1+ N
0——EB , ;—— B 1 s— ... —— B, —— WL 0

(where we define WiI'% to be the image of Ei'q).
The g-module E, ; , is isomorphic as a f-module to S(p)@XN; ; and thus Lemma 5.2
applies to E, ; ; and yields:

Lemma 5.12. Let A€Y*, A=to(Aly,). Assume that A is strongly Pe-dominant integral.
If v, sSE Wy with r>s, and if w€GHY is Pr-dominant integral, then the element d, (u) in U(ng)
induces a bijection from E: Lalr' - u] onto E:,fi,_z[s’-l]. Also the element dy-11(u) induces

a bijection from E:f; Hu] onto E:,fi,;[(sr—l)'- ul-

ProrosiTioN 5.13. Let A€Y*, A=to(Ay). Assume that A is strongly Pe-dominant
integral, and that u€Y; is Pyr-dominant integral. Then if r€ Wy, the following sequence is an
exact complex:

., oa , N
0—— Bl il - ul— Et o o ilr cpl

A F 7 8 ’
—— B lolr - gl —— WA - ] —— 0 (5.6)

For integers i, k with 1> —m and 0<k<m, set By=(E} 1 1)". Then Bj is a semisimple
h,-module and the following sequence is an exact complex:

S, Ja ) , oA da . , [ . ,
0—— Bj[r" - ] —— B¢ - y] ——...——B§"™[+" - /‘]“’_’(Wlt:'/"x)nf [r e u]——0

(5.7)

Note. This last exact sequence will be used to compute the dimension of W?f Al p]=
e
Vol _typ alr' - pl-

Proof. Lemma 7 in [7] shows that if r =1, then the exactness statement in Lemma, 5.10
implies the exactness of sequences (5.6) and (5.7). If r==1, then set s=r"1, Lemma 7 in
[7] now applies to Lemma 5.11 to give the exact sequence:

. aA 7 ; € 1
0 —— (Bl ) ] — ... — s (B 4] —— (WD) () —— 0 (5.8)
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Using Lemma 5.12 and noting that the maps 9, are g-homomorphisms, we obtain the

commutative diagram:

. N N
0 (i) (]~ .~ (B " [u]

dy1(p0) dy.1(u) (5.9)

Y N oA Y,
0—— Bylr'-p] ——...— B[+’ - u]
The vertical maps are bijections by Lemma 5.12, and thus the exactness of the top sequence

implies the exactness of the lower. It remains only to check the exactness of the sequence:
i+m~1p,/ 23 i+mp,f € i+m A\,
By p]—— Bl p] —— (WA T p] ——0 (5.10)

Since d,, () acts injectively on W, ,, the exactness of (5.8) implies that sequence (5.10) is
exact at B[+’ - u]. We now prove that ¢ maps B§™[r' - u] surjectively onto (Wi R)"t [+ u].
This follows if we show that dy y(x) induces a bijection from W,\{u] onto Wil A [r'- ul.
The case r=1 is trivial. Assume that r<=1, and then choose a Pe-simple root « in Py
such that I(s,s)=I(s)+1. Let a equal the one-dimensional subalgebra of f, a =f,. Choose
X ,€t,, X_,==0. During the proof of Theorem 5.7, the following fact was established:
Let v€4Y be such that n=2(»+8, a)/{x, &) is a positive integer, then X", induces a
bijection from (W, 4)'[v] onto (W s ) [se-¥]. Now if w€(W, s A)"t[s.-¥] then choose
GE(W, 2) [v] such that X, -d@=u. If 8 is a Prsimple root, a=p, and if Y €¥; then [,
X_,]1=0 and thus 0=X",-Y-4. But X7, acts injectively on W, , and thus Y-%=0, and
in turn @€(W 5)"t[»]. This shows that if m =2{u+0, «)/<a, &) then X™ induces a bijec-
tion from (W ,)"[u] onto (W s a)t [s:-u]. We continue this process in an iterative
fashion. Let tys~1=s, ... s; be a minimal expression for #ys~! where each s; is a simple reflec-
tion in Wt corresponding to the simple root y;, 1<¢<l. Choose Y,€f ,, ¥Y;+0 and set
w=2{u+0, Yy [{yiy> and for 1<i<l, n;=2{s;; ... {(u-+0s), ¥>/<y;,y>.- The mini-
mality of the expression implies that =, is a positive integer 1 <7<, and thus if we repeat
the above argument ! times, we find that Y7* ... Y7t induces a bijection from (W ,)"[u]
onto (W, A)"t[r'-pu] since r=tys~t. Y§* ... Y} is a scalar multiple of d,, ;(u), and thus the
proof of the proposition is complete.

For purposes of later reference we state the structural fact just proved as a lemma.

Lemma 5.14. Let A, A, and p be as in Proposition 5.13. Let r€ Wy and set s=r-1t,.
Then d, () induces a bijection from (W, A)"t[p] onto (W, A)'t[r - u].

We can now prove the main theorem on ninvariants in W, 4.
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TuroreEM 5.15. Let A€Y*, A=to(A|y,) and assume that A is strongly Py-dominant
integral. Let u€Y; be Pi-dominant integral, then if r € Wy and s =r=11,, the following formula
holds:

dim (W, A)t[u] = dim (W, 0)"[r" - p] = dim S(p,) [r' e — - 2]

(where Py, :ZaetoP p[“lfh])-

Proof. Lemma 5.14 gives the first equality. We now consider the second. For any
integer ¢ it is easy to check that the f-module Ej, ,, ; is isomorphic to the f-module S (p)®
Nt

Lemma 5.5 states that N, ; splits as the direct sum of irreducible f-Verma modules
where V, occurs as a summand with multiplicity equal to dim (A*(,)}®Cy.2)[v]. Now

applying Lemma 5.2 gives:
dim (B, . 2)"t [v] = dim (S(p) & A*(0,) @€y 5([¥]

Set 6(4, k, v) equal to this dimension.

Proposition 5.13 implies that dim (W}, A)"[r" u]=Docrem (—1)°0(: —k, k, - u). Now
return to the Koszul complex defined at the beginning of the proof of Lemma 5.10 and we
find that the alternating sum in the above equation equals dim S'(py)[r'-u —to-4]. This
completes the proof.

Remarks. 1. The reader should note that although the aim of this paper is to use the
theory of Verma modules to construct other g-modules, Theorem 5.15 contains a non-
trivial structural fact about n-invariants in certain g-Verma modules (i.e., Wi, A=V, —t,p,A)-

2. Theorem 5.15 will be used in [6] to prove that with A, A, and u as in the theorem,
then the multiplicity of V* in Wp 4 is given by:

2 det(sty) dim(S(ps,) [s" - 1o+ A])
s$€ Wf
In [6] we shall also write this as an alternating sum of certain partition functions, and in

the case where fj; =1j, we obtain precisely Blattner’s formula.

A lowest f-type theorem

If A€} is Pr-dominant integral, we denote by V* the irreducible finite dimensional
representation with highest weight A. If A€h} is not P-dominant integral, we set V4= (0).

A g-module, M, is said to be admissible if the following two conditions are satisfied:
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U meEM, dim H-m<oo
(i) If 2€}7, then dim Homy (V2, M) < oo (here M is looked upon as a f-module).

If M is admissible, then it is clear that as a f-module

M =3 V*® Homg(V?*, M).
A

If n,=dim Hom; (V4, M), we write M => #, V2 n, is called the multiplicity of V2
in M.

Definition 6.1. Let M be an admissible g-module. Let 1€ ) be Pr-dominant integral.
Let P be an admissible system of positive roots giving Pr. Then M is said to have V4 as a

weak minimal f-type relative to P if

(a) There is an element 4 in Home (V4, M), A==0 so that M = G- 4(V*).
(b) If BEP and u=4s,, then Homs (V*7#, p- A(V?) =0.
(c) dim Hom; (V#, A(V4) +p-A(VA))=1.

TreoREM 6.2. Let M be an admissible g-module. Let P be an admissible system of
positive roots. Suppose that V2 is a weak minimal E-type for M relative to P and that A is
strongly Py-dominant integral (see Definition 5.4). Then there exists a A €)* so that Ay, =to A

and a surjective g-module homomorphism of Wp 5 onto M.

Proof. Then Definition 6.1 (a) states that M = G- A(V4). Using the universal mapping
property of the tensor product, we see that there is a surjective g-module homomorphism
¥ G®xV;i—~M which extends the f-module homomorphism 4: 1® V,~A(V43).

Let pt=2.epble|s). In §5, we found that 9, maps N, injectively into
Gi(1®V,)(=E10.2). Let Ny, be the f-submodule of N, ; where V,_, occurs as a sum-
mand with multiplicity equal to dim p*[u]. Definition 6.1 (b) implies that y(d,(N1,1)) =0.

E},o‘;, is isomorphic to SY(p)®V, as a fmodule and thus ¥V, occurs in Bl
with multiplicity dim §+1 (f,=p[0]). Let M, equal the K-module generated by
Kery N (E1,0,2)%[A] and set I =M, ®,(N1.1). By construction we have M < Ei g0
Kery. Lemma 5.12 implies that dy,(A—pu) induces a bijection from (Fje 1)"t[A—pu]
onto (&}, 0,2)"t[to(2 —p)] for any w€hT such that p+u]+{0}. Now if we set M, equal to
the f-submodule of M generated by dy, 1(A —u) (M™A—u)) with 4 as above; then M;,<
B, .4 Ei, o4 is isomorphic with S{p)® V1 and thus by comparing §) weight spaces
of M, and E} 4 ; we find that if v a non-zero sum of elements in —#,P, then M, [ty- A +v]=

Ei.0,4lt0: A +v]. Set as usual 1=13 ,c 4 p gy then if 1 denotes the canonical cyclic vector in
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Vi then n-(1®1)= M,. Again by comparing the §j; weight space dimensions of M,
and Ei o, we find that M,[t;-1] has codimension one in E} o ilfo-A], and thus there exists
an element A€Q* so that the action of § on (E}, 0,1/ My,)[fo- 2] is equivalent to C4. It is
obvious that A |p =fA and thus since f5' =, that 2 =f,(A|s,).

Now using the results of §4 with N, , and 0, as defined there, we obtain M, —
Oa(N, 1). Recalling the definitions of § 5, we see that 8,(1® N, ;) =M and thus by Theorem
5.7 that  induces a map v, from Wy , onto M. y,(V,)=4(V,)=V? and thus by Theorem
3.1 (i), gy | W5, o=0 for all s€ Wy, s==1. In turn, this shows that ¢, induces a surjective g-
homomorphism v, from Wp. 5 onto M. This completes the proof.

For any A€}* such that A=to(A|s,) is Pr-dominant integral, we know by Theorem
3.2 that dim Hom; (V4 Wp 4)=1. Let Mp 5 be the inique maximal g-submodule of Wp, 5
such that Homg (V2, Mp, 5) ={0}, and set Dp o =Wp p/Mp . Dp 4 is the unique irreducible
quotient of Wp 5. Set Hp ; equal to the set of equivalence classes of the irreducible re-
presentations Dp , where A€l* and A=iy(A[y,). This set of equivalence classes can be

characterized in several ways.

THEOREM 6.3. Let A€ YT be Pr-dominant integral and let M be any admissible irreducible
g-module. If {M} denotes the equivalence class of M, then the following two statements are

equivalent:

(i) {M}e W,

(ii) There exists a f-submodule LS M which is isomorphic to V4, Gt-stable and on which
G' acts by the formula: x|, =np A(x)1d, where z€ G, AEY* and A=to(A|y,) (see Theorem
3.2 for the defimition of np, 4).

If in addition A is strongly Pr-dominant integral, then (i) and (ii) are equivalent to either

of the following two equivalent statements:

(iii) V2 is a weak minimal ¥-type for M
(iv) dim Homy (V2, M)>1 and Homy (V?—#, M)={0} for any w€YhT where u=p]s,
for some BEP and p[u]=={0}.

Proof. Let M be an admissible g-module and if 4 €} is Pr-dominant integral then set
M{u} equal to the sum of all f-submodules of M isomorphic with V. The definition of
admissible implies that M is the direct sum of the f-submodules M{u}. Note also that each
M{u} is stable under the action of G One of the fundamental theorems for admissible

representations, [14], asserts:
(A) If M and M’ are admissible irreducible g-modules, then M and M’ are g-isomorphic
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if and only if for some Pr-dominant integral 4 in fjf, M{1}=+={0} and M{A} and M’'{2} are
isomorphic as G'® X-modules.

Theorem 3.2 gives the implications (i)= (ii), (i) = (iii), and (i}= (iv). Assume that M
is an admissible irreducible g-module which satisfies (ii). Since M is irreducible, then for
any Pi-dominant integral element g in §y, we know [14] that M{u} is an irreducible G'® X-
module. Let L be as in statement (ii), then since L is G'® X-stable VixL=M{4}. If G
acts on L by the formula z|,=#%p 5 Id, then (A) and Theorem 3.2 imply that M is
isomorphic with Dp . This proves that (ii) = (i).

Assume that 4 is strongly Pi-dominant integral. If M is an admissible irreducible g-
module which satisfies (iii), then Theorem 6.2 gives a surjective g-homomorphism ¢ from
Wp o onto M for some A €G* such that A =io(A|p,). Wp, 5 bas a unique irreducible quotient
Dp, 5 and thus ¢ induces an isomorphism of Dp o onto M. This gives the implication
(iif) = (i).

We now complete the proof by showing that (iv) = (iii). Clearly it will be sufficient to
show that dim Homs (V4 M)=1. dim Hom; (V4, M)=dim Muf[/l] and thus we shall
actually prove that dim M 2] =1. The work of § 4 and § 5 is based on Lemma 4.2 applied
in the case where a =)®n =0 and m =10, ®ny=Dbs. The exact same procedure can be carried
out in the case a=Y,@®n and m="0; In this case the maps 2, have no dependence on [,
action, and thus we write them as ;. Write N,,; in place of N, ; where in this case 0 <i <
dim A(n/ny)=m’ and write E;, , in place of H,, ;. Set W = FE; 0 1/04(Es 1,2) and recall
that Lemma 5.12 states that d,,_:(1) gives a bijection from (W1 ;)™[A] onto (W, 2)"t[ts-A].
In this case W;, ; is not a g-Verma module; however, it is easy to see that £ A is a
Pr-highest weight and also that );-weight spaces are in fact all infinite dimensional.

Set B;=(W3,2)"[A] and By, = (Wi \"t{to-A]=W, ito-A]. Let ¢ be any non-zero
element in Hom; (V,, M) and let ¢ also denote the unique extension to a g-homomorphism
of G®xV,=E1,0,2. Our assumptions on M imply that o, A&, 1, »p=0 and thus ¢ induces a
homomorphism o, of W3,; onto M. Set O, = B, N Ker o;; then since A is Pr-dominant inte-
gral, B,/C, and M '[4] are isomorphic ('-modules. Since d;, 1(1) commutes with G, if we
set Oy, =d;, 1(4) C; then as Gi-modules we have:

M"[3}= B,/C,~ B, /C,.

Since M is by assumption irreducible, these G*-modules are all irreducible.

B,, is the Pyhighest weight space for W, ; and thus n- B, ={0}. This implies that
the commutator subalgebra of G! acts trivially on B;, (the action of Gf factors through the
map G LN G/G-n and «GH<u(Gh) which is abelian). Hence the image of ' in
End (B,,/C;,) is commutative and acts irreducibly. Thus dim B, /C; =1.
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COROLLARY 6.4. Let A€} be strongly Pi-dominant integral, and let M be an admissible

irreducible g-module. If Homy (V2, M)={0} and Homy (V3-#, M)={0} for any u€hy where
#=Bl5, BEP and plu}={0}, then

dim Hom (VA, M) =1

(s.e., V2 occurs with multiplicity one in M).

Proof. This follows by Theorem 6.3 using the equivalence (i)« (iv), and the fact that

if A€}* is such that 1=£;-(A|g,) then dim Homs (V2, Wp 5)=1.
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