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Introduction 

In [1] A. Connes proved that, for an arbitrary C*-dynamical system (A, a, R), there is a 

natural isomorphism 

~a: Ki(A)'--~ Ki+I(A• iEZ/2Z. 

He showed also that, given an a-invariant trace r on A, with dual trace f on AXaR, the 

equality 

f(r = ~ r(u*~(u)) ( . )  

holds for any unitary u in the domain of the infinitesimal generator 6 of a. 

In the terminology of [2], the right hand side of the above equality is just the 

pairing of a unitary and a cyclic one-cocycle. Of course, ~ is a zero-cocycle. Therefore 

the above equality reveals a certain relation between cyclic cocyles on an algebra and 

those on its crossed product. 

The purpose of the present paper is to construct a machine which makes precise 

the relation between the cyclic theory of an algebra and that of a one-parameter crossed 

product. 

Given a Fr6chet algebra M and a one-parameter group a of automorphisms of 

satisfying certain smoothness conditions (see Section 2.1), a Fr6chet algebra that we 

shall call the smooth crossed product MxaR can be defined. Our main result is as 

follows. 
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THEOREM 1. There exists a natural map 

#~:/-~x (~)  --~/-/~x + 1 (~t • ~ R) 

which commutes with the operator S and defines isomorphisms 

HeY(M) = H~215 a R), 

H~ ----" HeY( SeX a R). 

In the course of the proof we prove the following result. 

THEOREM 2 (Stability). Let ~r| denote the algebra o f  smooth compact operators 

(defined in Section 2.6). Then there exists an isomorphism 

H*( M) = H*( M | ~ ' ) .  

As a corollary to Theorem 1 we also have 

THEOREM 3 (Bott periodicity). There exists an isomorphism 

H*(M | ~(R)) --- H*+I( M), 

and hence an isomorphism 

H*(M | ~(R2)) ----- H*(M). 

The contents of this paper are as follows. In the second section we construct the 

smooth crossed product MxaR of M by a smooth action a of R. We also define the 

algebra X~, and prove a smooth version of the Takesaki-Takai duality theorem. In the 

third section we construct the map #a and derive its basic properties. In the fourth 

section we prove the stability theorem. This is used in the proof of the main theorem, 

which is given in Section 5. The sixth section is devoted to the comparison of the map 

#~ with Connes's map $~ in K-theory. We obtain the following generalisation of (~-): 

THEOREM 4. The equality (r x)=(#~q0, ~a(x)) holds for any cyclic cocycle q9 on 

and K-class x o f  M. 

Finally, the last section is devoted to a variant of the main theorem in the case 

that the action a is not smooth in the sense of Section 2.1. 

All the cochains considered in this paper will be understood (proved if necessary) 

to be continuous. By the tensor product of locally convex spaces (that are not C*- 

algebras) we will mean the complete projective tensor product. 
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2. Smooth one-parameter crossed products 

2.1. Let M be a Fr6chet algebra with topology given by an increasing sequence of 

seminorms 11. IIn, n E N. 

Definition. A homomorphism 

a: R---> Aut M 

is called a smooth action if the following two conditions are satisfied. 

(1) For each a E M the function 

t ~ at(a) 

is strongly infinitely differentiable. 

(2) For arbitrary m, k E N there exist n , j  E N and a positive constant C such that, for 

all a E M, 

I d~-at(a) m<<-C(l+t2)J~llalln �9 

2.2. A typical example of a smooth action is given by a smooth flow on a closed 

C| An especially pertinent example is translation on 5P(R). 

2.3. Notation. 9~(R) denotes the Fr6chet algebra of rapidly decreasing functions 

with pointwise multiplication. Se*(R) denotes the Fr6chet algebra of rapidly decreasing 

smooth functions with convolution. 

2.4. Remark. Since 5e(R) is nuclear, the tensor product ~(R)|  can be considered 

as a function space, 5e(R, M), for any complete Hausdorff locally convex space M. If, 

in particular, M is as in Section 2.1, the topology of 5e(R)| is given by the seminorms 

A m  

Ilfllk, m = sup(l+t2) k/2 -~_f(t) . 
ten dt"" k 

2.5. Suppose that a is a smooth action of R on M. Then it is easy to see that the 

formula 

(f-~g)(t) = f iJ(s)  as(g(t-s)) ds 

defines a jointly continuous product on 5e(R, M). 

18t-888286 Acta Mathematica 160. Impfim~ 1r 20 mai 1988 
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Definition. MxaR denotes the Fr6chet algebra ~(R, M) with the product defined 

above and is called the smooth one-parameter crossed product of M by a. 

2.6. Example. Let us consider the action ~, of R on b~(R) by translations. This 

extends to an action of R on the C*-algebra C0(R), and it is easily seen that b~(R)xy R is 

embedded as a dense subalgebra of the C*-algebra crossed product C0(R)xyR. Via the 

canonical isomorphism of C0(R) xr R onto the algebra K(L2(R)) of all compact operators 

on L2(R), the subalgebra 5e(R)xyR is identified with the subalgebra 2K ~ of those 

Hilbert-Schmidt operators whose integral kernels belong to oW(R2). Furthermore, this 

subalgebra consists of trace class operators ([3], Proof of Theorem 3). 

2.7. Let (M, a) be as in Section 2.1. The dual action ti of R on Mx~R is given by 

d,o(f)(t ) = e2m~ 

It is easy to see that ti is a smooth action, and so we may form the iterated smooth 

crossed product 

~ d X a R X a R .  

The following lemma will play a crucial role in the proof of our main result. 

2.8. LEMMA (Takesaki-Takai duality). The two Fr~chet algebras 

M x ~ R x a R  and M |  r*~ 

are isomorphic. 

Proof. The proof follows the usual proof in the C*-algebra case, with the simplifi- 

cations due to the fact that we are dealing with function spaces instead of operator 

algebras. For later use we shall give some of the details. 

Let ~ be the action of R on M| given by 

(y, f )(s)=as(f(s- t)) ,  

and let fl be the action of R on Mx,R,  where tt=Id, tE R, given by 

(fit f)(r)  = e-2~itrat(f(r)). 

We define maps 
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as follows: 

, :rr: M | 1 7 4  (M| 

0: (M| (MX,R)• 

~p: (Mx,R)• M x ~ R x a R  

:r(f)(s, t) = as(f(s, s - t ) ) ,  

t) = Jx~[s, t) exp (-2:risr) ds, 0(f)(r,  

lp(f)(t, 7:) = e2~itrf(r, t). 

Since we are dealing with function spaces, it is straightforward to see that :r, Q and 7; 

are isomorphisms of topological algebras, and hence the composed map 

T = ~ptgar 

gives the required isomorphism. 

2.9. Notation. We shall denote by Ta the isomorphism 

Ta: sC|174 MX~ Rxa  R 

constructed in the proof of Lemma 2.8. 

3. Construction of the map #a 

3.1. Let M be a locally convex topological algebra. The construction of the universal 

differential graded algebra (fl(M), d) given in Section II. 1 of [2] extends to the topologi- 

cal case ff we set 

n(sr = @ Q.(d) ,  
n~>0 

f l , ( d ) =  d - | 1 7 4  n > 0 ,  

n o ( a )  = d ,  

where M-  denotes the algebra M with unit adjoined, and the graded multiplication and 

differential are extended by continuity to the projective completions of the algebraic 

tensor products. Furthermore, any automorphism a of M has a natural extension to an 
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automorphism of f~(~) commuting with d. In the particular case when M is a Fr6chet 

algebra and a acts smoothly, it is immediate to see that for each n~>O, the extension acts 

smoothly on fln(~). 

3.2. Set 

E = ~(Se*(R))/@ f2,,(Se*(R)). 
n~2 

E carries a differential graded algebra structure induced by the quotient map 

~(~*(R))--~ E. 

In what follows we shall assume that M is a Fr6chet algebra and that a is a smooth 

action of R on ~ .  We will endow the space 

~ ( ~ ) |  

with a structure of locally convex differential graded algebra as follows. 

(1) Define 

d: f~(M)| ff2(~)| 

by 

d(co| = dco|  1)deg~~174 

(2) Define a left E0-module structure on ~(M)| as the one induced from the 

product structure of 

f~(~) -x~R 

and the inclusion of l| into the algebra ~ ( ~ ) - x a R .  

(3) Define a left E-module structure on f~(~) |  by the formulas 

.f(og| -- (fog| dh, 

df(w| = d(fa~|174 

df(w| = O. 

(4) Define the product in f~(of)| by 

(~| I |  ~) = ~(x(w I |  
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It is a straightforward computation to check that the above formulas extend by 

continuity to all of Q(M)|  and together with the differential d define the required 

structure. 

Definition. ~)(s~)| E denotes the differential graded algebra constructed above. 

3.3. Suppose that tp is a closed graded trace of degree n on fl(M). Set, for 

fE  f~(~t)| 

# ~ ( f ) =  :~i ~ dt d~.q~(cq(f(-t,t))) if f E  * * 

otherwise. 

LEMMA. #arp is a continuous closed graded trace o f  degree n+ l  on f~(M)| 

Proof. This is seen by a routine computation. 

Using Proposition II.1 

existence of a linear map 

of [2], we may reformulate this lemma as stating the 

#~: Z~(sr Z~+l(~tx~ n). 

3.4. Remark. Note that the map #a is natural with respect to smooth actions, i.e., 

given two smooth actions (M,a) and (~,fl) and an equivariant homomorphism 

Q: M-->~, then 

0*#a = * t a p * ,  

where 0 is the induced homomorphism of crossed products. 

3 . 5 .  L E M M A .  ~a(B~(s~t))~_B~+l(s~tXaR). 

Proof. Let C denote the Banach subalgebra of B(/2(N)) generated by all infinite 

matrices (ao), i, j E N, aij E C such that 

(I) the set of complex numbers {ao. } is finite, 

(II) the number of non zero a#'s per row or column is bounded. 

Let ~ E B~(M). We can extend ~p to an element ~ E B~((M-). Using the argument of 

Proposition II.8 of [2] we get a cyclic n-cocycle T on M- |  Following the construc- 

tion of Section 3.2 applied to M - |  and the action a| w e  get a differential graded 

algebra 

19-888286 Acta Mathematica 160. Impfim~ le 20 mai 1988 
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and a closed graded trace #a| of degreen+l .  Since we have a natural homomor- 

phism 
( ~ x a  R)- @ C--> (g2(~r @ C) @a| ~ 

this leads to a cyclic (n+ 1)-cocycle 2r on (~r215174 such that 

0"/~= #~p ,  

where 0 is the map x ~ x |  H from ~r215 into (~x~R) , ' |  and an application of 

Corollary II.6 of [2] finishes the proof. 

3.6. According to Lemmas 3.3 and 3.5 the linear map #a descends to cyclic coho- 

mology, i.e. 

is well defined. 

and 

#a:/--/~(.~) --o/-/~+l(..~• R) 

3.7. LEMMA. #aS=S#a. 

Proof. This is obtained by an argument analogous to that of Proposition 8.2 of [4]. 

3.8. Let us denote by t the trivial action of R on C. We have 

C x ,R x~R  = ~f | . 

Let r be the normalised trace on C and set 

e = ~LTr, 

co = ~Ls 

PXOVOSITION. The following equalities hold: 

(1) e(f,g)= 2~ri fatJ(-t)g(t)dt for f, g E S~*(R), 

(2) co(f, g, h) = -2~{Tr(f[D, g][M, h])-Tr(f[M, g][D, h]} for f, g, h E fir| 

where D and M are the unbounded operators on L2(R) given by (D~)(x)=-id~(x)/dt 
and (M~) (x) =x~(x), respectively. 

C • R = 5e*(R) 



CYCLIC COHOMOLOGY FOR ONE-PARAMETER SMOOTH CROSSED PRODUCTS 293 

Proof. (I) By definition, 

e(f, g) = (#, v)(fdg) 

Y. fo' = 2~i dt d2 r ( J ( -  t) g(t)  ) 

= 2:~i fat f ( -  t) g(t) dt. 

(2) Using the Fourier transform, ~*(R) becomes identified with ~(R), e becomes 

the cyclic cocycle given by 

e(~, g, = f fdg, 

and the dual action ~ becomes the action of R on ~e(R) by translations ~. The rest of the 

computation consists of a straightforward chasing of the definition of #re, and an 

application of the fact that ~T(R)xyR acts on L2(R) as integral operators with kernels 

](s, s -  t), fE  5e(R) x r R - 3V(R2). 

3.9. Let p be a rank one projection inside 5( *~. Then, using the equality [D, M] = I/i, 
we get 

to(p, p, p) = -2~ri. 

3.10. Note that in the case of trivial action, 

Mx,R -- M|  6e(R) 

and 

# , o - - ~ # e ,  ~o e ~(,~).  

3.11. Suppose that a is a smooth action of R on M and that r is an a-invariant trace 

on M. Then the formula 

e(f) = r(f(o)), f e  ~x,, R, 

defines a trace on MxaR. Let e be the projection of L2(R) onto the one-dimensional 

subspace spanned by h0. 

Then e E X | and we can define a homomorphism 
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r: M---> Jd @ X | 

a~-->a| 

PROPOSITION. I f  ~ denotes the derivation o f  M associated to a and Ta is the 

isomorphism constructed in Section 2.9, then 

(r*~ # ~ e)(a ~ ab = r(a~ 

Proof. First, recall that 

r(a))(s, 2) = (e2~iS~e-Z~i~au(a) ho(u-s)  ho(u) du. (T~ 
JR 

Given yO, yl E (Mx~R)xaR we have, by definition, 

f(yOyl) = 2ari ( 2 f ( y ~  d_4(yl(2))) d2. #a  
JR 

Inserting (-x-) in (-x--x-) we get, by a routine computation, 

# a f( Ta r(a~ Ta r(a l) ) = _ r(~(a o) a 1) = r(aO6(a 1)). 

(*) 

(**) 

3.12. One illustration of Proposition 3.11 comes from differential topology. Let X 

be a closed C~-manifold and a a one-parameter automorphism group of C| generat- 

ed by a smooth vector field ~. For any a-invariant measure/z on X, a one-dimensional 

current C, called the Ruelle-Sullivan current, is defined by 

C(~o) = f ~o(0 d#. 

This current is, in a natural way, a cyclic one-cocycle on C| Proposition 3.11 says 

that 

#a~ = C. 

4. The stability theorem 

4.1. Given an n-cycle (fl, 0, T) over M, the canonical extension (~- ,  O-, T-) is a n-cycle 

over M-. Moreover, if (fl,Q, T) and (~t',O', T') are cobordant over M, then 

(f~-,Q-, T-)  and (f~'- ,Q'-,  T'-)  are cobordant over ~t-. By Lemma II.28 of [2], the 

characters rt and r2 of two cobordant cycles over M satisfy 
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~ l -  ~2 = Bqo 

for some Hochschild cocycle qo E zn+I(M -, (M-)*); hence 

[Sf~] = [Sf2] in /T~+3(~-). 

Since the operator S commutes with the restriction map 

H~ (~-)--,/~7(a), 

it follows that [Srl] = [Sr2] in/-/~+3(M). 

This observation in particular extends the homotopy invariance of H*(M) ([2], p. 

341) to the case of nonunital M. 

4.2. THEOREM. Let Y[ be a locally convex topological algebra. Suppose that 

(1) there exists an idempotent eE~f  and a cyclic cocycle toEZ~k(M) such that 

to(e . . . . .  e)=k!(2:ri) k, 

(2) the flip o E Aut ( ~ |  defined by o(a| b |  is connected to the identity by 

a Ckpath o f  endomorphisms o f  Y[| 

Then, for  any locally convex topological algebra .~, the map 

H*(M)---> H*(M | Y() 

[9] ~ [q0 # to] 

is an isomorphism. 

Proof. Denote by r and r' the homomorphisms M--,M| and M|174174 

produced by tensoring with e. We have immediately 

(r')*(~o # ~ )  = Sk~o, 

(r')*(Id~ | o)*(qo # to) = r*tp # qo, 

for any q0 EZ~(~ |  

According to Section 4.1 and our assumptions, 

and hence 

( Id~@u)*=Id  on H*(M|174 

[~] = [r*~ # w] E H*(M | YE). 
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If we denote by #to the map 9~-~9#to, the last equality says that 

( # to ) r*=Id  on H*(M| 

For any cyclic cocycle 9 on M, 

(r*(#to)) q~ = Skq). 

It follows that #to and r* are inverses of each other at the level of periodic cyclic 

cohomology; in particular, they are isomorphisms. 

4.3. THEOREM (Stability). The Fr~chet algebra Y[= constructed in Section 2.6 

satisfies the conditions of  Theorem 4.2. Consequently 

H*(Y/"| = H*(C) 

and 

H*(M | Y[| ~-- H*(M) 

for any locally convex topological algebra M. 

Proof. The existence of an idempotent and an even cocycle as required in Theorem 

4.2(1) was shown in Sections 3.8 and 3.9. To deal with the flip automorphism a, note 

that X| consists of the integral operators with smooth rapidly decreasing kernels, and 

that one has isomorphisms of topological vector spaces 

x | | x | = ~ ( g 2 )  | ~ ( R  2) = ~(R4).  

Since any one-parameter subgroup of rotations in the coordinate space acts smoothly 

on b~(R 4) and gives automorphisms (unitarily implemented in L2(R2)) of the algebra 

X | 1 7 4  | the result follows. 

5. Main theorem 

5.1. Assume for the rest of this section that ~ is a Fr6chet algebra and a is a smooth 

action of R on M. 

PROPOSITION. Given 9EZ~(~),  the classes of the cocycles S(q~#to) and 

S( T~ *to g a) ~P coincide in/-/~+4(~|174 
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Proof. We will use the notation introduced in the proof of Lemma 2.8. Extending 

the homomorphism ~pQ we get a homomorphism 

~Po: (ff~(M) |  | (~(M) |  |  

and hence an equality 

0PQ)*#a #~ q~ = #v(q0 # e), 

where e is the canonical one-cocycle on 5fiR) (see the proof of II.3.2 of [2]). 
Let yt be the action of R on 

M | b~(R) -- b~ M), 

given by 

tE[0, I]. Define an action fl on 

by 

((7'),, f)(s) = ate(f ( s -  u)), 

3e(R, M) | C~([O, 11) 

flu(ft(s)) = ((7')uf)(s), tE [0, 1]. 

Notice that fl is smooth and therefore we can form the smooth crossed product 

(Se(R, ~ )  | C| l]))x#R. 

The evaluation maps (gof)(s)=fo(s), and (gl f)(s)=J~(s) are equivariant homomorphisms 

g~: 5e(R, a )  | C| 11)--> ,~OR, ,~t), i = O, I ,  

and hence give rise to homomorphisms 

~0: (Se(R, M) | C| 1]))xt~R---~ 5e(R, M ) x ? R ,  

~ :  (Se(R, M) | C| 1]))x# R---~ 6e(R, M ) x ? R .  

We define a homomorphism 

O: M| ~ - ~  (Se(R, M) | C| 1]))x#R 

by 
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o ( f  ),(S, r) = ast(f  (s, r)), 

where t E [0, I] and r is the variable introduced by the crossed product with/5. It is an 

easy observation that 

0*~ff(#v0( 9 # ~)) = Z*, #~ #,  q~, 

* ^* T* # ~  9 .  o g~ (#v,(9 # ~)) = #o  

Let us consider the two (n+2)-cycles over s g |  | given by 

((Q(s0 |  | ~0O, #vo0; o # 0), 

((ff~(M) | E) | ~1~, #v,(~ # ~))" 

We claim that these two cycles are cobordant. In fact, let V) be the canonical 

graded trace of degree one on the differential graded algebra ~*([0, 1]) of smooth 

differential forms on [0, 1] (see [2], p. 341). The graded trace 

#a((~ # *) # ~) 

over 

(f~(M) | E | fl*([0, 1])) |  

gives us the required cobordism. As a result, applying Section 4.1,  we get 

S T * , # t # , 9 = S T * ~ # a # a 9  in H~ +4(,$~ | ,.~'~176 �9 

5.2. THEOREM. For a smooth action a o f  R on a Fr~chet algebra M the map #o 

induces isomorphisms 

He~ ( M) ~ H~215 R), 

H~ ~ Hev(Mx~ R). 

Proof. Consider the diagram 

H*(M) #w ~ H , ( M | 1 7 4  r* 

/-/*(s~x.R) #a  , H * ( ~ x ~ R x a R ) .  

H*(M) 



CYCLIC COHOMOLOGY FOR ONE-PARAMETER SMOOTH CROSSED PRODUCTS 299 

According to Proposition 5.1 and the stability theorem, this diagram is commutative 

and #~o is an isomorphism. In particular, #a  is injective and #a  is surjective (since r*T~ 

is an isomorphism). Applying the same argument to the dual action a we conclude that 

#~ is injective, and hence that #~ is surjective. 

5.3. COROLLARY. (1) H*(~(Rn))=C, with a generator given by the n-cocycle 

(fo ..... fn)~-> f f~ ... dfL 

(2) H*(M| 
(3) H*(M| 

5.4. Let G be any connected, simply connected nilpotent Lie group. Since G can 

be written as an iterated semidirect product 

G---R>~R)q ... MR, 

and since nilpotency of G implies smoothness of the successive actions, we can apply 

Theorem 5.2 and get 

H*(Y*(GO) ---- H* +re(C), 

where ff*(G) is ff(Rm), as a topological vector space, with convolution over G as 

product. 

5.5. In the case of the Heisenberg group the corresponding generator of H*(ff*(H)) 

is given by the cyclic 3-cocycle 

r(f~ f f  , f2, f3) = (2~i)3 f [ l f~ fl(g,) f2(g2) f3(g3) c(g,, g2, g3) dgl dg2 dg 3 
ddJgoglg2g3 =1 

where c is a continuous normalised group 3-cocycle generating H3c(H; R ) - R .  

6. Comparison with the Connes isomorphism in K-theory 

6.1. Let a be an action of R on a C*-algebra A. In [1], Connes constructed a map 

~ia: KI(A)---~ Ki+l(A• 

satisfying certain natural axioms, and proved that it is unique up to a choice of 

orientation, and is an isomorphism. We review briefly the construction of ~0. 
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The subalgebra M of smooth elements of A with respect to a has, in a natural way, 

a structure of Fr6chet algebra, and the inclusion of ~ into A induces an isomorphism 

Ko( M)---> Ko(A ). 

Working, if necessary, in a matrix algebra over M-, we may assume that we are given a 

projection e E M. 

With h=6(e)e-e6(e)  we get 

(6-ad  h)(e) : O, 

and hence 6 - a d h  generates an R-action a '  on M such that a~(e)=e. Note that both 

actions a and a '  are smooth on M. By Lemma 1.3 of [1], there exists an isomorphism 

i: AXaR---~Axa, R, 

and it is easy to see that i (as constructed in [1]) also defines an isomorphism 

i: MxaR--* Mxa, R. 

Let U be a unitary in C*(R)- such that the class of U is the positive generator of 

KI(C*(R)), and U -  1 E ~*(R). Then 

i - l (1 -e+eU)  

is a unitary element of (~x~ R)-, and represents q~([e]) in KI(Ax~, R). For the definition 

of K 1 for a Fr6chet algebra see Section 12 of [3]. According to Lemma 12.1 of [4], 

$~ can be evaluated on any odd-dimensional cyclic cocycle on Mx~R. 

6.2. THEOREM. Given cp EH22(M), 

( q0, tel) = ( #a qg, r176 

Proof. Assume first that e is actually a-invariant. Then the homomorphism 

O: C---~ M 

induces a map 

~: Cx,R--* Mx~R. 
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By naturality of  both q~o and #a ,  we can pull everything back to C x, R and thus reduce 

the computation to the case M=C and a=t. We have thus to show that 

(to, 1) -- (#,w,@~ 

By construction, r is the positively oriented generator of  KI(C*(R))=Z. Using 

the Fourier transform, we identify b~*(R) with ,Se(R), and choose 

~,~ = exp 2:rib 

where h is any C | real-valued function on R such that 

h(t) = 0 for t <~ 0, 

h( t )=l  for t1>l.  

Since # ,  commutes  with S, we may assume that w is equal to r, the normalised trace on 

C. Then 

and 

(~,1)  = 1, 

( # ,  r, ~~ = (e, exp 2:rih) 

= arli e(exp ( - 2 : r i h ) -  1, exp (2:rib)- 1) 
2 

t "  

1 ~ e-2nihd(e2nih) = 1. 
= 2ati 3 

H*+I(~XaR) .  

Proof. Let  us recall first the construction of  the isomorphism i. Given an action a 

and a smooth a-cocycle  Vt, one defines an action y of  R on 

H*(M) #a' , H*+l(..dX~, R) 

/ 

The following lemma finishes the proof  of  Theorem 6.2. 

6.3. LEMMA. The following diagram is commutative. 
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such that 

G. A. ELLIOTT, T. NATSUME AND R. NEST 

m2(~) 

y(a | en) = a(a) | ell 

y(a | e22) = a'(a) | e22. 

From the smoothness of a and V it follows that y is a smooth action and so we can 

construct the crossed product 

M2(~)•  

and the two imbeddings 

01" MX~ R--> M2(s~)XvR 

02" Mx~, R--' M2(s~) xyR, 

where o,(a)=a| The isomorphism i is now given by 

o,) 
Since 

and since 

# ~ ~o = b'r ( % ~o), 

#o, ~o = b~( #~ q~), 

A ( 01) 
is connected to the identity by a smooth path in Aut(M2(M)xrR), an application of 

Section 4.1 (homotopy invariance of H*) gives the required formula 

i*#a' = #a. 

6.4. Let us consider q~: K~(A)-->Ko(A • a R). Note that $~ is the inverse of $o. Since 

#a is the inverse of #a, we have by the above the following result. 

PROPOSITION. Let (A, a) satisfy the conditions o f  6.1. Let u be a unitary in M- ,  
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and suppose that r is represented by an element o f  Ko(~gx a R). Then, for  any odd- 

dimensional cyclic cocycle ~p on M, 

( ~0, [u] ) = ( #~ 9 ,  r 

7. Further remarks 

7.1. Let us consider the action of R on R given by 

at(s ) = e2t s. 

The corresponding semidirect product group is a minimal parabolic subgroup of 

PSL2(R). If we try to use the procedure of Section 2.1, we get the action a of R on 

6e*(R) given by 

(a t f ) (s )  = e-2t f(e-Zts), 

which is not smooth in our terminology. We will sketch below how to extend our results 

to such a situation. 

7.2. Suppose we are given a Fr6chet algebra M and a strongly infinitely differenti- 

able action of R on M. Suppose, moreover, that there exists an increasing sequence of 

functions 

Qn: R----~ R+, 

satisfying the following conditions: 

(1) (l+tZ)l/2Qn_l(t)<.Q,(t), t E R .  

(2) O.(t)<~O.(s) O.(t-s) ,  s, t ~. R. 

(3) IIOkat(a)ll.<<.On,(t)llall., uniformly in t E R  and a ~. ~r n'=n'(n, k). 

Denote by 5e*(R) the convolution algebra of functions satisfying 

Hfllk,, = sup 0,(t)lD k- ~/(t) I < ~. 
t 

One checks that 5e~(R) with topology defined by II Ilk,., k, nEN,  becomes a Fr6chet 

algebra, nuclear as a locally convex space. 

Define 
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M x ~ R =  ~ : (R ,M)  ( = . ~ ( R ) |  

with the multiplication defined by the formula in Section 2.5. 

It is straightforward to see that the construction of #~ goes through and defines a 
map 

#~: H*(M)--> H*+I(MXeaR ). 

The all-important, though completely trivial, fact is that the dual action ~i on 

Mx~R is smooth, and so we can form (Mx~R) xaR. It is easy to see that the proof of 

Takesaki-Takai duality still goes through and gives 

(Mx~ R) xaR ~--M| Xo, 

where Xo=6~o(R) xtR. Furthermore, ~ satisfies the conditions of Theorem 4.2. 

Using Theorems 4.2 and 5.2 we get  

H*(Mx ~ a R) --- H*+I(Mx~ a Rx a R) 

= H*+l(~ | Y{Q) = H*+1(M). 

We have thus sketched the proof of the following result. 

7.3. PROPOSITION. Suppose that ~ ,  ~, Q satisfy the conditions of  Section 7.2. Then 
#~ gives an isomorphism 

#~: H*(M)--~ H*+I(MX~R). 

7.4. The preceding proposition applies to the example of Section 7.1 if we set 

On(t)  = e2nltl. 

In general, given an infinitely differentiable action a of,R on a Fr6chet algebra 

such that at is continuous with respect to each of the seminorms defining the topology 

of M, then we can use the weight functions On given by 

O,(s) 
k=o i=0 i d t  

(cf. Section I of  [4]). 
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Incidentally, it is only in this last construction that M need be a Fr6chet alge- 

bra----everywhere else in this paper M may be any locally convex algebra. 
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