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1 .  I n t r o d u c t i o n  

Let go be a semisimple Lie algebra over the real numbers. Let  90 = ~o Q Po be a Cartan 

decomposition. Suppose tha t  ~0 contains a Cartan subalgebra of g0. In  [7], [18] a family of 

representations Wp. A Of go was constructed. These representations were shown to be in- 

t imately related with Harish-Chandra 's  discrete series [10] for connected Lie groups with 

Lie algebra go in [16], [18] (see also [4]). In  this paper we extend the construction of the 

We, h to the case when ~0 does not necessarily contain a Cartan subalgebra of go. The Wp. A 

constitute the fundamenta l  series of the title of this paper. We then begin an analysis of 

these representations and give two different characterizations of them. In  [5] a criterion 

for the irreducibility of these representations will be given. Using the irreducibility criterion 

and a certain exact sequence (generalizing the Bernstein, Gelfand, Gelfand resolution of a 

finite dimensional representation), a new proof of Blattner 's  conjecture for the discrete 

series will be given in [6]. In  [8] we will show tha t  the representations Wp. h are equivalent 

to the analytic continuation of the fundamental  series of representations as defined in [11]. 

Using the irreducibility criterion of [5] a new proof of the irreducibility of the fundamental  

series (in the sense of Harish-Chandra) will be given. In  [8] we will also lay the ground- 

work for the determination of the composition series for the analytic continuation of the 

fundamental  series (cf. also [17]). 

We now give a more detailed description of the contents of this paper. Let g and 

denote respectively the complexifications of go and ~0. In  sections 2 and 3 the results of 
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[7] and [18] are extended to the ease where g and f do not necessarily have the same rank. 

Actually, just as in [18], only certain properties of the pair (g, ~) are necessary for the 

construction of sections 2 and 3 (these are given in section 1). 

The main result in sections 2 and 3 is given in Theorems 3.2 and 3.3 and is described 

as follows: Let ~1 (resp. ~)) be a Cartan subalgebra of ~ (resp. g). We may assume that  

~x--- ~. Let Ar (resp. A) denote the roots of (~, ~1) (resp. (g, ~)) and fix an admissible positive 

system P of roots for A (see w 2 for the definition of admissible). Let Pt be the corresponding 

positive system of roots for At obtained from P and let t o denote the unique element of the 

Weyl group of Ar such that  to.Pr = -Pr. For each dominant integral/x in ~'  (the dual of 

~h), let Vs denote the irreducible ~-module with highest weight #. We can now define the 

fundamental series of representations. Assume that  A E~* (dual of ~) is such that  X = 

to(Al~+~r)-5r  is Pr-dominant integral. Then there exists an admissible B-module We.A 

with the following properties: 

(i) dim Homt (V ~, We.A)=I 

(ii) If # E ~" is Prdominant  integral and if Homt (V~, We,A) #{0}, t h en / t  =~ + Q [ ~, 

where Q is a sum of elements of P. 

(iii) The n-component of We,A corresponding to V~ is B-cyclic for Wp,t~ 

(iv) ~ ,  the centralizer of ~ in the universal enveloping algebra of g, acts on the V ~- 

component by the scalar action: x~->~?e.A(x)Id for xE~  t, where ~/p,A is a homo- 

morphism of 0 r into the complex numbers (see Theorem 3.2 for the definition of ~e. A)- 

The modules We, A all contain unique maximal proper submodules Me, A and we set DR. A 

equal to We, A/Me, A- The modules Wv. A are called the fundamental series of representations. 

The dependence is on two parameters, the admissible positive system P and the linear 

functional A in ~* subject to the condition that  ~, = t0(A [ ~, + 6f) - ~r is Prdominant  integral. 

The first characterization theorem is actually a theorem about the unique maximal quo- 

tients De.A. This result (Theorem 3.3) asserts that  within the set of equivalence classes of 

admissible irreducible g-modules the equivalence class of De,A is uniquely determined by 

the condition: 

If M is an element of the equivalence class, then there exists a nonzero element A in 

Hom~ (V ~, M) such that  ~ acts on A(V x) by the formula 

x [ A(v~) ~- ~e, A(x) Id, x E 0 r and ~]e, A as defined in Theorem 3.2. 

In  section 4 a resolution of g-Verma modules is given in terms of certain modules in- 

duced up from ~ to g. This resolution is then used in sections 5 and 6 to prove two results. 

The first asserts that  most of the modules We, A possess a certain universal mapping prop 
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erty. In order to be precise, more notation is necessary. Let p be the orthogonal comple- 

ment to ~ in ~ with respect to the Killing form of 6, and let P be an admissible positive 

system for A which gives Pv ~ acts semisimply on p and thus for any # E ~* let p[/t] denote 

the # weight subspace of p. Set p+= ~ ~ pEfl[~,]. Now if ~ E ~*, then ~ is said to be strongly 

Prdominant  integral relative to P, if ~ and 2 - #  are Prdominant  integral for all weights 

# of A p+ ( A denotes the exterior algebra). Note that  this condition is a type of "sufficiently" 

regular condition with respect to the compact roots and also that  it depends on the choice 

of P. Let  M be an admissible ~-module, and let ~ E 3" be Prdominant  integral, then M is 

said to have V ~ as a weak minimal Ltype relative to P if 

(i) There is an element A in Hom~ (V ~, M) such that  M =  O.A(V'~). 
(ii) If flEP and #=f l ]~ ,  then Homt(V~-, ,  p.A(VZ)){0} (here p-A(VZ)denotes 

the Lsubmodule of M spanned by elements of the form x.a, xEp and aEA(V~)). 
(iii) dim Hom~ ( V ~, A( V ~) + p-A(V~)) = 1. 

The universal mapping property (Theorem 6.2) asserts that  if M is an admissible 

g-module with weak minimal ~-type V ~ relative to P and if ~ is strongly Prdominant  integral 

relative to P then there exists AE~* such that  2 = t 0 ( A ] ~ + ~ ) - ~  and a surjective 6" 

module homomorphism from Wp.h onto M. 

The second result in section 6 (Theorem 6.3) gives a classification of the modules 

np, h in terms of a somewhat different minimal Ltype criterion. Let  P be an admissible 

positive system giving P~ and let 2 E ~ be strongly Prdominant  integral relative to P. 

Assume that  M is an admissible irreducible fi-module such that  Hom~ (V ~, M)~{0} and 

Hom~(V~-~, M) = 0 where # = fl]~l for all fl EP with p[#] :4:{0}. Then there exists A E ~)* such 

that  t0(AI~ 1 + 5~) - ~  = ~ and Dp. A is isomorphic to M. An obvious corollary worth stating is 

the following multiplicity-one theorem: Assume that  ~ is strongly P~-dominant integral 

relative to the admissible positive system P. If M is an admissible irreducible ~-module 

such that  Homt (V ~ , / ) ~ { 0 }  and Hom~ (VZ-,, M)={0} where for all flEP with 

p[#] ~{0}, then dim Hom~ (V ~, M ) =  1 (i.e. V z occurs with multiplicity one in M), 
Although the intent of this paper is to construct and study the properties of certain 

admissible fi-modules, one interesting result about g-Verma modules naturally emerges. 

For ~EP~ le t [~  denote the a weight space in [ relative to ~1 and set n t = ~ e p f  ta. I f  L is 

any ltt-module set L "~ equal to the submodule of L of elements u such that  nt- u = {0}. L "t 

is called the subspace of nrinvariants. Assume as above that  P is an admissible positive 

system of roots for A which gives Pt. Set P - = ~ e P  P[-a[~ , ]  and let S(p-) denote the 

symmetric tensor algebra of p-. For any A E~* let V~.p.A denote the ~-Verma module 

with P-highest weight A. In section 5 (Theorem 5.15), we obtain the following result: 
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Assume tha t  ~=t0(Al~,+~t)-(~t  is s t rongly Pt -dominant  integral, t ha t  /~E4~ is P~- 

dominant  integral and tha t  r is an element of the Weyl  group of At, then  

dim ( V~. ~. A)n~ [r(/~ + St) -- ~t] = dim S(p-)  [r(# + (~) - (A I ~, + ~t)]" 

2. Structural preliminaries 

In  this section, we introduce a class of pairs (g, 3), where g is a semi-simple Lie algebra 

over i3 (the complex numbers)  and ~c g a reduct ive subalgebra, which will be studied 

throughout  this paper. The pairs (g, ~) will include the pairs of the in t roduct ion (see Lemma 

2.2). 

Definition 2.1. Let  g be a semi-simple Lie algebra over (~. Let  ~c g be a reduct ive sub- 

algebra of g. Then ~ is said to  be regular in g ((g, ~) is said to be a regular pair) if the  follow- 

ing two conditions are satisfied: 

(a) Le t  41c3  be a Cartan subalgebra of 3. Then  C~(41)={XEgl[X , 4 1 ] = 0 } = 4  i s  a 

Cartan subalgebra of g. 

(b) Le t  4~, 4 be as in (a) and let A be the root  system of (g, 4). If  4 R = { H E 4 I a ( H ) E R  

for all aEA},  then  4a N 41 =(41)R is a real form of 41" 

LEMMA 2.2. Let go be a semi-simple Lie algebra over R. Let 00=30| be a Cartan 

decomposition o/go with Cartan involution O. Let m0| ao| rio be a parabolic subalgebra o/go 

with Langlands decomposition as indicated (in particular, a0cPo, 0too=too and no is the 

unipotent radical). Set l lo=(m o fl 3o)| 1/ g is the complexi/ication o/ go and i/ 1I is the 

complexi/ication o/uo then (g, 11) is a regular pair. 

Notes. 1.0o = too, % = (0), 11 o = (0) is a parabolic subalgebra of go. 

2. If  1I 1 ~ 112~ g, g a semi-simple Lie algebra over (~ and uj, ] = 1, 2 reduct ive subalgebras 

and if (g, 111) is a regular pair, then  if rank lh = r a n k  112, it  is clear t ha t  (g, u2) is a regular 

pair. 

Proo/. Let  4, be a Cartan snbalgebra of mo so tha t  4,  N ~o is maximal  abelian in mo N 3o 

and 04. = 4.. Le t  4 ,  = 4. fl 30, 4.  + = 4.  fl Po. Now, ~0 = 4.  + ao is a Cartan subalgebra of g0 

and 4o = 4 ,  |  + ~)%. Also, if 41 is the  complexification of 4 ,  | ao, then  4~ is a Cartan sub- 

algebra of u. Le t  4 be the eomplexification of 4o. Let  A be the root  system of (g, 4)" Clearly 

4R N 41 = i 4 ,  | a0. Since i4 ,  | a0 is clearly a real form of 4~, it  is enough to  show tha t  Cg(41 ) = 

4. For  ~EA, let f l ~ g  be the root  space. If  XEg,  then  X = h + ~ a  X~, X~Eg~, hE 4. If  X 

is also in C~(4~ ) then  if X~ # 0 ,  ~(41) = 0. Thus it  is enough to show tha t  if r162 E A, then  a I ~, # 0 .  
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If ~[~, =0, then g ~  m (m is the complexification of m0). Since :r #0 ,  we see that  a(~.+).0. 

Hence ~ c  [m, m]. Since ~(~,) =0, we may choose YEg~ N m0, Y=~0. Now Y+OYEmo N 

and [~,, Y+OY]=O (this is because OYEg_a). But then Y+OY=4=O and ~, +R(Y+OY)  

is an abelian subalgebra contained in m0 N t0. Since ~. is maximal abelian in m0 N [0, we 

have a contradiction. This completes the proof of the lemma. 

For the remainder of this section, we fix 6 a complex semi-simple Lie algebra and 

~ ~ a reduetive Lie subalgebra of fl so that  (6, ~) is a regular pair. Fix ~ ~ a Cartan sub- 

algebra of ~ and set ~ = C~(~), a Cartan subalgebra of 6 (see Definition 2.1). Let ~a and 

(~)R be as in Definition 2.1. 

Let A be the root system of (6, ~) and let At be the root system of (~, ~x). Set W = W(A) 

(resp. W~ = W(A~)) the Weyl group of A (resp. At). 

Definition 2.3. A system of positive roots, P, for A is said to be admissible if (~1)~ = 

{h e (D1)R I ti(h) > 0 for all ti EP} # O. 

LEMMA 2.4. (i) There exists an admissible system o/positive roots/or A. 

(ii) I /  P is an admissible system o/positive roots/or A and i /P t={~eAt l  ~=ti[~/or 
some tiEP} then Pr is a system o/positive roots/or At. Furthermore, all systems o] positive 

roots/or At can be obtained in this manner. 

(iii) I / s E  W~, then there exists a unique ~E W so that ~ = ~  and $[~,=s. We will abuse 

notation and identify W~ with a subgroup o/W.  That is, we write s/or ~. 

Proof. Let (~I)R=~I N ~R aS usual. Set (~l)~t={hE(~l)Rizt(h)=~0 for all ztEA}. (a) and 
( ' (b) of Definition 2.1 easily imply that  ~I)R is open and dense in (~I)R. Let hE(~l) R. Set 

P = {ti E A [ti(h) > 0). Then P is a system of positive roots for A and h E (~,)~t (see Definition 

2.3). This proves (i). 

To prove (ii), we fix P an admissible system of positive roots for A. Let h E (~1)~ (see 

Definition 2.3). If P t = ( a E A t  I there is tieR, t i ]~=a}  then P tc (~eAt]~(h)>0} .  If 

~eA t and ~(h)>O, then if tiEA is such that  fllt)~ =~, then ti(h)>0, hence tiEP. This says 

Pt = {cr At la(h ) > 0}. Therefore, we see that  Pt is a system of positive roots for At. 

If P~ is a system of positive roots for At, let C = {h E (~i)a] a(h) > 0 for all a EPt}. Then 

C is open in (~)R. Since (~I)R is open and dense in (~)R, we see that  (~I)R N C4=O. Fix 

h E (~1)a N C. Let P = {a E A I a(h) > 0}. Then P~ = {a E A~ I there exists ti EP so that  fl[~, = a}. 

This completes the proof of (ii). 

Let Adg (6) (resp. Adg (~)) be the group of automorphisms of g generated by the 

automorphisms of the form exp (ad X), X E ~ (resp. X E ~). The map Ad~ (t)-+Adi (f) given 

by g ~-~gt~ is clearly surjective. Thus if s E Wt, there exists 9 E Ad, (t) so that  g~  = ~1 and 
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g l~, =s" Now, C~(O~) =~. Set ~=gl~. Clearly g- ~ ~. Then ~e W and ~]~ =s. If s~, s2e W 

are such that  s~I~=s, i=1 ,  2, then s~1sl[~=l.  But then if P is an admissible system of 

positive roots for A, s~-~slP =P. Hence s ~ s l  = I. This proves (iii). 

If M is a ~-module (resp. N a ~-module) and if #el)* (resp. v e'O*) set M(tt ) (resp. N[v]) 

equal to the # (resp. v) weight space for M (resp. N) relative to ~ (resp. ~). If M is a fl- 

module, i r i s  clearly a ~-module by restriction and we have: 

M[v]= ~ M(~) (2.1) 

If A E ~* we denote by V~, p, A the g-Verma module with highest weight A relative to P. 

LEMMA 2.5. Set V= V~.p,A. Suppose that P is admissible. 

(i) / / v  C ~ ,  then dim V[v] < ~ .  

(ii) //~--AI~L, then dim V[v]=l .  

Proo/. Let h 0 E (~l)a be such that  a(h0) ~> 1 for all ~ EP; this is possible since P is admis- 

sible (see Definition 2.3). By (2.1)we know dim V[v] = ~ ,  dim V(#). Since dim V(tt ) < 

~ ,  we need only show that  there are only a finite number of # C [~* so that  V(/~)4=0 and 

/tl~,=u. If V(tt)4=0 , then # = A  Q with Q a sum of elements of P. Thus, if V(#)4=0 and 

#]~,=v, then A(ho)-tt(ho)=A(ho)-v(ho) and A(ho)-lt(ho)=Q(ho). This says that  the 

number of elements of P in the expression of Q must be bounded by A(h0)-  v(ho). This 

implies that  there are only a finite number of such Q. If v = A ] ~, and if # E ~* is such that  

# = A - Q, Q a sum of elements of P and tt ] ~, - v, then Q(ho) = O. Hence Q = 0. We have thus 

proved the lemma. 

Let  0 denote the universal enveloping algebra of g (we will also sometimes use the 

notation U(g)). Let 0 ~' denote the subalgebra of elements of 0 that  commute with ~l- 

Let  P be a~ admissible system of positive roots for A. Set 11 = ne = ~ e  g~. Set 11-= 11-e. 

The Poincare-Birkhoff-Witt  theorem (P-B-W) implies that  if U(~) denotes the universal 

enveloping algebra of ~ then 0 = U(~))| (11-0 + On). Let Qe: 0 ~  U(~) be the corresponding 

projection. Since P is admissible, it is easy to see that  Qp: O ~-~ U(~) is an algebra homo- 

morphism (argue as in, e.g., [3], 7.4.2 Lemme). If AE~* we can thus define QP.A: 0 ~'->C 

by Qe.A(g)=A(Qe(g)). (Here A also denotes the extension of A to U(~).) 

LEMMA 2.6. Let P be an admissible system o/ positive roots/or A. Set V= V~.p,A. ]] 

g E O ~, then g l V(A)=QP,A(g) Id. 

Proo/. The result is obvious if we note that  0~,~ U(~)| 011 (cf. [3], 7.4.2 Lemme). 
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The following lemma will be quite useful in the next section. The argument used in 

its proof is due to Nasaki Kashiwara. I t  was used in the context of the next  section by  

Donald King in a seminar at M.I.T. We are grateful to Michele Vergne for having pointed 

it out to us. A simple proof of this lemma has also been given by  Kostant  using the Ore 

condition satisfied by  universal enveloping algebras. We give the Kashiwara proof since 

it is quite elementary. 

L]~M~aA 2.7. Let a be a Lie algebra over @, and let 5 c  ~I be a subalgebra o] ct. Let M be an 

a-module. Set M1 = {m E M[ there exists b E U(5), b :4=0 and b. m =0}. Then MI is an a-sub- 

module o / M .  

Proo]. Let {UN(5)} denote the standard filtration of U(5) (that is, UN(5) is the sub- 

space of U(5) spanned by  m-fold products of elements of 5 with m ~ N). 

dim UN(5)=~N-~-" r)" where r = d i m  5. This is a simple consequence of the Poincare-  (a) 
\ r / 

Birkhoff-Witt  theorem. 

(b) U~(~) a =aU~(5). 
We prove (b) by  induction on N. I t  is clear if /V = 0. Suppose true for 0 ~< N -  1. Let  

X N .. .  X 1 ..... XNE5 and let YEa. T h e n X 1 . . . X N Y = Y X 1 . . .  N - ~ i ~ I X  1 [Y, X t ] . . . X ~ . N o w  

by the induction hypothesis X 1 ... X~_I[Y , Xi] E aUg_l(5). Thus X 1 ... X~_I[Y, X~]X~+I ... 

XNEaU~_I(5). UN_~(5)c CtUN_I(5). This proves (b). 

Using (a), (b), we prove the lemma. We note tha t  it is enough to show tha t  if X E a, 

m E M 1 and N is large, then dim UN(5) X ml  < dim UN(5 ). But  dim UN(5) X m  <~ dim UN(5 ) Ct" 

m=dima 'UN(5)m.  Since m E M  1 there exists uoEUjo(5 ) so tha t  u0=~0 and uo.m=O. 

If  N>~0 then UN_jo(5).uoCUN(5 ) and UN_io(5)UO.m:O. Hence dim UN(5)Xm<~ 

dim a.(dim UN(5)--dim UN-~o(~)). But  dim UN(5)=(N+r r ) - ~ ( 1 / r ! ) ( N §  ) "  " (N§ I I I  

k / 

1/r!N~§ order terms in N. dim Ui_Jo(5)--(1/r!)(N-]o)~+(lower order terms in 

N -?0) = ( l / r ! )  N ~ + lower order terms in N. This implies tha t  dim UN(5)Xm is dominated 

by a polynomial of degree at most r - 1 in N. Thus, if N is sufficiently large dim U~(5) • Xm < 

dim UN(5 ). Q.E.D. 

3. The modules Wp.A 

In  this section we extend the construction of the modules of [7], [18] to the case where 

the ranks of ~ and 6 are not necessarily the same. Many details are proved in exactly the 

same way as the equal rank case. For these details the reader is referred to [18]. 

Let  (~, ~) be a regular pair (see Definition 2.1). Let ~1~ [ be a Cartan subalgebra of 

~, ~ =C~(~) is then a Cartan subalgebra of ~. Let  A and A t be respectively the root systems 

of (~, ~), (~, ~1)- We fix P ~  A an admissible system of positive roots (see Definition 2.3). 
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Let P~ be as in Lemma 2.4 (if). Then P~ is a system of positive roots for ~. Set ~ =�89 ~. 

I f  s~ W~, 2 ~ *  set s'~=s(2+6~)-~. We also recall (see Lemma 2.4 (iii)) tha t  W~ can (and 

will) be identified with a subgroup of W. Let toe W~ be such tha t  toP~= -P~. Then - toP 

is an admissible system of positive roots for A. 

I f  ~ u ~  (resp. A ~ * )  and Q~cA~, (resp. Q ~ A )  is a system of positive roots for A~ 

{resp. A). Then V~.o~., (resp. Vg.~,A) denotes the Verma module for ~ (resp. g) with highest 

weight ~u (resp. A) relative to Q~ (resp. Q). 

Returning to P~ and P, we will use the notation V~.%, = V~ and V,.-t0P.A : M A .  

As is well known (see [3], Theorgm~ 7.6.6, p. 237), dim Hom~ (V~,, V,~)=0 or 1, and 

if A~I-Iomt (Vo,, V,~) then A is either zero or injective. I f  2e~ and ~ is Pvdominan t  

integral, then Hom~ (Vs.x, V~)~=(0) for each s~Wr. Furthermore, there is a partial order 

on the Weyl group, W~, (depending only on P~) so tha t  Hom~ (V~;~, V~x)~(0) if and only 

if s~ <s~ (see [3], w 7.7 and Theor~m~ 7.7.7, p. 253). We recall the definition of the order on 

W~. I f  s~ Wt we define l(s) as the minimal number,  r, of Prs imple  reflections, s~ ...... % 

Y 
so tha t  s =s~, ... %. I f  s, t ~ W~ and 7 eP~ then we say s , t if s =%t and l(s)=l(t)+ 1. 

We say tha t  s < t if there exist s o . . . . .  s~ ~ W, and Yl ... . .  yo ~ P~ so tha t  

~1 ~2 Yp 
8 ~ 8  0 ) 81 ) . . .  ) ~ p : t .  

We make our first notational convention: 

Convention 1. I f  2 is in ~ and if there exists s E W~ so tha t  s'2 is P rdominan t  integral, 

then the notation g~ will denote the subspace {Av[A EHom~ (V~, gs.~), v E V~}. 

With this convention we see tha t  if ~L is P rdominan t  integral and if sl, s 2 E W~, Vs~ac V~; 

if and only if s 1 < s  2 (the inclusion is both set theoretic and module theoretic). 

Let  ~ (resp. 3C) denote the universal enveloping algebra of g (resp. ~). Let  

2E~* be P rdominan t  integral. Then V~,~c V~ for each sEW~. Set U l . ~ = ~ |  ~. Let  

j : ~ | 1 7 4  be the canonical inclusion corresponding to Vs,~C V~. Set 

U s . ~ = ] ( ~ |  U1.  ~. Then we see tha t  Us,.~c U~.a if 81<82. 

Fix A E~* so tha t  A I~ , = t~ .  There is a canonical, surjectivc, fl-module homomorphism 

~| A given by  extending the isomorphism between Vt;~. and the 

3C-cyclic space of the highest weight vector of M A. Let I ~  be the kernel of this homo- 

morphism. Set 1A=j(I'A)c Uto.~c U~,~ for all s e  W~. 

Set Ms.A = U~.~/IA for each sE W~. Then we have: 

(I) I f  s I < s  2 then Ms~, h C M~,. A- (Notice: all our inclusions are set theoretic and module 

theoretic.) 
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(II) ~(1| Vs.a) +IACMs,  A is [.isomorphic with Vs, ~. Set Bs=~( l |  Vs, a) + I A ~ M s ,  A. 

If s, E Wt, i = 1, 2 and s 1 < s, then Bs,= Bs~. Finally, Ms. h = ~" B,. 

This is proved in exactly the same way as the analogous result in [18]. 

Set M's. h = {me Ms. A [ there exists u e V(n-), u ~ 0  so that  u. m = 0}. Here 1l- = ~ t,e g~. 

Then M's.A is a g-submodnle of Ms.A (Lemma 2.7). Set Ws, A=Ms.A/M'~.A. From the defini- 

tions, we see that  if e: M1,A--> WLA is the canonical map, then Ker eIMs.A=M's,A. Thus we 

can (and do) identify Ws.A with e(Ms.A)~ W1. A. We have 

(III) If Sl<S ~ then Ws,.h= Ws,.A. 

I t  is not hard to see that  if As =e(B~), then 

(IV) As is isomorphic to V~, ~. If sa < s~, sa, s, E W~ then As, = As,. Finally, Ws. A = ~" A s. 

The following are also clear. 

(V) If w~ W~.A and ufi U(lw)-{0} then u . w = O  implies w=0.  

(VI) Wt,. A is ~-isomorphic with MA. (This follows since Mr0. A ~-MA hence Mt'.. A = (0)). 

The next result shows that  properties (III), (IV), (V), (VI) of the Ws, A completely 

characterize the Ws, A. 

T H ]~ OR E M 3.1. Let A E 4" be such that t0(A ] ~,) =~ is P~-dominant integral. Let {Zs}se w~ be 

a / a m i l y  o/g-modules satis/ying the ]ollowing /our properties: 

(i) For each sE W~ there exists an injective homomorphism ~s: Vs'~-+Zs so that Zs= 

(j " ~s( Vs. ~). 

(ii) I /o~EPt is P~-simple and i / s  E W~ is such that s~s <s then Zs~s= Z 8 (as a submodule) 

and o~s~s( V(s~8).z) ~ o~( Vs.a). 

(iii) I] gEP~ is P~-simple and i / X E [ _ ~  (the - ~  root space ]or (~, 41)), X~=0, then the 

action o / X  on Z s is in]ective. 

(iv) ZIo-~ M A = V~._t,p.A. 

Then there exist bi]ective g-module isomorphisms fiB: Ws.A-+Zs, s E Wt such that i~ s and 

o~ are as in (ii), then fists = fls ] w~s. A" In  particular, fls = fix ] WS, A" 

Proo]. Using (i) and the universal mapping property of the tensor product we see 

that  there is a surjective homomorphism T: O |  1 given by z(g|  ). Since 

UI.~= ~|  we have z: U I , ~ Z  1 a surjective homomorphism. Using (ii), we see that  

�9 (Us.~) =Zs for each s E Wt. In particular, z( Ut0. A) =Zt.. Since Zto -= MA we see that  Ker z D I i .  

We, therefore, find that  we have a surjective homomorphism,/z: MLA-+Z1 . Furthermore, 

/~(Ms.h) =Zs for each 8, and/ , :  Mto.A-~Z~~ is bijective. 
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Set for each sE W~, Z~={zEZs[ there exists uE U( r t - ) -{0}  so tha t  u . z -O} .  

(A) Z~ = (0) for each s e W~, 

To prove this result we need a bit  of notation.  Fix for each ~EP~, X _ ~ E ~ _ a X ~ O .  

Set z~=~s(Vs,~) where v~,~ is a non-zero highest weight vector  f o r  V~,~, I f  sEW~ and if 

EP~ is P~-simple and  if l(s:s) = l(s) + 1 set 2(s '2  + ~,  ~}/(cr ~} = n, then n > 0 and X~v~,~ = 

5v%s),~ for some constant  5, 5~=0. (Here we use our convention.) Thus X ~ z s - c z ~ ,  for 

some constant ,  c, c=V0. This implies 

(a) I f  ~ and s are as above and if zEZ~, there exists m > 0  so tha t  X~_~zEZ~. 

(iii) implies t ha t  if z ~ 0 ,  then x ~ z ~ O .  We prove (A) by  induct ion on l(to) -l(s). 

I f  l(to)-l(s)=0, then Z~=Zto-~MA. Hence Z'~= (0). Suppose tha t  we have proved (A) 

for all s E W~ with 0 < l(to) - l ( s )< m and tha t  l(to) l(s) = m. Then there exists c~ EP~, with 

Pes imple  so tha t  l(s~s)=l(s)+l. Thus l ( to)- l (s~s)=m-1.  If  zEZ'~ then XP_~zEZ~ for 

some p > 0, p E Z. Hence X ~_~z E Z~ ~ (Lemma 2.7). But  the inductive hypothesis  implies 

t h a t  Z ' ~ -  (0). Thus  X~_~z =0.  Hence z =0.  We have proved (A). 
P (A) implies tha t  Ker  ~u M1.A. Hence/~ induces a surjeetive g-module homomorphism 

fi: W1.A-->Z1 and as before we see tha t  f l (W,.A)=Z,.  

To complete the proof of the theorem we need only show that /~ is injective. We prove 

tha t  fll w,.h is injective by  induct ion on l(to)- l(s). If  l(to)-l(s)=0, then s = t  o and Wt,.h = -- 

Z t , - M A ,  and since fl(Wt,.A)=Zt0, we see tha t  fl]wt0.i is injective. Suppose tha t  we have 

shown tha t / ?  I w,. h is injective for 0 ~< l(to)- l(s)~ m. I f  l(to)- l(s)=m, choose ~ E P~, ~ simple 

in P~ so tha t  l(s~s) = l(s) + 1. Let  z e W,. A, suppose fl(z) = 0. Let  p ~> 0, p E Z be so tha t  X~_:z E 

W,~s. A (this is possible since the W,. A satisfy (i), (ii), (iii), (iv)). Then fi(X~_~z) = X~_= fl(z) = O. 

But  then the inductive hypothesis  implies X~_~z = 0. Hence z = 0. The proof of the theorem 

is now complete. 

If /~ E ~)* is P~-domir~nt integral, set V~ equal to the irreducible f-module with highest 

weight /,. (The realization we use of V~ is V~/~,<I V,,,.) If  m is a non-negative integer, 

we use the nota t ion mV~ for any  ~-module isomorphic with the direct sum of m copies of Vs. 

I n  light of the results of this section and those of w 1, the following theorem is proved 

in exact ly the same way as Theorem 2.4 of [18]. 

T ~ E o g n ~  3.2. Let AEb* be such that • =t0(A[~,) is P~-dominant integral. Set Wp.A-- 

W1,A/E~<~ W~,A. 

(i) As a Z-module Wp. A = ~** mA(/g) V~ with 0 ~mA(/~ ) < oo and mA(/* ) E Z, the sum taken 

over all P~-dominant integral/~. Furthermore, 

( a )  mA()~ ) = l 
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(b) I/m~(/~)=4=O and/~=4=~, then there exist /~1 . . . . .  timER (not necessarily distinct) so that 

~ = ~ + ~ 1 1 ~ +  ... +~ml~," 

(ii) Let ~ denote the centralizer o/[ in ~. Let ~p, A =Q-top. A Iq ~ ( ~ ~ ,  see Lemma 2.6). 

Then looking upon V ~ as a ~-submodule o] Wp.A (see (i) (a)), the action o] ~ on V ~. is given by 

g I v ~ = ~]e, A(g) Id  
/or g E ~. 

I n  general, the modules Wp,A are not  irreducible. Let  M~, h be the sum of all 9-sub- 

modules M~_ Wp.A such tha t  Hom~ (V ~, M ) = { 0 }  and set Dp .A= We.A/Me.A. The argu- 

ment  which yields Theorem 2 in [7] now proves: 

T I~E OR E I~I 3.3. Let A E ~* be such that ) . -  t~(A[~) is P~-dominant integral, then Mp, A 

is the unique maximal proper submodule o/ Wp, A and thus De, h i8 a non-zero irreducible 

g-module. Within the set o/equivalence classes o/~-/inite irreducible B-modules, the equivalence 

class containing Dp. A is uniquely determined by the condition: 

I] M is an element o/ the equivalence class, then there exists a non-zero element A in 

Hom~ (V~, M) such that ~ acts on A ( V  ~) by the/ormula 

x I~<v~) ~ ~t,. A(x) I d  
/or x E G ~. 

4. Resolutions ot Verma modules 

The purpose of this section is t o  prove the existence of an exact  sequence of ~-modules 

whose last te rm is a ~-Verma module and whose other  terms are induced modules from a 

Borel subalgebra of ~. We will use this exact  sequence in w 5 to give an analogous resolution 

for most  Ws,A. I n  particular, we will see in w 6 tha t  for A "sufficiently regular",  We, A has 

a universal mapping  property.  

We will use the following lemma several t imes in this section. 

•EMMA 4.1. Let a be a Lie algebra over C and let b c  a be a subalgebra. Let M be an a- 

module and let N be a b-module. Let M' denote M as a b-module. De/ine j: U (a ) | u(~>(M' | N) 

M |  (U(a) | v(~)N) by 

j(a| (re| = a. (m• (1 (~n)) 

/or a E U(a), m E M = M',  n EN. Then j is a surjective isomorphism o/a-modules. 

This lemma seems to be well known. However,  the only proof of it in the li terature is 

in [9], Proposit ion 1.7. 



12 T. J .  E N R I G H T  A N D  N.  R .  WALT.ACH 

We now use Lemma 4.1 to give a slight generalization of the relative homology resolu- 

tion of @ (see B-G-G [1]). 

L~.MMA 4.2. Let a be a Lie algebra over C and let m ~ a  be a 8ubalgebra. Let P: a->alto 

be the natural m-module projection (m acts on a and aim by the restriction o/ad). I / A  e a* 

and AIEa.al=0, let @A denote the corresponding one-dimensional a-module. Let A ] m = i  and 

let @~ denote the corresponding one.dimensional re.module. We define 

~oA: u(a) @ (AJ(a/m)| 
u(m) 

, U(a) | (AJ-'(a/m)| 
U(m) 

as/ollows: i / a 6  U(a), X 1 . . . .  , Xj6a /m  Yj6a  so that P Y j = X j ,  then 

aA(a|  1 A ... A X~| 

J 
= ~ (-- 1)*+1 a ( Y , -  A(Y,) 1)@X 1A ... A X, A ... A X~| 

t=1 

+ ~ ( -  1 ) * + ~ a @ P [ Y , ,  Y , ]  A X 1 A . . .  A ~ r  A . . .  A X s  A . . .  A X~| 
l <~ r < s <~'j 

Then ~A is a well defined a-module homomorphism. Furthermore, i/ g = dim a/m, then the 

/oil| sequence o/n-module homomorphisms is exact 

eA 
0 -~ U(a) | (AO(a/m)| , U(a) (~) (Aa-l(a/m)@@~) 

u(m) u(m) 

~h ~A aA e 
�9 . . .  , u (a )  | (a/m| , v (a )  | CA , cA 

U(m) u(m) 
, o  (4.1) 

here e(a| 1) =A(a). 

For each non-negative integer j, set Uj(a) equal to the subspace o/ U(a) spanned by 1 

and all i-/old products o/elements o/a where i <~ j. For negative integers j, set U j( a ) = {0}. Then 

/or any integer j >~ -g ,  the/oil| sequence is exact: 

~A 
o , Uj(a) | (A~174 , 

U(11t) 

aA ~A e 
Uj ~l(a) @ (Ag-l(a/m)| ' ... ' Ut+q(a) @ @~ ' @A ' 0 (4.2) 

U(m) u(m) 

Proo/. In [1] it was observed that  the sequence (4.1) with A = 0  and hence 2 = 0  is 

exact. The same technique also shows that  sequence (4.2) is exact when A = 0 .  Now for 

O ~i~g ,  let J~,A be the bijeetive homomorphism from U(a)|174 onto 

(U(a) | v(m)A ~(a/m))| given by Lemma 4.1. Now tens| an exact sequence with the 
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finite-dimensional module CA yield another exact sequence. Thus for any integer ] >~ - g ,  

we obtain the exact sequence: 

J;_I~.A o (~o| 1) o J~,A 
o , uda) | (A~(a/m)| , . . .  

u(m) 

J~ . lo  (~0| oJ~ A t~ 
�9 U~+~(a) | C~ ' CA , 0  

U(m) 

Set ~A equal to JiqlLAo(~0Ol)oJ,.A . A straightforward computation shows that  ~A is 

given by the formula in the lemma (note that  it is sufficient to check the formula on the 

subspaces 1 | At(a/m) | C~). 

We now return to the notation of w a. That is, (9, ~) is a regular pair. Let D~, ~) = C~(~), 

A, A t be as in w 3, and let P be an admissible system of positive roots for A. Let Pt be the 

corresponding positive roots for At. Set l)t= ~1 + ~ e  t ~a. 

Set p = ~l relative to the Killing form of g- [• fl ~ = (0) by the definition of regular pair. 

Set O~={X60][~I, X]=0}.  Then ~ = ~ 1 ~ 2 .  As an ~h-module P=~2 |  O[i], (p[i]= 

{XeOI[H,X]=A(H)X for H6~l}). Set p~. =~=~-toeP[a] ~,]|  Set n = ~ - t 0 p g = .  

Hence b~=~| ( 1 1 ~ = ~ )  and let b = t ) ~ n .  Then b=St|  Clearly [b~, p / . ] c ~ .  

Let m: b-+p~ be the corresponding b~-module projection, 

LEMMA 4.3. Let AED* and set MA=V~_toe. A. Let l--t0(A[~,). Define ~A: 

~|174 , ~|174 as follows: Extend A to b by A(n)=O. 

I] g 6 ~, X 1 ..... X j  6 p~, then 

~A(gOX1 A ... A x j |  
] 

= ~ ( -  l)~+'g(X,-  A(X,) ) |  ... A 2i  A ... A X j |  
i=1 

+ ~, ( - - 1 y + ~ g | 1 7 4  
l <~ r<s<~l 

Then ~A is a well defined g-module homomorphism. Furthermore 

(i) MA is g-isomorphic with 

U(b i) v(b[) 

(ii) The/oUowing sequence o/ g-module homomorphisms is exact (m = dim p~,) 

~A ~A ~A e 
, g |  Am0;, | ' . . .  ' g |  (p;o | ' g |  C~;~ ' M A  

U(bf) U(b~) U(b I) 
, 0 ,  

here s is the projection onto M A identified as in (i). 
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Proo/. We note that  as a b~-module p~. =bibs. Let z: b~b/bt be the corresponding 

~A 
�9 U(~) | (/\m-l(~/~)| ) 

u(bt) 
~A 

> U(I)) | Ct;,~ ' - - - - "  C~ 
U(b f) 

projection. 

Let m - d i m  P~0 =d im b/b~ and let 

o �9 v(:~) | (/\m(~/;5~)| 0 
U(b t) 

> u(~)  @ (:~/~@C,;~) 
U(bf) 

~A 
~ 

0 (4.3) 

be as in Lemma 4.2. (Here IJ plays the role of a and ~t tha t  of m.) 

Tensoring (4.3) with ~ = U(g) over U(b) and "cancelling" the U(b)'s which appear  

twice gives 

~A ~A 
0 ' (t | (/\m(~/w174 " . . .  ' (i | ((~/~) |  

U(~f) g(b~) 

~A 
' ~ | Ctoz ' ( d |  A , 0 (4.4) 

U(b t) u(b) 

The formulas for the ~A are as before (with the obvious change of coefficients from 

u ( ~ )  t o  ~ ) .  

Now identify b/b~ with p~ as a w and note that  (4.4) remains exact since 

is a free U(b~)-module under right multiplication. This completes the proof. 

For 0 ~ i  ~ m  set Nto,~ = :~|  u(~)(A ~ p~ | (Here ~ : U(f) the universal enveloping 

algebra of f.) 

Then ~ | v(~t)(A ~ p/, | Ct; ~) ~ ~ | ~ Nto,~. We can rephrase Lemma 4.3 as: 

LEMMA 4.4. There exists an exact sequence 

~A ~h ~A ~A 
0 -  , ~ |  , ~ |  . . . .  ~ , . . .  , ~| 

y~ y~ yr 

~ |  Vt;~ " M A �9 0 (here Vt:~= V~,p~,t'd= Nto,o). 
x 

Let ~o = C1 c ~1 c ~ c ... be the canonical filtration o / ~  ( ~j is the subspace o] ~ spanned 

by j or less products o/ elements o] g). The /ollowing lemma is an easy consequence o/ the 

de/inition o/the ~A" 

L~MMA 4.5. 

(i) ~A(Qj" (1 | Qj+l(1 |  i = 0 ,  1 . . . . .  

(ii) ~A: 1 (~Nt.,~--~ ~1" (1 | is in]ective. 

Note. ~1" (1 | as a ~-module is isomorphic with Nto,~-i | (p | ~ acting on 

p by ad. 



R E P R E S E N T A T I O N S  OF A R E A L  S E M I S I M P L E  L I E  A L G E B R A  15 

5. Resolut ions  tor the Ws, 

I n  this section we show t h a t  if A is sufficiently regular,  the resolution of Wt,. A can 

be lifted to a resolution of W~.A for each s E W~. This in par t icular  will give a new defini- 

t ion of the Ws.h. I n  order to car ry  out  the lifting of resolutions, we need a few more  results 

abou t  ~[-Verma modules  (~, 3, ~ ,  ~ as in w 4). 

I f  m is a ~-module and vel)* s e t / [ v ]  = { w E i ] h . w = v ( h ) w  for all h ~ i  }. Set M ~ =  

{w E M ] 1~- w = 0} and set M"~[r] = M urn M[v]. Set as usual V~ = V~. % 4- 

~f L E P T A  5.1. Let ~ E ~* and suppose that V, is irreducible (this is equivalent to dim V~ = 1). 

Let F be a/inite dimensional Z-module. I / #  E ~* then 

dim (V~| ~ dim F [ # - v ] .  

Proo/. P u t  a lexicographic order on (~ )~  which gives P~ as the posit ive roots. Le t  

/~ .. . . .  /~ be a basis of F so t h a t / ~ E F [ ~ ]  and ~ > ~ >  ... ~$~. I f  vE(V~| then  v =  

~=~ v~| and v~E V ~ [ # - ~ ] .  Le t  i 0 be the  largest  i so t h a t  v~:4:0. I f  ~EP~ and X : E ~ ,  

then  
o =X~v = ~  X~v~|  v~| 

We note  t ha t  for each i, X~/~E~<i, C/j where i ' <  i and $~,~>~+~. 

Le t  2 E V*. Then  

o = (2 | I) (Z~v) = ~ 2(X~v~)fi + ~ 2(v~) x~fi. 

Therefore,  we see t h a t  if J is the set of indices ] so t ha t  ~=~ i0  then  ~j~j2(X~vj)/j=O. 

Since t h e / j  are l inearly independent ,  we see t h a t  2(X~vj)=0 for ]EJ, 2E V*. This implies 

t ha t  for each ]EJ, ~EP~, X~vj -O.  Let  lp be the fundamen ta l  generator  of V,. The  ir- 

reducibi l i ty of V, now implies t h a t  vj=cj(v)l, .  This implies t h a t  $~0=#-~ .  Set q(v)= 

~_~_~ c,(v) ]~ = ~ ~ c~(v)/~. Then q: ( V, | F)  ~ [#]--> F[/~ - v] is linear and  injective. 

Set n~ = ~  ~_~. 

L E ~ M A 5.2. Let 2 E ~* be P~-dominant integral. I / s  E Wt we have by convention Vs,.~ ~ V~. 

Let F be a/ ini te  dimensional Z-module and assume that lu E ~ is P~-dominant integral. Then 

(i) d im (F|  Vs,.~)"~[s '.#] = d i m  ( F |  V~)n~[#] = d i m  F [ #  - 2 ]  

(ii) I] r, s e W~ with r > s, then there exists an element d~.r(#) in U (lt~ ) depending only on 

#, rand  s which induces a bijection /rom (F|  Vr,.z)n~[r '.#] onto (F|  Vs,.z)nf[s '.#], and 

(iii) I /  r, sE W~ with r >s, then d~r-l.l(/~) induces a bi]ection /rom (F|  Vr,.~)nr[#] onto 

( F | V ~,. ~ ) nr [ ( sr-1) ' . /~ ]. Also the dimension o these spaces is dim F [ #  - r '  "2]. 
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Proo[. We first note that  if sE Wt, if a is a Pt-simple element of Pt  and if l(s~,s)= 

l(s) + 1, then there is n >/0, n E Z so that  X~_~ 18,~, = cl(s~s),~, c =V0 (here 1~ denotes the canonical 

generator for Vv). Thus under this condition if w E F |  Vs,a, then there is mEZ, m~>0 so 

that  X~_~wE F |  V(~),~. 

Using this observation we see that  if s, s:s are as above, and/Z is as in the statement 

of the lemma and if n =2(s'/z +~t, ~}/(~, ~} then 

is injective. We, therefore, see (by reeurrance on this result) that  

p 
dim (F |  V~)itt[/~] ~< dim ( F |  Vs,~)~'t[s'/z] < dim (F |  Vt;a) t [t0/z] (5.1) 

for all s E Wt and/z E ~ ,  Pt-dominant integral. 

Now Vt;a is irreducible. Thus Lemma 5.1 implies dim (F |  Vt'~)itt [to/Z] 

dim F[t0(/z -2) ]  =dim F[/Z -2] .  Also dim (F |  Va)itt [/Z] =dim F[f1-2]  since ~u is Pt-dominant 

integral (we leave this to the reader, it follows easily from 7.6.14, p. 241 of [3] and infinites- 

imal character considerations). But then dim F[/Z - 2] ~< dim (F | Vs, a)itt [s'fl] ~< dim F[#  - 2] 

for all sE Wt by (5.1). We have thus proven (i). 

To prove (ii), we choose for r > s  and /Z Pt-dominant integral the unique ele- 

ment (up to scalar multiple) of U(n(), d~,~(/z), so that  ds,~(/z).l~,~=ls,~. Then ds,~(/z)" 

( F | V~,~)"t[r'#]~ ( F | V~,~)'t [s'#]. 

Now it is clear by the proof of (i) that  

I t  t dto.r(/z)" (F |  Vr~)n'[r'/z] = ( F |  Vto~) ~[to/zJ. 

I t  is also easily seen that  dto.~(/z)ds, r(/z)=cdt,,r(/z)for some c~0 .  Thus if W=ds r (#)(F |  
, n ~  t r , Vr,~)itt[r'/z], we see that  dr. s ( /Z)(W)=(F|  Vto~) [ o/Z]. But  then dt~ s([.z)(F| Vs,~)it~[s'/z] = 

dto,~(/z) (W). Since dto.~(/z) acts injectively on F |  V~, we see that  

w = ( F |  Vs,~)"~[s'/z]. 

This proves (ii). A similar dimension argument proves (iii). 

LEMMA 5.3. Let N be a finite dimensional w which is semi-simple as an ~l- 

module.Let N = ~ N[/Z] (N[#] is as usual the ~z-weight space/or N relative to ~t). Set (~t = �89 ~ Pt o~. 

Suppose that there is a system o/ positive roots Qt /or A t so that i/  N[/Z] ~0,  then (/Z + (~, at} >~ 0 

/or all ~EQ~ (Q~ is not necessarily P~). Then ~| r splits into a direct sum o/ Verma mo- 

dules V ~ each counted with multiplicity equal to dim N[#]. 
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Proo]. Using the exactness of the tensor product over U(bt) we see that  ~ |  

has a composition series 

X |  . . .  ~ M~ ~ M ~ + I  = (0) 
U(bf) 

where M J M ~ + I - V ~  i = l ,  ..., d and the number of i such that  ~u~=~u is exactly equal 

to dim N[/~]. Let  ~ be the infinitesimal character of V~ for/~ E ~ .  Then we see that  

: ~ |  ~ (M1),, the sum over all #E~* so that  N[~u]~0. Here (M1),z is the 

subspace of M 1 where if z E ~ ,  the center of ~ ,  z - ~ ( z )  acts nilpotently. Next we show: 

(a) If jui, ~u~E~* if N[#i]:~0, i = l ,  2 and if ~Ul~U2, then ~],,:4:~,~. If  ~,=~]~.. then 

#5 = s']Ul for some s ~ W~. Thus ~u~ + ~ = s(~u~ + (~). But f~ + ~ and ~1 + (~ a r e  Q~-dominant. 

This implies/~ =~u~. 

(a) implies: 

(b) If ~t~=~ft, then (M~)~ = (M~+l)~ . 

(c) If/xr for ?'>~i, then (M~), =0.  

Using (b) and (c), we see that  (M1),g has a composition series H l ~  H ~  ... ~ Hq~ Hq+l = 

(0) with HJH~+ 1 =- Vg and q =dim N[#]. But then dim Hl[#] =q, and ~u is the highest weight 

of H r Hence Itt'H~[~u] =0. But then :~-Hx[~U ] is a sum of q copies of Vg since H~/H~+x ~= Vz, 

1 ~< i ~< q, ~ .  Hi[#] = H~ and H~[~u] contains a basis of vectors which are linearly independent 

over the ring U(nt). From this we see that  the sum mentioned above must be direct. The 

lemma now follows. 

We now assume that  (~, ~) is a regular pair. We let ~ ,  ~, A and Ar have their usual 

meaning. Fix P =  A an admissible system of positive roots. Let  Pt be the corresponding 

system of positive roots for A~. 

Let  p be the orthogonal complement to [ in B relative to the Killing form of B. If  

# ~ *  let p [ # J = { X e p [ a d  h . X = # ( h ) X ,  he~l  }. Then 0[0]=~2 in the notation of w 4 and 

~ =~ |  Let  P~ be the set of # e ~ ,  ~t=fi[O~, f l eP  and p[/x]~=0 counted with multi- 

plicity equal to dim p[/~]. Set p+ = ~ O[#] the sum over all/?]~,, fl ~P. 

Let  A ~ *  and suppose that  t~(A]~,)=2 is Prdominant  integral. 

Definition 5.4. 2 is said to be strongly Prdominan t  integral relative to P if 2 and 2 -/~ 

are Prdominant  integral for all weights # of AO + = ~ A j 0% 

L]~MMA 5.5. Let Nt~ be de/ined as in the material preceding Lemma 4.4. Suppose that 

is strongly Prdominant integral. Then 
2 - 772907 Acta mathematica 140. I m p r i m $  le 10 F$vricr  1978 
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the sum over all weights, iz, o/ 

,u 

At(~2(DO +) with # multiplicity equal to dim A~(~2| +) [~u]. 

Proo/. This is an immediate consequenCe of Lemma 5.3 (use Q~ =toPt= -Pt) .  

In  what follows, we will use two more notational conventions in addition to Conven- 

tion 1 of w 3. 

Convention 2. I f  N is a Z-module and M ~  N is a ~-submodule, then we identify 

O |  with its image inO |  

Convention 3. When an arrow is not labeled it will be an inclusion in the sense of 

Convention 1 or 2. (In particular, it corresponds to a set theoretic inclusion.) 

Let  ~t I ..... ~u**, O~i<~m equal to the weights of A*(~2| +) counting multiplicity (in 

particular, r , = d i m  A~(~z(~p+)). Then Lemma 5.5 says that  

r~ 

Nto,~= ~ @ Vto(a-~,). 

We assume tha t  A E ~*, and 2 = t~(A ]~1) is strongly Pt-dominant integral. We then have 

for each sE Wr, 1 <~i~r,, 

Vto(~-pp = Vs,(a-up. 

rg 
Set N,,~=~=~| We identi/y Nt,,~ with ~=~ Vt;(a-.,). Then we have Nt~ 

for each s fi W~. Also if r, s E W~ and r <s,  then Nr,~ c Ns. ~. 

LEMMA 5.6. For each s E W~ and 1 <~ i ~<m, there exists a unique Z-module homomorphism 

dA: -Ns.i~ ~1" (1 @Ns.t_l) = ~ | 1 8o that i / r  <s, r, s e Wr the ]ollowing diagram com. 

mute8 
dA 

N~,i ' ~1" (l@N~,~_a) 

~ .~  ~ 01" 0 | 
(see Convention 3). 

Proo]. Set dA.t~174 for vENt~ Using Lemma 4.5 (and the note after it) 

and Lemma 5.2, we have for each 1 ~<?'~r~ 

dto,~(,~ -#J)"  (~1" (1 @Ns,,_l))n~[s'(~ -/~t)] = ( 6 1 "  (1 @Nto.,_l))tt~[t~(~ -# j ) ] .  

In  fact dto. s(~-~tt) gives a bijection between these two sets. 
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Let  dA.,: V,.(a-~j) -+ ~1" (1 | be defined so that  

(a) dr~ ~(i -I'J)" dA, ~(V~,(a-,?) "t [s'(~ -/*j)] = dA. to(V4(a-t,?) "t [t~(;t --/z j)] and 

(b) The restriction of dA.~ from V~,(a-,? to Vt;(a-@ is the original di,, .  restricted to 

V4(a-u?. 

From this we get 

da.~: N~,~-+ 0~" (1 | 

and (a) and (b) guarantee that  

(c) 
d i ,  s 

Nto,, " 01" (l@Ntod-1) 

commutes for all s E W,, and the maps dA., are injections. 

Suppose now that  r < s, s E W~. Using the fact that  dr0. ~(2 -#~) = cdt~ r(2 - ~ ) "  dr. s(;t - # i ) ,  

c~=O, we see that  

dA.~(N~,i) ~ dA, s(Nr,~) ~ dA(Nt.a). 

If vENt, i, there is uEU(lt~), uq=O so that  u.vENt~ Thus if vENr,~ then dA.~(u'v)= 

dA.t~ by (c) and dA.r(u'v)=dA, to(u'v) by (e). Hence u'dA.~(v)=u'dA.r(v). But u acts 

injectively on O @ x N l , ~  O |  ~ |  ~|176 for each i. Thus dA.s(v)= 
dA.r(v). An identical argument shows that  dA,~ is unique. 

We can thus set dA=dA,1 and dA[g~a=dA.~. The lemma now follows. 

Define for each 1 ~<i ~<m, a ~-homomorphism ~A: 

by letting 3 A be the canonical extension from N,.~ to ~ | of the ~-homomorphism 

da: N,., ~ ~1" (1 | 

Set Es.~.~ = ~| We can now state the main result of this section. 

T~EOREM 5.7..Let Ae~*, 2=t~(A[~), and assume ,~ is strongly P~-dominant integral. 

Then 
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(i) Ws. A is equivalent as a ~-module with 

FJs, o,~/~A(Es, l,i) 
/or each s E Wv 

(ii) Identi]ying Es.o.~/~A(Es.IA) with Ws, A then the/ollowing sequence is exact 

~A ?A ~A e 
0 ~ E ~ , ~ . ~  ~E~.~_I.~ , . . .  ,E~.o.~ "W~.A ,0  

Here s: E~.oy+ E~.o.a/~A(E~.I.2) is the canonical map. 

(iii) For each i, I <~ i <~ m, r < s, the/ollowing diagram is commutative 

(~A 
Esd,Z -'- Es,~-l,). 

(52) 

and this diagram induces the inclusions among the W~. A" 

Note. The E~.~.~ depend only on ~, the ~A depend on A. 

We will need two simple lemmas for the proof of Theorem 5.7. 

L E M M A 5.8. Let V be a d-dimensional vector space over C (d < c~), and let A E End (V) be 

nilpotent. Let W be a vector space over C, and let B E E n d  (W) be sur]ective. De/ine C: V |  W---> 

V | W by C(v|  = Av  |  + v|  Bw. Then C is sur]ective. 

Proof. By induction on d. I f  d = 1, then A =0,  and the result is clear. Suppose tha t  

d >  1, and tha t  the result is true for d -  1. Then AV=k V. Hence there is a subspace V1 

of V so tha t  V 1~ A V and dim V1 = d -  1. 

A V 1 c  V 1. Hence the inductive hypothesis implies tha t  C ( V |  W ) ~  VI |  W. I f  v E V 

and w e W, then w = Bu, u E W. C(v | u) = Av  | u + v | w. Since Av  E V1, v | w EIm C. Since 

the v |  vE V, wE W span V| W, the lemma follows. 

L]~MMA 5.9. I] ~ E ~  and i / a E P ~  is such that 2(~, oc}/(o~, :r - n ,  n > 0  nEZ,  and i/ 

X E~a, X=#O, then X is sur]ective on O| 

Proo/. Let v0= l | 174  Let YE~_~ be so tha t  [X, Y J = H ,  a (H)=2 .  I f  a =  

CH + CX + C Y  then U(a)v o = W is the Verma module for r with highest weight - n .  I t  is 

easy to see tha t  X acts surjectively on W. Let U ( g ) c  Uj+I(9) be the standard filtration of 

U(~). Let  X act on U(~) by  X . u = [ X ,  u]. Then X.  Uj(g)c  U,(g) for all j and X is a nil- 



REPR]~SENTATIONS OF A REAL SEMISIMPLE LIE ALGEBRA 21 

potent  transformation. Clearly U s (6). v o c U~+~(l~ ) v 0 and U~0 U~-(fl) v o = ~ | v<~) (~. Let  X 

act on Us(g)| W by  the tensor product action. Then Lemma 5.8 implies tha t  X.  (U~(6)| 

W) = U+ (~) | W. But  if ~(g | w) =gw, g e U(~), w e W, then ~(X.  (g | w)) = Xgw. I f  u E ~ | ~(~)C~, 

then uEU~(~)v o for some i. Hence u=~p(h), heU~(g) |  h = X . h l h ~ U + ( ~ ) |  Thus 

u =~(X.h~)=X~(h~).  Hence u e I m  X. Q.E.D. 

We now begin the proof of Theorem 5.7. We note tha t  the first part  of (iii) is obvious 

from the definitions. I f  vEE:.~,~, then there is uE U(II~), u4=0 so tha t  u'vEEto.i,~. The. 

sequence at  the t o level is exact, hence if i ~> 2, 0 := ~ ( u -  v) = u. ~ (v) .  Now u acts injectively, 

hence ~ ( v ) =  0. This implies tha t  the sequence 

8A 8A 8 A 
O -  ~ E~,,~,~- ) E~, . ,_~,~ - + . . .  , E~,o,~ (5.3) 

is a complex. 

Let  rn 0 = l(to)= I Ptl.  We prove the exactness of (5.3) by induction on l '(s)= m o - l(s) .  

I f  l '(s)=0, then S=to, and the sequence is exact by  Lemma 4.4. Suppose tha t  (5.3) 

has been shown to be exact for O<~l'(s)<p. Let sE W~, l '(s)=p. Let ~ be a Prs imple  root 

so tha t  l(s:s)=/(s)+ 1. Thus l ' ( s : s ) = p -  1. We have the following commutat ive diagram 

~A ~A ~A 
0 - -  " E ~ , m , ~  ' , E ~ . . ~ _ ] , ~ - - - - - + . . .  " E ~ . o . ~  

0 , E~,.~.~ ~ Es~.,~.~ " ... "E~,o,~ 

with the bot tom row exact. 

(5.4) 

Let a = la + ~_~ + [f~, L~]. Then E~,s,~/E,~,s.~ consists of a-finite vectors. Fix X~ E f~, 

X ~  Ef_~ so tha t  [X~, X_a] =H~ and ~(H~)=2. Set ~ = a +St. Then ~ is a parabolic sub- 

algebra of 3. Let  ~s, j  be the ~-submodule of N~.s generated over ~ by the canonical genera- 

tors of the Verma modules V~,r i ~  1 . . . .  , rj (see the definition of Ns,s). Then ~ , s  is a 

direct sum of a-Verma modules. 

There is a natural  isomorphism as 0-modules between 

~@v~)/V~,s and O@~Ns, s=Es,~,~ 

Set M s = ~j U(~). Then as an ~l-modnle 

(here St(V) is the i th homogeneous component of t hesymmet r i c  algebra on V and Sj(V) = 
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From this we see, using Lem ma  5.2, t ha t  

(a) I f  vEE~8.j.~ and  H a y = - ( n + 2 ) v ,  Xav=O for some n~>0, nEZ, t hen  there is 

vie  Es,j, a so t h a t  ~n+l  ~_~ v l=v  and  Hay I :nVl,  XaV 1 =0. 

Using the a-finiteness of a n y  element  of E~,j.x/E~.j.x, the top sequence in  (5.3} will 

be exact  if we can show tha t  if vGEs.j.a, H~v=nv, n ~ 0 ,  neZ ,  Xav=O a nd  ~AV=0, t hen  

v = ~w for some w E Es.j_l.z. 

To prove this, we note t ha t  " ~+1 ff X_~ v = u then  H~ u = - (n + 2) u, Xa u = 0 and  u E E ~ .  s.~. 

Fur thermore ,  ~Au=O. The exactness of the  bo t tom sequence of (5.4) implies t h a t  u= 

~Aw 1, wleE~s.j+l,a. We may  assume H ~ w l = - ( n + 2 ) w l .  Now ~ A ( X a W l ) = X a ~ A ( W l )  = 

X~u=O. Thus  X~wl=~Az , zEEs~s.j+2,a. L e m m a  5.9 implies t ha t  Xa acts surject ively on 

E~.j+ ~.~. Hence z = X~ Zx, z 1 C E ~  ~. j+ 2.a. We m a y  assume H a z = - nz and  H a z I = - (n + 2 ) z 1. 

Set  w~ = w 1 - ~h zl" Then  Xaw2 = X~ w I - X a ~Azl = Xawl - ~hXaZl = X~ w I - ~iZ = 0. Thus  

H~w2=-(n+2)w2,  Xaw~=O. B ut  then  (a) implies w2-.z~__:t+l w with w~Es.~+~.a, Haw= 
x r ~ + l  ~ ~ l r n +  1 ~ + 1  nw, Xaw=O. B u t  now we see ~_~ vw=~_~ v. Hence X_~ (~w-v)  =0 .  Since X_~ acts 

inject ively,  ~w =v. We have, therefore, proved the exactness of (5.3). 

We next  prove t ha t  if  Ws.A=Es.o.~/~A(Es, La) then  W~.A is isomorphic with W~.A; in  

the  course of the proof of this, we will also prove the last par t  of (iii). 

We note  t ha t  W~~ A. We prove by  induc t ion  on l'(s)=l(to)-l(s ) t ha t  

W'~.A={WeW~.AI there exists u e V ( n [ ) - { 0 } ,  u - w = 0 }  is (0). I f / ' ( s ) = 0 ,  then  s=t  o and  

the  result  is proved. Suppose t ha t  ss W~ l'(s)=p and  the result  is known  for O<-<l'(t)<p. 

Let ~ be a P~-simple root so t ha t  l(sas ) =l(s)+ 1. Then  l'(sas ) = p -  1. The commut iv i ty  of 

the diagram (5.2) implies tha t  there is a homomorphism 

so t ha t  

~: W~,A ,$s.~ 

~ i  ~A 
)- Es, l,2 > Es, o..~ 

0 0 

, lTgs~s.A ,0  
(5.5) 

commutes,  the rows are exact, the unlabeled arrows are (as per our conventions) inclusions. 

If  w E Ws~s. A and  y~(w) : 0 ,  then  w =e(wl) , w 1 E Espy. 0.a and  w I = ~h(W~), w~ E Es,l.~. There is 
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n>O, nEZ, so t h a t  X~_~w2EE~s,I.z. Hence  ~A(X~_~W2)=Xn-~Aw~=Xn-~W r But  then  

0 =~(X~_~Wl)=X~w. The  induct ive  hypothesis  implies w =0 .  We, therefore,  see 

(b) y~: l~s~.A-~ l~s. A is injective.  

Using the  fact  t h a t  every  e lement  of Es.o,~/E~.o.~ is a = f a + ~ - a + [ ~ ,  Z-a] finite, we 

see t h a t  l~s,A/~0(l~s.h) consists of a-finite vectors.  Le t  Xa, X_a, H a be as above.  

Suppose t h a t  wEi~r~.h, w=k0. We  m a y  assume H~w=mw. Let  Xq=wq=O, X~+lw=O. 

Set wo=Xq~w, n = ( m + 2 q ) .  Then  H~wo=nw o and X a w o = 0 .  Then woe I~.A. I f  n is not  a 

non-negat ive  integer then  w 0 E y0(l~s.  A). Bu t  ~p is injective.  Hence  w 0 ~0(l~'s~s. A) (W~. A is 

a ~-submodu]e of l~rs,h). Bu t  then  w0=0.  Hence  we m a y  assume n>~0, n E Z .  There  exists 

~(X_~ %)  WlEEs,o. ~ s o  t h a t  Hawl=nwl, X~wl=O and e(wl)=w o. X~_+lwlEEs~,,o.~ and ~+i 

W's~ ~. A = {0}. Using (5.5) we see t h a t  X~_ +~ w 1 = 3A(We), w2 E Es~s. ~, 4. We  m a y  assume Ha w~ = 

( n + 2 ) w  2. Now ~ A ( X a w 2 ) = X a ~ A ( W 2 )  n+l - =XaX_~ w l = 0 .  Thus  XaW2=~A(Wa), wa~Esas,2.~ 
and Hawa= - n w  a. Using L e m m a  5.9, we see t h a t  wa=Xaw a with wa~Es~,,~..a and  Hawa= 

- ( n § 1 6 2  Set w~=w2--~A(W4). Then Xaw~=Xaw=-XaaA(Wa)=Xaw~-ai(Xaw4)= 
' vn+l X a W 2 - - ~ A ( W 3 ) = 0 .  Using (a) above,  we see t h a t  w ~ = ~ _ ~  w 5, w~W,,~.,~ and Haw~= 

nw~, Xaw~=O. B u t  then  , n+~ , ~+~ ~(w~)=X_~ w~ and  ~:~(w~) =X_~  3A(Ws). This implies t h a t  
z n + l [  _~ ~W~--aA(W~))=0. Since X a acts  injeet ively on E~,0,~, we see w~=aA(Ws). Hence  

~(w~) = w o = 0. This  contradict ion completes  the  induction.  

We have  p roven  

(c) I f  u ~ U(n~-) - { 0 }  then  u acts  inject ively on each W~. A and if s e W~, a eP~, ~ simple 

in P~ and if l(sas)= l(s)+ 1, then  the  na tu ra l  6-module h o m o m o r p h i s m  y~: W ~ , A  -~ Ws, A is 

injeetive. 

Set Z~ = W~,A and for s e W~ let %: W~.A-~ W~, A be the  homomorph i sm coming f rom 

the c o m m u t a t i v e  d iag ram 3. Using the  fact  t h a t  if v ~ E~,0.~ then  there  exists u e U(II[) - {0} 

so t h a t  u.v~E~,o, ~ and the  fact  t h a t  W~,A=(0) for all t e  W~ we see t h a t  % is injective.  Set  

Z s = % ( W , , . ) .  I f  r, seW~ and r<s  t hen  arguing as above,  there  is a fi-module homo.  

morph i sm %,~: W~,A-~ W,, A. Using the  e o m m u t a t i v i t y  of the  following d iagram 

~A 8 
EI , I ,~  ' E i ,0 ,~  �9 WI.~I �9 0 

~r, 1,)." " Er, o.). )- ~/'r,). -~0 



24 T .  J .  E N R I G H T  A N D  1ft. R .  W A L L A C H  

we see that  ~f, oy~.~=~. Hence if r<s, Zr=Zs. I t  is now clear tha t  the family {Z~}~,t 

satisfies (i), (ii), (iii), (iv) of Theorem 3.1. This completes the proof of Theorem 5.7. 

The result stated as Theorem 5.7 is not the strongest possible. Since the ~ weight 

spaces of the modules Es.~.x, s ~ Wt, 0 ~ i  <~m are infinite dimensional, in order to compute 

the dimensions of any special subspaces of W~. A, it will be useful to have a filtered version 

of Theorem 5.7. For any non-negative integer ] set ~ equal to the subspace of ~ spanned 

by 1 and all/-fold products of elements in ~ with i ~<]. For negative integers ?" set ~r = {0}. 

~r ~;+~ and this family of subspaces will be called the standard/iltration of ~. For any 

integers i, ] with O<~i<~m and any s~W~, set E~.~.~=~r174 Let 2 denote the 

symmetrizer map and if A is a vector space set S(A) equal to the symmetric tensor algebra 

of A. For any integer k set S~(A) equal to the subspace of S(A) of all homogeneous tensors 

of degree k and then set S~(A)=~o<r162 Since ~r ~ = ~ r  E~.~.~ is a 1-module 

and in fact ~,| 1 gives a I-module isomorphism from Sr174 onto E~.~.~. We now prove 

the filtered version of Theorem 5.7 for s = t  0. 

L ~ M~A 5.10. Let A ~ ~*, 2 = t0(A [~,) and assume that 2 is strongly P~-dominant integral. 

Let ] be an integer with ~ >~ - m .  Then the/ollowing sequence o] ~-modules is exact: 

�9 E j +  1 .E i+m 1)I?./+ m 0 
0 " E~o.m.,~ > to, m - l , 2  ' . . .  ~ to,O,2 ' " to, A ) 

where T~zJ+m,, to.A is by definition the image o/Et~ ~. 

Proo/. Set OF, =~2 |162  P[-~I~,] ,  pt~ = ~ a e t o P  P[~lfh]" As usual for any integer 

i, 1 4 i ~ m = d i m  p~,, let A~(pF.) denote the elements in the exterior algebra A(pi,) of 

degree i. For i = 0 set A~(O~.) = C, the trivial bt-module. For i = 1 define a map ~ from S(p)| 

AI(pF.) into S(O) by extending linearly the m a p / |  ~-)/.x, with �9 denoting multiplication 

of symmetric tensors. If m>~i>~2, then define a map also called ~ from S(p)| to 

S(p)| A~-I(O~.) by extending linearly the m a p / |  A ... A x~ ~ ~x<.~<~( -- 1)J+l/'xj| A ... 

A xs A ... A x~ where/ES(O), x~Ept~ and ^ denotes omission of the term. I t  is well-known, 

[2], that  the maps ~ are all b~-module homomorphisms, 8 2 -  0, and the following sequence 

is exact for any integer )', ] >~ - m :  

0~ , s J ( O ) |  Am(p~,) , . . .  , S J + m - l ( 0 ) |  . , S ' m ( O )  , SJ+~(Pto) , 0 

where we identify Pt0 with p/p~, and e is the algebra map which extends the b,-module 

projection p-+p/p~,. If v E~I then let Cp be the one-dimensional module for b~ corresponding 

to v. Now tensoring C, with the above exact sequence yields another exact sequence of 
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brmodules. Now tensor the resulting sequence on the left by X over the ring U(i3r) and 

note that  since :~ is a free U(~)-module under right multiplication, we obtain the exact 

sequence: 

0 - - '  
1| I| 

u(~) u(3 t) 

For any integer i with 0 < i ~< m let �9 be the Lmodule homomorphism from :K | u%) SJ(p) | 

A~(p~) | into Et,.~.~ which extends the brhomomorphism of S(O)J| A~(O~o)| 

into Etoa.a given by / | 1 7 4  ~->k(/)|174 ~ ~ |  A/(p~)| Now Lemma 4.1 

asserts that  :K|174 A~(p~,)| is f-isomorphic with S~(p)| :K| At(p~)@Ct~.~ 

and hence isomorphic with E~,a.~. From the definition of the map we see easily that  (I) is 

surjective and hence in fact an isomorphism since the ~ weight spaces of both image and 

range are finite dimensional and these dimensions are equal. 

For integers i, ~ with 0~<i~<m set D [ . ~ = ~ | 1 7 4  A~(p~o)| and U~= 

| u%)S~(pt.)| Ct..~. We now have the following diagram which does not commute: 

~A ~A 
0 J , E i + m  i+rn �9 E~ . . . .  ~ " . . .  to.o.~-- ~Wto.A , 0  

0 D~.~ .. J§ �9 ' . - -  ~ D o , ~  ~ U ~  § , 0  

By comparing the definitions of ~A and ~ on generators, we find that  the following diagram 

is commutative 

0 , E j tE~ 1 to.m.M to, rn.2 

, D ~ y D ~ . ~  

-~ ~176 ~]+m ]EJ+m-1 l~zJ+m/lJTJ+m-1 
~ JaG. O,2l to.O.~ ) rrG,  A l V V t ~ . A  >0 

~ j + m / r ' ~ j + r n - 1  FTJ+m/TT~+m- 1 

(here the - denotes the induced map). The lower sequence is an exact complex and all the 

maps �9 are f-lnodule isomorphisms which implies that  there exists a f-module isomorphism 

from U~+'~/U~ +m-I to  W~+'~/W{:~A -1 which gives an equivalence between these two 

sequences and thus the top sequence is exact. I t  now follows easily tha t  the sequence of 

the Eg~ must itself be an exact complex. This completes the proof. 

Using Lemma 5.10 as the starting point then the arguments which prove Theorem 5.7 

give the following filtered version of that  theorem. 
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L E M ~ A  5.11. Let A E ~*, ~ =t~(A[~) and azsume that 2 is strongly P~-dominant integral. 

Let s E W~ and let ~ be an integer with ~ >~ --m, the~ the lollowing sequence o I ~-modules is an 

exact complex: 

~A ~A ~A s 
0 ~ E ~ , m , ;  " , ~7ri+1 i+m l z r t + m  ' 0 a:~s,m-l,2 + ' ' "  ) E s ,  o , 2 - -  ) rr s, A 

(where we de/ine W{ +m ~. A to be the image o/E~.o.a).J+" 

The g-module E~.l. a is isomorphic as a I-module to S(o)|  and thus Lemma 5.2 

applies to Es.,.;, and yields: 

LEMMA 5.12. Let AE~*, ) .=to(A[~).  Assume that 2 is strongly Pedominant  integral. 

I /  r, sE W~ with r >s, and i I I~E~ * is Pt-dominant integral, then the element ds.~(#) in U(rtg) 
n[ 

induces a bi]ection ]rom Er.~.a[r "/z] onto E ~ . @ " 2 ] .  Also the element d~-a.l(ft) induces 

a bi ject ion/tom nt E~.,.A[/~] onto E:~,a[(sr-1)'./z]. 

PROPOSITION 5.13. Let AEI~*, ).=t~(A]o,). Assume that 2 is strongly Prdominant  

integral, and that i z E ~* is Prdominant  integral. Then i / r  ~ W~, the ]olIowing sequence is an 

exact complex." 

n, , ~ A  rt~ , OA 
0 " Etgm, a[r �9 #] ~ Et . . . .  1.a[r �9 #] . . . .  ... 

0 A nr .- , e rxrn~ rr' - + 0  (5.6) 'E~.o, atr "/t] " "to, a t  "/~] 

For integers i, 

~l-module and the ]ollowing sequence is an exact complex: 

i i It k with i>~ - m  and O<~k<~m, set B~=(Et,.~c.~) ~. Then B~ is a semisimple 

~ A  ~ A  OA e 
0 -----+ B~m[r ' '  It] ,i+ l r , ~m_lt r �9 lUJ ~... , B~o+m[r ' . #] - -  I I;I/i+m ~n~ ' ~" to. AJ J r"  bt] , 0  

(5.7) 

Note. This last exact  sequence will be used to compute  the dimension of W~,! Air '  "~] = 

Proo/. Lemma 7 in [7] shows tha t  if r = 1, then the exactness s ta tement  in L e m m a  5.10 

implies the exactness of sequences (5.6) and (5.7). I f  r ~ l ,  then set s =r-lto. L e m m a  7 in 

[7] now applies to  Lemma 5.11 to give the exact  sequence: 

' , , (vvs.Aj ,r~, ~ 0 (5.8) 
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Using Lemma 5.12 and noting tha t  the maps ~A are fl-homomorphisms, we obtain the 

commutat ive  diagram: 

CqA ~ A  ., ~:~* + rn ~ t l r _  7 0 - -  -= (E~.m.~)'~ [/~] ~... ~ "  k~ .0 . ,  km 

ld~.~(/*) ld~.~(~) 

0 �9 B~[r'./~] ~... ~ B~+'~[r ' .#]  

(5.9) 

The vertical maps are bijections by Lemma 5.12, and thus the exactness of the top sequence 

implies the exactness of the lower. I t  remains only to check the exactness of the sequence: 

~A 
~ + m ~ l [ r '  � 9  ' B~+m[r ' '  ~] ~ (W~;~mA) ~ [r ' .  ~] �9 0 (5.10) 

Since dr, l(/s ) acts injectively on Ws.A, the exactness of (5.8) implies tha t  sequence (5.10) is 
exact at  i+m , [T;~Tt+rn\t~ B0 [r .#]. We now prove tha t  e maps B~+m[r ' ,ju] surjectively onto ~ ,, to.hP �9 [r"#] .  

This follows if we show tha t  drA(#) induces a bijection from W:~A[#] onto W~.!A[r',~u]. 

The case r = l  is trivial. Assume tha t  rg=l, and then choose a Prs imple  root ~ in P~ 

such tha t  l(s~s)=l(s)+ 1. Let a equal the one-dimensional subalgebra of ~, a = ~ .  Choose 

X_~E~_a, X_a:C0. During the proof of Theorem 5.7, the following fact was established: 

Let  v E ~  be such tha t  n=2(v+5~,  ~) /(~,  a )  is a positive integer, then Xn:~ induces a 
(l t bijeetion from (W~.A)a[v] onto (W~.A) [s,,.v]. Now if uE(W~,A)nt[s'~.v] then choose 

4E(Ws, a)a[v] such tha t  Xn~.~=u.  I f /5  is a Prs imple  root, ~4=/5, and if Y E ~  then [Y, 

X_a] = 0  and thus 0=Xn_~ �9 Y '4 .  But  X~_~ acts injectively on W~.A and thus Y . 4 = 0 ,  and 

in turn ~ e (Ws. A) "t [V]. This shows tha t  if m = 2(# + ~t, x}/(:r m) then X m induces a bijee- 
II t 

t ion from (W~.h)"t[/~] onto (W~s.A)t[s~.#]. We continue this process in an iterative 

fashion. Let  to s-I = s  1 ... sl be a minimal expression for to s-1 where each si is a simple reflec- 

tion in W, corresponding to the simple root y~, 1 <i<~l. Choose Y,E~_,,, Y~4=0 and set 

n l=2(#+~,yz ) / ( y l ,Tz}  and for 1 <.i<l, nt=2(s,+l ... sz(#+(5r), y~}/(y~,y,). The mini- 

reality of the expression implies tha t  n, is a positive integer 1 <~i ~<l, and thus if we repeat 

the above argument l times, we find tha t  Y~' ... YTz induces a bijection from (W~.A)"*[#] 

o n t o  (Wto.A)ui[r',~] since r=tos-L Y~" ... Y~  is a scalar multiple of dr.~(/~), and thus the 

proof of the proposition is complete. 

For purposes of later reference we state the structural fact just proved as a lemma. 

L E g g i n  5.14. Let A, 2, and/~ be as in Proposition 5.13. Let re  Wt and set s=r-~to . 

Then dr. ~(/u) induces a bi]ection ]rom ( W~. A)n~ [~u] onto ( Wto. A) "~ [r'-~u]. 

~t~re can now prove the main theorem on ltt-invariants in Ws.A. 



28 T. J .  F, N R I G H T  A N D  N.  R .  W A L L A C H  

THEOREI~ 5.15. Let Aef)*, )~=t~(A]o,) and assume that ,~ is strongly Prdominant  

integral. Let/~ E ~ be P~-dominant integral, then i/ r E W~ and s =r  -1 to, the/ol lowing/ormula 

holds: 

dim (Ws. A) n~[/t] = dim (Wt0.A) n~ [r' .#] = dim S(p~) [r' .# - t~-~] 

(where Pt, = ~ e t 0 e  P[al~,])" 

Proo[. Lemma 5.14 gives the first equality. We now consider the second. For any 

integer i it is easy to check that  the ~-module E~0.k.~ is isomorphic to the t-module S~(p)| 

-/Vto, k- 

Lemma 5.5 states that  Nto.~ splits as the direct sum of irreducible ~-Verma modules 

where V, occurs as a summand with multiplicity equal to dim (/\k(p~o)| ]. Now 

applying Lemma 5.2 gives: 

dim (E~o.k.~)~[v] = dim (Si(p)|174 [v] 

Set (~(i, k, v) equal to this dimension. 

Proposition 5.13 implies that  dim (W~o,A)"t[r"/~ ] =~0<k~<m (-1)k(~(i-k,  k, r ' .#).  Now 

return to the Koszul complex defined at the beginning of the proof of Lemma 5.10 and we 

find that  the alternating sum in the above equation equals dim S~(pt.)[r ' .#-t~..~]. This 

completes the proof. 

Remarks. 1. The reader should note that  although the aim of this paper is to use the 

theory of Verma modules to construct other g-modules, Theorem 5.15 contains a non- 

trivial structural fact about rtt-invariants in certain g-Verma modules (i.e., Wt,.A = V~, _to P. A). 

2. Theorem 5.15 will be used in [6] to prove that  with A, 4, and/~ as in the theorem, 

then the multiplicity of V ~ in We. A is given by: 

Z det(st0) dim(S(;hu) [s'. # -  to. 4]) 
se Wf 

In [6] we shall also write this as an alternating sum of certain partition functions, and in 

the case where ~1 = ~, we obtain precisely Blattner's formula. 

A lowest ~-type theorem 

If 2 E ~* is Pt-dominant integral, we denote by V s the irreducible finite dimensional 

representation with highest weight 2. If 2 E~* is not P~-dominant integral, we set V ~ = (0). 

A g-module, M, is said to be admissible if the following two conditions are satisfied: 
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(i) If m~M, dim 3~.m< oo 

(ii) I f  ~ e ~', then dim Homt ( V ~, M) < oo (here M is looked upon as a Lmodule). 

If M is admissible, then it is clear that  as a f-module 

M ~ ~ V ~ )  Hom~( V ~', M). 

If ha=dim Homr (V ~, M), we write M = ~  nv V ~. n~. is called the multiplicity of V z 

in M. 

De/inition 6.1. Let M be an admissible g-module. Let  )t e ~" be P~-dominant integral. 

Let  P be an admissible system of positive roots giving Pv Then M is said to have V ~ as a 

weak minimal Z-type relative to P if 

(a) There is an element A in Homt (V ~, M), A=~=0 so that  M =  O.A(Va). 

(b) If  f l~P and #=fll~,,  then Homt (V a-v, o-A(Va)) =0. 

(c) dim Homt ( V x, A( V ~) + p-A(VX)) = 1. 

THEOREM 6.2. Let M be an admissible g-module. Let P be an adra@sible system o/ 

positive roots. Suppose that Va is a weak minimal Ltype /or M relative to P and that ~ is 

strongly Prdominant integral (see De/inition 5.4). Then there exists a A E ~* so that A I ~, = t~,~ 

and a sur]ective g-module homomorphism o/ Wp. A onto M. 

Proo]. Then Definition 6.1 (a) states tha t  M = 6" A (V~). Using the universal mapping 

property of the tensor product, we see that  there is a surjective g-module homomorphism 

y): ~ | which extends the Lmodule homomorphism A: 1 | V~-~A(V~). 

Let O + = ~ p p [ a [ ~ ] .  In w we found that  8 h maps NI. 1 injectively into 

01(I| (=E10.z). Let -N'I.x be the ~-submodule of N1,1 where V~_~ occurs as a sum- 

mand with multiplicity equal to dim p+[#]. Definition 6.1 (b) implies that  ~p(SA(N~,I))--0. 

E~.0,~. is isomorphic to SI(p)| as a Z-module and thus V v occurs in E10.~ 

with multiplicity d i m ~ + l  (~=p[0]) .  Let M1 equal the ~-module generated by 

K e r ~ n  (E~.0,~)'~[$] and set /~=M10~A(~I,I). By construction we have 3I~_E~.o,~N 

Kerry. Lemma 5.12 implies that  dto.l(,~-t*) induces a bijeetion from (E~.0,~)n~[~-t,] 

onto (Et~0.0.a)u~[t0(+~-/~)] for any/~EO* such that  p+[/~]g5{0}. Now if we set i t ,  equal to 

the Lsubmodule of ~ generated by dto, l (~-/~)(M"t[2-/~])with # as above; then Mt,~_ 

ELo.~. E~o.o.a is isomorphic with S~(o)| and thus by comparing ~ weight spaces 

of Mto and 1 Eta. o. ~, we find that  if v a non-zero sum of elements in - toP, then Mto[to" ~ + v] ~- 
1 t Eto.o,~[to'2 +vJ. Set as usual l t=~,~_t ,v  g~, then if 1 denotes the canonical cyclic vector in 
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Vt;.~ then n '( l |  Again by comparing the ~i weight space dimensions of Mt~ 
and 1 r 1 i Eto.o,~ we find that  Mt~ has codimension one in Et..0.~[to'~], and thus there exists 

1 an element Ae~* so that  the action of ~ on (Eto.O.~/M~o)[to'~] is equivalent to C A. I t  is 

obvious that  A[~, = t~. )t and thus since t o  I = t O that  2 = t~(A [~,). 

Now using the results of w 4 with Nt0,1 and 9A as defined there, we obtain Mr~ = 

~A(/Vt~ 1). Recalling the definitions of w 5, we see that  8A(1 | N 1,1) = -1~ and thus by Theorem 

5.7 that  ~0 induces a map YJ1 from WLA onto M. VJI(V~) =A(V~) = V ~ and thus by Theorem 

3.1 (i), YJll W~.A=O for all se  Wi, s4=l. In turn, this shows that  ~1 induces a surjeetive g- 

homomorphism ~o~ from We.A onto M. This completes the proof. 

For any Ae~* such that  2=t~(A]~,) is Prdominant  integral, we know by Theorem 

3.2 that  dim Hom~ (V z, WP, A)=1. Let MR, A be the inique maximal ~-submodule of We.A 

such that  Homt ( V ~, MR, A) = {0}, and set De, A = WR, A/MR, A- De. A is the unique irreducible 

quotient of Wp.A. Set ~/e.~ equal to the set of equivalence classes of the irreducible re- 

presentations DR.A where A e ~* and 2 = t~(A [~,). This set of equivalence classes can be 

characterized in several ways. 

Tit  E o R E M 6.3. Let ,~ E ~ be Prdominant integral and let M be any admissible irreducible 

g-module. I /  {M} denotes the equivalence class o / M ,  then the/ollowing two statements are 

equivalent: 

(i) {M} E ~/e,~ 

(ii) There exists a ~-submodule L c  M which is isomorphic to V ~, Okstable and on which 

~ acts by the /ormula: X]L=ZlR, A(X)Id, where x e O  ~, Ae~* and $=t~(A[~,) (see Theorem 

3.2/or  the definition o/ ~/R.A). 

I /  in addition ,~ is strongly Prdominant integral, then (i) and (ii) are equivalent to either 

o/the/ollowing two equivalent statements: 

(iii) V ~ is a weak minimal ~-type /or M 

(iv) dim Hom~ (V ~, M)~>I and I-Iom~ (V~-~, M)={0} /or any #e~* where ~=f l [~  

/or some f ieF and p[/~]4={0}. 

Proo/. Let M be an admissible g-module and if/u E ~ is Prdominant  integral then set 

M{#} equal to the sum of all ~-submodules of M isomorphic with V~. The definition of 

admissible implies that  M is the direct sum of the ~-submodules M{tu }. Note also that  each 

M{/~} is stable under the action of 0~. One of the fundamental theorems for admissible 

representations, [14], asserts: 

(A) If M and M' are admissible irreducible g-modules, then M and M' are g-isomorphic 
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if and only if for some P~-dominant integral 2 in ~t, M{~}=~{0} and M{2,} and M'{~} are 

isomorphic as ~ |  :~-modulcs. 

Theorem 3.2 gives the implications (i) ~ (ii), (i) ~ (iii), and (i) ~ (iv). Assume tha t  M 

is an admissible irreducible g-module which satisfies (ii). Since M is irreducible, then for 

any Prdominan t  integral element # in ~*, we know [14] that  M{/~} is an irreducible 0~| ~ -  

module. Let L be as in s tatement  (ii), then since L is ~ |  V~L=-M{,~} .  I f  ~ 

acts on L by the formula X[r------~p.hld, then (A) and Theorem 3.2 imply tha t  M is 

isomorphic with Dp.A. This proves that  ( i i)~ (i). 

Assume that  ~ is strongly P rdominan t  integral. I f  M is an admissible irreducible g- 

module which satisfies (iii), then Theorem 6.2 gives a surjective ~-homomorphism a from 

Wp. h onto M for some A E ~* such tha t  ~ = t~(A [ ~,). Wp,.~ has a unique irreducible quotient 

D~.A and thus a induces an isomorphism of De, A onto M. This gives the implication 

(iii) ~ (i). 

We now complete the proof by showing that  (iv) ~ (iii). Clearly it will be sufficient to 

show that  dim Hom~ (V ~, M) =1, dim Hom~ (VZ, M) =d im Mn~[~t] and thus we shall 

actually prove tha t  dim Mn~[2] ~ 1. The work of w 4 and w 5 is based on Lemma 4.2 applied 

in the case where a = ~ (~ 11 = b and m = ~1 | 11f = b~. The exact same procedure can be carried 

out in the case a=~lOl~  and !~t =b~. In  this case the maps ~A have no dependence on ~ 

action, and thus we write them as ~a. Write 5/' ~., in place of N~,~ where in this case 0 ~< i ~< 

' E E '  dim A(n/lqt)=m' and write Ej,~.~ in place of Es,,,z. Set W~,~= s.0,~/~A(~,La) and recall 

tha t  Lemma 5.12 states tha t  d~o.~(~ ) gives a bijection from (W~,z)~[~] onto (W~o,~)u~[t~.~t]. 

In  this case W~'0,~ is not a 9-Verma module; however, it is easy to see tha t  t~.~ is a 

Pt-highest weight and also tha t  ~h-weight spaces are in fact all infinite dimensional. 

Set , u , u~ , - , , B~-(W~,~) tD t] and Bto=(Wto.a) [to').]=Wt~ Let a be any non-zero 

element in Horn, (V~, M) and let a also denote the unique extension to a g-homomorphism 

of 0 |  Va = E;,0,a. Our assumptions on M imply tha t  a l eA(~i. ~, a)~0 and thus ~ induces a 

homomorphism aa of W'a.a onto M. Set C 1 =B~ ~ Ker  al; then since ~t is P rdominan t  inte- 

gral, Ba/C a and M"~[~] are isomorphic O~-modules. Since dr..a(),) commutes with ~ ,  if we 

set Ct, =dt~ then as ~-modules  we have: 

Since M is by  assumption irreducible, these O~-modules are all irreducible. 

Bt~ is the Prhighest  weight space for W't,,x and thus 1l. B~~ = {0}. This implies tha t  

the commutator  subalgebra of ~ acts trivially on B~0 (the action of ~ factors through the 
t 

map 6 ~ / ~ . 1 t  and e ( ~ ) c e ( ~ , )  which is abelian). Hence the image of ~ in 

End (B~o/Cto) is commutat ive and acts irreducibly. Thus dim B~o/C~. = 1. 
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C o R O L L A R Y 6.4. Let 2 E []* be strongly Pt-dominant integral, and let M be an admissible 

irreducible g-module. I /Hom~ (V ~, M)~={0} and Hom~ (V~-~, M ) = { 0 } / o r  any IzE~* where 

=fll ,, f ieP and then 

dim Hom~ ( V ~, M) = 1 

(i.e., V ~ occurs with multiplicity one in M). 

Proo]. This follows by  Theorem 6.3 using the equivalence (i)<:~(iv), and  the fact t h a t  

if Ae~* is such tha t  2 =t~-(A[~,) then  dim Hom~ (V ~, We.A) =1 .  
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