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This paper is the first in a series of three. Stated in geometric terms the papers examine 

locally linear group actions on spheres for odd order groups G. In essentially equivalent 

homotopy theoretic terms the papers study the homotopy types of the spaces PLc(V) 
and Tope(V) of equivariant PL-homeomorphisms and homeomorphisms of a linear 

representation V. In fact, it is the homogeneous spaces F6(V)/PLG(V) and 

Top6(V)/PL6(V) we study where Fc(V) is the space of proper equivariant homotopy 

equivalences. Our results generalize theorems of Haefliger, Kirby-Siebenmann, Sulli- 

van and Wall, and others. 

The link between classification of manifolds and classification of homotopy types 

is transversality and this is the subject of the present first paper. The second paper 

generalizes Wall's classification of fake lens spaces to the classification of G-spheres 

which are equivariantly, homotopy equivalent to a given linear action. This involves the 

determination of the equivariant homotopy type of the G-space F/PL and a complete 

calculation of the PL equivariant surgery sequence for a linear G-sphere. As a result we 

show that the homotopy groups of PL~(V~U)/PLc(V) vanish in dimensions less than 

dim V G. In the third paper we study G triangulation theory. In particular we study the 

homotopy groups of Top6(V~)U)/Topc(V) in a range. The homotopy groups of the 

Stiefel spaces PLc(V~)U)/PLc(V) and Topc(V~U)/Top6(V) are in turn needed for 

equivariant transversality, so the three papers are locked together in an inductive 

fashion. The reader is referred to w 4 below and to the individual Parts II and III for 

more information. 

We now give a brief discussion of the content of the present paper. Let G denote 

an arbitrary finite group. We consider the G-transversality question in the locally linear 
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category of PL or topological G-manifolds. The general theory is the same in the two 

cases so to avoid unnecessary repetition we write cat for either case. For X a G-space 

we let A(X) be the simplicial set of cat automorphisms of AnxX commuting with 

projection. It is a G-simplicial set and we will denote its fixed point set by At(X). 

Our general problem is the following: We are given G-manifolds M, X and Y, with 

Mr-Y and a G-map f: X---~ Y. We wish to homotop f through G-maps so that it becomes 

"transverse" to M. We will give a precise meaning to this, analyze the obstructions to 

making a map transverse, and give criteria for them to vanish. 

Our approach is through the theory of G-submersions. For example, if M= {y} is a 

point thenf is  transverse to y provided there exists a neighborhood U ofy in Y such that 

flf-l(U):f-l(U)--->U is a G-submersion. Therefore, at least in the case where M is a ~ 

point, the transversality question can be translated to a submersion question, which in 

turn can be treated by homotopy theory. By globalizing the idea we can treat the more 

general situation where M is a G-submanifold of Y with a nice normal tube, 

Our main results are a 'stable' G-transversality theorem in the PL category for odd 

order groups: i fX is a PL G-manifold and f." X->E+ is a G-map into the Thom space of a 

PL G-bundle E t h e n f i s  equivariantly homotopic to a map which is transversal to the 

zero-section of E, provided X and E satisfy certain gap-conditions. In the locally linear 

topological category we set up an obstruction theory for stable transversality. This is 

particularly effective when G is abelian. 

Combined with results from [16] we can then prove that oriented locally linear 

topological bundles are oriented w.r.t, equivariant KO-theory localized away from 2. 

In turn, this implies that the usual cannibalistic classes Qk(~) of G-vector bundles 

are topological invariants, and for representations V we show via Franz' independence 

lemma that the classes Qk(V) in fact determines V when G has odd order. Hence we 

arrive at the result which motivated the whole study: topological similar representa- 

tions of odd order groups are linearly similar. This result was independently proved by 

Hsiang and Pardon in [12] by rather different methods. 

Equivariant transversality was introduced by A. Wassermann [28] in the smooth 

category. An obstruction theory to smooth equivariant transversality was developed by 

T. Petrie, [25]. The obstruction theory presented in this paper in the PL and Top 

categories is similar in spirit to the theory from [25], but the details are quite different. 

Of importance is that our obstruction groups are often zero even when the obstruction 

groups to smooth transversality are non-zero. Thus it can happen that a map from a 

smooth manifold into a vector bundle which cannot be deformed to a smoothly 

transversal map can be deformed to a PL-transversal map. 



ON THE CLASSIFICATION OF G-SPHERES I 67 

Our topological transversality results (Theorems 4.10 and 4.12 below) are probably 

not optimal. First, the restriction to abelian groups might not be necessary.  Second,  we 

only present  a hierarchy of  ' s tepwise '  obstructions,  where one would like to have the 

transversality obstructions a priori defined. However,  several years have passed since 

we published the outline in [18], and we find it unreasonable to delay the publication of  

detailed proofs any further,  even if we think that we might be able to treat more general 

cases in the future. 

Finally, it is in order  to point out that the restriction to consider only groups of  odd 

order is in fact necessary.  For  G=Z/2  stable transversality fails even in the PL 

category. This is discussed in [19]. 

The paper  is divided into the following sections: 

w 1. Notations, basic notions and the G-submersion theorem . . . . . .  67 
w 2. Obstruction theory for G-submersions . . . . . . . . . . . . . . . . .  69 
w 3. Transversality obstruction . . . . . . . . . . . . . . . . . . . . . .  74 
w 4. The transversality theorems . . . . . . . . . . . . . . . . . . . . .  82 
w 5. Applications: KG-orientations . . . . . . . . . . . . . . . . . . . . .  91 
w 6. Topological similarities of representations . . . . . . . . . . . . . .  98 
w The topological G-signature theorem . . . . . . . . . . . . . . . . .  101 

w 1. Notations, basic notions, the G-submersion theorem 

To carry out the above program rigorously requires a rather formidable amount  of  

technical machinery and notation. We will a t tempt to steer a middle course,  providing 

enough detail to convince the skeptical without belaboring technical points to the 

extent that this paper  becomes unreadable.  For  the benefit  of  specialists we will note 

some of  the finer technical points in comments  without dwelling on them. The experts  

can provide their own favorite t reatment  of  these details while the more general reader  

can ignore them without great loss. 

Definition 1..1. Le t  X be a cat manifold and x EX. A coordinate patch a r o u n d x  is a 

pair (2, U) where U is an invariant open set in a Gx-representation and 2: U---,X a cat 

G,-isomorphism onto a neighborhood of  x. 

We will assume when convenient  that 0 E U and 2(0)=x. We will also, as custom- 

ary, sometimes pretend U c X  and 2=Ident i ty .  

Definition 1.2. Le t  H1cH2cG. A linear submersion is a triple 0~, U, V) where U is 

an Hi-invariant open subset o f  an RH~-module A, V is an H2-invariant open subset of  an 
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RH2-module B, and 2: U---~V is the restriction of  an H~-linear epimorphism 2:A-->B. 

Again when convenient  we will assume U, V contain 0. 

Definition 1.3. Le t  X and Y be cat G-manifolds. A cat G-map J2 X--> Y is called a cat 

G-submersion if it is locally equal to a linear submersion. 

A technical comment  is in order.  We will also need the above definition for cat 

mani fo ldswi th  boundary.  To handle boundary points we can either generalize the 

notion of linear submersion to half spaces or extend the boundary to an open collar. 

Using the strong uniqueness of open collars one can easily show the two approaches 

are equivalent. 

Our notion of  G-submersion is stronger than the notion of  submersion (in the non- 

equivariant sense) which happens to be a G-map. One could also develop a general 

submersion theory in this weaker sense. However we cannot  calculate the obstruction 

groups there. 

Definition 1.4. Let  X, Y be cat G-manifolds. We write SUB 6 (X, Y) for the simpli- 

cial set (A-set) whose k-simplices are G-submersions f:  AkxX-~Akx Y over the identity 

on A k, i.e. f ( t ,x)=(t ,  f l( t ,x)) .  

Degeneracy operators  can be defined, but are unnecessary (cf. [23]). However it is 

important (and easy to see) that SUB~ (X, Y) is a Kan complex.  

The reduction of  submersion theory to homotopy  theory involves comparing 

SUB6(X, Y) to a more tractable complex,  via the use of  bundle theory.  Following [14], 

a G-R n bundle is a locally linear G-cat bundle with fiber R ~. If  X is a cat manifold, TX 

will denote the tangent bundle. This is most  directly defined as a G-micro bundle,  and 

not as a G-R ~ bundle. However,  the equivariant Kister  theorem (cf. [14, w 2]) allows us 

to replace the micro bundle by an actual G-R n bundle,  unique up to a canonical 

isomorphism. We shall therefore  ignore the micro bundle viewpoint and consider TX as 

a G-R n bundle. 

Definition 1.5. Let  E l be a G-R n bundle over X l and E 2 a G-R m bundle over X 2. A 

fiberwise cat G-map 2: EI--~E 2 over 2 is called a bundle G-epimorphism if the following 

local condition is satisfied for each x E X~: 

There exist Gx-neighborhoods U l and U 2 of  x and 2(x) with 2(U1)~_U 2 and 

G~-bundle isomorphisms 
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EilUi  Vi. 

Here V~, V 2 are representations of G x such that ~ factors as the composite 

ellU _ ~ ~2 _~ UiXVl ~% U2xV2~E2IU2 

for a linear G/-epimorphism p: Vl---~V 2. 

The above definition is somewhat complicated but these complications are neces- 

sary to compare bundle epimorphisms with submersions. One must take account of the 

fact that a G-R n locally linear bundle structure is radically non-homogeneous. The 

condition on a neighbourhood of a point will depend on the isotropy of that point. 

Definition 1.6. Let EPI c (El ,  E2) be the simplicial set whose k-simplicies are bundle 

G-epimorphisms a: AkxEl---~AkxE2 which preserve the Ak-coordinate. 

Here AkxE 1 denotes the bundle over AkxX induced from E l via the projection 

AkxX---~X and similarly for AkXE 2. The definitions have been set up so that there exists 

a natural map 

d: SUB c (X, Y)-+EPI c (TX, TY). 

Call a G-manifold non-closed if for each maximal isotropy subgroup H the fixed set X n 

has no non-empty closed manifold components. 

We can now state the Equivariant submersion theorem. 

THEOREM 1.7. I f  X is a non-closed G-manifold then d is a homotopy equivalence. 
[] 

In [13] this is proven in the topological category. The same argument works in the 

(locally linear) PL category once we have a G-isotopy extension theorem. This in turn 

can be proved in the equivariant setting following the G-trivial case from [10]; we stress 

that the isotopy extension theorem does not hold without the local linearity, see e.g. 

[22, w 5] for counter-examples. 

w 2. Obstruction theory for G-submersions 

The G-submersion theorem allows us to substitute EPIc(TX, TY) for SUBc(X, Y). We 

wish to reduce the study of the former to a question of cross sections of bundles, 
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allowing us to utilize G-obstruction theory for these problems. The reduction follows 

the well-known procedure in the non-equivariant case, with one interesting extra 

complication which we will discuss. But first a technical comment is in order. The 

spaces (say, X and Y) we are dealing with are locally linear G-manifolds. In the PL case 

these spaces have two useful properties which we shall use repeatedly: 

(2.1) (I). "Nice"  subspaces of X and Y, in particular Xnand Yn where H c G ,  have 

G-simplicial structures. 

This is needed since the auxiliary bundles we introduce below are simplicial 

bundles (or fibrations), and further, the G-obstruction theory is defined directly when 

the spaces involved are G-complexes. 

(2.1) (II). "Nice"  subspaces of X and Y, in particular X n and yn are G-neighbor- 

hood deformation retracts. 

This allows us to extend G-cross sections to G-neighborhoods in a more or less 

canonical way. 

We do not have direct analogues for (I) and (II) in the locally linear topological 

category, however up to G-homotopy they are true in the following sense: X, Y have 

G-R n bundle neighborhoods ,(', I 7" in G-representations [14, p. 277], which because they 

are smooth have canonical G-simplicial structures. If/~(X),/~(I0 are the pullbacks over 

X, Y of TX,  TY, then up to homotopy 

EPIG(E(X0, E(I?)) is the same as EPIc(TX, TY). 

One might consider then replacing X and Y by ,~ and I 7" once and for all so as to obtain 

properties (I) and (II). However it is not really convenient to do so. For example, we 

want to analyze obstructions lying in HTvr ) (X n, W; B), where W is a N(H)-invariant 

subspace of X n, B a local coefficient system and H~ denotes Bredon cohomology [5]. 

We will use the obvious fact that H~r (X n, W; B)=0 for k> dim X n. We thus wish to 

keep hold of the dimensions of X and Y. Hence a completely detailed treatement 

involves moving back and forth between )~n,W and XH, W where l~'=zt-l(W), 

~: s  

Doing this would not involve any real conceptual difficulties, but it would involve 

dragging along an extra hit of notation in a procedure that is already rather complicat- 

ed. Therefore we shortcircuit this whole complication by assuming: 

X and Y have G-simplicial structures. 
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Observe that this does not collapse the topological category into the PL category since 

the question of topological G-submersions is different from that of PL G-submersions 

even when the domain and range are piece-wise linear. 

The reason we can assume that X and Y have G-simplicial structures is that we are 

interested in questions of transversality and the universal vanishing of the obstructions 

to transversality. While it turns out that the obstructions are in general global obstruc- 

tions, the conditions which we derive for their vanishing are dimensional conditions 

and hence purely local, and in our categories the spaces involved are by definition 

locally triangulable. Even from the point of view of the general theory of G-submer- 

sions the difficulties encountered by dispensing with this triangutability assumption are 

purely questions of complication of detail. They can always be overcome by utilizing 

the device of passage to the normal tube, mentioned above. Alternatively, one could 

use nice coverings and the ~ech version of Bredon cohomology, pulling the bundles 

back from bundles over the nerve of the covering. 

We are attempting to build a G-bundle Epi (TX, TY) over X so that cross-sections 

of it correspond to G-epimorphisms from TX to TY. We recall how one proceeds in the 

case G= (1}, following Haefliger and Poenaru [11]. 

We begin with R ~i bundles Ei---~X i over simplicial complexes X 1 and X 2. Actually, it 

is more convenient to work with A-sets; thus we order the vertices of X~ and identify Xi 

with the A-set it generates (each j-simplex of X~ corresponds to a unique o: Aj---~Xi). 

We define a A-set Epi (E I, E2). Thej-simplices are triples (0 l, 02, Q) where 01 and 02 

are j-simplices of X l and X 2 and 0 is a map 

o~(EI) 0 , o~(E2) 

which can be written as a composite of the form 

o: oT(E,l --- Ajx Ajxa  (Ezl. 

Here oi: Aj---~Xi, v/i is a bundle equivalence and p: R~--~R n2 is a linear surjection. 

Projection onto X l defines a bundle (in fact a twisted Cartesian product bundle, 

[15, chapter IV]) 

w: Epi (El, E 2 ) - . . ~ X  1 . 
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It is direct from the definitions that the A-set of  sections of  to is equal to the A-set of  

bundle epimorphisms EPI  ( E l ,  E2)  (where E l and E 2 are viewed as A-set bundles). 

I f E  l and E 2 are locally linear G-R ni bundles then Epi (E I, E 2) has a natural action of  

G, but G-sections of  to do not correspond to G-epimorphisms, i.e. to elements of  

EPI6 (EI ,E  2) as defined in Definition 1.6. Indeed,  G-sections of  to correspond to 

epimorphisms which are G-maps; this is a weaker notion than G-epimorphisms. 

To rectify this we proceed as follows: over (XlxX2) n we define Epin(Ej ,E 2) 

exactly as we defined Epi (E 1, E 2) above but with the one further requirement that ~)1 

and ~o 2 be H-invariant with respect  to some linear H-structures on R n~ and R n2. We get 

an N(H)-bundle 

ton: Epi n ( E  I , E2)--'>X H, 

and the following is immediate: 

PROPOSITION 2.2. The G-epimorphisms EPI c (E l, E 2) correspond uniquely to sys- 

tems of  N(H) cross-sections ~n: X~'-->Epin(EI, E2) of  to w which satisfy: 

(i) I f  H I is conjugate to H 2 then ~Ont corresponds to ~Pn2 under conjugation and 

(ii) I f  H c K  then ~Pn[Xr=Reso~px where Res: Epir(El,E2)-->Epin(El,E2) is the 

natural inclusion. [] 

It is convenient  to formalize the situation by regarding {Epin(Ei,E2)---~Xi} as a 

functor from the category 6 a of  orbits to the category of  bundles and fiberwise maps. 

We do this in the following: 

Definition 2.3. A bundle functor  ~r is a functor  from ~7 a to the category of  bundles 

and fiberwise maps. Precisely,  for each HoG,  ~r(H) is a map E(H)--~B(H), where E(H) 

and B(H) are A-sets and ~r(H) a bundle map which is also a natural transformation of  

the A-set valued functors E(H),  B(H). 

A cross-section of  er will then be a natural transformation j(H): B(H)---~E(H) such 

that ~r(H)oj(H)=Id.  The natural example of  a bundle functor  is given by a G-bundle 

E-~B where ~r(H) is the fixed point bundle,  E n ~ B  n, but as we have seen not all bundle 

functors are of  this form. In particular Epi (El, E2) which to G/H assigns Epi n (E l , E 2) is 

not of  this type.  

Given a bundle functor  ~r, the family of  homotopy  groups ~r,(E(H)x), x E B(H) form 
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a local coefficient system in the sense of [5]. The obstruction theory from [5] or [14] 

goes through word for word in this slightly more general case. In fact the use of Bredon 

cohomology is in some sense more transparent and natural in the above context. One 

might still ask 

Question. Is each G-bundle functor fiber homotopy equivalent to a G-bundle? 

It follows that we have an obstruction theory for constructing elements of 

EPIo(E I, E2). In particular for the tangent bundles E~=TX and E2=TY, the obstruc- 

tions lie in Bredon cohomology of X with local coefficients in ~r. EPIn(TxX, Ty Y). The 

next step is to analyze the coefficient system for these obstructions, that is, the 

homotopy groups ~rkEPIn(TxX, Ty Y) for xEX n, yE yn. 

A 0-simplex of EPIn(T~X, Ty Y) is a cat H-map ~: TxX--~Ty Y which factors as a 

composition 
IP 1 1/7 2 

TxX  w& v-- T r, 

with ~1 and ~3 2 cat H-isomorphisms, V and W RH-modules and Q a linear H-equivariant 

surjection. Thus we consider all pairs of RH-modules V, W and linear H-surjections 

~: W-oV such that W is cat H-isomorphic to TxX and V cat H-isomorphic to TrY. We 

set (W, V, 0)--(I~', 17, 0) if there exist cat H-isomorphisms a I and a 2 such that the 

following diagram commutes, 

O 
W ,V 

ctll • [ a2 

fr , 9  

Each k-simplex of EPIn(T~X, TyY) determines a unique equivalence class [(W, V, O)] 

and EPIn(TxX, TyY) breaks up into the disjoint union of sub-complexes indexed by 

these classes: 

EPIH(TxX, TyY) = H EPI~(TxX' TyY), 

where a runs over the equivalence classes [(W, V, Q)]. 

Remember that An(V) is the A-group of cat automorphisms of V. The product 



74 I. MADSEN AND M. ROTHENBERG 

An(T x X) x A ~  Ty Y) acts on EPI z (T x X, T r Y), transitively on each EPI~ (T x X, Ty Y). If  this 

set is non-empty we have an H-linear1 splitting W--V~V 1 and we can absorb 

the action of  Az(TrY) into the action of  A~t(TxX)=A~W). That is we can identify 

EPI~(TxX, Ty Y)=A It( W)/A o where 

A o = {y E AH(W) I y(v, v 0 = (v, ~'l(v, v,))}. 

In other words, A 0 is the group of  cat H-bundle automorphisms over the identity, 

V 
W = V ~ V  I , V ~ V  1 

Since V is H-contract ible,  A 0 has the group of  cat H-automorphisms of  V as a 

deformation retract.  In fact a retraction is given by ~t(v, vO=(v, Yl(tV, vl)). It follows 

that we have a homotopy  equivalence 

EPIan(TxX, TyY)~-AH(W)/An(VI), where W= V~V~ (2.4) 

Notice, since we are dealing with A-groups that 

~k(Att(W)/An(Vl)) ~ ~k(At4(W), a~v l ) ) .  

Suppose now we know that any two linear representations of  H which are cat H- 

isomorphic are linearly isomorphic.  Then it follows that there is only one equivalence 

class [(W, V, Q)], so EPIH(TxX, TrY)=EPI~(TxX, TRY). Since for the group G we will be 

considering we will have this as an inductive assumption for G and all subgroups we 

can and will drop the subscript a.  

w 3. Transversality obstructions 

The link between submersion and transversality is the following basic definition. 

Definition 3.1. Le t  X and Y be cat manifolds y E yO, jq X---~ Y a cat G-map. T h e n f i s  

transversal to y (frY) if there exists a G-neighborhood U o f f - l ( y )  such that f." U--* Y is a 

G-submersion. 

We wish to analyze the obs t ruct ion  to deforming f so that frY.  More generally 

suppose A c X  is a closed G-invariant subspace. We say f rY  on A if f is transversal to y 
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when restricted to a G-neighborhood of A. It is usually more convenient to approximate 

f with respect to some metric on Y than to actually construct a deformation. By 

standard methods for locally linear manifolds, close enough such approximations are 

always G-homotopic to f via a G-homotopy which doesn't  move points too far from f. 

For example one could embed Y in a linear representation and use standard linear 

approximations techniques there. Notice that the closeness of the approximation 

necessary to construct the deformation depends only on Y. It has nothing to do with f 

or X. First we specify the setting. 

Notation 3.2. We assume given a cat G-map f: X-+ Y, a closed G-subspace A of X 

and a subgroup H of G such that A N X  n contains Xn={xEXHIGx>H }. We further 

assume f+y on A where y E I ~ ,  and tha t fn :  Xn-+ yn is transverse to y considered as an 

N(H)-map. We ask, when we can find a cat G-map f:X--->Y such that 

flwu GXn=fIWU GX n where W is a G-neighborhood of A and f+y on A U GX n. If we 

can do this we say we can solve the (f, A, H)-problem. 

Notice that to solve this problem we may replace X by any G-neighborhood of 

A O GX n since the G-homotopy extension in our category implies that any extension of 

f l  A O GX n on a neighborhood of A O GX n extends (on a smaller neighborhood) to a cat 

G-map on all of X. Further by cutting down our neighborhood of A U GX n and then 

extending once more we can make f as close to f as we like. Secondly, it suffices to 

solve the problem for G=N(H),  since any N(H)-invariant map on a neighborhood of 

A U GX t4 which is a G-map on a neighborhood of A extends uniquely to a G-map on a 

neighborhood of A U GX n which is transversal to y as a G-map if the original map was 

transversal to y as an N(H)-map. Thus without loss of generality we can (and often will) 

assume that H is normal in G. 

THEOREM 3.3. With the notation from Notation 3.2, let Zn=(fn)- l (y)  and suppose 

that V is a G-linear neighborhood o f  y in Y. The obstructions to solve the (f, A, H)- 

problem lie in the Bredon cohomology groups tffu~n) (Z I~, Zn NA ; ark(a)) where 

a: An(T~X)/AH(VI)---~A(TxXn)/A(V H) 

restricts to H fixed set and TxX=V(3 V r 

Proof. We assume H,~G and choose a G-neighborhood W of A such that f [W is 

transversal to y. Let V be a small G-neighborhood of y such that for U=)'-~(V), 
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(i) fIUN W is a G-submersion, and 

(ii) fH[uH is a G-submersion. Let zn=(fH)-l(y). 
Suppose we can find a G-neighborhood U 0 of Z H in U and a G-submersion 

f: U 0---> Y such that f = f  on a neighborbood of U 0 n A in U 0 and fn=fH on a neighborhood 

o f Z  t~ in X n. Then we can solve the (f, A, H)-problem. Indeed, we can u s e f t o  ex tendf  

t o f o n  W0U U 1UX H where W 0 is a G-neighborhood of A in X andflWo=f[Wo, Ul~-Uo 

is a G-neighborhood of ZH, f[ Ul =f[ UI and flxH=fl XH. NOW f can be extended to a G- 

neighborhood N o fX  n (using the G Tietze extension theorem or a PL version of it). I f N  

is small enough f will be close to f on N and since y r  UO we can, by making N 

even smaller, assume y ~ f (N-UO.  Then f is transversal to y on W0U Ul U N and we 

have solved the (f, A, H)-problem. 

Fixing U 0 as above we wish to apply the obstruction theory of the last section to 

find f. We can replace A by a small G-neighborhood which we can assume to be a 

G-subcomplex of X. Then we have the obstruction to finding a submersion 

f ' .Uo--,VcY agreeing w i th fonUonA lies in the Bredon cohomology groups 

t~G(Uo, UonA; :r,) with :r,=:r, Epi(TU, TV). We also wishfH=f  H on U~. In terms of 

cross-sections of bundles this can be formulated as follows: The G-bundle functor 

Epi(TU0, TV)over U0 restricts to a G-bundle functor over U0 H. Since ~?c/i~c~7 G this 

restriction is a G/H-bundle functor and in this case cross-sections correspond bijective- 

ly when considered as a G or G/H-bundle functor since (U~) r =  Ut0 H/~ On the other 

hand considered as a G/H-bundle functor there is a natural transformation 

a 1: Epi ( TU o , TV) I U~---) Epi ( TU~, TvH) I U0 H. 

The submersion f n  yields a cross-section of this second bundle functor, which we 

denote by 2. Then using elementary covering homotopy properties for G-submersions 

we can find f: Uo--->V with the desired properties if we can find a cross-section 2 of 

Epi (TUo, TV) such that 

(a) 2lA=2f, the cross-section determined by f in a neighborhood of A, 

(b) 2 corresponds over U0 H to ~., i.e. a I o;t=~. 

Note that 2 and 2f agree on An. 

We further simplify the problem as follows: U 0 is by choice a G-simplicial com- 

plex. Since we are only interested in arbitrarily small neighborhoods of Z n we can 

further assume that U 0 is a G-regular neighborhood of U0 H, and since A is a stibcomplex 
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we can assume UoNA is a G-regular neighborhood of U~NAn=(UoNA) n. In particular 

cross-sections of Epi (TUo, TV) over U 0 fixed on A correspond, up to G-homotopy, 

uniquely to cross-sections of Epi (TU o, TV)IU ~, fixed on An. 

Over U0 n we have the map a I and cross-section ;~, 

Epi ( TUo, TV)-~ Epi ( TU H, TV") 

2: Ug-*Epi(TU~,TVn). 

We are looking for a cross-section Z with al(;t)=~ (and equal to ~: on A). Define a 

bundle E over U0 n by the pullback diagram: 

E , Epi (TU o, TV) 

1~2 16tl 
U~ , Epi (TU~, TvH). 

The cross-section we seek is exactly a cross-section of ct 2, fixed on A. The obstructions 

lie in H~(U o, UoNA; ~,(az))---H~(U0 n, UnnA; ~.(aj)). 

Since V is a small G-neighborhood of y E Ir ~ we may as well take it as a linear 

G-space so that for o E V, T o V= V. Then forx E U0 n the fiber of al(H) is the fiber of 

Epin(TxX, V)--~ Epi(T~X n, Vn). By (2.4) this fiber is equal to the fiber of 

a: AH(T~X)/An(V1)--~A(TxXH)/A(V~t). 

We need not consider the fiber of al(K), when K>H because we have assumed 

that in this case U~cA N U~ and the cross-section ). is already defined on A. In other 

words using excision we need only consider obstructions in 

H~(U~-intA, Ut~ fl aA; ~.(al)) 

where U~-A has only one orbit type G/H. In particular we can replace the Bredon 

cohomology with the ordinary local coefficient cohomology groups 

H*(uH-intA/G, Uno fl aA/G; ~,(al)) 

at: Epin(T~X, V)---->Epi (T~X ~, vH). 
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We have analyzed the obstruction for finding a submersion f of U 0, a fixed G- 

neighborhood of Z H. We are however only concerned with finding some G-neighbor- 

hood of Z n for which f exists, and since obstruction theory is natural with respect to 

restrictions, the obstructions to our problem can be considered to lie in 

colim He(U H, U n N A; ~,). 

Here U i varies over all G neighborhoods of Z n in X. Since the intersection of U n for 

such U i is precisely equal to Z n we have 

colim H~(Ui n, U H n A; zr,) = H~(Z n, Z n fl A; ~,(a))  

This completes the proof. [] 

The cohomology groups in Theorem 3.3 vanish for k>dim Z n. On the other hand 

we will show in the PL category that under suitable 'gap-conditions', 

~k(a) = 0 for k ~< dim Z n, 

thus forcing the obstructions to vanish. In the topological category there will however 

be obstructions to transversality in general. 

Now suppose we begin with an arbitrary G-map f.'X---~ Y, and y E Y~. Then by 

starting with A = ~  and working up the subgroups H o G  we can reduce the problem of 

deforming f to a map transversal to y to a finite sequence of (f, A,/-/)-problems. Thus 

when all above obstructions vanish we can stepwise deform f to f which is transversal 

to y. 

We wish to consider transversality in a more general form. Ideally, one would like 

to work most generally with f." X-* Y and M c  Y a submanifold. While one can define 

transversality in this context there are technical difficulties in proving anything about 

it. So we consider instead the problem of G-transversality assuming the existence of a 

fixed G-R n normal tube 7(M)c Y. Then the generalization goes through rather smoothly. 

Since such a tube exists and is unique stably this is no real restriction for stable 

transversality questions. 

A G-R n bundle E--~M has a special family of coordinate patches corresponding to 

E I U where U c M  is a coordinate patch for M. We call such coordinate patches, bundle 

coordinate patches. 

Let x E X .  If W is a neighborhood of 0 in an RGx-module, and x E W ~ _ X  is a 

Gx-embedding we call W a slab through x. A coordinate patch E around x with slab W is 
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a trivial Gx-R n bundle :~: E---~ W embedded as a Gx-neighborhood x ~ E~_X such that the 

0-section of n becomes the given embedding of the slab W. 

Definition 3.4. A G-map f." X---, Y is G-transverse to M with respect to the normal 

tube 7(M), if for each x Ef-I(M) there exists a coordinate patch E around x with slab W, 

and a bundle coordinate patch 7(M)IU around f(x) such that f agrees near W with a 

bundle map f :  E--->7(kl0[ U over the map J2 W---, U. 

When the conditions in Definition 3.4 are satisfied we write f+M w.r.t. 7(M). 

THEOREM 3.5. Let f: X---~ Y be a G-map with f +M w.r.t. 7(M), Let N=f-t(M). Then 

N has a normal tube 7(N)cX, withf=fnear N, where f: 7(N)---~v(M) is a bundle map 

covering f: N---~ M. I f  j: 7(N)cX and j' : y' (N)cX are two such normal tubes, there exists 

an isotopy j t with jo= j and (j')-ljl: 7(N)---~7'(N) a G-bundle isomorphism�9 

Proof. Clearly such a normal bundle exists in a neighborhood of each x E N. Thus 

the problem of constructing y(N) consists of piecing them together. It follows that the 

existence and uniqueness up to isotopy of 7(N) will follow from the local existence of 

the isotopyjr We can then assume that y=y(N)lW and 7'=7'(N)IW are product bundles 

over the slab W, say k: Wx R ~ 7  and k': Wx RS-=), '. Let f :  ~,-~, Ux R s, f ' :  7'--~ U x R ~ be 

the bundle maps agreeing w i th fnea r  W. By choosing trivializations k and k' correctly 

we can assume f ok=f ' ok '= f [WxId  near Wx0. Without loss of generality we may 

assume yc~ ' .  Construct Jt as follows: for z E),x and t>0 set jt(z)=k'(1/t) k'-lktk-l(z). 

Observe that zt2fjt(z)=~2f(z), where :t2: UxR~--~W. It follows that as t--~0, Jr(z) z ,  

where z' is the unique point in Y'x with f'(z')=f(z). [] 

The existence of a normal tube y(N) which satisfies the conclusion of Theorem 3.5 

implies f;rM w.r.t. 7(M). Hence it is a necessary and sufficient condition. Any such 

7(N) will be denoted by f* 7(M). As a consequence we have 

COROLLARY 3.6. Suppose we have G-maps Tg--~xf Y. l f f ~ M  w.r.t. )'04) and 

g~f-l(M) w.r.t, f*7(M') then f o g ~ M  w.r.t. 7(M) and (fog)*~(M~=g*(f*(~(M))). [] 

This result on the composition of transverse maps doesn't seem to carry over to 

any weaker definition of transversality, and can be seen as a technical reason for why 

we need the normal tube 7(M). 

Let f." X--~ Y be a G-map and M c  Y with normal tube ),(M). Let U=f-l(y(M)). Then 

firM w.r.t. ~(M) if and only if (f] U)~,M w.r,t, y(M). I f f - c , f '  wi thf '  ~M w.r.t, y(M) then 
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flU=c,f'lU and (f'IU)+M w.r.t. ~(M). It is not so obvious that if f l U  is G-homotopic to 

a map transversal to M w.r.t, y(M) then the same is true for f since an arbitrary 

homotopy may not be extendable without changing f-~(M). However, a transversal 

approximation to f is so extendable, and with a little care we can then reduce the 

problem of deforming f to a map transverse to M w.r.t. ~,(M) to the situation where 

f(X)cv(M). Suppose further v(M)=Mx V, where V is a G-module. Consider the com- 
f 

posite X ~ M x  V-->V. By the above,f+M w.r.t. Mx V implies that (zrof)+0 w.r. t .V. The 

homotopy converse is also true. 

LEMMA 3.7. I f  (arof)+O w.r.t. V with N=(:rof)-t(0) then f=6g ,  and g+M w.r.t 

M• V with N=g-1(M• and g*(M• V)=(nof)*(V). 

Proof. (at of)*(V) is trivial and we can choose the trivialization so that we have the 

following commutative diagram, 

X f__.~MxV Zl,V 
# ~ 

N x V  

where q,(x, v)=0pl(x, v), v). Let 

O(v, t) = t, Ivl~<l 
~o(v , t )= [v l - l+ (2 - l v l ) t ,  l~<lvl~<2 
e(v,  t) = 1, Ivl I> 2 

Let )G:N• be defined by Zt(x, v)=(qq(x,o(v, t) v),v). Then Zt=~0, x t = f  for 

[vl~>2, and Z0 is a bundle map over f i N  in a neighborhood of the 0-section. We let g be 

the extension of ;to by f .  [] 

We can now globalize Theorem 3.3. Suppose we have a cat G-mapf'.X-->Y and a 

G-submanifold M of Y with normal tube y(M). We are given a closed G-subspace AcX .  
We assume 

f+M w.r.t. ~,(M) on A (3.8i) 

X~ = (x ~.XHIG~ > H} c A,  (3.8ii) 

fn:XH--->YI~ is N(H)-transversal to M n w.r.t. ),(M) H (3.8iii) 
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The global (f, A,/-/)-problem is to find f: X---> YwithflWu GXn=fIWu GXn for a G- 

neighborhood W of A and with f+M w.r.t. 7(M) on A tJ GX n. As in the discussion 

following Theorem 3.3, if we can solve this problem s tepwise for HoG,  we can 

stepwise approximate f by a map X---> Y which is transversal to M w.r.t. 7(M). 

By Corollary 3.6 and Lemma 3.7 we can reduce the global problem to a sequence 

of local problems by filtering X by submanifolds XocX,  c . . .  cXk=X,  with Xi-Xi_  l 

"small" and letting Ai=AnXiOXi_ l and fi=J~Xi and solving the sequence of local 

problems (f,.,Ai, H). Again without loss of generality we assume H<IG. Let 

Zn=(fn)-I(Mn). By Theorem 3.3. we can solve these local problems step by step if we 

can find a cross-section of the bundle functor Epi(TXIZn,(fn)*(7(M)lMn)) which 

restricts to the one induced by foye r  a G-neighborhood of A and to the cross-section of 

Epi (TXn[Z n, (fn)*(7(M)n)) induced by f n .  

Suppose for simplicity that X n and M n are connected. For x E X n we can then write 

TxX=T and for yEf (M)  n, 7y(M)=V. Suppose T = V ( ~ V  1. Then we have the global 

version of Theorem 3.3; it follows by essentially the same argument as used for 

Theorem 3.3 and the discussion above. 

THEOREM 3.9. Under the hypothesis o f  (3.8) and with ZH=(fH)-t(MH), the ob- 

structions to solving the global (f, A, H)-problem lie in H~N(m (Z H, Z H n A; :rk(a)), where 

a: An(T)/An(VI)--->A(Tn)/A(V~) is restriction to the H fixed set. [] 

If we do not assume X a and M n connected we must allow the T, V to vary with 

different components of Z n. This is only notationally more complicated, it does not 

introduce any new conceptual problems. 

In the above we have formulated transversality entirely within the locally linear 

manifold categories. However, since we found it necessary to specify the normal 

bundle 7(M) we are really dealing with transversality for maps into a locally linear 

bundle. More specifically, suppose ~ is a cat G-R" bundle over the G-complex Y and 

f'.X-->T(~) is a G-map of a cat G-manifold into the Thorn space of ~. 

Assume f is G-transverse on the closed G-subspace A c X  and that f satisfies the 

obvious analogues of (3.8). For x E Z n and y=f(x) suppose 

Lx= L,# y 

and let 

a: AH(T~)/AH(L,,)-~ A(T~ )/A(V~, ). 

6-888285 Acta Mathematica. 160. Imprim6 le 25 f6vrier 1988 



82 I. MADSEN AND M. ROTHENBERG 

Then we have the local coefficients ~t.(a) and 

PROPOSITION 3.10. The obstruction to soloing the global (f, A, H)-problem lies in 
I'IkN~m(Z H, Z n f) a;  ~k(a)). [] 

Remark 3.11. We have studied transversality for mappings into (normal) bundles. 

Stably, normal bundles always exist, but unstably it is more natural to consider 

transversality for maps into block bundles. It appears likely (if not obvious) that there 

is a block version of the above. In particular, Proposition 3.10 should be valid when we 

replace A n by the space AH of block automorphisms. 

w 4. The transversality theorems 

We can now state precisely the results we aim to prove in this work. First we recall the 

standard stability conditions, also sometimes called the 'strong gap-conditions'. 

Definition 4.1. An RG-module V is called stable if for all subgroups K c H  of G for 

which vH*(o) and VK*V H, we have 10<2dim VH<dim V K. 

In the PL category the basic homotopy theoretic result is the following theorem 

which will be proved in Part II, [19]. 

THEOREM 4.2. Let G be a group o f  odd order and V c T  stable representations of  

G. I f  V and T have the same isotropy subgroups then PLo(T)/PLc(V) is dim V a -  1 

connected. [] 

Theorem 3.9 and the discussion following it allows us to translate the above into a 

transversality theorem. We first set up some terminology. 

Definition 4.3. Let ~ be a cat G-R n bundle over a G-space M, and let X be a cat G- 

manifold. The pair (X, ~) will be called stable if for each subgroup H c G  and points 
xEXtt,  y E M  H, 

L x - -  Vx, ye y, 

where Vx, r and TxX are stable RH-modules with the same set of isotropy subgroups. 

Suppose now given a G-map f: X--.T(~) of a PL G-manifold X. From Theorem 4.2 

and Proposition 3.10 we have 

THEOREM 4.4. Suppose G has odd order and ~ is a PL G-bundle. 
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(i) I f  (X,~) is stable then any f'.X--->T(~) is G-homotopic to a G-map which is 

transversal to the zero section Y. 

(ii) I f  f is already transversal to Y on a G-neighborhood o f  a closed G-subspace A 

then the homotopy can be taken constant on a possible smaller G-neighborhood o f  A. 
[] 

This theorem can be extended to a transversality result in the PL manifold 

category: A G-map f: X--~ Y between G-manifolds can be made transversal to a subman- 

ifold M~_ Y w.r.t, to a specified normal bundle y(M), cf. section 3. 

In the topological category Theorem 4.2 and therefore Theorem 4.4 are not true. 

This has been known for many years in the relatively free case (cf. [1], [14]): the 

algebraic K I(ZG ) enters in. There is then a stable obstruction to transversality, one 

which cannot be eliminated by making dimension and gap assumptions. We will now 

formulate our necessarily weaker and more delicate results in this category. 

Recall first the 'lower' K-groups/(i(ZG) for i<~1: if i=1, /(I(ZG) is the Whitehead 

group, if i=0,/(0(ZG) is the reduced class group and for i~ < -  1, I?i_g(ZG)=K_i(ZG) is the 

usual lower K-group, defined to be the invariant part of the Whitehead group 

Wh(Z[GxZi+l]). More precisely, let n be a positive number. Consider the inclusion 

n :  zg+I----->Z i+l which multiplies each coordinate by n. Let n* denote the induced endo- 

morphism of Wh(Z[Gx Zi+~]) in the contravariant structure. This induces an action of N 

and/(_;(G) is the subgroup which is left invariant, i.e. 

/ ( _ i ( Z G )  = W h ( Z [ G •  N, i ~  > - 1 .  

Let ~ be  any family of subgroups of G, closed under conjugacy and intersection. 

Write ~_i(G; 5~) for the corresponding equivariant lower K-groups (cf. [24]): 

O 

~r-i(G; ~ = E /(_;(Z[NF/F]). 
vE(~) 

Here (~-) denotes the set of conjugacy classes of subgroups in ~. We shall be 

particularly interested in the case where o~=Iso (V) is the family of isotropy groups of 

an RG-module V. This set is closed under conjugacy and intersection, see e.g. [21]. 

In the case of a relatively free representation V, 

~ri(Topo(V~R), Topo(V)) =/(i_k(ZG) for i ~  k+ l  

where k=dim ~ ,  cf. [1] and [14]. For more general representations one would maybe 
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expect the similar result with/(i_k(ZG) replaced by ~/_k(G; Iso (V)). But this is not the 

case. The result is more complicated. 
For F E ,~ let ~:N F be the family of subgroups of F which belong to ~. For each 

such F there is an (induction) homomorphism 

Ind: ~_i(F; ~ n  F)---~ ~r_i(G, 

which m a p s / f  ,(Z[Nr(H)/H ]) to I(_i(Z[N~(H)/H ]) by the usual covariant structure. We 

define 

~_;(G; ~) = Cok { r~ao Ind }. (4.5) 

The proof of the next result is given in Part III, cf. [20]. 

THEOREM 4.6. Let G be o f  odd order, and V=T a pair o f  stable representations 

with dim VG=dim 7~ Then 

(a) :t,(Topo (V~R), TOPG (V)) = ~._k(G; Iso (V)) for i <~ k -  1. 

The group vanishes for i<.k-2. 

(b) :ti(Topc (T), ToPG (V)) = 0 for i <~ k-2 .  [] 

Unfortunately, the non-vanishing of :tk_ ~ in Theorem 4.6(a) implies that there are 

global obstructions to stable topological transversality, cf. proof of Theorem 3.9. 

However, in special cases (where the fixed sets have simply connected components, 

see below) not all elements of :tk_~(Topc (V~)R), Top e (V)) can appear as obstructions. 

In order to examine the obstructions carefully we need the following further informa- 

tion from Part III. 

The triples 

Tope (Vt~R j+2) D Tope (V~)R j+l ) ~ Topo (V~)R j) 

give rise to an exact couple converging to Top e (V~)R| The first non-trivial differen- 

tial is given by the triple boundary map 

ak+y: :tk+j(Topa (V~)RJ+2), Tope (V~)RJ+ I)) --> :rk+j_l(Topa (V~RJ+ I), Top e (V~RJ)). 

Both the domain and the range are identified with the group X i(G;Iso(V)) by 

Theorem 4.6(a). On the other hand, ~_l(G) and Y~_j(G) comes equipped with the 

standard involution from algebraic K-theory and hence with a Tate differential 
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dr: ~_I(G)----> ~ _ I ( G ) ,  dr(x ) = x - ( - 1 ) ' x * .  

From [20, w 5] we have 

PROPOSITION 4.7. Under the identification in Theorem 4.6(a) 

ak+j(x) = x - ( -  1)k+Jx * = dk+i(x) 

where k=dim V c and (x)* is the usual (algebraic) involution on ~_I(G). [] 

The Tate cohomology of ~_l(G) is denoted/-~(~_I(G)), more precisely 

/-Tf(~_l(G)) = Ker dr/Im d,_ I. 

For odd order groups G, ~_l(G; ~') is always torsion free. Moreover, in [20] we prove 

THEOREM 4.8. For G abelian, ~_I(G; ~T) is torsion free. [] 

Strangely enough, this result is no longer true for groups which are not abelian, 

and consequently :tk_2(Topa(V~)R),TopG(V)) can have torsion. We shall not go into 

any further details here of this fact. 

We now apply the above theorems to questions of transversality in the topological 

category. In order to make the notation more manageable we drop the family ~ = I s o  (V) 

from the notation and just write ~_l(G) and ~_I(G). 

With these preliminaries we are ready to present our obstruction theory for solving 

the global (f, A, H)-problem of Section 3. We assume given a G-R n bundle ~ over a G- 

manifold M and a G-map 

f: X ~  T(~) 

where X is compact topological G-manifold. We make the following assumption for the 

rest of this section: 

(X,~) is stable in the sense of  (4.3). 

Let H c G .  We assume that fH:XH--->T(~)H is N(H)-transversal to  M H and that the 

restriction o f f  to A is G-transversal. Here A is a closed G-neighborhood of the singular 

subset X~= {x E XIGx>H } of X n. 

For x E X  n and y E M  n we write T=TxX andV=Vx,y where T~X=~y~Vx, y. With 

this simplified notation we neglect that the representations may change from compo- 
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nent to component of X e and M n. The reader can easily supply the details of the more 

general situation where the representations do indeed vary. 

Set Z n = ( f n ) - l ( M e ) .  By Proposition 3.10, the obstructions to solve the (fi, A, H)- 

problem lie in H~(n)(Z e, Z e N A; ~r,(a)) where a = Fix n, 

a: Top e ( 10/Tope (I1) ~ Top (TH)/Top (Ve). 

Let k=dim Ze=dim V e. Since Top (Tn)/Top (V  e) is (k-  D-connected, 

art(a) = ~,-r (Tope (/')/T~ (V)) 

when r<.k and by Theorem 4.6 this group vanishes when r<~k- I. Thus there is a single 

obstruction 

r(f, A, H) ~. H~(n)(Z n, Z e n A;  ~r k_ ~ (Tope (10, Tope (V))) 

for solving the (f, A, H)-problem. 

We now make some further assumptions, The first one is 

(I) Suppose Vc V~R2c T as H-representations. 

Here R 2 has trivial H-action. Then Theorem 4.6 and the homotopy exact sequence of 

(I) yield the following diagram 

0 

1 
~r, (Tope ( 10, Tope (V(~R)) ~ ~r k_ i (Tope (V(~R), Top e (V)) ~ ~r k_ l (T~ ( 10, Top e (V)) ~ 0 

~k (Tope (V~R2), T~ (V~R))" 

Hence 

~r,_, (Tope ( 13, Tope ( V))=-.~-l(H)ldk(~ r- l(H)). 

There is an inclusion of / : /*-I=/~- l (~_l(H) ,d)  in ~_,(H)/d,(5~_l(H)). This gives an 

injection 

i: H*G ( Zn,  Z e  fl A ; I?t*- ' ) --> H*o ( ZH, ZH n A ; ~r k_ , ) . 

We wish to examine when our obstruction lies in the image of i, which is a finite 2- 

group. We will assume for simplicity of discussion that aX=O. The case of non-empty 

boundary is only notationally, not conceptually, more complicated. 
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We begin with a simple lemma which allows us to consider the singular set Z g as a 

submanifold of Z tt. 

LEMMA 4.9. For each N(H)-neighborhood U of  Z n there exists a closed N(H)- 

neighborhood B c U n Z  n o f  Z g such that B is a N(H)-manifold with Ho(B, aB)=0 and 

HI(B, aB)=0. Moreover, when each component o f  Z n is simply connected then the 

same can be assumed for Zn_B.  

Proof. Write G=N(H). It acts freely on Zn-Zno. For each compact set 

Cc(Zn-Z~) /G there exists a compact manifold 1~' which contains C in the interior and 

such that the inclusion 

j: r162 (zH-zg) /G 

is [k/2]-connected, k=dim Z n. l~ is called a compact core containing C. Its existence is 

proven in [26] (se also [29]). 

Let W c Z n - Z ~  be the inverse image of l~' under the covering map 

(Zn-Z~)-->(Zn-Z~)/G. Then the complement B=ZH--int (W) satisfies the requirements 

of the lemma. Indeed it is clear that 0B and B have the same number of components and 

HI(B, OB) ~ Ht(Z z, W) ~ HI(Z H, ZH-Zn). 

The latter group vanishes because 

codim (Z n , Zg) = codim ( V n , V n) 

by transverality, and because V=Vx, y is assumed stable: in particular 

codim (V n, Vg)>2. 

Finally, if Z n is simply connected so is Z n - Z g  and therefore W by our requirements to 

a compact core. [] 

We now add the assumptions 

(II) Each component of X n and of M n is simply connected. 

(III) V= V_I~R as H-representations with V_ l stable. 

Notice from (II) and standard surgery arguments that one may deform 

fH: XZ ~ T(~)H(rel X z n A) 
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so that 

(II') Z H has simply connected components. 

It is only this consequence of (II) which will be used below. For abelian groups G 

(of odd order) and for certain nice choices of A we can now show that the obstruction 

to the (f, A, H)-problem lies in a finite 2-group. 

THEOREM 4.10. Let G be abelian. Let A be a closed neighborhood of Zg such that 

B=A NZ H satisfies the properties in Lemma 4.9. Under the assumptions (I), (II') and 

(III) the obstruction to soloing the global (f, A, H)-problem lie in 

I~G(ZH, ZHflA;I?-Ik-I(~_I(I'I)) ) where k=dimZ ft. 

Proof. Since f i s  already transverse on A we have a partial section 2 of the bundle 

functor Epi (T(X)IZX,f*(~IMn)) defined over A. To solve the (f, A,//)-problem is equiv- 

alent to extend 2 over all of Z H. We divide into two cases. 

Case (1): H=G. 

Let e t be the trivial 1-dimensional bundle. There is a surjection of bundle functors 

p: Epi (T(X)lZZ,f*(~lMtt)~el)---> Epi (T(X)IZS,f*(~IMZ)) 

whose "fiber" is TopH(V)/TopH(V_I). We first want to lift 2IZHnA to a section 2 with 

po2=2lZnnA. The obstructions lie in I-F(ANZH;:r,_I(Topn(V),Topn(V_O)). This 

group vanishes for r~:k, k -1  by Theorem 4.6 and for r=k, k-1 by Poincar6 duality 

because Hi(ZXnA, 0)=0 for i=0,1 by our assumptions. 

Let W be the closure of ZH-A so thatZH=Wu(ZUnA). Then /-/~-~(W, 0)= 

H1(W)=0 by assumption, so there is just a single obstruction to extend glOW over W. It 

lies in 

:rk_ l (Toptt (T), TopH (V_l)) = Idk(W, OW; :rk_ l (TopH (T), Topt~ (V_l))), 

and it maps by p into the single obstruction to extend ZlaW to W. Hence the latter 

obstruction, which a priori belongs to :rk_ ~ (TopH(T), TopH(V)), is in fact in the image 

of 

p , :  :rk_ i (Top/~ (T), TopH (V_l))--~ :rk_ 1 (Toptt (T), Toptt (V)). 

But the image of p ,  is equal to the kernel of 

0k-i 
:rk_l (Topn (T), TopH (V)) , :rk_ 2 (Topn (V), Toptt (V_I)). 



ON THE CLASSIFICATION OF G-SPHERES I 89 

This proves Theorem 4.10 in the case H=G. 

Case (2): H~-G, H~:G. 

The obstructions are also natural with respect to restriction of groups. Considered 

as G-spaces the obstructions lie in the Bredon cohomology, 

HkG=HkG(W , 0 W ;  .7'[k_ I (T~ (T), Topn ( V ) ) ) .  

This group is isomorphic with ~rk_~=:tk_ ~ (Topn(T), Topn(V)). Considered as H-spaces 

the obstructions lie in/~n-------:rk_~. With this identification, and observing that in this case 

of one orbit type we can identify the Bredon cohomology with the ordinary cohomo- 

logy of the quotient, we can identify the restriction of groups map /-~6--,Hkn with 

multiplication by the index [G:H l. Thus, if a E :t k_ i is the obstruction for the G-problem, 

then [G:HIa is the obstruction for the H-problem. We then have the homomorphism 

dk_l: : rk_l~_l( / - / )  and by case (1) dk_l(lG:H]a)=O. Hence [G:I-Jqdk_l(a)=O, and Theo- 

rem 4.8 implies that dk_l(a)=O. [] 

Addendum 4.11. The conclusions of Theorem 4.10 are also true when X has a non- 

empty boundary providedf is  already transversal to M near aX. Indeed, at each stage, 

A should be taken to include aX. 

Theorem 4.10 translates into a transversality result in the topological G-category 

for abelian groups of odd order as follows. 

Let (X, ~) satisfy Definition 4.3. Let H l, H 2 . . . .  be an admissible ordering of the 

occuring isotropy groups, i.e. I-ljcH i only i f j>i.  

THEOREM 4.12. Let G be abelian and IG] odd, and let f: X---~ T(~) be a G-map which 

satisfies Definition 4.3 and (I), (II), (III). Then there exists a hierarchy o f  obstructions, 

r,(f) ~ O*(~r ~(Hi)), 

with rj(f) defined provided ri(f)=O f o r  i<j. In this case r~(f) is a G-bordism inoariant 

o f  the G-map f relative to smaller fixed sets, and is additive with respect to bordism 

addition. I f  ri(f) vanishes for all i then f is G-homotopic to a map which is transversal 

to the O-section o f  ~. The reasonable relative version is also valid. [] 

We can note that the (stepwise) bordism invariance of the transversality obstruc- 

tions follows because the obstructions are concentrated on the top cycle of 
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(Z n, Z n iq A). This uses the vanishing of the groups in Theorem 4.6(a), and is in the end a 

consequence Of the ~gebralc fact that/~_i(ZG)=0 for i~>2, [8]. 

In Theorem 4.10 we were forced to add the unpleasant assumption that G be 

abelian. On the expense of stabilizing by replacing X with Xx  Q for a suitable (non- 

equivariant) manifold we can however obtain a version of Theorem 4.10 for all odd 

order groups. This will be of importance for our applications in Section 5. 

Let Zn=(fn)-l(Mn) as above and consider the bundle functor 

Epi ( T(X) IZn,f*( ~IMn) ). 

In the ( f ,A,  H)-problem we ask for a section relative to ZnNA. We now examine 

instead the ( f •  A x Q, H)-problem where Q is a closed smooth manifold with trivial 

G-action and f x  Q is the composite o f f  with the projection Xx  Q--->X. 

PROPOSITION 4.13. Let G be any odd order group. Suppose (XxQ, ~) satisfies 

Definition 4.3 and make the assumptions (I) and (III) above. Let A be as in Theorem 

4.10. The obstruction to solve the global (f,A,H)-problem lies in l-lkN<n) 

(Zn, Zn flA; I~-l(3~_l(H)), provided Q has trivial Euler characteristic (k=dimZn). 

Proof. Consider the bundle functors 

= Epi (T(X)[ Znx  T(Q),f*(~IMn)) 

~1 = Epi (T(X)[ Znx  T(a),f*(~lMn)~e ~) 

are Z n. The projection fromf*(e~[Mn)~e I to f*(~lM n) defines a map of bundle functors 

p: ~l--> ~: 

From the proof of Theorem 4.10 we know that there exists a section 3zk_l defined 

over the (k -  D-skeleton (Zn)k_ l of Epi (T(X)lZn,f*(~lMn)), extending the given section 

on ZnnA.  Since Q has vanishing Euler characteristic its tangent bundle splits off a 

trivial bundle. Using a projection TQ-->e ~, the section ~k-1 implies a section of ~1 

defined over (zH)k_I xQ. Thus there is only a single obstruction to having a section of 

~1 (tel (Z n n A) x Q); it lies in 

~k+t-1 (T~ (T~Rt), T~ (V~Rt-1)) 

+l H ---- l-l~<n) (Z x Q, (z  H n A ) x Q; zr k + i- 1 (TOPH (T(~RI), T~ ( V~Rt- 1))). 
(*) 
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Here /=dim Q and T, V are as in the proof of Theorem 4.10. The single obstruction to a 

section of $1 maps to the single obstruction to a section of $. Thus the latter 

obstruction, which is the obstruction to solving the global ( f x Q ,  A xQ,/-/)-problem, 

lies in the image of 

ark+l-1 (ToPH (T~RI), T~ (V(~Rt- 1)) --> ark+t-1 (Toptt (T(~Rt), TOPH (V(~Rt)) 

under the identification (*). This gives the obstruction g r o u p / - ~ + / - I ( ~ _ l ( n ) )  , cf. Theo- 

rem 4.10. [] 

There is also a 'stable' analogue of Theorem 4.12. At each level in the hierarchy 

one needs to multiply by Q in order to make the obstruction to lie in the stated Tate 

cohomology group. Thus we must assume that (XxQx  . . .  xQ, ~) is stable where the 

number of factors Q is equal to the number of different orbit types of X. 

THEOREM 4.14. Let G be an odd order group and f" X---> T(~) a G-map. Suppose X 

has N orbit types. Let Q be a closed manifold with trivial G-action and zero Euler 

characteristic, and suppose that (Xx QN, ~) satisfies Definition 4.3, (I), (III). Then there 

exists a hierarchy of  obstructions 

zi( f  x QN) E H*(5~ 1(Hi) ) 

for deforming fxQN:XxQN--~T(~) to a G-transverse map. The obstructions are G: 

bordism invariants and additive in the sense o f  Theorem 4.12. [] 

w 5. Applications: K6-orientations 

A celebrated result of D. Sullivan asserts that a topological Rn-bundle is oriented with 

respect to K-theory localized away from 2. It is the purpose of this section to prove a 

similar theorem for G-R n bundles, when G has odd order. There are two ingredients to 

the proof. One is the relation between the geometric bordism and K-theory in the 

equivariant smooth category, and the other is equivariant stable transversality. 

We recall briefly the results on equivariant smooth G-bordism, referring the reader 

to [16] for details. The set of G-bordism classes of G-mapsf:X---~T, from a smooth G- 

oriented G-manifold X into the G-space T, is denoted f2.6(T). It is an abelian group 

under disjoint union. Homotopy theoretically it can be calculated as 

riG(T) = ~ [S v+~, 7 ̀+ A MSOIu(V @R| 6, 
V 
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where V runs over all representation spaces for G, S v+n is the one point compactifica- 

tion of Vt~R", and MSOk(V~R | denotes the Thorn space of the classifying bundle 

over the Grassmannian of G-oriented k-planes in V~)R | 

If KOG(T ) denotes the usual equivariant (orthogonal) K-groups of T we let 

EiG(T) = K~G(Si(T+)) | Z[�89 

These groups form a periodic equivariant cohomology theory of period 4, so below we 

take i 6 Z/4. 

It is well-known that oriented G-vector bundles are oriented with respect to the 

cohomology theory E~(- )  in sense that there is a "linear" Thorn class 

A(r/) 6 E~(Trl). 

There are several good choices of Thorn classes; we use 

A(r/) = u(r/)-;t,(r/| C)-',  

where u(r/) is the universal symbol class of the D+-operator, [3]. using the homotopy 

theoretic description of Q.C(T), A gives a transformation of functors 

A: QG,(T)--~ E~,(T) 

where E~,(T) is the G-homology theory associated with the G-spectrum which defines 

E~(T). With our choice of A(~/), A reduces to the G-signature when T=pt. 

From [16], we have that A induces an isomorphism 

HomEy (E~,(T), E~,) ------- Homey (~,G(T), E~,). 

On the right hand side the action of f~,G on E~, is via the G-signature. The universal 

coefficient theorem for equivariant K-theory gives, cf. [16]: 

THEOREM 5.1. There is an exact sequence 

0 ~ Ext~y (E~,(T), E~,)--~ E$(T) ~ HomQG (f~,a(T), E~,)---, 0. [] 

For x 6 ~ ( T ) ,  p(x) can be described as follows. Suppose 

y: sv+"--~ MSOt~(V ~ R  | A T + 
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represents an element of Q~(T). Let A 6 Etff(MSOIvl(VO)R| be the universal Thom 

class. Then 

/~(x) (7) = 7*(A .x) fl A(V ~R")  6 EgG -". 

Here A(V~R") 6 E~+"(sV+"). 

Let ~---~ Y be an oriented topological G-R" bundle over Y. Suppose that dim ~6>2. 

We shall use Theorem 4.14 to construct a homomorphism 

6: R(G) | 

If f: X--*T(~) is a G-map which is transversal to the base space Ythen f- l(Y) is a G- 

manifold and we can take 

6(X,f) = sign6 (f- l (y)) ,  (5.2) 

zero when f - l ( y )  is odd-dimensional. But the problem is that not every element of 

f].~(T(~)) is represented by a transversal map. Indeed, Theorem 4.14 indicates obstruc- 

tions to transversality, even stably. 

We must stabilize f'.X---~T(~) to meet the requirements of Theorem 4.14. On the 

other hand we must pick Q with some care since we want to use the G-signature to get 

an invariant. Indeed, we want Q with z(Q)=0 and sign(Q)*0. 

Since the Euler characteristic and the signature are congruent (rood 2) we cannot 

get sign(Q)=l and z(Q)=0. However, there exists a smooth closed 8-dimensional 

manifold Q with 

z(Q) = 0, sign(Q)-- 2. (5.3) 

(cf. [27]). Second, recall from [16, w 3] that for any pair (M, ~) of a G-manifold M and a 

G-bundle ~ (over D there exists a smooth closed G-manifold P with 

s ign~(P)=l  and (MxP,~xP)  stable. (5.4) 

Indeed, P can be taken to be the complex projective space of (many) copies of the 

regular representation. Let N be the number of subgroups of G and choose P so that 

( X x P x Q  jr, ~) is stable. Write R=PxQ ~ and 

fn: XxR---, X----~ T(~). (5.5) 

We want to make f s  G-transverse to Y. The conditions (I) and (III) follow from our 

assumptions on ~, namely from 
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dim ~6~>2. (5.6) 

We can apply Theorem 4.14 step by step. First make fG~,yG and set 

Z G = ( f ~ R ) - l ( v  G) C X x R .  

The first transversality obstruction is then in 

r ( f  R) E/-]r t (G)). 

If it vanishes we can make fR G-transverse near Z (;. 

The obstruction is of order 2, so if we replace the original f:X---,T(~) by 

2.f: 2"X~T(O where 2 .X is the connected sum along a fixed point(l) of X with itself 

then 

((2 "fR)G)-I(Y G) = 2. Z (; = Z (; # Z (; 

and r~(2 .fR)=2rc(fn)=O. We can continue up the stratification (following an admissible 

ordering of the orbit types). Thus for sufficiently large k, 

( 2k ' f )R :  2k'XxR ~ T(~) 

can be approximated by a mapping gR which is G-transversal to Y. Therefore (5.2) can 

be extended to all bordism elements by defining 

6(X, f )  = I/2k+Nsignc (g~ 1( I0) E R( G) | Z[1]. (5.7) 

In fact, 6(X, f )  E E~ where r=dim g~t ( I0=dimX-dim ~. 

More importantly, 6(X, f )  is a cobordism invariant as one can see by making 

Fv: W• G-transversal (rel. OW• whenever (W, F) is a bordism of (X, f) .  

Note also that 6(X, f )  is independent of the choice of R, since we may choose 

g~:(Y) x R 2 G-cobordant to g~:(Y) xR I. 

PROPOSITION 5.8. There is a homomorphism 

G __~ ~: f2,+k(T~) E~k. 

(t) Every cobordism class {X,f} has a representative with Am*~. Indeed one can always replace X 
with the connected sum along an orbit with a linear sphere (with a fixed point) to create a fixed point of X. 
This process does not change the cobordism class. 
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which satisfies 

(i) for {M} E fl.a, 6({X,f} • {M})=6{X, f} .  sign o (M); 

(ii) for G-R ~ bundles ~1 and ~2 

G G ._..> G f~,+kt(T~,) | ~2~2+k2(T~2 ) ~2n,+~,+kt+k2(T~, A T~2 ) 

is commutative. 

Ib,| 16 

95 

Proof. If X f T ~  is G-transversal map then fu :  XxM--->X---~T~ is G-transversal and 

f - l (Y)xM=f~l (Y) ;  since signG( ) is multiplicative (i) follows. Similarly, iffi:Xi---~T~i 

are G-transversal maps then 

f l •  2: XI• T~I A T~2 = T(~l • 

is G-transversal to Yi • Y2 and the counter-image of Y1 • }:2 is the product of the counter 

images of Y1 and Y2. [] 

We can now combine Theorem 5.1 and Proposition 5.8 to construct an E~-Thom 

isomorphism for Top and PL G-R n bundles; the procedure is the same as in the G-trivial 
case (cf. [17]). 

THEOREM 5.9. Let ~ be an oriented G-R ~ bundle over Y and let IG] be odd. 

Suppose further that ~ satisfies (5.6). Then there is an isomorphism 

%: 

such that 

(i) f*~z(y2)=qb~,(f*(y2)) when (f,f):  ( ~,, Y1)--->(~2, ]:2) 

is a bundle map, and Y2 E Eke(I:2). 

(ii) ~,•174 at least rationally. 

Proof. We construct ~ for the universal oriented G-R" bundle, and get it in general 
from (i). Then qb~ will automatically be natural with respect to bundle maps. 
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From Proposition 5.8 we have the homomorphism 

a: 

where ~. is the universal bundle over BSTop. (G), and by Theorem 5.1 we obtain an 

element 

Atop (~n) E E~(T~,,; ~ ) .  

We must show that Atop(~n ) is a Thom class. As usual it suffices to check that Atop(r .) 

restricts to a Thorn class on each fiber; we show it restricts to the linear Thorn class on 

fibers. 

Consider a G-map f: (X, aX)---~(S w, oo) which is G-transverse to 0E WcS w and let 

M=f-~(O)cX be the corresponding submanifold with trivial normal bundle Mx W. The 

map f represents a bordism class {X,f}  E g2,+lwl(S6 w, oo). With the notation of Theorem 

5. I we shall see below that 

/x(A(W)) {X,f}  = sign o (M). 

Since I~(Atop(BO){X,f}=signr(M) by definition it will follow that A(W)=Atop(B0 at 

least rationally, and hence integrally, as E~(S W) is torsion free. 

Embed X in a representation, say (X, aX)~_(DV, SV). Let g be the composition 

g: DV/SV f-~ TO, x)/TO, xlaX)L T(vx) ^ s L  

where c is the collapse map and f i s  induced from idxj5 (X, aX)---~Xx(S W, .). 
The normal bundle Vx is classified by )'k(V) over the Grassman manifold of k-planes 

in V, so composing with g we have 

sV ~--~ T(vx) A sw---* MSOk(IO A S w. 

This composition represents {X,f}  in the homotopy theoretic interpretation of f~(SW). 

It follows that 

M(A(w)) ({X,f}) = g*( A(v x) | A(W)) Iq A(V). 

On the other hand, the normal bundle of M c X c V  is vx[M~(Mx W). We denote 

the collapse map for this embedding by c M and get a commutative diagram 
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SV cM , T(vxlM) ^ sW = T(vM) 

x~ ]T(i)̂ id 
T(v x) ^ S w 

Hence g*(A(vx))| ) and by the Atiyah-Singer G-signature theorem (in 

the formulation of [16, (I. 12)], 

c~(A(vM)) f'l A(V) = sign c (M). 

This completes the proof that Ato p (~) is a Thom class, and gives the isomorphism ~ ,  

which satisfies condition (i) of the theorem. 

Condition (ii) follows from Proposition 5.8 (ii) and the fact that the kernel of/ t  in 

Theorem 5.1 is a torsion group. [] 

Question. Is Ext~(E~, (BTop (G)), E~,)=0? 

The answer is yes in the G-trivial case. The proof is based upon Sullivan's 

decomposition of the p-local BTop0,) as BSOo,)xBCokJ p, the Hodgkin-Snaith theorem 

that CokJp has trivial K-theory and the description of K-theory of BSO in terms of the 

completed representation ring. We refer the reader to [17] for more details. It does not 

appear unreasonable that the line of arguments for the G-trivial case can be carried 

through for general odd order groups. The necessary analysis of the equivariant 

(F/PL)o,) is done in [19] and (F/Top)~o)=(F/PL)~,) for p odd by results from [20]. One 

then needs an equivariant CokJto)-subspace of Fo, ) and an equivariant Hodgkin-Snaith 

calculation. 

We saw in the proof of Theorem 5.9 that the Thom class ~(1)=Ato p (~) restricts to 

the "linear" Thom class A(~x) on each fiber. In fact, the same argument shows that 

Atop(~)|174 for a G-vector bundle ~ over a G-simply connected space. In 

particular, A(~)| is a topological invariant. But moreover, since E~(MSO(G))~ 

E~(BSO(G)) is torsion free we in fact get 

COROLLARY 5.10. For oriented G vector bundles with IG[ odd the K-theory Thorn 

class A(~)|189 is a topological invariant. [] 

7-888285 Acta Mathematica 160. Imprim~ le 25 f6vrier 1988 
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w 6. Topological similarity of representations 

In this section we shall exploit Proposition 5.8 for G-vector bundles and in particular 

for representations of  G, where G has odd order. As pointed out in the last section the 

Thorn class in E~-theory of  a G vector bundle is a topological invariant. Therefore,  any 

characteristic class which is derived from an operation on A(~) is also a topological 

invariant. We shall use this for the Euler class e(~) and for the "cannibalist ic" class 

ok(~) defined respectively as 

e(~) = s*(A(~)), (6.1) 

~pk(A(~)) =/d'Ok(~) A(~), 2n = dim ~. 

Here s:X--~T(~) is the zero section and ~pk is the Adams operation. Both classes are 

exponential, 

e(~1(~2 ) = e(~l) e(~2), Ok(~l(~2) = Ok(~l) Ok(~2) 

and for a complex G-bundle they are given by 

LEraMA 6.2. Let L be a complex G-line bundle over X. Then 
(i) e (L)=(1-L) / (1  + L)  E E2(jO, 

(ii) k o k ( L )  = " (1-Lk)(I + L)/(1-L)(I + Lk)E E~(X) if L~I  

Lk if L = l  

Proof. The argument follows from the relation AL=AZ.Y1(L) -I where Yz E Ka(TL) is 

the usual Thorn class, and from the well-known relations: 

s*(gt.) = 1 - L  

~pk0.t) = (1 + L +  ... +L k-l) 2 z 

(see [2, w 2.6]). [] 

We can take the base space X to be  a single point. Then Kc(X)=R(G) is the 

complex representation ring, and we obtain strong topological invariants of  representa- 

tions. Since representations are detected by restrictions to cyclic subgroups we may 

assume G is cyclic to start with. 

Let G be a cyclic group of  odd order m. Choose a monomorphism X: G---~C• so we 

can list representations of  G as sums 
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V= Z njz J, j E Z / m  

where nj are integers and )~(g)=z(g) J. From Lemma 6.2 we get 

e(V) (g) = 1-7[ (1-Z(g)J/1 +X(g)/) "j 

99 

J (6.3) 

ek(v) (g) = #~l-lvl ]-[  (e(z(g),k)/t(x(g)~))2~-~. 
J 

Here j varies over Z/m, e (~ )= l -~  if ~=l=l and e(1)=l, and IV[ denotes the complex 

dimension of V. Note that e(V)(g)=0 when Vg4=0 and that 0k(V)(g)=ok(v - V e) (g). 

Next, recall the Franz' independence lemma in the formulation of [6]. Let ~m 

denote a primitive mth root of 1. 

THEOREM 6.4 (Bass, Franz). Suppose given integers aj for  j E Z / m  such that 

a T a  J. I f  
m - I  

U e(~ )aj: 1 
j = !  

for all divisors d o f  m, then aj=O for  all j= I ..... m -  l. [] 

COROLLARY 6.5. Let G be a cyclic group o f  odd order m. Two RG-modules V and 

W with V c= W ~ and 0k(V)=0k(w)for (k, m)= 1 are isomorphic. 

Proof. We can assume V c=  We=0, and since m is odd we can view V and W as 

CG-modules; and must show that V@ I7'= W@ I0. Write 

V ~ ~'= Z njz j 

w Cc= E m, 

wi th jEZ/m.  Then nFn_y and mi=m_ i and m0=n0=0. Let 

aj = 2nFnj;z- 2mi+ mj/2, 

so by assumptions and (6.3) 

klVgl-[wgl-lVl+lwl]'-[ [e(x(g)Jk)/e(x(g)J)] aj= 1. 
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Since each term e(x(g)Jk)/e(~(g) i) is a unit of Z[z(g)] we conclude that 

IV~I-IVI=IW~I-IW I for all gEG. Hence V and W have the same fixed set dimensions, 

and 

I-I e(x(g:)" = I-[ (*) 
J J 

for each k with (k, m)= 1. 

Let N.: Q(~m)--~Q be the norm. It is well-known that 1 - ~  is a unit unless jim and 

m~j is a p-power. In fact, Nd(1 -- ~d)= 1 if d is composit and Nd(1-- ~a)=p ifd=p i. Hence 

we have 

J'l if I(gJ)l is composite 
Nm(e(z(g)i)) 

ffv:(g>l if I(~)1 is a p o w e r o f p .  

Since V and W have the same fixed set dimensions 2{ajl I(gJ)l=d} =0, and we get 

1-I l--[ ~ 1. 
k E (ZIm) • j E ZIra 

Then (*) implies 1-Ie(z(g)@=l, and from (6.4) we conclude that aj=0 for all 

jE Z /m-  {0}. Repeated use of the equation 

nj-mj = 2(n2j-m2j) 

shows that nj=mj for allj.  [] 

We can combine this result with the fact that 0 k is a topological invariant to get the 

following main theorem. 

THEOREM 6.6. For groups of  odd order, topologically conjugate representations 
are linearly conjugate. [] 

This result, which in fact motivated our whole study, has been proved indepen- 

dently by W.C. Hsiang and W. Pardon in [12] using rather different methods. For 

groups of order 4m, m>l .  Theorem 6.6 is known to be false, [7]. 

Our results should also make it possible to get information about the kernel of the 

maps 

KOo(X) ~ KPLo(X)~ KToPv (X) 
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in a number of interesting situations, but we have not made any specific calculations on 

this problem. 

w 7. The topological G-signature theorem 

The Thom isomorphism in E~-theory from w 5 can be used to define a Gysin homomor- 

phism for a G-map between oriented topological G-manifolds 

f : Mm---> N n. 

For a sufficiently large representation V the composition 

fv: Mm.-> N"---> Nnx V 

can be approximated by a G-embedding which has a G-normal bundle V(fv), cf. [14, p. 

247]. We get a collapse map 

( ,~  x v) + _k, i rv( fp.  

The composition 

@v C* @V 
E~(M)-~ E~(Tv(fv))--~ E~((N n • V) +) ~_ E~(N) 

is independant of the choice of V, at least after we tensor by Q (cf. Theorem 5.9), and is 

called the Gysin homomorphism. We denote it as usual by 

fv.: EiG(M) ---> Eign-m(N). 

In particular for N=pt  we have 

A: ~ ( g ) - - ,  E~ m c R{G) | Q, 

and there is the following topological version of  the G-signature theorem: 

THEOREM 7.2. Let G be a group of  odd order, and let M be an oriented topological 

G-manifold. The Gysin homomorphism 

f,: E~ E~ m ~ R(G) | Q 

maps 1 into signa (M). 
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Proof. We have a G-transversal diagram 

S v = S(V ~R)--~ T(v)--> MOk(V) 
U U 

id 
M ---> M 

By the construction of Ato p (v) (cf. the proof of Theorem 5.9): 

c* (Ato p (v)) = sign a (M). A(V) [] 

For an oriented G-manifold M the topological signature sign a (M) can be consid- 

ered in the usual fashion as a complex (class) function of G, and 

sign~ (M) (g)= sign<g~ (M) (g). 

Let g be a generator of the cyclic odd order group G. Assuming that MgcM has a 

(locally linear) topological normal bundle v(M g, M) we have its K-theoretic Euler class 

e(v(M g, M) ) E Ka(M g) ~- R( G) | K(Mg). 

Let R(G)g be the ring R(G) localized at all ciaaracters which vanish at g (explicitly, 

R(G)g=Q(~I~I)), and let K6(Mg)g be the corresponding localized module. 

From [4], e(v(M g, m) is invertible in gG(Mg)g and the Gysin homomorphism 

i!: Ka(Mg)g--> KG(M)g 

takes e(v(M~: M)) -l to 1 (since i'i! is multiplication by e(v(M g, M), and i* is a local 

isomorphism). If f:M-->pt is the constant map then f,=(fa)~oi~. Summarizing, we 

obtain the formula 

sign a (M) (g) = ( f 0  !(e(v(M g: M))- 1) (7.3) 

valid for all odd order groups G and all oriented topological G-manifolds for which 

(locally linear) normal bundles v(M g, M) exist. 

The question of existence of normal tubes will be taken up in Part II, III (cf. [19], 

[20]) in the PL and topological cases, respectively. We can notice that it suffices to 

have block bundle neighborhoods; which is automatic in the PL category. Indeed, 

stably block bundles contain locally linear bundles. Thus (7.3) gives a G-signature 

theorem for every PL G-manifold. 
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In closing, let us note for  v(M g, M) trivial, say equal to Mg• W, that W is a fixed 

point free (g ) -modu le  and (7.3) becomes  

sign o (M) (g) = sign (M). e(W) (g)-l .  (7.4) 
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